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ABSTRACT 

This paper presents results of an experimental study of the reliability of an 
autonomous mobile robot operating in an unstructured environment. Examined 
in the study are the principal components of the visual and ultrasound sensor 
systems used to guide navigation and manipulation tasks of the robot. Performance 
criteria are established with respect to the requirements of the integrated robotic 
system. Repeated measurements are done of the geometric and spatial quantities 
used for docking the robot at a mock-up control panel, and for locating control 
panel devices to be manipulated. The systematic and random components of the 
errors in the measured quantities are exhibited, their origins are identified, and 
means for their reduction are developed. We focus on refinements of visual area 
data using ultrasound range data, and on extraction of yaw by visual and by 
ultrasound methods. Monte Carlo methods are used to study the sensor fusion, 
and angle-dependence considerations are used to characterize the precision of the 
yaw measurements. Issues relating to sensor models and sensor fusion, viewed as 
essential strategic components of intelligent systems, are then discussed. 

vii 





1. INTRODUCTION 

1.1 GENERAL 
During the past several years a variety of autonomous mobile robots have 

been built and used as testbeds for studying basic issues in sensing, actuation 
and design. Some of these robotic testbeds, for example, those discussed in [13 
[19], [29], [30], and [32] were developed for outdoor environments; others, SUC 

as the systems described in [7], [ll], and [12] were built for indoor environments. 
Most recently, a number behavior-driven indoor mobile robots have appeared which 
differ conceptually from the primarily task-driven systems mentioned above. These 
systems have been discussed in [l], [2], [3], [lo], and [23]. 

The intelligent machines described in the above-cited papers operate in 
environments which are unstructured, or ill-defined, to some appreciable extent. 
The machines are intelligent insofar as they sense their surroundings, make decisions 
based on the acquired data, and then take some action. A primary objective of both 
task- and behavior-driven systems is to achieve a performance in an unstructured 
environment which is reliable and robust. Methods for achieving this objective, 
and related performance issues have been discussed in the papers cited above and 
in [20], [24], and [26], and a performance assessment for near-perfect machines was 
presented in [18]. 

In the present work we examined experimentally some issues pertaining to the 
reliability and robustness of an autonomous robotic system. Our specific goal was 
a modest one. We studied the ultrasound and (monocular) vision subsystems as 
used to guide navigation and manipulation tasks of the HERMIES-IIB robot. As is 
the case in any experimental science, we wished to understand the errors beginning 
with their decomposition into random and systematic components. 

We were motivated in part by the observation that systematic errors are of 
particular importance in automated, or robotic, systems. They arise in these 
systems whenever there is insufficient information to correctly interpret the data 
and whenever underlying assumptions concerning the ill-defined environment are 
violated. Systematic errors influence the accuracy of the measured physical and 
geometric quantities while the random errors affect the precision to which those 
quantities can be determined. 

k 

1.2 HERMIES-IIB EXPERIMENTS 

The HERMIES-IIB mobile robot used as the testbed was an inexpensive indoor 
prototype developed at the Center for Engineering Systems Advanced Research at 
Oak Ridge National Laboratory. The HERMIES-IIB hardware includes a wheeled 
platform (two drive wheels, one passive caster a pair of Heathkit manipulator 

ultrasound range sensors and three CCD cameras. There is an additional ultrasound 
sensor facing forward in the center of the robot. This range sensor and two of the 
CCD cameras were used in the HERMIES-IIB experiments. 

Upon receiving a CCD camera image, the visual data processing subsystem 
produced a list of geometric properties of the various connected regions in the 
thresholded binary image. These properties were used by the integrated system to 
identify a mockup control panel, navigate to a docking zone in front of the panel, 
and locate devices on the panel, which were then manipulated. 

arms, on-board computers and a sensor suite. T k e sensor suite contains an array of 
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2 INTRODUCTION 

The specific tasks mentioned above established the performance requirements of 
the visual sensor subsystem. These requirements include the precision and accuracy 
to be achieved, and the type of information extracted from the sensor data. The 
measurements done in this study were of distance, angle and yaw of the robot with 
respect to the control panel, and the area and height-to-width ratio of the panel 
devices, as derived from the list of geometric properties. The first three of these 
spatial quantities were used to navigate up to and dock in front of the mockup 
control panel. The last two were used by HERMIES-IIB at the docking zone to 
locate the various devices on the control panel. 

In previous experiments with the HERMIES-IIB robot, we examined 
ultrasound-guided navigation issues. In [ 71 we fused ultrasound data from different 
robot locations, and in [8] we fused visual and ultrasound data from one location. 
Measurements of ultrasound ranges were done in the present study to examine 
whether the addition of range data provides a cost-effective means of reducing errors 
in the visually derived areas, and to compare values for yaw deduced from the range 
data to those obtained from the visual images. 

This paper is organized, as follows. The experimental setup is given in Sec. 2, 
and the experimental procedure and the (monocular) visual data processing are 
described in Sec. 3. The visually-derived area and height-to-width data are 
presented in Secs. 4.1 and 4.2. This is followed in Sec. 4.3 with a brief description 
of the Monte Carlo method, and its application to the refinement of visual area 
data using ultrasound ranges. Distance and yaw results obtained using visual and 
ultrasound methods are exanlined in Sec. 5 .  So~ne of the results and emerging issues 
are discussed further in Sec. 6, and the work is concluded in Sec. 7. 



2. EXPERIMENTAL SETUP 

2.1 ULTRASOUND ENVIRONMENT AND SENSING 

The ultrasound sensor used in the experiments was mounted in the center of 
the front of the robot at a height of 47 cm above the floor. The sensor contained 
a Polaroid industrial grade transducer which functioned as both the transmitter 
and receiver, and produced 50 kHz bursts, 1 msec in duration. The signals from 
the sensor were processed to give the time of flight for the earliest echo, thereby 
determining the distance to the nearest object lying either partially or wholly within 
the beam cone. The intrinsic resolution of the sensor, after digitization, was 3.0 cm. 

The ultrasound systematic errors depend upon the beam width, or resolution, 
the sensing frequency, the radiated power and scnsor threshold, and the 
environmental geometry wid surface properties of the objects scanned. A detailed 
treatment of some of the systematic errors encountered using this type of sensor in a 
laboratory environment has been presented in [7]” The sensing experiments reported 
herein involved scan distances from roughly 45 to 180 cm. At  these near distances, 
and for the control panel being scanned, the systematic errors were minimal. 

A photo of the control panel used in the experiments is shown in Fig. 1. 
Three features, or surfaces, of the control panel comprise the ultrasound sensing 
environment. These surfaces, the smooth metal front plating, the four raised plastic 
buttons, and a steel lip surrounding the front plate, arc visible in Fig. 1. The buttons 
are 3.8 cm in diameter, and *when not depressed stand out 4.2 cm from the main 
surface. The lip is raised by 1.5 cm from the main surface, and forms an interior 
corner. This corner allows for ultrasound returns from the control panel at yaw 
angles which otherwise would lead to specular reflections. 

2.2 VISUAL ENVIRONMENT AND SENSING 

The CCD cameras mounted on the HERMIES-IIB robot provided 256 x 256 
pixels of 8-bit grey-level intensity values. These cameras were mounted on a pan/tilt 
table at a height of 94 cm above the floor, and were oriented facing forward in the 
horizontal plane. A 4.8 mill wide-angle lens, mounted on each of the two cameras, 
provided a 60 deg field of view. Ambicnt lighting was provided by the standard 
overhead hanging fluorescent lamps, and by a window located some 10 m from the 
experimental area. 

The mockup control panel contains a pair of analog meters, a large rectangular 
“danger” light, a pair of cylindrical slides, and four round buttons and acornpanying 
indicator lamps. The buttons and slides were made from white plastic. The danger 
light and indicator lamps were red. The analog meter background color was white, 
and the control panel was dark metallic grey. 

The physical (geometric) characteristics of the devices on the control panel are 
listed in Table 1. As can he seen in the Table, there were considerable variations in 
device size and shape. At large distances only the analog meters were large enough 
to be discerned. At near distances the variations in device elevation were sufficient 
to require the use of tilt. 

3 



4 EXPERIMENTAL SETUP 

Fig. 1. Photo of the HERMIES-IIB robot performing a manipulation task from 
the docking zone. The CCD cameras are located on the topmost part of the robot. 
The central ultrasound sensor is housed in the box-like unit in the lower front of the 
robot. nom top to bottom, the control panel devices visible are the pair of analog 
meters, "danger" light, upper slide, four buttons, and lower slide. 

Table 1. Physical Properties of the Control Panel Devices 

Device Shape Height/Width Area (mm2) Elevation (cm) 

Light Rectangle 0.32 1720 73.0 
Slide Cylinder 2.79 1120" 59.2 
Button Circular 1.00 1200' 46.0 
"Includes visible area of circular top surface. 
'Includes visible area of rim of button. 



3. EXPERIMENTAL PROCEDURE 
AND VISUAL DATA PROCESSING 

3.1 CALIBRATION 

The experiments were receded by a series of calibration measurements. First, 

1 deg. Second, the optic axis of each CCD camera was aligned. An adjustment 
of about 10 pixels was required in order to align the software crosshair with the 
physical centerline. Third, the plane of the 4.8 mm wide-angle lens was found to 
be misaligned with respect to that of the CCD array. This misalignment was not 
corrected, and has a discernable effect upon the data. 

the zero (forward axis) o F the sensor turret was determined to an accuracy of 

3.2 VISUAL IMAGE PROCESSING 

The visual image processing consisted of converting the grey-scale image to 
a binary image, decomposing this binary image into connected regions, and then 
extracting the geometric properties of the connected regions. Techniques for doing 
region analyses of binary images, and extracting the quantities mentioned above, 
are well established in computer vision following, for example, the work described 
in [4], [9], [16], [17], [22] and [27]. In the present work the region analysis was done 
concurrently on-board the robot using a 16-node hypercube computer. 

The five principal stages of low-level parallel processing are depicted in Fig. 2. 
The grey-scale morphology, or non-linear filtering, reduced noise while preserving 
edges and sizes (see, for example, 1281). The grey-scale image was then converted to 
a binary image. The binary morphology (dilation and erosion) ensured the stability 
of the grey-scde-to-binary transformation with respect to shifts or changes in size 
of major features. 

A two-dimensional array was then produced from the binary image in which 
each pixel carried a label common to its connected neighbors. White regions were 4 
connected, and black regions were 8-connected. A butterfly vector accumulator was 
used to produce a consistent set of labelled regions across nodes of the hypercube. 
The techniques for doing this have been described in detail elsewhere [21]. 

Geometric properties of moments of each region were then extracted and stored 
in a list. Two such lists were produced, one for black regions and one for white 
regions. Each entry in the list contains the quantities given in Table 2. Recall that 
the ntb moment of a discrete distribution of a variable, x, is defined as the mean of 
the nth power of the variable, that is, 

i 

In Eq. (1) fi is the relative frequency of the i th  element of the distribution, xi 
is the mean value of that element, and 

i 

is the summed frequency of the distribution. These moments are related to the 
moments, p n r  of the distribution about the mean by the expression 
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The first entry in Table 2 represents the total pixel area of the region. The 
second entries, the extrema, define a bounding box for the region. The third entries, 
the mean values, give the centers-of-gravity for the x and y coordinates of the region. 
The final set of entries in the Table are the root-mean-square deviations, defined as 
the square-root of the second moments, or variances, of the coordinate distributions. 
These quantities have been cast into the simple form given in Table 2. For pixel 
distributions there are, of course, two variables, and an additional sumiation over 
the second variable gives the frequencies, f j .  

Table 2. Geometric Properties Extracted 
for Each Region in the Binary Image 

Property Definition 

Area 
Extrema 
Mean 
RMS Deviation 

Cardinality 
Min x, Max x, Min y, Max y 
< x > , < y >  
(< x2 > - < r7: > 2 ) 1 / 2 ,  (< y2 > - < y >2)1 /2  
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3.3 INTEGRATED SYSTEM REQUIREMENTS 

The final task performed by the HERMIES-IIB integrated system was to 
manipulate the slides and push the buttons on the mockup control panel. The CCD 
cameras were used in this task to locate both the end-effectors and the control panel 
devices by means of a stereo algorithm. The docking zone is defined as that region 
in front of the control panel from which this task was performed successfully. It 
was determined by the mechanical limitations of the manipulators and the sensing 
requirements for the particular placement of the cameras on the robot. The docking 
zone was found experimentally to be an area centered at a mean distance of 50 cm 
from the control panel, 5 cm x 8 cm in size, with a yaw, as defined in Fig. 3, of less 
than 2 deg. 

Fig. 3. Definition of distance, angle and yaw. 

The manipulation tasks were proceded by the navigation tasks. The control 
panel was first identified in the binary image as a dark region containing a pair of 
light regions situated approximately side-by-side in its uper half. Distance, angle 
and yaw information was then used to plan a local path towards the docking zone, 
and eventually reaching this goal in three to five steps. The task-required operating 
range of these algorithms was from 45 cm to 4.5 m over the angular range for which 
the control panel was in the field-of-view of the cameras. The performance ranges 
and measurements done are summarized in Table 3. 
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Table 3. Summary of Visual Sensing Experiments 

Sensing Task Sensing Zone Device Measurement 

Locat ion 5 cm width Light Height / Widt h 
8 cm depth Slide Area 
2 deg yaw But tons 

Docking 45 cm min depth Meters Distance 
4.5 m max depth Angle 
60 deg angular Yaw 

3.4 MEASUREMENTS 

As shown in Table 3, areas and height-to-widths were measured for the danger 
light, four buttons and uppermost slide. These measurements were done from a 
uniform distribution of positions within the docking zone. At each position a CCD 
camera image was taken, and the desired quantities were extracted. Areas were 
given as the cardinality of the region, and the height-to-width ratios were determined 
using the values for the extrema. 

Distance, angle and yaw (Fig. 3) were deduced from the observed geometric 
properties of the analog meters, from representative positions within the task- 
defined opcrating range. These three quantities were found using monocular vision 
and a standard pinhole camera model (see, for example, [SI). A priori knowledge 
was used of the physical dimensions of the analog meters, focal length of the lens 
of the CCD cameras, and the physical size of a pixel in the CCD array. Distance 
was calculated from the pixel area (cardinality) of the meters in the visual image. 
Angle was determined from the mean values of the horizontal offset of the meters 
from the center of the image. Yaw was the most difficult of the three quantities to 
determine, and its determination is essential for reliable docking. It was deduced 
visually from the reduction in the observed widths of the meters from the physical 
value. To remove the distance-dependence from the data, ratios of width to height 
were used. These were defined in terms of the ratios of the rms deviations. 

In the first series of 
measurements, ranges were found for a uniform distribution of locations within the 
docking zone located in front of the control panel at distances from 45 to 53 cm 
from the control panel. A simple representation of these data was then used to 
refine the visual sensor data. In the second series of measurements, range data was 
acquired at distances of 90 and 180 cm. The measurements were done from two 
positions separated from one another by a distance comparable to the width of the 
control panel. The difference between the ranges given by the two measurements 
was then used to calculate the control panel yaw. 

Two sets of ultrasound range experiments were done. 



4. AREA AND HEIGHT-TO-WIDTH DATA 

In this section we describe the results of measurements of those geometric 
properties used to distinguish the control panel devices from one another. We start 
with the height-to-width ratios, then examine the area data. Finally, we explore 
refinements of the areas using ultrasound range data. 

4.1 HEIGHT-TO-WIDTH RATIOS 

Height-to-width ratios for the uppermost slide, the four buttons and the danger 
light are displayed in Fig. 4. In contructing this figure data for the two CCD 
cameras were added together. Also shown in the figure are the height-to-width 
ratios of the devices as listed in Table 2. Two observations can be made. First, the 
measured distributions are systematically shifted downward from the actual values. 
The shifts are pronounced for the buttons, less so for the slide and modest for the 
danger light. Second, the distributions are rather broad, indicative of the presence 
of large random variations in the measured quantities. 

The systematic reductions in the measured height-to-width ratios from their 
actual values are due to perspective distortions. We recall from Sec 2.2 that the 
CCD cameras are situated on the sensor turret of the robot at a distance of 94 cm 
above the floor. The devices are located at various elevations on the control panel. 
The relative shifts in the device height-to-width ratios from their correct values are 
correlated with the device elevations listed in Table 2. These systematic effects are 
consistent with those expected of perspective distortions, and are a consequence 
of the less-than-optimal viewing conditions to be expected in any unstructured 
environment. 

To understand the origins of the large widths of the distributions we examined 
individual values for the heights and widths. We found that the magnitudes of these 
quantities were small, ranging from 5 to 20 pixels. These small values together 
with the sensitivity of extrema to small differences in intensity produced variations 
in measured height and width for repeated measurements from a fixed position. 
Additional miations were produced when the camera positions were varied across 
the docking zone. Part of the spread in the frequency distributions presented in 
Fig. 4 can be attributed to these random effects. Other factors contributing to the 
spread in ratios will be discussed in the following sections, where their signatures 
are more easily observed. 

4.2 AREAS 
Area data for the three devices are presented in Fig. 5.  In order to interpret 

these results we have included in the figure the cardinalities to be expected from 
the center of the docking zone, calculated using the pinhole camera model from the 
area data given in Table 2. Again, we observe that the frequency distributions are 
broad and are shifted from the expected values. The shifts in the area data are 
more complex than those for the height-to-width ratios. The button histogram is 
shifted downward while the danger light and slide distributions are shifted slightly 
upward. 

Of the three devices types, the buttons were located furthest from the camera, 
and the reductions in area are consistent with those expected for perspective 
distortions. The increases in area for the slide and danger light are due to other, 
more dominant effects. If by spherical distortions we mean distortions which vanish 
at the center of the lens, and increase radially so that objects appear smaller 

9 



10 AREA AND HEIGHT-TO- WIDTH DATA 

then they actually are, then this effect operates in a direction opposite to the 
observations. This leaves a general failure of the pinhole camera model at small 
distances as a possible explanation. In our case the distance to focal length ratio 
is 100, or less. A blurring, or defocussing, coupled to the subsequent digitization 
to a binary image, would serve to increase the observed areas of the devices. The 
magnitude of the effect needed to account for the data is roughly a single pixel in 
the extrema. Additional evidence for this effect will be presented in Sec. 5 .  

ORNL-GWG 90M-12483R 
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Fig. 4. Frequency distributions height/width ratios. (a) slide; (b) buttons, 
(c) light. 

Unlike the hight-to-width data, the area results are influenced by small 
variations in distance. This dependence becomes visible when the histograms are 
rebinned into distributions corresponding to distance regimes within the docking 
zone. The results of a decomposition of area data for the danger light are diplayed 
in Fig. 6. In the figure we find that the histograms are centered at progressively 
larger values of the area as the distances are increased. The arrows included in 
the figure represent the expected inverse square dependence, and are in excellent 
agreement with the observed variations. 
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4.3 MONTE CARLO METHOD AND SENSOR FUSION 

It is clear that if we had independent information on the distance of the robot 
from the control panel, we could perhaps sharpen the area results. The ultrasound 
sensors provide such a measure of distance. In this section we present results of 
fusing visual area and ultrasound range data using the Monte Carlo method. 

Monte Carlo integration methods, in their modern form, were introduced by 
Ulam and von Neurnann [31], and by Fermi. These methods, first applied to 
calculating intranuclear cascades [15], have been applied since that time to a wide 
variety of physical and statistical problem. In the present work, we treat the 
(normalized error histograms as measured probability distributions. We then use 
the Monte 2 arlo method to follow the propogation of errors as we fuse ultrasound 
ranges with the visual area data. 

There are two techniques for selecting values for the random variables. In the 
rejection, or direct, Monte Carlo method of von Neumann [25],  a pair of random 
numbers is generated. The first random number is used to select a candidate 2;. The 
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second random number is then comp 
xi is accepted or rejected. 
generated and the procedure is repeated until an accepted yair is found. 

d to f; to determine whether the candidate 
If it is rejected another pair of random numbers is 
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Fig- 6. ;“l.eqbaeracy distributions of areas (cardinalities) of the light at diResent 
(a) 45.7’ crsx (57.2 an); (b) 48.3 cm (59-2  cm); docking zone (camera) distances. 
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In the summat,ion, or inversion, Monte Carlo method only one random number is 
required in order to select an xi. In this second approach the cumulative frequencies, 
g k ,  are generated, as given by Eq. (4): 

k 

i = O  

The random number is used to select a valile for gk which, upon inversion, 
yields the corresponding xi. The summation method produces rapid results when 
the distributions are simple and do not have to be recalculated for each trial. 
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Thc inversion method is illustrated in Fig. 7. In the first part, Fig. 7(a), we 
display a representative frequency distribution. 'The pmtial sums of the frequency 
distribution forms a staireasc distribution. This distribution is plotted in Fig, 7(b), 
and the inversion of g k  to form hi is displayed in Fig. 7(c) .  The frequency 
clis tribution generatcd from hi is compared to thc original distribution in Fig. 7(d). 
In making this comparison the regencrated distribn tiori w ~ t s  normalized to the same 
total arca as the original. As can be seen in Fig. 7(d), there are minor departures for 
the smallest bins; otherwise the origjrilal distribution has been rcproduccd exactly. 
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distribution (histogram) to regenerated distribution (filled circles). 
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In our calculations we scaled the random numbers to span the desired range, and 
then truncated to an integer representing the index of the army h,. 'The magnitude 
of the range so chosen determined the reliability of this discrete implementation. In 
the calculations presented in Fig. 7(d) a range of 200 was selected. 'X'he number of 
Monte Carlo trials was 10,000. 

Three types of distributiom were used to integrate the area and range data. 
These were: i) the distribution of positions within the docking zone; {ii) the 
distribution o I ranges; and (iii) the distribution of areas. For (i) we used a 
uniform distribution of distances, neglecting the angidar and yaw variations. In 
this approximation the distance, d, was given by the simple expression 

where 

d,,, and &ill are the maximum and minimum distances within the docking zone, 
and is a random number. 

For (ii) we adopted a simple two-step approximation to the results of repeated 
distance mea,surements. In these range measurements we delineated a small 
transition region, on the order of 10% of the binwidth, where the value returned by 
the sensor underwent a transition from one value to the next. The first step in the 
two-step approximation represented the single range value from the central 90% of 
the bin; the second step a 58-50 choice of range in the transition region. That is, 
the range, I', was determined as 

where r, is the (midpoint) range for the ith bin, corresponding to the distance d,  A, 
is the 98%-width, (2 is either 0 or 1 depending on whether the random number (2 

is less than or greater than 0.5, and the plus/nGnus sign refers to upper OF lower 
transition region. 

Lastly, for {iii we used the data presented in Fig. 6. Unit area distributions were 

each bin as the unit area frequencies within that bin. The inverse distributions were 
then generated from the resulting cumulative distributions. To avoid rounding-off 
errors in the discrete approximation a range, l,,, , was calculated as 

generated from t h e foiir histograins. This was done using the total frequency for 

where An i s  the width of the area bins in Fig. 6, and N is the total fi-equcncy, given 
by Eq. (2). 'The Monte Carlo areas, A,, were then generated using a third random 
number, &, as 

where < d > is the mean robot position. 
The results of this calculation are presented in Fig. 8. We observe in this figure 

that distribution of visual areas has beexi sharpened through the fusion with the 
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I 

L. 

ultrasound data using the model given by Eqs. (5) to (8). Specifically, the root- 
mean-square deviation of the refined distribution was 15.3 while that of the original 
distribution was 21.4. 
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Pig. 8. Comparison of area (cardinality) distributions. Dashed histogram denotes 
the original frequency distribution shown in Fig. 6(e). Solid histogram gives the 
results after fusion. The Monte Carla, calculations were done for 10,000 events, and 
the results normalized to the total number of events in the original histogram. 





5 ,  DISTANCE AND YAW DATA 

111 this section we discuss the results of rnemurements of distance i d  yaw, 
neglecting the generally iininteresting angle data. We start with the monocular 
vision distance rcsults, and then turn to the yaw data from bath the CC 
and the ultrasound sensor. 

5.1 DISTANCE 

Plotted in 
this figure as a function of distance are the errors in the distances extxacte 
the monocular vision data. In the experiments the control panel was ecntered on 
the rsbot with its surface orthogonal to the optic axes of the cameras, that is, 
the robot-control panel angle and yaw were zero. The two cameras used in the 
experiments were sitiiated one on each side of the centerline, producing a small, 
distance-dependent angle with respect to the control panel. 

The first of two sets of distance results are presented in Fig. 9, 
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Fig. 9. Plot of distance errors as a function of distance. Open squares and filled 
circles denote the data from the left and right cameras, respectively. The dashed line 
is the zero error locus. Ten trials were done at each distance. The multiple entries 
for each distance give the corresponding values. 
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In the figure we find that the most accurate and precise results are for distances 
on the order of P m. At smaller distances the errors begin to increase. The errors 
at these small viewing distances correspond to extracted areas which are too large 
by about 10%. At distances greater than about 2 m the areas are again too large. 
More importantly, at large distances effects due to the small numbers of pixels in 
the regions of interest are present. '49 a result the precision of the estimates is 
cornparablc to the accuracy at these large distances. 

The second set of data, showing distance errors as a function of angle, for 
zero yaw, are presented in Fig. 10. These data were acquired at distances up to 
3 m. For completeness, the data from the previous figure have been included, and 
appear as dense groups of data points at angles less than 10 deg. In this figure we 
observe a variety of excursions away from the zero error line. The most pronounced 
excursions occur for large positive angles. These excursions and their apparent lack 
of symmetry about 0 deg may be ascribed to a misalignment of the plane of the 
lens of the camera and/or cylindrical distortions. A rotation, for example, of the 
lens had an observable effect upon the distortions. 
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Fig. 10. Plot ob distance errors as a function of angle. Definitions of the symbols 
are the same as in Fig. 9. 
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5.2 YAW 

5,2.1 Visual Data 

The distances over which yaw could he dctermind are sxrialkr than those for 
which distance and angle can be deduced. This arises from the sensitivity, at large 
distances, of the measured cosine of thc mgle of rotatioil to small (unit pixel) 
variations in length. The mcasured quantities were stabilized as much as possible 
by using second moments tn form khe ratios of interest. Also, the control panel 
angle was set to zero, that is, the camera was pointed at thc: control paxiel, which 
was rotated through some angle to be measured. 

Results of thc rneasurmneiits of yaw at two representative rotation axrglcs are 
presexited in Figs. 11 and 12. The data haw been grouped by camera, and l ~ y  the 
direction of rotation (positive or negative). Tlnc first observation to be enlade is that 
the overall agreement bewteen measured axid physicd values for the yaw is good. 
TIE error in the mean values for the yaw diffcr from thc phy.;ical values by imly 
a fcw percent. Two achieve these results a11 effective valtte for the ratio of meter 
width to height was used. This ratio differed from the physical ratio by about 10%. 
Otherwise, no parameter adjustments were made, and the same constants were iised 
for both cameras. 
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Fig. 11. Measurements of a 26.6 deg yaw. Part (a) negative yaw. Part (b) positive 
yaw. Open squares and filled circles as in Figs. 9 and 10. The dashed line is the zero 
error locus. 
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Fig. 12. Measurement of a 41.0 deg yaw. Part (a) negative yaw. Part (b) positive 

yaw. Symbols as before. 

The mean values and root-mean-square deviations are listed in Table 4. We 
observe from the figures and table that the accuracy is higher at 41 deg than at 
27 deg. Specifically, the errors range from 1.8 to 5.0 deg at 27 deg, and from 1.5 to 
2.5 deg at 41 deg. The precision, represented by the root-mean-square deviations, 
is also superior at the larger angle. This is a general trend, arid we find that the 
precision deteriorates rapidly at rotation angles less than 10 dcg, due to the cosine 
dependence. 

~ 

Table 4. Summary of Visual Yaw Measurements 

Angle (deg) Mean Angle ($e@;) RMS Deviation ................... (deg) .- 

.. .- .............. 
Caixrera Physical Measirrerl 

.............. -. ............ 

Left -26.6 -21.6 0.98 
26.6 

-41 .O 
41.0 

Right -26.6 
26.6 

-41.0 
41.0 

-28.4 
23.5 
-43.5 
39.5 

23.2 
-39.3 
38.9 

4.26 
0.71 
2.06 

1.82 
1.87 
0.80 
0.97 
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Two other observations can be made. First, the spreads in the data for rotations 
in the positive direction are considerably greater than those for the negative 
direction. This change in spread can be ascribed to differences in lighting. In 
the case of positive rotations the front of the control panel is being illuminated, in 
part, froin the window. Second, there are differences between the results from the 
two cameras. These differences are most likely calibration, or alignrnnt, related. 

5.2.2 Ultrasound Data 
We noted in Sec. 5.1.1 that the cos 19, dependence of the yaw estimates extraced 

from the visual imagc severly limits its precision at small angles. The ultrasound 
rnetl~od (Scc. 3-41, in contrast, providcs an estimate of yaw which varics as sin 6,. 
Thus; at small angles, the behavior of the quantities measured: 

measurement - sinfir, M 9,, for ultrasound data 

measurement N cos = 1 - 292,/2 for visual data 

The small-angle dependence of the ultrasound yaw estimate varies linearly with 
arisle, and does not suffer from the insensitivity exhibited by thc visual yaw data, 
at angles near zero dicg. (For example, the difference bctween the cosines of 0 deg 
and 10 deg is only 1.5%.) These simple considerations, when comnbined with a 
specification of the precision of the visual horizontal length and ultrassuncl range 
estimates, form elerncnts of a model for the precision of the yaw estimates in the 
two sensor domains. 

Ultrasound rangc data for 3.0, 9.1 and 45.0 deg are presented in Fig. 13. We 
observe in thesc plots that as yaw incrcases the differences in near and far side 
distances become larger. In more detail, the data at 9.1 deg displayed in Fig. 13(b) 
are typical of the small angle regime. We observe that the distribution of ranges 
froin the near side, as well as the far side, is not sharp. Upon combining the root- 
mean-square deviations in quadrature we obtain a precision of 2.5 deg, while the 
error is 1.2 deg. Data at 3 deg is presented in Fig. 13(a) and Table 5. At this angle 
we have reached the limits of precision imposed by the bin size corresponding to 
the analog-to-digital conversion of the time-of-flight signals. This limit in precision 
at small angles can be overcome by acquiring more precise range data. 

Table 5. Summary of Ultrasound Yaw Measurements 

Distance Physical Measured 
(cm) Angle (deg) Mean Angle (deg) RMS Deviation (deg) 

180 45.0 
26.6 
18.4 

90 9.08 
3.02 

44.4 
23.8 
13.1 

7.88 
3.33 

5.3 
6.5 
6.7 

2.49 
3.96 
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45 50 55 60 65 
BIN NUMBER 

Fig. 13. Distribution of range values for rotation angles (yaw) of (a) 3.0 deg, 
(b) 9.1 deg, and ( e )  45.0 deg. Fully shaded histograms denote the results from the 
near end of the control panel surface. Unshaded histograms show the frequencies 
from the far end of the surface. The partially shaded histogram displayed in part ( c )  
gives the numbers of events for the ‘‘in’’ setting of the buttons; otherwise the buttons 
are “6011t.~’ The ordinates are expressed in units of 3.0 cm. The skipping of ordinate 
values for sets of returns wa5 produced by a hardware clock error. 

Overall, useful data were obtained using the difference of ranges method at 
distances up to 2 m, and yaws from 0 deg to more than 45 deg. Within this 
broad zone the interplay between the beam and surface properties produced several 
observable effects. Range data for a yaw of 45 deg are displayed in Fig. 13(c). We 
observe that the distribution of ranges from the left-hand, or near, side of the panel 
is sharply peaked. This is contrast to the distribution of ranges from the right- 
hand, or far, side which is spread among several bin values. The broadening of the 
histogram is due to the presence of several scattering sources along thc control pariel 
surface. To illustrate this point two distributions arc shown for the far side. In one 
histogram data were taken with the buttons in the “in” position; in the other case 
the buttons are “out.)) The differences between “in” and “ou~”  configurations are 
apparent. 

The data from 27 and 18 deg are similar. Values for the mean yaw and the root- 
mean-square deviation for the “in” configuration for the threc rotation angles are 
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listed in Table 5.  The yaw calculations were done assliming that the far returns wcre 
from the inner eorncr formed by the raised lip. As the rotation angle is decreased we 
note that the mean values faall progressively further be lo^ the that of the physical 
rotation angle. The reason for this is that the mean distanccs along the control 
panel from the left-side to the right-side returns arc s ~ r d l e r  than assumed iii these 
calculations. This error manifests itself as a shortfall in the estimated yaw. 
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with varying seliability at different distances and rotations, provides an example of 
this type of model. 

Sensor fusion, the second solution, may be regarded as a strategy for reducing 
uncertainties and errors, m d  overcoming mechanical and sensor limitations, to 
achieve the desired performance goals. In a previous study [8], we examined sensor 
fusion done through a mutual exchange of information between sensor domains. 
Zhr the cases examined in the present work, either the same quantity was measured 
in two different ways using different sensors, or data in one domain vms refined, 
or conditioned, with data from a second sensor domain. Regardless of thc type of 
fusion, a sensor model, in the second sense discussed in the previous papagraph, is 
needed to characterize the relative accuracy and precision of the sensor data and 
guide the fusion process. 

To conclude this section, the above approaches, where sensor models and sensor 
fusion play key roles in the interpretation of sensor data, may provide the means 
for achieving reliable perfoorxnanee by automated systems operating in unstructured, 
and eventually, dynamic environments. These approaches are strategic in intent, 
and provide the means for guiding and controlling the interpretation of the output 
of data processing algorithnw. Conclusions similar to ours have been reached by 
others in the field (see, for example, [ 5 ] ) .  



7. SUMMARY AND CONCLUDING REMARKS 

Our goal in this experimental study was to examine the performance of the 
visud and ultrczsonic subsystems of a mobile robot operating in an unstructured 
environment, To do so we ca,rried repeated measurements of the key geometric 
quantities iised to guide navigat,ion, docking, location and indcritification tasks. A 
variety of errors were observed. We decomposed these errors into their systematic 
a.nd random components, attempted to account for their origins, and devised means 
for their reduction. 

This approetch is the standard one in an experimental science. As rioted by 
R,. A. Fisher [14], “The experimenter interested in th.e causes which contribute to 
a certain effect is supposed, by a process csf abstraction, to isolate these causes 
into a number of elementary iiigredients, or factors, and it is often supposed, at 
least for purposes of exposition, that to establish controlled conditions in which all 
of these factors except one can be held constarit, and then to study the effects 
of this single factor, is the essentially scientific approach to any experimental 
investigation.” Fisher then observed that this prescription was a difficult one since 
LC We are usaially ignorant which, out of innumerable possible factors, may prove to 
be most iniportant.” In this latter rega,rd we note that we have not specified in a 
precise quaiititative form all environmental, 1ia.rclware and software factors, but we 
have attempted to indicate which ones were perhaps most important. 

Turning to the issues raised by the study, we note that sonic: of (‘:rrors reflect 
limitations of the hardware, and ca.n be overcome by using more sophisticated (and 
costly) cairieras, lens mounts, lenses, etc. Idore important are those errors which 
arise not because of failures of hardware, but rather as consequences of erroneous 
interpretations of the outputs of data processing algorithms. These systemtic 
errors, and the loss of precision through random errors, are likely to increase as 
the environments become progressive less pre-engineered. 

In the present study, and in two previous ones [7 ] ,  [8], we have tried to show 
how sensor models and sensor fusion can be used to minimize these errors to 
satisfy the performance requirements of a given task. These strategic components 
function in intelligent robotic systems in an active inaniier to control and guide the 
interpretations of the output of the data processing algorithms. 
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