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Abstract; 

This paper discusses the IBM WSC System/6000 workstation and a set of experiments 
with blocked algorithms commonly used in solving problems in numerical linear algebra. We 
describe the performance of these algorithms and discuss the techniques used in achieving 
high performance on  such an architecture. 

1 IBM RISC System/6000: System Overview 

The IBM RISC System/6000 computer is a superscalar second-generation ItISC architecture [2]. 

It is the result of advances in compiler and architecture technology that have evolved since the 

late 1970s and early 1980s. 

Like other RISC processors, the RISC System/6000 implements a register-oriented instruction 

set, the CPU is hardwired rather than microcoded, and it features a pipelined implementation. 

The floating-point unit is integrated in the CPU, minimizing the overhead associated with 

separate floating-point coprocessors. 

Unlike other RISC processors, however, the RISC System/6000 has the ability to dispatch 
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rniiltiple instructions and t o  overlap the execution of the fixed-point, the floating-point, and the 

branch functional units. ’The 184 instructions are divided arnong the functional units and are 

designed to  minimize interaction among the functional units. 

The I U M  RISC System/6000 is intended to  satisfy the requirements of both commercial and 

scientific applications. Our focus here is on the performance of the RISC System/G000 for 

scientific applications, which require very high floating-point performance as well as specialized 

peripherals, such as high-quality graphics adapters. These, in turn, require very high memory 

bandwidths to  the central processing unit. 

In what follows, we give a brief overview of the design of the CPU and memory and of some 

aspects of the 1/0 system. In particular, we discuss those architectural features most iiiiportarrt 

for designing and implementing high-performance mathematical software. Note that specific 

dctails refer to  the Model 530. The specification of other members of the RISC System/G000 

family may be different in some aspects. For a more complete discussion of the hardware, 

we refer the interested reader to the January 1990 issue of the I13M Journal of Research and 

De vclopm e ri t. 

1.1 Central Processing Unit  

‘I’he CP‘U architecture is based on a design that exploits modern compiler technology, and an 

iinplcmentation that exploits VLSI and CMOS technology, to  allow as much parallel instruction 

cscciition as possible. The RISC Systern/6000 processor consists of thrcc separate but, integrated 

f u  11 c t ions1 11 nits : 

1. The Instruction Cache and Branch Processing Unit  feeds a, stream of instructions to thc 

fixed-puiu t and floating-point units. The bra ncli processor provides all the branching, 

interrupt, arid condition code functions within the system. An important feature of the 

hraiicli processing unit is the “zero-cycle branch.” A zero-cycle branch is achieved by 
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executing branches simultaneously with fixed- or floating-point operations so that the 

stream of data to these units is not interrupted. In practice, this configuration means that 

loop boundaries do not interrupt pipelining. 

2. The Fixed-Point Unit (FXU) is designed to execute the fixed-point arithmetic, the logic 

instructions, and the data address computations and to schedule the inovement of data 

bctween the floating-point unit and the data cache. Read or write trmsfers between the 

floating-point unit and the data cache require one cycle to complcte. 

3. The E'loating-Point Unit (FYU)  supports the execution of the floating-point instructions. 

The FPU has a set of thirty-two 64-bit floating-point registers that  access the data cachc 

directly. It conforms to the ANSI/IEEE 745-1985 standard for binary floating-point arith - 

metic. The FPU is orgaiiized for double-precision computations. Thus, data held in thc 

floating-point registers are always represented in clouble-precision format. Therefore, when 

single-precision data are loaded, they are expanded to double-precision format. 

In addition, there are a niimber of features in the architecture which enhance performance. 

0 Register renaming is an important feature of the machine. This allows data for the next 

instruction to be loaded into a floating-point register that is currently being used by an 

earlier instruction. 

0 In addition to the usual arithmetic operations, there are compound instructions that mul- 

tiply two operands and add (or subtract) the product to a third operand. These floating- 

point multiply-and-add (FMA) instructions take two cycles to  complete. However, one 

FMA instruction may bc issued in each clock cycle, provided that the operands are inde- 

pendent. Thus it is possible to complete two floating-point computations in each cycle. 

0 The FMA instructions actually produce only one rounding error rather tha,n two and ate 

therefore more accurate than required by the IEEE standard. This additional accuracy 
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has been used, for example, in some of the math intrinsic functions. However, if strict 

adherence to the IEEE standard is required, a compile-time option can be used to  disable 

the generation of compound instructions. 

c1 The floating-point divide is implemented by a Newton-Raphson approximation algorithm. 

A division requires 16 to 19 cycles to  complete and provides correctly rounded results, but 

is obviously expensive if computed unnecessarily inside a loop. If division by a constant 

is taken out of the loop and replaced by a multiplication with the reciprocal, the code 

is more efficient, but the results are not necessarily identical. If it is important to have 

exactly equivalent code, the added precision and speed of the mnltiply-add instruction can 

he used to implement a reciprocal multiplication plus correction algorithm at the cost of a 

multiply and two inultiply-adds (5 cycles). This algurithm is cheaper than a division and 

still provides correctly rounded results. 

This design has allowed the implementation of a CPU that executes up to four instruction 

per cycle: one branch instruction, one condition register instruction, one fixed-point instruction, 

a n d  oiie floating-point multiply-add instruction. A second pipelined instruction can begin on the 

nest cycle on an independent set of operands. ‘This means that two independent floating-point 

operations per cycle can be executed. 

Of particular interest is the fact that loads and independent floating-point operations can 

occur in  parallel. 7‘he coinpiler takes advantage of this caiiability in many cases: with a well- 

tlesignc.tl algorithm, it is possible to execute two floating-point operations on separate data 

items a n d  “liide” one memory reference all in the same cycle. At a clock cycle of 25 RIIHz, this 

translates into a peak performance of 50 million floating-point operations per second (hlflops). 

1.2 Memory and Caches 

The ICISC Systcm/G000 mcmory banks implement a four-way interleaved design that provides 

two words (two 64-hit words) of data every machine cycle. A system can have from 16 to 
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256 Mbytes of total memory. 

Separate instruction and data caches provide conflict-free access to data and instructions. 

The instruction cache is organized as an 8-Kbyte, two-way set-associative cache, which has a 

64-byte (16-instruction) line size. The data cache is a four-way set-associative 64-Kbyte cache, 

which is divided into four identical chips of 16 Kbytes each. The caclie is implemented as a 

store-back cache to minimize the memory bus trafic: data are written back to memory only 

when an updated line in cache is replaced. Thc cache-line size is 128 bytes. A synchronous 

128-bit memory bus allows 400 Mbytes per second to be transferred to or from memory: it takes 

eight cycles to  load a cache line (16 double-precision words) from rncinory to cache. A G4-bit 

data bus connects the floating-point u n i t  and the data cache: it takes one cycle to transfer a 

double-precision word between the data cache and the floating-point registers. 

1.3 Serial Optical Link 

The 1/0 unit contains an T/O channel controller and two serial link a,dapters, which provide 

an interface to optics cards that drive fiber-optics links. Tt is intended for attachment of disks, 

graphics adapters, and other high-speed peripherals. (Support for this high-speed optical link is 

planned for future release.) The serial optical link has a bandwidth of 220 Mbits pcr second, and 

it allows the attachment of remote devices up to 2000 meters away. The link is also suitable for 

interprocessor message and data transfers in a multiprocessor configuration, and work is under 

way to investigate its suitability for closely coupled multiprocessing. 

2 Fortran Techniques for Performance on Matrix Operations 

As mentioned in the preceding section, the RISC System/6000 can complete a floating-point 

multiply-and-add (FMA) instruction every cycle, so that a Model .530 riinning at  25 MHz has 

a theorcticad pcak speed of 50 MRops. Many factors limit the amount of concurrency that can 

bc effectively used, thus limiting the performance that an algorithm can achieve. Most notably, 
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iinnecessary memory references can have a severe impact on the performance attainable. Indeed, 

the movement of data between memory and registers can be more costly than arithmetic opera- 

tioiis on the data. This cost provides considerable motivation to  restructure existing algorithms 

arid to devise new algorithms that minimize data movement. 

In this section we describe a model to predict the performance of simple Fortran loops and 

to  serve as a guide to writing eflicient Fortran code for the RISC System/6000. (We observe 

that the Ebrtran compiler usually takes advantage of all the parallelisin of which the CPU is 

capable.) Our model is based on the following rules: 

1. Each FMA instruction requires two cycles to  complete. Two FMAs that operate on in- 

dependent data will be scheduled on consecutive cycles, and therefore two floating-point 

operations will be executed simultaneously. 

2. Loads from car l ie to  floating-point registers require one cycle to Complete. They will be 

overlapped with FhlAs  that were scheduled earlier, even if they operate on registers that 

the earlier F h l A  is still using (register renaming). 

3. Stores do not overlap with FMAs. 

-1. Loop boundaries do not interrupt pipelining (zero-cycle branch). 

5. IVhen a cache miss occurs, the floating-point unit must wait 11 cycles before the whole 

cache line is available. The latency from riieriiory to cache accounts for 8 cycles. In our 

rinodcl we add to this an additional latency of 3 cycles, which fits closely the experimental 

data we collected. The details of the data transfer may be more complicated in reality, 

but this is the average effect that a Fortran programmer might expect to see. 

In the following three subsections we use this model to explain the different levels of per- 

formauce that can be achieved by using different levels of Basic Linear Algebra Subprogram 

( n l A S )  kernels [S, 5, 41, and we describe some Fortraii techniques to  implement the I3LAS 
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efficiently. High performance was achieved by constructing the codes in such a way that the 

compiler can easily generate code that matchcs the architecture of the machine. The techniques 

used were blocking (or strip-mining), loop iinrolling, and loop jamming--all fairly standard tech- 

niques used by compiler writers. Wc hope that some of these techniques will be incorporated 

into subsequent versions of the compiler, so that even less work will be required to exploit the 

machine. 

2.1 Level 1 BLAS 

The two Lcvel 1 BLAS operations that occur most frequently in linear algebra are the DOT: 

DO 10 I = 1, N 

TEMP = TEMP + X(I)*Y(I) 

10 CONTINUE 

and the RXPY: 

DO 10 I = I, N 

Y ( 1 )  = Y ( 1 )  + ALPHA*X(I) 

10 CONTINUE 

We begin by examining the performance of these operations when using data stored in cache. 

For thc DOT operation, each FMA instruction requires twoloads, one for X(I) and for Y ( I ) .  

Loading the data requires two cycles, and performing the FMA also requires two cycles. There 

is no possibility of re-using data, so the best we can expect is that  the loading of the next two 

operands is overlapped with an FMR. This corresponds to a theoretical speed of 25 Mflops; in 

practice, we measured 24.5 Mfloys (see Table 1). 

For the AXPY operation, each FMA instruction rcquires two loads aid o ~ i c  store. AgaiIi, there 

is no possibility of reusing data, so the best wc can hope for in this case is one FMA instructiou 
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Table 1: Speed in  Mflops of Level 1 DLAS 

AXPY -7 
Type of memory access predictex 

all data  in cache 25 
all data  from memory: 
z and y with unit stride 

z and y with stride 16 

14.81 
2 with stride 16 3.65 

2.08 --_ --..I 

measured 

____-I 

every three cycles. This corresponds to 16.67 Mflops; in  practice, we measured 16.4 Mflops (see 

Table 1). 

For data  that must he accessed from memory, we must take account of the time taken for data 

to  arrive in the registers. Each time a cache miss occurs (every 16 elements for stride-one access), 

the processing is interrupted, and the CPU must wait for the cache line to become available. In 

oiir model, the CPU must wait for 11 machine cycles. Thus, the cost of moving contiguous data 

from memory to registers is, on the average, 1.69 cycles per element (i.e., 11 cycles to move a 

cache line from memory to  cache plus 1 cycle to transfer each of the 16 elements from cache to 

register ((11+16)/16) cycles per element). In a DOT operation, on the average 2 floating-point 

operations (1 E‘MA) are scheduled every 3.38 machine cycles, giving 14.81 Mflops in theory and 

14.6 Mflops in practice. If the vectors are accessed with stride 16 (the length of a cache line), 

each element will be available after a delay of 12 cycles (= 11 + I), giving 25/12 = 2.08 Mflops in 

theory and 1.8 Mflops in practice. Table 1 shows the measured performance and the prediction 

using the Inodcl for some other memory access patterns. 

2.2  Level 2 BLAS 

IIerc we consider the Level 2 H1,AS DGEMV operations 

y +- y + Az and y f- y 3- Arz. 

l’lic basic operation in Fortran is given in Figure 1, wlicre A ( I  ~ J) must be replaced by A(J , I> 
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DO 
DO 

Y ( 1 )  = Y ( 1 )  + A(I,J)*X(J) 
CONTINUE 

CONTINUE 

Figure 1: Generic matrix-vector multiply code 

for the operation with A T .  Depending on the ordering of the DO-loops, the inner loop is either a 

DOT or an AXPY. We have seen from the discussion of the two T,evel 1 BLAS operations that,  

because the RISC System/GOOO system can perform an FMA instruction with all its operands 

in registers, it is better suited to DOT operations than to AXPY operations. (Note that this 

contrasts with the situation 011 vector machines such as the CR.AY Y-MP, whcre tlie two vector 

loads and onc vector store required match the architecture well. Also, by unrolling, it is possible 

to keep the vector Y ( I )  in a vector register for longer, thus increasing the ratio of floating-point 

operations to ineniory references.) 'CVc have also seen from Table 1 that when accessing data 

from memory, it is very important to  access the data with stride one, so that all the elements in 

a cache line are used when that line is loaded. For these two reasons, wc consider the operation 

y y t ATx, 

which can be expressed as a DOT operation with A accessed with unit stride. 

For this opcration, the peak speed is again 25 Mflops---exactly the same as for the DOT. 

llowever, in this case we can unroll the dot product to  re-use each X ( J )  a number of times. As 

tlic depth of unrolling increases, the ratio of operations to  loads increases €mm one and tends 

towards two. For example, for unrolling to depths 2 ,3 ,  and 4, tlie ratio of operations to loads is 

4/3,  6/4, and 8 / 5 ,  with a theoretical peak speed of 33.3, 37.5, and 40 Mflops, respectively. The 

code for this operation unrollcd to  depth 4 is shown in Figure 2. In practice, therc is little benefit 

in unrolling to very large depths, as there are only a finite number of floating-point registcrs, 

and thc pcrforniance reaches a plateau. The code in Figure 2 performs at  36.3 Mflops, and a 

speed of 40.3 Mflops has been measured for unrolling to depth S. 
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10 

20 

DO 20 5 = 1, M ,  4 
TEMPi = ZERO 
TEMP2 = ZERO 
TEMP3 = ZERO 
TEMP4 = ZERO 
DO 10 J = 1, W 

TEMP1 = TEMPI + A ( J , I  ) * X ( J )  
TEMP2 = TEMP2 + A( . J , I+ l )*X(J )  
TEMP3 = TEMP3 + A(J,I+2)*X(J) 
TEMP4 = TEMP4 + A(J,I+3)*X(J) 

C QNTI NUE 
Y ( 1  ) = Y ( 1  ) + TEMPI 

Y ( I + l )  = Y ( I + l )  + TEMP2 
Y(I+2) = Y ( I + 2 )  + TEMP3 
Y ( I + 3 )  = Y ( I + 3 )  + TEMP4 

CONTINUE 

Figure 2: Model Code for y +- y + ATx 

Table 2: Speed in Mflops of Level 2 HLAS 

I Data in Cache I Data in Memo<yyl 

Table 2 lists the speed of the various DGEMV operations and also includes speeds for data 

accessed from memory. 'l'his table shows that for data accessed from cache, the speed of the 

operation y t y + A s  based on DOT is the same as that for the operation with AT-there is 

no penalty for accessing with stride from cache. 

First, we notice that for data accessed from memory, for the y c- y + A z  operation it is slightly 

better to use the A X P Y  operation, which accesses the matrix with unit stride, rather than the 

DOT version, which accesscs the matrix with stride equal to its leading dimension. Second, we 

see that alt,liougli the speed of the y c- y 3- Ax operation based on AXPY (9.0 Mflops) and the 
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Table 3: Speed of C t C + AB on the RISC System 6000-530 

Conditions be fore operation 
All arrays initially in cache 
R or U initially in cache 

C initially in cache 
No arrays initially in cache 

,Sped in Mflops 
47.5 
45.4 
42.5 
41.5 

y t y -+ ATs operation based on DOT (11.0 Mflops) are slower than the corresponding Level 

1 BLAS speeds based on unit stride (11.3 Mflops and 14.6 Mflops respectively-see Table l), 

the speeds for accessing the matrix across a row are much faster for tlze Level 2 BLAS than 

for the corresponding Level 1 BLAS. This is because when elements of a row of a matrix are 

accessed, all the elements in the corresponding cache line are loaded into cache, and some will 

he immediately available when the next row is accessed. 

2.3 Level 3 BLAS 

In performing the matrix-matrix multiply operatiori 

where we assume that all three arrays are in cache, it is possible to increase the ratio of operations 

to loads to 2:l by unrolling the DO-loops in two directions and thereby re-using cach loaded 

element twice. Note that this ratio is optimal, in the sense that it is precisely what the hardware 

supports. The code fragment in Figure 3 illustrates this technique. In theory, this approach 

would resitlt in a speed closc to the theoretical maximum of 50 Mflops on a 25 MlIz machine. 

Tn practice, we have measured 47.5 Mflops-see Table 3 .  Note that a production version would 

be complicated by the necd to include code for the cases when M and N are riot a multiple of 

two. 

In genera.1, the arrays A, D and C will be too large to fit into cache together; in any case, 

they need to be loaded from memory initally. I t  is still possible to arrange for the operations 
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DO 30 J = 1, N, 2 
DO 20 I = 1, N, 2 

TI1 = ZERO 
T21 = ZERO 
T12 = ZERO 
T22 = ZERO 
DO 10 K = 1, L 

Til = Til + A(1, K)*B(K,J 
T21 -- T21 + A(I+l,K)*B(K,J 
Ti2 = T12 + A(1, K)*B(K,J+I) 
T22 = T22 + A(I+l,K)*B(K,J+l) 

10 CONTINUE 
C ( 1 ,  J ) = C(1, J ) + Til 
C(I+1,J ) = C(I+l,J + T21 
C ( I ,  J+I) = C(1, J+1) + Ti2 
C(I+l,J+l) = C(I+I,J+I) + T22 

20 CONTINUE 
30 CONTINUE 

Figure 3:  Code fragment for near-optimal performance of C' +- C t AB 

to  he performed with data  largely in cache by dividing the matrix into blocks, as showil in 

Figure 4 .  We may then fix the block 17 of the matrix A and perform every operation involving 

tliis block before moving on to another block of A .  In other words, we compute the products 

CI +- C'I + &?I, C'2 +- c2 t- liB2,. . . ,cs +- c6 t &?6. 111 this way the block il can be kept in 

caclic and  the data reiised many times. 

In addition, if we assume that the leading dimension of D is such that the block B ,  can all be 

contained i n  cache, the overhead of loading B, from memory is not too great. Morcover, each 

column of Ut is accessed a number of times. Thus we may perform the matrix-matrix product 

of these blocks at close to the peak speed of the machine. 

7'0 illustratr: the overhead of cache loading, we show in Table 3 the speed of the operation 

where c' is 24 by 24, and A is 24 by 128, and where different arrays are forced to be accessed 

either from cache or from memory. These dimensions were chosen so tltat all three arrays can 
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Partitioning of large matrix-matrix produck 

,.-.- r-q ---. .P.-Fi .... + 
t- 

._.__ ____. ...._ ._... 

Matrix-matrix product of individual blocks 

(Block i? remains in cache) 

----- 

Doubly unrolled dot products for 
“optima.1” performance on sub-blocks 

Figure 4: Blocked matrix-matrix multiply (DGEMM) 
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comfortably fit into cache together, and the length of the dot products is sufficiently long so 

that they reach their asymptotic speed. 

One other important detail of the blocking strategy merits discussion. Suppose that the 

matrix A is declared with a very unfavorable leading dimension. Then i t  is possible that only 

a fpw columns of the matrix A will fit into cache before new columns begin to flush the old 

columns. For example, if the leading dimension of A is 512, and A is 32 by 32 ,  i t  turns out that  

only 1 G  columns of A will fit in cache. To overcome this problem, we copy the block kj into a 

work array and then perform all the operations with thc work array, rather than addrcssing a 

part of the array A .  This approach requires us to access A with a bad leading dimension only 

once, rather than 16 times, for the matrix dimensions mentioned above. 

A Fortran version of the Level 3 TILAS routine DGEh4h4 using these techniques is availalile 

from netlib (send mail to  netlib@ornl.gov; in the mail message type: send dmr from misc). 

2.4 Summary of BLAS Performance 

Figure 5 shows a graph of the speed of the three BLAS routines DDOT, DGEMV, and DC;E:MR!I 

for increasing matrix dimensions. The operations performed by DGEhlV and D G l M M  are 

chosen so that clot products are performed on contiguous elements, i.e., y - y + A"'z for 

DGEAIV a n d  C - C + .4TB for DGEMM. 

This graph clearly shows the benefit of increasing the ratio of floating-point operations to 

rncmory references achieved by using the Level 3 BLAS. For matrix-matrix multiply we arc 

doing 0 ( n 3 )  operations on O ( n 2 )  data, representing a favorable surface-to-volume effect. IIence 

matrix-matrix multiply offers much greater opportunity for exploiting the memory hierarchy 

tliari the lower-level BLAS routines. All the experiments described here were performed on 

a IBM TLISC Systcm/6000 Model 530 running at  2.5 MJIz, using the L41X XI, compiler versioii 

01.01 .OOOO.OOOO with the -0 option. The BLAS shown in Figure 5 were iniplementcd in standard 

Fortran 77. 
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Figure 5: Speed of Level 1 ,2 ,  and 3 BLAS on the RISC System 6000-530 

3 Block Algorithms and LAPACK 

Experience with machines having a memory hierarchy [6, 71 iiidicatcs that it is often prcfcrablc 

to partition tIie matrix or matrices into blocks and to perform the computation by matrix-matrix 

operations on the blocks. By organizing the computation in this fashion, one can provide for 

full reuse of data while a given block is held in the cache or local memory. This approach avoids 

excessive movement of data to  and from memory, and its benefits on thc RISC System/G000 in 

particular are clear from the previous section. 

Many algorithms can be blocked. For example, researchers have used blocking to rewrite codes 

for tht: solution of partial differential equations. Such codes make cfiicient use of supcrcoinputcrs 

with small main memory and large solid-state disks [9]. All experience with these techniques 

bas shown them t o  he enormously cffect,ive at squeezing the best possible pcrforinance out of 

advaiiced architectures. 

Recent work by numerical analysts has shown that the most important conipiitations for 

dense matrices are dso blockablc. A major software dc~velopment project dealiiig with blockcd 

algorithms for linear algebra, called LAPACK (shorthand for JJiiiear ,41gc>l~ra Packrtgc), is based 
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on this idea [l]. 

Tlre LAPACK library will provide routines for solving systems of simultaneous linear equa- 

tions, least-squares solutions of overdetermined systems of equations, and eigenvalue problems. 

The library is intended to  be efficient and transportable across a wide range of computing en- 

vironments, with special emphasis on modern high-performance computers. To achieve high 

efficiency, LAPACK developers are restructuring most of the algorithms from LINPACK and 

EISPACK in terms of calls to  a small number of extended BLAS, each of which implements a 

block matrix operation such as matrix multiplication, rank-k matrix updates, and the solution 

of triangular systems. These block operations can be optimized for each architecture, but the 

numerical algorithms that call them will be portable. 

3.1 Performance of Blocked Algorithms on the R.TSC Systein/6000 

We used three blocked variants from LAPACK to compare the performance of LU factorization 

for a general matrix. ‘These blocked variants are shown in Figure E .  The lightly shaded parts 

indicate the matrix elements accessed in forming a block row or column, and the darker shading 

indicates the block row or column being computed. The left-looking variant computes a block 

column a t  a time using previously computed columns. The right-looking variant (the familiar 

recursive algorithm) computes a block row and column at each step and uses them to  update the 

trailiug submatsix. The Grout variant is a hybrid algorithm in which a block row and column 

are computed a t  each step using previously computed rows and previously computed columns. 

All of the computational work for the LU variants is contained in three routines: the matrix- 

matrix multiply BGEMM, the triangular solve with multiple right-hand sides DTRSM, and 

the unblocked LU factorization for operations within a block column. Figures 7-9 show the 

distribution of work among these three routines. 

Each variant calls its own unblocked variant, and the row interchanges use about 2% of the 

total time. The average speed of DGEMM is over 40 Mflops for all three variants, but the average 
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Right-looking LU Left-looking LU Crout LU 

Figure 6: Variants of LU factorization on the ltISC System 6000-538 

Figure 7: Breakdown of work in left-looking LU 

speed of DTRSR4 depends on the size of the triangular matrices. For the left-looking variant, 

the triangular matrices at each step range in size from b to 1% - b ,  where Ir is the blocksize sild n 

the order of the original matrix, and the average perforrrliince is 38 Mflops. For the right-lookjug 

and Crout variants, on the other hand, the triangular matrices are always of order b ,  and the 

average speed is only 29 Mflops. Clearly the average performance of the Levcl 3 RLA4S routines 

in a blocked routine is as important as the percentage of I,cvel 3 BLRS work. 

Despite the differences in the performance rates of their components, the block variants of 

the LU factorization tend to show similar overall performance, with a slight advantagc to the 
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Fjgure 10: Speed of LU Variants on the R.ISC System 6000-530 

right-looking and Crout variants because more of the operations are iu DGEMM. Figure 10 

shows the performance rates in Mflops of these three variants for diffcreat matrix sizes on a 

IRA1 R S/600-.530, along with the perforinance of the LZNPACK routinc 1)GEFZZ. 'I'he optimal 

blocksize on the ltISC System/6000 cornpii tcrs is 32 for most matrix sizes, but the perforinance 

varies less than 10% over a wide range of blocksizes. 

4 Suniniary and Conclusions 

The aim of this work has been to  examine the performance of block algorillims on the IHhI 

ltlSC workstation. Based on our experiments, we draw the following conclusions. 

1. Neither the memory bandwidth nor the cycle time for the IJJhZ ILISC System/GQ00 is a t  

the levcl of current-generation vector supercomputers. There is, however, no technical 

reason why this situation could not be improved. 

2. The IBRf RISC processor is close to matching the perfortriarice levcl of vector processors 

with niatched cycle times [lo]. Because of the regularity of vector loops and the ability 

of tlic RISC architecture to issue floating-point instruction every cycle and complete two 
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floating-point operations per cycle we expect that  the RISC supersca1a.r machines will 

perform at the same rates a.s the vector machines for vector operations with similar cycle 

times. Moreover, the RISC machines will exceed the performance of those vector processors 

on non-vector problems. 

3. The LAPACIi soft ware based on blocked operations performs a t  near-optimal performance 

with minimal effort. One should note, however, that the workstation docs not match the 

1/0 performance and the number of users accommodated on larger computers. 

4. Esseritial to high performance is the use of optimized versions of the Level I, 2, and 3 RLAS. 

'l'he techniques and ideas iised here to  gain performance on the IUM RISC System/6000 

should work on all RISC-based machines. To a large extent, the success will depend 

on the Fortran coiripiler's ability to  generate efficient code. (We believe that this high 

performance is due, at least in part, to  the fact that  compiler writers were involved in the 

early design stages, rather than after the hardware designers had completed much of their 

work.) 
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Type of memory access 
a11 data  in cache 

all data  from memory: 
z and y with unit stride 

2 with stride 16 
x and y with stride 16 

Appendix: The Model 550 

DOT A XPY 
predicted measured predicted measured 

41.6 41.15 27.72 27.4 

26.62 26.04 20.17 13..53 
7.20 5.90 6.62 5.29 
4.16 3.40 3.96 2.60 

- 

Since this report was first prepared, IBM has annoiinced a new model in the RISC Systcm/6000 

family-the Model 550. This model has exactly the same architecture as the Model 530 used 

in the experiments reported earlier, but has a faster CPU, runnjng at 41.6 MHz (compared 

with 25 MIIz for the Model 530), and a faster memory. In this appendix we reprodnce versions 

of Tables 1-3, with data  gathered from the Model 550. We also reproduce Figure 5 ,  which 

denionstrates the pcrforniance attainable with the three levels of BLAS. 

Table 4 (similar t o  Table 1) shows the speed OF various Level 1 BLAS opcrations. ln  this caw 

the predictions are hued  on the clock speed of 41.6 MTTz, and a time of 9 cycles to  load a cache 

line from memory to  cache. This value fits the observed data  better thaii the 11 cycles used for 

the Model 530. The other tables correspond exactly to those in the text. 

Table I :  Speed in Mflops of TJevel 1 BLAS on the RlSC System 6000-550 

Table 5: Speed in Mflops of T m d  2 BLAS on the RISC System G000-5Fi0 
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Table G: Speed of C c- C + A B  on the RISC System 6000-550 

Conditions before operation 

A or I !  initially in cache 
C initially in cache 

N o  arrays initially in cache t Speed in hfjlops 
79.3 i211 arrays initially in caclie 
75.6 
70.9 
70.2 

600 
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