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Abstract
This paper discusses the IBM RISC System/6000 workstation and a set of experiments
with blocked algorithms commonly used in solving problems in numerical linear algebra. We

describe the performance of these algorithms and discuss the techniques used in achieving
high performance on such an architecture.

1 IBM RISC System/6000: System Overview

The IBM RISC System/6000 computer is a superscalar second-generation RISC architecture {2].
It is the result of advances in compiler and architecture technology that have evolved since the

late 1970s and early 1980s.

Like other RISC processors, the RISC System /6000 implements a register-oriented instruction
set, the CPU is hardwired rather than microcoded, and it features a pipelined implementation.
The floating-point unit is integrated in the CPU, minimizing the overhead associated with

separate floating-point coprocessors.

Unlike other RISC processors, however, the RISC System/6000 has the ability to dispatch
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multiple instructions and to overlap the execution of the fixed-point, the floating-point, and the
branch functional units. The 184 instructions are divided among the functional units and are

designed to minimize interaction among the functional units.

The IBM RISC System/6000 is intended to satisfy the requirements of both commercial and
scientific applications. Qur focus here is on the performance of the RISC System/6000 for
scientific applications, which require very high floating-point performance as well as specialized
peripherals, such as high-quality graphics adapters. These, in turn, require very high memory

bandwidths to the central processing unit.

In what follows, we give a brief overview of the design of the CPU and memory and of some
aspects of the I/O system. In particular, we discuss those architectural features most important
for designing and implementing high-performance mathematical software. Note that specific
details refer to the Model 530. The specification of other members of the RISC System /6000
family may be different in some aspects. For a more complete discussion of the hardware,
we refer the interested reader to the January 1990 issue of the IBM Journal of Research and

Development.

1.1 Central Processing Unit

The CPU architecture is based on a design that exploits modern compiler technology, and an
implementation that exploits VLSI and CMOS technology, to allow as much parallel instruction
execution as possible. The RISC System /6000 processor consists of three separate but integrated

functional units:

1. The Instruction Cache and Branch Processing Unit feeds a stream of instructions to the
fixed-point and floating-point units. The branch processor provides all the branching,
interrupt, and condition code functions within the system. An important feature of the

branch processing unit is the “zero-cycle branch.” A zero-cycle branch is achieved by
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executing branches simultaneously with fixed- or floating-point operations so that the
stream of data to these units is not interrupted. In practice, this configuration means that

loop boundaries do not interrupt pipelining.

2. The Fixed-Point Unit (FXU) is designed to execute the fixed-point arithmetic, the logic
instructions, and the data address computations and to schedule the movement of data
between the floating-point unit and the data cache. Read or write transfers between the

floating-point unit and the data cache require one cycle to complete.

3. The Floating-Point Unit (FPU) supports the execution of the floating-point instructions.
The FPU has a set of thirty-two 64-bit floating-point registers that access the data cache
directly. It conforms to the ANSI/IEEE 745-1985 standard for binary floating-point arith-
metic. The FPU is organized for double-precision computations. Thus, data held in the
floating-point registers are always represented in double-precision format. Therefore, when

single-precision data are loaded, they are expanded to double-precision format.

In addition, there are a number of features in the architecture which enhance performance.

¢ Register renaming is an important feature of the machine. This allows data for the next
instruction to be loaded into a floating-point register that is currently being used by an

earlier 1nstruction.

e In addition to the usual arithmetic operations, there are compound instructions that mul-
tiply two operands and add (or subtract) the product to a third operand. These floating-
point multiply-and-add (FMA) instructions take two cycles to complete. However, one
FMA instruction may be issued in each clock cycle, provided that the operands are inde-

pendent. Thus it is possible to complete two floating-point computations in each cycle.

o The FMA instructions actually produce only one rounding error rather than two and are

therefore more accurate than required by the IEEE standard. This additional accuracy
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has been used, for example, in some of the math intrinsic functions. However, if strict
adherence to the IEEE standard is required, a compile-time option can be used to disable

the generation of compound instructions.

¢ The floating-point divide is implemented by a Newton-Raphson approximation algorithm.
A division requires 16 to 19 cycles to complete and provides correctly rounded results, but
is obviously expensive if computed unnecessarily inside a loop. If division by a constant
is taken out of the loop and replaced by a multiplication with the reciprocal, the code
is more efficient, but the results are not necessarily identical. If it is important to have
exactly equivalent code, the added precision and speed of the multiply-add instruction can
be used to implement a reciprocal multiplication plus correction algorithm at the cost of a
multiply and two multiply-adds (5 cycles). This algorithm is cheaper than a division and

still provides correctly rounded results.

This design has allowed the implementation of a CPU that executes up to four instruction
per cycle: one branch instruction, one condition register instruction, one fixed-point instruction,
and one floating-point multiply-add instruction. A second pipelined instruction can begin on the
next cycle on an independent set of operands. This meaus that two independent floating-point

operations per cycle can be executed.

Of particular interest is the fact that loads and independent floating-point operations can
occur in parallel. The compiler takes advantage of this capability in many cases: with a well-
designed algorithm, it is possible to execute two floating-point operations on separate data
items and “hide” one memory reference all in the same cycle. At a clock cycle of 25 MHz, this

translates into a peak performance of 50 million floating-point operations per second (Mflops).

1.2 Memory and Caches

The RISC System /6000 memory banks implement a four-way interleaved design that provides

two words (two 64-bit words) of data every machine cycle. A system can have from 16 to



256 Mbytes of total memory.

Separate instruction and data caches provide conflict-free access to data and instructions.
The instruction cache is organized as an 8-Kbyte, two-way set-associative cache, which has a
64-byte (16-instruction) line size. The data cache is a four-way set-associative 64-Khyte cache,
which is divided into four identical chips of 16 Kbytes each. The cache is implemented as a
store-back cache to minimize the memory bus traflic: data are written back to memory only
when an updated line in cache is replaced. The cache-line size is 128 bytes. A synchronous
128-bit memory bus allows 400 Mbytes per second to be transferred to or from memory: it takes
eight cycles to load a cache line (16 double-precision words) from memory to cache. A 64-bit
data bus connects the floating-point unit and the data cache: it takes one cycle to transfer a

double-precision word between the data cache and the floating-point registers.
1.3 Serial Optical Link

The I/O unit contains an I/O channel controller and two serial link adapters, which provide
an interface to optics cards that drive fiber-optics links. It is intended for attachment of disks,
graphics adapters, and other high-speed peripherals. (Support for this high-speed optical link is
planned for future release.) The serial optical link has a bandwidth of 220 Mbits per second, and
it allows the attachment of remote devices up to 2000 meters away. The link is also suitable for
interprocessor message and data transfers in a multiprocessor configuration, and work is under

way to investigate its suitability for closely coupled multiprocessing.
2 Fortran Techniques for Performance on Matrix Operations

As mentioned in the preceding section, the RISC System/6000 can complete a floating-point
multiply-and-add (FMA) instruction every cycle, so that a Model 530 running at 25 MHz has
a theoretical peak speed of 50 Mflops. Many factors limit the amount of concurrency that can

be effectively used, thus limiting the performance that an algorithm can achieve. Most notably,
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unnecessary memory references can have a severe impact on the performance attainable. Indeed,
the movement of data between memory and registers can be more costly than arithmetic opera-
tions on the data. This cost provides considerable motivation to restructure existing algorithms

and to devise new algorithms that minimize data movement.

In this section we describe a model to predict the performance of simple Fortran loops and
to serve as a guide to writing efficient Fortran code for the RISC System/6000. (We observe
that the Fortran compiler usually takes advantage of all the parallelism of which the CPU is

capable.) Our model is based on the following rules:

1. Fach FMA instruction requires two cycles to complete. Two FMAs that operate on in-
dependent data will be scheduled on consecutive cycles, and therefore two floating-point

operations will be executed simultaneously.

2. Loads from cache to floating-point registers require one cycle to complete. They will be
overlapped with FMAs that were scheduled earlier, even if they operate on registers that

the earlicr FMA is still using (register renaming).
3. Stores do not overlap with FMAs.
4. Leoop boundaries do not interrupt pipelining (zero-cycle branch).

5. When a cache miss occurs, the floating-point unit must wait 11 cycles before the whole
cache line is available. The latency from memory to cache accounts for 8 cycles. In our
model we add to this an additional latency of 3 cycles, which fits closely the experimental
data we collected. The details of the data transfer may be more complicated in reality,

but this is the average cffect that a Fortran programmer might expect to sce.

In the following three subsections we use this model to explain the different levels of per-
formamnce that can be achieved by using different levels of Basic Linear Algebra Subprograms

(BLAS) kernels (8, 5, 4], and we describe some Fortran techniques to implement the BLAS
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efficiently. High performance was achieved by constructing the codes in such a way that the
compiler can easily generate code that matches the architecture of the machine. The techniques
used were blocking (or strip-mining), loop unrolling, and loop jamming—all fairly standard tech-
niques used by compiler writers. We hope that some of these techniques will be incorporated
into subsequent versions of the compiler, so that even less work will be required to exploit the

machine.

2.1 Level 1 BLAS

The two Level 1 BLAS operations that occur most frequently in linear algebra are the DOT:

DO 10 I

L]

1, N

it

TEMP = TEMP + X(I)*Y(I)

10 CONTINUE

and the AXPY:

DO 10 I i, N

Y(I) = Y(I) + ALPHA*X(I)

10 CONTINUE

We begin by examining the performance of these operations when using data stored in cache.

For the DOT operation, each F'MA instruction requires two loads, one for X(I) and for Y(I).
Loading the data requires two cycles, and performing the FMA also requires two cycles. There
is no possibility of re-using data, so the best we can expect is that the loading of the next two
operands is overlapped with an FMA. This corresponds to a theoretical speed of 25 Mflops; in

practice, we measured 24.5 Mflops (see Table 1).

For the AXPY operation, cach FMA instruction requires two loads and one store. Again, there

is no possibility of reusing data, so the best we can hope for in this case is one FMA instruction



Table 1: Speed in Mflops of Level 1 BLAS

DOT AXPY
Type of memory access | predicted | measured | predicted | measured
all data in cache 25 24.5 16.67 16.4
all data from memory:
z and y with unit stride 14.81 14.6 11.43 11.3
z with stride 16 3.65 3.2 3.40 3.2
z and y with stride 16 2.08 1.8 2 1.4

every three cycles. This corresponds to 16.67 Mflops; in practice, we measured 16.4 Mflops (see

Table 1).

For data that must be accessed from memory, we must take account of the time taken for data
to arrive in the registers. Each time a cache miss occurs (every 16 elements for stride-one access),
the processing is interrupted, and the CPU must wait for the cache line to become available. In
our model, the CPU must wait for 11 machine cycles. Thus, the cost of moving contiguous data
from memory to registers is, on the average, 1.69 cycles per element (i.e., 11 cycles to move a
cache line from memory to cache plus 1 cycle to transfer each of the 16 elements from cache to
register ((11+416)/16) cycles per element). In a DOT operation, on the average 2 floating-point
operations (1 FMA) are scheduled every 3.38 machine cycles, giving 14.81 Mflops in theory and
14.6 Mflops in practice. If the vectors are accessed with stride 16 (the length of a cache line),
cach element will be available after a delay of 12 cycles (= 11 + 1), giving 25/12 = 2.08 Mflops in
theory and 1.8 Mflops in practice. Table 1 shows the measured performance and the prediction

using the model for some other memory access patterns.

2.2 Level 2 BLAS

Here we consider the Level 2 BLAS DGEMY operations
y — y+ Az and y—y+ ATz,

The basic operation in Fortran is given in Figure 1, where A(I,J) must be replaced by A(J,I)



DO
DO
Y(I) = Y(I) + A(T,J)«X(J)
CONTINUE
CONTINUE

Figure 1: Generic matrix-vector multiply code

for the operation with AT. Depending on the ordering of the DO-loops, the inner loop is either a
DOT or an AXPY. We have seen from the discussion of the two Level 1 BLAS operations that,
because the RISC System /6000 system can perform an FMA instruction with all its operands
in registers, it is better suited to DOT operations than to AXPY operations. (Note that this
contrasts with the situation on vector machines such as the CRAY Y-MP, where the two vector
loads and one vector store required match the architecture well. Also, by unrolling, it is possible
to keep the vector Y(I) in a vector register for longer, thus increasing the ratio of floating-point
operations to memory references.) We have also seen from Table 1 that when accessing data
from memory, it is very important to access the data with stride one, so that all the elements in

a cache line are used when that line is loaded. For these two reasons, we consider the operation
y—y+Aa'e,
which can be expressed as a DOT operation with A accessed with unit stride.

For this operation, the peak speed is again 25 Mflops—exactly the same as for the DOT.
However, in this case we can unroll the dot product to re-use each X(J) a number of times. As
the depth of unrolling increases, the ratio of operations to loads increases from one and tends
towards two. For example, for unrolling to depths 2, 3, and 4, the ratio of operations to loads is
4/3, 6/4, and 8/5, with a theoretical peak speed of 33.3, 37.5, and 40 Mflops, respectively. The
code for this operation unrolled to depth 4 is shown in Figure 2. In practice, there is little benefit
in unrolling to very large depths, as there are only a finite number of floating-point registers,
and the performance reaches a plateau. The code in Figure 2 performs at 36.3 Mflops, and a

speed of 40.3 Mflops has been measured for unrolling to depth 8.
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DD 20I =1, M, 4

TEMP1 = ZERD
TEMP2 = ZERD
TEMP3 = ZERO
TEMP4 = ZERD

DO 10 J =1, N

TEMP1 = TEMP1 + A(J,I )*X(J)
TEMP2 = TEMP2 + A(J,I+1)*X(J)
TEMP3 = TEMP3 + A(J,I+2)*X(J)
TEMP4 = TEMP4 + A(J,I+3)*X(J)
10 CONTINUE

Y(I ) = Y(I ) + TEMPI

Y(I+1) = Y(I+1) + TEMP2

Y(I+2) = Y(I+2) + TEMP3

Y(I+3) = Y(I+3) + TEMP4

20 CONTINUE

Figure 2: Model Code for y « y + ATy

Table 2: Speed in Mflops of Level 2 BLAS

Data in Cache Data in Memory
yeytdz | yey+ ATz | yoytAs | y—y+ Al
depth | DOT | AXPY | DOT | AXPY | DOT | AXPY | DOT | AXPY

1 22.7 15.6 22.6 15.5 8.7 9.0 11.0 7.7
30.4 23.5 30.4 23.4 10.4 10.0 11.2 9.5
34.1 24.0 34.2 23.8 10.6 12.3 11.4 9.7
36.3 24.0 36.4 23.6 11.3 9.8 11.3 10.3

_— W N

Table 2 lists the speed of the various DGEMYV operations and also includes speeds for data
accessed from memory. This table shows that for data accessed from cache, the speed of the
operation y «— y + Az based on DOT is the same as that for the operation with AT —there is

no penalty for accessing with stride from cache.

First, we notice that for data accessed from memory, for the y < y+ Az operation it is slightly
better to use the AXPY operation, which accesses the matrix with unit stride, rather than the
DOT version, which accesses the matrix with stride equal to its leading dimension. Second, we

see that although the speed of the y « y + Az operation based on AXPY (9.0 Mflops) and the
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Table 3: Speed of C «— C + AB on the RISC System 6000-530
Conditions before operalion ! Speed in Mflops

All arrays initially in cache 47.5
A or B initially in cache 45.4

C initially in cache 42.5

No arrays initially in cache 41.5

y + y + ATz operation based on DOT (11.0 Mflops) are slower than the corresponding Level
1 BLAS speeds based on unit stride (11.3 Mflops and 14.6 Mflops respectively—see Table 1),
the speeds for accessing the matrix across a row are much faster for the Level 2 BLAS than
for the corresponding Level 1 BLAS. This is because when elements of a row of a matrix are
accessed, all the elements in the corresponding cache line are loaded into cache, and some will

be immediately available when the next row is accessed.

2.3 Level 3 BLAS

In performing the matrix-matrix multiply operation
C« C+ AB,

where we assume that all three arrays are in cache, it is possible to increase the ratio of operations
to loads to 2:1 by unrolling the DO-loops in two directions and thereby re-using each loaded
element twice. Note that this ratio is optimal, in the sense that it is precisely what the hardware
supports. The code fragment in Figure 3 illustrates this technique. In theory, this approach
would result in a speed close to the theoretical maximum of 50 Mflops on a 25 MHz machine.
In practice, we have measured 47.5 Mflops—see Table 3. Note that a production version would
be complicated by the need to include code for the cases when M and N are not a multiple of

two.

In general, the arrays A, B and C will be too large to fit into cache together; in any case,

they need to be loaded from memory initally. It is still possible to arrange for the operations
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DO 30 J =1, N, 2
D0 20T =1, M, 2
T11 = ZERO
T21 = ZERO
T12 = ZERD
T22 = ZERD
DO 10K =1, L
Ti1 = T11 + A(I, K)*B(K,J )
T21 = T21 + A(I+1,K)*B(K,J )
Ti2 = T12 + A(I, K)*B(K,J+1)
T22 = T22 + A(I+1,K)*B(K,J+1)
10 CONTINUE
c(I, 1 )=¢C(1, J )+ Til
C(I+1,J ) = C(I+1,J ) + T21
C(I, J+1) = C(I, J+1) + Ti2
C(T+1,J+1) = C(I+1,J+1) + T22

20 CONTINUE
30 CONTINUE

Figure 3: Code fragment for near-optimal performance of C — C + AB

to be performed with data largely in cache by dividing the matrix into blocks, as shown in
Figure 4. We may then fix the block A of the matrix A and perform every operation involving
this block before moving on to another block of A. In other words, we compute the products
Cy « Cy+ ABy, Cy = Cy + AB,,... C¢ — Cs+ ABg. In this way the block A can be kept in

cache and the data reused many times.

In addition, if we assume that the leading dimension of B is such that the block B; can all be
contained in cache, the overhead of loading B; from memory is not too great. Morcover, each
column of B; is accessed a number of times. Thus we may perforin the matrix-matrix product

of these blocks at close to the peak speed of the machine.
To illustrate the overhead of cache loading, we show in Table 3 the speed of the operation
C—C+AB

where ' is 24 by 24, and A is 24 by 128, and where different arrays are forced to be accessed

either from cache or from memory. These dimensions were chosen so that all three arrays can
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comfortably fit into cache together, and the length of the dot products is sufficiently long so

that they reach their asymptotic speed.

One other important detail of the blocking strategy merits discussion. Suppose that the
matrix A is declared with a very unfavorable leading dimension. Then it is possible that only
a few columns of the matrix A will fit into cache before new columns begin to flush the old
columns. For example, if the leading dimension of A is 512, and A is 32 by 32, it turns out that
only 16 columns of A will fit in cache. To overcome this problem, we copy the block A into a
work array and then perform all the operations with the work array, rather than addressing a
part of the array A. This approach requires us to access A with a bad leading dimension only

once, rather than 16 times, for the matrix dimensions mentioned above.

A Fortran version of the Level 3 BLAS routine DGEMM using these techniques is available

from netlib (send mail to netlib@ornl.gov; in the mail message type: send dmr from misc).

2.4 Summary of BLAS Performance

Figure 5 shows a graph of the speed of the three BLAS routines DDOT, DGEMV, and DGEMM
for increasing matrix dimensions. The operations performed by DGEMV and DGEMM are

chosen so that dot products are performed on contiguous elements, ie., y — y + ALz for

DGEMV and ¢ « C + AT B for DGEMM.

This graph clearly shows the benefit of increasing the ratio of floating-point operations to
memory references achieved by using the Level 3 BLAS. For matrix-matrix multiply we are
doing O(n3) operations on O(n?) data, representing a favorable surface-to-volume effect. Hence
matrix-matrix multiply offers much greater opportunity for exploiting the memory hicrarchy
than the lower-level BLAS routines. All the experiments described here were performed on
a IBM RISC System /6000 Model 530 running at 25 MHz, using the AIX XL compiler version

01.01.0000.0000 with the -O option. The BLAS shown in Figure 5 were implemented in standard

Fortran 77.
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Figure 5: Speed of Level 1, 2, and 3 BLAS on the RISC System 6000-530

3 Block Algorithms and LAPACK

Experience with machines having a memory hierarchy [6, 7] indicates that it is often preferable
to partition the matrix or matrices into blocks and to perform the computation by matrix-matrix
operations on the blocks. By organizing the computation in this fashion, one can provide for
full reuse of data while a given block is held in the cache or local memory. This approach avoids
excessive movement of data to and from memory, and its benefits on the RISC System /6000 in

particular are clear from the previous section.

Many algorithms can be blocked. For example, researchers have used blocking to rewrite codes
for the solution of partial differential equations. Such codes make efficient use of supercomputers
with small main memory and large solid-state disks {9]. All experience with these techniques
has shown them to be enormously effective at squeezing the best possible performance out of

advanced architectures.

Recent work by numerical analysts has shown that the most important computations for
dense matrices are also blockable. A major software development project dealing with blocked

algorithms for linear algebra, called LAPACK (shorthand for Linear Algebra Package), is based
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on this idea [1].

The LAPACK library will provide routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of overdetermined systems of equations, and eigenvalue problems.
The library is intended to be efficient and transportable across a wide range of computing en-
vironments, with special emphasis on modern high-performance computers. To achieve high
efficiency, LAPACK developers are restructuring most of the algorithms from LINPACK and
EISPACK in terms of calls to a small number of extended BLAS, each of which implements a
block matrix operation such as matrix multiplication, rank-k matrix updates, and the solution
of triangular systems. These block operations can be optimized for each architecture, but the

numerical algorithms that call them will be portable.

3.1 Performance of Blocked Algorithms on the RISC System /6000

We used three blocked variants from LAPACK to compare the performance of LU factorization
for a general matrix. These blocked variants are shown in Figure 6. The lightly shaded parts
indicate the matrix elements accessed in forming a block row or column, and the darker shading
indicates the block row or column being computed. The left-looking variant computes a block
column at a time using previously computed columns. The right-looking variant (the familiar
recursive algorithm) computes a block row and column at each step and uses them to update the
trailing submatrix. The Crout variant is a hybrid algorithm in which a block row and column

are computed at each step using previously computed rows and previously computed columns.

All of the computational work for the LU variants is contained in three routines: the matrix-
matrix multiply DGEMM, the triangular solve with multiple right-hand sides DTRSM, and
the unblocked LU factorization for operations within a block column. Figures 7-9 show the

distribution of work among these three routines.

Each variant calls its own unblocked variant, and the row interchanges use about 2% of the

total time. The average speed of DGEMM is over 40 Mflops for all three variants, but the average
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Right-looking LU Left-looking LU Crout LU

Figure 6: Variants of LU factorization on the RISC System 6000-530

100 DGEMM + DTRSM + DLU + pivoting . ------- AR M
90+ P 1
80} .
20k DGEMM + DTRSM 1
g
R 4
&
S sof
[=]
8 ol DGEMM ]
g
30} 1
20} 8
10} 1
0

0 100 200 300 400 500 600 700 800 900 1000
Order (blocksize = 32)

Figure 7: Breakdown of work in left-looking LU

speed of DTRSM depends on the size of the triangular matrices. For the left-looking variant,
the triangular matrices at each step range in size from b to n — b, where b is the blocksize and n
the order of the original matrix, and the average performance is 38 Mflops. For the right-looking
and Crout variants, on the other hand, the triangular matrices are always of order b, and the
average speed is only 29 Mflops. Clearly the average performance of the Level 3 BLAS routines

in a blocked routine is as important as the percentage of Level 3 BLAS work.

Despite the diflerences in the performance rates of their components, the block variants of

the LU factorization tend to show similar overall performance, with a slight advantage to the
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right-looking and Crout variants because more of the operations are in DGEMM. Figure 10
shows the performance rates in Mflops of these three variants for different matrix sizes on a
IBM RS/600-530, along with the performance of the LINPACK routine DGEFA. The optimal
blocksize on the RISC System /6000 computers is 32 for most matrix sizes, but the performance

varies less than 10% over a wide range of blocksizes.

4 Summary and Conclusions

The aim of this work has been to examine the performance of block algorithms on the IBM

RISC workstation. Based on our experiments, we draw the following conclusions.

1. Neither the memory bandwidth nor the cycle time for the IBM RISC System /6000 is at
the level of current-generation vector supercomputers. There is, however, no technical

reason why this situation could not be improved.

2. The IBM RISC processor is close to matching the performance level of vector processors
with matched cycle times [10]. Because of the regularity of vector loops and the ability

of the RISC architecture to issue floating-point instruction every cycle and complete two
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floating-point operations per cycle we expect that the RISC superscalar machines will
perform at the same rates as the vector machines for vector operations with similar cycle
times. Moreover, the RISC machines will exceed the performance of those vector processors

on non-vector problems.

3. The LAPACK software based on blocked operations performs at near-optimal performance
with minimal effort. One should note, however, that the workstation does not match the

I/0 performance and the number of users accommodated on larger computers.

4. Issential to high performance is the use of optimized versions of the Level 1, 2, and 3 BLAS.
The techniques and ideas used here to gain performance on the IBM RISC System /6000
should work on all RISC-based machines. To a large extent, the success will depend
on the Fortran compiler’s ability to generate efficient code. (We believe that this high
performance is due, at least in part, to the fact that compiler writers were involved in the
early design stages, rather than after the hardware designers had completed much of their

work.)
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Appendix: The Model 550

Since this report was first prepared, IBM has announced a new model in the RISC System /6000
family—the Model 550. This model has exactly the same architecture as the Model 530 used
in the experiments reported earlier, but has a faster CPU, running at 41.6 MHz (compared
with 25 MHz for the Model 530), and a faster memory. In this appendix we reproduce versions

of Tables 1-3, with data gathered from the Model 550. We also reproduce Figure 5, which

demonstrates the performance attainable with the three levels of BLAS.

Table 4 (similar to Table 1) shows the speed of various Level 1 BLAS operations. In this case
the predictions are based on the clock speed of 41.6 MHz, and a time of 9 cycles to load a cache

line from memory to cache. This value fits the observed data better than the 11 cycles used for

the Model 530. The other tables correspond exactly to those in the text.

Table 4: Speed in Mflops of Level 1 BLAS on the RISC System 6000-550

DOT AXPY
Type of memory access | predicted | measured | predicted | measured
all data in cache 41.6 41.15 27.72 274
all data from memory:
z and y with unit stride 26.62 26.04 20.17 19.53
x with stride 16 7.20 5.90 6.62 5.29
z and y with stride 16 4.16 3.40 3.96 2.60

Table 5: Speed in Mflops of Level 2 BLAS on the RISC System 6000-550

Data in Cache Data in Memory
y—y+Az | y—y+Alz | yeytAa | y—y+ AT
depth | DOT | AXPY | DOT | AXPY | DOT | AXPY | DOT | AXPY
1 38.0 26.2 38.0 26.3 16.1 15.5 18.8 13.4
2 51.0 39.2 51.0 39.2 17.9 17.4 19.2 16.4
3 57.5 40.0 57.8 40.0 19.0 21.2 19.7 17.1
4 61.0 40.0 61.7 40.2 19.6 17.2 19.8 17.2
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Table 6: Speed of C «- C + AB on the RISC System 6000-550

Conditions before operation ' Speed in Mflops

All arrays initially in cache 79.3
A or B initially in cache 75.6
C initially in cache 70.9

No arrays initially in cache 70.2

600
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