

ORhT/TM- 1 1768

Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE IBM RISC SYSTEM/6000 AND LINEAR ALGEBRA
OPERATIONS

Jack J. Dongarra
Department of Computer Science

University of Tennesee
and

Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge, Tennessee 3783 1-8083

Peter Mays
Numerical Algorithms Group Ltd.

Wilkinson House, Jordan Hill Road
Oxford OX2 8DR, United Kingdom

Giuseppe Radicati di Brozolo
IBM European Center for Sci. & Eng. Comput.

00147 Roma
Giorgione 159, Italy

Date Published: January 1991

-- ~ -

This work was supported in part by the Applied Mathematical Sciences
subprogam of the Office of Energy Research, 1J.S. Depanmcnt of Energy,

under Contract DE-AC05-840R21400, Computer Science Department of the
University of Tennessee, IBM, and the National Science

Foundation Science and Technology Center Cooperative Agreement
NO. CCR-8809615.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 3783 1

managed by
Martin Marietta Energy Systcms, Inc.

for the
1J.S. DEPARTMENT OF ENERGY

under Contract No. DE -A C05 - 84 OR 2 1 4 00

MARTIN MARSET1 A ENERGY SYSTEMS L1BRAR.ES

3 4 4 5 b 0333721 7

Corit ent s

1 IBM RISC System/6000: System Overview 1
1.1 Central Processing Unit . 1
1.2 Memory and Caches . 3
1.3 Serial Optical Link . 3

2.1 Level lBLAS . 4
2.2 Level2BT.AS . 5
2.3 Level 3 BLAS . 8
2.4 Summary of BLAS Performance . 10

3 Block A.lgorithms and LAPACK . 10
3.1 Performance of Blocked Algorithms on the RISC System/6000 11

4 Summary and Conclusiotis . 11
5 Acknowledgements . 12

2 Fortran Techniques for Performance on Matrix Operations 3

- 1 -

The IBM RISC System/6000 and Linear Algebra Operations *

Computer
M ai h e m a

Jack J. Dongarra
Science Department , University of Tennessee, Knoxville, TN 97996-1901; and
tical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, T N 37831

Peter Mayes

N A G Ltd. , Wilkinson House, Jordan IIill Road, Oxford, O X 2 SDR, UNITED K I N G D O M
and

Giuseppe Radicati di Brozolo

IBM European Center for Scientific and Engineering Computing, OUl47 Roma, via Giorgione 159,
I T A L Y

Abstract;

This paper discusses the IBM WSC System/6000 workstation and a set of experiments
with blocked algorithms commonly used in solving problems in numerical linear algebra. We
describe the performance of these algorithms and discuss the techniques used in achieving
high performance on such an architecture.

1 IBM RISC System/6000: System Overview

The IBM RISC System/6000 computer is a superscalar second-generation ItISC architecture [2].

It is the result of advances in compiler and architecture technology that have evolved since the

late 1970s and early 1980s.

Like other RISC processors, the RISC System/6000 implements a register-oriented instruction

set, the CPU is hardwired rather than microcoded, and it features a pipelined implementation.

The floating-point unit is integrated in the CPU, minimizing the overhead associated with

separate floating-point coprocessors.

Unlike other RISC processors, however, the RISC System/6000 has the ability to dispatch

- 2 -

rniiltiple instructions and t o overlap the execution of the fixed-point, the floating-point, and the

branch functional units. ’The 184 instructions are divided arnong the functional units and are

designed to minimize interaction among the functional units.

The I U M RISC System/6000 is intended to satisfy the requirements of both commercial and

scientific applications. Our focus here is on the performance of the RISC System/G000 for

scientific applications, which require very high floating-point performance as well as specialized

peripherals, such as high-quality graphics adapters. These, in turn, require very high memory

bandwidths to the central processing unit.

In what follows, we give a brief overview of the design of the CPU and memory and of some

aspects of the 1/0 system. In particular, we discuss those architectural features most iiiiportarrt

for designing and implementing high-performance mathematical software. Note that specific

dctails refer to the Model 530. The specification of other members of the RISC System/G000

family may be different in some aspects. For a more complete discussion of the hardware,

we refer the interested reader to the January 1990 issue of the I13M Journal of Research and

De vclopm e ri t.

1.1 Central Processing Unit

‘I’he CP‘U architecture is based on a design that exploits modern compiler technology, and an

iinplcmentation that exploits VLSI and CMOS technology, to allow as much parallel instruction

cscciition as possible. The RISC Systern/6000 processor consists of thrcc separate but, integrated

f u 11 c t ions1 11 nits :

1. The Instruction Cache and Branch Processing Unit feeds a, stream of instructions to thc

fixed-puiu t and floating-point units. The bra ncli processor provides all the branching,

interrupt, arid condition code functions within the system. An important feature of the

hraiicli processing unit is the “zero-cycle branch.” A zero-cycle branch is achieved by

- 3 -

executing branches simultaneously with fixed- or floating-point operations so that the

stream of data to these units is not interrupted. In practice, this configuration means that

loop boundaries do not interrupt pipelining.

2. The Fixed-Point Unit (FXU) is designed to execute the fixed-point arithmetic, the logic

instructions, and the data address computations and to schedule the inovement of data

bctween the floating-point unit and the data cache. Read or write trmsfers between the

floating-point unit and the data cache require one cycle to complcte.

3. The E'loating-Point Unit (FYU) supports the execution of the floating-point instructions.

The FPU has a set of thirty-two 64-bit floating-point registers that access the data cachc

directly. It conforms to the ANSI/IEEE 745-1985 standard for binary floating-point arith -

metic. The FPU is orgaiiized for double-precision computations. Thus, data held in thc

floating-point registers are always represented in clouble-precision format. Therefore, when

single-precision data are loaded, they are expanded to double-precision format.

In addition, there are a niimber of features in the architecture which enhance performance.

0 Register renaming is an important feature of the machine. This allows data for the next

instruction to be loaded into a floating-point register that is currently being used by an

earlier instruction.

0 In addition to the usual arithmetic operations, there are compound instructions that mul-

tiply two operands and add (or subtract) the product to a third operand. These floating-

point multiply-and-add (FMA) instructions take two cycles to complete. However, one

FMA instruction may bc issued in each clock cycle, provided that the operands are inde-

pendent. Thus it is possible to complete two floating-point computations in each cycle.

0 The FMA instructions actually produce only one rounding error rather tha,n two and ate

therefore more accurate than required by the IEEE standard. This additional accuracy

- 4 -

has been used, for example, in some of the math intrinsic functions. However, if strict

adherence to the IEEE standard is required, a compile-time option can be used to disable

the generation of compound instructions.

c1 The floating-point divide is implemented by a Newton-Raphson approximation algorithm.

A division requires 16 to 19 cycles to complete and provides correctly rounded results, but

is obviously expensive if computed unnecessarily inside a loop. If division by a constant

is taken out of the loop and replaced by a multiplication with the reciprocal, the code

is more efficient, but the results are not necessarily identical. If it is important to have

exactly equivalent code, the added precision and speed of the mnltiply-add instruction can

he used to implement a reciprocal multiplication plus correction algorithm at the cost of a

multiply and two inultiply-adds (5 cycles). This algurithm is cheaper than a division and

still provides correctly rounded results.

This design has allowed the implementation of a CPU that executes up to four instruction

per cycle: one branch instruction, one condition register instruction, one fixed-point instruction,

a n d oiie floating-point multiply-add instruction. A second pipelined instruction can begin on the

nest cycle on an independent set of operands. ‘This means that two independent floating-point

operations per cycle can be executed.

Of particular interest is the fact that loads and independent floating-point operations can

occur in parallel. 7‘he coinpiler takes advantage of this caiiability in many cases: with a well-

tlesignc.tl algorithm, it is possible to execute two floating-point operations on separate data

items a n d “liide” one memory reference all in the same cycle. At a clock cycle of 25 RIIHz, this

translates into a peak performance of 50 million floating-point operations per second (hlflops).

1.2 Memory and Caches

The ICISC Systcm/G000 mcmory banks implement a four-way interleaved design that provides

two words (two 64-hit words) of data every machine cycle. A system can have from 16 to

- 5 -

256 Mbytes of total memory.

Separate instruction and data caches provide conflict-free access to data and instructions.

The instruction cache is organized as an 8-Kbyte, two-way set-associative cache, which has a

64-byte (16-instruction) line size. The data cache is a four-way set-associative 64-Kbyte cache,

which is divided into four identical chips of 16 Kbytes each. The caclie is implemented as a

store-back cache to minimize the memory bus trafic: data are written back to memory only

when an updated line in cache is replaced. Thc cache-line size is 128 bytes. A synchronous

128-bit memory bus allows 400 Mbytes per second to be transferred to or from memory: it takes

eight cycles to load a cache line (16 double-precision words) from rncinory to cache. A G4-bit

data bus connects the floating-point u n i t and the data cache: it takes one cycle to transfer a

double-precision word between the data cache and the floating-point registers.

1.3 Serial Optical Link

The 1/0 unit contains an T/O channel controller and two serial link a,dapters, which provide

an interface to optics cards that drive fiber-optics links. Tt is intended for attachment of disks,

graphics adapters, and other high-speed peripherals. (Support for this high-speed optical link is

planned for future release.) The serial optical link has a bandwidth of 220 Mbits pcr second, and

it allows the attachment of remote devices up to 2000 meters away. The link is also suitable for

interprocessor message and data transfers in a multiprocessor configuration, and work is under

way to investigate its suitability for closely coupled multiprocessing.

2 Fortran Techniques for Performance on Matrix Operations

As mentioned in the preceding section, the RISC System/6000 can complete a floating-point

multiply-and-add (FMA) instruction every cycle, so that a Model .530 riinning at 25 MHz has

a theorcticad pcak speed of 50 MRops. Many factors limit the amount of concurrency that can

bc effectively used, thus limiting the performance that an algorithm can achieve. Most notably,

- 6 -

iinnecessary memory references can have a severe impact on the performance attainable. Indeed,

the movement of data between memory and registers can be more costly than arithmetic opera-

tioiis on the data. This cost provides considerable motivation to restructure existing algorithms

arid to devise new algorithms that minimize data movement.

In this section we describe a model to predict the performance of simple Fortran loops and

to serve as a guide to writing eflicient Fortran code for the RISC System/6000. (We observe

that the Ebrtran compiler usually takes advantage of all the parallelisin of which the CPU is

capable.) Our model is based on the following rules:

1. Each FMA instruction requires two cycles to complete. Two FMAs that operate on in-

dependent data will be scheduled on consecutive cycles, and therefore two floating-point

operations will be executed simultaneously.

2. Loads from car l ie to floating-point registers require one cycle to Complete. They will be

overlapped with FhlAs that were scheduled earlier, even if they operate on registers that

the earlier F h l A is still using (register renaming).

3. Stores do not overlap with FMAs.

-1. Loop boundaries do not interrupt pipelining (zero-cycle branch).

5. IVhen a cache miss occurs, the floating-point unit must wait 11 cycles before the whole

cache line is available. The latency from riieriiory to cache accounts for 8 cycles. In our

rinodcl we add to this an additional latency of 3 cycles, which fits closely the experimental

data we collected. The details of the data transfer may be more complicated in reality,

but this is the average effect that a Fortran programmer might expect to see.

In the following three subsections we use this model to explain the different levels of per-

formauce that can be achieved by using different levels of Basic Linear Algebra Subprogram

(n l A S) kernels [S, 5, 41, and we describe some Fortraii techniques to implement the I3LAS

- I -

efficiently. High performance was achieved by constructing the codes in such a way that the

compiler can easily generate code that matchcs the architecture of the machine. The techniques

used were blocking (or strip-mining), loop iinrolling, and loop jamming--all fairly standard tech-

niques used by compiler writers. Wc hope that some of these techniques will be incorporated

into subsequent versions of the compiler, so that even less work will be required to exploit the

machine.

2.1 Level 1 BLAS

The two Lcvel 1 BLAS operations that occur most frequently in linear algebra are the DOT:

DO 10 I = 1, N

TEMP = TEMP + X(I)*Y(I)

10 CONTINUE

and the RXPY:

DO 10 I = I, N

Y (1) = Y (1) + ALPHA*X(I)

10 CONTINUE

We begin by examining the performance of these operations when using data stored in cache.

For thc DOT operation, each FMA instruction requires twoloads, one for X(I) and for Y (I) .

Loading the data requires two cycles, and performing the FMA also requires two cycles. There

is no possibility of re-using data, so the best we can expect is that the loading of the next two

operands is overlapped with an FMR. This corresponds to a theoretical speed of 25 Mflops; in

practice, we measured 24.5 Mfloys (see Table 1).

For the AXPY operation, each FMA instruction rcquires two loads aid o ~ i c store. AgaiIi, there

is no possibility of reusing data, so the best wc can hope for in this case is one FMA instructiou

- 8 -

Table 1: Speed in Mflops of Level 1 DLAS

AXPY -7
Type of memory access predictex

all data in cache 25
all data from memory:
z and y with unit stride

z and y with stride 16

14.81
2 with stride 16 3.65

2.08 --_ --..I

measured

____-I

every three cycles. This corresponds to 16.67 Mflops; in practice, we measured 16.4 Mflops (see

Table 1).

For data that must he accessed from memory, we must take account of the time taken for data

to arrive in the registers. Each time a cache miss occurs (every 16 elements for stride-one access),

the processing is interrupted, and the CPU must wait for the cache line to become available. In

oiir model, the CPU must wait for 11 machine cycles. Thus, the cost of moving contiguous data

from memory to registers is, on the average, 1.69 cycles per element (i.e., 11 cycles to move a

cache line from memory to cache plus 1 cycle to transfer each of the 16 elements from cache to

register ((11+16)/16) cycles per element). In a DOT operation, on the average 2 floating-point

operations (1 E‘MA) are scheduled every 3.38 machine cycles, giving 14.81 Mflops in theory and

14.6 Mflops in practice. If the vectors are accessed with stride 16 (the length of a cache line),

each element will be available after a delay of 12 cycles (= 11 + I), giving 25/12 = 2.08 Mflops in

theory and 1.8 Mflops in practice. Table 1 shows the measured performance and the prediction

using the Inodcl for some other memory access patterns.

2.2 Level 2 BLAS

IIerc we consider the Level 2 H1,AS DGEMV operations

y +- y + Az and y f- y 3- Arz.

l’lic basic operation in Fortran is given in Figure 1, wlicre A (I ~ J) must be replaced by A(J , I>

- 9 -

DO
DO

Y (1) = Y (1) + A(I,J)*X(J)
CONTINUE

CONTINUE

Figure 1: Generic matrix-vector multiply code

for the operation with A T . Depending on the ordering of the DO-loops, the inner loop is either a

DOT or an AXPY. We have seen from the discussion of the two T,evel 1 BLAS operations that,

because the RISC System/GOOO system can perform an FMA instruction with all its operands

in registers, it is better suited to DOT operations than to AXPY operations. (Note that this

contrasts with the situation 011 vector machines such as the CR.AY Y-MP, whcre tlie two vector

loads and onc vector store required match the architecture well. Also, by unrolling, it is possible

to keep the vector Y (I) in a vector register for longer, thus increasing the ratio of floating-point

operations to ineniory references.) 'CVc have also seen from Table 1 that when accessing data

from memory, it is very important to access the data with stride one, so that all the elements in

a cache line are used when that line is loaded. For these two reasons, wc consider the operation

y y t ATx,

which can be expressed as a DOT operation with A accessed with unit stride.

For this opcration, the peak speed is again 25 Mflops---exactly the same as for the DOT.

llowever, in this case we can unroll the dot product to re-use each X (J) a number of times. As

tlic depth of unrolling increases, the ratio of operations to loads increases €mm one and tends

towards two. For example, for unrolling to depths 2 ,3 , and 4, tlie ratio of operations to loads is

4/3, 6/4, and 8 / 5 , with a theoretical peak speed of 33.3, 37.5, and 40 Mflops, respectively. The

code for this operation unrollcd to depth 4 is shown in Figure 2. In practice, therc is little benefit

in unrolling to very large depths, as there are only a finite number of floating-point registcrs,

and thc pcrforniance reaches a plateau. The code in Figure 2 performs at 36.3 Mflops, and a

speed of 40.3 Mflops has been measured for unrolling to depth S.

- 10-

10

20

DO 20 5 = 1, M , 4
TEMPi = ZERO
TEMP2 = ZERO
TEMP3 = ZERO
TEMP4 = ZERO
DO 10 J = 1, W

TEMP1 = TEMPI + A (J , I) * X (J)
TEMP2 = TEMP2 + A(. J , I+ l)*X(J)
TEMP3 = TEMP3 + A(J,I+2)*X(J)
TEMP4 = TEMP4 + A(J,I+3)*X(J)

C QNTI NUE
Y (1) = Y (1) + TEMPI

Y (I + l) = Y (I + l) + TEMP2
Y(I+2) = Y (I + 2) + TEMP3
Y (I + 3) = Y (I + 3) + TEMP4

CONTINUE

Figure 2: Model Code for y +- y + ATx

Table 2: Speed in Mflops of Level 2 HLAS

I Data in Cache I Data in Memo<yyl

Table 2 lists the speed of the various DGEMV operations and also includes speeds for data

accessed from memory. 'l'his table shows that for data accessed from cache, the speed of the

operation y t y + A s based on DOT is the same as that for the operation with AT-there is

no penalty for accessing with stride from cache.

First, we notice that for data accessed from memory, for the y c- y + A z operation it is slightly

better to use the A X P Y operation, which accesses the matrix with unit stride, rather than the

DOT version, which accesscs the matrix with stride equal to its leading dimension. Second, we

see that alt,liougli the speed of the y c- y 3- Ax operation based on AXPY (9.0 Mflops) and the

- 11 -

Table 3: Speed of C t C + AB on the RISC System 6000-530

Conditions be fore operation
All arrays initially in cache
R or U initially in cache

C initially in cache
No arrays initially in cache

,Sped in Mflops
47.5
45.4
42.5
41.5

y t y -+ ATs operation based on DOT (11.0 Mflops) are slower than the corresponding Level

1 BLAS speeds based on unit stride (11.3 Mflops and 14.6 Mflops respectively-see Table l),

the speeds for accessing the matrix across a row are much faster for tlze Level 2 BLAS than

for the corresponding Level 1 BLAS. This is because when elements of a row of a matrix are

accessed, all the elements in the corresponding cache line are loaded into cache, and some will

he immediately available when the next row is accessed.

2.3 Level 3 BLAS

In performing the matrix-matrix multiply operatiori

where we assume that all three arrays are in cache, it is possible to increase the ratio of operations

to loads to 2:l by unrolling the DO-loops in two directions and thereby re-using cach loaded

element twice. Note that this ratio is optimal, in the sense that it is precisely what the hardware

supports. The code fragment in Figure 3 illustrates this technique. In theory, this approach

would resitlt in a speed closc to the theoretical maximum of 50 Mflops on a 25 MlIz machine.

Tn practice, we have measured 47.5 Mflops-see Table 3 . Note that a production version would

be complicated by the necd to include code for the cases when M and N are riot a multiple of

two.

In genera.1, the arrays A, D and C will be too large to fit into cache together; in any case,

they need to be loaded from memory initally. I t is still possible to arrange for the operations

- 1 2 -

DO 30 J = 1, N, 2
DO 20 I = 1, N, 2

TI1 = ZERO
T21 = ZERO
T12 = ZERO
T22 = ZERO
DO 10 K = 1, L

Til = Til + A(1, K)*B(K,J
T21 -- T21 + A(I+l,K)*B(K,J
Ti2 = T12 + A(1, K)*B(K,J+I)
T22 = T22 + A(I+l,K)*B(K,J+l)

10 CONTINUE
C (1 , J) = C(1, J) + Til
C(I+1,J) = C(I+l,J + T21
C (I , J+I) = C(1, J+1) + Ti2
C(I+l,J+l) = C(I+I,J+I) + T22

20 CONTINUE
30 CONTINUE

Figure 3: Code fragment for near-optimal performance of C' +- C t AB

to he performed with data largely in cache by dividing the matrix into blocks, as showil in

Figure 4 . We may then fix the block 17 of the matrix A and perform every operation involving

tliis block before moving on to another block of A . In other words, we compute the products

CI +- C'I + &?I, C'2 +- c2 t- liB2,. . . ,cs +- c6 t &?6. 111 this way the block il can be kept in

caclic and the data reiised many times.

In addition, if we assume that the leading dimension of D is such that the block B , can all be

contained i n cache, the overhead of loading B, from memory is not too great. Morcover, each

column of Ut is accessed a number of times. Thus we may perform the matrix-matrix product

of these blocks at close to the peak speed of the machine.

7'0 illustratr: the overhead of cache loading, we show in Table 3 the speed of the operation

where c' is 24 by 24, and A is 24 by 128, and where different arrays are forced to be accessed

either from cache or from memory. These dimensions were chosen so tltat all three arrays can

- 1 3 -

Partitioning of large matrix-matrix produck

,.-.- r-q ---. .P.-Fi +
t-

._.__ ____._ ._...

Matrix-matrix product of individual blocks

(Block i? remains in cache)

Doubly unrolled dot products for
“optima.1” performance on sub-blocks

Figure 4: Blocked matrix-matrix multiply (DGEMM)

- 1 4 -

comfortably fit into cache together, and the length of the dot products is sufficiently long so

that they reach their asymptotic speed.

One other important detail of the blocking strategy merits discussion. Suppose that the

matrix A is declared with a very unfavorable leading dimension. Then i t is possible that only

a fpw columns of the matrix A will fit into cache before new columns begin to flush the old

columns. For example, if the leading dimension of A is 512, and A is 32 by 32 , i t turns out that

only 1 G columns of A will fit in cache. To overcome this problem, we copy the block kj into a

work array and then perform all the operations with thc work array, rather than addrcssing a

part of the array A . This approach requires us to access A with a bad leading dimension only

once, rather than 16 times, for the matrix dimensions mentioned above.

A Fortran version of the Level 3 TILAS routine DGEh4h4 using these techniques is availalile

from netlib (send mail to netlib@ornl.gov; in the mail message type: send dmr from misc).

2.4 Summary of BLAS Performance

Figure 5 shows a graph of the speed of the three BLAS routines DDOT, DGEMV, and DC;E:MR!I

for increasing matrix dimensions. The operations performed by DGEhlV and D G l M M are

chosen so that clot products are performed on contiguous elements, i.e., y - y + A"'z for

DGEAIV a n d C - C + .4TB for DGEMM.

This graph clearly shows the benefit of increasing the ratio of floating-point operations to

rncmory references achieved by using the Level 3 BLAS. For matrix-matrix multiply we arc

doing 0 (n 3) operations on O (n 2) data, representing a favorable surface-to-volume effect. IIence

matrix-matrix multiply offers much greater opportunity for exploiting the memory hierarchy

tliari the lower-level BLAS routines. All the experiments described here were performed on

a IBM TLISC Systcm/6000 Model 530 running at 2.5 MJIz, using the L41X XI, compiler versioii

01.01 .OOOO.OOOO with the -0 option. The BLAS shown in Figure 5 were iniplementcd in standard

Fortran 77.

- 15 -

45

40

35- ' 30- B

Level 3 BIAS
-

................
.-

.... ..i
-

.

I

/

13

lot//------ 5 : :

0 100 200 300 400 500 t
0'

Order of vecmrs/mlllrices

IO

Figure 5: Speed of Level 1 ,2 , and 3 BLAS on the RISC System 6000-530

3 Block Algorithms and LAPACK

Experience with machines having a memory hierarchy [6, 71 iiidicatcs that it is often prcfcrablc

to partition tIie matrix or matrices into blocks and to perform the computation by matrix-matrix

operations on the blocks. By organizing the computation in this fashion, one can provide for

full reuse of data while a given block is held in the cache or local memory. This approach avoids

excessive movement of data to and from memory, and its benefits on thc RISC System/G000 in

particular are clear from the previous section.

Many algorithms can be blocked. For example, researchers have used blocking to rewrite codes

for tht: solution of partial differential equations. Such codes make cfiicient use of supcrcoinputcrs

with small main memory and large solid-state disks [9]. All experience with these techniques

bas shown them t o he enormously cffect,ive at squeezing the best possible pcrforinance out of

advaiiced architectures.

Recent work by numerical analysts has shown that the most important conipiitations for

dense matrices are dso blockablc. A major software dc~velopment project dealiiig with blockcd

algorithms for linear algebra, called LAPACK (shorthand for JJiiiear ,41gc>l~ra Packrtgc), is based

16 -

on this idea [l].

Tlre LAPACK library will provide routines for solving systems of simultaneous linear equa-

tions, least-squares solutions of overdetermined systems of equations, and eigenvalue problems.

The library is intended to be efficient and transportable across a wide range of computing en-

vironments, with special emphasis on modern high-performance computers. To achieve high

efficiency, LAPACK developers are restructuring most of the algorithms from LINPACK and

EISPACK in terms of calls to a small number of extended BLAS, each of which implements a

block matrix operation such as matrix multiplication, rank-k matrix updates, and the solution

of triangular systems. These block operations can be optimized for each architecture, but the

numerical algorithms that call them will be portable.

3.1 Performance of Blocked Algorithms on the R.TSC Systein/6000

We used three blocked variants from LAPACK to compare the performance of LU factorization

for a general matrix. ‘These blocked variants are shown in Figure E . The lightly shaded parts

indicate the matrix elements accessed in forming a block row or column, and the darker shading

indicates the block row or column being computed. The left-looking variant computes a block

column a t a time using previously computed columns. The right-looking variant (the familiar

recursive algorithm) computes a block row and column at each step and uses them to update the

trailiug submatsix. The Grout variant is a hybrid algorithm in which a block row and column

are computed a t each step using previously computed rows and previously computed columns.

All of the computational work for the LU variants is contained in three routines: the matrix-

matrix multiply BGEMM, the triangular solve with multiple right-hand sides DTRSM, and

the unblocked LU factorization for operations within a block column. Figures 7-9 show the

distribution of work among these three routines.

Each variant calls its own unblocked variant, and the row interchanges use about 2% of the

total time. The average speed of DGEMM is over 40 Mflops for all three variants, but the average

- 1 7 -

Right-looking LU Left-looking LU Crout LU

Figure 6: Variants of LU factorization on the ltISC System 6000-538

Figure 7: Breakdown of work in left-looking LU

speed of DTRSR4 depends on the size of the triangular matrices. For the left-looking variant,

the triangular matrices at each step range in size from b to 1% - b , where Ir is the blocksize sild n

the order of the original matrix, and the average perforrrliince is 38 Mflops. For the right-lookjug

and Crout variants, on the other hand, the triangular matrices are always of order b , and the

average speed is only 29 Mflops. Clearly the average performance of the Levcl 3 RLA4S routines

in a blocked routine is as important as the percentage of I,cvel 3 BLRS work.

Despite the differences in the performance rates of their components, the block variants of

the LU factorization tend to show similar overall performance, with a slight advantagc to the

- 1 8 -

100-

90 80.

70
CC

0 - 60-
ii
2 5 0 -

40-
"

30

20

10

2.

0.

' ~ G E M M + ~ S M + DLU + p ~ ~ ~ : ' - ~ ~ ~ -
c_*_--

___-- - - "--- __-_-----

- DG M+D'IRSM

DGEMM

-

-

-

I ..*- 3

Order (blocksize = 32)

100

90 80

70

60-

50

40

30

20

10

0 -

Figure 8: Breakdown of work in right-looking L I J

DGEMM + D . I ~ S M +DLU +pi~~ting,t_.~.~~___~~---- . -~-------- ' - - - - - - - - --___ ___x_c.------- ____- - - - - ___---

- - //-
- M - M+DTRSM

DCJEMM -

-

~

-

~

8 1..'.I ..___.__ I

c

Figure 9: Breakdown of work in Crout LU

- 19-

4 I Level 3 BIAS

10 '.

0.
0 100 200 300 400 500 600 700 800 900 1oM)

N adcr

Fjgure 10: Speed of LU Variants on the R.ISC System 6000-530

right-looking and Crout variants because more of the operations are iu DGEMM. Figure 10

shows the performance rates in Mflops of these three variants for diffcreat matrix sizes on a

IRA1 R S/600-.530, along with the perforinance of the LZNPACK routinc 1)GEFZZ. 'I'he optimal

blocksize on the ltISC System/6000 cornpii tcrs is 32 for most matrix sizes, but the perforinance

varies less than 10% over a wide range of blocksizes.

4 Suniniary and Conclusions

The aim of this work has been to examine the performance of block algorillims on the IHhI

ltlSC workstation. Based on our experiments, we draw the following conclusions.

1. Neither the memory bandwidth nor the cycle time for the IJJhZ ILISC System/GQ00 is a t

the levcl of current-generation vector supercomputers. There is, however, no technical

reason why this situation could not be improved.

2. The IBRf RISC processor is close to matching the perfortriarice levcl of vector processors

with niatched cycle times [lo]. Because of the regularity of vector loops and the ability

of tlic RISC architecture to issue floating-point instruction every cycle and complete two

- 20 -

floating-point operations per cycle we expect that the RISC supersca1a.r machines will

perform at the same rates a.s the vector machines for vector operations with similar cycle

times. Moreover, the RISC machines will exceed the performance of those vector processors

on non-vector problems.

3. The LAPACIi soft ware based on blocked operations performs a t near-optimal performance

with minimal effort. One should note, however, that the workstation docs not match the

1/0 performance and the number of users accommodated on larger computers.

4. Esseritial to high performance is the use of optimized versions of the Level I, 2, and 3 RLAS.

'l'he techniques and ideas iised here to gain performance on the IUM RISC System/6000

should work on all RISC-based machines. To a large extent, the success will depend

on the Fortran coiripiler's ability to generate efficient code. (We believe that this high

performance is due, at least in part, to the fact that compiler writers were involved in the

early design stages, rather than after the hardware designers had completed much of their

work.)

5 Acknowledgements

We are grateful to Ron Bell of IBM (UK) Ltd for giving us access to a draft of his guide to

Fortran and C programming on the RISC System/G000 [3].

M'e woultl also like to thank Ramesh Agarwal and Fred Gustavsoii of the IIjM Thomas J.

Watson Research Center, Yorktowii Heights, and Stan Schmidt and Joan McComb of the IRM

Kingston Laboratory. The optimized RLAS on which our work is b x e d , were developed jointly

by Yorktown and Kingston, and early acccess to these routines was crucial.

- 2 1 -

References

[l] E. Anderson, Z. Bai, C. Rischof, J . Demmel, J. Dongarra, J. DuCroz, A. Grecribaum,

S. Hammarling, A. McKenney, and D. Sorensen. 1,APACK: A portabl(3 linear algebra

library for high-performance computers. In Supercornputer 90, New York, NY, 1990. IEEE

Press.

[2] H.B. Bakoghi, G.F. Grohoski, and R.K. Montoye. The IBM lLISC Systeni/G000 processor:

Hardware overview. IBM Journal of fiesearch and Development, 34:12-23, 1990.

[3] R. Bell. IDM RISC System/6000 performance tuning for numerically intensive Fortran and

C! programs. ITSC Technical Bulletin GG24-3611-00, IBM Corporation, 1990.

[4] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of level 3 basic linear algebra

s ubp rogr am s . A C M Tra mactions on Math e ma tica 1 Sojlwa re, 16 : 1-1 7 , 199 0.

[5] J. Doiigarra, J. nu Croz, S. Hammading, and It. FIanson. An extended set of fortran

basic linear algebra subroutines. ACM Transnctions on Mathematical Softtuam, 14(1):l-17,

March 1988.

[GI J. J. Dongarra and D. C. Sorensen. Tinear algebra on high-perfonriarice computers. In

U. Scliendel, editor, Proceedings of Parallel Computing '85, pages 3 32, New York, 1986.

North Ilolland.

['i] Kyle Gallivan, Robert Plenimons, and Ahmed Sarncli. Parallel algorithms for dense linear

algcbr-a computations. SlAM Reoiew, 32(1):54-13.5, 1900.

[S] C. La\vson, R. Hanson, D. Kincaid, and F. Krogli. 13asic linear algebra. subprograms for

Fortran usage. ACM Trans. Math. Softw., 5:308-323, 1979.

[9] 11. Lomax and T. TI. Pulliam. A three-dimensional implicit code for the ILLT.4C 1V. In

Gamy Rodrigue, editor, Coniputational Physics 011 Parallel Co?npt~ters, New York, NY,

1982. Academic Press.

- 22 -

[lo] R1.L. Simmons and H.J. Wasserman. Los Alamos experiences with thc IHM RISC Sys-

tem/6000 workstation. Report IAA-11831-MS, Los Alamos National Laboratory, 1990.

- 23 -

Type of memory access
a11 data in cache

all data from memory:
z and y with unit stride

2 with stride 16
x and y with stride 16

Appendix: The Model 550

DOT A XPY
predicted measured predicted measured

41.6 41.15 27.72 27.4

26.62 26.04 20.17 13..53
7.20 5.90 6.62 5.29
4.16 3.40 3.96 2.60

-

Since this report was first prepared, IBM has annoiinced a new model in the RISC Systcm/6000

family-the Model 550. This model has exactly the same architecture as the Model 530 used

in the experiments reported earlier, but has a faster CPU, runnjng at 41.6 MHz (compared

with 25 MIIz for the Model 530), and a faster memory. In this appendix we reprodnce versions

of Tables 1-3, with data gathered from the Model 550. We also reproduce Figure 5 , which

denionstrates the pcrforniance attainable with the three levels of BLAS.

Table 4 (similar t o Table 1) shows the speed OF various Level 1 BLAS opcrations. ln this caw

the predictions are hued on the clock speed of 41.6 MTTz, and a time of 9 cycles to load a cache

line from memory to cache. This value fits the observed data better thaii the 11 cycles used for

the Model 530. The other tables correspond exactly to those in the text.

Table I : Speed in Mflops of TJevel 1 BLAS on the RlSC System 6000-550

Table 5: Speed in Mflops of T m d 2 BLAS on the RISC System G000-5Fi0

- 24 -

90.

80

.......... , I 7-.----- -7' I__ I.".. -.

I

30

Lzvel3 IBLAS

, A*,'*,,,'.,-,-,#-* .' : ; I\,; . , \'
Level 2 BLAS

, Level 1 BLAS

: I ' ,
- j /

. I
; I
: I

--.

0 100 200 300 400 500

Order of vectsrs/matrices
Figure 11: Speed of Level 1, 2, and 3 BLAS on the RISC System 6000-550

Table G: Speed of C c- C + A B on the RISC System 6000-550

Conditions before operation

A or I ! initially in cache
C initially in cache

N o arrays initially in cache t Speed in hfjlops
79.3 i211 arrays initially in caclie
75.6
70.9
70.2

600

- 25 -

ORNWTM-11768

INTERNAL DIS TRIB IJTION

1 .
2-3.

4.
5-9.
10.
11.
12.
13.
14.
15.
16.
17.

18-19.
20.

21-22.

B. R. Applcton
T. S. Darland
E. F. D’Azevedo
J. J. Dongarra
T. H. Dunigan
G. A. Geist
M. T. Heath
E. R. Jessup
E. G . Ng
V. W. Ng
C. E. Oliver
B. W. Peyton
S. A. Raby
C. H. Romine
R. C. Ward

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35.

P. H. Worley
A. Zucker
J. J. Doming (EPMD Advisory Commitwe)
R. M. Haralick (EPMD Advisory Conimiltec)
3. E. Leiss @PMD Advisory Committee)
N. Moray @PMD Advisory Committec)
M. F. Wheeler (EPMD Advisory Committec)
Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library

Laboratory Records - RC
Laboratory Records Dept.

/Document Reference Station

EXTERNAL DISTRIBUTION

36. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, MIS 7L-2 1, Scattic, W A

37. Robert G. Babb, Dept. of Computer Science and Engineering, Oregon Grdduatc Insti-
tute, 19600 N.W. Waker Rd., Bcaverton, OR 97006

38. David H. Bailey, NASA Ames Research Center, Mail Stop 258-5, Moffclt Field, CA
94035

39. Jesse L. Barlow, Dept. of Computer Science, Pennsylvania Statc Univcrsity, Univcr-
sity Park, PA 16802

40. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerquc, NM 87 185

41. Eric Barszcz, NASA Ames Research Center, MS 1’045-1, Moffett Field, CA 94035

42. Robert E. Beruicr, Parallel Proccssing Div. 1413, Sandia National Laboratories, P. 0.
Box 5800, Albuquerque, NM 87185

43. Donna Bergmark, Cornell Theory Center, Engineering and Theory Ccntcr Bldg.,
Ihaca, NY 14853-3901

44. Chris Biscliol, Mathematics and Computer Scicnce Div., Argonnc National Labora-
tory, 9700 South C a s Ave., Argonne, IL 60439

98 124-0346

- 26 -

45.

46.

47.

48.

49.

50.

51.

52.

53 .

54.

55.

56.

5 7.

53.

59.

60.

61.

62.

63.

64.

Ake Bjorck, Dept. of Mathematics, Linkoping University, $58 1 83 Linkoping,
Sweden

Jean R. S . Blair, Dept. of Computer Science, Ayres Hall, University of Tcnncsscc,
Knoxville, 'IT4 37996-1301

Daniel Boley, Dept. of Computer Science, IJniversity of Minnesota, 200 Union St
S.E. Rm.4-192 Minneapolis, MN 55455

James C. Rrowne, Dept. of Computer Sciences, University of Texas, Austin, 'I'X
78712

Bill L. Buzbee, Scientific Computing Div., National Center for Atmosphcric
Research, P.O. Box 3000, Boulder, CO 80307

Donald A. CaIahan, Dept. of Electrical and Computer Engineering, University of
Michigan, Ann Arbor, MI 48109

John Cavallini, Office of Scientific Computing, Office of Energy Rcscarch, ER-7,
Germantown Building, U S . Dept. of Energy, Washington, DC 20545

Ian @avers, Dept. of Computer Science, University of British Columbia, Vancouver,
Hktish Columbia V6T 1 W5, Canada

Tony Chan, Dept. of Mathematics, University of California, IAS Angelcs, 405 Hilgard
Ave., Los Angeles, CA 90024

Jagdish Chandra, A m y Research Office, P.O. Box 12211, Research Trianglc Park,
NC 27709

Eleanor Chu, Dcpt. of Computer Science, University of Waterloo, Watcrloo, Ontario,
Canada N21, ?G1

Melvyn Ciment, National Science Foundation, 1800 G Strect N.W., Washington, DC
20550

Thomas Coleman, Depa. of Computer Science, Cornell University, Ithaca, NY 14853

Paul Concuq, Mathematics and Computing, Lawrence Bcrkclcy Laboratory, Bcrkclcy,
CA 94720

Janc K. (lullum, IBM T. J. Watson Research Ccnter, P.Q. Box 218, Yorktown
Heights, WY 10598

Gcorgc Cybenlko, Ccntcr for Supercomputing Research and Dcvclopmcnt, Univci sit!
of Illinois, 104 S. Wright St., IJrbana, IL 61801-2932

George J. Davis, Dcpt. of Mathematics, Georgia State University, Atlanta, GA 30303

Iain S Duff, Atlas Centie, Kutherford Appleton Laboratory, @hilton, Oxon OX1 1
OQX England

Patricia Eberlein. Dept. of Computer Science, SUNY at Buffalo, Buffalo. NY 14260

Stanley Eisenistat, Dcpt. of Computer Science, Yale University, P.0 Box 2158 Yalc
Station, New Haven, CT 06520

- 27 -

65. Lars Elden, Dept. of Mathematics, Linkoping University, 581 83 Linkoping, Swcden

66. Howard C. Elman, Computer Science Dept., University of Maryland, College Park,
MD 20742

67. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

68. Ian Foster, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439

69. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Tcchnol-
ogy, Pasadena, CA 91 125

70. Paul 0. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1 Moffett
Field, CA 94035

71. Fred N. Fritsch, Computing & Mathematics Rescarch Division, Lawrence Livcrmorc
National Laboratory, P. 0. Box 808, L-316 Livermore, CA 94550

72. Robert E. Funderlic, Dept. of Computer Science, North Carolina Statc Univcrsity,
Raleigh, NC 27650

73. Dennis B. Gannon, Computer Science Dept., Indiana University, Bloomington, IN
47405

74. David M. Gay, Bell Laboratories. 600 Mountain Ave., Murray Hill, NJ 07974

75. C. William Gear, Computer Science Dept., University of Illinois, Urbana, 1L 61 801

76. W. Morveri Gentleman, Div. of Electrical Engineering, National Rescarch Council,
Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada Kl A OR8

77. J. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3Gl

78. John R. Gilbcrt, Xerox Palo Alto Research Center, 3333 Coyolc Hill Rd., Palo Allo,
CA 94304

79. Gene H. Golub, Dept. of Computer Science, Stanford University, Stanford, C4 94305

80. Joseph F. Grcar, Div. 8331, Sandia National L,aboratories, Livermore, CA 94550

8 1. Sven Hammarling, Numerical Algorithms Group Ltd. Wilkinson House, Jordan H i l l
Road Oxford OX2 8DR, United Kingdom

82. Per Christian Hansen, UNI*C Lyngby, Building 305, Tcchnical Univcrsity of Dcn-
mark, DK-2800 Lyngby, Denmark

83. Richard Elanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, TX 77042-3020

84. Don E. Heller, Physics and Computer Science Dept., Shell Development Co., IJ.O.
Box 481, Houston, TX 77001

WA 98124-0346

- 28 -

85. Nicholas J, Migham, Dept. of Mathematics, University of Manchester, Grt Manchcs-
ter, M13 9PL, England

86. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air
Force Base, Washington, DC 20332

87. Robert E. Huddleston, Computation Depe., Lawrence Livermore National Laboratory,
P.O. Box 808, Livermore, CA 94550

88. Ilse Ipsen, Dept. of Computer Science, Yale University, P.O. Box 2158 Yale Station,
New Haven, CT 06520

89. Lcnnart Johnson, Thin!cing Machines he . , 245 First St., Cambridge, MA 02142-
1214

90. IIarry Jordan, Dept. of Electrical and Computer Engineering, University of Colorado,
Boulder, CO 80309

91. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-90] 87
Umea, Sweden

92. Malviri 13. Kalos, Cornel1 Theory Center, Engineering and Theory Center Bldg., Cor-
nell University, Ithaca, NY 14853-3901

93. €Pans Kapcr, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 6W39

94. Robert J. Kee, Applied Mathematics Div. 8331, Sandia National Laboratories, Livcr-
rnorc, CA 91550

35. Kenneth Kennedy, Dcpt. of Computer Science, Rice university, P.O. Box 1892,
IIouston, 'I'X 77005

96. Thomas Kitchens, Dept. of Energy, Scientific Computing Staff, Office of Encrgr
Research, E1K-7, Office @-236 Germantown, Washington, DC 20585

97. Richard Eau, Code 11 1 lMA, 800 N. Quincy Strect, Boston Tower, 1 Arlingon, V A

98. Alan J. Laub, Dcpt. of Electrical and Computer Engineering, University of California,
Santa Barbara, CA 93106

99. Robert I . . Launer, A m y Rcsearch Office, P.O. Box 12211, Rcsearch Triangle Park,
North Carolina 27709

100. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grovc Dr.,
Pasadena, CA 91 109

101. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 751
Mercer St., New York, NY 10012

John G. Lewis, Bocing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, W A

222 17-5000

102
98 124-8346

- 29 -

103.

104.

105.

106.

107-111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126-130.

Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston, T X

Joseph Liu, Dept. of Cornpuler Science, York University, 4700 Kcele St., North York,
Ontario, Canada M3J 1P3

Franklin Luk, School of Electrical Engineering, Cornell University, Ithaca, NY 14853

Thomas A. Manteuffel, Dept. of Mathematics, University of Colorado - Dcnvcr,
Denver, CO 80202

Peter Mayes, NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford, OX2 SDR,
United Kingdom

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. Cali-
fornia Blvd. Pasadena, CA 91125

James McCraw, Lawrcncc Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

Brcnt Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dianne P. O’Leary, Computer Science Dept., University of Maryland, College Park,
MD 20742

James M. Ortega, Dept. of Applied Mathematics, Thornton Hall IJniversity of Vir-
ginia, Charlottesville, VA 22903

Chris Paige, Dept. of Computer Science, McGill Univcrsity, 805 Shcrbrooke St. W.,
Montreal, Quebec, Canada H3A 2K6

Roy P. Pargas, Dept. of Computer Science, Clemson University, Clemson, SC

Beresford N. Parlett, Dept. of Mathematics, University of California, Berkclcy, CA
94720

Merrell Patrick, Dept. of Computer Science, Duke University, Durham, NC 27706

Robcrt J. Mcmmons, Dept.s of Mathematics and Computer Science, North Carolina
State University, Raleigh, NC 27650

Jesse Poore, Dept. of Computer Science, Ayres Hall, University of Tcnnesscc, Knox-
ville, TN 37996-1301

Alex Pothen, Dept. of Computer Science, Pennsylvania State University, Univcrsitp
Park, PA 16802

Michael J. Quinn, Computer Science Dept., Oregon State University, Corvallis, OR
9733 1

Giuscppe Radicati di Brozolo, IBM European Center for Scientific and Enginccring
Computing, 00147 Roma, via Giorgione 159, Italy

77042-3020

29634- 1906

- 30 -

131. Noah Rhec, Dept. of Mathematics, University of Missouri-Kansas City, Kansas City,

132. John K. Reid, Numerical Analysis Group, Central Computing Dept., Atlas Ccntrc,
Rutherford Appleton Laboratory, Mdcot, Oxon OX1 1 OQX, England

133. Werner C. Rheinboldt, Dept. of Mathematics and Statistics, University of Pittsburgh,
Pittsburgh, PA 15260

134. John R. Rice, Computer Science Dept., Purdue University, West Lafayctte, IN 47907

135. Gamy Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboiatory,
Livemore, CA 94550

136. Donald J. Rose, Dcpt. of Computer Science, Duke Univcrsity, Durham, NC 27706

137. A h e d II. Sarneh, Computer Science Dept., University of Illinois, Urbana, IL 6 180 1

138. Michael Saunders, Systems Oplimkation Laboratory, Operations Rcsearch Dcpt ,
Stanford 1 Jniveisity, Stanford, CA 94305

139. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Amcs Research Ccntcr, MollcL
Ficld, CA 94035

140. Martin H. SchullL, Dept. of Computcr Science, Yale University, P.O. Box 2158 Yalc
Station, New Haven, C T 06520

MO 64 1 10-2499

141. David S Scolt, Intcl Scientific Computers, 15201 N.W. Greenbrier Pkwy., Uc? ' vcnon,
OR 97006

142. Lawrence F. Sharnpine, Mathematics Dept., Southern Methodist IJnivcn sity, LMIas,
TX 75275

143. Kermit Sigmon, Dept. of Mathematics, University of Florida, Gaincsvillc, FI- 3261 1

144. Horst Simon, Mail Slop 258-5, NASA Ames Research Ccntcr, MolTctt Ficld, CA
94035

14.;. Larry Snydcr, Tlcpt. of Computer Scicnce and Enginecring, FR-35, UnivcrsiL) ol
Wa5hington, Scattle, WA 98 195

146. Danny C. Sorcnscn, Dcpt. of Mathematical Scicnccs, Rice Univcrsity, P. 0 13ou
1892, Houston, T X 7725 1

147. Rick Stevens, Mathematics and Computcr Scicncc Div., Argonnc National [Am t i -

tory, 9700 South Cass Avc., Argonne, IL 60439

148. G. W. Stewart, Computer Science Dept., llniversity of Maryland, Collcgc Park, MD
20742

149. Quentin F. Stout, Dept. of Electrical and Computer Enginecring, University of Mjch-
gan, Ann Arbor, MI 48 109

150. Danicl E. S ~ y l d , Dcpt. of Computcr Science, Duke University, Durham, NC 27700-
259 1

- 31 -

15 1. W.-P. Tang, Dcpt. of Computer Science, University of Waterloo, Watcrloo, Ontario,
Canada N2L 3G1

152. Michael Thomason, Dept. of Computer Science, Ayrcs Hall, University of Tenncsscc,
Knoxville, TN 37996- 1301

153. Bernard Tourancheau, LIP ENS-Lyon 69364 Lyon cedex 07, France

154. Charles Van Loan, Dept. of Computer Science, Cornel1 University, Ithaca, N Y 14853

155. James M. Varah, Centre for Integrated Computcr Systcrns Research, Univcrsity of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V67’
1 W5, Canada

156. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, I-Iampton, VA
23665

157. Michael Vose, Dept. of Computer Science, Ayres €fall, University of Tcnncsscc,
Knoxville, TN 37996-1301

158. Phuong Vu, Cray Research Inc., 1408 Northland Dr., Mendota Heights, MN 55 120

159. E. L. Wachspress, Dept. of Mathematics, University of Tennessee, Knoxvillc, ‘T’N

160. Daniel D. Warner, Dcpt. of Mathematical Sciences, 0-104 Martin Itlall, Clcmson
Univcrsity, Clemson, SC 2063 1

161. D. S . Watkins, Dcpt. of Pure and Applied Malhematics, Washington Starc Ilnivcrsity,

162. Andrew B. White, Computing Div., Los Alamos National Laboratory, Los Alnmos,
NM 87545

163. Michael Wolfe, Oregon Graduate Institute, 19600 N.W. von Neumann Dr., Rcavcr-
ton, OR 97006

164. Margaret Wright, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

165. David Young, University of Tcxas, Centcr for Numerical Analysis, RLM 13.150,
Austin, TX 7873 1

166. Ol‘lice of Assistant Manager for Energy Research and Dcvelopment, U.S. Dcpt. of
Energy, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 3783 1-8600

167-176. Office of Scientific Technical Information, P.O. Box 62, Oak Ridge, TN 37831

37996- 1300

Pullman, WA 99 164-2930

