MAR (1N MARIETTA ENERGY SYSTEMS LIBRARIES

TNHRINED

3 445k 0333?‘21 7 ORNL/TM-11768

i
£

CAK BRIDGE
ATIONAL

LABOR

The IBM RISC System/6000 and
| Linear Algebra Operations

¢ Jack J. Dongarra
Peter Mays
| Giuseppe Radicati di Brozolo

i

. a P RPYree. e o - oy
acconnt of work spongcied by en agsnoy of

iire Unite?

yees, akes

for the
.

aiug, Droduct, OF process

plaiens
iesea, or

£

or servizg b

Stherwize, do

25y AGETS

ORNL/TM-11768
Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE IBM RISC SYSTEM/6000 AND LINEAR ALGEBRA
OPERATIONS

Jack J. Dongarra
Department of Computer Science
University of Tennesee
and
Mathematical Sciences Section
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-8083

Peter Mays
Numerical Algorithms Group Ltd.
Wilkinson House, Jordan Hill Road
Oxford OX2 8DR, United Kingdom

Giuseppe Radicati di Brozolo
IBM European Center for Sci. & Eng. Comput.
00147 Roma
Giorgione 159, Iialy

Date Published: January 1991

This work was supported in part by the Applied Mathematical Sciences
subprogam of the Office of Energy Research, U.S. Department of Energy,
under Contract DE-AC05-840R21400, Computer Science Department of the
University of Tennessee, IBM, and the National Science
Foundation Science and Technology Center Cooperative Agreement
No. CCR-880961S.

Prepared by the
Qak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Martin Marictta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

MARTIN MARIETT A ENERGY SYSTEMS LIBRARES

QT

3 4456 D333721 7

Contents

1

IBM RISC System/6000: System Overview 1
1.1 Central Processing Unit 1
1.2 Memoryand Caches 3
1.3 Serial Optical Link 3
Fortran Techniques for Performance on Matrix Operations 3
2.1 Level 1 BLAS e 4
22 Level 2BLAS e e 5
23 Level 3BLAS e 8
2.4 Summary of BLAS Performance 10
Block Algorithms and LAPACK 10
3.1 Performance of Blocked Algorithms on the RISC System/6000 11
Summary and Conclusions 11
Acknowledgements e 12

- ii -

-1-

The IBM RISC System/6000 and Linear Algebra Operations *

Jack J. Dongarra
Computer Science Department, University of Tennessce, Knozville, TN 37996-1301; and
Mathematical Sciences Section, Qak Ridge National Laboratory, Oak Ridge, TN 37831

Peter Mayes

NAG Lid., Wilkinson House, Jordan Hill Road, Ozford, OX2 8DR, UNITED KINGDOM
and

Giuseppe Radicati di Brozolo

IBM European Center for Scientific and Engineering Computing, 00147 Roma, via Giorgione 159,
ITALY

Abstract
This paper discusses the IBM RISC System/6000 workstation and a set of experiments
with blocked algorithms commonly used in solving problems in numerical linear algebra. We

describe the performance of these algorithms and discuss the techniques used in achieving
high performance on such an architecture.

1 IBM RISC System/6000: System Overview

The IBM RISC System/6000 computer is a superscalar second-generation RISC architecture {2].
It is the result of advances in compiler and architecture technology that have evolved since the

late 1970s and early 1980s.

Like other RISC processors, the RISC System /6000 implements a register-oriented instruction
set, the CPU is hardwired rather than microcoded, and it features a pipelined implementation.
The floating-point unit is integrated in the CPU, minimizing the overhead associated with

separate floating-point coprocessors.

Unlike other RISC processors, however, the RISC System/6000 has the ability to dispatch

-2

multiple instructions and to overlap the execution of the fixed-point, the floating-point, and the
branch functional units. The 184 instructions are divided among the functional units and are

designed to minimize interaction among the functional units.

The IBM RISC System/6000 is intended to satisfy the requirements of both commercial and
scientific applications. Qur focus here is on the performance of the RISC System/6000 for
scientific applications, which require very high floating-point performance as well as specialized
peripherals, such as high-quality graphics adapters. These, in turn, require very high memory

bandwidths to the central processing unit.

In what follows, we give a brief overview of the design of the CPU and memory and of some
aspects of the I/O system. In particular, we discuss those architectural features most important
for designing and implementing high-performance mathematical software. Note that specific
details refer to the Model 530. The specification of other members of the RISC System /6000
family may be different in some aspects. For a more complete discussion of the hardware,
we refer the interested reader to the January 1990 issue of the IBM Journal of Research and

Development.

1.1 Central Processing Unit

The CPU architecture is based on a design that exploits modern compiler technology, and an
implementation that exploits VLSI and CMOS technology, to allow as much parallel instruction
execution as possible. The RISC System /6000 processor consists of three separate but integrated

functional units:

1. The Instruction Cache and Branch Processing Unit feeds a stream of instructions to the
fixed-point and floating-point units. The branch processor provides all the branching,
interrupt, and condition code functions within the system. An important feature of the

branch processing unit is the “zero-cycle branch.” A zero-cycle branch is achieved by

-3
executing branches simultaneously with fixed- or floating-point operations so that the
stream of data to these units is not interrupted. In practice, this configuration means that

loop boundaries do not interrupt pipelining.

2. The Fixed-Point Unit (FXU) is designed to execute the fixed-point arithmetic, the logic
instructions, and the data address computations and to schedule the movement of data
between the floating-point unit and the data cache. Read or write transfers between the

floating-point unit and the data cache require one cycle to complete.

3. The Floating-Point Unit (FPU) supports the execution of the floating-point instructions.
The FPU has a set of thirty-two 64-bit floating-point registers that access the data cache
directly. It conforms to the ANSI/IEEE 745-1985 standard for binary floating-point arith-
metic. The FPU is organized for double-precision computations. Thus, data held in the
floating-point registers are always represented in double-precision format. Therefore, when

single-precision data are loaded, they are expanded to double-precision format.

In addition, there are a number of features in the architecture which enhance performance.

¢ Register renaming is an important feature of the machine. This allows data for the next
instruction to be loaded into a floating-point register that is currently being used by an

earlier 1nstruction.

e In addition to the usual arithmetic operations, there are compound instructions that mul-
tiply two operands and add (or subtract) the product to a third operand. These floating-
point multiply-and-add (FMA) instructions take two cycles to complete. However, one
FMA instruction may be issued in each clock cycle, provided that the operands are inde-

pendent. Thus it is possible to complete two floating-point computations in each cycle.

o The FMA instructions actually produce only one rounding error rather than two and are

therefore more accurate than required by the IEEE standard. This additional accuracy

-4

has been used, for example, in some of the math intrinsic functions. However, if strict
adherence to the IEEE standard is required, a compile-time option can be used to disable

the generation of compound instructions.

¢ The floating-point divide is implemented by a Newton-Raphson approximation algorithm.
A division requires 16 to 19 cycles to complete and provides correctly rounded results, but
is obviously expensive if computed unnecessarily inside a loop. If division by a constant
is taken out of the loop and replaced by a multiplication with the reciprocal, the code
is more efficient, but the results are not necessarily identical. If it is important to have
exactly equivalent code, the added precision and speed of the multiply-add instruction can
be used to implement a reciprocal multiplication plus correction algorithm at the cost of a
multiply and two multiply-adds (5 cycles). This algorithm is cheaper than a division and

still provides correctly rounded results.

This design has allowed the implementation of a CPU that executes up to four instruction
per cycle: one branch instruction, one condition register instruction, one fixed-point instruction,
and one floating-point multiply-add instruction. A second pipelined instruction can begin on the
next cycle on an independent set of operands. This meaus that two independent floating-point

operations per cycle can be executed.

Of particular interest is the fact that loads and independent floating-point operations can
occur in parallel. The compiler takes advantage of this capability in many cases: with a well-
designed algorithm, it is possible to execute two floating-point operations on separate data
items and “hide” one memory reference all in the same cycle. At a clock cycle of 25 MHz, this

translates into a peak performance of 50 million floating-point operations per second (Mflops).

1.2 Memory and Caches

The RISC System /6000 memory banks implement a four-way interleaved design that provides

two words (two 64-bit words) of data every machine cycle. A system can have from 16 to

256 Mbytes of total memory.

Separate instruction and data caches provide conflict-free access to data and instructions.
The instruction cache is organized as an 8-Kbyte, two-way set-associative cache, which has a
64-byte (16-instruction) line size. The data cache is a four-way set-associative 64-Khyte cache,
which is divided into four identical chips of 16 Kbytes each. The cache is implemented as a
store-back cache to minimize the memory bus traflic: data are written back to memory only
when an updated line in cache is replaced. The cache-line size is 128 bytes. A synchronous
128-bit memory bus allows 400 Mbytes per second to be transferred to or from memory: it takes
eight cycles to load a cache line (16 double-precision words) from memory to cache. A 64-bit
data bus connects the floating-point unit and the data cache: it takes one cycle to transfer a

double-precision word between the data cache and the floating-point registers.
1.3 Serial Optical Link

The I/O unit contains an I/O channel controller and two serial link adapters, which provide
an interface to optics cards that drive fiber-optics links. It is intended for attachment of disks,
graphics adapters, and other high-speed peripherals. (Support for this high-speed optical link is
planned for future release.) The serial optical link has a bandwidth of 220 Mbits per second, and
it allows the attachment of remote devices up to 2000 meters away. The link is also suitable for
interprocessor message and data transfers in a multiprocessor configuration, and work is under

way to investigate its suitability for closely coupled multiprocessing.
2 Fortran Techniques for Performance on Matrix Operations

As mentioned in the preceding section, the RISC System/6000 can complete a floating-point
multiply-and-add (FMA) instruction every cycle, so that a Model 530 running at 25 MHz has
a theoretical peak speed of 50 Mflops. Many factors limit the amount of concurrency that can

be effectively used, thus limiting the performance that an algorithm can achieve. Most notably,

-6 -

unnecessary memory references can have a severe impact on the performance attainable. Indeed,
the movement of data between memory and registers can be more costly than arithmetic opera-
tions on the data. This cost provides considerable motivation to restructure existing algorithms

and to devise new algorithms that minimize data movement.

In this section we describe a model to predict the performance of simple Fortran loops and
to serve as a guide to writing efficient Fortran code for the RISC System/6000. (We observe
that the Fortran compiler usually takes advantage of all the parallelism of which the CPU is

capable.) Our model is based on the following rules:

1. Fach FMA instruction requires two cycles to complete. Two FMAs that operate on in-
dependent data will be scheduled on consecutive cycles, and therefore two floating-point

operations will be executed simultaneously.

2. Loads from cache to floating-point registers require one cycle to complete. They will be
overlapped with FMAs that were scheduled earlier, even if they operate on registers that

the earlicr FMA is still using (register renaming).
3. Stores do not overlap with FMAs.
4. Leoop boundaries do not interrupt pipelining (zero-cycle branch).

5. When a cache miss occurs, the floating-point unit must wait 11 cycles before the whole
cache line is available. The latency from memory to cache accounts for 8 cycles. In our
model we add to this an additional latency of 3 cycles, which fits closely the experimental
data we collected. The details of the data transfer may be more complicated in reality,

but this is the average cffect that a Fortran programmer might expect to sce.

In the following three subsections we use this model to explain the different levels of per-
formamnce that can be achieved by using different levels of Basic Linear Algebra Subprograms

(BLAS) kernels (8, 5, 4], and we describe some Fortran techniques to implement the BLAS

-7 -

efficiently. High performance was achieved by constructing the codes in such a way that the
compiler can easily generate code that matches the architecture of the machine. The techniques
used were blocking (or strip-mining), loop unrolling, and loop jamming—all fairly standard tech-
niques used by compiler writers. We hope that some of these techniques will be incorporated
into subsequent versions of the compiler, so that even less work will be required to exploit the

machine.

2.1 Level 1 BLAS

The two Level 1 BLAS operations that occur most frequently in linear algebra are the DOT:

DO 10 I

L]

1, N

it

TEMP = TEMP + X(I)*Y(I)

10 CONTINUE

and the AXPY:

DO 10 I i, N

Y(I) = Y(I) + ALPHA*X(I)

10 CONTINUE

We begin by examining the performance of these operations when using data stored in cache.

For the DOT operation, each F'MA instruction requires two loads, one for X(I) and for Y(I).
Loading the data requires two cycles, and performing the FMA also requires two cycles. There
is no possibility of re-using data, so the best we can expect is that the loading of the next two
operands is overlapped with an FMA. This corresponds to a theoretical speed of 25 Mflops; in

practice, we measured 24.5 Mflops (see Table 1).

For the AXPY operation, cach FMA instruction requires two loads and one store. Again, there

is no possibility of reusing data, so the best we can hope for in this case is one FMA instruction

Table 1: Speed in Mflops of Level 1 BLAS

DOT AXPY
Type of memory access | predicted | measured | predicted | measured
all data in cache 25 24.5 16.67 16.4
all data from memory:
z and y with unit stride 14.81 14.6 11.43 11.3
z with stride 16 3.65 3.2 3.40 3.2
z and y with stride 16 2.08 1.8 2 1.4

every three cycles. This corresponds to 16.67 Mflops; in practice, we measured 16.4 Mflops (see

Table 1).

For data that must be accessed from memory, we must take account of the time taken for data
to arrive in the registers. Each time a cache miss occurs (every 16 elements for stride-one access),
the processing is interrupted, and the CPU must wait for the cache line to become available. In
our model, the CPU must wait for 11 machine cycles. Thus, the cost of moving contiguous data
from memory to registers is, on the average, 1.69 cycles per element (i.e., 11 cycles to move a
cache line from memory to cache plus 1 cycle to transfer each of the 16 elements from cache to
register ((11+416)/16) cycles per element). In a DOT operation, on the average 2 floating-point
operations (1 FMA) are scheduled every 3.38 machine cycles, giving 14.81 Mflops in theory and
14.6 Mflops in practice. If the vectors are accessed with stride 16 (the length of a cache line),
cach element will be available after a delay of 12 cycles (= 11 + 1), giving 25/12 = 2.08 Mflops in
theory and 1.8 Mflops in practice. Table 1 shows the measured performance and the prediction

using the model for some other memory access patterns.

2.2 Level 2 BLAS

Here we consider the Level 2 BLAS DGEMY operations
y — y+ Az and y—y+ ATz,

The basic operation in Fortran is given in Figure 1, where A(I,J) must be replaced by A(J,I)

DO
DO
Y(I) = Y(I) + A(T,J)«X(J)
CONTINUE
CONTINUE

Figure 1: Generic matrix-vector multiply code

for the operation with AT. Depending on the ordering of the DO-loops, the inner loop is either a
DOT or an AXPY. We have seen from the discussion of the two Level 1 BLAS operations that,
because the RISC System /6000 system can perform an FMA instruction with all its operands
in registers, it is better suited to DOT operations than to AXPY operations. (Note that this
contrasts with the situation on vector machines such as the CRAY Y-MP, where the two vector
loads and one vector store required match the architecture well. Also, by unrolling, it is possible
to keep the vector Y(I) in a vector register for longer, thus increasing the ratio of floating-point
operations to memory references.) We have also seen from Table 1 that when accessing data
from memory, it is very important to access the data with stride one, so that all the elements in

a cache line are used when that line is loaded. For these two reasons, we consider the operation
y—y+Aa'e,
which can be expressed as a DOT operation with A accessed with unit stride.

For this operation, the peak speed is again 25 Mflops—exactly the same as for the DOT.
However, in this case we can unroll the dot product to re-use each X(J) a number of times. As
the depth of unrolling increases, the ratio of operations to loads increases from one and tends
towards two. For example, for unrolling to depths 2, 3, and 4, the ratio of operations to loads is
4/3, 6/4, and 8/5, with a theoretical peak speed of 33.3, 37.5, and 40 Mflops, respectively. The
code for this operation unrolled to depth 4 is shown in Figure 2. In practice, there is little benefit
in unrolling to very large depths, as there are only a finite number of floating-point registers,
and the performance reaches a plateau. The code in Figure 2 performs at 36.3 Mflops, and a

speed of 40.3 Mflops has been measured for unrolling to depth 8.

-10 -

DD 20I =1, M, 4

TEMP1 = ZERD
TEMP2 = ZERD
TEMP3 = ZERO
TEMP4 = ZERD

DO 10 J =1, N

TEMP1 = TEMP1 + A(J,I)*X(J)
TEMP2 = TEMP2 + A(J,I+1)*X(J)
TEMP3 = TEMP3 + A(J,I+2)*X(J)
TEMP4 = TEMP4 + A(J,I+3)*X(J)
10 CONTINUE

Y(I) = Y(I) + TEMPI

Y(I+1) = Y(I+1) + TEMP2

Y(I+2) = Y(I+2) + TEMP3

Y(I+3) = Y(I+3) + TEMP4

20 CONTINUE

Figure 2: Model Code for y « y + ATy

Table 2: Speed in Mflops of Level 2 BLAS

Data in Cache Data in Memory
yeytdz | yey+ ATz | yoytAs | y—y+ Al
depth | DOT | AXPY | DOT | AXPY | DOT | AXPY | DOT | AXPY

1 22.7 15.6 22.6 15.5 8.7 9.0 11.0 7.7
30.4 23.5 30.4 23.4 10.4 10.0 11.2 9.5
34.1 24.0 34.2 23.8 10.6 12.3 11.4 9.7
36.3 24.0 36.4 23.6 11.3 9.8 11.3 10.3

_— W N

Table 2 lists the speed of the various DGEMYV operations and also includes speeds for data
accessed from memory. This table shows that for data accessed from cache, the speed of the
operation y «— y + Az based on DOT is the same as that for the operation with AT —there is

no penalty for accessing with stride from cache.

First, we notice that for data accessed from memory, for the y < y+ Az operation it is slightly
better to use the AXPY operation, which accesses the matrix with unit stride, rather than the
DOT version, which accesses the matrix with stride equal to its leading dimension. Second, we

see that although the speed of the y « y + Az operation based on AXPY (9.0 Mflops) and the

<11 -

Table 3: Speed of C «— C + AB on the RISC System 6000-530
Conditions before operalion ! Speed in Mflops

All arrays initially in cache 47.5
A or B initially in cache 45.4

C initially in cache 42.5

No arrays initially in cache 41.5

y + y + ATz operation based on DOT (11.0 Mflops) are slower than the corresponding Level
1 BLAS speeds based on unit stride (11.3 Mflops and 14.6 Mflops respectively—see Table 1),
the speeds for accessing the matrix across a row are much faster for the Level 2 BLAS than
for the corresponding Level 1 BLAS. This is because when elements of a row of a matrix are
accessed, all the elements in the corresponding cache line are loaded into cache, and some will

be immediately available when the next row is accessed.

2.3 Level 3 BLAS

In performing the matrix-matrix multiply operation
C« C+ AB,

where we assume that all three arrays are in cache, it is possible to increase the ratio of operations
to loads to 2:1 by unrolling the DO-loops in two directions and thereby re-using each loaded
element twice. Note that this ratio is optimal, in the sense that it is precisely what the hardware
supports. The code fragment in Figure 3 illustrates this technique. In theory, this approach
would result in a speed close to the theoretical maximum of 50 Mflops on a 25 MHz machine.
In practice, we have measured 47.5 Mflops—see Table 3. Note that a production version would
be complicated by the need to include code for the cases when M and N are not a multiple of

two.

In general, the arrays A, B and C will be too large to fit into cache together; in any case,

they need to be loaded from memory initally. It is still possible to arrange for the operations

-12-

DO 30 J =1, N, 2
D0 20T =1, M, 2
T11 = ZERO
T21 = ZERO
T12 = ZERD
T22 = ZERD
DO 10K =1, L
Ti1 = T11 + A(I, K)*B(K,J)
T21 = T21 + A(I+1,K)*B(K,J)
Ti2 = T12 + A(I, K)*B(K,J+1)
T22 = T22 + A(I+1,K)*B(K,J+1)
10 CONTINUE
c(I, 1)=¢C(1, J)+ Til
C(I+1,J) = C(I+1,J) + T21
C(I, J+1) = C(I, J+1) + Ti2
C(T+1,J+1) = C(I+1,J+1) + T22

20 CONTINUE
30 CONTINUE

Figure 3: Code fragment for near-optimal performance of C — C + AB

to be performed with data largely in cache by dividing the matrix into blocks, as shown in
Figure 4. We may then fix the block A of the matrix A and perform every operation involving
this block before moving on to another block of A. In other words, we compute the products
Cy « Cy+ ABy, Cy = Cy + AB,,... C¢ — Cs+ ABg. In this way the block A can be kept in

cache and the data reused many times.

In addition, if we assume that the leading dimension of B is such that the block B; can all be
contained in cache, the overhead of loading B; from memory is not too great. Morcover, each
column of B; is accessed a number of times. Thus we may perforin the matrix-matrix product

of these blocks at close to the peak speed of the machine.
To illustrate the overhead of cache loading, we show in Table 3 the speed of the operation
C—C+AB

where ' is 24 by 24, and A is 24 by 128, and where different arrays are forced to be accessed

either from cache or from memory. These dimensions were chosen so that all three arrays can

213

S
x
k3

132|518 4185186

(C 1]0216‘3?4]05106 —— CTJCles‘C\psp [J +

Partitioning of large matrix-matrix product

Matrix-matrix product of individual blocks

(Block A remains in cache)

Doubly unrolled dot products for

“optimal” performance on sub-blocks

Figure 4: Blocked matrix-matrix multiply (DGEMM)

-14.

comfortably fit into cache together, and the length of the dot products is sufficiently long so

that they reach their asymptotic speed.

One other important detail of the blocking strategy merits discussion. Suppose that the
matrix A is declared with a very unfavorable leading dimension. Then it is possible that only
a few columns of the matrix A will fit into cache before new columns begin to flush the old
columns. For example, if the leading dimension of A is 512, and A is 32 by 32, it turns out that
only 16 columns of A will fit in cache. To overcome this problem, we copy the block A into a
work array and then perform all the operations with the work array, rather than addressing a
part of the array A. This approach requires us to access A with a bad leading dimension only

once, rather than 16 times, for the matrix dimensions mentioned above.

A Fortran version of the Level 3 BLAS routine DGEMM using these techniques is available

from netlib (send mail to netlib@ornl.gov; in the mail message type: send dmr from misc).

2.4 Summary of BLAS Performance

Figure 5 shows a graph of the speed of the three BLAS routines DDOT, DGEMV, and DGEMM
for increasing matrix dimensions. The operations performed by DGEMV and DGEMM are

chosen so that dot products are performed on contiguous elements, ie., y — y + ALz for

DGEMV and ¢ « C + AT B for DGEMM.

This graph clearly shows the benefit of increasing the ratio of floating-point operations to
memory references achieved by using the Level 3 BLAS. For matrix-matrix multiply we are
doing O(n3) operations on O(n?) data, representing a favorable surface-to-volume effect. Hence
matrix-matrix multiply offers much greater opportunity for exploiting the memory hicrarchy
than the lower-level BLAS routines. All the experiments described here were performed on
a IBM RISC System /6000 Model 530 running at 25 MHz, using the AIX XL compiler version

01.01.0000.0000 with the -O option. The BLAS shown in Figure 5 were implemented in standard

Fortran 77.

-15 .

50 . . ' ' .
i . Level 3 BLAS +
35} |
& a0]
& :
% 25 i Level 2 BLAS 1
£ ; e e
FREL S T |
- H o
Level 1 BLAS
[W
0 100 200 300 o 5 .

Order of vectors/matrices

Figure 5: Speed of Level 1, 2, and 3 BLAS on the RISC System 6000-530

3 Block Algorithms and LAPACK

Experience with machines having a memory hierarchy [6, 7] indicates that it is often preferable
to partition the matrix or matrices into blocks and to perform the computation by matrix-matrix
operations on the blocks. By organizing the computation in this fashion, one can provide for
full reuse of data while a given block is held in the cache or local memory. This approach avoids
excessive movement of data to and from memory, and its benefits on the RISC System /6000 in

particular are clear from the previous section.

Many algorithms can be blocked. For example, researchers have used blocking to rewrite codes
for the solution of partial differential equations. Such codes make efficient use of supercomputers
with small main memory and large solid-state disks {9]. All experience with these techniques
has shown them to be enormously effective at squeezing the best possible performance out of

advanced architectures.

Recent work by numerical analysts has shown that the most important computations for
dense matrices are also blockable. A major software development project dealing with blocked

algorithms for linear algebra, called LAPACK (shorthand for Linear Algebra Package), is based

-16 -

on this idea [1].

The LAPACK library will provide routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of overdetermined systems of equations, and eigenvalue problems.
The library is intended to be efficient and transportable across a wide range of computing en-
vironments, with special emphasis on modern high-performance computers. To achieve high
efficiency, LAPACK developers are restructuring most of the algorithms from LINPACK and
EISPACK in terms of calls to a small number of extended BLAS, each of which implements a
block matrix operation such as matrix multiplication, rank-k matrix updates, and the solution
of triangular systems. These block operations can be optimized for each architecture, but the

numerical algorithms that call them will be portable.

3.1 Performance of Blocked Algorithms on the RISC System /6000

We used three blocked variants from LAPACK to compare the performance of LU factorization
for a general matrix. These blocked variants are shown in Figure 6. The lightly shaded parts
indicate the matrix elements accessed in forming a block row or column, and the darker shading
indicates the block row or column being computed. The left-looking variant computes a block
column at a time using previously computed columns. The right-looking variant (the familiar
recursive algorithm) computes a block row and column at each step and uses them to update the
trailing submatrix. The Crout variant is a hybrid algorithm in which a block row and column

are computed at each step using previously computed rows and previously computed columns.

All of the computational work for the LU variants is contained in three routines: the matrix-
matrix multiply DGEMM, the triangular solve with multiple right-hand sides DTRSM, and
the unblocked LU factorization for operations within a block column. Figures 7-9 show the

distribution of work among these three routines.

Each variant calls its own unblocked variant, and the row interchanges use about 2% of the

total time. The average speed of DGEMM is over 40 Mflops for all three variants, but the average

-17 -

Right-looking LU Left-looking LU Crout LU

Figure 6: Variants of LU factorization on the RISC System 6000-530

100 DGEMM + DTRSM + DLU + pivoting . ------- AR M
90+ P 1
80} .
20k DGEMM + DTRSM 1
g
R 4
&
S sof
[=]
8 ol DGEMM]
g
30} 1
20} 8
10} 1
0

0 100 200 300 400 500 600 700 800 900 1000
Order (blocksize = 32)

Figure 7: Breakdown of work in left-looking LU

speed of DTRSM depends on the size of the triangular matrices. For the left-looking variant,
the triangular matrices at each step range in size from b to n — b, where b is the blocksize and n
the order of the original matrix, and the average performance is 38 Mflops. For the right-looking
and Crout variants, on the other hand, the triangular matrices are always of order b, and the
average speed is only 29 Mflops. Clearly the average performance of the Level 3 BLAS routines

in a blocked routine is as important as the percentage of Level 3 BLAS work.

Despite the diflerences in the performance rates of their components, the block variants of

the LU factorization tend to show similar overall performance, with a slight advantage to the

per cent of operations

per cent of operations

100

-18-

80}

70+

40}

30+

10}

DGEMM

Figure 8: Breakdown of work in right-looking LU

100

100 200 300 400 500 600 700 800 900
Order (blocksize = 32)

1000

90

80}

70+

SO

40}

30}

20

10}

DGEMM

0

100 200 300 400 500 600 700 800 900
Order (blocksize = 32)

Figure 9: Breakdown of work in Crout LU

1000

<19 -

60 1 . S
sol Level 3BLAS]
o . 4

Level 2 BLAS
§ s
=2 30} ST e 4

b ey

e - Level 1 BLAS
201 e 3
10} T

0

0 100 200 300 400 500 600 700 800 900 1000
N order

Figure 10: Speed of LU Variants on the RISC System 6000-530

right-looking and Crout variants because more of the operations are in DGEMM. Figure 10
shows the performance rates in Mflops of these three variants for different matrix sizes on a
IBM RS/600-530, along with the performance of the LINPACK routine DGEFA. The optimal
blocksize on the RISC System /6000 computers is 32 for most matrix sizes, but the performance

varies less than 10% over a wide range of blocksizes.

4 Summary and Conclusions

The aim of this work has been to examine the performance of block algorithms on the IBM

RISC workstation. Based on our experiments, we draw the following conclusions.

1. Neither the memory bandwidth nor the cycle time for the IBM RISC System /6000 is at
the level of current-generation vector supercomputers. There is, however, no technical

reason why this situation could not be improved.

2. The IBM RISC processor is close to matching the performance level of vector processors
with matched cycle times [10]. Because of the regularity of vector loops and the ability

of the RISC architecture to issue floating-point instruction every cycle and complete two

220 -

floating-point operations per cycle we expect that the RISC superscalar machines will
perform at the same rates as the vector machines for vector operations with similar cycle
times. Moreover, the RISC machines will exceed the performance of those vector processors

on non-vector problems.

3. The LAPACK software based on blocked operations performs at near-optimal performance
with minimal effort. One should note, however, that the workstation does not match the

I/0 performance and the number of users accommodated on larger computers.

4. Issential to high performance is the use of optimized versions of the Level 1, 2, and 3 BLAS.
The techniques and ideas used here to gain performance on the IBM RISC System /6000
should work on all RISC-based machines. To a large extent, the success will depend
on the Fortran compiler’s ability to generate efficient code. (We believe that this high
performance is due, at least in part, to the fact that compiler writers were involved in the
early design stages, rather than after the hardware designers had completed much of their

work.)

5 Acknowledgements

We are grateful to Ron Bell of IBM (UK) Ltd for giving us access to a draft of his guide to

Fortran and C programming on the RISC System /6000 [3].

We would also like to thank Ramesh Agarwal and Fred Gustavson of the IBM Thomas J.
Watson Research Center, Yorktown Heights, and Stan Schmidt and Joan McComb of the IBM
Kingston Laboratory. The optimized BLAS on which our work is based, were developed jointly

by Yorktown and Kingston, and early acccess to these routines was crucial.

221 -

References

(1)

[3]
[4]

(5]

(8]

[9]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable linear algebra
library for high-performance computers. In Supercomputer 90, New York, NY, 1990. IEEE

Press.

H.B. Bakoglu, G.F. Grohoski, and R.K. Montoye. The IBM RISC System/6000 processor:

Hardware overview. IBM Journal of Research and Development, 34:12-23, 1990.

R. Bell. IBM RISC System/6000 performance tuning for numerically intensive Fortran and

C programs. ITSC Technical Bulletin GG24-3611-00, IBM Corporation, 1990.

J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of level 3 basic linear algebra

subprograms. ACM Transactions on Mathematical Soflware, 16:1-17, 1990.

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of fortran
basic linear algebra subroutines. ACM Transactions on Mathematical Software, 14(1):1-17,

March 19883.

J. J. Dongarra and D. C. Sorensen. Linear algebra on high-performance computers. In
U. Schendel, editor, Proceedings of Parallel Computing ’85, pages 3-32, New York, 1986.

North Iolland.

Kyle Gallivan, Robert Plemmons, and Ahmed Sameh. Parallel algorithms for dense linear

algebra computations. SIAM Review, 32(1):54-135, 1990.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for

Fortran usage. ACM Trans. Math. Softw., 5:308-323, 1979.

H. Lomax and T. . Pulliam. A three-dimensional implicit code for the ILLIAC IV. In
Garry Rodrigue, editor, Computational Physics on Parallel Cowmputers, New York, NY,

1982. Academic Press.

-22.

[10] M.L. Simmons and H.J. Wasserman. Los Alamos experiences with the IBM RISC Sys-

tem /6000 workstation. Report LA-11831-MS, Los Alamos National Laboratory, 1990.

-23.

Appendix: The Model 550

Since this report was first prepared, IBM has announced a new model in the RISC System /6000
family—the Model 550. This model has exactly the same architecture as the Model 530 used
in the experiments reported earlier, but has a faster CPU, running at 41.6 MHz (compared
with 25 MHz for the Model 530), and a faster memory. In this appendix we reproduce versions

of Tables 1-3, with data gathered from the Model 550. We also reproduce Figure 5, which

demonstrates the performance attainable with the three levels of BLAS.

Table 4 (similar to Table 1) shows the speed of various Level 1 BLAS operations. In this case
the predictions are based on the clock speed of 41.6 MHz, and a time of 9 cycles to load a cache

line from memory to cache. This value fits the observed data better than the 11 cycles used for

the Model 530. The other tables correspond exactly to those in the text.

Table 4: Speed in Mflops of Level 1 BLAS on the RISC System 6000-550

DOT AXPY
Type of memory access | predicted | measured | predicted | measured
all data in cache 41.6 41.15 27.72 274
all data from memory:
z and y with unit stride 26.62 26.04 20.17 19.53
x with stride 16 7.20 5.90 6.62 5.29
z and y with stride 16 4.16 3.40 3.96 2.60

Table 5: Speed in Mflops of Level 2 BLAS on the RISC System 6000-550

Data in Cache Data in Memory
y—y+Az | y—y+Alz | yeytAa | y—y+ AT
depth | DOT | AXPY | DOT | AXPY | DOT | AXPY | DOT | AXPY
1 38.0 26.2 38.0 26.3 16.1 15.5 18.8 13.4
2 51.0 39.2 51.0 39.2 17.9 17.4 19.2 16.4
3 57.5 40.0 57.8 40.0 19.0 21.2 19.7 17.1
4 61.0 40.0 61.7 40.2 19.6 17.2 19.8 17.2

Speed in Megaflops

.04 .

100

901

80

T

70

T

60

1

10

S0
40t
ol Level 2 BLAS

20}

’
I
i
t
!
1
'
[
|
1l
t
'
]
i
-t
‘
i

Level 3 BLLAS

A R
) 1

gy
/ PN
LY ”~ enlN_ N
’ LA YA AY ~ -
’ ‘\ . N AW SN
’ .

Level 1 BLAS

L.

100 200 300 400 500

Order of vectors/matrices

Figure 11: Speed of Level 1, 2, and 3 BLAS on the RISC System 6000-550

Table 6: Speed of C «- C + AB on the RISC System 6000-550

Conditions before operation ' Speed in Mflops

All arrays initially in cache 79.3
A or B initially in cache 75.6
C initially in cache 70.9

No arrays initially in cache 70.2

600

18-19.
20.
21-22.

36.

37.

38.

39.

40.

41.
42.

43.

4.

-25.-

ORNL/TM-11768

INTERNAL DISTRIBUTION
B. R. Appleton 23. P.H. Worley
T. S. Darland 24. A, Zucker
E. F. D’Azevedo 25. J. 1. Doming (EPMD Advisory Committce)
J. J. Dongarra 26. R.M. Haralick (EPMD Advisory Committee)
T. H. Dunigan 27.). E. Leiss (EPMD Advisory Committee)
G. A. Geist 28. N. Moray (EPMD Advisory Committec)
M. T. Heath 29. M.F. Wheeler (EPMD Advisory Committec)
E. R. Jessup 30. Central Research Library
E.G.Ng 31. ORNL Patent Office
V. W.Ng 32. K-25 Plant Library
C. E. Oliver 33. Y-12 Technical Library
B. W. Peyton /Document Reference Station
S. A.Raby 34. Laboratory Records - RC
C. H. Romine 35. Laboratory Records Dept.
R. C. Ward

EXTERNAL DISTRIBUTION

Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA
98124-0346

Robert G. Babb, Dept. of Computer Science and Engineering, Oregon Graduate Insti-
tute, 19600 N.W. Walker Rd., Beaverton, OR 97006

David H. Bailey, NASA Ames Research Center, Mail Stop 258-5, Moffett Field, CA
94035

Jesse L. Barlow, Dept. of Computer Science, Pennsylvania State University, Univer-
sity Park, PA 16802

Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

Eric Barszcz, NASA Ames Research Center, MS T045-1, Moffett Field, CA 94035

Robert E. Benner, Parallel Processing Div. 1413, Sandia National Laboratorics, P. O.
Box 5800, Albuquerque, NM 87185

Donna Bergmark, Comell Theory Center, Engineering and Theory Center Bldg,
Ithaca, NY 14853-3901

Chris Bischof, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
53.

59.

60.

61.
62.

63.

-26 -

Ake Bjorck, Dept. of Mathematics, Linkoping University, S-581 83 Linkoping,
Sweden

Jean R. S. Blair, Dept. of Computer Science, Ayres Hall, University of Tennessce,
Knoxville, TN 37596-1301

Daniel Boley, Dept. of Computer Science, University of Minnesota, 200 Union St.
S.E. Rm.4-192 Minneapolis, MN 55455

James C. Browne, Dept. of Computer Sciences, University of Texas, Austin, TX
78712

Bill L. Buzbee, Scientific Computing Div., National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

Donald A. Calahan, Dept. of Electrical and Computer Engineering, University of
Michigan, Ann Arbor, MI 48109

John Cavallini, Office of Scientific Computing, Office of Energy Rescarch, ER-7,
Germantown Building, U.S. Dept. of Energy, Washingion, DC 20545

Ian Cavers, Dept. of Computer Science, University of British Columbia, Vancouver,
British Columbia V6T 1WS5, Canada

Tony Chan, Dept. of Mathematics, University of California, Los Angeles, 405 Hilgard
Ave., Los Angeles, CA 90024

Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Eleanor Chu, Dept. of Computer Science, University of Waterloo, Watcrloo, Ontario,
Canada N2I. 3G1

Melvyn Ciment, National Scicnce Foundation, 1800 G Street N.W., Washington, DC
20550

Thomas Coleman, Dept. of Computer Science, Cornell University, Ithaca, NY 14853

Paul Concus, Mathematics and Computing, Lawrence Berkcley Laboratory, Berkeley,
CA 94720

Jane K. Cullum, IBM T. J. Watson Rescarch Center, P.O. Box 218, Yorkiown
Heights, NY 10598

George Cybetiko, Center for Supercomputing Research and Development, University
of Mlinois, 104 S. Wright St., Urbana, IL 61801-2932

George J. Davis, Dept. of Mathematics, Georgia State University, Atlanta, GA 30303

Iain S Duff, Atlas Cenire, Rutherford Appleton Laboratory, Chilton, Oxon OX11
0QX England

Patricia Eberlein, Dept. of Computer Science, SUNY at Buffalo, Buffalo, NY 14260

Stanley Eisenstat, Dept. of Computer Science, Yale University, P.O. Box 2158 Yalc
Station, New Haven, CT 06520

65.
66.

67.
68.
69.
70.
71.
72.
73.

74,
. C. William Gear, Computer Science Dept., University of Illinois, Urbana, IL 61801
76.

71.
78.

79.
80.
81.

82.

83.

84.

-27-

Lars Elden, Dept. of Mathematics, Linkoping University, 581 83 Linkoping, Sweden

Howard C. Elman, Computer Science Dept., University of Maryland, College Park,
MD 20742

Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Scattle,
WA 98124-0346

Ian Foster, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, [L 60439

Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Technol-
ogy, Pasadena, CA 91125

Paul O. Frederickson, NASA Amecs Rescarch Center, RIACS, M/S T045-1 Moffeu
Field, CA 94035

Fred N. Fritsch, Computing & Mathematics Research Division, Lawrence Livermore
National Laboratory, P. O. Box 808, L-316 Livermore, CA 94550

Robert E. Funderlic, Dept. of Computer Science, North Carolina State Universily,
Raleigh, NC 27650

Dennis B. Gannon, Computer Science Dept., Indiana University, Bloomingion, IN
47405

David M. Gay, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

W. Morven Gentleman, Div. of Electrical Engineering, National Rescarch Council,

‘Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada K1A OR8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto,
CA 94304

Gene H. Golub, Dept. of Computer Science, Stanford University, Stanford, CA 94305
Joseph F. Grear, Div. 8331, Sandia National Laboratories, Livermore, CA 94550

Sven Hammarling, Numerical Algorithms Group Ltd. Wilkinson House, Jordan Hill
Road Oxford OX2 8DR, United Kingdom

Per Christian Hansen, UNI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd,,
Houston, TX 77042-3020

Don E. Heller, Physics and Computer Science Dept., Shell Development Co., P.O.
Box 481, Houston, TX 77001

85.

86.

87.

88.

89.

90.

91.

93.

94.

95.

96.

98.

99.

100.

101.

102.

-28 -

Nicholas J. Higham, Dept. of Mathematics, University of Manchester, Grt Manches-
ter, M13 SPL, England

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air
Force Base, Washington, DC 20332

Robert E. Huddleston, Computation Dept., Lawrence Livermore National Laboratory,
P.O. Box 808, Livermore, CA 94550

Iise Ipsen, Dept. of Computer Science, Yale University, P.O. Box 2158 Yale Station,
New Haven, CT 06520

Lennart Johnsson, Thinking Machines Inc., 245 First St., Cambridge, MA 02142-
1214

Harry Jordan, Dept. of Electrical and Computer Engineering, University of Colorado,
Boulder, CO 80309

Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 &7
Umea, Sweden

. Malvin H. Kalos, Comell Theory Center, Engineering and Theory Center Bldg., Cor-

nell University, Ithaca, NY 14853-35601

Hans Kaper, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argoone, IL 60439

Robert J. Kee, Applied Mathematics Div. 8331, Sandia National Laboratories, Liver-
morc, CA 94550

Kenneth Kennedy, Dept. of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77005

Thomas Kitchens, Dept. of Energy, Scientific Computing Staff, Officec of Encrgy
Research, ER-7, Office G-236 Germantown, Washingion, DC 20585

. Richard Lan, Code 1111MA, 800 N. Quincy Strect, Boston Tower, 1 Arlington, VA

22217-5000

Alan J. Laub, Dept. of Electrical and Computer Enginecring, University of California,
Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709

Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Dr.,
Pasadena, CA 91109

Peter D. Lax, Courant Institute of Mathematical Sciences, New York Universily, 251
Mercer St.,, New York, NY 10012

John G. Lewis, Bocing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA
98124-0346

103.

104.

105.
106.

107-111.

112.

113.

114.
115.
116.

117.

118.

119.

120.

121.
122.

123.

124.

125.

126-130.

-20 .

Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston, TX
77042-3020

Joseph Liu, Dept. of Computer Science, York University, 4700 Keele St., North York,
Ontario, Canada M3J 1P3

Franklin Luk, School of Electrical Engineering, Corell University, Ithaca, NY 14853

Thomas A. Mantcuffel, Dept. of Mathematics, University of Colorado - Denver,
Denver, CO 80202

Peter Mayes, NAG Lid., Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR,
United Kingdom

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. Cali-
fornia Blvd. Pasadena, CA 91125

James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808§,
Livermore, CA 94550

Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025
Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dianne P. O’Leary, Computer Science Dept., University of Maryland, College Park,
MD 20742

James M. Ortega, Dept. of Applied Mathematics, Thomton Hall University of Vir-
ginia, Charlotiesville, VA 22903

Chris Paige, Dept. of Computer Science, McGill University, 805 Sherbrooke St. W.,
Montreal, Quebec, Canada H3A 2K6

Roy P. Pargas, Dept. of Computer Science, Clemson University, Clemson, SC
29634-1906

Beresford N. Parleit, Dept. of Mathematics, University of California, Berkcley, CA
94720

Merrell Patrick, Dept. of Computer Science, Duke University, Durham, NC 27706

Robert J. Plemmons, Dept.s of Mathematics and Computer Science, North Carolina
State University, Raleigh, NC 27650

Jesse Poore, Dept. of Computer Science, Ayres Hall, University of Tennessce, Knox-
ville, TN 37996-1301

Alex Pothen, Dept. of Computer Science, Pennsylvania State University, University
Park, PA 16802 ‘

Michael J. Quinn, Computer Science Dept., Oregon State University, Corvatlis, OR
97331

Giuseppe Radicati di Brozolo, IBM European Center for Scientific and Engincering
Computing, 00147 Roma, via Giorgione 159, Italy

131.

132.

133.

134.
135.

136.
137.
138.

139.

140.

141.

142.

143.
144

145,

146.

147.

148.

149.

150.

=30 -

Noah Rhee, Dept. of Mathematics, University of Missouri-Kansas City, Kansas City,
MO 64110-2499

John K. Reid, Numerical Analysis Group, Central Computing Dept., Atlas Centre,
Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Wemer C. Rheinboldt, Dept. of Mathematics and Statistics, University of Pittsburgh,
Pittsburgh, PA 15260

John R. Rice, Computer Science Dept., Purdue University, West Lafayette, IN 47907

Garry Redrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

Donald J. Rose, Dept. of Computer Science, Duke University, Durham, NC 27706
Ahmed H. Sameh, Computer Science Dept., University of Illinois, Urbana, IL. 61801

Michael Saunders, Systemis Optimization Laboratory, Operations Research Dept.,
Stanford University, Stanford, CA 94305

Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Rcesearch Center, Moflct
Field, CA 94035

Mariin H. Schuliz, Dept. of Computer Science, Yale University, P.O. Box 2158 Yalc
Station, New Haven, CT 06520

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaverton,
OR 970006

Lawrence F. Shampine, Mathematics Dept., Southern Methodist University, Dallas,
TX 75275

Keirmit Sigmon, Dept. of Mathematics, University of Florida, Gainesville, FL. 32611

Horst Simon, Mail Siop 258-5, NASA Ames Rescarch Center, Moffctt Ficld, CA
94035

Larry Snyder, Dept. of Computer Science and Engineering, FR-35, University of
Washington, Scattle, WA 98195

Danny C. Sorensen, Dept. of Mathematical Sciences, Rice University, P. O. Box
1892, Houston, TX 77251

Rick Stevens, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

G. W. Stewart, Computer Science Dept., University of Maryland, College Park, MD
20742

Quentin F. Stout, Dept. of Electrical and Computer Engineering, University of Michi-
gan, Ann Arbor, MI 48109

Danicl B. Szyld, Dept. of Computer Science, Duke University, Durham, NC 277006-
2591

151.

152.

153.

154.

155.

156.

157.

158.
159.

160.

161.

162.

163.

164.
165.

166.

167-176.

-31-

W.-P. Tang, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3Gl

Michael Thomason, Dept. of Computer Science, Ayres Hall, University of Tennessec,
Knoxville, TN 37996-1301

Bernard Touréncheau, LIP ENS-Lyon 69364 Lyon cedex 07, France
Charles Van Loan, Dept. of Computer Science, Cornell University, Ithaca, NY 14853

James M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia VOT
1WS, Canada

Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

Michael Vose, Dept. of Computer Science, Ayres Hall, University of Tenncssee,
Knoxville, TN 37996-1301

Phuong Vu, Cray Research Inc., 1408 Northland Dr., Mendota Heights, MN 55120

E. L. Wachspress, Dept. of Mathematics, University of Tennessee, Knoxville, TN
37996-1300

Daniel D. Wamer, Dept. of Mathematical Sciences, O-104 Martin Hall, Clemson
University, Clemson, SC 29631

D. S. Watkins, Dept. of Pure and Appliecd Mathematics, Washington State University,
Pullman, WA 99164-2930

Andrew B. White, Computing Div., Los Alamos National Laboratory, Los Alamos,
NM 87545

Michael Wolfe, Oregon Graduate Institute, 19600 N.W. von Neumann Dr., Bcaver-
ton, OR 97006

Margaret Wright, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

Office of Assistant Manager for Energy Research and Development, U.S. Dept. of
Energy, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600

Office of Scientific Technical Information, P.O. Box 62, Oak Ridge, TN 37831

