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Foreword

This volume contains papers which have been selected for the Poster Session at the Sixth
International Symposium on Methodologies for Intelligent Systems - ISMIS'91, held in
Charlotte, North Carolina, October 16-19, 1991. The Symposium was hosted by UNC-Charlotte
and sponsored by IBM-Charlotte, ORNL/CESAR and UNC-Charlotte.

The Organizing Commiittee has selected the following major areas for ISMIS91:
* Expert Systems
* Intelligent Databases
* Knowledge Representation
* Learning and Adaptive Systems
* Logic for Artificial Intelligence.

These contributed papers have been selected from 55 full draft papers by the following Program
Committee: A.W. Biermann (Duke), W. Bledsoe (Austin) , J. Calmet (Germany), J. Carbonell
(CMU), B. Chandrasekaran (Ohio State), P.R. Cohen (UM-Amherst), C. Fields (New Mexico
State), B.R. Gaines (Canada), P.E. Hart (Syntelligence), S.J. Hong (IBM-Yorktown Heights),
M. Karpinski (Germany), W. Kohn (Boeing, Seattle), K. Konolige (SRI), C. L.assez
(IBM-Yorktown Heights), R. Lopez de Mantaras (Spain), J. Maitan (Lockheed), R.A.
Meersman (The Netherlands), R. Michalski (George Mason), J. Minker (Maryland), M.
Mukaidono (Japan), R. Parikh (CUNY), J. Pearl (UCLA), D. Perlis (Maryland), F.G. Pin
(ORNL), H. Prade (France), Z.W. Ras (UNC-C), L. Saitta (Italy), E. Sandewall (Sweden), T.
Sellis (Maryland), J. Sowa (IBM-Yorktown Heights), R. Thomason (Pittsburgh), D. Touretzky
(CMU), R. Waldinger (SRI), S.K.M. Wong (Canada), M. Zemankova (NSF) and J. Zytkow
(Wichita State). The activity of this Committee and all of the cooperating referees was a great help
in completing the final program. This help is highly appreciated.

The cooperating referees are listed below:

J. Baker, B. Chu, L. Console, M. Franco, H. Geffner, A. Giordana, L. Giordano, J.
Grzymala-Busse, M. Maher, A. Martelli, S. Matwin, E. Mays, Z. Michalewicz, E. Plaza, H.
Rasiowa, P. Torasso, J. Xiao, R. Yap and W. Zadrozny.

The Symposium has been organized by the University of North Carolina at Charlotte with the
following Organizing Committee: Bill Chu (UNC-C), Karen S. Harber (ORNL), Zbigniew
Michalewicz (UNC-C), M.S. Narasimha (IBM-Charlotte), Francois G. Pin (ORNL), Zbigniew
W. Ras (Symposium Co-Chair, UNC-C), Jing Xiao (UNC-C), Maria Zemankova (Symposium
Co-Chair, NSF).

We wish to express our thanks to Alan Biermann, Jon Doyle, Larry Kerschberg, Tom Mitchell,
and Gio Wiederhold who gave invited talks at ISMIS'91. We would also like to express our
appreciation to ISMIS'91 sponsors, to all who submitted papers for presentation at the
symposium and publication in this proceedings, to ISMIS'91 Organizing Commiitte, to Karen
Harber at ORNL without whose help the present volume could not have been completed and to
all of those who contributed to the symposium program.

Francois G. Pin
Zbigniew W. Ras September, 1991
Maria Zemankova Charlotte, N.C.
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Robotic Mobility and Cognitive Maps

Carl M. Benda
IBM
Charlotte
Charlotte, NC 28257

Abstract

This paper focuses on the acquisition and storage of environmental information by a
mobile robot. The environment includes obstacles which must be mapped by the robot. A
method for representing a robot moving through its environment is described. Algorithms used for
storage and retrieval of environmental data are presented. The goal is to represent the data in what
is known as a cognitive map which allows faster retrieval of the environmental data because of this
representation’s compact nature.

1. Introduction

The paper focuses on tools and algorithms used to show how a mobile robot could map out an area
of his environment and store that map for later use. The environment of the robot contains various
obstacles which will be stored in the cognitive map of the environment. Specifically, this paper will focus
on three main areas of the project:

1. Circular Quadtree Data Structures ([3], [4])
2. Depicting the Data in Polar Coordinates {{3], [4])
3 Creating a Cognitive Map

The robot, by processing information obtained through the use of these mapping algorithms can detect
exactly where obstructions are. This paper will present the software structure and algorithms employed to
generate the final goal, which is a "Cognitive Map” [6] of the original environment information.

2. Circular Quadtree

The "Quadtree Data Structure” as described in [2,3,4,5] is used to store the information that has
been scanned. There are in fact many methods available for storing environment information, from simple
memory dumps to complex compression algorithms. The quadtree data structure provides a useful yet
efficient method of storing environmental information. Figure 2.1 graphically depicts the method used by
the robot to store the scanned data and the order in which the data is examined.



Figure 2.1. Circular Quadtree

In the quadtree data structure, elements are assigned values depending upon the data contained
within these elements. The elements have a value of either 0, 1, or 2. A value of zero means that for the
sector scanned, there is no environmental information. To put it another way, the environment contains no
obstacles in that particular sector. A value of 1 means that for the particular sector, the environment
contains an obstacle which must be avoided. For a value of 2, the environment sector being scanned must
be subdivided into four subsectors to further determine the extent of the object. These subsectors are then
recursively scanned in a counter clockwise fashion. This recursive algorithm continues until the subsector
is found to contain an object or be devoid of an object. When all four quadrants have been scanned, the
resulting quadtree represents all of the visible local environmental data. A tree is created to represent the
storage of the environmental information. Figure 2.2 shows how the data structure in Figure 2.1 is stored
in a hierachical format.

Figure 2.2. Circular Quadtree Hierarchical Structure.

3. Scanning Technigue

The first element to be determined is the scanning radius of the robot. After the radius has been
set, the scanning method must be chosen. The direction of the scan is not as important as the final quadtree,
as any direction would produce an equivalent quadtree.



3.1 Data Transformation
The scanned environment is stored as R, Theta polar coordinates. To display the location of the
objects scanned, the data is translated into X,Y coordinates which the display hardware uses. See Figure

3.1.

3.1. Transformation from polar coordinates to positive integer Cartesian coordinates takes place using a
simple software algorithm. :

Scanned as R, Theta

store to
r memory as

3 R, Theta
-

Theta direction
r direction—3e-

“

Display requires
X, Y integer values

Coordinate Translation Usage
Figure 3.1. Data Representaions

3.2. The Scanning and Subdivision Algorithms

In order to be as efficient as possible, the scanning algorithm only scans until the area of concern
is known to contain an object. In this way, the subdivided area is completely scanned only when it is
devoid of an object. Using a single subsector, Figure 3.2 depicts the scanning sequence used by the
algorithm. Once the area of detail is resofved, the algorithm stores the location of the subsector in a
table. This information is stored along with the level of resolution required to resolve the subsector. The
level of resolution is the number of subdivisions required to ascertain whether the subsector in question is
devoid of an object or filled with an object. In practice however, as will be shown, the number of
subdivisions is limited to the ability of the machine to translate from polar coordinate information to
integer relative points in the environment. After four subdivisions within a given sector, if the subsector is
still known to be gray, the robot stores that information into the tabie. Because subdivision is done using
polar coordinates, the areas close to the center of the envircnment can not be resolved beyond the fourth
level. The level of subdivision is the number of times the subdivision algorithm calls itself within a given
subsector of the environment.



Area of Detail

Only one scan line

-~ |s used because an
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This area must be
subdivided

Section being scanned Multiple scan lines
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e

Section being scanned

Entire area is scanned
without encountering the
object.

Section being scanned

Figure 3.2. Scanning Example



Information is stored in memory in a simple format. The data consists of level, color, starting
angle, ending angle, and two radial values, (one indicating the starting radius, and the second indicating the
final radius of the subsector, both outward from the position of the robot). The level is a number from 1 to
4. The color is stored as an ASCII character which is one of either b, w, or g. The radius values are stored
as a relative distance value from 0 to 240. For example, in figure 3.2, the sector being scanned in the final
view would have a starting radius value of 210, an ending radius value of 240, and a starting angle of 168.

The major difficulty in scanning the environment is that all of the points on the environment are
in reality only addresses in memory, and thus can be referenced only in an integer fashion. The scanning
process, however, requires floating point calculations in order to more realisticaily depict the vision process.
The floating point calculations are handied with the float data structure in C. In view 3 of Figure 3.2,
using the above formula, the calculation for the starting angle works out to be 168.75, but because it is
evalnated to an integer, the starting angle stored onto the would be 168 degrees. In application this
approximation performs satisfactorily. Moreover, when an algorithm which incorporated rounding was
used, it proved not to add a significant change in the overall accuracy of the robot. However, the more
complicated algorithm did add quite a lot of overhead to the program thus slowing execution down
significantly.

Determining how and when to subdivide the current sector if it does contain an obstacle is the job
of the subdivision algorithm. Starting with the current position of the sector that is being scanned, the
subdivision algorithm determines where the next subsector to be scanned is located. The key to the
successful completion of the subdivision algorithm is its use of recursion. One point not shown, however,
is the fact that there is a practical limitatior{ to the amount of subdivision that can be done. In theory,
subdivision of the area can continue to infinity. The practical limitation is based solely on the resolution
of the environment. Through trial and error it was found subdivision would be allowed to continue as long
as necessary or until a depth of 4 was reached. Figure 3.3 is a quadtree representation of a single quadrant
showing that an end node does not have to be either all black or all white, but because a depth of four has
been reached no further subdivision will take place on that subsector.

level 2

. level 3

unresolved
end node
Figure 3.3. Quadtree with an Unresolved End Node.



4. Robotic Mobility and Creating the Cognitive Map

The study of cognitive maps is not new, but has been around since the 19th century [6]. In this
paper, cognitive maps are used to create a data base for information used to show where the Robot is in
relation to the objects that are to be avoided.

4.1. A Representation of the Cognitive Mapping Process

The cognitive mapping process establishes a criterion for connecting raw sensory data, in this case
the scanned-in data represented in R/Theta format, into objects. A Cognitive map is a representation of the
environment in connected objects. There has been much activity in the area of cognitive maps coming
from a wide variety of disciplines such as urban planning and computer science. The theory is relatively
well understood. For the purposes of clarification, a Cognitive Map is the spatial representation of objects
within the scope of the viewer’s domain [7]. In this work, the viewer is the robot, and its domain is a
radivs of 240 relative points, 360 degrees. This domain is known as the scanned environment. There are
many aspects of an environment that may need to be made an explicit part of the Cognitive Map including
color and spatial layout of the surfaces of any objects in the environment. The layout of the 2 dimensional
object is used to create the Cognitive Map. In this section an algorithm is introduced that will collect the
data used to create the Cognitive Map. With respect to the environment, there are three elements that must
be decided upon. Fortunately, due to the nature of the design of the quadtree data structure, and the scanning
and subdivision algorithms, two out of three of these elements have been decided already. However, for
purposes of edification, the three elements are presented here.

1) Primitive elements [8] are used for representing the shape of objects within the domain of
the system. The point here is that although the domain of the robot continues as stated above, with the
ability the robot to travel, the domain of experience grows as the robot moves within the environment.
Typically, the primitive elements may be one of either a limited local descriptor or a more general area
descriptor, and since the concern is to compute the spatial layout, i.e. the Cognitive Map, of the
environment, the choice is to use an area descriptor. An area descriptor describes the space in which the
robot is traveling [6]. Attributes of this space include Empty Space and NON-Empty Space. In Figure 5.1
below, the robot’s initial perception of its environment is shown. The lines represent the robots line of
sight, and the polygonal shapes are objects which the robot cannot see past.

/

(X3lvy3)
x2ly2) ‘

(X1lY1) @

Figure 4.1. Initial Space Representation for the Robot.



2) The second element which must be decided upon is the choice of coordinate system. In
[6], the discussion concludes with the author selecting a nonegocentric framework. This means that since
the world is stable and it is the robot that keeps changing position on the environment, the Cognitive Map
should be computed independent of the perceiver’s point of view. Originally, the quadtree data structure
representation of the objects on the environment had been pre-calculated.

3) These first two elements, although important in themselves, are more or less a means of
coming to the third element of the Cognitive Map, the organization. There are two possible alternatives for
organizing the primitive elements to represent the structure of the environment. The first is to describe the
relationship between individual objects as they are perceived, and the second is to partition the objects into
groups of objects which are then connected together as a whole.

4.2. Computing the Cognitive Map

To compute the entire data base, referred to as the domain of experience for the robot, an algorithm
has been generated which collects environmental data based on the quadtree recreation of the environment.
A set of cognitive maps are produced which are written to tables. These tables collectively are known as
the domain of experience for the robot. The path, along with the environmental data is entered by the
robot. The robot travels at a known rate, and along the way stops to obtain new cognitive mapping data.

Collected data is stored in a table. The data describes at what angle the object was first observed to
be located and the relative distance from the robot. After scanning a complete 360 degrees, the robot then
moves a specified distance along the selected path and repeats the scanning process at the new location.

4.3. How the Cognitive Map is Created.

The objective of depicting a Cognitive Map for environmental representation is to provide a
comprehensive depiction of whether or not the planned path is viable. The idea of mapping out exactly
where the objects in the environment are located is not as important for robot navigation as showing a
blocked path. '

Using the Cognitive Map, the robot is able to avoid areas where obstacles exist. The Cognitive
Map defines regions of the environment which are not passable, rather than storing the size and location of
the obstacles. The data used to create the Cognitive Map is stored in a Table .

A Cognitive Map is an important tool for the use of robot navigation when the goal is to achieve
navigation to a destination point. Clearly if the goal is to gather data about the environment for later study,
as is the case with a probe, the Cognitive Map as it is employed here would require modification. Perhaps
the best reason for creating a Cognitive Map for data representation of environmental data can be summed
up in one word; Speed. If the relative sizes measured in bytes of the R/Theta table and a randomly selected
Cognitive Map were compared, the R/Theta data table would be an order of magnitude larger than that of the
Cognitive Map. Just like the R/Theta data table, each data table contributing to the Cognitive Map is used
to show where the objects in the environment are located. This means that the amount of data that the
robot must consider, to make a decision about which direction to travel, is far less if the Cognitive Map is
used rather than the R/Theta data table. It should be kept in mind that the development of the Cognitive
Map requires that the R/Theta representation be read and manipulated at least one time. If the robot moves
into a new region, which has not been previously scanned, additional scanning of this new region would be
required. If, however, one considers the complexity of the data represented by the two formats, it is also
clear that the Cognitive map has less complex information.

The advantage to the R/Theta data table is that it gives an additional view of the entire scanned-in
data. It provides information on where the environment has subsectors that are gray, black, and white. In
the Cognitive Map, the only information that matters is the visible contour the obstacles, i.e. how far away
they are, and in what direction they lie.

The Cognitive Map is a simple way to get around the burden of knowing everything about all of
the environment. It relies on the R/Theta mapping process, but really only once.
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ABSTRACT

For reasoning systems, it is sometime useful to cache away the
inferred values. Meanwhile, when the system works in a dynamic
environment, cache coherence has to be performed, and this can be
achieved with the help of a reasoning maintenance system (RMS). The
questions to be answered, before implementing such a system for a
particular application, are: how much is caching aseful 7 Does the
system need a dynamicity management system ? Is a RMS suited (what
will be its overhead) ?

We provide an application driven evaluation framework in order to
answer these questions. The evaluation is based on the real work to be
processed on the reasoning of the application. First, we express the
action of caching and maintaining with two concepts: backward and
forward cone effects. Then we quantify the inference time for those
systems and find the quantification of the cone effects in the formulas.

1. INTRODUCTION

For reasoning systems such as knowledge bases, it is often necessary to record
the result of the inference process even if it is goal driven. Recording the result of a
computation is called caching in computer science. Caching is necessary when the
produced inferences are costly and used several times.

When knowledge in the base does not evolve, caching is safe and very efficient.
But in real world applications, the knowledge base is usually dynamic. This is true for
systems that interact with the environment (through sensors) or with the user who can
set hypotheses and change the knowledge in the base. So, caching requires dynamicity
management. Most of the time, it is performed by using a RMS (Reasoning
Maintenance System) based on dependency graph manipulation. But is a RMS always
interesting ? Should it be more attractive to treat dynamicity problems by ignoring RMS
solutions 7

We develop here a quantitative analysis of the reasoning graph in order to answer
these questions. Numeric criteria defined on properties of the dependency graph are
used. Real world applications give evidence of such properties, especially for spatial
knowledge bases and spatial reasoning.

After a short description of reasoning maintenance systems and their advantages
in the context of knowledge bases, we will briefly describe an object-based knowledge
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base management system called Shirka/TMS which uses a RMS (§2). We will show
some numeric results from that system and give expectations about its behavior. More
recently, observations have been performed on a real world application ELSA (§3)
dedicated to the analysis of snow avalanche path. This application uses the inference
mechanisms in order to compute spatial propertics of a geographic area such as
connected sub-areas or close ridges which are used very often. The benchmark results
obtained with ELSA are very surprising.

We are able to explain them with the help of a new concept: backward and
forward cone effects. They are formalized (§4) in order to draw general conclusions
about RMS use in reasoning systems. In fact, the advantage of a RMS toward rough
caching is a tradeoff between backward and forward cone effect.

2. A SPATIAL REASONING APPLICATION

The motivations for using a RMS in knowledge based systems are first presented.
Then, Shirka/TMS will be introduced together with some tests and expectations about
its behavior.

2.1. REASONING MAINTENANCE SYSTEM

When using an inference system in backward chaining mode, the result of each
inference, would it be an attribute value or the validity status of a proposition, can be
cached i.e. recorded in memory. Cached values do not have to be inferred twice or
more. In fact, caching is useful when a value is used several times by the system and is
as useful as the number of times the value is nceded. But, while caching uses additional
memory space and time, it has to be used with care.

Moreover, in evolving systems or when the inferences allowed by the system can
be nonmonotonic, something which is considered as holding (a value considered as the
value of an attribute or a proposition considered as true) can be discarded. In such
cases, the cached values must be invalidated, i.e. not cached anymore. This is the job
of a RMS.

Fig. 1. A dcpendency graph is here
represented with circles as nodes and
triangles as justifications where the nodes
in the IN-list come through a full line
while nodes in the OUT-list come through
a doted line. Nodes that have a
justification whose IN- and OUT-lists are
O node D justification empty (e.g. D) represent true formulas
because they do not need to be inferred.

Reasoning maintenance systems (RMS) are aimed at managing a knowledge base
considering different kinds of reasoning. Such a system is connected to a reasoner (or
problem solver or inference engine) which communicates every inference made. The
RMS has in charge the maintenance of the reasoner’s current belief base. RMS
developed so far focussed on nonmonotonic reasoning or multiple contexts reasoning.
They record each inference in a justification that relates nodes representing
propositional formulas plus a special atom (L) representing contradiction. A
justification (<{iy,...in}{01,...0m}>! ¢) is made of an IN-list ({i,...i5}) and an OUT-
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list ({o1,...0m})- Such a justification is said to be valid if and only if all the nodes in
the IN-list are known to hold while those in the QUT-list are not; a node, in turn, is
known to hold if and only if it is the consequent (c¢) of a valid justification. The
recursion of the definition 1s stopped by nodes without justification and by the axioms
that are nodes with a justification containing empty IN- and OUT-lists.

2.2. SHIRKA/TMS AND ITS BEHAVIOR

Shirka is a traditional object based knowledge representation system written in
Lisp [1]. Everything, in Shirka, is an object (including inference methods...). Each
object belongs to a class which defines its structure — in terms of a list of fields and
constraints on the fields values — and its inferential capabilities — in terms of inference
methods used in order to determine the values of unfilled fields. Inference methods are
among value passing, procedural attachment, pattern matching and default values.

Classes are organized in a direct acyclic graph structured by the a-kind-of
relationship between classes. This relationship enables inheritance from a class to its
specializations. Inheritance is used through class refinement — a class strongly
inherits, i.e. possesses, its constraints on fields from its super-class — and inference
specialization -— a class weakly inherits, i.¢. inherits by default, its inference methods.

A RMS has been impilemented on Shirka. It is standard except that it records and
propagates field values [2]. The underlying assumption of the implementation of a RMS
in an object-based knowledge representation is that the base is queried very often (or
not often modified). The performances are very attractive because re-infering is avoided
(and so, the answers are given very quickly). On another hand, the modifications —
that are safely dealt with — and 1initial inferences are processed more slowly. This
assumption was enforced by the observations made with the very simple tests below.

2.3. ELSA: A SPATIAL REASONING APPLICATION

In the context of spatial reasoning, the RMS is very attractive. In other words,
spatial reasoning appears as a good application domain. Meanwhile, some effects
which have not been presented yet can be observed in that kind of applications: they are
“forward and backward cone effects”. These observations were performed on a real
world application dedicated to the analysis of snow avalanche paths: ELSA.

We first present ELSA and the advantage of using a RMS in the context of spatial
reasoning. Then, a set of numeric tests are discussed which demonstrates the advantage
of using a RMS in ELSA. At last, those results are suramarized in two principles called
backward and forward cone effect.

ELSA is a problem solving environment which offers to a snow specialist the
different tools available in order to perform an avalanche path analysis and choose the
best protection devices. As it has been explained elsewhere [3, 4], ELSA is built on
Shirka/TMS. ELSA is a knowledge based system which uses both symbolic simulation
based on expert knowledge and numerical simulation based on fluid mechanics
conservative laws.

Because of the spatial extension of the phenomena involved in snow avalanches
(snow-drift, snow-cover stability, fracture propagation, avalanche flowing...), ELSA
needs spatial information on the path. In order to get this information or to use it, ELSA
performs an actual spatial reasoning as it has been defined in [3]. As a matter of fact,
from poorly relevant spatial knowledge such as contour line, vegetation or ridge maps,
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ELSA must infer the definition of special units of terrain called “small panels” by snow
specialists and which are relevant for analysis (they are homogeneous from the analysis
criteria points of view). Meanwhile this definition in small panels is not relevant enough
and ELSA must also infer the properties of these small panels to perform its analysis.

These inferences are taken into account by the knowledge base system. In this
paper we emphasize on terrain inference: the inference of spatial relevant properties
from poor spatial knowledge. For example, here is the spatial definition of a small-
panel called pp1. At the beginning of the session, this small panel is defined only by the
list of triangles included in it. As it has been written in Shirka, the syntax is frame like.

{ppl
is-a = small-panel ;
contains tr2 tr93 }

In order to make an analysis of the avalanche starting zone, ELSA needs more
relevant information and, to that extent, infers a more complete description of the small
panel pp1. All the fields inferred by ELSA are obtained by the use of inference methods
(as presented above), particularly, pattern-matching inference and procedural
attachment.

{ppl
is—-a = small-panel ;
area = 6850.
c-gravity = %¥point-552 ;
diameter = 115. ;
slope-% = 68.
is-in = tende ;
contains = tr2 tr93 ;
boundary-points = po4 po6 pod pol ;
connected-panels = pp2 pp3 ;
borders = %border-589 %border-590 ;
close~-ridges = arl ar3 ar4 ar5 ;
above = pp3 }

Reasoning maintenance is interesting in an interactive environment for spatial
reasoning. As a matter of fact, the caching of inferences is necessary because of the size
of the spatial knowledge base and the amount of inferences. In ELSA, an avalanche path
can easily contain more than 500 triangles and 50 small panels and ridges. Without
caching the time taken for the inferences will forbid any interactive use of the system,
while ELSA is dedicated to decision support and thus needs interactive use.

But, in this kind of context, the user is also supposed to modify given
knowledge. In ELSA, the user can change the vegetation of a part of a small panel (in
order to simulate protection works for instance), or modify the definition of a small
panel (toward a more accurate decomposition of space). As a result, the spatial
properties of these small panels must be re-inferred. In order to keep the base
consistent, a RMS is necessary.

Although ELSA is based on Shirka/TMS, it can take advantage of the RMS in order
to manage dynamicity in spatial reasoning. Fig. 2 gives a good example of interest of
such a RMS.
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Fig. 2. In a triangulation of space, two polygons are defined through the set of
triangles which are included in them. The inferences described below are made on those
polygons. If a riangle changes its owner, the RMS must invalidate the cached inferences
which were concerned by these two polygons. Mcanwhile; the inferences conducted on
the other polygons arc not madificd. The invalidation remains local.

As a summary, it appears that spatial reasoning applications can take advantage of
classical RMS abilities. More precisely, the spatial locality can be translated in the
dependency graph.

2.5. PERFORMANCE TESTS ON THE ELSA SYSTEM

Some inference times are given in order to illustrate our claims. They show how
the caching is attractive and also why the RMS is useful. The tests have been performed
on the same hardware as above.

Tabie 1. This first sct of queries concerns caching; cach query requires the computation
of the close ridges of a pancl. This second sct of querics also concerns caching but queries
compute the sct of panels connected to a precise panel. No results about Shirka alone are
provided because response times are prohibitive (in fact, from this unique test, we can
conclude that ELSA is not viable without caching).

maintenance level Shirka Caching { RMS
Shirka: val? pp34 close-ridges §.78 4.21 4.77
Shirka: val? pp34 close-ridges 8.72 0. 0.

Shirka: val? pp33 close-ridges 17.12 1.8 2.21
Shirka: val? pp32 closc-ridges 19.01 2.11 249
Shirka: vat? pp1 closc-ridges 12.14 1.47 1.74
Shirka: val? pp2 closc-ridges 8.71 1.14 1.36
Total 1 74.48 10.73 12.57
Shirka: val? pp26 connected-pancls 65.32 75.92
Shirka: vai? pp26 connected-panels 0. 0.

Shirka: val? pp27 connected-pancls 4.9 6.7

Shirka: val? pp27 connected-pancls 0. 0.

Shirka: val? pp30 connected-pancls 4.15 5.37
Shirka: val? pp1 connected-panels 3.68 4.35
Shirka: val? pp2 connected-panels 3.53 4.96
Total 2 ' 81.58 97.3
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Table 2. After the tests that produced Table 1, the user changes the terrain description
transferring one triangle (r78) from a panel to another (just as in Fig. 2). The former
querics arc processed at new. In the first casc (single caching), the user must clear the
base and load it again. The time required for those operations is not taken into account.

maintcnance level Caching RMS
Shirka: sup-val pp26 contains tr78 0.89 0.71
Shirka: aj-val pp27 contains ir78 0.1 1.81
Shirka: val? pp34 close-ridges 4.2 0.
Shirka: val? pp33 close-ridges 1.81 0.
Shirka: val? pp31 close-ridges 2.14 0.83
Shirka: val? pp1 close-ridges 1.49 0.83
Shirka: val? pp2 close-ridges 1.16 0.83
Shirka: val? pp26 connected-pancls 65.87 6.16
Shirka: val? pp27 connected-pancls 5.17 8.08
Shirka: val? pp30 connected-panels 4.17 7.
Shirka: val? pp1 connected-pancls 3.7 5.17
Shirka: val? pp2 connected-pancls 3.52 5.49
Total (initial infcrence + modification + re-inference) 175.8 134.21

With single caching, inference time is considerably reduced. A further discussion
will give some explanations of some surprising results (especially the reduction of the
first inference time). With the RMS, inference times are slightly increased in comparison
with single caching inference times but the gain toward Shirka is obvious.

The second kind of queries shows the gain of time thanks to reasoning
maintenance system. The comparison is made between single caching and RMS. The
total line in Table 2 shows that the gain provided by the RMS is very important.

2.6. NEW EXPLANATIONS FOR THESE RESULTS: CONE EFFECTS

The observation made (comparing ELSA with or without RMS) are counter-

intuitive at first sight:

1)  Of course, the second call to the same inference takes no time with the RMS
while, in spite of its the filtering capabilities, in Shirka, it still takes a while.

2)  Even the first call is faster with the RMS than without (with a factor 22)!

3)  Moreover, the time required to answer the same query against another object is
reduced of a factor 8.

So these evaluations reveal a synergistic effect between inferences. These effects
can be summarized as:

Backward cone effect: there is a backward cone effect when a datum is used
several times in the computation of another. This can be stated in another way: the more
used the datum, the better the caching. This effect is as much interesting as the datum is
expensive to compute. Backward cone effect is able to explain the results above for
points (2) and (3). Intermediate inferences performed use each other several times in
order to obtain the high-level (or requested) data. With the RMS, these intermediate data
are computed only once. For the same reason that the inferences of different data share
the same intermediate inferences, after the computation of an item, the required time to
answer the same query against another object is reduced. The two former points explain
why the system is also faster on the re-computation after a change.
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Fig. 3. In order io obtain C31, the
system must infer C21 and C22 which in
turn necessitates other inferences. Their
computation can take advantage of caching
because they share common inferences.
This explains that the inferences produced
with caching are faster even for their first
compuiation.

Forward cone effect: the more used the datum, the worse the invalidation. As
before, there is a forward cone effect when a datum is used for the inference of a
important number of other pieces of knowledge. The forward cone effect is a negative
effect, it reflects the necessary work in order to invalidate a cached result. It explains
the classical results of observation (1) with Shirka/TMS.

Fig. 4. The whole graph rcpresents the
inferences made by the infercnce engine.
The shaded part of the graph is invalidated
after the suppression of C15. We can see,

31 qualitatively, that this shaded part looks
like a “forward cone”. The larger is this
32 cone, the less interesting is the RMS
because the number of inferences to
C33 launch is nearer from the numbers of all

the inferences.

The problem that will be addressed in the remaining is: how is it possible to
quantify these effects? and which conclusions to draw for the use of a RMS in a
particular application. It is obvious that the attraction of a RMS in an application will
result in a trade off between backward and forward cone effects.

3. A SPACE OF REASONING: THE DEPENDENCY GRAPH

Here is an attempt to generalize the results we obtained with the ELSA
experiments in order to state what kind of reasoning/application can benefit from a
RMS.

Real efficiency of RMS is very difficult to evaluate because a lot of factors have to
be taken into account: not only the number of nodes and justifications but also the way
they are organized in cycles of different kind and the order of firing rules. Moreover,
the performances of RMS depend heavily of the kind of use. Here, we do not address
these complexity problems but the conditions under which a RMS is useful in order to
maintain a reasoning. So, worst case analysis is not a suited measure of the
performances of the system and an abstract computation of the algorithm complexity is
not very useful. What is important for real applications is not the theoretical complexity
analysis of the program used for reasoning maintenance but the real complexity of the
RMS when confronted with the real reasoning. To that extent, we exhibit some results
for graphs with particular restrictions that do not trigger the whole machinery of a RMS.
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This section will, first, set some definitions to be used in the quantitative analysis
and the restrictions used in the present study. Then the analysis is achieved for both
kinds of cone effect before summarizing the results of the tradeoff between backward
and forward cone effect.

3.1. NOTATION AND RESTRICTION

In order to give some precise results, some hypotheses have been done about the
dependency graph. We assume that:

H1) There is no nonmonotonic inferences. This is not an important restriction when
assumed the second hypothesis. In fact, nonmonotonic inference in a graph
without loops is a problem for the inference system but not for the RMS.

H2) There is no loops in the graph. This assumption is quite restrictive. In fact, it is
restrictive regarding the complexity analysis of RMS, but it is not for a lot of
applications.

H3) The analysis below only considers average values and hypothesizes the
homogeneity of the graph. With regards to real application, this is the most
restrictive hypothesis. The general aspect of reasoning will be evaluated and
quantified on the basis of average values considered that the graph can itself be
decomposed in several little sub-graphs in which it is possible to cancel or
activate reasoning maintenance.

All those hypotheses are set for reason of simplicity. Of course, the quantitative
analysis of reasoning for RMS have to be fulfilled with the relaxation of those
hypotheses.

First, some notations have to be introduced. Let B be a knowledge base dedicated to a
given application. We consider all the inferences launched all along the typical session
of the application; this is called the reasoning. A particular reasoning can be represented
as a dependency graph such as the one used in the RMS. If we do not care for
nonmonotonic inferences (H1), it is an AND-OR graph (each inference is an and-node
linking the antecedents to the consequent, each formula is an or-node linking together
the possible inference of this formula).

Note that the dependency graph (as it does in RMS) does not represent the
potential inference of B, but the inferences really committed. The formulas in the graph
constitute the set F of formulas used in the reasoning (they can either be given by the
user or inferred by the reasoning system). N is the number of all formulas in F. In F,
we distinguish two sets of formulas: I is the set of initial formulas which are given and
not inferred, and Q is the set of interesting formulas which are the goal of the reasoning
process.

We call a chain, a sequence fq, j1, f1,... jn, fn of formulas and justifications such

that, for each ie[1,n], fj.1 is an antecedent of j; and fj is the consequent of j; in the
graph. n is the length of the chain (the number of justifications).
The forward depth (df(f)) at node f is the length of the longest chain beginning at node f
(and ending at a node in Q). The backward depth (db(f)) at node f is the length of the
longest chain ending by node f (and beginning at a node in I). Backward depth is also
called the level of f.

The forward width (wf(f)) at node f is the number of and-node f is linked with as
antecedent. The backward width (wb(f)) at node f is the number of and-node £ is linked
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with as consequent. So, wf(f) and wb(f) are the number of connections at front or back
of an OR-node. Note that width can also be called branching factor at node f.

wf is the average number of justifications based on one formula of F\Q (where F\Q={x;
xeFaxeQ}). wb is the average number of justifications of a formula of F\. In this
paper, we will consider that wb = 1 (this means that a datum is inferred by only one
way). So,

3 wi(f) 2 wb(f)
feNQ feN
wi="Rg wh ="

v (f) is the number of times f is used during the session, this is not the number of
inferences in which it appears but the number of times these inferences are drawn. In a
lot of applications these inferences are used a lot.

. . IRQI*wf IF\QI*wf .
p is the ratio ‘W\[%\—JB. Thus, here p= W‘JQF\’IT*’ because of the value of wb. It is the

average number of antecedents per justification in the reasoning graph.

We distinguish several constant times which are:

Tinf: the average time taken for an inference for which all the premisses are available.
Trec: the average time taken for recording a value (result of an inference).

Tdep: the average time taken for recording a dependency (representing an inference).
Tsup: the average time taken for suppressing a dependency and a cached value.

)

Fig. 5. Examples of typical graphs

An additional important constant time also appears, but is not taken into account
in our argumentation. It is Treser, the time required for quitting and loading the
application again. We guess that all these values can be easily evaluated for
homogeneous reasoning. Two archetypical examples are given 1n Fig. 5.

Table 3, The average values of the variables for the graphs given above.
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3.2. INFERENCE AND PROPAGATION ANALYSIS

At first sight, the time taken in order to produce the reasoning is
TB =zint* Yo (f)
feN

But, if the backward cone effect is accounted for, we can say (if p#1) that the
time taken to infer the formula f is:

db(f) -
TB(f) = tjnr * ed®0 -1 11
P -

db(f) -
because P———(D—ll is the size of a complete p-ary tree of depth db(f). If p=1, then

TB(D)= tinr * db(f). Hence, the total time for the inferences of the session, if no result
of inference is recorded (and p#1), is:

TB = tipg * Zei?ﬁ%
f=Q e

It is noteworthy that the ratio used in TB(f) is the number of inferences in the
backward cone. If other hypotheses are taken into account (no homogeneity, no tree
structure...), the formula can be replaced in TB(f) by another expressing the number of
inferences in the cone. With the recording of all the inferred formulas the time is:

TBeach = Y(TinftTree) = NI * (Tinf+Trec)

fe

and
TBrRMS = Y (Tinf+Trecttdep) = NI * (zinf+Trecttdep)
feN
As a result, the gain for RMS is:
GB = ¥ [(v(D)-1) * tjnf - (TrectTdep)]
feN
the formula is the same for caching without the reference to zdep.

Table 4. The valucs for the graphs given as examples. Notes that they are not
multiplicd by the same factors. As a result, case (1) do not profit from caching (and this
is true whatever is the total depth of the graph).

TBj TB2 TBcach TBRMS GB
1) 3 3 3 3 0
2 8 8 6 6 2

3.3. INVALIDATION ANALYSIS

A RMS is useful for invalidation (otherwise, rough caching is enough as it is in
forward chaining systems). Invalidation will lead to the forward cone effect. This effect
is now evaluated. We consider that one given formula f in I is modified and that the
user asks the same queries Q as before. Because of the caching system, the answers
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recorded are no valid any more. With a single caching system, we need to re-infer all
the formulas. The time required is so
TFcach = TBcach + Treset + TBeach
where TBcach = IR\ ¥ (xipf+rrec) as above.
Another solution uses a reasoning maintenance system. In that case,

TFrMS = TBRMS + Tiny + Trcinf
with TBrms = I\l * (xinf+Trect+tdep) as above,
and Tiny = Ninval*Tsup and Treinf = Ninval*(Tinf+T rec +T dep)»

wfdf(D+1 .1 . ) .. i .
and Nigval = Wi 1 -1 if wfz1 and df(f) otherwise, this is, again, the size of a wi-

ary tree of depth df(f), so this is the size of the forward cone starting at f. The
branching factor is wf because it has been considered justifications with only one
consequent, otherwise, the branching factor would have been wf*nbesq (in which
nbcsq is the average number of consequents).

As aresult, the gain given by the RMS is:

GF = N*(xinf+trec) + Treset - Ninval® (€inf+¢ rec T dep+Tsup)

If we ignore resetting time and set that (Tinf+Trec)*k = Tinf+Trecttdepttsup. the
RMS must be attractive when Nigva*k < N which must be true most of the time.

Table 5. The results of the invalidation phase for the graphs given above
(xcach=tinf+rrec and rRMs=rinf+rmc+tdcp+zsup). The graphs are not big enough to
illustrate interesting properties: both cases do not appeal for a RMS. In particular,
locality do not appear (after cach modification, an important part of the graph must be
revised). It becomes more attractive if we consider 10 independent graphs as in case 27 in
which the invalidation is useful.

TFcach Ninval TFRMS
) 6% cach 2 E*TRMSH2¥ Tsup
@ 12%Teach 6 | 12*TrRMS +6 T gup
@) 120*T cach 6 66*T RMS 6T sup

A pure static evaluation can be given with p modifications of data and the whole
set of queries between them:

Tp)=p*TB
Teach(P) =P * Treset + (p+1) * TBcach
TrMsS(p) = TBRMS + Ninval * p * (tinf+t e+t depttsup)

3.4. REASONING (ABOUT/FROM) THE GRAPH

As said above, the main problem consists in evaluating the tradeoff between both
cone effects. The important questions to ask for a particular application are: Can it
benefit from caching 7 Does caching need dynamicity management ? Is a RMS suited for
dynamicity management or is it better to recompute everything ?
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It is noteworthy that these questions cannot be answered independently.
Moreover, they are not directive; in particular, dynamicity management does not imply
the use of a RMS. Nevertheless, reasoning dynamics must be taken into account. As a
matter of fact, the performances of the system depend on the relations between query
and modification time. The result will not be the same if there is a new query after each
modification or if there is an important number of modifications between each query
phase.

4. CONCLUSION

The problem we addressed was the evaluation of the benefits of caching and RMS
in knowledge based applications. To that extent, we first show some results expected
on a general purpose tool and some results obtained on a real world application. The
results, at the advantage of the RMS, were not expected. We explained then by
producing two informal models of the actions of caching and RMS on the reasoning: the
so-called cone effects. Then, we quantified the amount of work required in order to
demonstrate some facts (or resolve one problem). The equations we obtained revealed
the presence of the cone in the quantifications of the number of inferences they contain.

This is a first attempt in order to characterize the usefulness of caching and RMS.
It has to be continued by a better knowledge of reasoning dynamics and by relaxing the
hypotheses we assumed on the graphs. Finally, the advantage of using a RMS in an
application is seen as a tradeoff between both principles. More examples and
experiments, together with a discussion of further and related works can be found in

[5].
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Abstract

We consider non-Horn Deductive Data Bases (DDB) represented in a First Order
language without function symbols. In this context the DDB is an incornplete description
of the world. A first approach to reduce the incompleteness is to add to the DDB
some kind of default rules, in order to automatically assume missing information. The
second approach, which is adopted in this paper, is to provide to the user the conditions
which guarantee the validity of the answer. These conditional answers are generated by
standard reasoning, and not by default reasoning.

Then the problem is the following : if T represents the DDB and  the query, and if
there is no direct answer to q, we want to derive the more general conditions ¢ such that
: TH q+ c. We present a strategy, GASP, designed for this purpose. It is defined by
meta rules, and these meta rules can be used for a least fixpoint operator definition. We
show that the GASP strategy is always more efficient than another usual strategy called
GALP. Since in the case of recursive definitions the answers may be infinite GASP has
been adapted into GRASP in order to only compute ground conditional answers. We
show that the least fixpoint operator associated to GRASP computes the answer in a
finite number of steps, even if the DDB contains recursive definitions.

*This work has been partially supported by the CEC, in the context of the Basic Research Action, called
MEDLAR.



22

1 Introduction

Many works have been devoted to the standard approach of Deductive Data Bases (DDB)
(1,12, 5, 13]. In this approach a DDB is composed of two parts : a set of rules, the Intensional
Data Base (IDB), which is a set of definite Horn clauses, and a set of facts, the Extensional
Data Base (EDB), which is a set of ground atoms. More recently this approach has been
extended to disjunctive DDB where the rules are not necessarily Horn clauses [8, 3, 6] , and
facts may be ground positive clauses.

In this paper we extend disjunctive DDB to the case where EDB may contain any kind
of ground clauses. But the most significant contribution is to consider a new kind of answers
called Conditional Answers. We consider two kinds of Conditional Answers : the Intension-
al Conditional Answers [2], which are derived from IDB, and the Extensional Conditional
Answers, which are derived from IDB U EDB. Conditional answers are another way to deal
with incompleteness. Indeed the usual appraoch is to reduce the incompleteness with some
kind of meta rule like Closed World Assumption (CWA), or Generalised Closed World As-
sumption (GCWA) [7], in the context of disjunctive DDB, or default rules in the context of
non-monotonic reasoning [10]. In the Conditional Answer approach no assumption is added
to the DDB by applying some kind of default reasoning. When there is not enough informa-
tion in the DDB to answer a given query, the answer provide the less restrictive assumptions
which allow to infer the query.

Let’s consider for example the very simple DDB : AV B « CAD, C, and the query :
AA.?-

In that case we cannot provide a direct answer to the query, but we can provide the
conditional answer : A +- DA~-B. Then the user knows that A is true under the assumptions
: D and -B, and he can take the decision himself to assume or not D and -B.

In the next section is presented a general definition of conditional answers. Then we
present a strategy to compute conditional answers. Its efficiency is compared with another
standard strategy, and we point out the particular problem of infinite answers. In the last
section we propose a modification to this strategy in order to compute extensional conditional
answers in a finite number of steps.

2 General definition of Conditional Answers

We consider queries which are positive literals. This assumption does not restrict generality.
Indeed, if the query is a general formula F(x), we define a new predicate symbol g(x), we
add to the DDB the formula Q = (q(x) «— F(x))Vx, and the query is represented by the
positive literal g(x).
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EDB is a set of ground formulas. IDB is a set of formulas. We cousider the theory
T = IDBUEDBUQ, where all the forinulas are represented in clausal form, and each clause
is Range Restricted. Moreover, as usual in the DDB context, we consider clauses without
functional symbols.

Definition 1 : Conditional Answer
Let q be a positive literal, the conditional answer to the query q is the set of clauses :

{qevc | TkqoVec,and qoVcis not a tautology, and qo V ¢ is minimal wrt
subsumption }

A clause d is minimal with regard to subsumption, in the context of T, if there is no
clause d’ derivable from T such that d’ subsumes d. A clause d’ subsumes a clause d if there
exists a substitution o such that : d'o C d.

The clause ¢ is called by Reiter and de Kleer, in [11], a minimal support for qo. The
clauses qo V ¢ satisflying these properties are called minimal implicants.

It is important to notice that copmuting Conditional Answers is a new kind of problem
with regard to Theorem Proving and Logic Programming. The new feature comes from
the fact that an answer is neither a truth value, like in Theorem Proving, nor a set of
substitutions, like in Logic Programming, but a set of clauses.

This problem is deeply related to Abductive reasoning, with some particular features due
to the DDB context.

Definition 2 : Extended Conditional Answer
With the same notations we define an extended conditional answer as the set of clauses :

{qoVvec | TtqoVec, and qoVcis not a tautology, and there is no clause ¢’ such that
: THqo Vv and ¢’ subsumes ¢ }

We can easily see that, for a given query, the extended conditional answer contains the
conditional answer. The only difference is that for clauses in the extended conditional answer
there is no guarantee that c is not a theorem of T'; this means that —c may be an inconsistent
assumption.
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3 Intuition of the strategy

The strategy presented in this section has been specifically designed to compute extended
conditional answers, and it is based on the L-inference presented in [4]. To get a conditional
answer from an extended conditional answer we have to test, for every given clause qo V ¢
in the extended conditional answer, if ¢ is derivable or not from T. For this purpose we can
use any strategy designed for Theorem Proving.

The strategy is called GASP, an abreviation for Generate As Soon as Possible. It is
informally described in this section with a simple example. For this decription we shall call
relevant theorem for a given query, a clause derivable form T containing the query, or one of
its instances.

The idea is, in a first step, to select the axioms in T which are relevant theorems.In the
current step one, or several, generated relevant theorems are resolved with an axiom in T.
The resolvent is a new relevant theorem which can be used in the next step. At each step
tautologies and subsumed clauses are removed.

Let’s consider, for example, the theory T with the axioms :

(1) Pxv-Qx (2)Pxv-Rx (3)QxVvRxVv-Sx (4)UxvV-Px
(5) Pcv -UcVvTc (6)Sav-Ta (7)SbvVv Ub

and the query ! : Px?
The clauses generated by the GASP strategy are :

Step1: (1) Pxv-Qx (2)Pxv~-Rx (5)Pcv-UcvVvTc
Step 2 : (8) [PxV RxV ~Sx] (9) [PxVQxVv-Sx] (10)PxVv -Sx(11) [PcV =PcV T¢]
Step 3: (12) Pav ~Ta (13) Pbv Ub

In the Step 1 are generated the axioms in T containing an instance of the query Px. In
the Step 2 a standard resolution generates (8) (resp. (9)) from (1) (resp. (2)) and (3). The
clause (11) is generated from (4) and (5). An hyperresolution generates (10) from (1), (2)
and (3). Notice these resolutions preserve Px, or an instance of Px, in the resolvent. At
the end of Step 2 the clauses (8) and (9) are removed because they are subsumed by (10),
and (11) is removed because it is a tautology. The removed clauses are represented between
brackets. In the Step 3 (12) and (13) are respectively generated by resolving (6) and (7)
with (10).

Though GASP generates only relevant theorems the final result, here the clauses : (1),

!'The predicate arguments are not between parenthesis to have simpler notations. For example, P(x,a) is
noted Pxa.
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(2), (5), (10), (12), and (13), is not the conditional answer but the extended conditional
answer. For instance the clause (13) is not in the conditional answer because it is subsumed

by (14) Ub, which is derivable from (4) and (13).

As we said before for each clause in the extended conditional answer it would be possible
to check if the condition is consistent or not with T in a further phase. For example to check
if Ub or —'Ta are theorems, we could apply again the GASP strategy to the queries : Ub?,
or = Ta?, in order to test if Ub or ~Ta are theorems of T.

4 Formal definition of the strategy

In this section the strategy is formally defined by meta rules. These rules express, at a meta
level, the derivation control. It is important not to confuse the strategy used for meta rule
evaluation, and the derivation strategy, at the object level, which is decribed by these meta
rules. We use the following notations.

Meta-variables :

q, l; : literal variable; these variables are instantiated by literals at the object level.

s —l;: literal variables; such a variable is instantiated by a literal which is the complement
of lj.

e ¢; : clause variables; these variables are instantiated by sets of literals at the object
level; this set may be the empty set.

1V]; V¢ : denotes the set of literals : {1} U {};} U ¢;.

e 1V V... Ve, Vo denotes the set of literals : {1} Uc¢; U...Ucq Uco.

Meta-predicates :

e Query(l) : this predicate means that we have to find the extended conditional answer
to the query 1.

e Ax(c) : this'predicate means that c is an axiom of T.

e Th(c) : this predicate means that c is a theorem of T.
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Definition 3 : GASP Strategy
(1) Query(q) A Ax(qVc) — Th(qVec)

(2) Query(q) ATh(qV1i Ve )AL ATh(qVIa V) AAX(-L V.. .2l V co)
— Th(qVes V... Ven Vo)

One could notice that it is not usual to have dots in a formal definition. We have used
dots here to make the definition more easy to read, however it would not be difficult to
replace the dots by recursive definitions without dots.

We define a meta theory MT containing the rules (1) and (2), the sentence Ax(c), for
each clause ¢ in T, and the sentence Query(q), where q is the literal denoting the initial

query.

The meta rules are evaluated with a trivial strategy which is an incremental saturation
by level, with elimination of subsumed clauses and tautologies. Here incremental means that
when a new sentence is generated by a meta rule , at least one of its premisses in the meta
rule has to be a new sentence in the computation of the previous level.

The sets of sentences generated by saturation by level are denoted by : Sg, Sy, ... ,5;, ...

So contains all the sentences derivable in one step by the rules (1) and (2) from MT.
A sentence is derivable by a rule if there exist a rule instance whose consequence is this
sentence, and all its premisses are satisfied by MT. All the tautologies, and all the sentences
subsumed by a sentence in MT or Sy are removed from Sg. We call ASg the resulting set of
derived sentences.

We define S;;; and AS;4 in function of S; and AS; in the following way. We consider
all the sentences derivable using the rules (1) and (2) from MT and S; and we remove from
this set all the tautologies and all the sentences subsumed by a sentence in MT or S;. The
resulting set of sentences is called AS;4; . Then Siy is defined by : Sy = 5; U AS;4;.

If M is any meta predicate, we say that the sentence M(c’) subsumes the sentence M(c)
iff the clause ¢’ subsumes the clause c. We also say that M(c) is a tautology if c is tautology.

We say that the premisses of the rule (2) (a similar definition applies to rule (1)) are
satisfied by a set of sentence S iff :

e the following set of sentence is in S, or S contains sentences whose some factors are :
Query(Q), Th(Q1 VL1 VCi), ..., Th(QnV LaV Cy), Ax(-Lj V...V 5L, vV Co); where
Q, Q1, L1, Cy, ...,Qun, Ln, Cpn, Co are literals or clauses at the object level,

e there exists a most general unifier ¢ which is solution of the equations :
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Q:le-”:QnLl:L,l L2:L,‘2 o Ln:Lip

In that case the instantiation of the meta variables is :
q = QO’ li = Lia ﬂl; = "ILZG' Ci = Cia
and the generated sentence is Th(qVe; V...V Vo).

The equations L=L’, where L and L’ denote P(ty,...,tp) and P(t],...,t,), or =P(t1,...,t;)
and =P(t},...,t,), are short hands for the set of equations :
ty =t tp=th ...ty =ty

It is easy to show that the interpretation we have defined for the meta rules defining
GASP provides a definition for a least fixpoint operator.

5 Comparison with other strategies

It is interesting to compare GASP with another very intuitive strategy based on the idea
of the decomposition of problems into sub-problems “ & la Prolog”. Here the problem is to
compute the extended conditional answer to a query : A?. If there is an axiom containing
A in the theory T of the form : AV =By v...V =B; v...V ~B,, where the Bjs may be
positive or negative literals, we can generate sub-problems, i.e. new queries, of the form :
By?7, By7,...,Bi7,...,Ba?. Indeed we know that any answer to a query like B;7? is of the
from : B; V ¢;, and therefore any set of answers can be resolved by an hyperresolution with
the axiom to generate new answers of the form : AvVe V... VgV -Big V...V -B,. This
strategy is called GALP, which is an abreviation for Generate As Late as Possible. It can
be defined by meta rules in the same style as for GASP.

Definition 4 : GALP Strategy
(1) Query(q) AAx(qVc) — Th(qVc)
For each i in [1,p] :
(2.1) Query() AAx(Lv -l V.. v V..oV =l,) — Query(l)
Endfor;

(2) Query(I) ATh(ly Ve ) A ... ATh(l, V en) A Ax(LY =l V.05l Vo cg)
—*Til(lVCIV...VCnVCO)
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In the particular case where we impose the l;s to be positive literals, and cg, ¢1,...,¢q
denote the empty clause, the GALP strategy is very close to strategies like : Magic Sets [1],
ALEXANDER [12], QSQ [13], or APEX [5]. In that case the axioms in (2.i) are Definite
Horn clauses, and the generated theorems are ground atoms. The only difference is that
in these strategies the answers to sub-queries are not computed in parallel. GALP can be
easily adapted in order to impose to compute the sub-queries in sequence, as we did in [3].

Unfortunately it can be shown that in every cases GALP generates a superset of the
clauses generated by GASP, and then it is always less efficient. However, as it is noticed in
[4], GASP may generate an infinite set of clauses when the initial theory contains recursive
definitions. Nevertheless if we are interested in Extensional Conditional Answers containing
only ground clauses, it is possible to adapt GASP in order to prevent infinite derivations.
That is the purpose of the next section.

6 Strategy for Extensional Conditional Answers

The adapted strategy is based on the following interesting property of Range Restricted
clauses : if a ground clause is derivable, by Resolution, from a set of Range Restricted
clauses, and if s is the composition of all the most general unifiers used in the proof of that
clause, then, if we apply s to any clause in the proof, we get a ground clause. The idea is
to design a strategy, based on this property, which generates only “ground proof trees”, i.e.
proof trees where all the clauses are ground clauses. The intuition of the strategy can be
presented with the following example :

(1) Lxy v ~Pxy v -P'xy (3) Pay v - Ty
(2) Lxy V-Rxy v-R’xy (4) Rxb Vv -Ux
(5) P'xy vV R'xy vV =Sxy

Let’s consider the corresponding connection graph, as defined by Naqvi and Henschen in
[9] (see Figure 1). In this graph the nodes are clauses, and we can imagine these clauses as
active agents able to send or to receive queries or answers, and able to store the answers. The
role of these queries and answers is to find the unifiers of the proofs whose composition can
lead to ground unifiers. They are of a different sort than the initial query and the conditional
answers.

For example if the clause (1) receives the query Lxy?, then it sends the two queries Pxy?
and P’xy? along the edges starting from the clause (1).

When the clause (1) sends to the clause (3) the query Pxy?, the meaning of this query is
: “what would be the most general unifier if the clause (1) would be resolved with the clause
(3) on the literal Pxy ?”. The returned answer in that case is Pay!.
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We can also imagine that each clause can store the answers it has received from the other
clauses, and that these stored answers can be used to generate new answers. For example
the clause (1) can use the answer Pay! received from (3) to send the answer Lay! to the
query Lxy?.

We can easily see that after receiving the query P’xy? the clause (5) sends to the clause
(2) the query =R'xy?, and the clause (2) sends to the clause (4) the query Rxy?. The clause
(4) returns to the clause (2) the answer Rxb!, and the clause (2) returns to the clause(5) the
answer —R'xb!. Then the clause (5) returns to the clause (1) the answer P’xb!.

At this stage the clause (1) knows, from the answers Pay! and P’xb!, that there exists a
proof, involving the clause (1), where the composition of all the most general unifiers defined
in that proof transforms the clause (1) into a ground clause. Then the clause (1) can generate
the corresponding ground instance : (6) Lab vV ~Pab vV =P’ab, whicl is a ground conditional
answer to the initial query.

In the furter steps the clause (6) can be resolved, acording to GASP strategy, with (3) to
generate : (7) Lab vV = Th v =P’ab, or with (5) to generate : (8) Lab vV =Pab Vv R’ab v =Sab,
or with both (3) and (5) to generate : (9) Lab vV = Tb vV Rab v =Sab.

wr?
Lxy? Pyt (3) | Pay - Ty

<« Pay!

1) Lxy - Pxy ~ P'xy

&)

@ | Rxb | -~Ux

I'igure 1: Connection Graph

The strategy we have informally presented is called : GRASP, for “Generate gRound As
Soon As Possible”, Its description in terms of meta-rules is presented in the Definition 5,
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where we use the notatiouns :
GrAx(c) : ¢ is a ground instance of an axiom.
1? : we have to find the 1 instances which appear in some derived clause of the form 1Vvec.
1! : there exists a derived clause of the form 1 Vv c.
Definition 5 : GRASP Strategy
(1) Query(q) — q?
For each i in [1,n] :
)1 AAx(QVL V... VEV.. . V])—?
Endfor;
B)ET AL A A A AX(L VLV ) = 8
(4) Query(q) A =P A LAl VA GrAX(qV I VLV ) = Thiqv i V... VL)

(5) Query(q) ATh(qvLive)A...ATh(qVI, Vea) A
LA ALYAGrAx(-L V.. =i Vo) — Th(qV e V... Ve Vo)

where i, ji,...,Jp are in [L,n].

In this definition the meta-rules (2.i) generate sub-queries in the same way as GALP
does. An important difference is that the answers to queries of the form : 17 are not clauses
but literals like : 1'!. That is the reason why the computation always stops. Indeed, even
if there are recursive definitions the number of answers, up to the variable names, is finite
when we do not have function symbols.

The meta-rules (4) and (5) are very similar to the corresponding ones in the GASP
definition, and the meta-rule (3) generates the solutions of the form I'!.

The evaluation of these rules, with the technique defined for GASP, generates only ground
theorems which are ground conditional answers.
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7 Conclusion

We have presented a strategy (GASP) to geuerate conditional answers in the context of a
non-Horn Deductive Data Base. The basic idea is to focus the derivation process on clauses
which are relevant for the query.

We lhave compared this strategy (GASP) with an another strategy (GALP) similar to
standard strategies used in the context of Deductive Data Bases for Horn clauses, and we
have shown that GASP is always more eflicient than GALP. GASP is defined by meta rules,
and a least fixpoint operator can be associated to these rules. This computation technique
prevents to repeat several times the same computation. This is a significant benefit with
respect to computation techniques “a la Prolog”, or based on SL-resolution.

In the case of recursive definitions the answer may be infinite. For this particular case
we have designed the GRASP strategy, an adaptation of GASP in order to derive only
ground clauses. The associated least fixpoint operator always compute the answer in a finite
number of steps. However at this time we have no result about the completeness of GRASP,
because we have no denotational definition of what is computed by GRASP. That needs
rnore investigations, and as to be considered as a work in progress.

It should also be clear that the definitions of these strategies have to be considered as a
general framework for further refinements. Indeed there are many open choices to implement
these strategies, and, depending on these choices, the performances can be strongly improved.

Acknowledgements : Many thanks to Luis Farinas del Cerro for all our fruitfull and
stimulating discussions.
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ABSTRACT

Deduction, induction and analogy have traditionally been treated as separate
processes each requiring specialized machinery. We present a hybrid con-
nectionist - symbolic approach that seamlessly integrates these forms of rea-
soning by way of associative retrieval.

1. INTRODUCTION

Traditional research in machine learning has taken a componential view of reasoning
where deduction, induction, and analogy are studied separately with a different computa-
tional mechanism proposed for each. While this approach has value in identifying key is-
sues for each technique, it also has problems in that the research generally does not make
any attempt to integrate the techniques in an overall cognitive architecture.

We have designed and implemented a computational model in which small variations
on a single mechanism, associative retrieval, can perform deductive, inductive and analog-
ical reasoning. Similar notions of using a uniform mechanism to perform the three reason-
ing tasks have been proposed [1,2,3]. Our notion differs from these in that we employ the
principles embodied in the Continuous Analogical Reasoning theory to constrain and focus
what 1s retrieved, ensuring the retrieval of the most relevant, useful information available
[4,5]. '

This paper begins with a discussion of Continuous Analogical Reasoning, motivating
the need for interactions between the stages of analogy and comparing it to Discrete Ana-
logical Reasoning. It then describes the hybrid symbolic-connectionist knowledge repre-
sentation and processing mechanisms of the ASTRA program. It is the unique combination
of structure and processing in ASTRA which allows the complex, continuous interactions
to take place among all stages of the analogical reasoning process. The system’s behavior
under different forms of reasoning is then discussed, which shows success in achieving in-
tegrated reasoning and provides impetus for future research.

2. ASTRA: AN OVERVIEW

Analogical reasoning is typically divided into three stages: retrieval, mapping, and
evaluation & use. The retrieval stage involves accessing knowledge from long-term mem-
ory (called the source) that can be applied to the current problem. In the mapping stage, the
objects and relations of the source are placed into correspondence (also called a mapping)
with the objects and relations in the target. By extension of the mapping, the evaluation &
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use stage takes knowledge present in the source but not in the target (conjectures) and in-
troduces them into the target domain. The conjectures are transferred to the target by re-
placing objects from the source with their corresponding objects in the target, and asserting
the modified conjecture in the target. The evaluation & use stage then evaluates the new
knowledge, checking to see if the current goal has been met, and setting new goals for the
system.

ASTRA is a computational model of human analogical reasoning developed to encom-
pass the entire range of analogical reasoning, rather than an isolated phenomenon [6,7]. As
prescribed by the Continuous Analogical Reasoning theory, ASTRA models the three stag-
es mentioned above and their interactions. The interactions between stages can be consid-
ered as soft constraints or “preferences’ [8] which modify the processing done in each stage
to reduce the search space and focus reasoning on relevant information. The interactions
make the analogical reasoning process more efficient by reducing the search space, as well
as more robust by focussing reasoning on relevant information.

Discrete Analogical Reasoning systems are those systems that do not promote interac-
tion among the stages of analogy. These systems generally model only one stage of the an-
alogical reasoning process. One justification is that the researcher is only interested in one
of the stages, thus modeling only it. Another justification of this approach is that it is easier
to implement one component at a time, with the idea that, once components are developed
for each stage of analogy they can be tied together to create a complete system. I argue that
modeling a single stage of the analogical reasoning process will be inadequate for two rea-
sons: 1) The modeled portion will also include mechanisms to perform processing that
would normally be done by another stage. An example of this is the mechanism that creates
an initial mapping when modelling only the mapping stage. This information would nor-
mally be created by the analog retrieval process, where the source is examined with respect
to features of the target to determine its relevance to the current situation. Thus, to ade-
quately model just a single stage, the interactions with the other stages must be taken into
account; 2) When combined into a complete system, the discrete approach will lack the ef-
ficiency of the continuous approach because it discards search constraining information
generated by the stages instead of making it available to the other stages. As in the previous
example, the search for a source analogy will necessarily involve the comparison of the tar-
get to prospective sources. Generally, the source that shares the most features with the tar-
get will be selected. If the correspondence information is not passed on to the mapping
stage, the mapping stage must reproduce portions of the search done previously by the re-
trieval process in order to find the initial mapping. As in many cases in computer science,
the lack of efficiency of an algorithm can result in lack of capability as well. Thus, I argue
that from a psychological standpoint, it is more difficult to determine what parts of a dis-
crete modelled stage are actually part of the stage and what parts are required due to the
lack of interaction. From a computer science standpoint, the redundant search of required
by a discrete analogical reasoning system can result in a limited ability to handle scaled-up
problems. Our hypothesis is that a better understanding of analogy will result from looking
at analogy as a continuous process rather than as a set of discrete components.

The premise of this paper is that a cognitive architecture can be built based on the con-
tinuous interaction mechanisms in ASTRA that makes no procedural distinctions between
deduction, induction and analogy. Instead, the style of reasoning performed depends entire-
ly on the type of information retrieved during the retrieval process. If the information is a
rule, the mapping stage unifies the antecedent and instantiates the consequent. The evalua-
tion & use stage transfers the consequent to the target and starts a new retrieval on the en-
hanced target. If the information retrieved is a set of sources, then a generalization process
may be invoked to induce a description of the set. This description can then be used as the
source from which to transfer information to the target. If the information retrieved by the
retrieval process is a single source, analogy can proceed as usual.
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Fig. 1. Architecture of ASTRA. Like a blackboard system, all interactions
between processes occurs in the hybrid symbolic-connectionist network.

3.0 ASTRA ARCHITECTURE AND PROCESSES

The architecture of the ASTRA system is shown in Fig. 1. This figure shows the bidi-
rectional communication between each of the three processes mediated by the hybrid sym-
bolic-connectionist knowledge representation network. The processes communicate by
varying activation levels on nodes relevant to the current task. The principal mechanism for
this is spreading activation. One of the difficulties in dealing with activation alone is the
credit assignment problem: What nodes most significantly influenced a highly active node?
To overcome this, spreading activation is augmented by a marker passing scheme which
deposits on each node a pointer to the source of the activation.

The task of the retrieval process is to activate a set of sources which are semantically
similar to the target problem, creating a set of initial correspondences in the process. The
mapping stage interacts with retrieval by directed activation and marker passing, pressuring
the retrieval stage towards analogs which are syntactically and systematically similar to the
target. The evaluation & use stage spreads activation from the goal or context related as-
pects of the target description, pressuring retrieval towards sources that are pragmatically
relevant to the target goals.

The task of the mapping process is to extend the initial correspondences to unmapped
nodes in the source and target. The extension is done using the initial correspondences from
the retrieval stage, pragmatic constraints from the evaluation & use stage, and systematicity
principles to constrain the possible matches in the target. Nodes in the source that have no
mapping after extension are considered to be conjectures and are marked for transfer by the
evaluation & use stage.

The evaluation & use stage is responsible for exerting pragmatic goal and context-re-
lated pressures on retrieval and mapping. The symbolic procedures for the creation of new
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nodes and links resulting from the transfer of a conjecture reside in the evaluation & use
stage. Procedures for determining if current goals are satisfied and the generation of new
goals also reside here. Retrieval influences this stage by suggesting new goals to pursue
based on previous experiences and by suggesting different evaluation contexts for the anal-
ogy based on the type of source retrieved. The context for evaluation of the analogy will
change depending on if the source analog is described in behavioral, causal, componential,
or other terms.

Before presenting the details of the system, it would be useful to look at the process in
overview. At the start of problem solving activities, the initial target analog description or
representation is presented to the system, starting the retrieval process. The retrieval pro-
cess uses a combination of marker passing and spreading of activation to both search the
knowledge base for a suitable source analog and to elaborate the target analog description
with deductive pattern completion inferences. Goal and context related information, if
present in the initial target analog description is activated and used as a source of activation
spread by the evaluation & use process. The mapping process is awakened by markers from
the target analog touching nodes in other experience descriptions. Since the markers passed
in the network reference the origin of the marker, the mapping process is primed with a par-
tial mapping between the target and the potential source when it is awakened. Extension of
the mapping 1s done for only the most highly active analogs, or any one marked by the eval-
uation & use’s marker spreading process.

The following section describes the hybrid knowledge representation scheme and the
mix of connectionist and symbolic processing used in ASTRA. There are both theoretical
and practical benefits of using a hybrid representation and processing scheme. Hybrid sys-
tems are theoretically interesting simply because they are new and there is not much infor-
mation available concerning their capabilities. This work can be considered to be an
empirical study of the capabilities of hybrid systems for performing high-level integrated
reasoning. The other benefits are purely practical: symbolic and connectionist systems have
different strengths and weaknesses that are orthogonal and complementary. I believe that
more powerful systems can be built with properties not present in either paradigm alone us-
ing each technique where natural and appropriate.

3.1 KNOWLEDGE REPRESENTATION

The knowledge representation used in ASTRA is a tightly-coupled integration of sym-
bolic semantic networks with unweighted, labeled links, and sub-symbolic connectionist
networks with unlabeled, weighted links. Each knowledge-level concept in ASTRA is rep-

b

Fig. 2. Graphic representation of “Because John loves Mary, he kisses her”.
All links are bi-directional, with reverse links not shown.
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resented by a labeled node. These nodes are shared by both the symbolic and sub-symbolic
portions of the knowledge representation. Each node also has associated with it a set of mi-
crofeatures which describe the concept [9]. For example, the concept “LOVE” has {adore,
respect, honor, dote, fancy, desire, favor)} asits set of microfeatures. The concept
“LIKE” has {adore, fancy, esteem, favor} as its set of microfeatures. The similarity
between these two concepts are represented in the overlap between their microfeature sets.
The similarity is determined by the activation spread from one node to the other. Thus, the
more microfeatures shared between concepts, the more similar they will be.

Abstracting from the implementation level, the knowledge representation can be divid-
ed into four parts: The hierarchy of concepts, the story representation, rules, and the pro-
cess-created data structures. The hierarchy defines the concepts that are known by the
system and how they are related to one another by ancestry and packaging. The story rep-
resentation ties together instances of concepts found in the hierarchy with relational infor-
mation, forming a conceptual representation of the actors and actions of a story. Fig. 2
shows graphically the representation for the short story “Because John loves Mary, he kiss-
es her.” Rules are represented in much the same manner as stories: concepts in the anteced-

Fig. 3. Rule link “IMPLIES” in rule definition. The special “AND” node is
not shown for clarity. Shaded “LOVE” node is created on rule application.
Dashed links show connection of arguments to created node.

ent of a rule are tied together by a special “AND” node which is connected to the consequent
nodes by an “IMPLIES” link. Fig. 3 shows an example of a simple rule. The process-created
data structures are structures created in response to the actions taken by the retrieval, map-
ping, and evaluation & use processes. There are two such data structures: markers and
bridges. A marker is simply a pointer to the node originating the mark. A bridge is a special
type of link that has pointers to other bridges that it uses or that use it. The functionality of
these data structures will be discussed in the next section.

3.2 PROCESSING MECHANISMS

The continuous analogical reasoning theory places some special processing requirements
for a computational implementation. The greatest difficulty lies in the need for communi-
cation among the three stages during processing. There are four basic processing mecha-
nisms used in ASTRA to implement the continuous analogical reasoning process:
automatic spreading of activation, marker passing, directed retrieval, and traditional sym-
bolic procedures. Automatic spreading of activation passes activation from a node to all
neighbouring nodes [10]. A user specified decay rate attenuates the activation as it is spread
in the network. The default activation rule is:
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mn

a(t+1) = Zw. 0,(t)+a (1) (1-©)
1

where ap(t) is the activation of node n at time t, wy, is the incoming weight from node i to

node n, 0;(t) is the output of node i at cycle t, and @ is the activation decay rate. The output
function of a node i is:

0 otherwise

where ‘ai‘ is the number of links connected to node i, and 0 is the activation threshold
cutoff.

Spreading Activation Rules

SAR~1: If the link is an “INST-OF” link connecting an indi-
vidual to a general concept in the hierarchy, do not de-
cay.

SAR-2: If the link is marked as special because of the goals
or context of the problem solver, increase activation by
specified amount.

SAR-3: If the link’s head-node has the same label as the or-
igin of the activation, then double the amount of activa-
tion on that node.

Marker Passing Rules

MPR-1: If a node receives activation above the cutoff thresh-
old, place on it a copy of the marker given to the node
passing the activation.

MPR-2: If a marker is places on a node from a different story
representation, start a symbolic process that will build
a bridge if necessary.

Fig. 4. Spreading Activation and Marker Passing Rules. A set of transition
rules define exceptions to the default activation transfer equation. Two sim-
ple rules define the marker passing procedure.

The marker passing mechanism follows the activation spreading process and puts
markers containing information about the origin of the activation on each node receiving
activation. When a marker is placed on a node from a different story representation, a
bridge link can be created between it and the target node. The directed retrieval process
complements the above two processes in that it allows activation and markers to be spread
between nodes only over specified links. The symbolic procedures used include procedures
for creating bridge links and for determining untouched portions of story representations.
More detail on the processing mechanisms can be found in [7].
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4. REASONING IN ASTRA

In this section we describe the reasoning methods ASTRA can produce. To do this we
present the discussion in terms of an example from our test domain of interpersonal rela-
tionships. For this example, ASTRA has four stories represented in memory from which te
draw information. The stories are:

1: “Because John loves Mary, he kisses her” (shown in Fig. 2),

2: “Because Carol dislikes Ted, she slaps him”,

3: “Because Jenny loves Tom, she kisses him”, and

4: “Because Fred loves Wilma, he kisses her”
and the rule:

R1: “If a person looks longingly at another person, the first person loves the second per-

son”

Given the target “Romeo looks longingly at Juliet” shown in Fig. 5, what predictions
can be made from this?

4.1 DEDUCTION IN ASTRA

Automatic spreading of activation is begun when the target is presented to ASTRA. The
target nodes “LOOK-L-AT”, “PERSON(1)” (the agt node), “ROMEQO”, “PERSON(2)” (the
pat node), “JULIET”, “MALE”, and “FEMALE” act as sources from which activation is
spread. A marker is created for each of the target nodes and is passed along with the acti-
vation, continuing until the activation level falls below a user-specified threshold. Activa-
tion from each of the target nodes moves up into the hierarchy and back down to nodes in
the same class, but in different story representations. At the same time, the evaluation &
use process uses a directed retrieval process to increase the activation of any node that pass-
es over a “CAUSE” link. The evaluation & use stage emphasizes “CAUSE” links since the
goal of the system is to answer “What will happen because Romeo looks longingly at Juli-
et?”

Activation spreads from each activation source to all connected nodes.  Activation
from “LOOK-L-AT” spreads up the hierarchy and back down to node “LOOK-L-AT” where
rule R1 is connected. When activation reaches the rule, a symbolic process is triggered that
creates a bridge link between the “LOOK-L-AT” in the target and the “LOOK-L-AT” in the
rule. Activation also travels from the target nodes across microfeatures to other nodes, and

Fig. 5. Target representation of “Romeo looks longingly at Juliet”. The goal
is to determine what will come of this situation.
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bridges are created for them also. A strength is associated with each bridge that corresponds
to the degree of evidence for that correspondence. The bridge strength is the amount of ac-
tivation at the bridge’s head node that can be attributed to the node at the tail of the bridge.
Since the target “LOOK-L-AT” and its correspondent in R1 have identical labels, the acti-
vation at “LOOK-L-AT” in R1 and the bridge is doubled by rule SAR-3. Thus, it has the
highest activation of all bridges emanating from “LOOK-L-AT” in the target. The other
nodes in the target also spread activation and set up bridges with corresponding nodes in
the knowledge base.

Once all activation has fallen below a user specified threshold, a symbolic process is
invoked to which selects the source analog from the group of competing analogs. The se-
lection is made by choosing the maximum of the summed activation of all nodes in the story
representation, combined with the activation along the bridges between the target and the
story representation. In this example, rule R1 has the highest activation and is chosen as the
source. The mapping process enforces systematicity in determining which set of bridges
created by retrieval will yield the best mapping. This is done by preferring bridges that re-
late identical case relations between head and tail nodes of the bridge with the highest ac-
tivation. By focussing on the bridges with high activation, the mapping process pairs the
target with rule R1. In this pairing, the rule node “LLOVES” is left unmapped, and so is
marked as a potential node for transfer.

Evaluation & use notices that there is a node marked for transfer and sets up a symbolic
process to create a new instance of that node, and create links to the corresponding nodes
in the target. The evaluation & use process checks to see if what has been transferred to the
target is enough to solve the current goal “What will happen because Romeo looks long-
ingly at Juliet?” In this case, the information transferred does not provide a solution to the
goal, but rather, the deduction provides a means for restructuring the target situation into
an new problem, “What will happen because Romeo loves Juliet?” Evaluation & use sets
this problem up as the new goal for the system.

4.2 INDUCTION IN ASTRA

Armed with a new target situation, ASTRA restarts the retrieval process. Activation
spreads from the deduced target node “LOVES” through the hierarchy to the “LOVES”
nodes in sources 1, 3 and 4. Activation will also go to the “DISLIKES” node of source 2 if
the activation level does not fall below threshold after climbing an extra step up in the hi-
erarchy to reach a common generalization. Once activation does reach a “LOVES” node in
the source stories, the mapping process creates a bridge between the “LLOVES” node in the
source and the “LOVES” node in the target. The strength of this link will be high relative to
the strength of a bridge between “DISLIKES” and “LOVES”, because of their close proxim-
ity in the concept hierarchy. At the point where activation from the target is spread from the
“ILOVES” nodes in sources 1, 3 and 4, the activation is increased by the evaluation & use
process because of the “CAUSE” links connecting the nodes.

Target nodes spreading activation now have new paths to explore along the newly cre-
ated bridges. Activation levels that would normally not be strong enough to go through the
hierarchy to other sources can now go there directly by way of the bridges. When a node
sends activation along a bridge, another directed retrieval process is created by the mapping
stage that checks if the relationship between the origin of the activation and the head node
of the bridge is present on the tail-node. If it is, then a new bridge is set up between those
nodes. Thus when “PERSON(1)” passes activation and its marker along the bridge between
the target “LOVES™ and the “LLOVES” in 1, a similar relationship is found between the target
“PERSON(1)” and the source “PERSON(1)” nodes. A new bridge is set up to reflect this re-
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lationship. The new bridge is also connected to the bridge traversed as a component of that
bridge and increments its strength by the amount of activation in the new bridge. The bridg-
es then form a network of competing mapping hypotheses. In this example, the bridges that
map the target to sources 1 and 4 have greater strength than those mapping the target to
source 3. Source 3 requires a mapping of “MALE” = “FEMALE” and “FEMALE” =
“MALE” which will have lower strength than the identical mapping of the bridges to sourc-
es 1 and 4. Thus, sources 1 and 4 will have the greatest activation and will be selected as a
set of sources.

When the retrieval process proposes a set of sources instead of a rule or a single source,
an induction process is spawned to produce a generalized story which encompasses the sto-
ries in the set. The induction process is done by simple hierarchy climbing and replacing
differing constants by variables. In this case, the generalization procedure will produce
“When a male person with any name loves a female person with any name, he will kiss
her”. The new structure is placed into memory with appropriate links to sources in the set.
The bridges from the target to the different sources in the set are similarly generalized. The
generalized bridges are connected to the target and the generalization. The strength of each
generalized bridge will be the sum of the strengths of the member bridges between the tar-
get and the sources in the set. Thus, the generalization will now have the highest activation
of the story representations in memory.

4.3 ANALOGY IN ASTRA

Now that the generalized story created by the induction process has the highest activa-
tion of any story representation linked to the target, the mapping process again enforces
systematicity in selection a set of bridges which represent the mapping. Nodes in the source
that have received activation but do not have a bridge associated with them are selected for
transfer to the target. The evaluation & use stage checks the nodes linked to the selected
nodes for bridges. If a bridge exists, the corresponding node in the target is linked by the
same relation to the newly created target node. If a bridge does not exist, a “skolem” node
is built and is then treated as if a bridge had been found. This is done for each link connected
to the selected source nodes. In this example, the generalized “KISS” node is transferred
over to the target situation due to activation gained by spread over the cause link. Since
bridges exist from the agr and par of the “KISS” node, the nodes at the other end of the
bridges are linked to the new node.

The evaluation & use stage checks the transferred information to see if the current goals
have be attained. In this example, since a “CAUSE” link has been transferred to the target,
the goal has been satisfied. The action predicted by ASTRA in this situation is that “Romeo
will kiss Juliet”. If the transferred information merely elaborates the target representation
and the goal is not satisfied, then the system will re-activate the new representation of the
target to see if any further information can be conjectured.

5. RELATED WORK

In Sun [11}, a connectionist model of rule-based reasoning is developed, called CON-
SYDERR. This connectionist system has two levels: one is a connectionist network with a
localist representation, and one is a connectionist network with a distributed representation.
The two networks are linked by connecting the distributed nodes which make up a concept
with the localist version of the concept. A rule-defining “knowledge link” is simply a
weighted connection between the antecedent and consequent of the rule. The representation
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differs in that the knowledge links emanating from the localist nodes are duplicated in the
distributed network so that every node in the distributed representation of the local node
has a knowledge link to the group of nodes in the distributed representation of the conse-
quent node. This arrangement is beneficial in that nodes which share features with a node
in the antecedent of a rule will also have some ability to fire that rule, based on the similarity
in their representation. However, this implementation has the “multiple instantiation” prob-
lem common in connectionist networks for high-level reasoning [12]: The rule cannot be
applied to two instances of the antecedent because there is only one node representing the
consequent. The problem is solved in ASTRA by having rule-firing create a new instance
of the consequent node.

Falkenhainer [3] describes an approach to explanation and theory formation that at-
tempts to unify deduction, assumption, induction, and analogy. The reasoning methods are
discriminated not by mechanism, but identifying different types of similarity with the tar-
get. Deduction is defined as a complete match of identical features; Assumption is a partial
match of identical features, which if augmented by a finite set of consistent assumptions
will allow an explanation to be deduced; Induction is the case where matches are made be-
tween features with a close common generalization; and Analogy, where a wide range of
features and relations are matched. This approach differs from ASTRA in that it does not
take discriminate on the source retrieved, but on the matches that are produced during map-
ping. Falkenhainer’s implementation is entirely symbolic and discrete approach to integrat-
ed reasoning, and thus is polarized with the ASTRA work.

Kokinov [1,2] has developed a system called AMBR in which deduction, induction and
analogy are also treated as slightly different manifestations of associative memory-based
retrieval. As with the continuous analogical reasoning theory, the differences of deduction,
induction and analogy lie only in the outcome of the associative retrieval process. Koki-
nov’s work differs from the ASTRA work in the knowledge organization and processing
mechanisms. The knowledge representation used in AMBR is entirely symbolic, based on
a frame system. However, connectionist networks are dynamically built to select the best
interpretation or mapping for the analogy. The processing mechanisms include a relaxation
search (spreading activation), marker passing, and traditional procedural code. It is not
clear as to the extent any interactions between stages play a role in the processing of an
analogy. Since networks are dynamically created to select a mapping, much of the corre-
spondence information generated by source retrieval may be lost.

Psychological experiments by Kokinov[2] have demonstrated common priming effects
in tests of deduction, induction and analogy. Because of these common effects, Kokinov
concludes the claim that deduction, induction and analogy are performed by a single uni-
form retrieval mechanism. Burstein and Collins [13] also conclude that the type of knowl-
edge retrieved determines the particular line of inferencing produced. The work presented
here is further evidence of how a single mechanism can be used to produce the different
reasoning behaviors,

6. CONCLUSIONS

We have presented a hybrid connectionist-symbolic model in which not only can de-
ductive, inductive, and analogical reasoning behaviors be produced, but integrated to work
together during problem solving. In the example, deductive reasoning is used to enhance
the representation of the target analog. Inductive generalization is used when a number of
similar source analogs are activated, resulting in a new structure that is composed of their
common features. This type of induction has been shown to be useful in analogical reason-
ing also serves as a learning and memory organization mechanism [14].
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The ASTRA system is written in CommonLisp and runs on Sun and Macintosh work-
stations, and Symbolics and Explorer Lisp machines. The system has been tested in simple
domains such as the examples given in this paper which have only 90 nodes and 300 links,
to large domains such as database of plays which require 3076 nodes and 13148 links. Fu-
ture work will integrate ASTRA into a problem solving system to more fully test the theory.
Another area of future work involves simplifying the model by implementing the knowl-
edge representation and processing mechanisms in an completely connectionist frame-
work. Realizing ASTRA in a connectionist network may further extend its natural ability
to handle novel input situations. The use of induction as a memory structuring mechanism
will also be investigated. We believe that the integrated reasoning features of ASTRA can
produce memory organization results comparable to Pazzani’s OCCAM program for inte-
grating similarity-based, theory-driven, and explanation-based reasoning [15].
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ABSTRACT

The key idea of the work described in this paper is to use a
declarative representation of space (based on first order logic) as
well as a procedural one (based on a semantic network). The link
between the two representation is made by semantic attachment
[1], defining the semantic network to be the intended model of the
first order theory. The paper describes how we have modeled space,
both syntactically and semantically.

1. INTRODUCTION

In the past several space representations have been proposed [2, 3, 4, 5, 6].
Early papers (for example [7, 8]) and recent papers (notably [9, 10]) have been
written on this topic by some members of our group.

The aim of this paper is to give some further leading ideas and results which
seem useful in order to build a suitable representation of space for systems able
to reason in a “human-like” way. The key idea of the work described in this
paper is to have a first order description as well as a semantic network [11]
(containing a more extensive description) of the same space. The two world are
related defining the semantic network to be the model of the first order theory:
the first order objects and relations are linked to the objects and relations of
the semantic network by means of semantic attachment [12, 1].

We are not faced with the philosophical reasons of our approach or of
others; this topic has been already faced in [8, 9]. Neither are we faced with
the aim of the complete work and its possible applications (see [7, 10]). The
reader is recommended to read that papers to have a complete view of the
historical developments and related work of our theory.

1This work is part of a joint project among all the members of the Mechanized Reasoning
Group. All of them are thanked for the invaluable support and discussions we took together
and for allowing us to build on their previous work.
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The paper follows this path: in the next section we present some com-
prehensive ideas which have driven the system implementation. In the third
section we try to formalize some ideas on how it is possible to reason about
space when generating a scene, starting from a human-like ambiguous descrip-
tion, made for instance in natural language. We propose a not complete (and
not completely described) first order theory enriched with first order default
rules [13]. In the fourth section we focus on a representation of space (even
using multiple valued/fuzzy semantics [14, 8]) which can be seen as an ex-
tensional model of the logic/ syntactic theory. Finally in the fifth section it
is shown how the “semantic attachment” between the first order theory and
procedural reasoning is performed.

2. A PROCEDURAL/DECLARATIVE APPROACH TO SPACE
REPRESENTATION

In the past, when speaking about data representation, people were con-
cerned with new data structures, of whichever complexity. From this point
of view, data were seen as a declarative part, modified and elaborated by
programs. New trends in computer science research tend to eliminate the di-
chotomy data/ procedure (or declarative/ procedural information storage) in
order to create new, more abstracted structures, which join the two aspect-
s (LISP, PROLOG and present research on data abstraction are only some
trivial examples).

Human knowledge is a special kind of information (even if more and more
complex), whose representation (namely knowledge representation) should be
faced with the same criteria used for the “classical” data representation [11, 15].
This consideration led us to face the problem of space representation from both
a procedural and declarative point of view. This state of mind was enforced
by the consideration that in order to build a system with human-like with an
approach as general as possible, a purely algorithmic/ not structured approach
would not have been sufficiently powerful. Human reasoning (about space
and object positioning) is very structured. At least we can recognize a first
qualitative step of general evaluation of the problem and a final quantitative
step of numerical values handling.

The reasoning we propose is largely qualitative. Our approach, extensively
adopted by some A.l researchers, for instance in [16, 17, 3], is based on the
following considerations: first, it allows to reach conclusions with very little
information available and, consequently, hard to formalize with quantitative
models; second, qualitative reasoning can be very effective to reach approxi-
mate conclusions, sufficient in everyday life, at the right level of detail.

A second consideration, which directly followed from the previous, led us
to the use of logic. Logic allows a well formed definition of the problem and the
possibility of moving within an extensively studied and well known environ-
ment. In this approach first order rules implement the syntactical reasoning
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about space and are in some way related to the system qualitative reasoning.
Procedural reasoning can be seen as the semantics of the first order theory of
space and is in some way related to the system quantitative reasoning (even if
it is quite difficult to define an univocally defined border between qualitative
and quantitative reasoning, logic and procedural implementation). The link
between the two worlds is made by a sort of “semantic attachment” [12, 1]
which allows the system to switch on semantic reasoning when syntactic rea-
soning does not seem sufficient.

More specifically the representation of space we propose is compounded of
thtee parts:

1. First order theory of space (written in some logic language, namely PRO-
LOG). At this level deduction is performed both syntactically (as in any
“classical” proof checker) and through semantic evaluation of functions
and predicates (performing the “semantic attachment” informally stated
in the previous section. This topic is deeply faced in the next section).

2. Semantic network (which implements the domain of the interpretation
of the extensional model of space). That is, space is represented through
a graph where the nodes are the objects being in the scene and the links
are marked by the (natural language) spatial relations holding between
them.

3. Procedural evaluation of the semantic network (written in some proce-
dural language, namely the C-language). Such procedural evaluation is
performed by a deduction supervisor which knows all the couples:

< syntactic object,intended meaning >

(the intended meaning of a syntactic object is a member of the domain
D (of the intended model [18]) if the object is a constant, and a pro-
cedure, if the object is a functional or predicative symbol). Evaluating
a syntactic expression corresponds to the activation of the associated
(semantic) procedure given the semantic meaning of its sub-expressions.
The equality between the syntactic object whose intended meaning is
the computed result and the expression being evaluated, is then assert-
ed in the first order, ground theory. Taking an example by arithmetic,
attaching the numbers “2,3,5” respectively to the first order constants
“two, three, five” and the procedure computing the sum of two num-
bers to the function symbol “plus”, evaluating “plus(two,three)” makes
“plus(two,three)=five” being asserted in the theory.

3. FIRST ORDER REASONING ABOUT SPACE AND OBJECT
POSITIONING

The system accepts, as input, natural language-like scene descriptions. In
particular input phrases are codified in a first order language (with sorts). For
instance the phrase “there is a pen on the table” is codified:
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ON(a,b) where:

"ON" is predicate with two arguments
"a" 1is a variable of sort "pen"

"b" is a variable of sort "table"

Logical reasoning is performed in two steps:

1. First it is tried to disambiguate the input relation that is to define which
among all the possible spatial meanings of the input proposition (for
instance “on”) is the most “suitable”. In this step default reasoning
plays a basic role [7].

2. Second, it is tried to deduce more information about the predicates de-
rived in the previous step. For instance it is obvious that if RIGHT(a,b)
holds also LEFT(b,a) holds. This part of the theory is completely inde-
pendent of the previous and can be seen as a first order description of
the relations which exist among object positions.

The first step is mostly performed syntactically (even if the holding of
several predicates is tested semantically) while the second is mostly performed
procedurally.

First step rules have the form:

P1(x1,x2,...) and P2(yl,y2,...) ......

P(..... ) and Q(....)

where the predicates P1(...), P2(...) ... can be procedurally evaluated on the
basis of two different kinds of information: i) the a_priori knowledge of the
world (this problem is not faced here, for a deeper insight see [7]) and ii) the
current state of the world, that is the semantic network above introduced.
Note that the semantics of the first kind of predicates is intensional, while
that of those of the second kind is extensional. The major difference between
the predicates in our formalization and the standard logical ones lies in their
semantics (that is in their procedure of evaluation): the nonlogical symbols
of a standard logical language (that is functions and predicate symbols) are
taken to be independent and primitive, on the contrary our predicates can be
definitionally related to each other.

As far as default reasoning is concerned each rule can be generally described
[19) as: (wifi}: M{wffo} = {wff} (1)

where M is to be read “it is consistent to assume”. The whole rule is to be
read in this way “if {wffi} holds and it is consistent to believe that {wff,}
holds then infer {wff;}” (note the difference between the implication sign
(—) and the assumption sign (==)). Some considerations must be made on
the (1): {wffi} is evaluated testing the knowledge base and its holding is the
basis for the activation of a default; M {wf f,}, that is the considerations of
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consistency with the real, present world, is evaluated testing the semantic net-
work. Tt tests the compatibility of what has been inferred previously with the
output of the knowledge base and decides if backtracking has to be activated
when exceptions arise.

These rules are an attempt to formalize (to give a cognitive model of)
common sense reasoning about space. They do not take in consideration all
the possible combinatorial situations. In fact some of them are cognitively
impossible and are automatically impossible for how the knowledge base has
been built. To understand what they mean it is necessary to apply them to
real situations.

An interesting example may be:

RIGHT (typewriter, nick-nack)

H_CONTACT (typewriter, table) and
H_CONTACT(nick-nack, shelf) and
H_CONTACT(table, floor) and
H_CONTACT(shelf, floor)

As it can be seen we first deduce that the typewriter is horizontally support-
ed by the table and then we recursively deduce the positions of all the inferred
objects till the border of the environment [7, 9]. The rule applied when de-
riving H.CONTACT (typewriter, table) is a simplified form of the “rule of the
independent typical positions” [7]. Formally, it can be so described:

W_CONC(s,0)

/* the input conceptualization is a weak  */
/* conceptualization (derived from on the x*/
/* right, in front of, near, ...). */

and
TP (o)

/* the object has a typical position */

/* in the defined environment */

/* (evaluated intensionally on the */

/* a_priori data base) */
and

NEAR_POSIZ(s,o0)

/* the subject and the object of the x/
/* conceptualization are near to each */
/* other if positioned in their own  */
/* typical positions */
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/* (evaluated extensionally on a x/

/* possible state of the semantic */

/* network) */
and

(((TP_H(s) and TP_H(o0)) or
(TP_V(s) and TP_V(0)))

/* if positioned in their own typical position  */
/* both the subject and the object are supported */
/* either by an horizontal or vertical surface */
/* (evaluated as TP(o)) */

and
not COMMON_MATRIX(s,o,m)

/* an object m which is the common matrix for the */
/* object and the subject does not exist. The common */
/* matrix of n objects is an object to which all the */

/* objects refer when positioned in their typical */

/* position */

/* (evaluated as TP(o)) x/
—_—— >

TP_CONC(s,s,kb_tp_obj(s)) and
TP_CONC(o,0,kb_tp_obj(o))

/* both the subject and the object are positioned in */
/* their typical position, extracted from the data  */
/* base a_priori with the function kb_tp_obj(o) */

Note that we have supposed that the nearness of the two typical positions
holds. Of course this is not always true, the contrary may happen even in this
case, depending on how the table and the shelf are positioned. In this case the
analysis changes: we position the object in its position but we do not know
anything about the subject position. Thus we have:

W_CONC(s,0) and TP(o)
and
(((TP_H(s) and TP_H(0)) or
(TP_V(s) and TP_V(0)))
and
not NEAR_P0SIZ(s,o0)
and
not COMMON_MATRIX(s,o,m)
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==z
TP_CONC(o,0,kb_tp_obj(o))
and IND_POS(s)

/* the object is positioned in */
/* its typical position, for */
/* what concerns the subject, */
/* we are not able to decide  */
/* and ask */

This last rule is a subset of the “rule of the unknown subject position”.
As far as the second step is concerned examples of rules are:

forall x. forall y. (RIGHT(x,y) --> (LEFT(y,x))
forall x. forall y. forall z.
(H_CONTACT(x,y) --> not H_CONTACT(x,z))

Two considerations must be made:

1. This theory is largely incomplete. This is due to the extreme complexity
of the problem which makes the problem unsolvable with this approach.
To point out this fact it is sufficient to think to the infinite mutual
positions that two objects may have.

2. As a consequence of the above consideration, in this step most reasoning
is performed procedurally, on the basis of the semantic network; only
simple cases, such as those stated above are treated symbolically. Thus,
this topic is treated in the following sections.

4. SPACE AS A SEMANTIC NETWORK

A first important consideration must be made. We have approached the
problem of space representation and object positioning from two points of
view (with double valued and multiple valued logics). As far as syntactically
reasoning is concerned, till now only the double valued version has been im-
plemented; as far as the the semantic network and procedural reasoning are
concerned both versions exist. In the following we will treat space as a lin-
guistic variable [14], that is we describe the multiple valued approach. This is
not correct (a double valued theory must have a double valued interpretation).
We describe space in this way because we think it is more interesting; in the
following, when we refer to the semantic network as the interpretation of the
previous described theory, assume that we refer to the multiple valued version.

Let us focus on how space is represented. In the following we give only
some ideas (for more details see [9, 10]).
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When working about space representation we noted that, in an everyday
discussion, object positions are nearly always defined relatively to the posi-
tions of other objects whose positions are recursively ill-defined. On the other
hand, people seem able to infer the positions of objects with respect to the en-
vironment reference system. Thus, for instance, people are able to say that, if
“penl is on the right of book2” and “pen3 is on the left of book2” then it is im-
possible that “penl is on the left of pen3”. Moreover, when trying to position
objects in a limited space people are also able to shift them maintaining all the
known (ambiguous) constraints. Our solution has been to memorize the single
compatibility functions within a graph whose links represent object-subject
couples.

Working in this way we are able to build all the absolute references, walking
through the graph and composing functions using a generalized AND opera-
tor, but we memorize space within a structure which is strictly related to its
natural language description [10]. Every link is marked by an input (ambigu-
ous) constraint and has associated a compatibility function which describes
the set of all the possible mutual object-subject positions with their compati-
bility/ possibility/ truth values. Again, how compatibility functions are built
is largely explained in [10]; here only some notes are given.

First of all, in the fuzzy approach we assume that all the input phrases are
elliptical; that is that some key words, necessary to understand the meaning
of the input phrase, due to the common use/position of the objects, are left
unmentioned. So, for instance, “book on the table”, means not only that the
book is horizontally supported by the table but also that, maybe, is in its
centre (or in a side ...) with an orientation which guarantees a high degree
of equilibrium ... Of course the words we suppose are left unmentioned are
strictly dependent on the objects mentioned (i.e. a book is usually in the
centre of the table while the phone is maybe on one side, more usually the
right side). The functions which describe the mutual positions of the object
and the subject of the spatial prepositions have some interesting features:

i) they depend on the given spatial preposition, in fact any spatial prepo-
sition refers to different object parts or characteristics (for instance on
relates the volume of the subject to a surface of the object while in
relates the two volumes);

i) the influence of an object on the function shape depends on its syntactic
role in the spatial relationship (whether it is subject or object of the
spatial relation;

iii) each function is built independently of any contextual check, the “con-
textual” space state is taken into account only when the overall “free
space” compatibility function is synthesized and iv) the relation (defined



53

a_priori) between the above parameters and the function values, because
of the very nature of common sense, is necessarily fuzzy and not crisp.

5. PROCEDURAIL REASONING ABOUT SPACE

Procedural reasoning is performed through a set procedures which are ac-
tivated by the “deduction supervisor” and modify or read the state of the
semantic network. These procedures can be divided in two classes:

1. The first arc activated when a new predicate (such as
H_CONTACT(typewriter, table) is deduced) and modify the semantic
network. These procedures are responsible of maintaining a full compat-
ibility between the theory and the semantic network.

2. The second are activated when the validity of a predicate must be tested.
They test if the predicate is compatible with the semantic network.

A complete description of their behavior is beyond the aim of this work;
see [10]. An example can be the analysis given in section 3. In that example
the same input may give two different answers depending on the semantic
evaluation of the predicate NEAR_POSIZ(s,0). This may be a good example
of how semantics and syntactics cooperate and how the semantic attachment is
performed. In fact the deduction supervisor, when working on NEAR_POSIZ,
understands that the evaluation must be made procedurally and switches to
the semantic level.

A very interesting note. Most backtracking is activated at this level. In
fact, when syntactically reasoning, the system activates a lot of default rules.
This may be misleading and give some wrong deductions. The absurd is mostly
verified at this level, usually when it is tried to deduce a new predicate which
is inconsistent with the network state. Note that the backtracking routines are
also able to give some information about which default has been erroneously
activated.

Finally, it is worth noting that our representation of space completely fits
with standard extensional semantics definition (as, for instance in [18]). Let
us consider the double valued version of our semantic network:

- D, that is the domain of the interpretation, that is space described, for in-
stance by means of cartesian coordinates is

D=RxRxR

- any constant, that is any object instantiated, is associated an element be-
longing to D, that is a triple (x,y,2);

- any variable, that is any object not instantiated is assumed to vary within
D (we do not know where it is);
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- any function is assumed to get values in DxD.... and to take values in D;

- the standard logical operators are assumed to have their propositional value.

So for, instance, the holding of a set of input phrases is interpreted as
the set intersection of all the single sets;

- the predicates we have defined in our theory are interpreted as subsets of D.

For instance, H_-CONTACT (pen, table) is associated the set of all the
points which are above the upper surface of the table.

6. CONCLUSIONS

We think that ten pages are too few in order to give a complete explanation

of how we have modeled space and what we think about logic and knowledge
representation. We have tried to give only some general ideas, never explaining
the details of the formalization. This has probably resulted in a sometimes
not clear, always too brief and not precise, explanation. We hope that people
reading this paper do not care of style and formal matters and understand the
underlying ideas. A paper with a more precise and complete formalization is
forthcoming.
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ABSTRACT

We propose an empirical but a direct method used to learn partially
unknown causal tree structures. More specifically, we suppose that
the intermediate layer of a three-layered causal tree is completely
unknown. A set of examples where the root node and the bottom
layer nodes are observed is available. The principle of the method is
to compute a correlation matrix which is block diagonal according to
the model. This structure is then found using a clustering algorithm.
A simulation experiment highlights the potential usefulness of the
method in practical situations. Finally, open problems are briefly
reviewed.

1. INTRODUCTION

This paper describes a method used to solve the following problem: one supposes that
a domain universe can be represented as a causal tree with three layers, the structure of
which is partly unknown. More precisely, the root node of the tree and the bottom layer
correspond to observable random variables, while the intermediate layer is unknown,
that is, nor the number of intermediate nodes nor their linked nodes are known. The
problem is then to find the hidden structure of the causal tree from a set of samples
which consists in observed values of the root node and the bottom layer nodes. In a
previous work [Golmard and Mallet 1989], a method for estimating the probabilities of a
three-layered causal tree with a hidden intermediate layer has been described. The
structure of the tree was supposed known. This current paper therefore completes the
preceding one, although the method described here is to be used before the one of the
previous work.

The interest of learning hidden tree-structured causal structures has already been
outlined [Pearl 1985, 1988]. The advantage of using tree structures comes partly from
the simplicity of the required computations. Furthermore, they allow simple
interpretations of the causality relationships. Intermediate concepts are usually used in
many domains, like the medical domain, where they are often called "syndromes",
because they facilitate the description and the memorization of cases, and thus, the
reasoning process of human brains. As already stated in our previous work, syndromes
may be viewed as ill-defined concepts, since their "structure”, that is the signs entering
their definition, is known, but it is difficult to assess their presence, given a case, when a
part of these signs is observed. Learning the structure of the causal tree can be interesting
in several types of situations: the domain may be almost unknown, so the problem is to
learn the structure, or the expert may have some doubts about a part of the structure he
can detail. In this latter case, the learning method may be aimed at validating an already
stated causal tree model. The theory of the comparison between a leamed structure and a
theoretical one 1s not well established, and therefore research work remains to be done in
this field. Another possible use of a structural learning method is to find a good
approximation of a more complicated underlying model.
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Methods for learning causal tree structures have already been described. The powerful
algorithm of [Chow and Liu 1968] is to be recommended when all the variables are
observable. Spiegelhalter and Lauritzen [1989] have proposed a method based on
sequential Bayesian estimation for general probabilistic networks. Roizen and Pearl
[1986] have described an iterative algorithm for estimating the probabilities when a part
of the variables are unobservable and the causal tree structure is known. Their method is
related to the stochastic approximation algorithms (see, for example, [Kushner and Clark
1978]). The algorithm we proposed in the same context [Golmard and Mallet 1991] is
based on maximum likelihood estimation. When the structure is not known, the problem
is then to learn “hidden causes”, or to learn structures. An algorithm for learning hidden
causes in causal trees has been proposed by Pearl [1985, 1988]. However, this
algorithm involves many comparisons between triples of variables, and is not robust
relatively to the randomness of experimental data, as noticed by Pearl himself. Finally,
our method is related to the clustering methods, which cannot be all cited here.

The method will be described in section 2. In order to evaluate the accuracy of the
method in various experimental setting, we have performed a simulation experiment.The
results of this experiment are detailed in section 3. Finally, possible directions of future
works are outlined in the conclusion.

2. METHOD

2.1 NOTATIONS AND PROBLEM FORMULATION

The notations we propose emphasize the three layered structure of the causal tree, and
they are related with the diagnostic problem field. The data consist of a set of samples.
For each sample, the values of the diagnosis and the values of the set of signs are
provided. The vector of the signs is noted S. We note D the random variable
“diagnosis”, and d one of its possible values, and similarly for all the random variables.
We suppose that the intermediate (unknown) layer of the causal tree is composed of k
hypotheses, noted H = (Hj, .., Hy). The value of k is unknown. Each hypothesis H; is

the direct cause of nj signs, denoted Sj y1, .., Sj pj - The structure being a tree, each

sign is linked with exactly one parent hypothesis. The signs may then be partitioned into
several groups, each group corresponding to one hypothesis. The problem of finding the
“true” hidden causal tree structure from the data may then be formulated as the problem
of finding the “true” partition of the signs. The proposed method, however, is not
guaranteed to find the true structure: the probability of finding the true structure will be
dependent of many features, three of which have been used in the simulation experiment
described in section 3.

2.2 PRINCIPLE

We suppose that all the random variables are of binary type. The probability distribution
of a causal tree is then expressed as:
k nj

P(d, h,s) =P(d) [T[ Pthy) TTPGs;,;lh;) ] (D

=1 j=1

From expression (1), it is easy to compute the conditional probabilities of the signs when
the diagnosis is known. We have:
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k
P(sld) = [TP(s; 1> s Si;n;1d) 2)

i=1

Expression (2) illustrates the conditional independence of the groups of signs, since
the global probability function is divided into a product of k probabilities. Two signs
which do not belong to the same group (they have not a common cause), are independent
conditionally to the diagnosis d. This independence property is the key of the method. In
fact, computing the conditional covariance of two signs S; ; and S ;;, we get:

cov(Si j: Sy 1) = OOi.ffi.z tt
#O0u1#4L

In matrix notation, cov(S | d ) is the matrix of the conditional covariances of couple of
signs. The proposed method could be used from each such conditional covariance
matrix. However, in order to obtain an unique covariance matrix, a weighted sum of the
conditional covariance is computed as follows:

2
cov= 2, cov(S |d) P(d)
d=1

Note that the conditional covariances are not supposed to be equal, and therefore the
final covariance is not an estimate of any individual covariance. Its interest is just to
resume in one matrix the two conditional covariance matrices. Finally we compute the
correlation matrix, using:

cov(i, j)
Ycov(i, 1) cov(j, j)

cor(i, j) =

This matrix is block diagonal. This structure may be found using a principal
component analysis on the variables (see, for example, [Mardia et al. 1979] or [Morrison
1976}), since the k largest eigenvalues must correspond to the k blocks of the correlation
matrix. The algorithm we actually use is described below.

2.3 IMPLEMENTATION

2.3.1 Correlation matrix computation

Each sample consists in one value of the diagnosis node and N sign values. We
suppose NIND samples are available and we first compute the usual experimental
covariance matrix for each class of diagnosis. Since we are dealing with binary
variables, there are two classes, each class corresponding to an experimental conditional
covariance matrix. Let us suppose that Ny samples are in the class {D =d},d =1, 2.

The final covariance matrix is computed as follows:
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2
Y (Ng- 1) cov (STd)
d=1

C/O\V(S): N1+N2-2

2.3.2 Clustering method

The experimental correlation matrix deduced from the above covariance matrix is the
input of a clustering program. We have actually used the VARCLUS procedure of the
SAS statistical package. The clustering algorithm can be informally described as follows:

1. Initialization: (1 cluster of N variables)

a) Nbcluster :=1
b) Compute the eigenvalues of the initial correlation matrix

¢) Sort the eigenvalues by decreasing order. Let A be the second eigenvalue.

d) Denote A jax =21, Cmax = 1

2. loop: repeat while A, > 1 and Nbcluster <N

a) Split the cluster cygx into two clusters, corresponding to the two greatest

eigenvalues, according to the correlation of the variables with the two principal
components, respectively. Rearrange all the variables (not necessarily contained in the
cluster cyax ) by assigning them to the cluster the principal component of which the

correlation is the highest.

b) Nbcluster := Nbcluster + 1
c¢) Compute the eigenvalues of the modified or created clusters and sort them for each

cluster, let 7\,1 be the second eigenvalue of the i th cluster, i € {1, ..., Nbcluster}.

d) Let Apyax = Sup( A, .., ANbeluster )» @nd Cmax the corresponding cluster

number.
e) end of the loop.

A summary of the results listing based on an example is shown in figure 1. The 16
initial variables are finally divided into 4 clusters. Note that, in the step 4, variable 19 has
been removed from cluster 3, and is eventually a member of the last created cluster 4.
The correlations between variables and clusters are not displayed, because the lack of
space, but the correlation variable 14 - cluster 3 is 0.1688 at step 3, and 0.0560 at step 4,
while the correlation variable 14 - cluster 4 is 0.4745.

Note that the method we propose does not need to specify the number of clusters to
be found. The result of the procedure is a partition of the initial set of N variables into 1
to N clusters. We are only interested here in the structural part of the learning. The
estimation of the probabilities could be done using the method described in [Golmard
and Mallet 1991].
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Fig. 1. Summary of a result listing.

Nbcluster Cluster Members Variables

Step 1
1 1 16 1-16
Step 2
2 1 11 5-13, 15-16
2 5 1-4, 14
Step 3
3 1 7 5-8, 13, 15-16
2 5 1-4, 14
3 4 9-12
Step 4
4 1 4 5-8
2 4 1-4
3 4 9-12
4 4 13-16

Notation: i-j means {k | i <k <j}.

Second  Cluster
eigenvalue to split

2.2891 1

1.8187 1
0.9494

1.6770 1
0.9494
0.8490

0.7450 -
0.7292
0.8490
0.7080

3. A SIMULATION EXPERIMENT -

The learning method described in the previous section is not guaranteed to find the
true hidden structure in all the encountered situations. The asymptotic convergence of the
method seems very probable, since the experimental conditional covariance matrices
converge toward the “true” ones, but the fact remains to be proved. Furthermore,
simulations are useful for illustrating the kind of results which can be found, depending

of various experimental features.
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3.1 SIMULATION SETTING

We have tried to minimize the number of parameters required to describe the
simulation experiment. All the variables are binary ones.

. The structure of the causal tree is then resumed by only one parameter, which is
denoted NS (for Number of Signs by hypothesis). We suppose that the causal tree is
composed by a root node D, NS hidden intermediate hypotheses Hy, ..., HNS, and that

each hypothesis Hj is linked with NS signs Sj 1, ..., Si NS. Using the notations of
section 2.1., we have: k = n1 = ... = ng = NS. The final number of nodes in the

simulated structures is then 1+NS+NS2. We have performed the experiment with two
values of NS, namely 2 and 4. The corresponding total numbers of nodes are then 7 and
21, respectively.

. The quantification of the causal tree also required one parameter, denoted PSV (for
Probability of the Same Value). For all the causal trees, we have:

-P{D=1}=P{D=2}=05
-P{Xj=x/Xc(i)=x} =PSV,x=1,2

where Xj is any node of the causal tree, except the root node, and X¢j) is its parent
node (its cause). Note that PSV is not the probability that the values of Xj and X ;) are
equal, but actually PSV is the probability that the value of Xj is x, conditionally to the
fact that x is the value of X (j). PSV may be viewed as a measure of the strength of the

links between the nodes. For each value of NS, PSV was instantiated with two values:
0.6 (weak links) and 0.9 (strong links). Thus, four probabilistic models were used in the
experiment.

. Once the values of the parameters NS and PSV are provided, the probabilistic model
is completely specified. The last parameter entering the simulation setting is NIND, the
number of samples (Number of INDividuals) which will be used to learn the hidden
causal tree structure. The simulation using has been performed using three values of
NIND: 100, 1000, and 10000.

- For each value of the triple (NS, PSV, NIND), 100 sets of samples were generated
according to the probabilistic model, using a random number generator of a Vax
computer. For each sample, the value of the root node d and the values of the sign nodes
were stored, while the values of the intermediate hypotheses were discarded.

3.2 CRITERION OF EVALUATION

For each set of NIND samples, the method described in section 2.3. was performed.
The result of the method is a partition of the NS< signs into m non-overlapping clusters,
where m is not a priori fixed, and thus varies from a set to another. The chosen criterion
to evaluate the method is simply the proportion of successes of the method. We consider
a result as a success when the partition resulting from the clustering algorithm is exactly
the true one. In all other cases, the result is a failure. Since 100 sets were generated for
each value of (NS, PSV, NIND), the number of successes for each situation is also the
experimental percentage of successes of the method.
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3.3 RESULTS

The results of the simulation experiment are shown in table 1. One must note that
these results are experimental proportions, and thus they are random variables: we would
find different results if we perform the same experiment again. The results are so
contrasted (from O to 100) that the confidence intervals are not required for interpreting
the results. '

The marginal role of each parameter is clearly recovered, as expected, but the
interesting part of the analysis of the results is the comparison between the influences of
the three parameters.

The most important feature, at least in the ranges we have chosen, is the importance
of the strength of the links, which is measured using the parameter PSV. We did not
expect this result before performing the experiment. The number of samples, NIND, is
known as a very important feature in any statistical learning method, and the complexity
of the structure, measured by the parameter NS, was also expected to play a very
important role: the number of possible partitions with 16 signs is very large, and the
percentage of successes obtained when PSV = 0.9 and NS = 4 appears to us as quite
satisfying.

The practical consequence of these results could be formulated as follows: it is very
difficult to learn a hidden intermedidte concept when the probabilistic relationships
between the signs entering its definition are weak, even if the sample size is large (35%
of successes with NIND = 10000, NS = 4, and PSV = 0.6). On the other hand, if these
probabilistic relationships are strong, it is possible to learn hidden structures, even with
moderately large sample sizes (100% of successes with NIND = 1000, NS = 4, and
PSV = 0.9). An other way to state a practical advice could be: “for learning hidden
concepts, choose a small number of very specific signs”.

4. CONCLUSIONS

The results displayed in the previous section show that the method described may be
quite efficient in practical situations. As already mentioned, the first practical interest of
our method is to learn “true” causal tree structures, as far as true mathematical models are
able to exist. An important tool in this context would be a method for estimating the
probability that the found structure is the good one. A related problem is to study the
results of our method (or any concurrent method) when the true hidden structure is not a
causal tree, but a more complicated graphical model. We may be interested by this
situation according to related, but different, points of view. If we are interested in
proving causal relationships, we need tests between the causal tree models and the more
complicated ones. If we are building diagnostic advisor systems (or expert systems), we
need to know if the causal tree model is a good approximation of the more complicated
model. The problem is then to estimate the accuracy of an approximation.
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1 f imylation_ex
NIND

100 1000 10000

PSV =0.6 NS =2 19 48 100
NS =4 0 0 35

PSV =0.9 NS =2 99 100 100
NS =4 78 100 100

For each value of (PSV, NS, NIND), the experimental percentage of successes is

displayed. The meaning of the parameters PSV, NS, and NIND is explained in section

3.1.
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Abstract

Iterative-Deepening- A4~ (IDA™) is an optimal search technique which requires no
intermediate state storage. It is suitable for large search spaces. It uses a fixed
order for the children of a node to be expanded. Transformation-Ordering Iterative-
Deepening-A~ (TOIDA”) attempts to improve upon the performance of IDA™ by
dynamically improving the order nodes are expanded, based on results from previous
depth limits. Using the Fifteen puzzle as an example, it is shown that TOIDA* may
choose the optimal fixed ordering and generally chooses a good ordering saving a
substantial number of node expansions. Empirical results show that the sequential
version can provide significant improvements in the speed with which a solution is
discovered and no penalty in storage requirements.

1. INTRODUCTION

Search permeates all aspects of artificial intelligence including problem solving, plan-
ning, learning, decision making, and natural language understanding [7]. Because of the
large state spaces that have to be searched, the performance of the search algorithm is crit-
ical to the overall performance of the artificial intelligence applications. The programming
community is continually trying to improve the performance of the search algorithms and
to develop new more efficient search algorithms. The various means that have been used
to improve search performance include domain-specific heuristic knowledge, subgoals, and
abstractions [3].

The heuristic Iterative-Deepening-A* (IDA™) search algorithm has been accepted as
being asymptotically optimal in time and space over the class of best-first tree searches
that find optimal solutions {3]. An optimal solution will be defined as a minimum cost
solution.

1.1 ITERATIVE-DEEPENING-A*

The IDA™ search algorithm consists of a series of depth first searches. On each search
iteration a depth limit is set, and when a node’s total cost exceeds the limit, the search of
that node’s subtree is abandoned. The total cost of a node n is calculated as the sum of
the accumulated cost in reaching the node from the initial node (g(n)), and the estimated
cost of continuing until a goal node is reached (h(n)). As with A*, in order for optimality
to be assured the heuristic cost estimating function must be an underestimate of the true
cost to reach the goal. On the initial search the limit is set to the estimated cost of the
initial node. If the depth first search runs to completion without finding a goal node,
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Figure 1: The fifteen puzzle

another depth first search is performed with the depth limit set to the smallest total cost
that exceeded the limit of the previous search. This process is continued until a goal node
is reached. For a more detailed description of the IDA* algorithm, refer to [2].

Even though IDA* provides an optimal solution in terms of cost, it can suffer a sig-
nificant penalty, or realize a significant benefit, depending upon the (fixed) state transfor-
mation evaluation order used. We have developed a version of IDA* that tries to find the
optimal state transformation evaluation order while finding the minimum cost solution.

2. TRANSFORMATION-ORDERING ITERATIVE-DEEPENING-A*

Transformation-Ordering Iterative-Deepening-A* (TOIDA*) is based upon the idea
that by choosing a “good” fixed ordering for node expansions (or state transformations)
on the final iteration substantial savings in node expansions may be achieved. Imagine
that solutions may be anywhere in a final layer of node expansions and we expand children
from left to right in a depth first search. If the solution is in the leftmost expansion subtree,
we will nct have to expand any of the nodes to the right. However, if the solution is in the
rightmost subtree all of the nodes must be expanded on the last iteration possibly leading
to much more work depending upon the branching factor of the problem. The idea behind
TOIDA* is to choose a fixed node expansion order that brings the solution over to the left
side of the search tree (allowing this simplification).

For example in the Fifteen puzzle shown in IMigure 1, there are 4 possible moves from
any node (or state of the puzzle). They are up, down, right or left. The blank may be
moved in one of these four ways (of course in some places there will be illegal moves,
because you can’t move up if you are at the top of the puzzle, etc.). In IDA* a fixed
ordering is always tried from any state or node in the search space. It could be (down,
right, left, up), which has been used by Korf in several studies {2, 3]. Again using the
Fifteen puzzle as an example, there are 24 possible fixed orderings for transformations from
one puzzle state (node in the search space) to the next. One of these will find the optimal
solution with the fewest node expansions and one with the most possible node expansions.
It is most desirable to minimize the number of expansions.

TOIDA* attempts to do this by remembering the order of state transformations that
leads to the minimum A (heuristic estimate of the distance to the goal) on the next to last
iteration. It then uses this fixed order on the last iteration. This order of evaluation may
or may not be the same as the one it begins with.

Specifically, when the depth first search abandons a search subtree because the depth
limit has been reached, the transformation ordering algorithm checks the estimated solu-
tion cost of the abandoned node. When a new minimum estimated solution cost is found,
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the new fized order of evaluation for the next depth-first search is set to quickly find the
corresponding node. This order is determined by scanning the stack of state transforma-
tions made from the initial node, and setting the order to the relative order of the first
occurrence of each state transformation. If any of the state transformations are absent
from the stack, they are placed at the end of the state transformation order, keeping their
same relative order as used in the search with the current depth limit.

2.1 OTHER NODE ORDERING SCHEMES

Recently node ordering has been used to increase the speed of IDA™ and similar search
techniques [1, 6, 5]. Powley and Korf [6] have shown that by saving an early frontier set
of nodes (of the Fifteen puzzle search space), and ordering the nodes in the frontier set for
expansion on the next depth-limit search, significant savings in terms of node expansions
can be achieved. A frontier set of nodes in the search space is the set of nodes which have
a cost over the limit on an abandoned search path. They order the nodes based upon the
minimum A (heuristic estimate to goal) values of the paths that emanate from these nodes.
When combined with paralle] window search, they report some impressive speed increases
(and decreases in the number of node expansions).

Powley and Korf originally tried saving the entire frontier set of nodes and ordering
them based on the minimum & value for expansion. Although this decreased the number
of node expansions, it did not decrease the actual search time. Chakrabarti et.al. [1]
also report improved results, in the number of nodes expanded, with a form of depth-first
search using a node ordering technique. So the benefits of ordering the nodes seems clear.
TOIDA* does not perform complete node ordering since it only changes the fixed order of
evaluation. However, fixed evaluation ordering achieves some of the same effects as total
node ordering.

3. FIFTEEN PUZZLE

The Fifteen Puzzle consists of a four by four frame which holds fifteen movable square
tiles with one blank spot, as illustrated in Figure 1. The tiles which are horizontally or
vertically adjacent to the empty spot may be slid into the blank spot. The object of the
puzzle is 10 find a sequence of tile movements that will transform the initial tile formation
into a specified goal formation. Figure 1 shows the goal formation used in our experiments,
which is consistent with that used in experiments by other researchers [1, 2, 4]. The optimal
heuristic for the Fifteen Puzzle is the Manhattan Distance Function. The Manhattan
Distance Function sums the number of horizontal and vertical grid positions that each tile
is from its goal position. The value of the heuristic is this sum of the tile distances.

3.1 IMPLEMENTATION

The IDA*, TOIDA™, and Fifteen Puzzle algorithms are implemented in C on a Hyper-
cube. Each search algorithm is implemented using exactly the same application interface
so the search techniques are interchangeable. The Fifteen Puzzle algorithm is totally iso-
lated from the search algorithms, so the searches are reusable without modification. The



68

Korf | Solution | Nodes Expanded | Time (min:sec)
Puzzle | Cost IDA™ | TOIDA* | IDA* | TOIDA*
#
79 42 540860 411617 7:50 5:58
12 45 546344 166664 7:55 2:25
42 42 877823 225515 | 12:43 3:16
55 41 927212 397057 | 13:26 5:45
97 44 1002927 | 950913 | 14:32 13:47
19 46 1280495 | 1373048 | 18:33 19:55
94 53 1337340 | 136943 | 19:22 1:59
47 47 1411294 | 1523089 | 20:27 22:06

Table 1: IDA* vs. TOIDA*

Fifteen Puzzle was also generalized to handle any member of the square-sliding tile puzzle
family. Hence, we have obtained flexibility and generality at the cost of some efficiency.

During the implementation of the search algorithms, a decision was made not to store
the incremental state spaces during the search. Instead, a single state space, representing
the current problem state, and a stack of state transformations applied are maintained.
This decision requires that every state transformation be reversible, at least in the pro-
gramming model used. As a benefit, larger problems with larger state spaces can be
searched.

4. RESULTS FROM SEQUENTIAL COMPARISONS

A number of reasonable size puzzle instances have been run through TOIDA* and
IDA* in our implementation. Clearly, the number of nodes expanded in our (general, but
inefficient) implementation of IDA* and others will be the same, but we are interested in
the time penalty of determining the search order for the next iteration in TOIDA*. As
will be sezn, the overhead in TOIDA* is minimal.

For an overhead comparison, the IDA* and TOIDA* search algorithms were tested
against eight (of the 100) problem instances given by Korf in [2] for which the number
of nodes expanded was less than 1.5 million. This limitation was necessary to get a
reasonable problem set, and still have a representative sample of problems. On six of the
eight puzzle instances, the TOIDA* algorithm performed better than the IDA* algorithm.
The TOIDA* algorithm performance, measured by nodes expanded, ranged from 90% less
to 8% more than the IDA* algorithm, with an average of 53% less. The TOIDA* algorithm
showed aimost identical performance increases when the index was processing time. The
results of the test are shown in Table 1.

These results only indicate that the TOIDA* algorithm performs better (for these
problems) than the IDA* algorithm with the state transformation evaluation order used
by Korf in [2]. Since the performance of IDA™ algorithm is dependent upon the state
transformation evaluation order selected, the IDA* test program was modified to solve all
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Korf Solution | Nodes Expanded Time (min:sec)
Puzzle # Cost TOIDA* | IDA*L | TOIDA* | IDA*T
411617 5:57

79 42 411617 | 681416 5:58 9:51
951214 13:46

139857 2:01

12 45 166664 | 386895 2:25 5:35
633933 9:10

225515 3:16

42 42 225515 | 627305 3:16 9:05
1029096 14:54

397057 5:46

55 41 397057 | 663508 5:45 9:38
931320 13:32

900587 13:02

97 44 950913 | 2732664 | 13:47 39:34
4570051 66:10

1057599 15:18

19 46 1373048 | 2150176 | 19:55 31:08
3528764 51:06

136943 1:59

94 53 136943 757844 1:59 10:58
1375560 19:55

1115298 16:09

47 47 1523089 | 2622848 | 22:06 38:40
4051749 58:40

! The three values displayed for the IDA* performance represent the minimum, average, and
maximum values for all 24 state transformation evaluation orders.

Table 2: TOIDA* vs. IDA* (all orders)

eight problems with each of the 24 combinations of the four state transformations, and the
results compared with the TOIDA™ algorithm results. On four of the eight puzzle instances,
the TOIDA* algorithm correctly identified the optimal state transformation evaluation
order, and suffered no execution time penalty for the extra work of transformation ordering
(The execution time cost for the state transformation evaluation ordering routine was
below the timing function resolution of 1 second). On the remaining four puzzle instances,
the TOIDA* algorithm identified a suboptimal state transformation evaluation order that
required an average of 25% more node expansions than required by the optimal state
transformation evaluation order. When all eight puzzle instances are considered, the extra
work required drops to 18%. The test also showed that the work required for a suboptimal
evaluation order can be 900% more than that required by the optimal evaluation order.
The results of this second test are shown in Table 2.
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Puzzle TOIDA* expansions Korf IDA* order | Improvement
# Expansions
100 68750001 67880056 -1.01
99 170901508 83477694 -2.05
19 1373048 1280495 -1.07
47 1523089 1411294 -1.08
93 5627965 1599909 -3.52
90 9191415 7171137 -1.28
18 41202949 23711067 -1.74
97 950913 1002927 1.05
94 136943 1337340 9.77
85 2461544 2725456 1.11
86 1126101 2304426 2.05
33 45983903 65533432 1.43
28 5890673 5934442 1.01
16 5835264 17984051 3.08
23 15118399 15971319 1.06
74 1897728 2289588 1.21
79 411617 540860 1.31
12 166664 546344 3.28
42 225515 877823 3.89
55 397057 927212 2.34
Average Improvement 1.04
by case

Table 3: 20 puzzle instances

Now in Table 3, we show results from 21 initial puzzle configurations. Here we only
compare node expansions against the fixed order that Korf used, primarily because some
of the puzzles will require prohibitively many node expansions to test all possible fixed
node orderings. The time overhead of TOIDA* is being ignored since it appears to be a
non-factor in the comparison. One must remember that the one fixed ordering used by
IDA* may be the optimal ordering for the problems in which it outperforms TOIDA*.
Overall, TOIDA* expands about 96% of the nodes that the fixed order IDA* expands
on the 21 examples shown. It performs badly (in comparison) on a couple of the larger
problems. Below, we examine its performance on one of these.

On problem 93, TOIDA* is about three times worse in the number of node expansions.
Problem 93 has between 1.5 and 5.7 million node expansions or state transformations for
the two orderings which takes hours of c¢pu time on the Intel Hypercube 2/386. We did,
however, examine all 24 possible node orderings for problem 93. It was found the the
fixed order tested against was within 99.96% of optimal. The worst case for problem 93
was 8,490,547 expansions which was 1.5 times more than the order chosen by TOIDA*
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required. The average over the 24 possible orders was 5,044,871 expansions or 12% less
expansions than TOIDA* incurred. The point of this analysis is that TOIDA* was only
slightly worse than average in this case and significantly better than the worst fixed order
in number of nodes expanded.

5. EVALUATION OF TOIDA*

The TOIDA* algorithm can correctly identify a “good” transformation evaluation or-
der with minimal time penalty. The IDA* algorithm can provide more efficient search
performances if the optimal state transformation evaluation order is known prior to the
search, but if the optimal order is not known the TOIDA* algorithm has been shown to
provide a solution that is (in general) much more efficient than the average performance of
the IDA* algorithm with all evaluation orders. The TOIDA* algorithm is therefore likely
to be more efficient than the IDA* algorithm with an arbitrary state transformation evalu-
ation order for an arbitrary problem. Further, TOIDA* requires that minimal information
be saved during an iteration. It only needs a minimum % value and a relative ordering to
be used with the next depth limit. Hence, the space and time overhead of using TOIDA*
are minimal, making it a good candidate search algorithm when memory resources are
limited.

6. SUMMARY

In this paper we present a Transformation-Ordering [terative-Deepening A* (TOIDA*)
search that improves the performance of IDA* by dynamically improving the search or-
der. This results in an improved efficiency of the final search iteration. We describe an
implementation of the technique, and present the results of a series of tests performed on
the Fifteen puzzle problem. The results are compared with IDA* in terms of search time
and number of node expansions, and TOIDA* is shown to outperform IDA* in many of
the tests.

Improving the computational cost of heuristic search is an active area of research in
Artificial Intelligence, because search dominates many Al algorithms. We have shown that
it is possible to improve the performance of IDA* search without requiring a substantial
increase ia storage space, by improving the fixed node expansion order on each iteration
through the search space. The research we present in this paper opens up a great many
areas of continuing work, which we intend to pursue. These areas include investigating and
combining parallel implementations of TOIDA*, analyzing the potential gain of transfor-
mation ordering, discovering the optimal fixed search order, and extending the algorithm
to save portions of the {rontier space.
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Abstract

The fast fuzzy algorithm is used in resolution based automated reasoning
to produce the weights of terms automatically. By using the weights extracted
by the fast fuzzy algorithm, some of the fuzzy implication operators were
compared.

1. INTRODUCTION

Resolution theorem prover systems form an important category of logical architec-
tures in the field of Automated Reasoning. In this paper we outline a method for
control of inferential strategies of resolution based architectures which employs the
triangle fuzzy relational products and fast fuzzy relational algorithms. The method
for speeding up the logical inference is tested in conjunction with the theorem prover

called ITP.

ITP has been one of the most important systems in the field [1], devel-
oped by Aragonne Laboratory. The Aragonne group used ITP extensively in ATP
research [2], proving many theorems, using it to verify software and hardware, solv-
ing algebraic word problems as well as some other open mathematical problems. The
I'TP was distributed over 200 sites, and used extensively by other workers as publi-
cations in the Journal of Automated Reasoning indicate. Boyer used this system for
proving some basic mathematical theorems in Godel’s axiomatization of set theory

[3].

In our approach, ITP is used as the basic architecture, embedded in a
many-valued logic based system which controls the selection and priorities the infer-
ence strategies by means of many-valued and fuzzy logics based relational algorithms
[4] and heuristics, respectively.

After surveying the structure and functional activity of the ITP in section
2 and 3, a new strategy using fuzzy preorder relations is proposed. The preliminary
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experimental results and comparison of a whole spectrum of fuzzy implication oper-
ators is presented in the sections 5 and 6, respectively.

2. THE USE OF STRATEGIES IN AUTOMATED REASONING
SCHEMES

Current automated theorem prover ITP adopts strategies called set of support strat-
egy and weighting strategy. The reason for using strategies is that the automated
reasoning program can avoid many fruitless paths by their judicious and ”informed”
application. Without a suitable strategy guiding the inference, too many often irrel-
evant clauses may derive, and those clauses may lead the program easily into a blind
alley. Therefore, the strategies are the must in any serious use of automated reason-
ing. The set of support strategy is one of the most powerful restriction strategies
in the resolution-based automated inference systems. The set of support strategy
forbids a reasoning program from applying an inference rule unless at least one of
the potential parents to which it is being applied has been deduced from some spec-
ified subset of the input clauses. Even though the set of support strategy eliminates
many fruitless clauses from the inference stream, it is often not powerful enough to
produce the conclusion in acceptable time. Hence, weighting strategy is being used
with the set of support strategy, in the current theorem prover ITP in addition to
the set of support. The weighting strategy assigns some priorities to each term,
literal, and clause. With the weighting, one can assist the reasoning program by
countributing some of one’s own experience capturing one’s intuition, in order to give
the program hints. Weighting means assigning ”weights” to various concepts. The
lighter the weight is , the sooner the program will look at the clause. Unfortunately,
this weighting strategy is too heuristic and too dependable on the subjective side of
one’s experience or intuition.

Here, we propose to apply the fast fuzzy relational algorithms [4] as an
automatic technique for extracting the weighting strategy. Instead of determining
weighting patterns heuristically by an trial and error approach, the new scheme pro-
vides for selecting the weights automatically [5], thus replacing by a fuzzy algorithm,
the manual selections that have been previously done by the users of the ITP heuris-
tically.

3. THE GLOBAL ACTIVITY OF THE ITP

In order to elucidate the new scheme further, we have to have a closer look at the
global activity of ITP. The user of ITP enters theorems which are changed into clause
form to ITP. The clauses consist of four clauses which are the axioms list, the set
of support list, the have-been-given list, and the demodulator list. The fundamental
operation consists of the following steps:
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1. Choose a clause from the set of support list. Call this clause ”the given clause”.

2. Infer a set of clauses that have the given clause as one premiss; as other pre-
misses the clauses are selected from the axioms list, the have-been-given list, and the
demodulator list, depending on the chosen type of inference process.

3. For each generated clause, "process”it (i.e., simplify it, perform subsumption
checks, etc.).

4. Move the given clause from the set of support list to the have-been-given list.

The operation of the ITP consists of repeated execution of these four
steps until either the set of support list has become exhausted or a contradiction
has been found. The user enters selections (i.e. which inference rule should be used
and how the given clause is picked up) into the ITP with the clauses of the axioms
defining the problem. The user-controlled options govern the step 1, 2, and 3 above.
These user-controlled options include selection of the inference rules (e.g. binary
resolution, unit resolution, and hyperresolution, etc.) and the weighting scheme for
each term, literal, and clause. Since too many clauses are generated through the
repeated steps, specific weights are assigned to each term, literal. The clause to be
picked up first is the one with the lowest weight.

4. REPLACEMENT OF WEIGHTING STRATEGY BY A FUZZY
INFORMATIQN RETRIEVAL SCHEME

The priority of the second premiss, in the activity step 2 of the previous section, is
determined by the weight heuristically assigned by the user of the ITP. We replace
this heuristic weighting strategy by fast fuzzy relational algorithms. To apply these
algorithms to this particular problem domain, we have to determine the semantic
conceptual descriptors [6] characterising the actions [7] of the theorem proving strate-
gies. This is achieved by the application of the Fuzzy Information Retrieval (FIR)
scheme [8], thus making the value of the assigned priority the function of fuzzy logi-
cal request and fuzzy relational request [9] of FIR. The major advantage of our new
scheme is the fact that the order-like relations determining the priority of the clauses
selected to be entered into the inferential stream of the ITP can be identified from
the experimental data by fast fuzzy relational algorithms [4].

The functional speciﬁca,tibn of the activity of FIR used to select the
relevant clause is as follows [8]:

What is involved in fuzzy Information Retrieval of clauses can be ex-
pressed essentially by means of the following four items:
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1. A set D of clauses d.
2. A set T of descriptors t; (for example properties of clauses).

3. A clause-descriptor relation R, which is a fuzzy relation such that
RCR}'(D - T)

Then R;; is the degree to which clause d; is related to descriptor ¢;, which can be
viewed as the degree of relevance of the features described by descriptor ¢; to clause

d;.

The appropriate characteristics of descriptors have to be determined em-
pirically by a series of carefully designed experiments, or from appropriate theoretical
considerations. It is clear that the set of relevant properties of the elements involved
in these identification experiments is strongly dependent on the mathematical char-
acteristics of the problems presented to the ITP. In the next section we shall describe
one method of constructing the relational matrix, relating the axioms describing the
problem to be solved by the ITP with the descriptors characterising its axioms. This
fuzzy relational matrix is then used by the TRISYS system [4],[10],[11] to extract
the descriptor hierarchy. The automatically extracted descriptor hierarchy is conse-
quantly used to speed up the inferential process of the ITP.

5. CONSTRUCTION OF A FUZZY MATRIX FOR BUILDING A
DESCRIPTOR HIERARCHY

In order to construct a descriptor hierarchy in the problem domain of resolution
based automatic reasoning, the automatic reasoning system needs a matrix which
consists of clauses and descriptors which describe the properties of the clauses. The
matrix is used for constructing the descriptor hierarchy. This hierarchy consists of the
descriptors organized in such a way that the highest descriptor is the most relevant
to deriving the conclusion (the empty clause), from clauses by means of inference
rules such as binary resolution, and hyperresolution, etc.

Our particular application of the fuzzy information retrieval technique
uses a relational matrix which conceptually represent a relation from the set of
clauses, to the other set, the properties. The set of clauses used in the fuzzy ma-
trix is formed from the logical azioms of the problem to be solved, and from the
immediate consequences of these axioms. Both are unified with the set of support
by a suitable unification algorithm. The immediate consequences consist of the very
first level resolvent that is generated by applying the selected inference rules to the
axioms and set of support, by means of breadth first search. The set of properties
is formed from the terms which appear in the clauses representing the axioms and
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the immediate consequences. The fuzzy relational matrix D;; gives the degree of
relatedness between the i-th element of the set clauses and the j-th element of the
set of properties. The fuzzy degrees are determined by application of the following
rules:

1. If the property j is an element of the clause i, then the degree of the relatedness
D,,'j 1s 1.

2. If the property j is not an element of the clause i, then the degree of the relatedness
Dij is 0.

3. If the property j is an element of a subterm (i.e., g(a)) of the clause i, then the
degree of the relatedness D,; is 0.5.

4. If the property j is an element of a subterm of a subterm (i.e., g(g(a)) of the clause
1, then the degree of the relatedness D;; is 0.5 x 0.5, and so on.

5. If the property j is an element of the clause i, and the property j is an element
of a subterm of the clause i at the same time (i.e., P(a,b,g(a))), then the degree of
the relatedness D;; will be bigger one applied to the case using the above steps 1 to 4.

6. EFFECT OF THE NEW WEIGHTING TECHNIQUE BASED ON
FUZZY DESCRIPTOR HIERARCHY

Our new weighting technique has been applied to several classes of problems that are
ameneable to the automated reasoning approach. The first example illustrating the
results of the new weighting technique to be described here is the following theorem
of the group theory: ”In a group, if the square of every element is the identity, the
group ts commutalive”. Selecting the hyperresolution as the inference rule of the
ITP, the default weighting (which assignes no specific weight for each variable but
assignes value 1 to each variable by default) produced the conclusion in 146 seconds
in 121 inference steps. On the other hand, the new fuzzy method, which used the
weighting pattern derived as described above, reached the conclusion in 52 seconds
with 49 deduced steps.

The second application listed in the comparison below, involves a digital
circuit problem of verifying the correct function of the full adder [12]. The result
of the test of the condition when the inputs to the circuit are high, low, and high,
then the outputs levels of the device are low and high is presented below. Using hy-
perresolution and UR-resolution simultaneously as the inference rules, the weighting
pattern derived by the new technique yields the conclusion in 21 seconds with 49
deduced steps while the default weighting get the empty clause in 26 seconds with
72 steps.
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The third demonstration of our technique presented here is concerned
with the well known Al problem called ”the block problem [12],{13]. In our compar-
ison below we present the microworld of three blocks, in the following arrangement:
The initial state of the block world problem is that block A is on block B, and block B
is block C, and the goal state is that the block A is on the table. Green’s method [12],
which is a planning procedure based on resolution, was used to solve the block world
problem. Using the hyperresolution as the only inference rule, the ITP obtained the
conclusion in 55 seconds in 119 steps when using the breadth first search method;
in 22 seconds in 65 inference steps while using the default weighting pattern, and
in 15 seconds in 37 steps by using the weighting pattern derived by our new fuzzy
technique.

The new weighting pattern derived automatically by the fast fuzzy re-
lation algorithms encapsulated in the TRISYS system [4] was tested in preliminary
experiments significantly reduced the total number of steps and CPU time that the
ITP needed to reach the conclusion. The performance results of the solution to all
the three problems just described are listed in the table below. The experiments
were run on SUN 3/50 under UNIX, where the ITP was installed.

group theorem digital circuit  block world

inference  hyperresolution hyperresolution hyperresolution

rule & UR-resolution

default 121 steps 72 steps 65 steps
weighting 146 seconds 26 seconds 22 seconds
weighting 49 steps 49 steps 37 steps
of new tech. 52 seconds 21 seconds 15 seconds

The Hasse diagrams extracted by TRISYS that provided the weighting leading to
the results listed in the above table were computed by the algorithm described in [4]
using the implication operators as follows: group theorem — L5 (a-cut at .89, mean
level); digital circuit - L6 (a-cut at .93, half-upper level); block world — L55 (a-cut
at .95, half-upper level);

7. COMPARISON OF RESULTS USING VARIOUS IMPLICATION
OPERATORS

To investigate the effect of various many-valued logic operators on the process of
extractions of the weighting hierarchies derived by the fast fuzzy relational algorithms
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two of the three problems described in the previous section were selected for further
study:

o The theorem of the group theory.

¢ The problem of the verification of the digital circuit called “full adder”.

The extracted weighting hierarchies and number of steps and CPU time
to get the conclusion are given below. Eleven different operators were compared for
each problem. Among them, selected to show the effect are L5, L55, and L6. L5 is
Lukastiewicz, 155 is Kleene-Dienes Lukasiewicz and L6 is Kleene-Dienes, respectively.

Shown in the tables below is the number of steps which it took to produce
the conclusion, followed by the numbers in parenthesis which represent the CPU time
taken to reach the conclusion.

1. The theorem of group theory: 2. The logical circuit:

a-cut L5 L55 L6 L5 L5355 L6

1 112 112 112 80 98 98
(4:18) (4:18) (4:18) (:21) (:28) (:28)

95 50 50 50 87 85 78
(1:01) (1:01) (1:01) (:23) (:23) (:20)

.9 49 49 49 107 105 105
(:54) (:54) (:54) (:32) (:31) (:31)

.85 49 49 49 107 100 105
(:54) (:54) (:54) (:32) (:29) (:31)

The inference rules were hyperresolution and UR-resolution, used simultaneously.
For comparison, the default weighting produced the conclusion (the empty clause)
in 2 minutes 27 seconds, in 83 steps for the group theorem, and in 28 seconds in 98
inference steps for the logic circuit, respectively.

The Figure shows some Hasse diagrams, depicting the automatically ob-
tained weighting hierarchies extracted by TRISYS, based on methods described in
Sec.4 and 5 above. Note the differences in Hasse diagrams for different knowledge
domains to which the theorem prover is applied. The lighter the weight is, the sooner
the mechanical theoremn prover picks the clause. Therefore, the term located at the
highest in the descriptor hicrarchy will be assigned a lightest weight.
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ABSTRACT

In this paper, dynamical systems are classified into
eight classes by the authors. Thereafter, efficient methods
are developed in this paper: to recognize an input vector using
the third and the fifth classes of dynamical systems defined
by the authors. Patterns. classified and recognized by a
dynamical system are based on attractors of the system.
wolfram’s cellular automata, Barnsley’s iterated function
systems (IFS), and w-Orbit Finite automata proposed by the
authors are used to illustrate the idea that how patterns can
be recognized by the third and the fifth classes of dynamical
systems, which is a more efficient approach than the existing
methods.

Key words: Iterated functions systems, finite automata,
attractor, fractal, cellular automata, configuration space,
pattern recognition, neural network, dynamical systems, o-
orbit finite automata.

1. INTRODUCTION

Because of the computation complexity, it is difficult to recognize
arbitrary patterns at a reasonable cost. Many problems of how to recognize
patterns efficiently remain open. In a simplified approach to pattern
recognition, a pattern recognizer operates as a *“black box" which
receives an input vector x and produces a response 1; on one of its output
ports i, each port being assigned to a different class of observed items
{1]. If x belongs to class i, 1n; = 1 and ny =0 for all j not equal to
i.

The theoretical problem is to devise an adaptive process such that
given a set of input pairs { ( %, 0 ), k=1, 2, ... K}, one finally
hope to obtain a recognizer that will recognize all the input vectors.

Neural network models of the Hopfield type have drawn intensive
attention in the past years mainly because of their capacities as
associative memory and fast computing device [1,2,3]. When an unknown
pattern is imposed on a Hopfield net, the net iterates in discrete time
steps using a given formula. The net is considered to have converged when
cutputs no longer change on successive iterations. This fixed pattern
determines which c¢lass the unknown pattern belongs to.
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A network can be operated in two different modes. Let a net has N
neurons. In synchronous operation, each of the N neurons simultaneously
evaluates and updates its state according to a rule. In asynchronous
operation, the components of the current state x are updated one at a
time according to a rule. Hopfield and his colleague [2] proved that a net
evolves toward a stable confiqguration if the mapping rules specified by a
matrix are symmetric and the mode of operation is asynchronous.

The Hopfield model has several unsolved problems as follows, which
motivates our research work to establish more efficient methods in pattern
recognition.

(1) No theory is available to specify the conditions under which a net
evolves toward a stable configuration if the mode of operation is
synchronous (the synchronous mode is more favorable because of fast
convergence ).

(2) The information capacity of the Hopfield nets is limited. The
number of arbitrary vectors that can be made stable in a Hopfield network
of N neurons is proved to be O(N) [3]. It is very expensive and
unattractive to use N neurons for storing O(N) patterns.

(3) In order to specify a system with N-bits configurations, O(N2?) real
parameters must be used ( 16 ~ 32 bits for each real number ). With
introducing more parameters ( O(N?) ) to specify fewer bits { O(N)), it is
expected that a direct construction of a net from a given set of input
pairs can be achieved. Therefore, the time complexity of neural network
inference could be reduced. one of such approach is the outer product
construction of a Hopfield net from a given set of input pairs [2]. But
such a direct inference has not been achieved for synchronous net. If no
such direct inference algorithm can be found, it is necessary to introduce
some search algorithms in the parameter space ( O(N?) dimensional ) for
inference of a net from a given set of input pairs. The parameter space
for a neural network has high dimensions. Consequently, the time
complexity for inference is high.

The problems listed above motivate us to develop some new approaches.
We have extended the Hopfield models in two directions (both use dynamical
systems [5,10]). One of the two direction is presented in this paper, and
the other one will be presented in [4].

In this paper, efficient methods are developed to recognize an input
vector using the third and the fifth classes of dynamical systems defined
in this paper. Patterns classified and recognized by a dynamical system is
based on attractors of the system. Wolfram’s Cellular Automata (CA) [10],
Barnsley’s Iterated Function Systems (IFS) [5], and -Orbit Finite
Automata (w-OFA) [9] proposed by authors are special cases of dynamical
systems. They can be used as models for implementing a pattern recognition
procedure.

In Hopfield model [1,2,3], a net has a memory. Given a set of input
pairs which is used to train the net, the input vectors are stored in the
memory. Vectors that are in the memory are also fixed point of the neural
net. These fixed points exercise a region of influence around them.
Configurations which are sufficiently similar to a fixed point are mapped
to the memory by repeated iterations of the system operation. In other
words, input vectors that are used to train a net are treated as fixed
points or point attractors of the net.

Our scheme can be considered as a generalization of the Hopfield
model, which will be more powerful and efficient in pattern recognition.
An input vector x 1is recognized according to its attractor. These
attractor can be cyclic attractors instead of fixed points. For the case
of fixed points, these attractors are in general not the same as the set
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of the input vectors which are used to train the net. In the set of
training input pairs, many different input vectors can be in the same
class. For a trained dynamical system, let x be an input vector, if the
evolution of a dynamical system with the initial configuration x leads to
an attractor i, x belongs to class i.

In this paper, section 2 introduces several basic concepts. Section
3 introduces our classifications of dynamical systems. In section 4, we
explain our idea in ‘detail. In section 5, Wolfram’s cellular automata are
used to implement our idea. In section 6 and 7, Barnsley’s iterated
function system (5] and the w-Orbit Finite Automata proposed by the
authors used for the same purpose. Finally, a conclusion is drawn in
section 8.

2. DEFINITIONS

In this section, we introduce several basic definitions.

pefinition 1
Let X be a complete metric space. Then the set of all compact subsets
of X except the empty set is denoted as H(X) [S5].

Definition 2
A dynamical system consists of a configuration space G(X) © H(X)
together with a mapping F: H(X) =-~~> H(X). G(X) is closed under F.
Formally,

D= (G(X), F )

Definition 3
Let D = ( G(X), F ) be a dynamical system. Let

Q(O) = G(X)
Q) - lr(g)(o))

bub = F(erﬂ);
then
- * (1)
Q = ni=0 Q

is called an attractor set of D [5,10].
pefinition 4

A null attractor p; is the empty set [10];

A point attractor p; is a configuration such that

F(p,) = p;;

A cyclic attractor is a set of configurations
Qe = { Pryr Prze + + + 4P | F(Pg) = Py pas FR(Py;) = Py
A regular infinity attractor is a cyclic attractor where k is infinity

and the set can be specified by a finite amount of information;
A strange attractor is the one which has an infinity number of
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configurations and which can not be specified by a finite amount
of information.

Definition 5
Let (X,d) be a complete metric space. Then the Hausdorff distance [5]}
between points A and B in H(X) is defined by

b(A,B) = MaX{ d(AIB)Id(BlA) }

d(A,B) = Max{ d(x,B) : x € A}
d(x,B) = Min{ d(x,y) :+ y € B}.
Definition 6
A transformation £ : X ~-~> X is called a contraction mapping on

[a,b] if
(1) f(x) is continuous on [a,b];
(2) £(x) is in [a,b] for all x in [a,b];

(3)| £/(x)| s s <1, xela,b]

where Ia means absolute value. The minimum number of such s is called a
contractive factor for f(x).

Definition 7
An Iterated Function Systems (IFS) [5] consists of a complete metric
space (X,d) together with a finite set of contractive mapping X [5].
Formally, an IFS, A, is written as

B=1{Xx, Z} L =Aw,, w, «o., Wit

Here w’s are contractive mappings.

Definition 8
An ¢-Orbit Finite Automata(w-OFA), A, is a 5-tuple [9]

A={R; Z; M; I; F)

where (1) R is a finite set of states

R=1{X, X, ... X;, ... X, !}

1 n

and X; is a metric space. (2) I is an affine alphabet, which is similar to
an IFS transformation alphabet. (3) M is an ( n X n ) transition matrix.
Each elements of this matrix, M;;, is a subset of L. The transition rule
is

( X, w) -~ X;, 1If weE M.

The set M;; can be empty. (4) The initial state is I = { X; }, and (5) the
final states F is a subset of R.

An 0-OFA, A, accepts an w-regular language L(A) [6,7]. The alphabet
of L(B) is a set of affine transformations ¥. L(A) is also defined as the
orbit language of -OFA: O(A) = L(A). The images defined by w-OFA are
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A, = LAYX, = O(A)X,, X,eH(X).

where

LA)X, ={ x| x = ux,, %, € X, u € L(A4) }.

As a special example, an IFS A = {X, I} is an one-state vw-OFA

A=1{x; Z; M.,=Z; X; X}

Hence the orbit language of an IFS is

O(Aa) = L(A) = Z°.

Definition 9
A binary cA [10] is € = {X, B}, where X is a finite or infinity array
and £ is a mapping rule. For one dimensional binary Ca,

Z=w =1{1r1 R, k}.

(1) k = 2 and each site value is specified in the range 0 through k-1. (2)
The site wvalues evolve by iteration of the mapping

- t-1
ai(t) = fR ( ai(—trl)l L. ’ai(+1' )),
and (3)
Re {2, 4, . . . 281}

is the code number for a mapping.

For example, {r, R, k} = {2, 20, 2} means site value = { 0, 1 },
neighborhood size is 2r+1=5, and the CA uses rule 20.

3. CLASSIFICATIONS OF DYNAMICAL SYSTEMS

First of all, a dynamical system is described by a state x ¢ X of the
system, Such a state x is also called a configuration of the system [10].
All such configurations together form a space H(X), called a configuration
space [10]. some dynamical systems only use a subspace of H(X). Secondly,
an evolution of a system in its configuration space is specified by a set
of production rules [10]. Examples of discrete dynamical systems are
cellular automata (CA) [10], and examples of continuous dynamical systems
are iterated function systems (IF$) [{5]. The advantage of CA is that the
mapping rule of a system in its comfiguration space is determined locally
{10}. Therefore, CA can be used to simulate a large variety of natural
phenomena. The advantage of IFS iz that the mapping of a system in its
configuration space is continuous. Therefore, mathematically, IFS can be
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handled easily.

A specification of a dynamical system includes a definition of a
configuration space and a set of rules for motions in the configuration
space [5,10]. Most of dynamical system evolutions are irreversible [10].
An orbit of a system is a trajectory in its configuration space. Orbits
merge with time, and after many time steps, orbits starting all possible
initial confiqguration become concentrated onto "attractors" [5,10}. These
attractors typically contain only a very small fraction of possible
configurations. Evaluation to attractor from an arbitrary initial
configuration allows for pattern recognition behaviors.

Dynamical systems can be classified by its attractors [10]. Wolfram
classified dynamical system into four classes[10]. In this section, we
first define 8 classes of dynamical systems. Then we classify dynamical
systems into 8 classes, from the graph topology of possible orbits of a
system in its configuration space.

Definition: Let D = { G(X); F } be a dynamical system, where X has
infinite elements. A dynamical system D is said to be in

class 1 if it only has a null attractor

Qll:{po};

class 2 if it only has a point attractor

Q, ={p };

class 3 if it has more than one but a finite number of point
attractors

Q, = {p,, Py ... P}

class 4 if it has an infinite number of point attractors;

Q, ={p, Pov «vv v };

class 5 if it has an finite number of cyclic attractors;

g)s = { Qarr Gazr -+ -+ Yak }i

class 6 if it has an infinite number of cyclic attractors;
class 7 if it has at least one regular infinite attractors;
class 8 if it has at least one strange attractors.

For a dynamical system where X is a finite set, then D must be in
class 1, 2, 3, or 5. However, we can extend D=(G(X),F) to D'=(G(X’),F)
where X’ is an infinity set. Then the classification of D and D’ might be
different.

Examples of the class 2 dynamical systems are IFS[{5] and w—-OFA[S].
Examples of the class 3 dynamical systems are asynchronous neural
networks[1l,2]. Many CA and synchronous neural nets are in class 5.

Theorem 1l: A dynamical systems must be in one of the eight classes.



89

This theorem can be proved by the topology of orbits of a dynamical
system in its configquration space. sSince space are limited, the proof of
the above theorem will be omitted. If a gsystem has more than one
attractors, some of them might not be stable. The null attractor and the
single point attractor will always be stable.

Different attractor systems can serve for different purposes. In [4],
we are interested in the single point attractor system, i.e. the second
class of dynamical system because the single point attractor will be used
ag a container for input vectors. Here we interested the third and the
fifth classes for efficient pattern recognition, which is discussed in
detail in the next section.

4. AN EFFICIENT SCHEME FOR PATTERN RECOGNITION

In this section, we first show the current version of neural net might
not be efficient because of its limitation on information capacity. Then
we present our approach. Finally, we compare our approach and the Hopfield
model.

4.1 INFORMATION CAPACITY OF THE HOPFIELD MODEL

We first show that in general, it is impossible to construct a neural
net from a given set of training input pairs. To proof this, consider the
information capacity theorem of Abu-Mostafa and Jagques [3]. The number of
arbitrary configurations that can be made stable in a Hopfield net with N
neurons 1s up Bounded by N [3]. Let a training set of input pairs contain
more than N classes of patterns, then it is simply impossible to infer a
net to recognize all the input vectors. An extended neural net might
escape this limit [l12]. If the storing capacity is O(N), the relative
storing capacity is

o (N)
2N

- 0’ N ~——-v= o

which shows that the Hopfield neural net is not efficient.

4.2 PATTERN RECOGNITION USING CLASS 3 AND 5 DYNAMICAIL SYSTEMS

We now present our approach. Note that both class 3 and class 5
dynamical systemg have a finite number of attractors. Given a pattern,
that is, given an input vector x where the size of x is typically between
one million to one billion, we can treat X as an initial configuration of
a third or a fifth dynamical system. The dynamical system subsequently
evolves to its attractor. Let a system have a finite number K > 1 of
attractors, if the evolution of the dynamical system with the initial
configuration x leads to an attractor py;, where i is in { 1,2,3, ... , K
}, X belongs to the class i. Since the system only has K attractors, all
the possible input vectors are classified into K classes.

The pattern recognition problem using the third and the fifth class
dynamical systems is defined as follows: to devise an adaptive process
such that given a set of pairs of input and output, one finally hopes to
recognize all the input vectors by choosing a proper dynamical system,
that is, by choosing a proper confiquration space together with a mapping
rule. We also call this problem as an inference problem. In a simplest
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approach, the configuration space is determined by the input vectors.
Therefore, the inference problem is to find a mapping rule such that the
inferred dynamical system can recognize all the input vectors. There are
examples where the configuration space are different from the input image
space. we will discuss this in [12].

4.3 A COMPARISON OF OUR APPROACH AND HOPFIELD MODEL

The difference between our approach and the Hopfield model are given
as follows. (1) In the Bopfield approach, the fixed points are the input
patterns used to train the net. In our approach where the third class
dynamical systems are used, the input pattern x; evolves to an attractor
Pki» Where x; and pg; are different. The adaptive process is to train a
dynamical system from a set of input pairs. The trained system will has a
set of attractor {pg;, i=1,2,...,K}. The system with the initial state x;
will lead to the attractor pg;. Therefore, this approach is a
generalization of the Hopfield model. (2) In our approach where the fifth
class dynamical system is used, i.e., cyclic attractors are used, no
similar approach can be found in the Hopfield model. This approach covers
a larger class of dynamical systems. (3) There is no O(N) information
storing limit for our approach. Therefore. it is more powerful and
efficient.

5. CA APPROACH

CA are discrete dynamical systems with simple construction but complex
self-organizing behavior {[10]. They are mathematical models for complex
natural systems containing a large number of simple identical components
with local interaction. This structure is specially favored by massive
parallel computation. CA consist of a lattice of sites, each with a finite
of possible values. The values of the sites evolve synchronously in
discrete time steps according to identical rules. The valne of a
particular site is determined by the previous values of a neighborhood of
sites around it. The hardware implementation of CA constructs a special
type of systolic arrays.

Acan, C={ X, Y}, with a finite X can be in the third or the fifth
class using our definition. Therefore, our ideas can be applied by
choosing CA as dynamical systems. In the following, we first present a
fifth class CA. Then we show how the fifth class dynamical system is used
in pattern recognition. Finally, a comparison of this approach with neural
net is given.

5.1 AN EXAMPLE OF CLASS 5 DYNAMICAL SYSTEM
Let a CA be specified by

iI.x={60,1, 2, ..., N~1 }, N = 100, i.e. we have an one-
dimensional ring CA of size 100;

{ R, r, K} = { 2, 20, 2 }, i.e.

k = 2, i.e. site values can be either 0 or 1;

r =2, i.e. the site value of the i‘th site is determined by the
previous site values of sites i-2,i~-1,i,i+1,i+2, in MOD N;

code number = 20, i.e. if the sum of previous site values of the
sites i-2, i-1, i, i+l and i+2 is 2 or 4, the site value of the
site i is 1. otherwise, it is 0.

2.
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If we omit the translational invariance, repetition, and combinations {
see the explanation below ), this CA has 12 attractor atoms [10]. These
attractors are represented by digital numbers:

Period Minimal configuration in decimal number
1 0 { Null Attractor )

2 151 ( 00...0010010111 )

9R 187 ( 00...0010111011 )

1 189 ( 00...0010111101 )

22 195 ( cvs ve. )

9L 221

1R 635

1L 889

38 125231

4 595703

4 610999

4 624623 (00...0010011000011111101111)

All other attractors can be made in the following ways:

1. A spacial translation of the above attractors. For example, from
the attractor 151, we can generate new attractors 151x2, 151x4:

Period configuration
2 151x2 ( 00...00 100101110 )
2 152x4 ( 00 0 1001011100 )

2. A repetition of a above attractors. For example, from 189 one can
generate a new attractor:

Period configuration
1 198 x( 1 + 2% ) (00...00101111010010111101})

3. A combination of two or more above attractors. For exaqple, from
the attractors 151 and 189, an attractor 189 + 151 X 2'Y% can be
constructed.

This CA has a finite number of attractors, including a few cyclic
attractors. Therefore, it is in the class 5. In the limit where the size
of the CA goes to infinity, it is in class 7, because of the attractor 9R,
9L, 1R, and 1L.

5.2 PATTERN RECOGNITION USING CA

Now we apply our idea by using the above CA as a fifth class dynamical
system. There are total of 2!'°0 . 1 input vector x in H(X). They are
classified according to the attractors. The attractors are labeled by
digital numbers. Given an input vector x, if the evolution of the CA with
the initial input vector x leads to the attractor 151, x belongs to the
class 151. For example,

input vector: x = 00...0010111111000
CA evolution: 00...0010110010100
00...0010010111100
00...0001110111010
00...0010011101010
00...0001000100110
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00...0000010010111 ( 151 )
00...0000001111001
00...0000010010111 ( 151 )

The above input vector x is recognized as in the class 151. The attractor
151 is a cyclic attractor.

5.3 A COMPARISON WITH HOPFIELD MODEL

compared with Artificial Neural Network (ANN), we observe

(1) No theory is valuable to specify the condition under which a CA of
size N is in the third class. The only algorithm for this testing is
enumerative search, which is apparently not very practical for large N.
This is similar to the situation of synchronous ANN.
(2) We have extended the pattern recognition algorithm to include the
fifth class of CA, as seen in the above example. As a result, we expect
the information capacity to be increased.
(3) The information capacity of CA is observed to be O(N), which is not
better than ANN. However the power of CA can be extended easily to
increase its information capacity at a very low cost. The cost to extend
ANN is more expensive. We will discuss these extensions in [12].
(4) There has been no intention to directly construct a CA from a given
set of input pairs, like the outer product construction of ANN. However,
a direct inference of ANN from a given set of input pairs has not been
successful so far. Considering a search algorithm, the parameter space for
CA is much smaller. For one dimensional case, these parameter spaces are
specified by

T=UT

r!

T = {r, R}, Re {2, 4,. . . ,22r1}

r

where r = {1, 2, ... , N/2 } is the neighborhood size, and R is the rule
code. Even the CA is extended to more powerful classes [12], the parameter
space is still relatively small, as compared with ANN. Therefore, the
inference of a cA from a given set of input pairs is much easier than ANN.

6. PIFS APPROACH

An IFS [5] consists of a complete metric space X together with a
mapping rule: X-->X. It has been shown that [5] if the mapping rules are
contractive, a single point attractor system is created. In this paper, we
study piecewise IFS (PIFS).

6.1 AN EXAMPLE OF CLASS 3 DYNAMICAL SYSTEM

In this section, we extend Barnsley’s IFS to piecewise IFS (PIFS). Let
Al = { X1, W1 } and A2 = {X2, W2} be two IFS. Let A = {X,W} be a new PIFS
constructed such that X is the union of X1 and X2 and W is the union of Wl
and W2. Then the IFS A has three attractors: the attractor of Al, the
attractor of A2, and the union of Al attractor and A2 attractor. In
general, if we compose a Piecewise IFS A from L IFS, the PIFS A has 2%-1
attractors. In the following, we will present an example of PIFS to show
how PIFS can be used in pattern recognition.

As an example, let a PIFS be specified as follows

1. X = [0,1], i.e. the configuration space H(X) is the set of all
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compact subsets of X;
2. Let the mapping rule be

w{Y)
w(y)

This system has three attractors {0}, {1} and {0,1}. This PIFS is in the
class 3 since it has a finite number of point attractors.

y/2, y in [D, 0.5);
1 -y/2, y in [0.5, 1].

LI ]

6.2 PATTERN RECOGNITION USING PIFS

In the above example, the PIFS has three attractors which correspond
to three classes of image:

A. { 0 } for all images in [0,0.5);
B. {1} for all images in [0,5, 11;
C. { 0, 1} for all images other than class 1 and class 2.

For simplicity, let the size of input vectors be 30. Let an input vector
be

x = 11111 11111 11110 00000 00000 00000
The subsequent evolution will be

input vector X = 11111 11111 11110 00000 00000 0O0OO
IFS evolution 11111 11000 00000 00000 00000 00000
11110 00000 00000 0000C 00000 00000
11000 00000 00000 00000 00000 00000
10000 00000 00000 00000 00000 00000
( attractor ) 10000 00000 00000 00000 00000 00000

Therefore this input vector x is recognized as in the class A, because the
evolution if the PIFS with initial configuration x hits the attractor {0}.

7. w-ORBIT FINITE AUTOMATA (w-OFA) APPROACH

w~OFA [8,9], proposed by the authors, is a generalization of IFS
which is more powerful than IFS in image generation. An one-state w-OFA is
an IFs. Using a finite automata as control device in an IFS, an w-OFA is
generated. Formally, an ¢~OFA is a 5-tuple, just like a finite automata,
except its alphabet is a set of transformations [9]. Also, only w-strings
[7] are used to define its attractors.

There are images which can not be produced by IFS [9] but can be
produced easily by w~OFA. ©~OFA can be used in pattern recognition in the
same way as IFS. A piecewise @-OFA can be defined in a similar way as the
case of IFS. Therefore, they construct a third class dynamical system and
can be used to implement our idea.

8. CONCLUSION

In conclusion, we have suggested that dynamical systems can be used to
recognize patterns. wWe have shown a powerful and efficient approach for
pattern recognition using class 3 and class 5 dynamical systems, defined
by the authors in this paper. Specially, Wolfram’s CA, Barnsley’s IFS and
w~OFA introduced by authors has been demonstrated in playing this role in
this paper.
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In [12], we will apply the above ideas to four other types of

dynamical systems: LMO and LMl cellular automata, and LMO and LM1 neural
networks. These four type dynamical systems are proposed by the authors.
The inference algorithm for dynamical systems from a set of input pairs
will be presented in the coming papers. A complete different approach
using class 2 dynamical systems will be presented in [4].

10.

11.

12.
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ABSTRACT

This paper is concerned with the integration of sensory data drawn from a
heterogeneous set of sensors. A basic architecture for the sensory subsystem of
an intelligent machine is developed, single modality and multiple modality
sensory information processing are introduced, three levels are identified for
sensory integration (single sensor, multiple sensor and multiple modality) and
the forms of sensory integration required at each level are introduced and
discussed.

1. INTRODUCTION

We are moving slowly but surely towards the age of “multi-sensor” machines. Primitive
versions of such machines have been around for some time. Primitive, that is, when compared
t0 human beings, for they do not possess the full complement of sensors possessed by human
beings, and the sensors they do possess are only a shadow of their human counterparts.
Industrial robots are the typical example. The primitive character of these machines is
reflected in the lack of any detailed theory of sensory systems, or indeed of any systematic
methodology for engineering their sensory mechanisms. Of course, given their primitive
nature, a detailed theoretical understanding is obviously of little importance, and likewise an
engineering methodology. However, as technology moves towards more sophisticated sensory
machines, and as the demand for the correct and efficient engineering of these machine
increases, the need for this theory and methodology becomes both obvious and urgent.

A number of problems need to be addressed when providing machines with a sensory
capability. There is, first, the “selection” problem: the problem of determining the set of
sensors required by a particular machine. The answer to this question will be determined by
the function the machine is to perform and will be explicitly stated in the machine
specification. This paper is concemed with the fact that this specification may include sensors
of many different types (vision, tactile, pressure, force, sound, and others).

A second problem is the “‘strategic” problem: How is the sensory data provided by the sensors
to be used in problem solving? This problem, like the first, is not the direct concern of this
paper. This paper is concemed, rather, with a third problem, the “multi-sensor” problem. This
is the problem of processing the sensory data provided by the multitude of sensors possessed
by the machine, drawing that raw and/or processed sensory data together within and across
many sensors, and transforming it into a form suitable for use by the problem solving
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mechanisms of the machine. In this paper a Sensory Systems Theory is posed as the proper
solution to this problem.

Given that one wishes to configure a machine with a specified complement of sensors, this
theory would indicate:

+ the sensory processing associated with individual sensors,
« how data from across a single sensor (say a vision sensor) is to be integrated

« how data from across a set of sensors of the same type (say two vision sensors) is to be
integrated,

+ how data from different sensor types (say vision and tactile sensors) is to be integrated.

In short, if one defines, for each sensor, an associated sensory information processing
mechanism, forming what one can term “sensor modules,” then this theory will indicate not
only the structure of each module (that is, its algorithms), but also the links that are 0 be
forged when a number of these modules are assembled together to form a complex sensory
system. Vision research to date has focused primarily on sensory information processing
associated with single sensors, or multiple sensors of the same type. In this paper we wish to
focus on the integration of sensory information drawn from sensors of different types.

In the immediately following section, the components of a multi-sensor machine are outlined.
In section 3 a model for the sensory subsystems of these machines is outlined, and the goals of
a Sensory Systems Theory are defined. In section 4 various forms of sensory integration are
introduced and discussed with reference to the human sensory system. Finally, in section §,
research problems which need addressing are presented.

2. SENSORY SUBSYSTEMS

Assume an intelligent machine possessing a non-empty set of heterogeneous sensors. This
machine is to be applied to solve a range of tasks. For cach of these tasks an algorithm is
developed and a corresponding computer program implemented. Each program embodies a
particular behavioural pattern, so the set of programs together embodies the set of behaviours
of the intelligent machine. For example, if there are ten tasks there will be ten programs and,
thercfore, ten behaviours. In the succeeding discussion we will refer to these programs as
“behaviours” or “behavioural programs”.

Assume that each of these programs is independent of every other; in the sense that they do not
share subroutines. Assume also that each program draws on a non-empty subset of the set of
sensors possessed by the machine. In addition, assume that there is no preprocessing of
sensory data prior to its access by each program. This means that each program directly
accesses raw sensory data and embodies all the necessary signal processing required for it to
make use of this raw data. Similarly for effectors with respect to control. This means that each
program acts independently of the others, from the sensors through to the effectors (Fig. 1).

We will investigate this architecture now. What we will find are sensory processing
requirements, at the sensory integration level, which could be provided as a central resource
for these programs. What will emerge is a sensory integration database which can be accessed
by these programs. This database will perform sensory integration continually in response to
changes in the sensory signals. As such it will be continually updated. It is appropriate,
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therefore, to refer to it as a “‘sensory integration engine”. Sensory Systems Theory can then be
seen as the solution to the problem of designing this engine, for it will tell us how this engine
is to be put together.

The process of extricating this sensory integration engine from the architecture developed
above is as follows. We note first of all that extracting useful information from a particular
sensor requires processing algorithms tailored to that sensor. Visual sensory signals, for
example, undergo their own unique processing in the brain, as also do auditory and tactile
sensory signals. We will assume that the precise form of this processing will be determined by
the information sought from the sensor. It will also be assumed that a particular sensor can
supply a number of items of information. The number will vary from sensor to sensor. We will
also assume that for each item of information, one can define an algorithm for extracting that
information from the sensor. Therefore, for each sensor ong can define a set of algorithms for
extracting useful information from that sensor.

Stmuli Sensors Behavioural modules Effectors
visual > program#1 : ———
5
tactile > program#2 g
=
2
auditory _ge.f program#3 ——

Fig. 1. Independent behavioural modules

As indicated above, cach behavioural program will access a subset of the system’s sensors.
Each sensor, therefore, will be a member of a number of these subsets. This means that a
particular item of information may be requested from a particular sensor by a number of
behavioural programs, If these programs embody all their own processing requirements, the
algorithm for extracting an item of information from a particular sensor will be implemented a
number of times. Similarly for other items of information associated with that sensor, and for
other sensors. It makes sense, therefore, to provide this item of information as a central
resource, and to decouple the extraction of useful sensory information from the individual
behavioural programs which require that information. This will eliminate redundancy and
improve efficiency.

This central resource will be a database. However, the information it provides will be extracted
from the raw sensory data. This extraction process will be an integral component of the
resource. Therefore, it is appropriate to refer to this resource as a “database engine”, though
the sense in which “engine” is used here is different to its conventional use in the database
community. A better term is “sensory integration engine”, but we will delay discussion of
sensory integration until the following sections.

This engine may operate in one of two basic modes. In the first, it extracts an item of
information from sensory data only when a behavioural program makes a request for that item
of information. If the computing resources are available, a more efficient mode is to
continually update that item of information as the sensory signal changes. It can then be made
available immediately on request. If many items of information need to be extracted, this
immediate response can only be achieved through some form of parallel architecture. For
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example, each processing element of a parallel processor architecture may be dedicated to
extraction of a single item of information.

We can usefully view this engine in terms of a conventional databasc. First, it will be queried
by behavioural programs for information as and when that information is required by the
program. Second, it will facilitate the development of further behavioural programs, a process
which can be likened to database application software development. Third, developing this
engine for a particular intelligent system, and therefore for a particular set of sensors, can be
likened to the process of data analysis and modelling familiar in conventional database
development.

A Sensory Systems Theory will define the structure of the sensory integration engine
(database) just introduced. It will tell us, that is, how that engine is put together. Since we have
associated a set of algorithms with each sensor, for the extraction of items of information from
the corresponding sensory data, this integration amounts to little more than setting a set of
processing modules (one for each sensor) side by side. “Integration” is the only required at the
interface between the sensor modules and the behavioural programs, and this integration is
trivial.

Behavioural programs may need to call on information, however, which is not direcily
available from individual sensors alone, but which can be derived from the integration of
sensory data from a number of sensors. The form of this integration will be discussed shortly,
but typical elementary examples include the extraction of depth information from a pair of
visual sensors, the extraction of the direction of a sound from a pair of auditory sensors, and
the determination of the direction of a sound measured with respect to visual space.

As before, a dedicated central resource could be made available for extracting this
information. QOur conception of the sensory integration engine presented above would
correspondingly be adapted to accommodate this additional component. Now it is appropriate
to refer to this central resource as a “‘sensory integration engine”. In the modificd conception,
we retain the dynamic database idea, but it no longer consists of independent modules sitting
side by side. Rather, links are forged between the modules to form an integrated structure (Fig.
2). Sensory Systems Theory will tell us where these links are, and how they are to be forged. It
will tell us, that is, how to design a subsystem for sensory integration.

Stimuli Sensors Sensory integration Programs of

module behaviour
visual _»{’_"‘I\
tactile _»_[:‘___’ > Q >

auditory "L_]/ \m©_>

Fig. 2. Integrating sensory systems

Effectors
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3. THREE LEVELS OF INTEGRATION

From the previous section we have identified two levels of sensory information processing: the
single-sensor level and the multi-sensor level. At each of these levels there is some form of
sensory integration. At the single-sensor level, this integration involves gathering together
data from different regions of the sensor {different regions of visual space for example). At the
multi-sensor level it involves integration of data from different sensors, the classic example
again being stereoscopic vision. In the following section these forms of integration will be
discussed in more detail. In the present section we will introduce 2 third level of integration,
which we will call “multi-modality” integration.

The term “multi-sensor” currently refers equally to a pair of visual sensors as to a combination
of a visual sensor and an auditory sensor. However, there is an obvious distinction between
these two cases. While a visual feature will stimulate both visual sensors, assuming the sensors
have overlapping sensitivities and the stimulus falls within this region of overlap [1], a visual
feature, or indeed an auditory feature, will not simultaneously stimulate both a visual sensor
and an auditory sensor. This is due to the visual and auditory sensors being sensitive to
different types of stimuli; electromagnetic radiation and sound, respectively, This in turn
significantly alters the form of integration possible between two visual sensors and between a
visual sensor and an auditory sensor.

To reflect this distinction we in tum distinguish between “multi-sensor” integration and
“multi-modality” integration. Both involve multi-sensor integration. However, the first refers
to sensors responding to the same stimulus type, for example two visual sensors, whereas the
second refers to sensors responding to different stimulus types, for example a visual and an
auditory sensor. The term “modality” is drawn from Physiology where it is used to refer to the
different human sensing systems. Indeed, human beings are multi-modality sensing systems.

It is useful to view the introduction of this third level of integration in the context of specifying
the sensory subsystem of an intelligent machine. Specifically, defining this sensory subsystem
would involve specifying the sensory modalities possessed by the machine and then the
components of each sensory modality. The latter in turn would include reference to the number
of sensors possessed by each modality.

multiple modality

.
single modality

2
L2
3
L
&o
8

multiple sensor

Fig. 3. Three levels of integration

It is apparent now that there are two important aspects to Sensory Systems Theory (Fig. 3).
The first is the single modality aspect, and we sce the objective of such a theory being that of
developing a model for sensory information processing which is not tied to any one sensory
modality, but says something about the processing of sensory information in all modalities.
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This theory will accommodate sensory information processing within single sensors and
across multiple sensors. The second is the multiple modality component, and we see the
objective of such a theory being that of describing the mechanisms by which links can be
forged between a set of sensory modalities to form a unified functional sensing module for an
intelligent machine. In turn, three levels of sensor integration (single-sensor, single-modality
multi-sensor, and multi-modality) need to be tackled by the theory. In the following section the
forms of integration seen at each of these levels will be discussed in more detail.

4. TYPES OF INTEGRATION
4.1 SINGLE-SENSOR INTEGRATION

At the single-sensor level we will distinguish two basic forms of integration (Fig. 4). The first
we will term “lateral integration”, and concems integration of data from different “regions”™ of
the same sensor. These regions may correspond, for example, to different regions of the
electromagnetic spectrum (in the case of vision) or to different regions of the sensory space
(different regions of a one- or two-dimensional visual image). This integration can operate on
raw sensory data or on the products of processed sensory data, such as edge features. Familiar
examples of integration at this level include region growing and edge chaining algorithms [2].
At the highest levels it involves integrating data about individual objects and sub-scenes in the
context of forming an understanding of the complete scene captured by a sensor. The basic
character of this form of integration, following from the examples above, is that of
aggregation, or association, to contrast it with “sensor fusion”, which we will discuss
presently.

lateral integration

=
= =
/

Fig. 4. Single-sensor integration

it

The second form of integration we will term “vertical” integration. It corresponds to the
integration of shading, texture, motion and contour visual modules in the interests of
extracting intrinsic images [3]. The stereo visual module is not included here for it is based on
multiple sensors and is categorised, therefore, under multi-sensor integration. The basic
character of this form of integration is that of “fusion”, in the sense, at least, that visual
components are combined to form a single component which transcends the former, and there
may be mutual modification of each of the former in order to achieve the latter. In the sense of
combining a number of images to form a single image, it is like stereo fusion, but it does not
depend on multiple sensors.
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These two forms of integration, lateral and vertical, fit together in the following way. The
lateral form of integration provides the mechanism by which the shading, texture, motion and
contour visual modules are exiracted from the raw visual image, making them available for
vertical integration.

4.2 MULTI-SENSOR INTEGRATION

One of the characteristic features of single-sensor integration is that multiple images are
produced from the same raw visual image. In consequence, all of these generated images are
in “register” with the original image and with each other. In moving from the single-sensor
level to the multi-sensor level, and indeed to the multi-modality level, this registration is no
longer given, and indeed much of the problem of integration at these levels concerns bringing
images, obtained from different sensors, into registration.

The product of this integration is generally further useful information. The two cases in point
are vision and audition. In stereoscopic vision data from two visual sensors is combined to
give information about the three-dimensional structure of visual space (Fig. 5). This genecrates
the stereo visual module which was mentioned above. In audition, on the other hand,
integration of data from two auditory sensors enables information about the direction of
sounds in space to be generated.

Example: vision

left right input images

Y Y

C feature-based fusion (+ registration) )

Y

single depth
image map

output data

Fig. 5. Multi-sensor integration

While registration is what is to be achieved, the mechanism for achicving that registration
depends on there being a representation of the same feature(s) in the two images
simultaneously. In stereoscopic vision the features are usually taken to be lines and edges.
Finally, the basic character of multi-sensor integration is that of a generator of new, useful,
information. At the same time, though, there is “fusion”, since two separate images combine to
form a single image. Whatever its useful product may be, however, multi-sensor fusion is at
least registration.

4.3 MULTI-MODALITY INTEGRATION

Two forms of integration can be identified at the multi-modality level (Fig. 6). The first is
“spatial integration”. This involves bringing the spaces of the different sensory systems into
register with each other. It is equivalent to the registration seen at the multi-sensor level, but is
between sensors sensitive to different types of sensory stimuli. The exemplar is visual-
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auditory integration. It is characterised, generally, by the lack of a feature-based mechanism
for achieving registration. That is, although the same object may stimulate the visual and
auditory sensors simultaneously (for example a person speaking), the same feature will not be
represented in both senses. Also, multi-modalily integration contrasts with multi-sensor
registration in that the registration is more of a “mapping” than an “alignment” of sensory
ficlds. There are circumstances, however, where this form of multi-modality integration
reduces to multi-sensor integration.

Spatial integration:
visual space mapping auditory space
Associative integration:
visual feature associations | auditory feature
space a—— ! SPACC

Fig. 6. Multi-modality integration

An example is integrating visual and range sensory systems. A ranging sensor produces a two-
dimensional depth map. At the raw image level there is no basis for integrating these sensory
systems, for they do not respond to the same features. This justifies regarding them as distinct
modalities. However, luminance discontinuities in the visual image may correspond to depth
discontinuitics in thc range image. If these discontinuities are extracted from each image
separately, they can then be used to achieve registration, and therefore visual space can be
mapped into range space, and vice versa.

The second form of multi-modality integration we term *‘associative” integration. Associative
integration mediates the high-level transformation of features from one sensory modality to
another, and vice versa. The typical example is hearing a voice and associating it with a face
which is not currently in the visual field, or vice versa. Another cxample is being able to
picture in one’s mind the visual form of an object which is manipulated out of sight. The term
“associative” is used to describe this form of integration because what binds the features
belonging to the different sensory modalities together is their co-occurrence with each other in
the environment (for example, a face associated with a voice).

There is significantly more to associative integration than this example would indicate..
Picturing in the mind's ey¢ an object perceived through tactile manipulation may require
piecing together individual tactile-visual associations to create a picture of an object which,
although encountered tactuaily, may not previously have been encountered visually. In other
words, the transformation may not necessarily depend on a prior association of features
belonging to separate modalities, but should be seen, rather, as a problem solving process.

Also, the association may in certain cases be complex, involving not two sensory modalities,
but a number of sensory modalities. In the example just described, the proprioceptive sensory
modalities are also required, for they provide information about the posture of the hand and
arm manipulating the object, If a three-dimensional visual representation of the object is to be
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achieved, this proprioceptive information needs to be available, needs to integrated with the
tactile sensory modality, and the two used to assemble a visual representation of the object.

In visual-auditory modality integration, another form of transformation across modalities is
also found: the transformation of a symbolic description of an object into a visual
representation. This symbolic description may be obtained through the spoken word (the
auditory sensory modality) or the written symbol (the visual sensory modality). Obviously the
construction of a visual representation from the latter would not seem to involve a modality
other than the visual modality. On the other hand, the written symbols may first be transformed
into their auditory counterparts, and these latter used as the basis for picturing the object
captured by the description, in which case the visual and auditory modalities are involved in a
complex multi-modality integration process (Fig. 7). In general, however, the basic character
of multi-modality integration is one of mapping and association.

associations

visual feature auditory feature
written space space
description . word -> word
o] ViSual >
representation : )
of words auditory
representation
of words
object <- word
object vtk
depiction

Fig. 7. Visualisation via associative integration

Table 1 summarises the types of integration discussed in this section.

TABLE 1. Types of Integration

level of integration type of integration
single sensor lateral
vertical
multiple sensor registration
(feature-based)
(non feature-based)
multiple modality spatial
associative

5. DISCUSSION

In summary, we have proposed a model for the sensory subsystems of intelligent machines,
consisting of three levels of integration: single sensor, multiple sensor, and multiple modality.
We define the objective of a Sensory Systems Theory as that of developing a theoretical
understanding of the integration of sensory information within single sensors, across multiple
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sensors of a single modality, and across multiple modalities. The theory should tell us, first, the
structure of a single sensory modality and, second, how to forge links between a number of
sensory modalities to create a multiple modality sensory subsystem for an intelligent machine.

It should be noted that the sensory subsystem model we have proposed is not a procedural
model. We are not partitioning the sensory subsystem into a single-sensor processing module,
providing inputs to a multi-sensor processing module and this in turn driving a multi-modality
processing module. In many instances this processing model will make sense, but the whole
objective of developing a Sensory Systems Theory is to tell us what the appropriate processing
model for a particular sensory subsystem is. Thus, although we separate the stereo visual
module from the shading and texture visual modules, associating the former with the multi-
sensor level and the latter with the single-sensor level, we by no means imply that the former is
in a processing module further down the line from the latter. On the contrary, indeed, the
extraction of the sterco module begins immediately the visual information enters the visual
cortex of the brain [4].

The basic objectives of a Sensory Systems Theory include developing a generic model for the
integration of data within a single sensory modality. This at first seems an enormous task given
the diversity in sensors found both at the single modality level and across multiple modalities.
On the one hand, for example, the theory would have to cope with a single modality where the
sensors are the same (for example, two human-like visual sensors) or different (for example, a
human-like visual sensor and an infra-red sensor), and with any number of each. On the other
hand, it would have to cope with sensory modalities as diverse as the visual, auditory and
tactile modalities. Nevertheless, the advantages to be gained are cnormous.

One advantage would be the ability to develop generic computer architectures and algorithms
for sensory information processing which could be deployed flexibly in the development of
modality-specific information processing mechanisms, and could accommodate a number of
different sensory modalities within the same architecture. An extension to this architecture to
take account of multiple modality integration would then enable it to be used for the complete
sensory subsystem of an intelligeni machine.

The greatest strain on achieving multi-modality integration within such a generic architecture
will be “spatial” integration; mapping together the *“sensory spaces” of different sensory
modalities. In the case of integrating visual and auditory space this may reduce to simple
geometry. In the case of visual and tactile, however, the form of spatial integration required
may be much more sophisticated. Research, therefore, is required to determine the precise
form of this visual-tactile integration, and indeed to determine the nature of other forms of
spatial integration.

The issue of spatial mapping poses a major research problem, but motivates also a distinction
to be drawn in Sensory Systems Theory between the mechanisms of sensory integration and
the development of those mechanisms. The question raised by the latter is how, in humans or
other animals, the integration of the sensory systems has developed. Multi-modality spatial
integration is particularly interesting since there is no apparent basis for it. For example, the
auditory sensory modality does not respond to visual stimulation, and the visual sensory
modality, in turn, does not respond to auditory stimulation; nevertheless, in human beings the
two sensory spaces are mapped together, such that visual gaze can be oriented to fixate on the
source of an auditory stimulus.
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If there is no basis in the features stimulating the two sensory modalities for integration, we
must look elsewhere. An obvious place to look, though it may not be the only possible solution
to the problem, is evolution. The assumption is that evolution favoured the development of a
visual-auditory spatial mapping. If so, there is an obvious implication for the engineering of
intelligent machines, for it means that these spatial mappings will need to be preprogrammed
prior to the introduction of the machine into its target environment.

A counter to this might be the mapping together of a visual and a range sensory modality,
where edges of different types (luminance and depth) can form the-basis for integration, and
the same mechanism may operate for integration in this case as for integration across two
visual sensors in stereoscopic vision. That is, simple feature-based registration. But this in tumn
raises the issue of the mechanism by which this form of integration develops. That is, how do
corresponding edges in images from different sensors know that they are one and the same.

This distinction is also motivated by the converse requirements of robustness. If a mapping has
been established, and some event then intervenes to disrupt the mapping, it is observed in
humans [5], and it is desirable in machines, that the situation be retricved. This calls for an
adaptive ability on the part of the machine. It may happen that this adaptive ability is the very
same that supports the development of the mapping in the first place. Research is required to
resolve these issues.

A useful paradigm for robustness here is eye-hand coordination. This depends on mapping the
space of arm postures onto visual space. It would appear that the basis for this is partly innate
and partly experiential. In essence, innateness provides a crude mapping which experience fine
tunes. An event which might intervene to disrupt this mapping, for example attaching it to the
hip rather than the shoulder, would give the arm a new placement relative to the visual sensors,
requiring a completely new mapping. Retrieving this disruption would require an adaptive
mechanism which might need facilities above and beyond those for the experiential fine tuning
of the crude innate mapping.

An understanding of both the mechanism of integration and the processes by which those
mechanisms develop is particularly important in the context of engineering intelligent
machines. Its importance lies in establishing a trade-off between the “pre-programming” of
the sensory subsystem prior to its introduction into the environment in which it will operate,
and the subscquent “experiential leaming” required to bring it to its desired level of
performance. From a programming point of view, the objective would be to reduce the amount
of prior programming and, therefore, to leave as much of the development of sensory
integration mechanisms to experience. This in turn puts a major emphasis on developing a
suitable substrate in which this experiential learning can take place.

Taking into account the requirement for robustness, and assuming that this robustness depends
on mechanisms other than those required for the development of sensory integration
mechanisms, three aspects to the problem of developing sensory integration mechanisms for
intelligent machines can be identified: preprogramming, development (training), adaptability
(robustness). To solve these problems a good starting point would be to study human sensory
integration. Here the corresponding issue 10 the relation between preprogramming and
experiential leaming, is the relation between nature and nurture. How much of human
behaviour, that is, is due 10 innate mechanisms and how much is due to experience?

Consider visual-auditory integration as an example. When a child hears a click to the right or
left of its head it orients in such a way as to direct its gaze in the direction of the sound. This is
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an example of the mapping of the auditory and visual spaces together, so that a signal in one
can be located in the space of the other. This orienting behaviour is an innate response
mediated by the Superior Colliculi in the Thalamus of the brain. Neurophysiological
experiments clearly show the mapping together of visnal and auditory stimuli in the Superior
Colliculi [6].

This innate mechanism mediates the development of higher level mechanisms of visual-
auditory spatial integration in the cerebral cortex. In turn, it provides a fall-back mechanism
when the former fails. We can see here, therefore, a trade-off between innate preprogramming
and experiential leaming. Whether this mechanism represents the optimal trade-off between
innateness and experience is another matter, though one would favour an affirmative answer
given the remarkable achievements of evolution in other respects.

This innate versus experiential trade-off can be seen in other facets of development, including
eye-hand coordination mentioned above. A first step to understanding this trade-off and the
mechanisms for achieving both innate preprogramming and experiential learning, would
obviously be, therefore, a study of the corresponding human mechanisms. This is a useful
starting point, therefore, for pursuing a Sensory Systems Theory.

Finally, in this paper we have focused on the sensory subsystem of a multi-sensor machine.
The theory suggested here will be just one component of a more claborate intelligent machine
theory. This more elaborate theory will include details of the representation of knowledge and
skill, the integration of sensory data with effector actions, and ultimately the coordination of
sensors and effectors under the guidance of knowledge and skill. It will tell us how to put
together intelligent machine. As part of that theory, the Sensory Systems Theory will tell us
how to put together one vital component of that machine.
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ABSTRACT

This paper discusses a new approach for solving constrained optimization
problems using nonstandard genetic algorithmo:y. We call this approach: “evo-
lution programming”. We argue that a “natural” representation of a solution
for a given problem plus a family of applicable genetic operators might be quite
useful in the approximation of solutions of constrained optimization problems.
We describe some experiments of using this approach.

1 INTRODUCTION

To solve a nontrivial problem using a genetic algorithm approach we can either trans-
form the problem (it need not be an easy task) into a form appropriate for the genetic
algorithm, or we can transform the genetic algorithm to suit the problem. This paper
represents the latter approach. We discuss applications of nonstandard genetic algorithms
to approximate constrained optimization problems. We depart from classical genetic al-
gorithms which operate on strings of bits: rather, we search for richer data structures and
applicable “genetic” operators for these structures.

The binary alphabet offers the maximum number of schemata per bit of information of
any coding (see [5]) and consequently the bit string representation of solutions has dom-
inated genetic algorithm research. This coding also facilitates theoretical analysis and
allows elegant genetic operators. But the ‘implicit parallelism’ result does not depend on
using bit strings (see [1]) and it may be worthwhile to experiment with richer data struc-
tures and other types of genetic operators. We argue here that these modifications may
be useful when the problem to be solved involves non-trivial constraints that continually
have to be maintained during the genetic operations.

We believe that a promising direction for incorporating constraints for genetic algo-
rithms is with the introduction of richer data structures together with a family of applica-
ble “genetic” operators, which would “hide” the constraints present in the problern. These
richer data structures, with appropriate genetic operators, would constitute an evolution
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program. The structure of an evolution program is identical to the structure of a classical
genetic algorithim. The differences are hidden on the lower level: each chromosome need
not be represented by a bit-string. Moreover, for the recombination process we introduce
“genetic” operators appropriate for the given structure and the given problem.

Three experiments (the transportation problem, the graph drawing problem, and the
traveling salesman problem) based on the proposed methodology are discussed in the
paper. All of these adopt “natural” data structures and specialized “genetic” operators.
The results are more than encouraging. We discuss them in turn.

2 EVOLUTION PROGRAM FOR THE TRANSPORTATION PROBLEM

In this section we describe an optimization problem, known as the transportation problem,
and show how it can be formulated as an evolution program.

2.1 THE TRANSPORTATION PROBLEM

Suppose that a commodity is available at a number of sources and that certain quan-
tities of this commodity are required at a number of destinations. The demand at each
destination may be satisfied from one or more sources. The objective of the transportation
problem is to determine the amount to be shipped from each source to each destination
such that the total transportation cost is minimized.

If the transportation cost on every route is directly proportional to the number of units
transported, we have a linear transportation problem. Otherwise, we have a nonlinear
transportation problem.

Suppose that there are n sources and k destinations, that the amount of supply at
source ¢ is sour(i] and the demand at destination j is dest[j], and that the unit trans-
portation cost between source ¢ and destination j is given as a function f;;.

Let z;; be the amount transported from source ¢ to destination j; then the transporta-
tion problem is to minimize

k
i=1 =1 Jii(45),
subject to the following constraints:

(1) Z;?:l z;; = sourfi],fori=1,...,n
(2) raTi; =destlg], for g =1,...,k
(3) z;>20,fore=1,...,nand j=1,...,k

This, in fact, is the balanced transportation problem, due to equalities in (1) and (2).
If all the sour[i]’s and dest[j]’s are integer, any optimal solution to a balanced linear
transportation problem is an integer solution, i.e. all z;; (1 < ¢ < n,1 < ¢ < k) are
integers. Moreover, it can be shown that the number of non-zero values among the z;;’s
is at most k 4+ n — 1. However, it is not the case for a nonlinear transportation problem,
where 2;;’s need not be integers and the number of non-zero elements may be arbitrary.
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2.2 FORMULATING THE TRANSPORTATION PROBLEM AS AN
EVOLUTION PROGRAM

In order to build an evolution program for the transportation problem, we need to
find a representation for candidate solutions and create appropriate genetic operators for
this representation.

It seems that for the transportation problem a matrix representation is clearly the
most natural one — after all, this is how it is presented and solved by hand. So let us
assume a matrix V = (v;;) (1 <7 < k,1 £ j < n) represents a possible solution to the
transportation problem.

There is a large group of possible “genetic” operators we can apply to matrices. Differ-
ent operators may be selected for linear and nonlinear cases of the transportation problem.
Let us consider these two cases separately.

2.2.1 Linear Transportation Problem

We search for a solution expressed as a table of nonnegative integers. Because of
nontrivial constraints, we can create the following “genetic operators”:

e mutation: this operator would select part of a matrix, find mariginal sums, erase
all entries in the selected part, and place some random integers for all entries such
that the new numbers satisfy constraints for mariginal sums.

e arithmetical-crossover: this operator would create a matrix which is an arith-
metical average of two parent matrices. Additionally, the resulting matrix (which
need not contain only integers) is rounded in a special way to preserve all mariginal
constraints.

We have built an evolution program for solving the linear transportation problem
using a matrix structure and the above operators {17]. A number of examples from the
transportation problem chapters of textbooks in Operations Research were chosen as
the base set of problems. They were supplemented by a number of other examples with
randomly generated unit costs, supply values, and demands. For the purpose of evaluation
of the evolution program, each example was first solved using a standard transportation
algorithm so that the optimum value was known for later comparison. Since the optimum
transportation plan in the linear case can be determined easily, we have selected the
percent above optimum in 100 generations as an evaluation of the “goodness” of our
approach . In all cases, this number was below 2%.

For a further discussion on the linear transportation problem and possibilities of ap-
plying classical genetic algorithms to this problem, see [17].



2.2.2 Nonlinear Transportation Problems

We have investigated the effectiveness of our approach dealing with nonlinear trans-
portation problems. This leads to further opportunities in selecting genetic operators.
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We have created the following “genetic operators”:

o mutation-1: this operator would select part of a matrix, find mariginal sums, erase
all entries in the selected part, and place some random integers for all entries such
that the new numbers satisfy constraints for mariginal sums. At the same time, this
operator attempts to introduce as many zero entires into the matrix as possible.

¢ mutation-2: this operator is identical to the previous one except it avoids choosing

zero entries by selecting values from a range.

e arithmetical crossover: this operator is simpler than its counterpart for integer
numbers. Two matrices V; and V3 would produce two offspring, W; and W, such
that Wy = ¢y - Vi +¢a- Vo, and Wy = ¢ - Vi +¢; - V2, where ¢; and ¢; are any positive
reals such that ¢; 4+ ¢; = 1. Note that this operator would preserve the constraints

(sums for rows and columns).

The experimental application of this approach for solving nonlinear transportation
problems is more than encouraging. We compared the results obtained using a commercial
system, GAMS (see [2]), with our evolution program (called GENETIC-2) on six nonlinear
cases (nonlinear functions A — F). For a full discussion on the selection and classification

of these functions, see [12].

A typical comparison of the optima between GENETIC-2 (averaged over 5 seeds) and
GAMS for all six functions is shown in the table below.

Function

GAMS GENETIC-2 % difference

Sl olwleiesieg

281.0
180.8
4402.0
408.4
145.1
1200.8

202.0
163.0
4556.2
391.1
79.2
201.9

—28.1%
—9.8%
+3.5%
—4.2%

—45.4%

—~83.2%
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3 EVOLUTION PROGRAM FOR THE GRAPH DRAWING PROBLEM

In this section we describe the graph drawing problem and show how it can be formu-
lated as an evolution program.

3.1 THE GRAPH DRAWING PROBLEM

The graph drawing problem (see [4]) is the determination of an algorithm for drawing
pictorial diagrams of a directed graph which is easy to understand and remember. A large
number of algorithms have been proposed for drawing graphs. The kinds of algorithms
used, and their costs, vary according to the class of graph for which they are intended
(e.g. trees, planar graphs, hierarchical graphs or general undirected graphs), the aesthetic
criteria they consider, and the methods they use for optimizing the layout. In most cases,
finding optimal layouts for large graphs is prohibitively expensive, so a number of heuristic
methods have been investigated that find approximate solutions in a reasonable amount
of time. A good discussion of the problem of drawing graphs, aesthetic criteria that have
been considered, and various methods that have been proposed is given in [16]. A more
extensive bibliography is given in [4].

The aesthetic criteria (for ease in understanding and remembering) can be viewed as
goals of the optimization problem and include:

C1: Arcs pointing upward should be avoided,
Cy: Nodes should be distributed evenly over the page,

C5: There should be as few arc crossings as possible.

3.2 FORMULATING THE GRAPH DRAWING PROBLEM AS AN
EVOLUTION PROGRAM

The representation of a solution for the graph drawing problem counsists of a 2 x N
matrix which stores the row and column coordinates of each node on a page (N is the
total number of nodes). Figure 1(a) give an example of 18 nodes graph and Figure 2
provides its genetic representation.

The evaluation of each chromosome M is based on three aesthetic criteria discussed
earlier and is expressed as:

Eval(M) = ag-ng(M) — a. - n (M) + a; - ni(M)

where a4, a., and ¢; represent the weights associated with arcs pointing down, arcs cross-
ing, and nodes that lie on the same level; ny(M) and n (M) denote the numbers of such
arcs; n;(M) denote the number of nodes that lie on the same level.. The horizontal arcs
are handled the same as arcs that point upward.

The “genetic” operators used in the system were:
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Figure 1: Diagram of graph G (a); output from evolution program for the same graph

(b).

node 1 {2 {3 14 |5 |6 (7 (8 |9 |10[11 {1213 114]15]|16] 1718
oW 1 12 {3 [3 |5 |6 |4 |4 [3 141213 [41}5 (3 ]2 ]5]3
col S 12171516 |6 [4 |6 |1 |8 |5 |3 [10]13 |9 |8 |4 |5

Figure 2: Genetic representation of diagram of graph G.

¢ standard mutation: this operator changes randomly a node’s coordinate: either
row or column.

¢ smart mutation: this operator attempts to use problem specific knowledge to
mutate a chromosome. It focuses on getting all arcs pointing down by moving
nodes without parents up, and positioning child nodes below their parents.

® crossover: this operator takes a random number of nodes from the first parent and
remaining nodes from the other parent. If the row and column of a node from the
second parent is already represented in nodes from the first parent, then the node
is randomly assigned.

The results are quite interesting: Figure 1(b) provides the shape of the best chromo-
some after 200 generations for graph G. This graph has no arcs pointing up or horizontal,
one arc that crosses another, and 11 of 13 siblings are on the correct level.

Two other “evolution programs” (one of these uses a r x ¢ matrix for its chromosomes,
where r and ¢ are the number of rows and columns available on the output page; both
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programs use different “genetic operators”) for the graph drawing problem are described

in [8].

4 EVOLUTION PROGRAM FOR TRAVELING SALESPERSON
PROBLEM

In this section we describe the traveling salesman problem and show how it can be
formulated as an evolution program.

4.1 THE TRAVELING SALESMAN PROBLEM

The statement of the TSP is simple: a traveling salesman must visit every city in
his teritory exactly once and then return to the starting point; given the cost of travel
between all pairs of cities, how should he plan his itinerary so that the total cost of his
entire tour is minimum?

4.2 FORMULATING THE TRAVELING SALESMAN PROBLEM AS AN
EVOLUTION PROGRAM

The representation of a solution for TSP is a two-dimensional binary matrix V = (z;;).
If the tour goes from the city ¢ directly to the city j, then z;; = 1, othewise z;; = 0. This
means that there is only one nonzero entry for each row and each column in the matrix
(for each city ¢ there is exactly cne city visited prior to ¢, and exactly one city visited
next to ¢). For example, a chromosome in Figure 3(a) represents a tour that visits the
cities (1, 2, 4, 3, 8, 6, 5, 7) in this order. Note also that this representation avoids the
problem of specifying the starting city, i.e. the Figure 3(a) represents also tours (2, 4, 3,
8,6,5,7,1),(4,3,8,6,5,7,1,2), etc.

| [lr]2[3]4]5]6]|7]8] | [r]2][3]4]5]|6]|7]8]
10[1{0}0]010({01]0 110(1101010101010
201010(0(1)10]0(010 20101{0({04}111010]0¢10
3H010(0(0J0107011 3101010101010 101]1
4001011 ]10[010(0[O 40010010} 1j0]01]0
sH10101(0j0]0(0O]|1]O 5100100 ]0{01110
610]l0]0J0(1([0Oj0!0 6100111010010 0
74110({0{0|0|0O|O0O!O 7411010 (0{0(01010
S8H0(10{0}10(0]1]01(0 81010§01010:1101]60
@) ®)

Figure 3: Binary Matrix Chromosomes

It is interesting to note, that each complete tour is represented as a binary matrix with
only one bit in each row and one bit in each column set to one; however, not every matrix
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with these properties would represent a single tour. Binary matrix chromosomes may
represent multiple sub-tours: each sub-tour will eventually loop back onto itself, without
connecting to any other sub-tour in the chromosome. For example, the chromosome from
Figure 3(b) represents two subtours

(1,2,4,5,7) and (3, 8, 6).

We decided to allow sub-tours in the hope that natural clustering would take place. After
the NGA algorithm had terminated, the best chromosome would be reduced to a single
tour by successively combining pairs of sub-tours using a deterministic algorithm. Sub-
tours of one city (a tour leaving a city to travel right back to itself) having a distance
cost of zero would make no sense and were not allowed. We arbitrarily set a lower limit of
three cities in a sub-tour, in an attempt to prevent the GA from reducing a TSP problem
to a large number of sub-tours each with very few cities.

To demonstrate the significance of this representation, and of allowing subtours to
exist within chromosomes, the example in Figure 4 was devised. Figure 4(a) depicts the
subtours resulting from a sample run of the algorithm on a number of cities intentionally
placed in clusters. As expected, the algorithm developed isolated subtours. Figure 4(b)
depicts the tour after the subtours have been combined.
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Separate subtours (a) and the final tour (b)
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The “genetic” operators used in the system were:

e mutation: this operator takes a chromosome, randomly selects several rows and
columns in that chromosome, removes the set bits in the intersections of those rows
and columns, and randomly replaces them (in possibly a different configuration).

e crossover: the crossover operator begins with a child chromosome that has all bits
reset (zero). The operator first examines the two parent chromosomes, and when
it discovers the same bit (identical row and column) set in both parents, it sets
a corresponding bit in the child. The operator then alternately copies one set bit
from each parent, until no bits exist in either parent which may be copied without
violating the basic restrictions of chromosome construction. Finally, if any rows in
the child chromosome still do not contain a set bit, the chromosome will be filled
in randomly. As the crossover traditionally produces two child chromosomes, the
operator is executed a second time with the parent chromosomes transposed.

In an attempt to evaluate the results of our algorithm, we used an empirical formula
for the expected length of L* of a minimal TSP tour:

L* = KVvN-R,

where N is the number of cities, R is the area of the square box within which the cities
were randomly placed, and K is an empirical constant of approximately 0.765. The square
box to contain the random cities was selected to be 13.071895 units per side. This resulted
in an L* of 100.00.

Typical results from the algorithm, as applied to 100 cities randomly placed, are
displayed in Figure 5(a), where the resultant chromosome contained 12 subtours, with a
combined cost of 108.3. After the subtours were combined into a single tour, the cost of
the entire tour was 112.9 (Figure 5(b)).

The early results are promising, since they are only slightly worse than those reported
in [7], where 20,000 generations were used (twice as much). (For more details the reader
is referred to [15]). Additionally, the proposed method leaves some room for further
improvements. Firstly, our deterministic algorithin for combining several sub-tours into a
single tour is far from perfect (see, for example, crossing lines on Figure 5(b): these can
be easily removed rearranging the sequence of nodes to be visited). Secondly, there are
other “genetic” operators on binary matrices, which may be even better than the current
ones for the TSP. Currently, we explore this possibility further.

CONCLUSIONS

We plan to build evolution systems for different problems, using different structures
and different operators. Later, all systems would be combined in a single software product
suitable for various types of optimization. The only responsibility of a user (apart from
supplying the evaluation function) would be to select an appropriate data structure and
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Figure 5: The best chromosome (a) and the final tour (b)

meaningful genetic operators, the latter selected from a library provided for each data
structure.

It is too early to give convincing evidence of the soundness of the proposed approach;
however, the first results are very encouraging. Additionally, it secems that that a “nat-
ural” representation of a solution for a given problem plus a family of applicable genetic
operators might be more efficient in solving some constrained optimization problems
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ABSTRACT

This paper describes a Computer Aided Knowledge Engineering (CAKE) tool that
embodies a development methodology specially suited for the construction of
knowledge based systems. The computer based tool also includes a library of
predefined problem solving models called G-TECS (Generic Techniques). Categories
of G-TECS are defined as classes and are organized in hierarchies. The inheritance
and instanciation mechanism substantially ease the generation of specific applications,
Reusability of predefined models is supported at a broad level.

1. INTRODUCTION
THE NEED FOR COMPUTER AIDED KNOWLEDGE ENGINEERING TOOLS

Knowledge-based systems (KBSs) are, despite the myths and hypes which accompanied their
early stages, information processing systems (IPS). It is true that there are significant differences
between implementation techniques used for constructing KBSs and traditional IPSs. However, the
great deal of experience gained in the field of information system development is still valid and
very useful.

Developers of knowledge-based systems must profit from the years of experience in
developing IPSs. Therefore, it must be realized that a well defined development methodology is vital
for the successful construction of a knowledge-based system as it is the case for any commercial
software system. It can also be gathered from the IPS experience that there are substantial benefits
to be derived from embodying a development methodology into a computer-based tool or Computer
Aided Knowledge Engineering (CAKE) tool.

Based on our experience building numerous commercial KBSs we propose a development
methodology specially suited for the construction of this type of software systems. This methodology
has been embodied in a computer-based tool which supports knowledge engineers from the
knowledge acquisition phase down to the design of the system. The tool allows for the generation of
operational code as soon as any subset of the KBS's design has been completed. The architecture of
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the KBSs produced by the tool reflects the principles of the underling development methodology.
These principles emphasize highly parallel and modular architectures.

The software engineering community has taught us through the Object-Oriented Approaches
the importance of reusability; that is, the possibility of using and adapting off the shelves
subsystems. Researchers in the Al community have tackle the problem of providing predefined
problem-solving modules: for instance, Chandrasekaran's group work on generic tasks, and the
KADS project. We have tried to reconcile the views of generic tasks and the KADS project together
with an object oriented approach. The main objective is to provide designers of expert systems with
predefined problem solving models. These models are made available in our CAKE tool to the
knowledge engineer through out the design process. Our efforts have been concentrated in providing
hierarchies of "canned” generic problem solving models, which we call G-TECS for generic
techniques.

2. METHODOLOGICAL APPROACHES TO THE DEVELOPMENT OF
KNOWLEDGE-BASED SYSTEMS

There are a number of lessons that the developers of KBSs have learned from the
construction of successful and unsuccessful systems. The use of ad-hoc techniques, trial-and-error
procedures, and rapid prototyping not based on sound models resulted in some disasters. These
experiences have demonstrated that the construction of knowledge-based systems must be guided by
a strict development methodology specially tailored for this kind of software systems. Methodologies
for the construction of conventional IPS appear to be lacking some essential features required to
support the development of KBSs. We believe that this is mainly due to the fact that these
methodologies are mostly concerned with data modeling and functional decomposition. Moreover,
these methodologies do not support activities such as knowledge modeling and knowledge
processing. Therefore, no assistance is provided for tasks such as knowledge elicitation and
knowledge structuring, which are essential in the construction of KBSs. This problem has been
recognized by researchers in the area and some development methodologies have been proposed (14),
3), (4), (5), (6), and (1), (2), (8) A comparison between the main features of some of these
approaches and ours will be presented in section 6.

The methodology we have developed is called the Agent/Concept methodology (AC) (9).
This methodology has been embedded in a computer based tool called EMA for Executable
Methodology for the development of knowledge-based Applications (12) and (13) due to the fact
that the AC methodology is fully contained in EMA, we use the name EMA to refer to both, the
methodology and the tool. EMA supports the acquisition of knowledge, the design and construction
of knowledge-based applications as well as the automatic generation of executable code. It is
important to notice that the applications generated by EMA reflect the underlying principles and
paradigms upon which the methodology is based.

Another important aspect of EMA is the use of a predefined library of problem solving
models. These problem solving models are available to the designer of KBSs through out the
developing process. This will be described in detail in section 5. EMA has so far been used to
develop several banking KBSs and the results obtained have been very encouraging.
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3. THE KXNOWLEDGE MODEL

The knowledge model is a representation of a set of actions and concepts necessary to
perform some task in a certain domain. The knowledge model organizes these activities and concepts
by identifying the dependencies between activities and concepts, and by recognizing the
relationships among concepts. The building blocks of the knowledge model are concepts, agents, and
events. Concepts and their relationships are organized in structures, which form the Information
Structure. Agents are organized in global views and their internal functioning is described in local
views.

3.1 CONCEPTS / INFORMATION STRUCTURES.

Concepts are used to model the static knowledge needed to accomplish a specific task.
Concepts can represent classes of abstract objects such as a loan, a client, or a car. These are
referred .to as object-types. Concepts can also be used to refer to specific information regarding the
attributes of an object-type such as the amount of a loan, the name of a client, or the colour of a
car.

Concepts are related by relationships, the methodology distinguishes between two main
classes of relationships :

a) Universal Relationships : They express relations between concepts which are permanently
valid. More specifically, all the instances of the concept appearing in such a relationship must
satisfy the relationship. Generalisation and Aggregation relationships belong to this class. For
example, imagine a system distinguishes between two types of loans, namely commercial and
personal, In this system, every instance of a loan must belong to either type of loan.

Generalisation (is_a / a_kind_of) : This relationship is used to express the idea that
one concept could be used to describe a set of concepts with similar characteristics (subclass/class
relationships). For example "a car is_a vehicle” or "A truck is_a vehicle",

Aggregation (is_part_of): Used to describe the fact that a concept can be made up

of other concepts. For example, "A wheel is_part_of a car” and "an engine is_part_of a car".
b) Existential Relationships : They express relationships between instances of concepts

which may (temporarily) apply. The Association-Relation belongs to this class,

Association-Relations : This is the same kind of relationship used in the Entity
Relationship data models. It is used to express a special kind of relation between concepts. For
instance, "a client owns a vehicle” this statement expresses the relationship owns between the
instance of the concept client and the instance of the concept vehicle. Notice that this relationship is
of the class of existential relationships since a client might or might not own a car.

The collection of all the modelled concepts and their relationships form the Information
Structure. The information structure represents a map of all the static knowledge that a system
contains.

As it was mentioned above, concepts represent object-types, the instances of these object-
types are called objects. For example, in an application dealing with the scheduling of inter-banking
money transfer we would find a concept like "Message 001 from Banque Cantonale Vaudoise to
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Swiss Bank Corp.". This is an object which is an instance of the object-type "message". The simplest
form of information in the methodology is called information-unit (info-unit). Info-units are made
up of an object, one of its attributes and the value of this attribute. For example, "The amount of
message 001 from Banque Cantonale Vaudoise to Swiss Bank Corp. is of Sfr. 15,000,000" which
implies that the attribute amount of the object message 001 has the value Sfr. 15,000,000. A
generalisation of an information-unit is called an information-type (info-type). For example, every
message has an amount. A set of info-units of the same info-type is called an information-set
(info-set).

3.2 AGENTS

Info-sets are related among themselves by dependency relationships. This type of
relationship indicates the logical dependency between one dependent info-set and one or more
causal info-sets. This dependency makes explicit the infosets necessary to produce a specific info-
set and also describes the specific conditions that have to be satisfied for this to take place. This
type of dependency relationship determines an agent. Agents are the active elements in the
methodology. They describe the processing required to produce a dependent info-set. This
processing requires different types of knowledge, namely : 1) Activation Knowledge, 2) Input
Knowledge, 3) Constraint Knowledge, 4) Processing Context, §) Functional Knowledge.

It is important to notice that agents are self-contained, they possess all the knowledge to
control themselves and to process the info-sets that are sent to them. Agents do not "know" about
the existence of other agents. The only communication among agents takes place through info-sets.
Figure 1.0 shows how communication among agents takes via a blackboard (15).

i /m]'o\ | /‘Agents
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VAR Ui

Figure 1.0 Implementation of the blackboard paradigm in the methodology.

This principle permits the systems developed with the methodology to be extremely flexible.
Agents can be implemented using very distinct technologies (rule-programming, object-oriented
programming, procedural programming, etc). Agents can be modified or replaced without affecting
the activities of other agents.
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3.3 EVENTS

An event is information or stimulus coming from the environment that surrounds an
application. They represent external request for processing or external submission of information to
the system. Events can be information coming from the user (user-interface events), or information
coming from other application, or information coming directly from the domain (such as input
coming from real-time sensors).

As it can be seen events are used to model the interaction of a system with the external
world. The interaction includes dialogue with the user, query requests to DBs or messages coming to
the system from external instrumentation.

3.4 VIEWS OF THE KNOWLEDGE MODEL

The role of a knowledge model’s Agent and Information Views is to represent the system’s
behaviour and the knowledge structures used to produce this conduct. The views also serve as an
intellectual map of an application. They put in evidence the relationships among concepts, as well as
the behaviour of the application at the macro and micro level.

3.4.1 Agent Views

Agent views are divided into global and local view. The first presents a view of a system at
a macro-level and the second presents a view of an application at a micro-level.

3.4.2 Information View

The information view is a representation of the information structure i.e describes all the
system’s concepts and all the relationships that link them. This view provides a map of all the static
knowledge contained in the system.

4, A CAKE TOOL : EMA

The main goal of EMA is to support the design and development of knowledge-based
systems through the use of a computer based tool. EMA encompasses the knowledge about the
methodology, and as it was stated before, its final objective is to automatically generate
knowledge-based applications with architectures that are akin to the principles and paradigms of the
methodology. This implies that users of EMA are guided towards the construction of a systems
consisting of autonomous but cooperating agents that react to stimuli.

EMA is made up of several components such as interactive graphical editors a repository, a
set of guide-lines that facilitate consistency checking and an automatic generator of executable code.
A knowledge engineer can use EMA to build the three different aspects of an application’s
knowledge model (information view and agents global and local views) by using the different
specialized interactive graphical editors. The knowledge engineer is also supported by having at his
disposal a library of predefined problem solving models. The user can select a specific model and
tatlor it to the application that he is currently implementing.
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During the construction of the knowledge model some verifications are performed and
warnings regarding possible inconsistencies are generated. Currently the code generator of EMA
produces a skeleton of the final code, therefore this has to be manually completed through the use
of a conventional editor in order to obtain a complete executable KBS.

EMA manages all the information about the application under development with the help of
a repository containing all the concepts, information structures and agents views (global and local).
At any given time a graphical navigator system allows the user to browse and inspect all the
available relationships and a hypertext like feature allows the user to focus on a specific aspect of
the application under development.

The applications generated by EMA are based on a multiagent model. This model emphasizes
a highly parallel and modular organization of the components of the computer application, and it
also distributes the interaction mechanisms among a set of cooperating units. Beside the modularity
aspect, parallelism and distribution are interesting features for supporting interactive design without
loosing the objective of global systems thinking- and for implementing physically distributed
applications (workstation/host cooperation is the first step towards distributed processing). This is
one of our current areas of research.

EMA has been successfully used to design and develop several user-centered banking
applications. Some of the systems already deployed include; Fundamental Corporate Analysis
(evaluation of corporations), Credit Assessment Support System for Small and Medium Size
Commercial Customers, and a system for the Assessment of Personal Loan Applications.

5. G-TECs (GENERIC TECHNIQUE).

5.1 MOTIVATIONS

The main motivation behind the idea of providing a generic description of problem solving
at a high level of abstraction is to furnish knowledge engineers with predefined problem solving
models that can be reused in the implementation of different systems. Therefore, the knowledge
engineer can be supported from knowledge acquisition all through the actual construction of a KBS.
The intent of this being that one should avoid reinventing the wheel every time one develops a new
knowledge-based system. This sounds like a moral that object-oriented practitioners have been
preaching to the software engineering community for a long time. We believe that the KBS field has
matured enough such that we can provide libraries of problem solving models that knowledge
engineers have compiled (implicitly and even explicitly sometimes) through the experienced
acquired in the development of KBS.

There are multiple problems associated with the creation of any sort of library. First, the
problem of what to classify must be solved. And second, a classification system must be devised.
The classification of a set of problem solving models evidently involves these two problems. First,
we must determine the granularity of the problem solving models. That is, with what level of detail
we want to express a generic problem solving model. Second, once the granularity of the problem
solving models has been determined, we must figure a way to classify these models. We must
remembered that for knowledge engineer to be able to navigate through a library of problem solving
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models, we must devise an organization scheme that is as natural as possible to the user of the
library.

5.2 DESCRIPTION

The G-TECs approach consists in providing a library of problem solving models. This has
some similarities to what is refer to as interpretation models in the KADS project, and what is
called Generic Tasks by Chandrasekaran’s group. The differences between our approach an the two
mention above will be presented in section 5.

In order to be able to define the G-TEC’s approach we must present our conception of what
problem solving entitles.

The input of the problem solving process is the structure of the information that describes a
problem. The processing is done by a set (one or many) of problem solving techniques. The output
of the process is the information structure of a solution te a problem. For instance, we can imagine
the problem of assessing the financial position of a company. The input to the problem solving
process would be the structure of the financial information of the company (a hierarchical
description of all the assets and liabilities of the company). The output of the process would be the
judgment of the financial position of each of the areas of the company structured in some
hierarchical fashion. The techniques to achieve the financial assessment of the company can vary,
but they must include : a way to describe what to evaluate; and a way to describe how to evaluate
it. Notice that these requirements are derived from the structure of the problem and the structure of
the solution.

This very simple description of the problem solving process allows us to define and classify
a set of problem solving frameworks that we have named G-TECs for Generic Techniques. It is
intuitive that one can achieve a solution to a problem using many different techniques. And that a
solution to a problem is linked to at least one specific technique. Based on these ideas we define
two concepts for studying problem solving. The first concept is Technical G-TEC. For instance,
optimization techniques such as simulated annealing, or search methods such as depth-first.
Technical G-TEC are independent of the domain of application. The type of solution that Technical
G-TECs provide and the way in which this solution is achieved is very well defined (algorithmic
form). The second concept that we need to define is Problem Specific G-TEC. A Problem Specific
G-TEC is a combination of the information structure of the solution to a problem and the specific
technique used to produce the solution. The following are examples or Problem Specific G-TECs :
Predicted Behaviour, Judgment, Diagnose, Plan, Design, Configuration. In EMA, G-TECs are seen
as any other KBS, therefore, they are described via agents and information structures. That is , the
information described corresponds tc the value of attributes, the kind of general information
structure it operates on and the type of actions that are allowed to be executed by the corresponding
agents.

The example that it was presented above regarding the evaluation of the financial position of
a company can be described with the G-TEC "Judgement”. This type of G-TEC is characterised by
the fact that the information described can be decomposed in hierarchies, and that partial
evaluations are performed on the substructures of the hierarchies. Results are then combined to
arrive to a final judgement, It is important to notice that the combination of the partial results is
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done in an "intelligent manner" derived from the knowledge of experts in the domain. This specific
knowledge would obviously vary for different domains.

6. COMPARISON BETWEEN G-TECS AND THE APPROACHES OF CHANDRASEKARAN AND
THE KADS PROJECT.

We have selected to compare our approach and the one taken by the KADS project and
Chandrasekaran’s group (Generic Tasks or GT) because we are fairly familiar with them and also
because they represent two main streams in the modeling of knowlédge-based systems. There are
some other approaches that are also very interesting, but for the sake of limiting the size of the
paper, we have not included them

The comparison will present the differences between our approach, and GTs and KADS. In
order to make the comparison as neutral and as comprehensive as possible we have selected (10) as a
basis. Karbach’s article presents the comparison of four approaches for the modeling of KBS. This
comparison is based on three main hypothesis: 1) It is useful to describe problem solving at an
abstract level; 2) Models of problem solving can be specified in a problem specific, but application
independent manner; 3) Models should guide the knowledge acquisition process and aid in the
structuring of the knowledge base.

6.1 HYPOTHESIS 1 : It is useful to describe problem solving on a wmore adequate, abstract level
than that offered by general purpose knowledge representation languages.

We believe that GT and KADS provide descriptions of problem solving methods at a level of
abstraction that satisfies the requirements expressed by hypothesis number one. The difficulty that
we encounter is that once the abstraction of a real world problem has been done and once that this
abstraction has been modelled, eventually an operational system must be produced, we have called
this the abstraction-modeling-working problem. The approach taken by GT allows a knowledge
engineer to achieve this goal by means of specialised environments that produce werking systems.
KADS, on the other hand, provides a set of interpretation models and also a language for the
definition of new model. Nevertheless, KADS does not provide concrete problem solving techniques
for the models that makes available to the KE.

GT solves the abstraction-modeling-working system problem in a way that we believe is not
very efficient. GT's solution is not very efficient since a knowledge engineer is forced to learn each
of the different environments that have been defined for each specific problem domain. In the
assumption that a KE can become proficient in all these environments, he is then confronted with
the problem of making all these environments communicate with each other which could be a minor
problem compared with the challenge of having to integrate them into a large scale information
processing system. From the software engineering point of view we believe that this process is
cumbersome. KADS provides a very elaborated solution for the problem of abstracting-modeling,
but it does not provide much support for the actual generation of working systems.

The approach that we have taken aims to solve the abstraction-modeling-working system by
providing hierarchies of predefined G-TECS. G-TECS can be used or described at any level of
abstraction along the hierarchy. The higher one moves on the hierarchy the more abstract the G-
TEC becomes, and the lower one goes the more detail the G-TEC becomes (down to the
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implementation level). The hierarchies of G-TECS are contained in EMA such that the automatic
generation of working knowledge-based system can be supported. Figure 2.0 show a schematic
representation of the abstraction and implementation mechanisms of G-TECs.
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Figure 2.0 Abstraction and Implementation of G-TECS

6.2 HYPOTHESIS 2 : Models of problem solving can be specified in a problem specific, but
application independent manner.

It is clear that problem solving models should be described for specific problems, but this
should be independent of the instance of the problem being solved. There are substantial rewards on
providing a knowledge engineer with a library of predefined problem solving models. On the other
hand, it is extremely difficult if not impossible to provide a library of these methods that can
satisfy the needs of every single knowledge :engineer, This lead us to the requirement of providing a
formal way of describing new models. The need for formality comes from the requirement of :
combining the newly defined model with the old ones; and from the implicit requirement that the
eventual automatic generation of systems must be accomplished. Both of the approaches that we
have compared G-TECS with satisfy the requirements stated above in a partial manner and using
different approaches.

The GT approach, provides a set of predefined problem solving models. This models have to
be filled in with the actual data corresponding to the problem being modelled. Once the knowledge
engineer has done this, these problem solving models are able to generate operational systems. As it
can be seen this approach partially satisfy the requiremenis expressed above. Nevertheless, it does
not satisfy the very important requirement of providing a formal manner of defining new problem
solving models. This condition is essential since as it can be imagine knowledge engineer are very
likely to be confronted with problems that require a model that has not being pre-defined.
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KADS provides a set of predefined problem solving models (interpretation models). It also
furnishes a formal language for defining new problem solving models. This language is very general
and operates at a high-level of abstraction. This is a desirable quality since this provides high
flexibility one can define new problem solving methods with a considerable ease. On the other
hand, the high abstraction of the language implies in this case, a great difficulty in expressing the
actual functioning of a newly defined model. This in turn, implies a tremendous difficulty for
automatically generating an operational system.

The situation that we have described above it must sound extremely paradoxical. On the one
hand, we want models to be specific enough such that systems can be easily implemented from this
description. On the other hand, we want to be able to define new models by using an abstract and
very flexible description languages. The approach that we have taken to compromise these two
points of view, We believe that we should provide building block that are specific enough that can
be used to precisely define a problem solving method, but that are small enough that can be
combined in order to satisfy the requirement of high flexibility. The building blocks that we use for
defining new G-TECs in EMA are the same that are used for defining any new knowledge-based
system, namely agents and information structures. Once the new G-TEC has been defined using
these building blocks, it is classified by the knowledge engineer in the corresponding level of a new
or an existing hierarchy of G-TECs. At this point the G-TEC can be described in more detail by
expanding the hierarchy downwards. The knowledge described at higher level of the hierarchy is
available through the use of inheritance. The lowest level of the hierarchy should contain a
description of a G-TEC specific enough that code can be generated from it. Notice that the KE is
not obliged to provide a detail description of a G-TEC, but if he does not furnish this description,
then EMA cannot automatically generate executable code for the specific G-TEC.

6.3 HYPOTHESIS 3 : Models should guide the knowledge acquisition process and aid in the
structuring of the knowledge base.

The implication of this hypothesis is that the generation of operational systems based on
models of problems solving should be as straight forward as possible. We believe that the most
direct and precise way to perform this mapping between a model and an operational system is by,
as much as possible, supporting the automatic generation of these systems. The structuring of the
knowledge base is implicitly assured automatically generating the knowledge-based.

The approach taken by GT supports to some extent the requirements implied in hypotheses
number three. If a knowledge engineer selects a predefined problem solving method in the GT
approach, it is possible to automatically support knowledge acquisition, since the knowledge
engineer is guided to filling the instances of the problem being modelled. Nevertheless, the lack of
a unique procedure for defining all problem solving models implies that each GT can be structured
according to a defined model, but the overall model that consist of different GTs is not necessarily
structured according to any model.

KADS fulfilment of the requirements brought along by hypothesis three is amply less
satisfactory than the one put forward by GT. The model for a given problem can be predefined or
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defined by a knowledge engineer. Once this model has been completed and the knowledge engineer
feels that the modeling process is finished, then the implementation starts. At this point KADS
provides virtually no more support than advising that the final architecture of the system should
reflect the model of the problem. This reflexion must be automated as it is the case in the tool that
we have developed (EMA). We believe that the automatic generation of final operational systems is
crucial since a great deal of the effort that was invested in correctly modeling a system could be
lost if the implementation is not well controlled. Moreover, in phases such as wvalidation,
maintenance, and enhancement the needed to trace instruction in the system to parts of the model is
crucial.

The approach that we take with G-TECS is to start from the requirement that the automatic
generation of code is primordial to achieve any stable systems. Therefore, we believe that the
knowledge engineering process must be supported by a computer based tool from knowledge
acquisition to implementation. EMA furnishes this support by providing some automated aid at the
knowledge acquisition phase. The modeling is fully automated and the automatic production of
executable code is partially supported.

7. CONCLUDING COMMENTS

EMA is a self contained cooperative and comprehensive methodology for the development of
expert systems. It is self contained because the methodology is embedded in the tool in the form of
a knowledge-based system. It is cooperative because the user is seen as a partner in the development
of new KBS. EMA is comprehensive because it encompasses all the information required to support
the entire development cycle of an expert system. The applications generated by EMA are based on
a multi-agent model. This model emphasizes a highly parallel and modular organization of the
components of the computer application, and it also distributes the interaction mechanisms among a
set of cooperating units. Beside the modularity aspect, parallelism and distribution are crucial
features for supporting interactive design without loosing the objective of global systems thinking-
and for implementing physically distributed applications (workstation/host cooperation is a big step
towards distributed processing).

EMA is not yet fully functional but it has gone through several versions of improvements,
Several user centered banking applications have been already successfully implemented with EMA.
The results obtained in the deployment of these systems have been very encouraging. Some of these
systems include: Fundamental Corporate Analysis (evaluation of corporations), credit assessment
support system for small and medium size commercial customers, and a system for the assessment of
request of personal loans. The latest application developed with EMA is in the domain of
configuration. Qur current efforts are directed towards enlarging the library of G-TEChs as well as
improving the automation of the support for knowledge acquisition. Regarding improvements to the
methodology, we are working on providing modelling support for the integration of KBS and
conventional information processing systems.
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ABSTRACT

In this paper, heuristic backward search strategies for generating
production rules from neural networks proposed. By these heuristic search
strategies, various types of production rules and explanations of behavior
of neural networks to users can be generated.

1. INTRODUCTION

The rapid development of neural networks has attracted much attention of Al
researchers. However, compared with the advantages that symbolic
representations of knowledge in Al systems can be stated in a clear and
relatively simple way, and can be easily documented, explained, taught and
learned, neural networks have some disadvantages, 1i.e., the neural networks
fail to offer an explanation function to the users. The users nearly always
want to know why a neural network comes up with a particular answer.
Sometimes they try to learn how the neural network makes decisions so that
they can improve their own understanding of the problems; sometimes they want
to verify that the neural network is working correctly. Therefore, by
integrating neural networks with Al systems, the realization of some
connectionist systems in different application areas have proven the
viewpoint, 1i.e., the connectionist systems are more powerful than either of
neural networks and Al systems. In order to overcome the above disadvantages
of neural networks, this paper studies the generation of explicit
representation of knowledge, namely, knowledge acquisition, from neural
networks and explanation of the conclusions inferred by neural networks . In
this paper, some heuristic backward search strategies for generating
production rules and presenting some explanations to users are proposed.

The generation of production rules is based on the following principle
idea. A neural network is viewed as a knowledge base where the knowledge is
not encoded in the form in which people usually express their knowledge and
which people can easily understand, such as a production rule. However,
people may acquire the knowledge from the currently known behavior of the
neural network. Therefore, it is possible that the production rules may be
generated from this behavior. For example, assume each node in Fig. 1(a)
denotes a proposition, then it may be thought that there exist some logic
relationships between nodes in layer i-1 and nodes in layer i since the
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states of the former influence the states of the latter, so that the states
of the former may be regarded as premises and the states of the latter may
be regarded as conclusions inferred from the logic relationships and the
states of the former(i=2,3).

The neural network discussed in this paper has the following features:

(a).Every node denotes a proposition or a variable, i.e., a symbolic
description of the proposition or the variable is attached to every node.

(b). Every node has a discrete (discontinuous) activation function, i.e.,
the transfer function has the following form:

s(k, 1)=f(s) (1)
s= %, s(i, )*w(i, j, k1) (2)
1,1
where s{i,j) denotes the state of node x(i,j), and w(i,j, k.1) denotes the
weight on the arc directly from node x(i,j) to node x{(k,1), the i and j in
x(i, j) respectively denote the number of the layer and the number of the node
at this layer where x(i,j) is located. The formula (1) is called activation
function, and formula (2) is called input function.

(¢). The neural network does not contain cycles.

Some terminology on the neural network of this kind is explained first. If
an arc in the neural network is directed from node x{(i,j) to node x(k, 1),
then node x(k, 1) is said to be a successor of node x(i, j), and node x(i,j) is
said to be a parent of node x(k,1). A node in the neural network having no
parent is called a root node. A node in the neural network having no
successors is called a tip node. If node x{(k,1) is accessible from node
x{i, j), node x(k, 1) is then a descendant of node x{i,j), and node x(i,]j) is
an ancestor of node x(k,1). For example, in Fig. 1(a), nodes x(3,1) and
x(3,2) are tip nodes, x(1,1), x(1,2), x(1,3) and x(1,4) are root nodes, and
they are also parents of x(2,1), x(2,2) and x(2,3), and correspondingly
x(2,1), x(2,2) and x(2,3) are successors of x(1,1), x(1,2), x(1,3) and
x(1,4), further, nodes x(3,1) and x(3,2) are descendants or grandchildren of
x(1,1), x(1,2), x(1,3) and x(1,4), and correspondingly x(1,1), x(1,2), x(1,3)
and x(1,4) are ancestors of x(3,1) and x(3,2). n(i) denotes the number of
the nodes in layer i. m denotes the number of the layers in the neural
network. X(i, j) denotes a symbolic description of node x(i,j), which
describes a variable or a proposition. A domain of a state is defined as a
domain of an activation function on which the state holds, as shown in Fig.
1(b).

2. SEARCH PROCEDURES

2.1. CUT-OFF SEARCH PROCEDURE(A)

It is a backward search procedure. The backward search procedure can
generate a group of production rules by which why a conclusion is inferred
can be explained. It is used in the case of binary activation function(i.e.
the state of a node should be in one of two possible states either sl or -s2,
s1>0, s2>0), but it is also easily extended to the case of multi-value
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activation functions as the modified forward search procedure given inf[1), The
production rules derived from the currently known information should have the
minimal number of premises that is sufficient for inferring the corresponding
conclusions as long as the states of nodes remain unchanged, which means that
a minimal number of premises must be searched for.

(a). Let set S be equal to the node x{(k, 1) which is selected for
explanation.
k is assigned to the number of layers of the neural network

(b). DO WHILE k=>1

{
(b1) Denote all the parent nodes x{i, j) of x{k,1) as set S(1) which have
each direct contribution for each node x({k, 1) in S, i.e.

S(D={x(i, i) Iwi, i, %k, 1)=/=0}, 1=1,2,...,n(k).

(b2). Classify S{1) into two subsets: §(1,1) and S(1,2). S(1,1) contains
all the nodes which disconfirm the state of x(k.1), and S(1,2) contains all
the nodes which confirm the state of node x(k,1). S{1,1) can be deleted
without affecting the state of node x(k,1). Arrange the nodes in set S$(I,2)
in ascending order of their contribution for the current state of successor
node x(k, 1), which is calculated by multiplying the weight on the arc
starting from each node in $(1,2) to x(k,1) with the corresponding state of
this node in S(1,2).

(b3). Delete the contributions of these nodes in ${1,2) in order arranged
above until the state of node x(k,1) has been changed since x(k, 1) lacks the
contribution of the node being deleted so that fails to maintain the state of
nodes in S(j, 1).

(bd). Generate production rules from these remaining nodes in S(1,2) for
node x(k,1). The rules have the following form:

X, DU 1)) w1,k D)) and X(i,2)(s(i, 2))(w(i, 2,k,1)) and ... and

X, ) (s, ) (w(, 6,k 1)) —> X(k, 1) (sk, 1))
where X(i,j) is a symbolic description of the corresponding node x(i, j); if
x(i, j) denotes a proposition, then s{i, j) may be used as a certainty factor
of node x{i,j); If x(i,j) denotes a variable, then s(i, j) is the value of the
variable: w(i,j,k 1) may be used to represnet the certainty factor of x(i, j)
if x(i,j) is a variable or the importance of x{i,j) in the production rule,
or the weighted logic operator AND. (s(i, j))(w(i.j,k, 1)) can also be replaced
by s(i,j)*w(i,j. k,1) according to input funetion (2). k<=k~-1, denote these
unmarked nodes in S(1I,2) which are hidden nodes as set S, and mark these
nodes.

}

Since there may exist several paths connecting x{(k, 1) and some ancestor of
its, all the nodes having been expanded in this backward search should be
marked in step 4 in order to avoid to be selected for expansion again. This
search procedure may not guarantee that these generated production rules have
the minimal number of premises.

Example 1: The following steps show the use of the cut-off search procedure
for node x(3,1) in the neural network in Fig. 2.

In step (a), k=3, S={x(3,1)}.

In step (b1), S(1)={x(2,1),x(2, 2)}

In step (b2), S(1,1) is an empty set, and S{1,2) 1is arranged as



134

{x(2,2),x(2,1)}.

In step (b3), x(2,2) is deleted.

In step (b4), generate a production rule as follows:

X(2,1)(1)(0.5)~~~~~-- > X(3, 1)(1)

Set S={x(2,1)}, x(2,1) is marked, k=2, go to step (b).

In step (bl), S(1)={x(1,1),x(1,2),x(1,3)}.

In step (b2), S(1,1)={x(1,1)} and =x(1,1) are deleted, and S{1,2) is
arranged as {x(1,2),x(1, 3)}.

In step (b3), x(1,2) is deleted.

In step (b4), generate a production rule as follows:

X{1,3)(1)(0.5) —————- > X(2,1)(1)
k=1, stop.

2.2. SET-BASED SEARCH PROCEDURE

In this search procedure, a new restriction is added, i.e., the number of
the root nodes used in generation of production rules is required to be
minimized. This restriction means that the least amount of input information
is used for generating all the production rules. The set-based search
procedure is a backward search procedure for generating the production rules
with the minimal number of root nodes.

A set L(i,j) is said to contain all the root nodes which are connected with
x(i,j) by some paths. The sets L(i,j)(i=2,3,....k-1, for all j:
w(i, j, k,1)=/=0) should be reached at first for each node x(k, 1) selected for
explanation. Compared with the cut-off search procedure, in this set-based
search procedure the nodes are selected for expansion which only need the
minimal number of root nodes to maintain their states, namely, the selection
of parent nodes x(i,j)[(i,j) belongs to {(il,jl), (i2, j2), ..., (it,jt)}] of
x(k,1) for ecxpansion should meet both the condition that they can maintain
the state of x(k, 1) and the following condition:

| U L(i,§) | = minlU(i, j) L{i, j)I (3)
(i, 3)=@i1, 31), .., (it,jit) U(, )DL, i) can maintain the state of x(k, 1)
where |L(i, j)| denotes the number of nodes contained in L{i,j). The
condition means that the parent nodes of x(k,1) are selected for expansion
towards the direction where the number of the root nodes eventually used may
be minimized possibly.

Example 2: In Fig. 3, L3, D={x(1,j)Ij=1,2,...5},
L(3,2)={x(1,3)1j=2,3,4,5)}, L(2,1)= {x(1,3)13=1,2,3,4},
L(2,2)={x(1,3)1j=2,3, 4}, L(2,3)={x(1,3)1j=1,3,4,5}, L(2,4)={x(1,]j)[j=3,4,5}.
Therefore, nodes x(2,2) or x{(2,4) can be selected for expansion first
according to formula (3).

2.3. CUT-OFF SEARCH PROCEDURE(B)

In this search procedure, a new restriction is added, namely, the nodes can
be deleted so long as the states of the nodes selected for explanation,
assuming they are tip nodes, remain unchanged. Compared with cut-off search
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procedure (A), in this search procedure, the following heuristics may be
used:

(a). A parent of a node can be selected for expansion if the parent node
satisfies the restrictions stated in 2.2 and this section better than other
parents of this node.

Example 3: In Fig. 4, in order to generate production rules that is
sufficient for inferring the corresponding conclusions even if the states of
the deleted nodes have changed, at first the children of tip nodes x(3,1) and
x(3,2) are selected for expansion and there are three selections as follows:

x(3,1): x(2,1),x(2,2) or x(2,1), x(2,3) or x(2,2), x(2.3)
x(8,2): x(2,2),x(2,3) or x(2,3), x(2,4) or x(2,2), x(2,4)

The node group containing x(2,2) and x(2,3) is selected for expansion
because this x{(2, 2) and x(2, 3) are the common parents of x(3,1) and x(3,2)
and only need 4 root nodes at most to maintain their states. In fact, only
x{1, 3) and x(1,4) are needed. Therefore, the generated production rules are:

X(1,3) (1) (1) and X1, (D Q) -~ > X(2,2) (1) (1)
X(1,3) (1) (1) and X(1,4)(1){1) ——--- > X(2,3) (M) (1)
X(2,2) (1) (1) and X(2,3)(1){1) -—-- > X(3, 1) (1) (1)
X(2,2) (1) (1) and X(2,3)(1)(1) ~~——- > X(38,2) (1) (1)

(b). Then a parent of a node can be selected for expansion if it has more
redundancy than other parents of this node.

Example 4: In Fig. 5 production rules can be generated as follows: x(2,2)
and x(2,3) are selected for expansion because they are the common parents of
x(3,1) and x(3,2), they can maintain the states of x(3,1) and x(3,2), and
they connect the minimal number of root nodes, 4 in all. Since there exists
some redundancy of x{(3,1) and x(3,2), the following inequality describing the
redundancy of x(3,1) and x{3,2) should be satisfied:

x(2, 2)+2%x(2, 3)>2
Therefore, the solutions for this inequality include:
x(2,2)=-1, x(2,3)=2; x(2,2)=0,x(2,3)=2; x(2,2)=1, x(2,3)=1; «x(2,2)=1,
x(2, 3)=2; x(2,2)=2, x(2,3)=1; x(2,2)=2, x(2,3)=2
Considering the constraint of {(x(2,2)=0 or x(2,2)=1) and (x(2,3)=0 or
x(2,3)=2) by their parent nodes, the remaining solutions now are:
x(2,2)=0,x(2,3)=2 ; x(2,2)=1, x{2,8)=2
From the solutions, the root nodes x(1,4)(=1) and x(1,5)(=1) are selected to
maintain x(2,2)=0 and x{(2,3)=2 or x(2,2)=1 and x(2,3)=2, i.e.,

X{1, 8) (1) (0. 6) -——-- > X(2,2)(0)

X(1,4) (1) (1) and X(1,5)(1)(2) --———- > X(2,8)(2)
or

X(1,4) (1) (1) and X(1,5)(1)(0.6) ———-- > X(2,2) (1)

X(1, 4 (1) (1) and X(1,5)(1)(2) ———- > X(2,3)(2)

(¢). The backward search should satisfy the condition as follows: If the
state of a node can not be maintained by the states of its parent nodes in
layer 1 due to the last deletion of some its descendant node, then backtrace
to some point along backward search path where the node was deleted, reserve
the deleted node, start again.
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3. EXTENSI1ON OF SEARCH PROCEDURES

The above search procedures can be extended in the following cases:

3.1. EXTENSION OF NEURAL NETWORKS

(a). The input function (2) can be extended to other forms, such as, in the
case of applications of neural networks in approximate reasoning, the
Multiply-Add operation (2) 1is often replaced by a Max-Min operation ., and a
binary activation function is used to activate the node which has a certainty
factor higher than the threshold of the binary activaition function and
inactivate the node which has a certainty factor lower than the threshold of
the binary activation function. The search procedures proposed above can be
used easily in this case.

Even if the activation function is continuous, it is also possible that
these search procedures are applied if the input function is discrete. An
example is the fuzzy petri net implemented by using Looney s neural network
for rule-based decisionmaking [2] Looney gave an group of production rules as
follows:

Cl1 and C2 ——-> C4

C4 —-> C6
s —-> (3
s —>0C1

C6 ---> C' (external node)

and known input information{(certainty factors) C2=0.8 and C5=0.5, and then
used the fuzzy petri net to infer conclusions of the production rules and
known input information as shown in Fig. 6 which is an illustrative graph of
the fuzzy petri net. Each node C{i) (i=1,2,....6) denotes Ci in production
rules and has a Max input function, and each node N(i) (i=1,2,....,5) denotes
a relation between premises and a conclusion of a production rule and has a
Min input function. The Max and Min input fuctions are used for approximate
reasoning, and the activation function employed by each node is a unit
function. By using above search procedures in which the delation of nodes is
replaced by decreasing values of certainty factors Ci of nodes C(i)
(i=1,2,...,6), the inputs of Min activation function, to the maximum, it can
be seen that C2=0.8 can be decreased to C2=0.5 without affecting the
previously inferred conclusions, i.e., the necessary certainty factors of
premises supporting their conclusion can therefore be determined.

It is also possible to apply the search procedures to the case of both
continuous input function and continuous activation function. If the state of
root nodes is restricted within discrete domain, then the continuous transfer
function can be regarded as discrete one since only finite values of the
transfer function will be taken at each layer; otherwise, there are two
strategies for generating production rules. The first one is that all the
nodes are used for generating production rules since each node has its own
contribution for its successor nodes so that the deletion of a node will
result in the change of the states of its successor nodes. The second one is
that this continuous activation function should first be made diserete. Thus,
a continuous activation function may be treated equally as a discrete
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activation function in above search procedures except for that each generated

production rule has an error equal to the error resulting from the discretion

of the continous activation function.

{(b). The search procedures can also be used in neural networks with cycles
by employing the following two ideas: First, a node in a cyclic path should
first be selected to be deleted so that the cycle can be broken(see Fig.
7(a)). Second, if a node in a cyclic path is reserved, then the states of
other nodes in the cyclie path should be maintained; otherwise, the state of
the node may be changed by the changed states of other nodes in the cyclic
path so that the search has to be repeated along the cyclic path (see Fig.
T(b)).

(c). In some cases, except for tip nodes and root nodes, hidden nodes in a
neural network have not any meanings, such as nodes x(4,1), x(4,2) and x{(4,3)
in example 19. They are used only for realization of a mapping from input
information to output information. If these nodes are included in generated
production rules, the production rules will become meaningless. Therefore,
the nodes should and could be deleted from the production rules

For example, the production rules containing the meaningless nodes x(2,2)
and x(2,3) are as follows:

X(1,1)(1)(2) and X(1,2)(2)(1) > X(2,1)(2)

(1, M) () and X(1, D) —> X(2,2)(1)

X(2,1)(1)(2) and X(2, 2) (1) (1) ~—=> X(3, 1) (1)

X(1,1)(1)(3) and X(2,1)(1)(2) ---> X(3,2)(1)

Then they can be equivalently transferred into the following form:
(L, D (D (2) and X1, D) (2)W)H(2) and (X1, 1) (1) (1) and X(1,3)(1) (1)) (1)
——=> X(3,1)(1)

X(1,1) (1) (8) and (X(1,1)(1)(2) and X(1,2)(2) (1)) (2) ——> X(3,2)(1)

(d). Nodes in neural networks may also be used to denote other terms, such
as, word, object and entity, when a neural network is used as semantic
network or used in sentence processing. It is possible that the generated
production rules c¢an be used to describe the necessary and major
relationships between nodes.

3. 2. PARALLEL SEARCH

A major advantage of neural networks is that they can run in a parallel
way. However, the generation of production rules by the above search
procedures is based on a serial way. In order to realize the parallel search,
the neural network should be reconstructed as follows:

(a). The computational ability of every node should further include:
comparison operation, ordering operation, classification operation, solution
for inequality and so on, since they are needed by every node in above search
procedures.

(b). Nodes can communicate to each other by adding new arcs between these
nodes for transmitting messages, since the realization of some heuristic
ideas in search procedures require the communication among nodes.

(¢). The neural network should be reconstructed, i.e., some nodes and arcs
should be added into the neural network. Fig. 8(b) gives a typical extension
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of the neural network TFig. 8(a). The added nodes A and B respectively
represent the relations between x(1,1) and x(2, j)s(j=1,2).Since in procedures
whether a node should be deleted from some or all of production rules is
determined by its corresponding success nodes, the arcs, starting from x{(2,1)
to A and from x(2,2) to B, and starting from A to x(1, 1) and from B
to x(1,1), represent the control-wires of x(2,1) and x(2,2) by which x(2,1)
and x(2,2) can control the states of A and B, and eventually control the
states of x(1,1). The activated state of A means that the relation between
x(1,1) and x{2,1) should be reserved in the production rule for inferring
x(2,1). The inactivated state of A means that the relation between x(1,1)
and x{(2,1) should be deleted from the production rule for inferring x(2,1).
The state of x(1,1) is inactivated only when both the states of A and B are
inactivated. The inactivated state of x(1,1) means that x(1,1)should be deleted
from all the production rules. Therefore, in parallel computation, every
node will either be activated or be inactivated by its successor nodes through
issuing corresponding commands to it along the control-wires. Finally, the
neural network will converge to a stable state, in which the state of every
node, such as x(1,1), A and B, stand for whether it or a relation represented
by it is reserved in production rules. For example, in Fig. 8(b), if
A is inactivated and B is activated, then node x(1,1) is reserved in
the production rule for inferring the state of x(2,2) and is deleted from
the production rule for inferring the state of x(2,1).

Generally speaking, the realization of the heuristic ideas proposed in this
paper in a parallel way needs a complex structure of the neural network.

4. RELATED WORK AND CONCLUSIONS

In the field of Al heuristic algorithms, such as, algorithm A and Alpha-
beta procedure, are used in tree structure for graph search. Every node in
the graph denodes a state of a database, and production rules are repeatedly
used to update the state of the database under guidance of a control strategy
until the state of the database matches with some goal searched for [3]. The
search procedures proposed in this paper are used in neural networks for
generating production rules. The heuristic search is dependent on the current
state of a neural network, where states of nodes influence each other.

Gallant[4] also proposed a strategy for generating production rules from
neural networks. But his strategy is restricted within a specific neural
network which only permit using the activation function with three state
values, (-1, 0, +1), and can only be used in a neural network of small size
since the heuristics used in this strategy are very limited, otherwise the
number of implicitly encoded production rules will grow exponentially with
the number of node inputs. Moreover, the strategy can only generate one type
of production rules. Saitoh and Nakano [5] tried to derive rules out of the
causal relationship of input/output layers. But the derived rules were based
on binary logic, and the certainty of rule and importance of proposition were
unknown. Hayashi and Nakai [6,7] proposed a method for acquiring fuzzy
inference rules from the causal relationship of input/output of neural
network. The lingustic truth values included in each fuzzy proposition and
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certainty of each rule can be determined by this method. However, each node
is also only permitted to output three values(True(l), Unknown(0) and False(-
1)), i.e., the activation function employed by each node is restricted to a
three-value function, and only the causal relationship between input layer
and output layer can be described by fuzzy inference rules. Bochereau and
Bourgine [8,9] gave a method for solving the NP-complete problem of rule
extraction from a multilayer neural network by restricting the domain of
input of the multilayer neural network. However, satistical information or
prior knowledge is needed in the method, the state of root nodes is
restricted within boolean domain, moreover, some error may be brought about
due to the use of the satistical information.
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Abstract

Human beings isolate qualification checking from general problem solving and
do not check for all qualifications all the time. But, they are prepared to allow
errotieous conclusions in favour of exhaustive checking. A strategy which has these
human traits can be accepted as a possible solution for the qualification problem.
In this paper we develop a strategy, called computational nonmonotonism (CN),
which mimics the above paradigm. In a CN system a qualification is applied only if
it is relevant to a context or if it has a priority greater than a certain level warranted
by the sitnation or scenario. The conclusions from a scenario can be different from
another because of different qualifications which become applicable depending oun
the scenario. We apply computational nonmonotonism to a system of rules and
qnalifications and provide declarative and operational semantics for inferring from
the system. We also show the generality of the approach, by applying the compu-
tational nonmonotonism technique to default reasoning and circumscription. The
three applications capture differing intuitions of computational nonmonotonism.
We also point out that the approach can be adapted for real-time, time-constrained
nonmonotonic reasoning.

1 Introduction

One of the difficult problems in common sense reasoning is the qualification problem:
the problem of checking for abnormality conditions which can invalidate a conclusion.
There are two aspects to the qualification problem. One aspect is that it is an important
problem that needs to be solved in common-sense reasoning since it provides a basis for
nonmonotonic reasoning. In another respect it is a difficult problem to solve since in
real world situations there can be numerous qualifications that need to be checked before
validating a conclusion. Human beings seem to tackle the two aspects very well, they are
able to make nonmonotonic inference without being unduly bogged down with checking
for numerous qualifications. The method that human beings seemingly employ is that
they isolate qualification checking from general problem solving and do not check for all
qualifications all the time. But, they are prepared to allow erroncous conclusions in favour
of exhaustive checking. In real life, we might check for some (obvious) qualifications, but
may not spend that much time for checking for obscure qualifications, which might actu-
ally annul our conclusions. When hard pressed for time, we even ignore to check obvious
qualifications. That is, humans, even though they can deduce information which might
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contradict their conclusions, might conclude erroneously, due to lack of time, space (fa-
tigue) and or other reasons. A strategy which has these human traits can be accepted as
a possible solution for the qualification problem. In this paper we study a strategy, called
computational nonmonotonism, which mimics, in some fashion, the above paradigm. We
apply the concept of computational nonmonotoism to three nonmonotonic reasoning sys-
tems: rules with exceptions [3], default reasoning [12] and circumscription [5]. Each of
these applications capture a different aspect of computational nonmonotonism.

The qualification problem was first identified by McCarthy [4] in the context of the
missionaries and cannibals puzzle. He described circumscription [5] as a paradigm for
solving the qualification problem. Since then, the qualification problem has been inves-
tigated in the framework of nonmonotonic reasoning and several paradigms have been
introduced. Some of the techniques that address the qualification problem include default
reasoning [12, 11, 3], modal-based logic [10], inheritance theory [2], temporal reasoning
[13], reasoning about action [1], etc.,. In existing artificial intelligence systems, the qual-
ification problem is solved by encoding qualifications as part of the theory and finding
an extension which minimizes the conclusions that can be inferred from the theory. Var-
lous minimization policies are employed which lead to different reasoning paradigms and
different sets of conclusions.

The problem of numerous qualifications is solved, by these systems, by ignoring several
qualifications and encoding only a few relevant ones. That is, the number of qualifica-
tions that are checked are limited but the limits are applied a priori through encoding.
The encoded qualifications are checked in all situations, every time. This might lead to
unnecessary checking for inapplicable qualifications. For example, consider that we know
that tweety is a tropical bird and we want to find out if it flies. Even in this case, tweety
is checked to see if it is a penguin. Such checking is unnecessary since, by context, tweety
cannot be a penguin. The reason for the unnecessary checking done in existing systeins
is due to the fact that the qualification which need to be checked are interlocked with
general problem solving and hence gets checked every time.

In this paper, our approach is not to provide a different representation schema for
the qualification problem from those suggested in the literature. Instead, we provide an
effective computational means to address the qualification problem in a real-life situation,
where the number of qualifications to be checked might overwhelm a system and where
every qualification need not be checked in all situations. The distinguishing features of
computational nonmonotonism is that, the qualification problem is considered in isolation
from the general causality-based problem solving, because of which the processing of
qualifications proceeds independent of the general problem solving and can be controlled
by considerations such as priority, context, time and space. That is, not all qualifications
will be checked but only those which are of high priority or those that are relevant to
the context, or those which can be checked within certain time and space limits. Because
of this, our approach also shares with human reasoning, the property of being fallible:
that is, it may make unsound conclusions. But we show that, within the limits of the
above constraints the conclusions made by the system is sound. We make this concept of
soundness clear later in the paper.
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The motivation behind our approach is to control the qualification problem and to
provide answers to queries within some realistic constraints. We call our approach as
computational nonmonotonism (CN} since changing the context or scenario in which a
query 1s asked changes the answer to that query.

In this paper we provide a syntax and a semantics for a computational nonmonotonic
system by applying it to three nonmonctonic reasoning systems. We discuss, in detail, the
case of rules and exceptions [3] and develop declarative and operational semantics for a
computational nonmonotonic system. We also show how the technique of computational
nonmonotonism can be applied to other nonmonotonic reasoning systems such as default
reasoning [12] and circumscription [5, 6]. In this paper we consider only computational
nonmonotonism achieved through context and priority-control and do not cover time and
space limited noumonotonicity.

2 Rules and Exceptions

The semantics of a system of rules and exceptions have been developed by Poole [11]
and Sadri and Kowalski [3]. We modify the semantics of [3] to provide a computational
nonmonotonic (CN) system of rules and exceptions. The system consists of two types of
sentences: rules and qualifications. The rules are of the form

(1) Ap - Ay, ..., A,
where n > 0, and the A;s are atomns. The qualifications are of the form

(2) [N, M] =Ag « Ay,..., A,
where n > 0, the A;s are atoms and N, M > 0. The number N denotes a priority number
and captures the priority of the qualification with respect to other qualifications (the
smaller the priority number then higher is its priority). The number M denotes a context
number which defines the context in which the qualification applies. Note that there
are no negative literals in the antecedent of (1,2). The reason being that such negative
antecedents can be encoded as qualifications with ¥ = M = 0. The conclusions made
from the rules and the qualifications depend upon a particular situation, called scenario.

Definition 2.1 A scenario S is a four-tuple < D,Q, Ms, Ng >, where D is a a set of
rules D, @ is a set of qualifications, Ng and Mg are two system-wide numbers denoting
respectively the priority number and the context number of the scenario. 0

A qualification gets checked in a scenario S if its priority number N < Ng and if its
context number M = Mg. There are two special cases. When M = 0 the qualification
always gets checked provided the priority is not lower than the system-wide priority. That
is, a qualification with M = 0 can be seen as a default qualification which gets checked
always independent of the context. Similarly when Mg = 0 every qualification in the
scenario gets checked independent of their individual context number. This can be used
when one wants to provide an answer which is correct in all contexts. By assigning a
very large value to Ng and having Mg = 0 the system degrades to a traditional rules and
exceptions system where every default rule and every exception becomes applicable. The
use of context sensitive qualifications can be illustrated as follows.
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Example 2.1 Counsider a plan generation system implemented using the CN system.
There can be two possible scenarios: a fair weather scenario and a snowing scenario. One
can query the system to generate a plan for reaching from A to B. If the weather is fine,
the fair weather scenario can be chosen and a plan is generated which complies to certain
qualifications. If it is snowing, the scenario in the system can be changed to a snowing
scenario and a different plan is generated, since a new set of qualifications, such as using
only snow emergency routes and avoiding steep-hill climbing, become appropriate. These
new qualifications are irrelevant in a fair weather scenario and their checking should be
avoided. .

The use of priorities for checking qualifications can be illustrated with a planning example.

Example 2.2 Consider a fair-weather scenario in the example above. There can be two
qualifications which can constrain a plan as follows:

Q21 : plan is void if there is construction on road from A to B

Q)5 : plan is void if there is a traffic backup on road from A to B
Let the priority-numbers of Q; and @2 be 1 and 2 respectively.

Now, consider that one is doing high-level planning and checks only the qualifications
which arc of high priority (say Ns = 1). Then, only Q; is checked. If there is a road
from A to B which is not under construction, the plan is approved. Consider another
scenario, where one is doing low-level planning and even low level qualifications need to
be checked. Then, one can query the system with (say) Ns = 5 and might get a different
answer (to that given for high level planning) depending upon whether the road is having
a traflic backup or not. Hence, prioritization of qualifications allows one to choose the
level of detail (or risk) one is willing to consider as appropriate to the scenario. 0

In order to find the set of applicable rules and qualifications in a particular scenario
we define a belief base as helow:

Definition 2.2 A belief base of a scenario S =< D,Q, Ms, Ng > is a set D U Q' where
Q/T— {ﬁfl() — ;"11,...,/172 l UV, Ai] _‘/40 HAI,...,/‘ln EQ,
and N> Ngand (M =0or M = Ms or Mg =0)} O

Example 2.3 Consider a planning program written in CN language.
The default rules D are:
{path(A, B) « connected(A, B); path(A, B) « connected(A, C), path(C, B);
connected(la, sf); nonsnowemergneyrte(la,sf); hassteepslopes(la,sf)}
The qualifications @) are:
{[1,20] = conneccted( A, B) « construction( A, B);
[2,20] = conneccted(A, B) « traf ficbackup( A, B);
[1,30] = connecled( A, B) « nonsnowemergneyrie( A, B);
[3,30] = connected( A, 3) «— hassteepslopes(A, B)}
20 and 30 denote fair-weather and snow-weather contexts respy.
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Belief base of S; =< D, Q, 1,20 > is given by
By = DU {~ connected(A, B) « construction(A, B)}
Belief base of S; =< D, Q,2,30 > is given by
B,y = DU { = connected( A, B) «— nonsnowemergncyrte( A, B)} a

3 Semantics of CNR systems

We first define an extension which provides a declarative meaning of a scenario in a
computational nonmonotonic reasoning system using rules and qualifications. First, we
need the notion of a Herbrand base of a belief set. The Herbrand Base of a belief set B,
denoted as H B(B), is the set of all ground atoms that can be formed using the predicate
symbols, function symbols and coustant symbols that appear in B. An extension is a set
of atoms which can be derived from the rules of the scenario and which is consistent with
the belief set of the scenario.

Definition 3.1 Let S be a scenario and B = D U @ be its beliel set. Then an extension
of S, F(S), is the smallest subset of H B(B) such that for any clause A « Ay,..., A4, in
D,if Ay,..., A, € E(S) and A ¢ Q(S) then A € I(S).

The qualification set of S, Q(S), is the smallest subset of HB(B) defined as follows:

for any clause =A « Ay,..., A, in Q,if A;,..., A, € E(S) then A € Q(S) a

The definition of extensions can be seen as a modification of answer sets defined in [3].

Example 3.1 Considering scenarios S| and 5 from Example 2.3,
E(S;) = {connected(la,sf), nonsnowemergncyrie(la,sf),
hasstcepslopes(la, sf), path(la,sf)}

Next, we provide a procedural method for computing from a CN system.

Procedure 3.1 CN Procedure Given a scenario: S =< D, Q, Ng, Mg >, to find if R
is true in S, where £ is a set of atoms

recursive solve(R)
Ly = true
while R # 0 and 1, = {rue
{ Ais an element in R

R=R—{A}

A e—A,...,A, € Dand A = A
Ly = false
while 7' # 0 and L, = false
{ A« Ay,..., A, is an element in T’
T =T {A « A,..., A}
L, = solve({Ay,...,A,}) } end while
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if L, = true then L, = qualify(A)
else L, = false } end while
return L,

recursive qualify(A)
T = set of qualifications in @) such that
[N, M] -A" — Ap,..., A, €Qand A = A
and N < N5 and (M = Msor M =0 or Mg = 0)
L = false
while 7' # 0 and L = false
{ [N,M] =A" « Ay,..., Ay is an element in T
T=T  {[N.M] A"« Ay,.... A}
. = solve({ A;,..., A,})} end while
if L = true then return false
else return true 0

Example 3.2 Consider Example 2.3. Let the query be to find if path(la,sf) is true in
scenario S,. A computation of the CN procedure can be:
1) solve({path(la,sf)})
solve({connected(la, sf)})
solve({}) returns (rue

quali fy({connected(la,sf)})

solve({nonsnowemergncyrte(la,sf)})

Lo o
— O e e D T

—

solve({})  returns true
quali fy({nonsnowemergncyrte(la,sf)}) returns true
true is returned for solve({nonsnowemergncyrte(la,sf)}
false is returned for quali fy({connected(la,sf)})
falsc is returned for solve({connected(la,sf)})
steps (2) to (10) get repeated for
solve({connected(la,C), path(C,sf)}) and returns false
(12)  false is returned for solve({path(la,sf)})
The query fails and path(la,sf) is not true in scenario S, 0O

P e e N W S
-~1 & Ut
~—

The following theorem shows the equivalence between the extensions of a CN system
of rules and qualifications and the answer set generated using the CN procedure.

Theorem 3.1 Soundness and Completeness of CN Procedure

Let S be a scenario whose belief set is propositional. Then, a ground atom A is in E(S)
if and only if the query solve(A) to the CN procedure returns the value true.

Proof Sketch: From the definition of E(S) it can be seen that A is true if and only if
it matches the head of a rule in D provided (1) the body is also true and (2) A is not
disqualified by Q. The recursive call of solve({A;,..., A, }) in the procedure solve takes
care of condition (1). Condition (2) is taken care of by the call quali fy(.A) which should
succeed to meet condition (2). From the definition of Q(S) it can be seen that —A is
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not in Q(5) if and only if all proofs of <A from D U Q {ail to succeed. The while loop
in the procedure qualify tests for all such proofs for =A by testing if the bodies of all
the matching qualification rules fail. Since, we are dealing with a propositional belief set,
calls made to procedures solve and qualify are decidable. Hence, solve(A) returns true
if and only if A € E(5). O

4 CNR and other NMR paradigms

In the preceeding sections we provided a general approach to computational nonmono-
tonism in the context of a system of rules and exceptions. Even though we described a
particular syntax and semantics the notions embedded in computational nonmonotonism
can be easily transported to other nonmonotonic reasoning systems to provide a richer
nonmonotonic capability with a facility to reason under different situations based on con-
text and priority. First, we show how we can extend Reiters’s default reasoning to provide
computational nonmonotonism.

4.1 Default Reasoning

We consider a restricted form of Reiter’s [12] default reasoning. Reiter’s default theory
consists of a set of formulas and a set of defaults. Computational nonmonotonism can
be achieved by restricting the application of defaults depending upon the context and
priority. A CN-dcfault theory is a four tuple < W, D, Ng, Ms > where W is a set of
well formed formulas, Ns and Mg are two system-wide parameters defining context and
priority as shown in Section 2. D is a set of defaults of the form:
[N,M] o : MGy, ..., MG,
Y

The above formula means that if a is proven and each 3; is consistent then « can be
inferred provided the default rule is not restricted by system-wide parameters of context
number Mg and priority number Ng. A default rule is applicable if its context number
M = Mg or if M = 0 (see Section 2 for explanation) and when N < Ng. The consistency
of each 3; can be taken as that —f; is not provable from the system in a particular scenario.
In this paper, we are only considering the propositional default theory.

We next define the expansion computed using a CN-default theory.

Definition 4.1 Let S =< W, D, Ng, Ms > be a CN-default theory. A CN-default exten-
sion of S is defined as the smallest set satisfying the following properties:
(1) W I v then v € E(5)
(2) If there is a CN-default rule of the form given above, then
ifae E(S)and Vi,n>1i>1, -8, & E(5)
and N < Ngand (M = Ms or M =0 or Mg =10)
then v € £(S5)

The following example illustrates the approach of CN-default theory.
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Example 4.1 Consider the Nixon diamond problem: Most quakers are pacifists. Most
republicans are nonpacifists. Nixon is a quaker and a republican. The problem does not
allow any inference regarding Nixon’s pacifism. But let us consider two scenarios as part
of the problem. The statement that ‘most quakers are pacifists’ applies only when we
are dealing with mild-pacifists and the statement that ‘most republicans are nonpacifists’
applies only when we are dealing with hawkish-republicans. The extended problem can
be encoded as the following CN-default theory:
W = {quaker(nizon), republican(nizon)}

[0,1] quaker(X) : M paci fist(X) [0,2] republican(X) : M —paci fist(X)
D ={ paci fist(X) , —pact fist(X) }

Consider scenario S; =< W, D, 0, muld_quakers >. Then,
E(S1) = {paci fist(nizon), quaker(nixzon), republican(nizon)}
Next, consider scenario Sy =< W, D,0, hawkish_republicans >. Then,
E(Sy) = {—paci fist(nizon), quaker(nizon), republican(nizon)}
Finally, considering a scenario, S3 =< W, D, 0,0 >, where all defaults apply, we get either
E(S3) = E(S)) or E(S3) = E(5;) since both the defaults become applicable in Ss. O

By restricting the application of particular default rules, extensions are generated which
correspond to different scenarios. For example, scenario given by S; reduces the problem
to default reasoning as defined by Reiter [12].

4.2 Circumscription

Applying the concept of computational nonmonotonism was natural in the case of rules
with qualification and in the case of default reasoning. The reason for this is that the
qualifications and defaults are isolated and can be controlled through system wide con-
text and priority relationships. In the case of circumseription, achieving computational
nonmonotonism is not so easy since the theory is a monolith and is acted upon by the
circumscriptive schema as a whole. But, one method suggests itself, that of controlling
the circumscriptive minimization of certain predicates depending upon the scenario. This
is an extension of the concept of protection introduced by Minker and Perlis [8, 9, 7]. That
is, we can use scenarios to inhibit the minimization of some of the predicates. The value
of these predicates will be inhibited from being considered false due to circumscription.
We can motivate computational circumscription using the following example.

Example 4.2 [9] Someone asks whether you have ever known the phone number of a
movie star. You pause only split seconds before answering ‘No’. Later, on being asked
whether you ever known the phone number of your uncle in Chattanooga, you hesitate,
frown, and end np saying that you are not sure. We apparently circumscribe on a movie
star’s phone number, but not on a relative’s. In this case, we ‘protect’ the answer from
taking on a value ‘No’. That is, certain things are circumscribed whereas the uncertainity
of certain other things are protected. ()
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In the above example, we can ascribe two contexts, one, called moviestars-context, where
we allow the circumscription on a phone number and another, called relatives-context,
where no circumscription is allowed on a phone number. We make precise the idea of
restricted circumscription by extending the definition of protected circumscription.

A computationally protected set is a set of elements of the form:

[N, M] p;, where p; is a predicate (possibly instantiated) and N is its priority number
and M is its context number.

Definition 4.2 A computationally protected theory is a four tuple defined by a scenario
S, A=<T,R,Ng, Ms > where T is a set of well formed formulas, R is a computationally
protected set of predicates and Ng and Mg are two system-wide parameters defining
context and priority of the scenario S, as in the case of the systems defined in Sections 2
and 4. 0

In the definition below E Ps stands for the set of predicates which are protected in a given
scenario S defined by system-wide parameters Mg and Ng. Given a computationally
protected theory A =< T, R, Ng, Mg >,

EPs={p;| [NyM]p; € Rand N < Ns and (M = Mg or M =0 or M =0).

That is, £ Ps-things are protected in S.

Definition 4.3 (modified from [7]) Let T be a theory and £ Ps be a protected set defined
by a scenario S. Let P and Z be two disjoint set of predicates where the predicates in P
are circumscribed and those in Z are allowed to vary. Then the computationally protected
circumscription schema is
CIRC(T; P;EPs; 7)) =
T(P,ZYNVP ,Z'(T(P',ZYANP'|EPs = P) = P'|EPs & P)

where P’ and Z' are sets of predicate symbols similar to P and Z. Notation 7'/U denotes

T&~U. i

The following example shows how scenarios can be used to protect predicates from being
minimized through circumscription.

Example 4.3 Consider the following encoding of Example 4.2.
T = {know.nunber(X) « know_person(X); know_person{mother) ;

person(uncle) ; person(filmstar) }
Let R = {[0,2] know._number(uncle)}. That is, predicate know_number(uncle) is pro-
tected when Ng < 0 and (Mg = 2 or Mg = 0). Consider the scenario S where
A =< T,R,0,2 >. Then, EPs = {know-number(uncle)}. Applying computationally
protected circumscription for P = {know-number}, Z = {know_person}, we get
CIRC(T; P; EPs; Z) = T'U {~knownumber( filmstar)}.
This allows the inference of —know.number(filmstar), whereas the question whether
you ever knew the phone number of your uncle does not produce a negative answer,
since the predicate know.number(uncle) is not minimized in scenario S. The predicate
know_number(mother) is true in all scenarios. o
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5 Discussion

Computational nonmonotonism provides a facility to make conclusions depending upon
the situation or scenario. Nonmonotonism occurs because of the changing context and the
changing priority level of the system. We have discussed computational nonmonotonism
in the light of three systems: rules with exceptions, default reasoning and protected
circumscription. The CN theory of rules and qualifications extends the semantics of rules
and exceptions [3] to include context and priority. Our application of CN theory to
default reasoning can be seen as an extension of Poole’s default reasoning system [11].
He applies constraints to defaults, but the constraints are applied all the time with no
notion of context or priority. Our application of CN theory also extends the concept
of protected circumscription [9] to scenarios. The three cases capture different aspects
in their application of the CN paradigm. CN theory applied to rules and exceptions
provides a means to trim and/or enlarge an expansion depending upon the applicable
set of qualifications. CN-default theory provides a method to restrict the application of
certain default rules and thereby controlling the defanlt assumptions that can be made
from the system. CN-default theory provides a method for choosing one extension among
multiple extensions depending upon the situation. In the case of circumscription, the CN
technique allows one to control the set of predicates which is minimized by circumscription.
We have shown the utility of computational nonmonotonism by applying it to several
nonmonotonic reasoning paradigms.

The approach developed in this paper can be easily adapted for real time applications
where one needs to provide results within certain time constraints. Because of the way
the knowledge base is bifurcated, as rules and qualifications, the rule-processing and
qualification-checking can proceed in parallel. The number of qualifications that are
checked is a funtion of the time available. If the amount of time given is short, the number
of qualifications that get checked is also small and the answer given is consistent only with
the qualifications checked. When more time is given, a larger number of qualifications
get checked and the answer provided is ‘more correct’ compared to the answer given
with less qualification processing. This type of processing provides yet another type
of computational nonmonotonism. The approach can also be generalized by providing
context (or situation) information for individual rules in the CN-system of rules and
exceptions, and for individual axioms in W in a CN-default theory.
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Abstract

Parallel algorithm of static allocation of a program into parallel computer is proposed.
The algorithm is seen as a sequence of games of learning automata team migrating in a
computer system graph.

1. INTRODUCTION

As computer architectures evolve towards massive parallelism, a major research question
that has developed is the question of assigning modules of a program into a parallel computer
for maximum performance. The problem belongs to a class of combinatorial optimization
problems and is known as NP-complete. Various techniques have been treated lately for pos-
sible solutions. These solutions are based on application of mathematical programming [1],
graph theory [2], branch and bound algorithms 3], or queuing theory [4].

Allocation algorithms can be generally classified into static allocation algorithms [2, 5]
and dynamic load balancing algorithms [6, 7]. While load balancing algorithms are often
parallel and distributed, static allocation algorithms are typically sequential and represent
a bottleneck in execution on a parallel machine. In this paper we concentrate on working
out parallel and distributed algorithms of static allocation of program graphs in message
passing multiprocessor systems.

Stochastic search techniques such as genetic algorithms [8, 9, 10] or Boltzmann Ma-
chine [11, 12] modelling biological mechanisms existing in nature have been applied lately
to difficult problems of combinatorial optimization . We propose in the paper another bio-
logically motivated technique using a concept of a learning automaton [13, 14, 15, 16, 17]
and based on self-organizing features of learning automata teams [18, 16, 17].

In the paper Section 2 contains a computational model and a structure of an allocation
algorithm. Section 3 provides a thecretical background for learning automata team models.
In Section 4 an algorithm of static allocation as a sequence of dynamic automata games
is presented. Section 5 discusses the algorithm and presently available results. Section 6
makes some concluding remarks.

Currently at Laboratoire de Genie Informatique, IMAG B.P.53x-38041-Grenoble cedex, France
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Figure 1: Examples of (a) a program graph, (b) a system graph

2. COMPUTATIONAL MODEL AND A STRUCTURE
OF ALLOCATION ALGORITHM

As a general model of a distributed computer system we employ the system graph
Gy =< Vi, Es >, where vertices V; represent the nodes of multiprocessor system containing
N, identical processors and edges F, represent the interconnection pattern of the system. As
a general model of a parallel program we use a directed weighted graph G, =< V,, E, > with
set V, of N, nodes representing program modules and with collection of arcs F, representing
connections between moduls. Fig.1 shows examples of a program graph and a system graph.

To develop a distributed representation of the system graph for the purpose of the
allocation algorithm our structural discription of v¢ system node (i = 1,2,...,N,) will
contain

a) alist {vi(ei)} of neighbour nodes available from the node v through arcs {ei} incident
with this node,

b) alist of the shortest distances dt . (vi,v!) between the system node vi and each node

: min ’ !
v! (7 =1,2,...,N,), measured as the length of the shortest path between v} and vJ.
To work out a structural description of a distributed algorithm of the static allocation
of a parallel program we will let partition the program graph G, into N, nodes and suppose
that with each program node v,’; (k=1,2,...,N,) is conjugated a decision-making entity
consisting of a local environment interpreter E¥ and a local decision-making unit U* (see
Fig. 2).

The structural description of the local environment interpreter E* contains

k ie. alist {a;, } of

its neighbour program nodes, where ry— a number of neighbours of the node v{;,

a) information about the neighbour relations of a program node v

b) alist (a1, asz,,-..,a,,) of weights of edges incident with the node v,’j and a weight b,
of the node,
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Figure 2: A decision-making entity consisting of a local environment interpreter E* and a
local decision-making unit U* is conjugated with k — th node of a program graph.

¢) an actual location of a given node ’U;f and its neighbours in the system graph, i.e. a
list {si(-vg),(.si(vg"‘))} of corresponding system nodes,

d) alist of actual locations of programs nodes which have visited lately the system node
vi where actually is located a given node vk, i.e. alist {si, (vF)},

e) alocal function C¥ describing some actual cost relations in the system graph between
given program node v,’f and its neighbour program nodes vg " and its previous value

k
Cold'

A semantics of the distributed algorithm of the static allocation of a program graph is
given in Section 4.

3. AUTOMATA GAMES WITH LIMITED INTERACTIONS

To provide a theoretical background for learning automata (for a concept of learning
automaton and some its applications, see e.g. [15]) based algorithm of allocation we present
below a model of automata games with limited interactions. In the model [18, 16, 17] we
suppose that

a) given a team of automata players A', A2 ... A% ... AN |
b) for each automaton A* given a finite set {y*} of its actions,

c) for each A given a payoff function P*(y*,y*k, y®2%, ..., y%*) which depends only on
limited number of automata - players: its action y* and actions of its ry neighbours
in the game (ry < N). The meaning of P* is the expected value of a reward for
an automaton A* for given its action y* and given actions of its neighbours. It is
convenient to represent an interaction in the game by a directed graph where vertices
correspond to automata - players, input arcs define players whose strategics influence
the payoff function of a player and output arcs define players whose payoff functions
depend on a strategy of a given player (see Fig 3),
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Figure 3: Example of an interaction graph of automata game with limited interactions with
a number of players N = 6.

d) the game is played this way that at discrete moment of time t = 0,1,2,... each player
selects independently his own strategy to maximize its own payoff. It is supposed that
automata have no a priori information about the game, i.e. about payoff functions,
their neighbours or a number of players in the game. They choose their actions only
on the base of their single rewards and penalties,

e) a solution for such a game is the Nash equlibrium point i.e. an N—tuple of actions,
one for each player, such that anyone who deviates from it unilaterally cannot possibly
improve its payoff.

It is known [16, 17] that automata team is able to find in the dynamic process of the
game the Nash equilibrum point. The question which arises here concerns the average value

N
Py, v?, ...,y = (}_: PRy, v, o, yV ) /N
k=1

of the payoff reccived by automata’ team in the Nash equilibrium point (y'*, y2*,...,y"V*).
Calculating the average automata team payoff for all combinations of automata actions in
the game we may find the actions’ combination, corresponding to the maximal price point
(or points) i.e. the point providing the maximal average payoff received by the automata
team. Unfortunatelly, the maximal price point very often does not correspond to the Nash
point and the average payoff received by automata team can be very low.

The solution for the problem in the case of homogeneous automata games with limited
interactions (the interaction graph of the game is regular) is introducing into the game a
distributed procedure of a conjugate exchange process [18, 20]. The following theorem is
the result of introducing the notion of the conjugate exchange process:

Theorem 1 Introducing the conjugate exchange process into the homogeneous game with
limited interactions transforms the mazimal price point into the Nash point.
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Figure 4: The average winning of the automata team in a homogenous automata game with
limited interaction (number of players N = 8): (a) game without the conjugate exchange
process, (b) game with the conjugate exchange process.

The conjugate exchange process in a game is equivalent an organization of a coalition
between neighbours in the game, where each player takes part simultaneusly in r coalitions,
where r is the degree of the interaction graph.

Fig. 4 shows some results of simulation study of homogeneous automata games with the
conjugate exchange process. It can be seen that the team of learning automata is able to
find the maximal price point providing for the team the maximal average payoff possible in
the game (for more details, see [16]).

4. PARALLEL AND DISTRIBUTED ALGORITHM
OF STATIC ALLOCATION

We will consider a process of searching of an optimal static allocation of a program
graph in a parallel computer as a dynamic learning automata game with limited interac-
tions [18, 19]. We interpret a program graph (Fig. la) as an interaction graph (Fig. 3)
of automata’ game. We use a learning automaton A* as a local decision-making unit U*
(Fig. 2) interacting with an environment by a local environment interpreter E*. We sup-
pose that each automaton A* (k = 1,2,...,N,) is iniately placed into some system node vl

(i=1,2,...,N,) as a part of a decision-making unit conjugated with a program node vf,f.

We suppose that in each node v} of the system graph exists a standart description of the
type (e}, ¢€b, ..., eﬁ,k) of edges incident with this node. Each automaton A* will have a set of
its 7 + 1 actions, i.e. the set (yo,¥1,%2,...,%r,) Which can be interpreted the following way:
yo-do not move (stop), y1,¥2,- - -, Yr,—move to a neighbour system node which is available
by edges €}, ¢}, . ..,ef,k respectively (Fig. 5).

This way we allow for each automaton to migrate in a system graph together with the
decision-making entity and conjugated with it the program node. The aim of each migrating
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k
p

is located in some node of a system graph. Its actions correspond to alternatives to move
to a neighbour system node or stay at given location.

Figure 5: Automaton A* (with a program node v* and a local environment interpreter £*)

automaton is to minimize a local cost function C¥ of a program node v,’; located actually in
a system node vj.

We suppose that the cost functions C¥ will be defined as

Cf = Cf;+ C3;,

where C¥F; is a heuristics measuring the average communication time between given pro-
gram node v;f located at the system node v and neighbour program nodes of the node vl’j,
located in some system nodes, and Céﬂ, is a heuristics responsible for balancing of computa-
tional load of program nodes. We sugest to define these functions the following way:

Tk
k : TOW - Tou!
CPi = O.SZakl * d;nin(s'(vp),s’(vp)),
=1
where: ag—the time needed to transfer data in the given computer system between
neighbour program nodes v:; and v,l) when they are located in the neighbours system nodes;

d:,in (s (vF), s7(v]})—the minimal distance between system nodes ¢ and j where are located

k

p> and

v

( by, if program node v} is located

in the system node i

without nodes being its neighbours
ck = | or nodes having common neighbours with it

br + 3 ntqbn, if program node v,'j is located in the v}
together with its neighbour nodes
L or nodes having common neigbours with it,




161

where: by, by—running times of program nodes v,’,f and vy respectively, located in the
system node v}; 7;~a number of neighbour program nodes of the 'v,’; or nodes having common

neighbours with it, located in the system node vi.

We can see that the local function of each automaton depends on its location in the
system graph and locations only its neighbour program nodes. A location of each program
node is in its turn a function of automaton parameters - automaton actions, which give
possibility of migration of the automaton. The automata migration is an adaptive, stochastic
and cooperative process of minimizing local cost functions assigned to automata and needs
maintaining a communication between given automaton and its neighbours. After each
automaton decision concerning its moving the automaton should inform its neighbours about
its new position in the next step, and it also should receive messages from its neighbours
about their new positions to be able to calculate a new value of its cost function.

In the result of the process of local interactions between automata we can expect achiev-
ing by the automata team an equilibrium point characterized by a set of locations of au-
tomata in the system graph which will provide for them stable values of their local cost
functions. To avoid reaching local minima and provide the possibility to achieve by the
automata team a global minimum it is necessary to introduce the exchange process [18, 20]
between automata. The conjugate exchange process is a process of exchanging between
neighbour automata information about local values of their cost functions C¥ and calcula-

tion a modified cost function Ef:

Tk
Ci = (CF+Y.ChH/(re + 1),
=1

where C}wa value of the cost function of [ — th neighbour of k — th antomaton. The
global equilibrium point reached by the automata team is connected with minimization by
the automata in a distributed manner the following global function:

Np

min( Z Ck)/N,.

k=1i€(1,2,...,N,)

In the case when weights of edges and nodes of the graph G/, are equal 1, the global function
describes the total average distance between the nodes of the graph i, in the graph G,. It
is equivalent to the mapping problem [21].

The algorithm of a distributed allocation of a program graph into a system graph can
be presented now. The algorithm has a sequential part providing a computational model of
a distributed environment and parallely implemented dynamic process of a program graph
allocation.
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Algorithm
SEQ

1. Partition the program graph G, into N, nodes and provide for each & — th node:

a) (a1, az,...,0.,) (* numbers of neighbour nodes *)
b) (a1,,az2,s--+50r,) (* weights of edges * )
c) by (* weight of the node k *)

2. Assign initially (e.g. randomly) each k — th program node with conjugated with it an
automaton A* and a local environment interpreter E* into i — th system node and
define (s'(vF), s (v k), ., 89k (vp k) (* locations of k — th program node

and its neighbours in the system graph *)

PAR

EF (* local environment interpreter *)

1. Set: nk_ =0, :=0

tter

(* lx - counter of interactions between automata team
for a given configuration of automata locations in the system graph, nf,, -
counter of iterations (games) of the allocation algorithm *)

Ak (* € - automaton *)

2. Choose (e.g. randomly) your current action y* (i.e. imitate moving to the neighbour
system node), send to your r; neighbours a message concerning the new action and
wait for messages concerning their new actions

EF :
3. Calculate the cost function C¥

4. Send the value C¥ to your r; neighbours and receive values of their CJ’:
(* exchanging process *)

5. Calculate modified cost function ?f

6. Store: C’ff,d = 6? and yfld = yk

L
7. Define (randomly) a new action y*
8. Perform Steps 3, 4 and 5

9. Accept as yk,,:



10.
11.
12.

13.

14.

15.
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Figure 6: Initial allocation of the first three program nodes in the system graph.

y*, with probability 1 — ¢ (0 < & < 1),if T5 > Ck, or yk,if Ck, > Tt
and with probability £/(rx + 1) any of rx + 1 actions of the automaton

Store: Cfld = Uf, vk, = vk, k= gk
Iy := 1l +1;if I < L then goto Step 8 (* L- a number of interactions *)
lp:=0

E* .

k

Move to neighbour system node corresponding to current action y* , send your new
address to your ry neighbours and wait for messages concerning their new locations
Set: nk_ :=nk  +1

If nk_, < T then goto Step 8

(* T- a number of iterations (games) of the allocation algorithm *)

5. AUTOMATA BASED ALLOCATION ALGORITHM
- A SIMULATION BY HAND

To provide a better insight into proposed allocation algorithm we discuss here the most
essential steps of the algorithm. For this reason we suppose that Steps 1 and 2 { (SEQ)
were performed and nodes of the program graph from Fig. la were randomly located into
the system graph from Fig. 1b. Fig. 6 shows possible initial allocation of the first three
program nodes in the system graph, i.e. the program node 1 is located in the system node
4, the program node 2 is located in the system node 3 and so on.

Let us have a look at the steps of the algorithm from point of view of learning au-
tomaton (we use a stochasic e- automaton [18-19] suitable to operate in a deterministic
environment) conjugated with e.g. the program node 1. The automaton A! has the set of
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actions {4,1,5,6,7} with the following meanning: 4 - do not move, 1 - move to the system
node 1 and so on. According to Step 2 (PAR ) the automaton A! chooses randomly its action,
e.g. y! = 7 (i.e. imitate moving to the system node 7) and informs neighbours automata A?
and A3 about its current action, waiting at the same system node for messages concerning
their current actions. To simplify our discussion we assume that weights of nodes and edges
of the program graph are equal 1 and actions of neihgbours automata A? and A3 are equal
y? = 3, y* = 9 (i.e., do not move) respectively and they do not change them in time.

After receiving messages random environment interpreter F'! can calculate the cost func-
tion Cf (Step 3). It evaluates first a minimal distance (a number of single hops ) to its
neighbours. The minimal distance is evaluated between the system node pointed by the
action of the automaton A! (node 7) and nodes pointed by the automata A? and A3 (nodes
2 and 9 respectively). These values are equal 2 and 1 respectively and a value of the cost
function is is equal C} = 1.5 (see the last column of Table 1).

Table 1. Minimal Distances of the Program Node 1 to Its Neighbours
Depending on an Action of the Automaton A! and Its Current Value of the Cost Function

i actions of automaton A! ! 4 [ 1 \ 5 | 6 | 7 |
drin(v3(y"), v2(¥%)) 211 21112
drin(v(y"), v3(y%)) 212 121111
Cl 21152115

In a similar way the automaton evaluates its next action (Steps 7, 8) to find the best one
in Step 9. In Step 11 the algorithm returns control to Step 8 and the sequence of Steps 8
- 10 is again repeated, eventually L times. During L iteractions automata do not change
their locations but only simulate changing and evaluate their best actions. As can be seen
from Table 1 the action 6 minimazing local function is the best for the automaton A! and
one can expect that the automaton will finally move to the system node 6 at Step 13 of the
algorithm.

Real situation defined by the algorithm (Steps 2 - 11) is however more complex because
the algorithm allows all automata to change their actions at the same step (Step 10). Fortu-
natelly, this sequence of steps exactly corresponds to the model of learning automata team
playing the game with limited interactions (see, Section 3), with the payment function P
corresponding to given allocation of the program nodes in the system graph. Initial alloca-
tion of the program graph nodes in the system graph defines the payment function P! of
the game. The game is played L times and at the end of the game automata actions point a
new plan of allocation minimazing the average value of computer and communication delays
between program nodes for given stage. The new plan of allocation is performed in Step 13
where a new game with a payment function P? is established. This way the allocation algo-
rithm may be considered as a sequence of T games with payment functions P!, P2, ..., PT,
each improving a plan of allocation.
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6. CONCLUSIONS

The problem of static allocation of a program graph in a parallel computer was consid-
ered. Parallel and distributed algorithm of the static allocation problem was presented. The
allocation process was interpreted as a sequance of dynamic games of learning automata.
Some results concerning a global behaviour of the automata team achieved only by a local
cooperation of automata taking part in games with limited interactions were applied. Tt
is expected that the algorithm will be able to produce a suboptimal or optimal allocation
corresponding to the minimum of the average total value of locally defined cost functions.
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ABSTRACT

I propose a general strategy for defining theories of
non~monotonic inference, and a particular theory for
use in connection with wethods for modeling uncertain
belief and reasonable action. Although non-monotonic
inference is defined without vreference to subjective
probability, my methods for modeling wuncertain Dbelief
and reasonable action are based on subjective probability.
1 can guarantee that the lottery paradox will not arise
in application of the particular theory in connection
with these methods.

1. INTRODUCTION

These notes are intended as a brief introduction to interlocking
mathematical formalisms for non-monotonic inference, uncertain belief

and reasonable action. 1 have presented these formalisms elsewhere
with substantial mathematical development. Here, the treatment will
be informal and interpretive. The comprehensive model is as well

suited for machine reasoning as for reasoning about everyday matters:
that is, there are no essential gaps in the mathematical development.

There are few influences on this project from the AI literature,
particularly the literature on non-monotonic reasoning. The model
for uncertain belief is related to a model of Fagin and Halpern,
but I worked independently, even reporting results a few months earlier
(see Shay [1], Fagin/Halpern [2]). The independent development should
not be surprising, since it proceeded from classical (inner and outer)
measure theory, whose rudiments are familiar to every mathematician.

There are substantial similarities to Shafer's theory of evidence
in the method for modeling uncertain belief. My explicit intention
was to develop a formalism that could represent Shafer's models,
but to supplant Dempster's rule with an alternate method for combining
models, namely, nondeterministic probability extensions. Necessary
and sufficient conditions for -such combination and many technical
details are to be found in [1]. Fagin and Halpern had other goals,
but observed also that classical measure theory was adequate to
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represent belief function models. This result was surprising, as
there had been much debate about whether or not classical probability
theory was adequate to cover the concerns of Shafer and other adherents
to his approach.

The method for modeling reasonable action 1is patterned, to
an extent, on the notion of random variable, and is a natural accretion
to the method for modeling wuncertain belief. It is intended as a
substitute for utility-based decision theory. I have seen no similar
model in the literature.

Neither have I seen any close counterpart to the strategy for
defining theories of non-monotonic reasoning, or the particular theory

that I have defined for the comprehensive model. In particular,
unlike many approaches to non-monotonic reasoning, my approach 1is
not intrinsically '"probabilistic', though there is an excellent fit
with subjective probabilistic ideas. Moreover, my approach, in
combination with probabilistic 1ideas, can readily circumvent the
lottery paradox. This must be counted as unusual (see e.g. Kyburg
(3]). A similar claim has been made by Bacchus [4] for his own
approach. However, in [4] he has far more limited goals in his
approach to non-monotonic inference, limiting its application to
default reasoning concerning ''statistical' probabilities. I don't

know of any other such claim, but I have little access to work in
progress.

The present account might appear at first to be over-burdened
with discussion, at the expense of mathematical development. I am
limited by space, but I also regard the present emphasis as suitable.
There has been substantial confusion <concerning Dempster-Shafer
formalism, for example, focused on multiple interpretations of
"evidence', "belief', '"'updating'', etc. Nevertheless, the mathematical
formalism that underlies much quarreling is utterly simple. Recent
examples of interpretive essays, intended to clarify these issues,
are of Dubois and Prade [5], and Pearl [6]. The 1inner and outer
measure approach to belief representation that I offer here is
superficially a special case of Shafer's belief function formalism.
However, it can be demonstrated as well that the belief function

formalism is a special case in measure theory. But these embeddings
are not inverses. This subtlety indicates at least the need for
clear distinctions, including distinct terminology. Ample discussion

is otherwise intended to prevent the quarreling that has erupted
in the Dempster—Shafer arena from spilling over.

Ideas for this project came to me as a result of focusing on
Aristotle's "Art of Rhetoric" [7] rather than on current literature

in AI. Aristotle 1is concerned in part with specifying what is
rhetorical syllogism ("enthymeme'), wrought from probabilities and
signs. My concern, in the comprehensive model, 1is to represent

accumulation of uncertain belief in considering arguments that might
be defeasible, and a relationship between beliefs and reasonable
action. There is a natural link between these concerns and themes
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of classical rhetoric (that has not greatly influenced AI methodology,
I think). Although action can be based on defeasible arguments,
there are no regrettable actions in my approach: any action taken
as a result of accepting a defeasible argument might have been taken

reasonably without such acceptance. This resilience 1is surprising
(to me).
2. BELIEF
I choose subjective probabilities for measuring beliefs. A

belief is an idea that is believed to an extent between O and 1.
This is conventional, but 1 do not require that every idea be believed.
A Boolean algebra of ideas under consideration (an agenda) contains
a sub-algebra of beliefs. A probability function measures extents
of belief in beliefs.

The ideas can serve as an agenda for more than one actor.
However, the beliefs of one actor might differ from the beliefs of
another (different subalgebras), and should an idea be held as a
belief by each of two actors, there needn't be agreement as to the
extents of belief (different probability measures on the intersection
of the two subalgebras).

Truth and falsity are not concerns of this project. The units
of Boolean algebras will be CERTAINTY and NONSENSE.

Inference 1is based primarily on the structure of the Boolean

algebras (material implication). However, I assume that actors
judgments are summarized in part by compatibility relations between
beliefs and ideas. If a belief is not compatible with the negation

of an idea (in the judgment of an actor) then that belief is a sure
sign (for him) of that idea. For one actor, "He is a Republican"
is a sure sign that "He 1s hard-hearted'"; for another actor, 'He
is a Republican" is compatible with '"He 1is hard-hearted" and with
"He is not hard-hearted". The notion of sure-sign 1is intended to
represent Aristotle's notion of necessary sign. Compatibility 1is
intended to represent Aristotle's notion of sign. (There is a natural
definition of to be a sign to an extent, but it 1is an outcome, rather
than presupposition, of the theory). Compatibility relations satisfy
axioms that guarantee that sure-significance 1is a (partial)
representation of material implication in quotient Boolean algebras.
Thus, different actors appear to be reasoning about the same
propositions (elements in a common Boolean algebra), yet exhibit
a form of variation that is common in everyday speech (and even in
formal deliberations) that can be interpreted as reasoning from distinct
(quotient) Boolean algebras. An example of an axiom 1is: a belief
is compatible with another if and only if their conjunction is believed
to extent greater than O. Another is: a belief 1is compatible with
the disjunction of two ideas if and only {if it is compatible with
one of them. Naturally implication is a special case of
sure-significance, if the antecedent is a belief.
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Sure-significance is associated with inference, not rough
inference, that is reasoning without paying heed to every special

case. The actor who believes Republicans are hard-hearted 1is not
prepared to consider exceptions. It is, to him, nonsensical that
there are exceptions. More clear-cut instances can be found in
scientific discourse. One generation of scientists will adopt
principles that will be overturned by the next generation (e.g.
"ontogeny recapitulates phylogeny'"). Until new discoveries, such

principles are used as '"laws of nature', intended to cover all special
cases.

3. CUMULATING BELIEF

To come to believe an idea that is not a belief is to choose

an extent of belief for that idea. The choice is constrained, for
the laws of subjective probability will apply to the extended set
of beliefs. The constraints are these: i) if a present belief is

a sure sign of an idea, then the extent of belief in that present
belief is a lower bound for the feasible extents of belief for that
idea; ii) if an extent of belief is feasible for an idea, 1 minus
that extent of belief is feasible for the negation of that idea.

Together, these constraints define for each idea an interval
of feasible extents of belief. If an idea is a belief, that interval
is degenerate, a singleton. To come to believe an idea that 1is not
a belief is to choose a feasible extent of belief from the interval
associated with it.

Evidently, the lower and upper bounds are closely associated
with the belief and plausibility functions of Dempster-Shafer theory.
They are inner and outer measures of classical measure theory. However,
belief and plausibility functions are not generally inner and outer
measures, yet canonical inner and outer measures can be associated
with a belief or plausibility function. Consequently, there 1is certain
to be confusion if I rely on the the Dempster-Shafer terminology.

I say that the lower bound of feasible extents of belief is
the assurance of an idea, and the upper bound of feasible extents
of belief is the promise of an idea. Evidently, promise is the upper
limit of assurance that develops as other ideas are adopted first
as beliefs.

Non-trivial theorems concerning extensions of probability measures
are required to support these comments. They are proved in [1].

Evidently, there is a sense 1in which this approach supports
intervalistic probability models. However, I do not identify an
interval with extent of belief. A belief function 1in Dempster-Shafer
theory determines a plausibility function (see Shafer [8]) and,
consequently, this identification has been effectively adopted there.
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4, RULES GOVERNING REASONABLE ACTION
In [9] T link actions to an agenda by rules of the sorts:

X will do A if he believes or comes to believe B
to extent lying in interval I;

X will do A only if he believes or comes to believe B
to extent lying in interval I;

and simple generalizations.

Actions, too, are elements of algebras, and consistency of
actions is defined in a manner analogous to compatibility of beliefs
and ideas. Rules can trigger inconsistent action. A set of rules
that cannot trigger inconsistent action is a consistent plan of action.

Suppose B is not believed to any extent, but its feasible extents
of belief lie within interval T, Should X wundertake to do A? The
sure~thing principle suggests that he should, but there will be
differences of opinion on this point.

Since an actor's regula concerning an agenda can refer to ideas
not believed, he can be motivated to «choose a feasible extent of
belief just so that he is thereby regulated to undertake an action,
or permitted to undertake an action. This is realistic, and a welcome
feature.

5. THEORIES OF ROUGH INFERENCE

T consider a non-monotonic inference operator, .ri., to be
a relation on a Boolean algebra: P.ri.Q signifies that P can be
inferred, roughly speaking, from Q.

1 offer a particularly simple strategy for determining whether
or not a relation is to be called a rough inference operator:

from a characterization of material implication by axioms,
including consequence monotonicity,
remove consequence monotonicity.

The residual axioms, a theory for rough inference, either
characterize material implication or fall short of it barely, failing
to guarantee consequence monotonicity. There are numerous non-monotonic
inference theories of this sort. A relation in a Boolean algebra
satisfying the axioms for a theory for rough inference 1is a rough
inference operator. I do not require that the relation be the largest
(perfect) relation satisfying those axioms. Techniques of Touretzky
[10] [11] can be applied to edit and extend rough inference operators
towards perfection.
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As simple and appropriate as this strategy is, I have not seen

it proposed elsewhere. Whether an author proposes axioms for a weak
inference relation or inference or deduction rules, almost always
the cartesian product relation will satisfy the restrictions. An

example is the propositional logical system, C, of Kraus et al. [12].
There seems to be a scholarly penchant for ensuring that monotonicity
can't be deduced, rather than ensuring that inference 1is characterized
if monotonicity is an additional requirement.

It should be noted that my strategy has no intrinsic connection
with probabilistic ideas.

The following axioms are a theory of rough inference:

REFLEXIVITY: each proposition 1is a rough antecedent of
itself;

SEPARATION: a proposition and its negation have no rough
antecedents in common other than NONSENSE;

ANTECEDENCE MONOTONICITY: a rough antecedent of a
proposition is a rough antecedent of every consequence
of that proposition.

For constrast, I will state the axiom of consequence monotonicity.
If this axiom is joined to any theory of rough inference, in particular
the theory consisting of the three axioms above, than any operator
in a Boolean algebra satisfying the axioms will be a sub-relation
of material implication.

CONSEQUENCE MONOTONICITY: every antecedent of a rough
antecedent of a proposition 1is a rough antecedent of
that proposition.

To illustrate: If a man works hard then, roughly speaking,
he will succeed in life; if a man is a prisoner 1in a state
penitentiary, then he works hard. Conclude from consequence
monotonicity that: if a man is a prisoner in a state penitentiary
then, roughly speaking, he will succeed in life. This is clumsy.
The focus of non-monotonic reasoning is to preclude such accounts.

On the other hand: If a man speaks French then, roughly speaking,
he will be able to read signs written in French; if a man can read
signs written in French, then he will not be easily lost in Paris.
According to antecedence monotonicity: if a man speaks French then,
roughly speaking, he will not be easily lost in Paris. This account
is more mnatural. The occasional blind speaker of French 1is an
exception, but not a troublesome exception.

The axioms of reflexivity, separation, and antecedence
monotonicity seem to be a reasonable core for more specialized theories.
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I will add several axioms to specify a theory that can be
integrated smoothly with the inner and outer measure approach to
representing belief. However, it will be helpful to consider first
how rough inference might be used to advance overall project goals.

Belief formation 1is 1incremental; cumulation of belief leads
to more complex activity. Inference, associated with sure-significance,
is the determinant of intervals of feasible extents of belief, and
thereby, a partial determinant of admissible action.

Rough inference might then be used to specify sets of feasible
extents of belief, subsets of the feasible sets specified by inference,
for rough inference dominates inference. How might such feasible
subsets be used? A conservative use would be this: an actor might
modify his plan of action by application of the sure-~thing principle
and rules governing action, but substituting feasible sets identified

by rough inference for feasible sets identified by inference. The
emphasis of this approach is on how to modify plans of action, not
how to modify belief. But this is a traditional goal of Al: to

learn how to act without regard for troublesome special cases.

An illustration will help clarify this point. Let PW be the
proposition: a person has been wounded as victim of a street crime,
but there is no longer any present danger. Let SF be the proposition:
I hear a shot fired, a scream, and the sound of someone running away.
SF is compatible with PW, but is not a sure sign of PW, in my judgment,
but 1 judge SF to be a rough sure sign of PW. Suppose 1 have a rule:
if T come to believe PW to extent between .9 and 1.0, then T will

seek out the victim and try to be helpful. On an occasion, I believe
SF to extent 1 (1 hear, and trust my senses). 1 act, according
to my rule, not because 1 adopt a belief to extent 1 in PW, but because
I have a meta-rule: I will undertake those actions that would be
triggered were rough inference to replace inference 1in specifying
feasible extents of belief. This meta-rule 1is reasonable, as rules

are the basis of a plan that is developed before beliefs concerning
an agenda are fully specified, and there should be some flexibility
with regard to their applicability.

Note that I do not adopt the belief to any extent that PW,
but only act as if I had. If T find the '"victim'" to be frightened,
but unhurt, I will not regret the action, as I was free to believe
in PW to extent 1, even without application of the meta-rule, and
consequently the action 1 took was a reasonable action, according
to my plan, at the time.

Technical issues associated with the feasible sets specified
by rough inference are these: i) might it happen that such feasible
sets be intervals? ii) might it happen that such feasible sets be
non—empty? iii) might it Thappen that whenever the feasible sets
associated with two propositions are both [0,0], that the feasible
set associated with their disjunction be also [0,0]? (i.e. might
it happen that the lottery paradox cannot arise?)
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I add axioms in two stages: two axioms will ensure that, in
my comprehensive model, feasible subsets determined by rough inference
will be sub-intervals of feasible extents of belief determined by
inference. A final axiom will guarantee that the lottery paradox
will not arise.

STRONG SEPARATION: if one proposition and a second are
rough antecedents of a third and of the negation of the
third respectively, then the first 1is a rough antecedent
of the negation of the second.

DISJUNCTIVE CLOSURE: if one proposition and a second
are rough antecedents of a third, then the disjunction
of the first and second 1is a rough antecedent of the
third.

With a few technical niceties (see Shay [13]) the rough inference
theory specified by the axioms of reflexivity, separation, antecedence
monotonicity, strong separation, and disjunctive closure will specify
non-empty subintervals of feasible extents of belief determined by

rough inference rather than inference. For every idea,
[rough-assurance, rough-promise] is a non-empty subinterval of
[assurance, promise]. For use 1in connection with the comprehensive

model, I modify these axioms slightly, taking into account that only
beliefs are to be rough antecedents, and that '"proposition'" can be
interpreted as an element of a quotient algebra, specified by an
(any) extension of the probability measure representing belief that
is consistent with sure-significance.

This theory seems adequate to represent belief formation based
on "rhetorical syllogism'. As belief formation proceeds ''one belief
at a time'", all that is neceded for guidance is restriction of the
intervals of feasible extents of belief without degeneration. If
the lottery paradox arises, it 1is resolved in the following manner:
an actor chooses convincing but defeasible arguments to support adopting
new beliefs, whereupon he revises his judgments concerning rough
antecedence non-monotonically. Since judgments of rough antecedence
are defeasible in principle, this is not wunreasonable progress.
Thus, although the lottery paradox can arise, it 1is not evidence
of inconsistent belief.

With the addition of another axiom, the lottery paradox can
be avoided altogether.

STRONG CONJUNCTIVE CLOSURE: if one proposition is a
rough antecedent of a second, and a third is a rough
antecedent of a fourth, then the conjunction of the first
and the third is a rough antecedent of the second and
the fourth.

Let the rough inference theory specified by the axioms of
reflexivity, separation, antecedence monotonicity, strong separation,
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disjunctive closure, and strong disjunctive closure be called the
theory of almost-sure-significance. In a Boclean algebra with a
rough inference relation satisfying these axioms, 1if a proposition
is a rough antecedent of a second, then the first is said to be an
almost sure sign of the second.

If the corresponding rough-assurance and rough-promise functions
are denoted ra and rp, then, for propositions A and B of the Boolean
algebra,

ra(A) + ra(B) <= ra(A and B) + ra(A or B);
rp(A) + rp(B) >= rp(A and B) + rp(A or B).

These are familiar properties of belief and plausibility functions
in Dempster-Shafer theory (see [8]).

It follows immediately that the 1lottery paradox cannot arise:
i.e. the upper bound of roughly feasible extents of belief of the
disjunction of propositions must be O 1if the <corresponding upper
bound for each disjunctive component is O.

The most conservative use of this theory was introduced earlier:
to adapt a reasonable plan of action by acting as if the feasible
extents of belief were specified by almost-sure-significance, rather
than sure-significance, carrying out only those actions triggered
by the sure-thing principle, while abstaining from any actual extension
of belief. This is a different use of rough inference from guiding
belief formation.

It is unreasonable to believe that my proposal for defining
theories of rough inference can capture the immense variety of forms
of commonsense reasoning. Nevertheless, I have been able to combine
simple principles to model rigourously and in a realistic manner
two styles of commonsense reasoning, and it 1is not wunreasonable to
expect more from this strategy.

6. THE LOTTERY
1 offer a more complex illustration:
The following ideas generate a Boolean algebra:
Facts (whose negations are not compatible with any ideas):
A lottery 1is 1in progress; there 1is exactly one winning ticket; a
person who has no ticket will not win the lottery.
Other ideas: I have a ticket; I have a winning ticket; there

are many tickets; I will win; the lottery is fair; my friend has
no ticket; my friend will win; I would be better off without a ticket.
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There is a community of bettors attentive to the present lottery.
They share the facts about the lottery, at least.

I have these beliefs: I believe facts to extent 1. I believe
to extent 1 that I have exactly one ticket, that my friend has no
ticket, that my friend will lose. I believe to extent .99 that the
lottery is fair, to extent .90 that there are many tickets.

I do not believe to any extent that I will win; nor do I believe
to any extent that I will win. These are 1ideas that 1 consider
believing, but do not believe.

Other bettors will have different extents of belief concerning
the fairness of the lotter, for example. I judge that wunfairness
in the lottery 1is incompatible with my winning. (1f is 1is unfair,
and I am not a conspirator, then I consider it nonsensical that 1
be the beneficiary). I think, therefore, that the lottery is not
fair is a sure sign that I will lose. Others might not share this
judgment.

The assurance my beliefs give me for the idea that T will lose
is .01; the promise of the idea that I will lose is 1.0, as there
are no sure signs (other than NONSENSE) that I will win,

I next consider rough antecedents: 1 judge that my having but
one ticket is, roughly speaking, a sure sign that I will lose. I
posit no other rough antecedents that are not sure signs. In
particular, I do not judge that my having but one ticket 1is, roughly
speaking, a sure sign that I am better off not having bought a ticket.

The rough~assurance my beliefs give me for the 1idea that I
will lose is 1.0. The rough-promise is 1.0 as well.

I have a rule: that if 1 come to believe to extent greater
than .95 that I will lose, then I will put the lottery out of mind.
(That is not to say I would be unvesponsive if I were declared the
winner). Using the feasible extents of belief associated with almost-
sure-significance, I apply the sure-thing principle, and put the
lottery out of mind. I do not believe to extent 1 that 1 will lose,
but 1 act as if I did.

7. CLOSING REMARKS

The example presented in the previous section appeared in [13],
to illustrate ''rhetorical syllogism". The results on the lottery
paradox, and the theory of almost-sure-significance are reported
for the first time here. [13] will be revised to follow this account
more closely. It should be clear that the frame problem is a natural
source of examples of a similar style. Actors can act as if changes
of state of record are the changes of state in fact, without believing
to extent 1 that they are.
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Abstract

A bottom-up approach to evaluate non-Horn rules in indefinite databases is presented.
Tabular structures, called C-tables, are used to represent disjunctive facts. Algebraic
operations on C-tables are used to evaluate non-Horn rules. The bottom-up approach
computes the fixpoint semantics of disjunctive deductive databases.

1 INTRODUCTION

In recent years, the field of deductive databases has been the focus of intense research and
there has been a dramatic advance in the understanding of the theoretical and practical issues
involved. A substantial amount of effort has gone into definite deductive databases, a subclass
of deductive databases in which only Horn clauses are allowed. The semantics of such databases
are fully understood and there has been a great deal of research dealing with implementation
issues, particularly in query optimization in the presence of recursive rules. This research has
culminated in various experimental systems like NAIL! [MUG86], LDL [NT88], and Postgres
[SR86], the utility of which have been successfully demonstrated. Therefore, it is not unrea-
sonable to assume that within the next decade, commercial systems with deductive capabilities
will become available.

In the presence of a large number of facts and relatively few rules, as is the case with defi-
nite deductive databases, the bottom-up evaluation of rules (with optimization techniques like
magic sets) performs much more efficiently than top-down evaluation. Moreover, the bottom-
up evaluation using the relational algebra can take advantage of the efficient database access
techniques involving joins that are a part of modern day relational database management sys-
tems. For these and other reasons the successful experimental systems like LDL and NAIL!
have opted for the bottom-up evaluation model.

Indefinite deductive databases, which allow non-Horn clauses, are a subject of study by
many researchers. Many of the semantic issues for indefinite deductive databases have recently
been solved. The declarative, fixpoint and procedural semantics for disjunctive logic programs
have been presented in [MR90]. Since deductive databases and logic programs share the same
form of representation (clausal form), most of the semantics for disjunctive logic programs can
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be carried over to indefinite deductive databases. In particular, if we disallow function symbols
and restrict ourselves to pure non-Horn clauses (atoms on both sides of the « symbol), the
semantics of indefinite deductive databases is very well understood. The declarative semantics
corresponds to the set of minimal models of the database and the fixpoint semantics is obtained
using the 75 operator. The equivalence of declarative and fixpoint semantics is shown in [MR90].
Thesc semantics will be the basis of our bottom-up approach to evaluate non-Horn rules.

In this paper, we present a bottom-up algebraic approach to evaluate non-Horn clauses. We
use a modified version C-tables of {IJ81] to represent the extensional database of disjunctive
facts. The algebraic operations defined on C-tables are then used to evaluate the non-Horn
clauses of the intensional database.

2 BACKGROUND

As far as this paper is concerned, we shall restrict indefinite deductive databases to consist of
non-Horn clauses of the form

A],...,AnHBl,...,Bm

where A4;s and B;s are atomic formulas that do not contain function symbols.

2.1 Semantics of Indefinite Deductive Databases

The declarative semantics of indefinite deductive databases is based on Herbrand models. Such
databases do not possess a unique smallest Herbrand model, but instead have a collection of
minimal Herbrand models [Min82]. The following theorem illustrates the declarative semantics:

Theorem 2.1 ([Min82]) For an indefinite deductive database P and for every positive clause
E, P = E if and only if E is true in every minimal model of P.

The fizpoint semantics is based on the immediate consequence operator T} defined in
[MRO0]. For this, we need the notion of the eztended Herbrand Base, EH Bp for database
P, which is defined to be the set of all finite disjunctions of different atoms of the Herbrand
Base HBp. T} is defined as follows:

TH(S)={C € EHBp | C'+« By,...,B, is a ground instance of a program
clause in P and B, V Cy,...,B, V C, are in 5 and
C'=C'VCyV---VCp, where Vi, 1 <1 <, C; can be null, and
C is the smallest factor of C"}.

Define the powers of T} as follows:

TH10=10
TET (i+1) = TLTH T (4))
TL T w=Wwb{Ti1 (i)]i < w}

Example 2.1 Consider the following database taken from [GM89]:
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r3(a1,as) V r3(as, aq)
r3(a4, as)

ra(z,y) « ra(z,y)
1’4(.’1:,3/) A 7‘3(13’:’")77'4(2,?4)
7'1(13),7'2(5’) A TJ(may)
m1(y) « ra3(z,y)

T} 1 w for this database is:
TEtw = {r3(a1,a3)V rs(as,aq),rs(as, as),

rl(ae),rl(a3) V 7‘3(&3,(14), T](Uq) \% 1’3((11,(13),
r3(ar,a3) V rias, a4),m3(as, as) V ry(ar, a3), r4(ay, ae)

ri(ar) V ra(as) V r3(as, as),71(as) V ri(as), ri(as) V ra(as) V r3(ay, as),
T (0,3) \% 1‘3((13, (L;), 7‘1((13) A% 7‘4((13, ae),rl(a4) \Y 7“2((16),

ri(aq) V ry(ay, as), ra( a1, az) V ry(as, ag), ra(a, as) V ry(as, aq),
rs(a1,a3) V ry(as, ag),

ri(a1) Vri(aq) V ra(as),ri(a1) V ra{as) V ry(as, ay),
ri(a1) V ra(as) V ri(as, as), r1{as) V r2(ay),
r1(a3) V ra(ae)}

We can remove the disjunct 7(a3) V ry(ay) V 73(a1,a3) since it is subsumed by the disjunct
7'1((13) V‘T'g.((lq). (]

We shall return to this example at a later point in the paper.
The following theorem 1llustrates the fixpoint semantics of indefinite deductive databases:

Theorem 2.2 ([MR90]) For an indefinite deductive database P and a positive clause E, P |= E
if and only if TL T w |= E if and only if E is true in every minimal model of P.

Essentially, T£ T w is equivalent to the set of all disjunctions that are true in each minimal
model. The bottom-up algebraic method presented in this paper will essentially capture all the
disjuncts in TH T w.

2.2 C-tables and Disjunctive Facts

The C-table structure of {IJ81] is capable of representing more general kinds of incomplete
information, but we shall nse them to represent disjunctive facts. We shall now define C-tables.

A domain is a set of values, usually finite. A relation scheme is a list of attribute names,
(A1,...,A,). We associate a domain with each attribute. Let Dy,..., D, be the domains
associated with the attributes 4;,..., A, respectively. Let V be a set of distinguished variables
and C be a set of distinguished constants. Let us define Deonp to be a special domain of logical
conditions formed from the elements of V, C. We shall associate the domain Dconp with a
special attribute COND. A C-table T over the scheme (R,COND), where R = (A4,...,4,),
consists of tuples (t,c¢) where t € Dy x -+ x D, and ¢ € Dconp- The tuple (¢, c) belonging to
the C-table T can be interpreted as the logical formula
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c— T(t)

i.e. if the condition ¢ were true then the tuple ¢ belongs to the relation 7. The C-table can be
used to represent ground disjunctive facts. For example, the ground disjunctive fact »(¢,)Vr(t,)
can be represented by the two tuples (¢;,z = a) and (¢2,z # a) in the C-table T for predicate
r. The justification for this is the fact that

((e = a) = T(t)) A ((= # a) — T(t2))
logically implies 7'(¢;) V T(¢2). In general, a ground disjunctive fact
7'1(751) VeV ’)"ﬂ(tn)
will be represented by (n — 1) tuples of the form (t;,z = a;) in the C-table T; for predicate
riy 1 <1 <n -1 and a tuple of the form (¢t,,z # a; A--- Az # a,,-1) in the C-table T, for
predicate r,,. Conversely, if there are n tuples of the form (¢;,¢;) in C-table 7;, 1 < ¢ < n, such

that c; V--- V¢, is a tautology, then we say that the ground disjunctive fact ri(¢;)V---Vr.(¢,)
is represented in the C-tables, where T} is the C-table for the predicate r;.

Example 2.2 Let us consider the following disjunctive facts:

bg(John, A)
bg(Tom,A) V bg(Tom, B)
bg(Gary, A) V bg(Gary, B) V bg(Gary, O)

These disjunctive facts can be represented in the following C-table:

BG
| NAME | BGROUP || COND ]

John A true

Tom A T =0

Tom B z#a

Gary A y=a

Gary |B y=2>b

Gary ]0 EDICED)

A C-table is said to be normalized if
1. it does not contain two tuples (¢1,¢;) and (¢, cy) with ¢y = ¢, and
2. it does not contain a tuple of the form (t,c), where c is a contradiction.

To normalize a C-table, we simple delete all tuples of the form (t,c), where c is a contradiction.
and combine the tuples (¢,¢;),...,(t,ck) into one tuple (¢,¢1V---Veg) (It can be easily observed
that the logical formula (¢; — T(¢))A---A(cx — T(t)) is logically equivalent to (c; V-V —
T(t))). We shall assume that all C-tables are normalized. Often, we shall replace tuple (¢,c)
by (¢,c') where c and ¢’ are equivalent. If T' were a C-table then we denote its normalized form
by T=.

We now define the relevant extended relational algebraic operations for C-tables.
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Selection Let T be a C-table defined on the scheme (R,COND) and let F be a selection
formula involving the attributes of R. Then,

or(Th) = {t|(3t:)(t: € Ty At[R] = t,[R] A t{CON] = (t,{CON] A F(t,))}"

where F(t;) is F with all occurrences of attribute A replaced by ¢{4]. An example of the
selection operation is shown below:

T

v , O(B=b)v(B=b))(T)
|A[B]COND ] [A[B[COND]
a

ay | by || true
1

1161 || true

a | b ||z=a

(3] bl L =4a

a (b2 |z #a

a; | by ||z #a
a3 b |y=a a2 62 yia
az [ b |y Fa 312

Projection Let T be a C-table defined on the scheme (R,COND) and let Y be a list of
attributes of R. Then,

Ty (Th) = {t|(3t)(ts € Ty A Y] = 4,[Y] At{CON] = t,[CON})}*

An example of the projection operation is shown below:

T
(ATBCOND] I1,(7)
ay | b || true l
a | by iz=a ap || true
ay by jz#a day || true
ay | b3 fly=a az |y #a
as | by | yF#a ayfl z=a
as { by | z=a as | z # a
as [ by | zF#a

Join Let T and W be two C-tables defined on the schemes (R,COND) and (S,COND)
respectively. Then,

Tora W= {t | (Etl)(atg)(tl ETAt,e WA t[R] == tl[R] A t[S — R] = tz[S - R]/\
HCON] = (W[CON|AICONIA A (t[A] = L] AD)}

Aefins

An example of the join operation is shown below:
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T W TwaW
[A]B]C¢oND] [B]C]COND| lAleICIICOND ]

a; | by || true by | ¢ | true ay | by | ¢ | true

b = b — a1 | by | |lz=a

az 2 | T=a 1|Cflz=a PR I z#a
. :2 zfa 21 . %»a az | by |y z=aAhw=a
a4 |3 jYy=a 2 | Cyllw=a T lalsfarw=0a
ay |byfy#a by |csjw#a ay |bz|es |y=aAhwi+#a

Union Let Ty and T, be two C-tables defined on the scheme (R, COND). Then,
T]UT2 = {t[tETlvt € Tz}*

An example of the union operation is given below:

T TyUT,

[A|COND ] Ty | A || COND ]

a, || true A CONDJ ay |j true

a |lz=a as || true as || true

az flz#a a; | z=a a3 |z #a

a; |y=a as | z#£ a ay | (y=a)V(z=na)

as ||y =2>5 ag | w=a as | (y=b)V(z+#a)

ag [y Fany#b as | (y#any#£b)V(w=a)

3 BOTTOM-UP APPROACH

In this section, we present a bottom-up algorithm to evaluate non-Horn clauses in an indefinite
deductive database. The projection operation is further generalized to be able to produce
disjunctive facts that can be derived from the multiple atoms in the head of non-Horn clauses.
Such a generalization is called project-or. We then define IDB equations which are based on the
algebraic operations on C-tables. An algorithm to solve the IDB equations is presented. The
solution to the IDB equations of an indefinite deductive database correspond to their fixpoint
semantics.

3.1 Project-Or operator
Consider the following non-Horn clause:
p(z,9),9(z, z) «- r(z, 2), (2, 9)

The extended relational algebraic operations defined earlier can be used to compute the C-table
that corresponds to the body of the clause. The following algebraic expression corresponds to

the C-table, BODY for the body of the clause:
BODY(X, Y, Z) = H_\")-',Z(R(X, Z) D> S(Z, Y)),
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where R and S are the M-tables for the predicates r and s respectively. If this were a Horn
clause with only one atom in the head, we could use an appropriate projection operation to
compute the C-table for the head predicate. However, since we have two atoms in the head
of the clause, we need to further extend the projection operation. Such an operation, which
we shall term project-or, must take in as input a C-table (one that corresponds to the body of
the clause) and projection attribute lists, one for each atom in the head and return as output
C-tables, one for each distinct head predicate. We shall use the symbol II for project-or. In
the example clause, the project-or operation is

P,Q = v opx .2 (BODY (X, Y, Z)).

This operation will return two C-tables P and Q. Let us now discuss what the contents of P
and @ should be. Suppose that the C-table for the body of the clause is

BODY
| X|Y][Z]COND|
ap | by | ey || true
az | by lca |z =a
ay | b3 |czf|z#a

The project-or should produce the following C-tables:

P Q
(X[Y[coND ]  [X[Z[COND ]
a |bhly=a e lallyfa
a, | b lze=aAu=a ay | |z=aAhus#a
a; | b3z £aAv=a] a; |csilzFahvia

where y, u, and v are newly generated variables used to express the disjunctions which can be
derived by using the non-Horn clause and the tuples of BODY.
We shall now present a formal operational definition of the project-or operation.

Project-or Let T be an input C-table defined on the scheme (R,COND) and let ¥3,...,Y,
be a list of sets of projection attribute lists made up of attributes of R. Some of the ¥;s
may be empty sets. Let X|,...,X,, be the non-empty sets among Yi,...,Y, such that
X =Yy, 1 <1 < m. Let the order of the Y;s be maintained among X;s, i.e. ¢ < j iff
ki <kjy1<i,7<m.Ifm=1andif X,, is a singleton, then the project-or operation
simply reduces to the projection operation. So, we shall assume for the remaining of this
definition that m > 1. The sets Y,...,Y, correspond to the output C-tables T3,...,T,
respectively. The T;s are computed as follows:

Case 1: Y; =0 In this case T; = 0.
Case 2: Y; #£ 0 Let X; = {Xi,..., X}, 1 <1 < m. For each tuple (¢,¢) in T,

1. introduce tuples (Ix; (¢),c Az = aa),...,(Ilx,, (¢),c Az = a;,) in C-table Ty,
1<i<m,

2. introduce tuples (Ilx,, (t),c A & = am), ..., (IIx,.,, . _,,(t) e AT = am(p,.-1)) in
C-table T}, and
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3. introduce the tuple (Iy,,, (t),cAz # a3 A+ A2 # @(p,,—1)) in C-table Ty,

where z is a unique variable symbol of ¥ and a,;s are different constants from C. Finally,
the resulting C-tables are normalized. An example of the project-or operation is shown
below:

P,Q = a2),0.34@yHT)

T
a; | by | ¢ || true
as bz C2 r=a
ay | b3 |eczl|z#a

P
@b ||ly=a 0
a1 | ¢ y#a/\y#b 3
1
a | |z=aAhu=a
a | llz=arAuftFarNu#b
ay|bllzfanv=a
a;lezflzfanvFanv#bd

ally=¢b
byl lz=aAu=1b
b3 C3 .’E#a,/\v:tb

3.2 IDB Equations and their Solution

Let DB = EDBUIDB be an indefinite deductive database where the £ DB part is represented
as C-tables and the IDB part consists of non-Horn rules. We can partition the set of DB
predicates based on the equivalence relation “predicate p is related to predicate ¢ if and only if
p and g both appear in the head of the same non-Horn rule”. We can use this partition to define
a partition of the set of non-Horn rules in /DB based on the equivalence relation “non-Horn
rule 7, is related to non-Horn rule r; if and only if there exists head predicate p; in r; and head
predicate p, in v, such that p; and p, appear in the same equivalence class of predicates”.

Let II = {II,,...,II,} be the partition of the set of non-Horn rules of the IDB. We shall
obtain an IDB equation for each element of this partition. Let II; = {r;,...,7+} define the
predicates p;,,...,p; (the head predicates in the rules of II;) and let » € II; be the following
non-Horn rule:

pl(Xl),'- -,pm(Xm) & QI(K)P M 'aqﬂ(},ﬂ)

The algebraic expression for the body of 7 can be obtained in a straightforward way using the
algorithm presented in Chapter 3 of [Ul188]. Let EVALRULE(r,Q1,...,Q,) be the algebraic
expression for the body of 7, where Q); is the C-table for the predicate ¢;. Then, the algebraic
expression for the rule r is

E(r) =11y, 2(EVALRULE(r,Q1,...,Qn))

.....

where Z; = 0 if p; does not appear in the head of the rule and Z; = {Xj,..., X}, } if p; appears
in the head of r as p;,,...,pj,. The IDB equation for II; is
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i=1

Remark: The union in this equation is a natural generalization of the union of C-tables and

is defined as follows:

Ry,...,ReUS1,..., 5 =R US,..., B U5,

where R; and 5; are union compatible C-tables, 1 < i < k.

k
We shall write U E(r;) as EVAL(1L;, Py,..., Py, Ry,...,R,), where Py,..., P, are the

1==1
C-tables for the IDB predicates and Ry,..., R, are the EDB C-tables.
Example 3.1 Let the IDB part contain the following rules:

Ty pl(z,y)’pQ(zaz) A q(:c,y),r(y,z)

ra: pa(z,y) + q(=,2), pa(y)

r3: pl(ma y),Pa(l) — r(:c,y),s(y,z) :

ret pae) < q(z,y)

st palz), psy) e r(z,y),pu(y)
rer  pe(2,y),p7(2), pely, ) ¢ (2, 2), p2(2,9)

7t p7(z) « ps(z,y)

The partition of the set of IDB predicates is {{p;, p2, 03}, {ps,Ps},{ps, p7}} and the partition

of the set of tules is {{r1,72,73}, {r4,7s}, {re,77}}. The IDB equations are

Py, PPy = Ixypx2e(@X,Y) = R(Y, 2))U

Ho,((x.111,0(Q(X, Z) = Py(Y))U
Mo (@ BX, Y ) wa S(Y, Z))

Py, P; = Hyxype(@(X, Y))U
Mg (R(X, Y) va Py(Y'))

Fs, P = yoonyonnnienpB(X, 2) s P(Z,Y))U
Hp, 1) (Pe( X, Y))

a

We shall now present an algorithm to solve a set of IDB equations. Let p;,...,p. be the
IDB predicates of an indefinite deductive database and Py,..., P, be the corresponding C-
tables. Also let Ry,..., R, be the EDB C-tables of the database. Suppose that the partition of
the non-Horn rules in IDB is {II,,...,1I;}. We shall denote the predicates defined in partition
II; by piyy---sPin,» 1 £ 1 < k. The algorithm to compute a solution to the IDB equations of an
indefinite deductive database is given in Figure 1.

Example 3.2 Let us reconsider the disjunctive database of Example 2.1. The extensional
database can be represented in the following C-table:

R3
ay | ag || true
alaz||z=a
az |as |z #a
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fori:«—1tomdo P. =19
repeat
fori —1tomdo Q;,=F;
fori « 1to k do
N EVAL(IL;, Q1,. .., Qm, Riy..., Rn)
until @; = P, forall,1 <1< m
output Q,,...,Q,,

Figure 1: Algorithm to solve IDB equations

The IDB equations for the non-Horn rules are:

R4 = Wyx ) (R3(X, Y)) Uy )y (R3(X, Z) > R4(Z,Y))
R1, B2 = Wx)) o R3(Y, X)) U gy, gy (RA(X, Y))

Computing the solution to these equations, we obtain the following normalized C-tables:

R4 R1
ay | ag || true ag || true
ajlaz||lz=a az | (z=a)V(u=a)V(v=a)
azlay|z#e ay | (x #a)V(y =a)
azlag |z F#a a; | z=aAhNz=a
R2

ae || (y#a)V(z#aAv#a)

az | (z=aAz#a)

ay || (z #aAu#a)

Let us confirm if this solution indeed corresponds to T}, T w of Example 2.1. Consider the tuples
(a1,2 =aAz=a)€ Rl (a3,2 =aAz#a)€ R2, and ((as,ay),z # a) € R4. Since (z =
aANz=a)V(z=aAz#a)V(z #a)is a tautology, we conclude that ri(a;) Vri(as) Vry(as, ay)
is represented in the C-tables. A tedious verification will indicate that for every set of tuples in
the C-tables such that the disjunction of their conditions is a tautology, we can find a disjunct in
T} 1 w that is represented by this set of tuples. Conversely, consider the disjunct 7, (as) Vra(a,)
in T/ T w. The tuples that correspond to this disjunct are (a3, (z = a)V(u = a) V(v = a)) € R1
and (as,z # a Au # a) € R2. The disjunction of the conditions ((z = a)V (v =a)V (v =
a))V(z # a Au # a) is a tautology and hence the disjunct ri(a3) V r2(ay) is represented in
the C-tables. Once again, a tedious verification will indicate that every disjunct in 7} T w is
represented in the C-tables. a

4 CURRENT STATE OF KNOWLEDGE

As has been noted earlier, most of the research on implementation issues of deductive databases
has concentrated on definite deductive databases. A comprehensive discussion of these results
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can be found in [U1188]. As far as indefinite deductive databases and their implementations are
concerned, one can find relatively few scattered work. We shall mention some of the bottom-up
methods for indefinite deductive databases.

Henschen and Park [HP88] provide results with respect to yes/no answers to queries posed
over indefinite deductive databases. They handle negation by using the Generalized Closed
World Assumption (GCWA). They present several fundamental results on compiling the GCWA
in indefinite deductive databases. They also present three representation schemes which sepa-
rate the rules from the facts. Using these schemes, they isolate the deduction part in answering
queries from the retrieval part. Several effective ways for compiling the GCWA inference on the
rules and evaluating it through the facts are presented for non-recursive databases. Recursive
rules are not adequately treated. ‘

Grant and Minker [GMB86] have developed algorithms to answer arbitrary queries in indef-
inite databases. They provide algorithms to check if a candidate answer is indeed an answer
to the query. Using this algorithm, they present an algorithm to find all minimal answers to
queries. Although this paper does not deal with rules, queries can be answered by straightfor-
ward extensions to the algorithms.

Imielinski’s C-tables [IJ81] are capable of representing disjunctive facts. The extended
relational algebra can be used to answer queries in indefinite databases without rules.

Liu and Sunderraman [LS91] present a generalization to the relational model to represent
disjunctive facts in tabular structures called M-tables. Queries can be answered using the gen-
eralized relational algebra. In [LS90], they apply the generalized model to indefinite deductive
databases.
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ABSTRACT

We present the inheritance system in a knowledge representation formalism called
Conceptual Network. Exceptions can be represented in this formalism by means of
conditions attached to conceptual relations. The explicit representation of exceptions
allows us to implement monotonic inference for the inheritance problem. We look at
the way in which our inheritance system works on some of the classical examples.
This system offers a new approach to the inheritance problem, with a new
representation method and a simple monotonic inference algorithm.

1. INTRODUCTION

An inheritance system is a representation system founded on the hierarchical structuring of
knowledge 10, This structuring is known in Artificial Intelligence as the inheritance
hierarchy. Methods of representing inheritance hierarchies include Fahlman’s NETL
system 4 5, Etherington and Reiter’s system—the default logic approach 2 3, Padgham’s
lattice-based mode! 6, and Shastri’s evidential formalization 7- 8. These systems all have
their limitations. For instance, in NETL the inferences are performed in parallel. As
Etherington and Reiter note, “there is the unfeasibility of completely general massively
parallel architectures for dealing with inheritance with exceptions” 3. They formulate the
problem of inheritance in terms of default logic, and provide a non-monotonic inference
method.

In this paper, we present the inheritance system in a knowledge representation system
called Conceptual Network (in short: CN). The representation of inheritance hierarchies in
CN allows us to implement a monotonic inference method for dealing with the problem of
inheritance. This offers a new approach to the inheritance problem. We first briefly
introduce CN. Next, the representation of inheritance hierarchies in CN is presented. We
give a monotonic inference algorithm for inheritance with exceptions, and apply it to some
classical examples. All of the ideas presented in this paper are now being implemented.

* This work was supported by the Natural Sciences and Engineering Research Council of Canada, and by
Cognos Inc.

“* On leave from the University of Ottawa
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2. CONCEPTUAL NETWORK

The Conceptual Network formalism 12.13. 14 was developed with TANKA, a system for
semi-automatic knowledge acquisition by text analysis 9, and it is used there to represent
knowledge. TANKA will process technical text, and incrementally build a conceptual
network which models the domain; text understanding will be turned into knowledge
acquisition.

There are four basic elements in CN: concepts, relations, structures and conditions.
Knowledge is represented by a combination of these four elements. A concept represents a
number of instances in the world. We use I(¢) to denote the set of instances of concept c.
Concept c! is called a subclass of concept ¢2 (and ¢2 a superclass of ¢/) if and only if I(c)
is a subset of /(c2). Concepts are broadly classified into three groups: objects, activities,
and properties. Relations capture the relationships that hold between concepts. CN only
supports binary relations. Two hierarchical relations, specialization is_a and generalization
kind, are used to build the inheritance hierarchies.

Conditions represent contextual restrictions on the concepts involved in a relation. Let R be
a relation between concepts ¢l and c2. A condition attached to R{cl, ¢2) can be regarded as
the description of a subclass ¢’ of ¢/ and a subclass ¢2’ of ¢2: only ¢!’ and ¢2’ can be in
the relation R. The condition is a logical expression built of simple conditions. We will not
give the precise definition of simple conditions in this paper, because we have only special
forms of simple conditions in the hierarchies. The following are two examples of simple
conditions:

elephant isnot royal elephant
describes the set of instances of elephant, {i i € I(elephant)\I(royal_elephant)}and

elephant is royal elephant

describes the set of instances of elephant, {i|i € I(elephant) N I(royal_elephant)}. We say
that a simple condition Cond is satisfied by an instance i if and only if i is in the set of
instances described by Cond; Cond is unsatisfied by i if and only if i is not in the set of
instances described by Cond.

Structures are used to represent complex concepts, composed of other concepts. The
available structures are individual, sequence, collection, tuple, union, and intersection.

In the textual notation for CN, every concept is associated with a cluster of concepts
directly linked to it by binary relations. We call such a cluster a frame of this concept. A
frame is notated as a group of slots, each describing one link. The format of a frame of
concept c0 is:

type of c0 c0.

slots.

end cO0.
where type of c0 is OBJECT, ACTIVITY or PROPERTY. There must be at least one slot in a
frame. Each slot denotes a relation between c0 and another concept. If the relation is a
hierarchical relation (is_a, kinda), the slot is called a hierarchical slot. The format of a
hierarchical slot is:

[condition] relation_name: (structure_of ci) ci
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where relation name must be is_a or kind. Such slots describe a hierarchical
relationship between concept co0, whose type is type_of_c0, and concept
(structure of ci) ci of the same type. If structure of_ci is not individual,
(structure_of ci) ci represents a complex concept. The default is individual:
(individual) ci is the same as ci. The default for condition is t rue. We introduce
conditions into hierarchical slots to deal with exceptions—this will be shown later.

3. REPRESENTING INHERITANCE HIERARCHIES IN CN

To deal with inheritance with exceptions, Etherington and Reiter have identified 5 link
types 3, used to represent the inheritance hierarchies. In CN these links are represented as
follows:

1) Strict IS-A
type of cl cl.
is a: c2.

cl is ¢2, that is, any instance of ¢/ is always an instance of ¢2.

2) Strict [S-NOT-A

type of cl cl.

[false] is_a: c2.

end cl.
cl is not ¢2, that is, no instance of ¢/ is an instance of ¢2. No instance can satisfy the false
condition. For a given instance i, if a condition does not hold for i, it is called an
unsatisfied condition. Unsatisfied conditions are used to block inheritance from the
superclass—this will be discussed in detail in the next section.

3) Default IS-A
type_of _cl cl.
[this_frame isnot ce] is_a: c¢2.

......

Normally ¢/ is ¢2, but there may be exceptions. In other words, any instance in I(c1)\

I(ce) is an instance of ¢2. We should note that only the instances in I(cZ) M I(ce), rather
than all the instances /(ce), are not the instances of ¢2. When ce is a subclass of ¢!, the
condition implies that any ce is not ¢2.

4) Default ISN'T-A
type_of cl cl.
[this_frame is ce]l is_a: c2.
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Normally ¢/ is not ¢Z, but there may be exceptions. In other words, instances of c1,

excluding instances of ce, are not instances of c¢2. Thus, the instances in I(cl) M I(ce) are
c2. When ce is a subclass of ¢!, this condition implies that ce is ¢2.

5) Exception

The exception link in Etherington and Reiter’s method is already represented in the
conditions of our representation of default IS-A and ISN’T-A. Actually, exception links in
their method are always attached to other links, and they describe exceptions to the
knowledge represented by those links. That is why we do not have to represent them
separately.

Without the loss of generality, we consider only single exceptions. If there were more, we
would use complex conditions. A condition of the form

{this frame isnot cej AND this frame isnot cep AND ...}

with only the AND operator is for default IS-A (cej, ce2, ... are exceptions). A condition
of the form

[this_frame is cej; OR this frame is cep OR ...]
with only the OR operator is for default ISN'T-A.
We illustrate our representation with the following example 11:
F1: Elephants are grey things.
F2: Royal elephants are elephants.
F3: Royal elephants are not grey things.

Our representation of these facts is:
OBJECT elephant.
(this frame isnot royal_elephant] is_a: grey thing
end elephant.

OBJECT royal elephant.
is_a: elephant.
end royal elephant.

In Etherington and Reiter’s approach, assertions F1 - F3 would be represented as the
following default rule D1, and first-order assertions A1, A2:

elephant (x) : NOT royal-elephant (x)

D1l:

grey-thing (x)
Al: (x) royal-elephant (x) --> NOT grey-thing(x)
A2: (x) royal-elephant (x) —--> elephant (x)

Notice that we must encode F3 in the assertion Al in spite of the fact that this information
is already implicit in the information encoded in A2 and D1. If royal-elephant is a subclass
of elephant and elephants other than royal elephants are grey, then it follows that royal
elephants are not grey. The CN representation overcomes this drawback—no explicit
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relation is required to encode F3, which is captured in the condition of the relation
is_a(elephant, grey_thing) and the hierarchical relation is_a(royal elephant, elephant). The
condition in the first frame shows that elephant is grey thing unless it is royal_elephant,
and the hierarchical relation in the second frame means that each royal elephant is elephant.
The fact that royal_elephant is not grey thing is captured by both this condition and this
hierarchical relation (see the CN representation of ‘default IS-A’).

4. MONOTONIC INFERENCE

For a given instance i, a concept ¢ is called a positive concept of i if and only if it has i as its
instance. ¢ is called a negative concept of i if and only if it does not have i as its instance.
We are concerned with the following inheritance problem:

Given are two sets of concepts, P = {cpy, ¢p2, ..., cpi}, and N = {cny, cnp, ..., cny .
Concepts in P are positive concepts of an instance i. Concepts in N are negative concepts
of i. We have two inference rules.

Rule]l
cl is a positive concept of i & is_a(cl, c2) &
i satisfies the condition of is_a(cl, c2)

=> ¢2 is a positive concept of i
Rule2

cl is a positive conceptof i & is_a(cl, c2) &
i does not satisfy the condition of is_a(cl, c2)

=> ¢2 is a negative concept of i

Let H be the set of all given hierarchical relations. We need to derive the theorems of the

theory ( H U P U N, {Rulel, Rule2} ), where the first element represents axioms and the
second one represents inference rules. All these derived theorems together are called the
extension of i. From the inference rules, we can see that a subclass ¢/ can be extended to
its superclass ¢2 only if ¢/ is a positive concept of the given instance. No extension can be
made from the negative concepts, which are only considered in the termination of
extensions.

Etherington and Reiter’s method allows extensions to be constructed by a series of
successive approximations. The previous approximations may be overridden by the current
one. When two successive approximations are the same, the procedure is said to converge
and the extension is the current approximation. This reasoning procedure is non-
monotonic, in the sense that new information can invalidate previously derived facts. In
this section, we present a monotonic inference method for finding extensions.

The main idea that underlies the monotonic inference method is to derive new facts only if
the truth values of the conditions of these facts have been determined. If the truth value of a
condition cannot be determined when we check it, this condition is undetermined and will
be suspended until new derived facts make it determined. This means that we always
reason with certainty, so that new facts will not invalidate the previously derived facts. In
this sense, we say that our inference method is monotonic.
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We first define a few simple auxiliary operations. S denotes a set, C1, C2 are concepts.

remove(S): remove from S and return a random element ¢
add(s, e): add an elementecto S

empty(S): return true if S is empty, otherwise false
member(e, S): return true if e is an element of S, otherwise false

condition(C1, C2): returns the condition of is_a(C1, C2)

The inference algorithm is described in pseudocode. The set of concepts not yet considered
for extension is maintained in the variable cset (this stands for “concept-set”). Initially, it
contains the positive concepts. Two concept sets, PE and NE, initialized with the original
sets of positive and negative concepts, are gradually extended by the algorithm. There is a
main procedure, and two subroutines. Subroutine check~cond (Cond, i, Result) tests
whether condition Cond is satisfied by instance i. If yes, the extension can proceed from
the related concept by adding to the cset. If not, no extension can be made from the related
concept. If the condition cond is undetermined, it will be suspended. The subroutine
applies negation-by-failure: if it cannot be derived that i is an instance of a concept c, it is
assumed that { is not an instance of c.

We only consider simple conditions in this algorithm. Complex conditions are composed of
simple conditions by means of the operators AND, OR. The fact that a complex condition
CCond is satisfied by an instance i can be determined by applying check-cond(_, , )
to the simple conditions of CCond. If CCond is composed of simple conditions by the
operator AND, then apply check-cond( , , ) toa simple condition of CCond each
time; repeat this process until a simple condition of CCond is unsatisfied or no more simple
conditions remain to be checked. If CCond is composed of simple conditions by the
operator OR, then apply check-cond(_ , _, ) to a simple condition of CCond each
time; repeat until a simple condition of C Cond is satisfied or no more simple conditions
remain. Whenever a new fact is derived, the suspended conditions will be examined to see
if any condition can be determined now. This is done by subroutine re-eval-cond(Sign,
Concept), where sign marks a concept as positive or negative. When the CSet is empty,
that is, no more extensions can be made, the main procedure is terminated. NE and PE
together form the extension of i.

The Inference Algorithm

Given: an instance i, a set P = { ¢pj, cp2, ..., cpx } of positive concepts of i, and a set N
= { cny, cny, ..., cny, } of negative concepts of i.

Sought: pE and NE—positive and negative extensions.

PE := P; -- initialize PE
NE := N; -— initialize NE
Susp := {}; -— initialize Susp (will store suspended conditions)
CSet := P; -~ initialize CSet (will store concepts
-- from which further extensions may be made)
repeat -— for every element in CSet:
C := remove (CSet);

~- get one concept and try to make extension from it
Parentl := the list of all parents of C in the is_a hierarchy;
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for Cnp in Parentl do
Cond :=

condition(C, Cnp):

-~ for every parent of C:
if not member(Cnp,

PE) & not member(Cnp, NE) then
check-cond(Cond, i, Result);
if Result = satisfied then

add (PE, Cnp);

add (Cset, Cnp):

re-geval-cond (pos,

-- Cnp is a positive concept of i
elsif Result

~~ further extension may be made from Cnp
Cnp) ; -- try to "unsuspend"

= unsatisfied then

add (NE, Cnp):

re~-eval-cond(neq,
elsif Result

-- Cnp is a negative concept of 1
Cnp) ;

-- try to "unsuspend"
undetermined & Cond

= [this_frame OP Ce] then
-~ (OP is the relation operator in the condition)
add(Susp, undet-cond(Cnp, Ce, Cond)):;
-- suspend the undetermined condition
endif;
endi€f;
endfor;

until empty (CSet):

procedure check-cond{(Cond, i, Result);

satisfied,
[true] then Result
elsif Cond

unsatisfied,
:= satisfied;
[false] then Result

i

-~ 15 condition Cond satisfied for instance i7?
-~ Result:
if Cond =

elsif Cond

il

undetermined

:= unsatisfied;
[this frame isnot Ce] then
if member (Ce, NE) then Result :=
elsif member (Ce, PE)
else

satisfied;
then Result

unsatisfied;
if no subclass of Ce is in the CSet then
Result := satisfied;

else Result

endif;
endif;

elsif Cond

-- we cannot determine whether i1 is an
-- instance of Ce:
undetermined;

negation by failure

[this_ frame iS Ce] then
if member (Ce,

NE) then Result := unsatisfied;
elsif member(Ce, PE) then Result := satisfied;

else

if no subclass of Ce is in the CSet then
Result := unsatisfied;

else Result := undetermined;

endif;
endif;

endif;
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procedure re~eval-cond(Sign, Cnp);
~— re-evaluate suspended conditions
remove all undet-cond({Cnp, Cel, Condl), ...,
undet~cond({(Cnp, Cej, Condj) from Susp:;
-— 1t was known before this subroutine has been called whether i is

-- an instance of Cnp; therefore all suspended conditions of the form

-~ undet-cond(Cnp, _, ) will no longer need to be re-evaluated

Re~eval-set :=
all suspended conditions of the form undet-cond( , Cnp,

Susp := Susp \ Re-eval-set;
case Sign in
pos: -~ Cnp is a positive concept of i

for RC in Re~eval-set do
if RC = undet-cond(Cg, Cnp, [this frame isnot Cnp]) &
not member (Cg, NE) then
add (NE, Cg); -- Cg is a negative concept of 1
re-eval-cond(n, Cg); -~ try to "unsuspend" more
elsif RC = undet-cond(Cg, Cnp, [this frame iS Cnpl) &
not member (Cg, PE) then

add (PE, Cg): -—- Cg is a positive concept of i
add (CSet, Cg):
re-eval-cond(p, Cg); -- try to "unsuspend"™ more
endif;
endfor;
neg: -—- Cnp 1s a negative concept of i

for RC in Re-eval-set do
if RC = undet-cond(Cg, Cnp, (this frame isnot Cnp]) &
not member (Cg, PE) then

add (pPE, Cg): -- Cg is a positive concept of i
add (CSet, Cg):
re-eval-cond(p, Cg); -- try to "unsuspend" more

elsif RC = undet-cond(Cg, Cnp, [this frame iS Cnp)) &
not member(Cg, NE) then

add (NE, Cg); ~~ Cg is a negative concept of i
re-eval-cond(n, Cqg):; -~ try to "unsuspend" more
endif;
endfor;
endcase;

)z

In this algorithm, we can see that only positive concepts can occur in the concept-set
(cset). For any concept Cnp, we proceed to check if it is a positive (or negative) concept
only if it is not a member of PE (or NE). This ensures that no concepts can occur in the
concept-set more than once, so the cost of this inference algorithm in the worst case is
O(N*S), where N is the number of concepts in the hierarchies, and S is the upper bound
on the number of suspended conditions. In the practical applications, we believe that there
would not be many suspended conditions during inference, so O(N*S) would be close to

Linear.
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5. EXAMPLES

We now look at some classical problematic examples of inheritance. We show how to
represent the hierarchical knowledge of these examples in CN, and how our inference
algorithm works on the represented knowledge. First, consider the “elephant” example of
section 3 with the following additional facts:

OBJECT african_elephant.
is_a: elephant.
end african elephant.

OBJECT male_royal elephant.
is_a: royal elephant.
end male_royal_elephant.

OBJECT female_ royal elephant
is_a: royal_elephant.
end female royal elephant.

Now consider the instance clyde, which is an instance of male_royal elephant, and an
instance of african_elephant; we have i = clyde, P = (african_elephant,
male_royal elephant}, and N = {}. After elephant has been added to pE (because elephant
is a superclass of african_elephant) and the condition of is_a(elephant, grey thing) has
been checked (because grey thing is a superclass of elephant) we will reach the following
state:

PE = {elephant, african elephant, male royal elephant}
NE = {}
CSet = {male_royal elephant}

Susp { (grey_thing, royal_elephant,

[this_frame isnot royal elephant])}

We have a suspended condition here. After royal_elephant has been added to pE (because it
is a superclass of male _royal elephant), this suspended condition will be re-evaluated and
will become an unsatisfied condition, so that we can determine that grey thing is a negative
concept of clyde. The final state in this example is:

PE = {elephant, african elephant,
male royal elephant, royal elephant}
NE = {grey_thing)
CSet = {}
Susp = {}

The next example is quoted after (Padgham 1988) 6:
Quaker is pacifist.
Pacifist is antimilitary.
Republican is not pacifist.
Republican is football fan.
Football fan is not antimilitary.

There are ambiguities in these sentences. That is to say, common-sense reasoning may give
a contradiction. For instance, given an instance Nixon, who is quaker and republican, we
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may conclude from these sentences that Nixon is pacifist and is not pacifist. As Shastri
pointed out, there are at least two distinct ways of dealing with this kind of conflict:

1) enumerate all the possible answers,

2) obtain more information to resolve such conflicts.

Etherington and Reiter’s default logic approach, Padgham’s lattice-based model approach,
and Touretzky’s formalizations !9 essentially adopt the first approach to the problem of
conflict. Shastri’s evidential formalization tries to find the most likely solution by adding
the measures of likelihood of facts to the knowledge base; the limitation is that such
measures are not always available in the real world. We believe that the ambiguities result
from incomplete knowledge. There must be exceptions from the hierarchical relations
described in the above five sentences. The sentence “A is B” may not mean “any instance
of A is an instance of B”. The missing exceptions are the source of conflict.

Assume that the real meaning of these sentences is as follows:
Only a typical quaker is pacifist.
Pacifist is antimilitary.
Only a typical republican is not pacifist.
Only a typical republican is a typical football fan.
Only a typical football fan is not antimilitary.

Suppose that every concept C has two subclasses, C; and Co. Cy is called a typical C, Ce is
called an exceptional C. An instance i of C belongs to C; if and only if it is a typical
instance of C; otherwise, it belongs to C.. A typical feature of a concept is one which
subjects believe applies to typical instances of the concept 1. For a concept C, we need to
ask the “operator” who interacts with the representation system to list the typical features of
C. We say that i is a typical instance of C if and only if it has all typical features of C. For
example, suppose that an elephant’s typical features are: four legs, one trunk, two big ears.
An elephant that has four legs, one trunk, and two big ears is regarded as a typical
elephant. An elephant that has only three legs or no trunk will not be regarded as typical.

C. and C; are complementary in the sense that any instance of C must belong either to C, or
C;. That is to say, we assume that typicality and exceptionality are mutually exclusive.
Complementary pairs of concepts are represented in CN by means of hierarchical slots with
a false condition (see the frames below). Our inference algorithm automatically concludes
that an instance of C; is not an instance of C,, and the other way around.

We denote the necessary typical and exceptional concepts in the “pacifist” example as
exceptional _republican, exceptional_quaker, exceptional _football fan, typical republican,
typical_quaker, and typical football fan. Only some of the frames of this example are
shown below; the unshown ones can be designed similarly.

OBJECT quaker.
(this frame isnot exceptional quaker] is_a: pacifist.
end quaker.

OBJECT republican.
{this_frame is exceptional_republican] is_a: pacifist.
{this_frame isnot exceptional_republican]
is_a: typical football fan.
end republican.
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OBJECT exceptional_ quaker.
is_a: quaker.

[false] is_a: typical_quaker.
end exceptional quaker.

OBJECT typical_qguaker.

is_a: quaker.

[false] is_a: exceptional_ quaker.
end typical quaker.

Given the instance Nixon (quaker but not a typical quaker, and typical republican), the
initial values of PE, NE, CSet, and Susp are
PE = {exceptional_ quaker, typical_republican}

NE = {typical quaker]}
CSet = {exceptional_ quaker, typical_republican}
Susp = {}

Apply the inference algorithm. When the procedure has been terminated, the values of these
parameters would be

PE = {exceptional_quaker, quaker,
typical_ republican, republican,
typical_ football fan, football_ fanj}

NE = {typical_quaker, pacifist, exceptional_republican,
exceptional football fan, antimilitary}

CSet = {}

Susp = {}

That means Nixon is a quaker, a republican, a football fan, but is neither a pacifist nor an
antimilitary.
In this and all the previous examples, and in general in CN, the representation is not

unique. One may ask what is the method that leads to a particular representation. We can
give a few general guidelines for designing a representation of hierarchies in CN:

1) There is a frame for every concept which has at least one superclass.

2) Every hierarchical relation is represented by one hierarchical slot.

3) If exceptions exist in a hierarchical relation, attach a condition to it.

4) Complementary pairs of concepts are represented by the hierarchical slots with a false
condition.

6. CONCLUSION

The inheritance problem is dealt with in a new way in the inheritance system of Conceptual
Network. Exceptions can be expressed in CN without introducing any additional
mechanisms. They are explicitly represented in the conditions of the hierarchical relations;
this makes monotonic inference possible. Representing the inheritance hierarchies may not
be unique. So far, we can only provide a few general guidelines for designing a
representation of a given problem. One of the directions of our future work is to develop a
methodology of constructing a CN representation.
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Our inheritance system does not include any special mechanism for resolving ambiguities,
because we assume that the knowledge to be represented does not contain them; when they
exist, the system will find one of the possible extensions.
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ABSTRACT

Many current methods of learning concepts from examples assume that
concepts are precise entities, representable by a pure symbolic
representation, and that concept examples are equally representative.
Human concepts, however, are often flexible. They inherently lack
precisely defined boundaries and have a central tendency, and their meaning
1s often context-dependent. Examples of these concepts are usually not all
equivalent. This paper describes an approach to learning flexible concepts
from examples. In this approach, a novel hybrid representation was
introduced to represent flexible concepts. This hybrid representation is a
combination of symbolic and numeric representations. An associated
inductive learning algorithm was also presented. This approach was
implemented in the Flexible Concept Learning System (FCLS) and tested
on three different types of problems: the problems favorable for FCLS, the
problems unfavorable for FCLS, and real world problems. The
experimental results showed a strong support for the proposed flexible
concept learning method.

1 INTRODUCTION

In real world applications, rare concepts are precisely defined. Instead, the meaning of
concepts are often imprecise and context-dependent, these concepts are called flexible
concepts {6]. Concept representations used in many learning systems, e.g. decision trees
and logic-type representation, are not appropriate for describing flexible concepts. To
represent flexible concepts, a representation must be capable of describing their imprecise
and irregular boundary, context-dependency, central tendency and exceptions.

In the past, several representations were proposed to describe flexible concepts. These
include exemplars-based representation {10]{1]{2] and probabilistic representations {10]
Although good results have been achieved by the systems using these representations on
some domains, each of these representations has its weakness [6].

1 This research was done, while the author was with the Artificial Intelligence Center of George Mason
University. The activities of the Center are supported in part by the Defence Advanced Research Projects
Agency under grant No. N00014-87-K-0874, administered by the Office of Naval Research, and in part by
the Office of Naval Research under grant No. N00014-88-K~0226 and N00014-88-K-0397.
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This paper presents an approach that uses a hybrid representation to describe flexible
concepts. The representation is based on a simple but powerful form of two-tiered concept
representation [5) and combines the logic and parametric representations in which both
logical and parametric aspects are being adjusted in the process of learning. The method
has been implemented in the system FCLS (Flexible Concept Learning System), and tested
on a variety of problems. The problems included learning concepts with graded
membership, such as congress voting, lymphatic cancer diagnosis, and n-cut-m concepts,
as well as concepts with sharp boundaries, such as multiplexer and DNF functions with
few disjuncts. For comparison, other methods, such as C4.5 [7].were tested on the same
problems. The results have shown a statistically meaningful advantage of the proposed
method over the other methods.both in terms of the classification accuracy and the
description simplicity. The work reported in this paper is related to Schlimmer's
STAGGER [9], Utgoff's Perceptron Trees [11], Bergadano et. al's POSEIDON [3], and
Salzberg's NGE. (8]

2 CONCEPT REPRESENTATION

This section introduces the hybrid concept representation used in FCLS. In this
representation, a concept is described as a disjunction of extended complexes, and a
similarity measurc. An extended complex consists of a base complex, a set of weights, and
a threshold. The similarity measure determines the degree of fit between an event and an
extended complex.

2.1 BASE COMPLEX

A base complex is a disjunct represented as a complex by the attribute based Logic

System VL1 [4]. A complex in VL1 is a conjunction of selectors. A selector is of the form:
[L#R]

where the attribute L is called the referee and R is called the referent, which is a set of

values from the domain of L. The symbol # denotes one of the relational symbols =, <, >,

<, 2, #.

-y Ty

2.2 WEIGHTS

Each selector of a complex is associated with a weight which reflects the degree of
necessity of the selector. Its value ranges from O to oo. A selector weighted as oo is a
necessary condition of the complex, and a selector weighted as O is irrelevant condition.
Except 0 and oo, any other value of a weight reflects the relative importance of the selector
in comparison with other selectors in the same complex.

2.3 THRESHOLD

In addition to weights, each extended complex is associated with a threshold that is a
real number between 0 and 1. The threshold of an extended complex defines the boundary
of the complex. An event is covered by an extended complex, if its degree of fit to the
complex is larger than or equal to the threshold of the complex. Degree of fit is computed
by the similarity measure. An extended complex with 1 as its threshold is equivalent to its
base complex. Decreasing a threshold relaxes the requirements of the extended complex
that have to be met by its instances, and generalizes the extended complex.
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2.4 SIMILARITY MEASURE

The similarity measure (SM) measures the degree of fit between an event and an
extended complex. The specific SM used in our current implementation maps an event
from the set E and an extended complex from the set C to a real value between 0 and 1,
which is the degree of fit of the event to the complex.

SM:Ex C --> [0..1]

The SM of an event ¢ and an extended complex cpx is defined by a normalized distance
measure DIS as follows:
_ DIS(e, cpx)

SMee, cpx) = 1 - 3 AR DIS (cpx)

where MAXDIS(cpx) is the maximum distance between events in the set E and the
complex cpx. DIS(e, cpx) is defined as a weighted sum of the distances between the event
e and all selectors of the complex cpx:

DIS(e, cpx) = X Wj * SELDIS(e, selj)
where Wj is the weight of selj. SELDIS(e, selj) is the distance between the event e and the
selector selj and depends on the type of the variable in the selector. It is either 1 (match) or
0 (no match) for nominal variables. In case of linear variables, SELDIS(e, selj) inversely
depends on the distance of the event from the selector, normalized by dividing the largest
distance between a value in the domain of the corresponding attribute and the selector.

One of the nice feature of the similarity measure is if any necessary selector of cpx is
not satisfied by an event e, SM(e, cpx) =0. The weight of a necessary selector is oo, 50 if
the selector is not satisfied, DIS(e, cpx) = . When DIS(e, cpx) = oo, it is set to equal to
MAXDIS(cpx), thus SM(e, cpx) = 0.

2.5 CONCEPT RECOGNITION

In FCLS, an event belongs to an extended complex if the Normalized Degree of Fit
(NDF) of the event to the extended complex is the largest among all extended complexes.
The Normalized Degree of Fit (NDF) between an event e and an extended complexes cpx is
defined as follows:

Certainty(cpx)
.. . xIM(e.cpx) - thicpx) th(cpx) = 1
NDF(e, cpx) = Certainty(cpx) i- th(cpx) SM(e,cpx) = th(cpx)
SSM{e,cpx) - th(cpx) SM(e,cpx) < th{cpx)

th(cpx)

where Certainty(cpx) is the certainty of cpx which is defined as the inverse of the
sparseness of cpx, th(cpx) is the threshold of cpx.

2.6 EXAMPLES

To illustrate the idea of the hybrid representation, let us consider a simple imaginary
concept “R-ball”. The meaning of the concept R-ball is defined as three disjuncts:
(SHAPE =round) & (BOUNCES = yes) or
(SHAPE = round) & (SIZE = medium v large) or
(BOUNCES = yes) & (SIZE = medium v large)
By using the hybrid representation, these three disjuncts merge into one extended complex:
[SHAPE =round : 1] & [BOUNCES = yes : 1] & [SIZE = medium v large : 1]
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Threshold = % = 0.67

The number following "' is the weight of the selector. The base complex:

[SHAPE = round] & [BOUNCES = yes] & [SIZE = medium v large]
represents the central tendency of the concept R-ball, all of the three selectors are equally
important. The meaning defined by the extended complex is that an object that satisfies any
two or more of the three selectors is a R-ball, otherwise it is not a R-ball. Furthermore, it
tells that balls that satisfy all of the three selectors are typical R-balls, while those which
only satisfy two of the three selectors are less typical.

Now suppose the meaning of the concept R-ball changes a little, and all R-balls must
be round. The new meaning of the concept R-ball is defined by two disjuncts:
(SHAPE =round) & (BOUNCES = yes) or
(SHAPE =round) & (SIZE = medium v large)
These two disjuncts are combined into one extended complex:
[SHAPE = round : o] & [BOUNCES = yes : 1] & [SIZE = medium v large : 1]

Threshold = % =0.5

In this extended complex, the selector [SHAPE = round] is necessary, and must be
satisfied by all R-balls. The other two selectors are not necessary, and one of them must be
satisfied by a R-ball.

3 THE LEARNING ALGORITHM

Table 1 defines the learning algorithm which works in an iterative fashion. In each
iteration, the concept whose description has the largest error omission is generalized by
generating a new accepiable extended complex to minimize the error omission of the
concept. FCLS provides users with two parameters: MAX-ERR-RATE and MIN-
COVERAGE. These two parameters are used as thresholds. An extended complex is

acceptable if
(1) -2~ > MIN-COVERAGE, and (2) —~— < MAX-ERR-RATE.
pos p+n

The error omission of a concept description is the percentage of the number of the positive
examples that are not covered by the description. If the fraction of correctly classified
examples are larger than MAX-ERR-RATE, the algorithm terminates and outputs the
current descriptions, otherwise it repeats.

Let DES be empty

Repeat
Select the concept CNPT that has the largest error omission.
Generalize CNPT by gencrating an acceptable extended complex CPX
Add CPX and EXE into DES

Until error-rate(DES) < MAX-ERR-RATE

Return DES

Table 1. The Learning Algorithm in FCLS
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3.1 THE COMPLEX GENERATION ALGORITHM

The complex generation algorithm generates the extended complex for a given concept
from a set of positive and negative examples. The process of generating the extended
complex is divided into two phases. The first phase generates a set of base complexes that
satisfy the consistency requirement specified by the parameter MAX-ERR-RATE. The base
complexes generated in the first phase are optimized in the second phase. Before describing
the two algorithms in the two phases, we first introduce some terminology used in the
algorithms. Let us suppose ¢ is an example, and cpx is an extended complex. e is called
strictly covered example, if SM(e, cpx) = 1, that is e satisfies all conditions of cpx. ¢ is
flexibly covered by cpx, if SM(e, cpx) = th(cpx). e is nearly covered by cpx, if th(cpx) >
SM(e, cpx) = pth(cpx). Where th(cpx) is the threshold of cpx, pth(cpx) is the potential
threshold of cpx which is less than th(cpx) and used to decide nearly covered examples.

3.1.1 PHASE 1: THE BASE COMPLEXES GENERATION ALGORITHM

The algorithm generates a set of the most general base complexes that satisfy the
consistency requirement. Table 2 specifies the algorithm. It starts with the most general
base complex which strictly covers the whole instance space. In order to find base
complexes that satisfy the consistency requirement, the strictly covered negative examples
must be excluded. The technique used in the algorithm is similar to the star algorithm of
AQ [4] that performs a beam search. During each cycle, the consistency of each base
complex in STAR is tested. If the consistency is high enough, the base complex is added to
the set of CONSISTENT-CPXES and removed from STAR. Otherwise, the base complex
is specialized by removing a value from one of its selectors. This specialization is repeated
for each of all selectors of the complex. The value removed from a selector is chosen to
maximize the number of negative examples and minimize the number of positive examples
excluded from the base complex. This yields several new base complexes, each of which
covers fewer negative examples. The new star is the union of these newly specialized base
complexes. A certain maximum number (MAXSTAR) of these base complexes are selected
for further processing. This set of base complexes is selected based on their potential
quality. When STAR is empty, the algorithm terminates with a set of base complexes
whose inconsistency (error rate) is smaller than MAX-ERR-RATE. Figure 1(a) shows the
most general base complex that the algorithm starts with and Figure 1(b) shows the set of
consistent base complexes that the algorithm ends up with.

Let STAR be the sct containing the most general complex that covers all events.
Let CONSISTENT-CPXES be empty.
Repeat
Let NEWSTAR be empty
For each complex CPX in STAR
For each attribute
select a value to remove from CPX so that a more specific complex NEWCPX is generated.
if error-rate(NEWCPX) < MAX-ERR-RATE ,
then add NEWCPX into CONSISTENT-CPXES
else add NEWCPX into NEWSTAR
Let STAR be MAXSTAR complexes with the largest potential quality in NEWSTAR.
until STAR is empty
Return CONSISTENT-CPXES

Table 2: The Base Complex Generation Algorithm
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Figure 1: An illustration of the function of the phase 1

3.1.2 PHASE 2: THE EXTENDED COMPLEX OPTIMIZATION
ALGORITHM

The extended complex optimization algorithm optimizes the complexes generated in
phase 1 by decreasing the thresholds of the complexes so that more positive examples can
be covered. In order to decrease the threshold of an extended complex without increasing
inconsistency, the degree of fit of nearly covered negative examples must be reduced so
that the threshold can be decreased without covering more negative examples. The way to
reduce the degree of fit of nearly covered negative examples is to specialize the base
complex by removing some values of selectors that occur on many nearly covered negative
examples and few nearly covered positive examples. The algorithm also performs a
general-to-specific beam search. In this algorithm, the threshold is adjusted (often
decreased) while the base complex is specialized. Thus, an extended complex is often
generalized although its base complex is specialized.

Table 3 specifies the extended complex optimization algorithm. The algorithm first
transfers the base complexes generated in phase 1 by computing its new weights and new
threshold. The weight learning algorithm will be introduced in section 3.2. The threshold is
determined so that the ‘best’ quality of the complex is achieved. The STAR is initialized as
MAXSTAR of these complexes with the highest potential quality. Then the ‘best’
acceptable extended complex is selected from the set of optimized initial extended
complexes as the initial ‘best’ complex BEST-CPX. This ‘best’ extended complex is
subject to replacement by a better extended complex during the process of optimization.
After the algorithm terminates, BEST-CPX is output. The ‘best’ extended complex is the
complex with the highest quality. If no acceptable extended complex can be generated,
BEST-CPX is empty when the algorithm terminates.

The algorithm repeats the beam search until the stop condition is satisfied. In each cycle
of the loop, a set of new extended complexes is generated. The quality and potential quality
of each newly generated extended complex are evaluated respectively. The acceptable
complex with the highest quality replaces the complex in BEST-CPX, if its quality is larger
than or equal to the quality of the complex in BEST-CPX. The complexes with low
potential quality are removed from NEWSTAR. Issues about quality and the potential
quality were discussed in [12]. The MAXSTAR new extended complexes with the highest
potential quality are selected for further improvement. MAX-TRIES is an integer
parameter which controls the execution of the loop. If BEST-CPX has not been improved
in MAX-TRILES steps, the algorithm stops.
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For each complex CPX in CONSISTENT-CPXES (generated in Phase 1)
Compute the weights and threshold for CPX
Let STAR be MAXSTAR complexes with the highest potential quality in CONSISTENT-CPXES
If there exist some acceptable complexes in CONSISTENT-CPXES
then let BEST-CPX be the acceptable complex with the highest quality
else let BEST-CPX be empty
Let NO-IMPROVEMENT be 0
Repeat
Let NEWSTAR be empty
For each complex CPX in STAR
For each attribute
select a value to remove from CPX to generate a new complex NEWCPX
compute the weights and threshold for NEWCPX
if NEWCPX is acceplable and has equal or higher quality than BEST-CPX
then replace BEST-CPX by NEWCPX
set NO-IMPROVEMENT t0 0
else add 1o NO-IMPROVEMENT
add NEWCPX into NEWSTAR
Remove all complexes that cannot be improved from NEWSTAR
Let STAR be MAXSTAR complexes with the iargest potential guality in NEWSTAR.
until NO-IMPROVEMENT > MAX-TRIES or STAR 1is crapty
Return BEST-CPX

Table 3: The Extended Complex optimization algorithm

Fig. 2(a) shows the initial extended complexes that the algorithm starts with and Fig.
2(b) shows the extended complex that the algorithm ends up with. In Fig. 2(b), the circle
represents an extended complex, and the square inside the circle is its base complex. It can
be seen that the base complex in Fig. 2(b) 1s more specific than the two base complexes in
Fig. 2(a), but the extended complex is more general than both of the two base complexes.

x14 x14
+ + +] - -
- "-"ﬂ +]+ - A
- T . x2 - . T - x2
. > ~ »
@ (b)

Figure 2: An illustration of the function the phase 2

3.2 WEIGHT LEARNING ALGORITHM

In the hybrid representation, each selector of an extended complex is associated with a
weight which is the degree of necessity of the selector. A weight is a real value ranging
from 0 to +eo. The larger a weight of a selector, the more necessary the selector. The
weights of an extended complex are computed during learning. In computing the weight of
a selector, the algorithm counts the number of positive and negative examples that do not
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match the selector. In the method, the weight of the selector SEL w(SEL) is computed as
follows:
_ p(unmatched | NEG)

w(SEL) = p(unmatched | POS)
where p(unmatched | NEG) and p(unmatched | POS) are the fraction of positive and
negative examples which do not match with SEL. w(SEL) ranges from 0 to +eo. When the
selector SEL is satisfied by all positive examples, p(unmatched | POS) = 0 so that w(SEL)
= +eo and the selector SEL is necessary. When the selector SEL is satisfied by all negative
cxamples, p(unmatched | NEG) = 0 so that w(SEL) = 0 and the selector is totally
unnecessary. This case occurs seldom, because such a selector is usually removed in the
process of complex generation. The fewer negative examples satisfy the selector SEL, the
larger p(unmatched | NEG) and w(SEL). The more positive examples satisfy the selector
SEL, the smaller p(unmatched | POS), therefore the larger w(SEL).

4 EXPERIMENTS WITH FCLS

To evaluate the approach described in this paper, a number of experiments were
conducted on various domains with FCLS. This section first outlines the experimental
methods and the domains, then reports the details of the experimental results.

4.1 EXPERIMENTAIL DESIGN

To thoroughly test FCLS, six artificial domains, three favorable to FCLS and three
unfavorable, were selected for the experiments. [12] also described experiments from two
real world domains. Three learning methods, the base-cpx, the no-weight, and the c-
weight, were involved in all experiments. The base-cpx method generates a disjunction of
base complexes as a concept description that is equivalent to a DNF expression. The base-
cpx method provides the performance baseline for other methods. The no-weight method
generates extended complexes with threshold adjusting only, no weight learning is
involved. The c-weight method generates an extended complex with both threshold
adjusting and weight learning. In addition to these three methods, the decision tree leaming
system (4.5 [7] was run on the same domains with pruning. The performance of FCLS
was evaluated on classification accuracy and description complexity. Classification
accuracy was measured as the percentage of correct classifications made by the concept
description on a set of 1000 test events. Description complexity was measured by the
number of extended complexes involved in a description. The complexity of decision trees
is measured by the number of leaves in a tree. In all experiments, FCL.S was run on
randomly generated training sets of various sizes: 100, 200, 300, and 400 examples. For
each training set size, FCLS was run on four different randomly generated training sets.
The results reported in Figure 3 and 4 are the average of the four runs. The results
accompanied with a 95% confidence interval calculated using a Student t-test were reported
in {12].

4.2 EXPERIMENTS ON THE DOMAINS FAVORABLE TO FCLS

The experiments described in this section were performed on three specially designed
domains, called designed domain I to Ill. These domains were specially designed to test
the novel features of the hybrid representation and the associated learning algorithm in
FCLS. Designed Domain I contains two classes, positive and negative, and 10 nominal
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attributes each of which has four values: 0, 1, 2, and 3. The rule for distinguishing positive
class from negative class has the general form of “at least k of n conditions are satisfied.”
Specifically, the rule is “if the values of any 5 or more of the first 7 attributes of an event
are equal to O or 1, then the event belongs to positive class, otherwise it belongs negative
class”.

Designed Domain II consists two classes, positive and negative. Eight linear
attributes are involved in this domain. The domains of the eight linear attributes are same
and include four values 0, 1, 2 and 3. The positive class is described by six conditions,
two of which are as twice important as the other four conditions. Specifically, the positive
class is expressed by one extended complex:

[x1=0v1]:2& [x2=0v12&[x3=0v1]:1 & [(x4=0v1]:11& [35=0v1]:1& [xg=0v1): 1
Threshold = 5/8 = 0.625

Designed Domain III contains 15 nominal binary attributes, and two classes: positive
and negative. The events of the positive class are described by two extended complexes,
each of which consists of 6 selectors, two of which are as twice important as the other four.
The positive class is described by the disjunction of the following two extended complexes:

Complex 1: Complex 2:
[x1=0]:2 & [x2=0]:2 & [x3 =0]:1 [x7=0]2 & [xg =01:2 & [xg = 0]:1
[x4 =011 & [x5=0]:1 & [xg =01:1 [x10 =011 & [x11 =0]:11 & [x12 = 0}:1
Threshold = 5/8 = 0.625 Threshold - 5/8 = 0.625

Figure 3 shows the results of the experiments from the three favorable domains. In all
three domains, improvements were achieved on both accuracy and complexity by the the
no-weight and the c-weight methods over the base-cpx method and C4.5 at all training set
sizes. A significant improvement was achieved in the Designed Domain 1. The results from
Designed Domain I show that the no-weight and c-weight methods have very similar
performance. This is because all conditions of the target concept description are equally
important, and weights play no role. The c-weight method outperformed the no-weight
method in Designed Domain II and Designed Domain III. These improvements are due to
the weight learning. In these two domains, selectors in extended complexes are weighted
differently.

4.3 EXPERIMENTS ON THE DOMAINS UNFAVORABLE TO FCLS

This section describes the experiments from three unfavorable domains: 11-
multiplexor, 3-term 3DNF and 4-term 3DNF. The hybrid representation has no advantage
over logic type representations in representing the concepts involved in these domains.
Adversely, the hybrid representation increases difficulties to learn these concepts because
of the less representational bias enforced by the representation.

The results from the three unfavorable domains are reported in Figure 4. Except in 11-
multiplexor at size 300 and 400, the accuracy of the c-weight method is worse than that of
the base-cpx and no-weight methods, especially at small training sizes. This result is due to
the week representational bias enforced by the hybrid representation. In spite of the
problem, the accuracy of the methods with weight learning is still comparable with the
accuracy of C4.5. Except in the domain of 11-multiplexor, the c-weight generated simpler
descriptions. One important and interesting result is that the accuracy obtained through the
no-weight method is similar to the accuracy of the base-cpx method 1n all three domains, in
some experiments, the accuracy of the no-weight method is even slightly better than the
base-cpx. In fact, in many experiments, the base-cpx method and the no-weight method
generated the exactly same descriptions. This interesting result shows that the no-weight
method works very well in adjusting the representation for a given problem, but the weight
learning methods does not.
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Figure 3: Experimental Results from Favorable Domains
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5 CONCLUSION AND FUTURE WORK

This paper described an novel approach to learning flexible concepts. In this approach,
a hybrid representation that combines symbolic and numeric representations was proposed
to explicitly describe central tendencies of flexible concepts and extend the meaning of
concepts by a threshold and a similarity measure. An associated algorithm was designed
and implemented to automatically acquire both symbolic and numeric descriptions. The
experimental results are very promising and encouraging.

A number of problems need to be addressed in the future. First, FCLS should be
augmented with a knowledge based semantic similarity measure. Second, an incremental
version of the approach needs to be designed. Third, a betier weight learning algorithm
should be studied. Finally, the method of constructive induction will be incorporated into
FCLS.
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