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VISUALIZING PERFORMANCE OF PARALLEL PROGRAMS 

Michael T. Heath 

Jennifer A. Etheridge 

Abstract 

In this paper we describe a graphical display system for visualizing the be- 

havior and performance of parallel programs on message-passing multiprocessor 

architectures. The  visual animation is based on execution trace information mon- 

itored during an actual run of a parallel program on a message-passing parallel 

computer. The resultitig trace data are replayed pictorially to  provide a dynamic 

depiction of the behavior of the parallel program, well as graphical summaries 

of its overall performance. Several distinct visual perspectives are provided from 

which to  view the same perforinance data,  in an attempt to gain insights that  

might be missed by any single view. We descrihc this visualization tool, outline 

the motivation and philosophy behind its design, and illustrate its usefulness in 

analyzing parallel programs. 

- v -  
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1. Motivation and Design Philosophy 

Graphical visualization is a standard technique for facilitating hurnan compreherision of 

complex phenomena and large volumes of data  (see, for example, [12,18]). The behavior 

of parallel programs on advanced computer architectures is often extremely complex, 

and hardware or software performance monitoring of such programs can generate vast 

quantities of dath Thus, it seems natural t o  use visualization techniques t o  gain insight 

into the behavior of parallel programs so that  their perforniance can be understood and 

improved. We have developed such a software tool, called ParaGraph, that  provides a 

detailed, dynamic, graphical animation of the behavior of message-passing parallel pro- 

gratns, as wdl  as graphical summaries of their performance. The purpose of lhis paper 

is t o  describe this visualization tool, outline the rnotivation and philosophy behind its 

design, and illustrate its uscfulness in analyzing parallel programs. 

1.1. Graphical Simulation 

For lack of a better term, we will often use the word “simiilation” to refer to  the graph- 

ical animation of a parallel program. The use of this term should not be taken to  

suggest that  there is anything artificial about the programs or their behavior as we 

portray them. ParaGraph displays the behavior and performance of real parallel yro- 

grams running on real parallel computers to  solve real problems. 111 effect, ParaGraph 

simply provides a visual replay of the cvents that  actuczlly occurred when a parallel 

program was r u ~ i  on a parallel machine. 

To date, ParaGraph has becn used only in such a “post processing” ~naiiner, using 

a tracefile created during thc execution of the parallel program and saved for latcr 

study. But the design of the package docs not rule out the possibility that thra dala 

for the visualization could be arriving a t  the graphical workstation as the parallel 

program executes on the parallel machine. In practice, however, there are major im- 

pediments to such real- time performance visualization. With thc current generation 

of distributed-memory parallel architectnres, it is cliflicult to  extract perforniance dnta 

from the processors and send it tu the oubside world during execution without signif- 

icantly perturbing the application program being monitored. MorCovw, the network 

bandwidth bctwren the  parallcl proccssor and the graphical workstation, as well as 

the drawing speed of the workstation, are usually inadequate to liandle the extreniely 
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high data  transmission rates that would be required for real-time display. Finally, even 

if these other limitations were not a factor, human visual perception would be hard 

pressed t o  digest a detailed graphical depiction as it flies by in real time. One of the 

strengths of ParaCraph is the insight that can be gained from repeated replays of the 

same execution trace data. 

Algorithm visualization can he thought of in either static or dynamic terms. After 

a parallel program has completed execution, the tracefile of events saved on disk can 

be considered as a static, immutable object to  he studied by various analytical or 

statistical means. Some performance visualization packages reflect this philosophy in 

that they providc graphical tools designed for visual browsing of the performance data 

from various perspectives using scrollbars arid tlie like. In designing ParaGraph, we 

have adopted a more dynamic approach whose conceptual basis is algorithm animation. 

We see the tracefile as a script to be played out,  visually reenacting the original live 

action of parallel prograrri execution in order t o  provide insight into the progrim’s 

dynamic behavior. There are advantages and disadvantages in both the static and 

dynamic approaches. Algorithm animation is good at capturing a sense of motion and 

change, but it is difTicult to control the apparent speed of the simulation. The static 

“browser with scrollbars” approach, on the other hand, gives the user control over tlie 

speed with which the data are viewed (indecd, “tirne” can even move backward), but 

does not provide siich an intuitive feeling for the dynamic behavior of parallel programs. 

Tn designing ParaCraph, we have opted for the dynamic animation approach, sacrificing 

some control over sirnulation speed (as will be discussed in greater detail below). 

1.2. Design Goals 

In designing ParaCraph, our principal goals were: 

0 ease of understanding, 

0 ease of use, and 

e portability. 

We now briefly discuss each of these goals in turn. 
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1.2.1. Ease of understanding 

Since the whole point of visualization is to facilitate human understanding, it is imper- 

ative that the visual displays provided be as intuitively meaningful as possible. The 

charts and diagrams should be aesthetically appealing, and the information they con- 

vey should be as self-evident as possible. A diagram is not likely to  be useful if it 

requires an extensive explanation. The type of information conveyed by a diagram 

should be immediately obvious, or at least easily remembered oiicc learned. The choice 

of colors used shoiild take advantage of existing conventions t o  reinforce the meaning of 

graphical objects, and should also be consistent across views. Above all, it is essential 

to  provide many different visual perspectives, since no single view is likely t o  provide 

fir11 insight into the complw behavior and large volume of data associated with the 

execution of parallel programs. ParaGraph in fact provides more than twenty different 

displays or views, all based on the same underlying execution trace data. 

1.2.2. Ease of use 

One of the main purposes of software tools is t o  relieve tedium, not promote it.  Through 

the iise of color and animation, we have tried to make ParaGraph painless, perhaps 

even entertaining, to  use. I t  certainly seems reasonable that any graphics package 

should have a graphical user interface. ParaGraph has an interactive,  nou use and 

menu-oriented user interface so that the various festurrs of the package are easily 

invoked and custornizcd. Another iiriporlant factor in ease of use is that  the useT’s 

parallel program (the object under study) need not be modified extensively to obtain 

the data  on which the visualization is based. ParaGraph cimently takes its inpiit data 

from execution tracefiles produced by PTCL (Portable Instrumented Communication 

Library [20,21]), which enables the user to  produce such trace data automatically. 

1.2.3. Portability 

‘Iliere are two senses in which portability is important in the present context. One is 

that  the graphics package itwlf IF portable. ParaGraph is based on the X Window 

System, and thus runs on a wide variety of scientific workstations from many diffeient 

vendors. ParaGraph does not require any X toolkit or widget spt, as  it is based directly 

on the standard Xlib library, which is available in any distribution of the X Window 
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System. ParaGraph has been tested with the MIT distributions of X l l R 2 ,  XllFt.7, 

and X11R4, as well as several vendor-supplied versions of X Windows. Although Para- 

Graph is most effective in color, it also works on monochrome and gray-scale monitors, 

and it automatically detects which type of monitor is in use. A second sense in which 

portability is importarit is that tho package be capable of displaying execution behavior 

from different parallel architectures and parallel programming paradigms. ParaGraph 

inherits a high degree of such portability froin I’ICL, which runs 011 parallel architcc- 

tures from a number of different vendors (e.g., Cogent, Intel, Ncube, Symult). On 

the other hand, many of the displays in ParaGraph are based on a message-passing 

paradigm, and thus the package does not currently offer support for displaying the 

behavior of programs based explicitly on shared-memory constructs. 

1.3. Previous Work 

I’araGraph is certainly not the first software tool t o  be developed for visualizing 

parallel programs. Graphical animation techniques for visualizing serial algorithms 

have received considerable study [6,7,8,9,33,56]. Visualization of parallel computations 

has been the subject of a number of recent F’h.D. theses [11,34,48], technical articles 

[2,27,32,32,3G,38,42,44,~7,4~,50,55,5,57], and even a book [53 ] .  Graphical visualization 

has also been an important component of several environniciits that  have beeii de- 

veloped for parallel programming [1,5,16,22,46,54], debugging [25,26,37,60], and mon- 

itoring [23,29,39,40], as well as integrated environrnents that  combine several of t h e  

components [17,35,52]. Algorithm visualization tools have also been developed for spec- 

cific applications, such as matrix computations [3,4,13,43,58]. ParaGraph is a general- 

purpose perfoririarice visualization tool that is distinguished froin previous efforts in 

the following ways: 

0 The sheer multiplicity of displays provided by ParaGraph is unique. Other pack- 

ages have emphasized the irnportance of multiple views (e.g., [11,31,36,46]), but 

ParaGrapli provides a. substantially greater variety of perspectives than any other 

package of which we are aware. Some of the displays we have incorporated into 

ParaGraph appear t o  bc original, while others have been motivated hjr similar 

displays found in previous packages. 
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0 Many previous packages for visualizing parallel programs have targeted a partic- 

ular parallel architecture and/or been based on a proprietary graphical display 

system. ParaGraph is applicable to  any parallel architecture having message 

passing as its programming paradigm, and ParaGraph itself is based on the X 

Window System, which is widely available on workstations from many vendors. 

0 We have tried to  attain new standards in the intuitive appeal and aesthetic quality 

of the displays provided by ParaGraph, including both the new displays we have 

devised and the displays we have borrowed from previous packages. Of coursc, 

the perceived siiccess of this attempt is in the eye of the beholder and can he 

judged only by users. 

0 We have also tried to  make ParaGraph exceptionally easy to  use, both through 

its interactive, graphical iiser interface and by relying on an instrumented com- 

munication library (PICL) to  provide the requisite trace data  without rcyuiring 

the user to instrument explicitly the parallel program under study. 

0 Another unusual feature of ParaGraph is its extensibility. ParaGraph provides a 

mechanism for users to  add new displays of their own design that can be viewed 

along with the other displays already provided. This capability is iiiterided pri- 

marily to  support special-purpose displays for particular applications, and is de- 

scribed in more detail below. 

An indication of our degree of success in making ParaGraph easy t o  iise and easy 

to  understand is the fact that ma.ny users have obtained an early version from Netlib 

[14] over the Internet during the past year, and have been able to  build the program at 

their locations and use it effectively without the benefit of any documentation beyond 

a one-page README file. 

1.4. Relationship to PICL 

PTCL is a Portablcl Instriiirientcd Communication Library (20,211 that runs on a variety 

of messagepassing parallel architectures. As its name implies, it provides both yorta- 

bility and instrumentation for programs that use its coirtrriunication facilities for passing 

messages between processors. On reyucst, PICL provides a tracefile that  records impor- 

tant events in the execution of the user's parallel program (q., sending and receiving 
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messages). The tracefile contains one event record per line, and each event record 

consists of a set of integers that specify the event type, timestamp, processor number, 

message length, and other similar information. 

ParaCraph has a producer-consumer relationship with PICL: ParaGraph consunies 

trace data  produced by PICL. By using PICL rather than the “native” parallel pro- 

gramniing interface for a particular machine, the user gains portability, instrumenta- 

tion, and the ability to  use ParaGraph in analyzing the behavior and performance of 

the parallel program. These benefits are essentially “free” in that once the parallel pro- 

gram is implemented using YICL, no further changes are required to  the source code to  

moveit to a new machine (provided YICL is available on the target machine), and little 

or no effort is required to instrument the program for perIormance analysis. On the 

other hand, since ParaGraph’s dependence on PICL is solely for its inpiit data,  Para- 

Graph could in fact work equally well with any other source of data having the same 

format and semantics. Thus, other niessage-passing systems could be instrumented to 

produce trace data in the format expected by ParaGraph, or else YaraGraph’s input 

routine could be adapted to a different input format. In this manner, PaTaGraph can 

be, and indeed has been, used in conjunction with communicatiou systems other than 

prcr,. 
For a meaningful simulation, the timestamps of thc events should be as accurate 

and consistent across processors as possible. This is not necessarily easy to  accomplisli 

on a machine in which each processor may have its own clock with its own starting time, 

running at  its own rate. Moreovw, the resolution of the clock may be inadequate to 

resolve events precisely. Poor resolution and/or poor synchronization of the processor 

clocks can lead t o  “tachyons7’ in the tracefile, that is, messages that appear to bc 

received before they are sent. Such an occiirreiice will confuse ParaGraph, since m u c h  

of its logic depends on correctly pairing sends and receives, and will invalidate the 

information in some of the displays. For this reason, PTCT, goes t o  considerable lengths 

to synchronize the processor clocks, and tils0 to  adjust for potential clock drift, so 

that the timestamps will be as consistent and meaningful as possible [15]. On some 

machines, PICT, actually provides a higher rcsolution clock than the one supplied by 

the system vendor. 

Another important issue is thP amount of additional overhead introduced by the 
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collection of trace itiformation compared to  the execution time of an equivalent unin- 

strumented program. PICL tries t o  minimize the perturbation due t o  tracing by saving 

the trace da ta  locally in each processor’s memory, then downloading it to disk only 

after the program has finished execution. Nevertheless, such nionitoring inevitably 

introduces some extra ovt:rhead; in PICI, the primary additional cost is due t o  the 

clock calls necessary to  determine the timestamps for the event records t o  be placed 

in the tracefile [20]. These clock cadls, plus other minor overhead, add a fixed amount 

(independent of message size) to  the cost of sending each message. The overall pertur- 

bation is thus a function of the frequency and volume of coinmunicatioii traffic, and 

it also varies from machine t o  machine. In general, wc believe that this perturbation 

is small enough that the behavior of parallel programs is not fundamentally altered. 

It is certainly true that in our experience the lessons WF learn from visual study of 

instrumented runs invariably lead to  improved performance of uninstrumented runs. 

2. Using ParaGraph 

ParaGraph supports comniaxid line options that specify a liostnarne for reraote display 

across a network, forced monochrome display mode (useful if black-and-white hard- 

copies axe to  be made from a color screen), or a tracefile name. The txacefile cart also 

be specified (or changed) during execution by typing the filename in  the appropriate 

entry of the opt.ions menu. I’araGraph preprocesses the input tracefile to cletelmine 

relevant parameters aiitoniatically (e.g., time scale, nunibcr of processors) before the 

graphical simulation begins; most of these values CXIL be overridden by the user, if 

desired. 

ParaGraph initially displays only its main menu, which contains buttons for con- 

trolling execution and for selcc ting vaxious additional menus. The submenus available 

include those for three types, or families, of displays (11 tilization, communication, and 

tasks), an additional nicnii o f  miscellanectus displays, and ;L Inenti for specifying various 

options a.nd pa,rametcrs. As m m y  displays can be selected as will fit on the screen; 

the displays can be resized within rea.sonable 1)oiinds. Althoiigh it is difficult to  piiy 

close attention to  many displays at once, it i s  still useful to have several ava.ilable 

simultaneously for comparison and selectivt: scrutiny with repeated replays. 

After selecting the desired displays, the user presses start to I-jegin the graphical 
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simulation of the parallel program based on the tracefile specified. The aniinat ion 

then proceeds straight through to  the end of the tracefile, but it can be interrupted 

for detailed study by use of the pause/resume button. For even more detailed study, 

the s tep  button provides a single-step mode that processes the tracefile one event at 

a time. A particular time interval can be singled out for study by specifying starting 

and stopping times (the defaults are the beginning and ending of the trarefile), or the 

simulation can be optionally stopped each time a user-specified event occiirs in the 

tracefile. The entire animation can be restarted at any time (whether in the middle 

or at the end of the tracefile) simply by pressing the start button again. Most of 

the displays show program behavior dynamically as individual events occur, but some 

show only overall summary information at  the end of the rim (a few displays 5erve both 

purposes, as will be discussed below). 

The relationship between the apparent simulation speed and the original execution 

speed of the parallel program is necessarily somewhat imprecise. The spced of the 

graphical simulation is determined primarily by the drawirig speed of the workstation, 

which in turn is a function of tlie numbpr and complexity of displays that have been 

selected. There is no way, in general, to  make the apparent simulation speed uniformly 

proportional to the original execution speed of the parallel program. For the most 

part, ParaGraph simply processes the event records and draws the resulting displays 

as rapidly as it can. If there are gaps between consecutive timestamps, however, the 

intervening tinic is ‘‘fiUcr1 in” by a spin loop so that there is at least a rough (hut not 

iiniform) correspondence between simulation time and original execution time. For- 

tunately, this issue docs not seem to be of critical imporl,ance in visual pcrfmnrsnce 

analysis. The most important consideration in understanding parallel prograin bchav- 

ior is simply that the correct relative order of events be preserved in the graphicd 

replay. Mor(>ovcr, the figuies of merit produced by ParaGraph are based on thc actual 

timestamps, not the apparent speed with which the simulation unfolds. 

Since YaraCraph’s speed of execution is determined primarily by the drawing speed 

of the workstation, it can be slowed down or speeded up by selecting more or fewer 

displays. ‘Iltc speed is also affected by tlie complexity of the displays and the t y p  

and amount of scrolling used. Ti t  its initial dcJsign, when there were only a few displays 

available, we included parameterized delay loops to  slow the drawing down in case it 
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moved too quickly for the human eye to follow. However, as we added more displays, 

this ceased t o  be a p r o b l e ~ ~  and we dispensed with the delay loops, opting irislead 

for the more indirect control over simulation speed mentioned above. We find that 

now users tend to complain more that the simulation is too slow rather than too fast, 

since most like to have many displays open at once. Moreover, one can always resort 

to  single-step mode if arbitrarily slow drawing speed is desired for very close study of 

program behavior. 

3. Software Design 

ParaGraph is an interactive, event-driven program. Its basic structure is that  of an 

event loop and a large switch that selects actions based on the nature of each event. 

There are in fact two separate event queues: a queue of X events produced by the uber 

(mouse clicks, keypresses, window exposures, etc.) arid a queue of trace events pro- 

duced by the parallcl program under study. Thus, ParaGraph must alternate betwpen 

these two queues to  provide both a dynamic depiction of the parallel program and re- 

sponsive interaction with the user. Menu selections determine the execution behavior 

of I’araGraph, both statically (e.g., initial selection of displays, options, and parameter 

values) and dynamically (p.g., pause/resurne, single-step mode). 

ParaGraph is written in C, and the source code contains about 10,000 lines. The 

main program of ParaGrsph calls the preprocess function to  determirie necessary 

parameters, initidilizcs many variables, allocatm graphical resources such a5 windows 

and fonts, and then goes into a while loop that repeatedly calls the functions get-event 

and get-trace,  which check the X event queuc, aid the trace went  queue, respcctiv~ly, 

for the next w e n t  upon which to act. Thc get-event routine i s  simply a switch 

containing a series of calls t o  appropriate routines to handle the various X events. Thc 

get-trace routine calls scan to read a trace event record, and then calls draw to upd;bte 

the drawing of the displays that have been selected. 

The X event queue inust be checked frequently enough t o  provide good interactive 

responsiveness, but not so frequently as to  degrade t l i ~  drawing speed during the sim- 

ulation. On the other hand, the trace evmt queue should be processed as rapidly as 

possible while the siniiilatioii is active, but need riot be checked at  all if the next pos- 

sible event must be an X event (c.g., before the sirnulation starts, after the simulation 
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finishes, when in single-step mode, or when the simulation has bceri paused and can be 

resumed only by user input). To address these issues, the alternation between the two 

queues is not strict. Since not dl trace event records produced by PICL are of interest 

to  ParaGraph, it “fast forwards” through any series of such “unint~)re~ting” records be- 

fore rechecking the X event queue. Moreover, both blocking and nonblocking calls are 

used t o  check the X event queue, depending on the circumstances, so that  workstation 

resources are not consumed iinnccessarily when the simulation is inactive. 

4. Displays 

In this section we describe and illustrate thc iiidividiial displays provided by ParaGraph. 

Some of these displays change in place dynamically as events occur, with execution tinic 

in the original run represented by sirnulation time in tlie replay. Others depict time 

evolution by representing execution time in the original run by one space dirncnsion 

on tlie screen. The latter displays scroll as necessary (by a user-controllable amount) 

as simulation time progresses, in effect providing a moving window for viewing what 

could be considered a static picture. No matter which rcyresentation of time is used, all 

displays of both types are updatecl sirnultaneously and synchronized with each other. 

In illustrating these displays in a printed manuscript, we obviously cannot convey 

the dynamic movement portrayed by ParaGraph in actual practice, but must content 

ourselves with snapshots taken during a typical execution. ‘The figures were produced 

from tracefiles made on an Intel iPSC/2 hypercube. 

As stated earlier, most of the displays €all irito one of three basic categories 

utilization, communication, and task information although some displays contain 

more than one type of information, and a few do not fit these categories a t  all. Uelow 

we provide brief descriptions and still-picture illiistratioris of the displays. For clarity 

and simplicity, the illustrative examples use only a small number of processors. Marly 

of the displays scale up well to rnuch larger numbers of processors, but a fpw contain 

too much detail to scalc up well. We will discuss later the nunhcr  of processors that 

can be supported effectively and the limitations we see in our approach. 

The parallel program illiistrated in most of the figurcs is a coxninon cornpiitation 

in scientific computing, the solution of ;t large spane  system of linear equations by 

Cholesky factorization. For details of tlie parallel algorithni used, see [XI. In the 
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example, the sparse matrix of the linear system arises from a 15 x 15 square grid, 

so that the matrix is of order 225. The nodes of the grid, and hence the rows and 

columns of the matrix, are ordered by nested dissection, which is a type of domain 

decomposition that leads to  a typical divide-and-conquer parallel algorithiii for the 

factorization. In the example, each of the eight processors initially computes the portion 

of the factorization corresponding to  the interior of its own part of the grid, and can 

do so independently of the other processors. Eventually, however, the processors reach 

a point where interprocessor communication is required t o  supply boundary data from 

neighboring portions of the grid that are needed before computations can proceed any 

further. The processors team up in four pairs, then two sets of four, and finally all 

eight together, as they work their way up the elimination tree and coniiniinicatc across 

higher level boundaries. 

4.1. Utilization Displays 

The displays described in this section are concerned primarily with processor utilization. 

They are helpfiil in determining the effectiveriess with which the processors are used 

and how evenly the coniputational work is distributed across the processnrs. 

4.1.1. Utilization Count (Figure 1)  

,, Illis display shows the total niimber of processors in each of three states - busy, over- 

head, and idle - as a function of time. The number of processors is on the vertical 

axis and time is on the horizontal axis, which scrolls as necessary as the simulation 

proceeds. The color scheme used is borrowed from traffic signals: green (go) for busy, 

yellow (caution) for overheatl, and red (stop) for idle. By convention, we show grecn 

at the bottom, yellow in tho middle, and red at the top dong the vertical axis. At 

any given time, ParaGraph categorizes each processor as idle if it has suspended ex- 

ecution awaiting a message that has not yet arrived (or if it has ceascd execution at 

the end of the run), overhead if it is executing in  the commiinication subsystem (bu t  

not awaiting a message), and busy if it is cxecuting some portion of the program other 

than the comrnunication subsystem. Sirire the three categories are rnutually exclusive 

and exhaustive, the total height of the coniposite is always equal t o  the total number 

of processors. Ideally, we would like to interpret busy as meaning that a processor is 
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doing useful work, overhead as meaning that a processor is doing work that would be 

unnecessary in a serial program, and idle as meaning that a processor is doing nothing. 

Unfortunately, the monitoring required to make such a determination would allnost 

certainly be nonportable and/or excessively intrusive. Thus, the “busy” time we report 

may well incliide redundant work or other work that would not be necessary in a serial 

program, since our monitoring detects only overhead associated with communication. 

However, we find that the definitions we have adopted based on the data provided by 

PICL are quite adequate in practice to convey the effectiveness of parallel programs 

pictorially. In the example shown in Figure 1, the all-green portion at the far left 

depicts the final part of the perfectly parallel phase with which the divide-and-conquer 

algorithm begins. 

4.1.2. Gantt Chart (Figure 2) 

This display, which is patterned after graphical charts used in industrial management 

[19], depicts the activity of individual processors by a horizorital bar chart in which tbe 

color of each bar indicates the busy/overhead/idle stat 11s of the corresponding processor 

as a function of time, again using the traffic-signal color scheme. Processor number is 

on the vertical axis and time is on the horizontal axis, which scrolls as necessary as 

the simulation proceeds. The Gantt chart provides the same basic information as the 

Utilization Count display, but on an individual processor, rather than aggregate, basis; 

in fact, the Utilization Count display is simply the Gantt chart with the green slink to 

the bottom, the r d  floated to  the top, and the yellow sandwiched between. 

4.1.3. Utilization Summary (Figure 3) 

Unlike the displays described previously, which show current behavior and change dy- 

nainically with time, the Utilization Summary display is defined only at the end of a run. 

It shows the pcrceritage of time, over the entire run, that each processor spent in each 

of the three l~iisy/overhead/iclle states. The percentage of time is shown o n  the vertical 

axis and the processor number on the horizontal axis. Again, the grecn/yellow/red 

color scheme is used to indicate the three states. In addition to giving a visual im- 

pression of the overall efficiency of the parallrl program, this display also gives a visual 

indication of the load balance across processors, In the sparse matrix example shown 



I 

KI 
Fi 
I 

oh@s,p $uno3 uo?qm!g$n '1 arnZ!d 
.............. ......................... . nn-.." .......................................... "..̂ ..... ................................ .................................... ~ ....... ..*...,, ........................ 

j... 

ASfm i 
i 
i 

i' .- -- .- i 3iu r 

1 

f f 

I 

I 



- 
1
9
 - 

I
.
.
-
.
.
-
.
.
.
"
 

.... .....-.. ,""..."..._.... ....-.. I
 

..-..... I
 ......." .... _

n
 ......" ......................... 

1 -- 



- 15 - 

-
I

 

-I 

In
- 



... 

- 16 - 

in Figure 3, four of the processors are assigned the four corners of the grid, while the 

other four are assigned central portions of the grid, leading to a load imbalance that is 

cleasly visible. 

4.1.4. Utilization Meter (Figure 4) 

This display uses a colored vertical bar, with thc usual green/yellow/red color scheme, 

to  indicate the percentage of the total number of processors that are currently in 

each of the three busy/overhead/idle states. The visual effect is similar to that of a 

thermometer or some automobile speedometers. This display provides essentially the 

same information as the Utilization Count display, but saves screen space (which may 

be needed for other displays) by changing in place rather than scrolling with time. 

4.1.5. Concurrency Profile (Figure 5) 

This is another summary display that becomes defined only at thc end of a run. For 

each possible niimber of processors k ,  0 5 k 5 p ,  where p is the rnaximurn number of 

processors for this run, this display shows the percentage of time during the run that 

exactly k processors were in a given state (Le., busy/overhead/idle). The percentage 

of time is shown on the vertical axis and the number of processors k is shown 011 the 

horizontal axis. The profile for each possible state is shown separately, and the user can 

cycle through the three states by clicking the mouse on the appropriate sizbwinclow. 

The actual concurrency profile for real prograins shown by this display is usually in 

marked contrast to the idealized coriditions that are the basis for Amdahl’s Law, wlierc 

the concurrency profile is assumed to be bimodal, with nonzero values at k = 1 aid 

k = p and zero elsewhere (i.e.? at  any given time the computational work is either 

strictly serial or fully parallel). Yigure 5 shows the busy and idle profiles for the sparse 

matrix example; the overhead profile is not shown. 

4.1.6. Kiviat Diagram (Figure 6) 

This display, which is adaptcd from rclated graphs used in other types of performance 

evaluation [28,41], gives a gconietric depiction of the utilization of individual proccssors 

and the overall load balance across processors. Kach processor is rcpresented by a spoke 

of a wheel. The recent average fractional utilization of each processor determines a 
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Figure 4. Utilization Meter (left) and 
Communication Meter (right) displays. 
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point 011 its spoke, with the hub of the wheel representing zero (completely idle) and 

the outer rim representing one (completely busy). 

Taken together, the points for all the processors determine the vertices of a polygon 

whose size and shape give a pictorial indication of both processor utilization and load 

balance across processors. Low utilization causes the polygon to  be concentrated near 

the center, while high iitjlizatiori causes the polygon to lie near the perimeter. Poor 

load balance across processors causes the polygon to  be strongly skewed or asymmetric. 

Any change in load balance is clearly shown pictorially; for example, with many ring- 

oriented algorithms the moving polygon has the appearance of a rotating camshaft as 

the heavier workload rnoves around the ring. The ciirrent utilization is shown in dark 

shading, while the “high water mark” seen thus far is shown in lighter shading. The 

“current” utilization is in fact a moving average over a time interval of user-specified 

width, since instantaneous utilization would of course always be either zero or one for 

each processor. 

4.2. Communication Displays 

The displays described in this section are concerned primarily with depicting inter- 

processor communication. They are helpful in determining the frequency, volume, 

and overall pattern of communication, and whether there is congestion in the message 

queues. 

4.2.1. Communication Traffic (Figure 7) 

This display is a simple plot of the total cotnrnunication traffic in  the iriterconnectioti 

network (including message buffers) as a function of time. The curve plotted is the t o t d  

of all messages that arr currently pending ( ; .e . ,  sent but not yet received), and can be 

optionally expressed either by message count or by voliirne in bytes. The cornmunica- 

tion traffic shown can also optionally be eithcr the aggregate over all processors or just 

tlie messages pending for any individual processor the user selects. Message uolumr~ or 

count is shown on the vertical axis, and time is shown on the horidontal axis, which 

scrolls as necessary. Figure 7 shows tlie siiccessively lziglier peaks in communication 

traftjr for the sparse matrix example as higher level grid separators are encountercd. 
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4.2.2. Spacetime Diagram (Figure 8) 

This display i s  patterned after the diagrams used in physics, particularly in relativity 

thcory, to  depict interactions between particles through space and time. 

This type of diagram has been used by Lamport [30] for describing the order of 

events in a distributed computing system. The same pictorial concept was used over 

a century ago t o  prepare graphical railway schediiles [59, page 311. In our adaptation 

of the Spacetime Diagram, processor number is 011 tlie vertical axis, and time is on 

the horizontal axis, which scrolls as necessary as time proceeds. Processor activity 

(busy/idle) is iiidicsted by horizontal lines, one for each processor, with the line drawri 

solid if the corresponding processor is busy, and blank if the processor is idle. Messages 

between processors are depicted by slanted lines between the sending and receiving pro- 

cessor activity lines, indicating the times at which each message was sent and received. 

Lhese sending and receiving times are froni user process to iiser process (not siniply 

the physical transniission time), arid hence the slopes of the resulting lines give a visual 

indication of how boon a given piece of data  produced by one processor was necded 

by tlie receiving processor. The communication lines are color coded to indicate the 

sizes of the messages being transmitted. The Spacetime Diagram i s  one of the iiiost 

informative of all the displays, since it depicts both individual processor utilization and 

all message traffic in full detail. For example, it can easily be seen which particular 

message “wakes up” a n  idle processor that  was previously blocked awaitiiig its arrival. 

Unfortunately, this fine level of detail does not scale up well to  large numbers of pro- 

cessors, as the diagram becomes extremely cluttered. The dividc-and-conquer nature 

of the sparse matrix example can he clearly seen in Figure 8. T h e  eight processors 

initially work independently, then combine in successively larger groups as they move 

up the elimination tree. 

r >  

4.2.3. Message Queues (Figure 9) 

This display depicts the size nf the queue of incoming messages for each processor by i~ 

vertical bar whose height varies with time as messages are sent, buffered, and received. 

The processor nurnber is showi on the horizontal axis. At the user’s option, the queue 

size can bc mcasured either by the number of messages or by their total length in bytes. 

The input queue size for a given processor is ilicremented each time a message is sent to  
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that  processor, and decremented each time the user process on that processnr receives 

a message. 

On most message-passing parallel systems, the physical transmission time between 

processors is negligible compared to  the soft ware overhead in handling messages, so that 

the time interval between the send and receive events is a reasonable approximation to 

the time a given message actually spends in the destination processor’s input queue. Of 

course, depending on message types, the messages may not be received in the same order 

in which they arr ive for queuing, so the queues may grow and shrink in complicated 

ways. As before, dark shading depicts the current queue size on pach processor, and 

lighter shading indicates the “high water mark” seen so far. The Message Queue display 

gives a pictorial indication of whether there is coinrnunication congestion in a parallel 

program (i.e., whether messages are accumulating in the input queue), or the messages 

are being consumed at about the same rate as they arrive. Of course, it is best if 

messages arrive slightly before they are actually needed, so that thc receiving processor 

does not become idle awaiting a message. But  a large backlog of incoming messages 

can consume excessive buffer space, so a happy medium (analogous to “just in ti me” 

manufacturing) is desirable. In the example shown in  Figure 9, processor 2 currently 

has no messages i n  its input queue; the remaining processors all have messages awaitiug 

receipt by their user processes, but only the queue on yroccssor 3 is at its maximurn 

size seen so far. 

4.2.4. Conirnuriicatiori Matrix (Figure 10) 

In this display, messages are rrprcserited by squares in a two-dinrensioIia1 array whose 

rows and columns correspond to the sending and receiving processors, respcctively, 

for each message. During the simulation, each message is depicted by coloririg the 

appropriate square a t  tlie time the message is sent, and crasirig i t  at the time the 

message is received. The color used indicates the size of the message in bytcs, as given 

in the separatt. Color Code display that can also be selected from the nienu. Thus ,  

the sizes, durations, and overall pattern of messages are depicted by this display. The 

nodes can be ordered along the axes in either natural or Gray code order, and the 

user’s choice may strongly affect the appearance of the communication pattern. A t  

thc end of the simulation, tlie Communication Matrix display shows the cumulative 
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coniiriunication volurne for the entire run between each pair of processors. 

4.2.5. Communication Meter (Figure 4) 

This display uses a vertical bar to  indicate the percentage of maximum communication 

volume (or number of messages) currently pending (Le., sent but not yct received). 

This display provides essentially the same information as the Conimiinication Traffic 

display, but saves screen space (which may be nceded for other displays) by changirig 

in place rather than scrolling with time. Conceptually, this thermometer-like display 

is similar to the Utjlization Meter display, except that  it shows communication instead 

of utilization, and the two are interesting to  observe side by side. 

4.2.6. Animation (Figure 11) 

In this display, the multiprocessor is represented by a graph whose nodes (depicted by 

numbered circles) represent processors, and whose arcs (depicted by lilies between the 

circles) represent communication links. The status of each node (busy, idle, sending, 

receiving) is indicated by its color, so that the circles can be thought of as the “front- 

panel lights” of the multiprocessor. An arc is drawn between the soiirce arid clcstination 

processors when a message is sent, and erased when the message is received. Thus, 

both the colors of the nodes arid the conriectivity of the graph change dynamically as 

the simulation proceeds. The srnall circles depicting the processors are arranged in a 

large circle merely for convenience in drawing straight lines between arbitrary pairs of 

processors without intersecting any other processors; this is not meant to  suggest that 

the underlying arch itccture is necessarily a ring. The nodes can be ordered around the 

circle in either natural or Gray code order, and Ihe user’s choice may strongly affect the 

appearance of the conimunicatioii piittern among proccssors. The arcs represent the 

logical, rather than physical, connectivity of the multiprocessor network, and possible 

routing of messagps through intervening nodes is not depicted unless the program being 

visualized does such forwarding explicitly. In the example shown in Figure 11, a total 

of four messages are pending receipt. Note that various combinations of states arp 

possible for the sending and receiving processors. For cxamplp, both processors 2 and 

3 are busy, one having already sciit the message arid resumed cornputiiig, while tlrc 

other has not yet stopped computing to receive it. TJpon conclusion, this display shows 
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a, summary of all (logical) cominuiiicstion links used throughout the run. 

4.2.7. Hypercube (Figures 12 and 13) 

This display is similar to the Animation display, except that  it provides a number of ad- 

ditional layouts for the nodes in order t o  exhibit more clearly communication pat terns 

corresponding to  the various networks that can be embedded in a hypercube [20,51]. 

The layouts provided include ring, ring of rings, web, cube, lateral cubes, nested cubes, 

mesh, linear, tree, tesseract, and polytope arrangements, some of which are illustrated 

in Figure 12. Note that this display does not require that the interconnection nctwork of 

the machine on which the parallel program exeriited actually be a hypercube; it mercly 

highlights the hypercube structure as a matter of potential interest. The scheme for 

coloring nodes and drawing arcs is the same as that for the Animation display, except 

that  curved arcs are often used to avoid, as much as possible, intersecting intermediate 

nodes. To help the user of a hypercube to determine if the network’s physical con- 

nectivity is correctly lionored by the commiiuication in the parallel program, message 

arcs corresponding to  genuinc physical hypercube links are drawn in a different culor 

from message arcs along “virtual” links that do not exist in a hypercube and therefore 

entail indirect routing through intervening processors. In Figure 13, for example, the 

message between nodes 0 and 5 must travel over a virtual link by being forwarded 

through an intermediate processor, whereas the message betwern nodes 0 and 2 travels 

directly over the physical link between those two processors. IJpon conclusion, this 

display shows a siirrimary of all (logical) communication links used throughout thc [ un. 

Unfortunately, the method used tu  draw this rather elaborate display does not scale 

up well t o  large numbers of processors. 

4.2.8. Node Statistics (Figure 14) 

This display provides, in graphical forni, detailed communication statistics for a single, 

iiser-selected processor. Thp choices of statistics plotted are the source/destinatioI1, 

type, length, and Hclrnming distance traveled for all messages sent i o  or from the cho- 

sen processor. Time is on the horiLonta1 axis, and the chosen statistic is on the vertical 

axis, with incoming and outgoing messages shown i n  separate windows. This display is 

helpful in analyzing cornniunication behavior in detail, especially in perceiving treiids 
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or patterns in the communication structure that improve understanding of program be- 

havior and performance. l t  has been used as an aid in designing “synthetic  program^,^' 

which are simple programs that mimic the behavior and performance of much more 

complex programs, and are useful for performance modeling and benchmarking [&I. 

4.3. Task Displays 

The displays we have considered thus far depict a number of important aspects of 

parallel program behavior that  help in detecting performance bottlenecks. However, 

they contain no information indicating the location in the parallel program at which 

the observed behavior occurs. To remedy this situation, we considered a number of 

automated approaches t o  providing such iriforrnatiori (e.g., picking up line numbers in 

the source code from the compiler), but all of these encounter nasty practical difliciilties 

(such as dealing with multiple source files). Thus, we reluctantly made an exception to  

our rule that the user need do nothing to instruinent the parallel program under study 

in  order to use ParaGraph. 

We developed a nurnber of new “task” displays that use information provided by 

the user, with the help of PICL, to  depict the portion of the user’s paralld program 

that is executing at any given time. Specifically, the user defines “tasks” within the 

program by using special PICL routines t o  mark the beginning and ending of each 

task and assign it a user-selected task nurnber. The scope of what is meant by a 

task is left entirely to the user: a task can be a single line of code, a loop, an entire 

subroutine, or any other unit of work that is meaningful in a given application. For 

example, in matrix factorization one might define the coniputstion of each column 

to be a task, and assign the column number as the task number. Tasks are defined 

simply by calling PICI,’s traceblockbegin and traceblockend routines, with the 

desired task number as argument, imniecliately before and after the selected section of 

code. Tllis causes I’ICL to produce event records that are interpreted appropriatcly by 

ParaGraph to  depict the given task, using displays to  be described in this section. We 

should emphasize that task definitions are required only if the user wishes to view the 

task displays. I f  the tracefilc contains no event records defining tasks, then the task 

displays will simply bc blank, but the remaining displays in ParaGrapli will still show 

their normal information. 
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Note that tasks can be nested, one inside another, but i l  so these should be propcrly 

bracketed by matching task begin and end records. Note also that more than one 

processor can be assigned the same task (or, more accurately, each processor can be 

assigned its own portion of the same task); indeed, the model we have in mind is that  

all processors collaborate on each task, rather than that each task is assigned to a single 

processor. In mrtriy contexts, such a b  the matrix example mentioned above, there is a 

natural ordering and corresponding numbering of the tasks in a parallel program. In 

most of the task displays described below, the task numbers are indicated by a color 

coding. Since the number of tasks is likely to be larger than the  number of colors that 

can be easily distinguished, we recycle a limited number of colors to  depict successive 

task numbers. We use one of six basic colors for indicating each task, with thr  choice of 

color given by the task number modulo sjx. In the sparse matrix example, we dt4ned 

the computation of each coluniii of the factorization to  be a separate task, with the 

column number as task number, for a total of 2'25 tasks. 

4.3.1. Task Count (Figure 15) 

During the sirnnlation, this display shows the number of processors that  a1e executing 

a given task a t  the current time. Tlie number of processors is shown on the vertical 

axis and the task number is shown on the horizontal axis. At the end of the run, 

this display cha.nges to  show a summary over the entire run. Specifically, it shows 

the average number of processors that  were executing each task over the lifetime of 

that task (i.e., the time interval starting when the first processor began the task and 

ending when the last processor finished the task) .  Jn the example shown in Figure 15, 

four processors are currently working on task 4, two are working on task 3, and one 

processor each on tasks 1. and 2. 

4.3.2. Task Gantt (Figure 16) 

This display depicts thc task activity of individual processors by a horizontal bar chart 

in which the color of each bar indicates the current task being executed by the cor- 

responding processor as a fuiictioii of time. Processor numbcr is on the vertical axis 

and time is on the horizontal axis, which scrolls as necessary as the simulation pro- 

ceeds. This display can be compared with the Utilization Gantt  chart to correlate 
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busy/overhead/idle status with the task information. For instance, comparing Figure 

16 with Figure 2 shows that for the sparse matrix example the longer tasks tend to  

he caused by extended idle periods within the task while the processor awaits ~leeded 

data,  rather than by a heavier work load for that processor. 

4.3.3. Task Status (Figure 17) 

In this display the tasks are represented by a two-dimensional array of squares, with 

task numbers filling the array in row-wise order. Initially, all of the squarps are white. 

As each task is begun, its corresponding square is lightly shaded t o  indicate that that  

task is now in progress. When a task is subsequcntly completed, its corresponding 

square is then darkly shaded. Again, the divide-and-conquer iiature of the sp;trse 

matrix example is clearly visible in Figure 17, where several factor columns associated 

with the interiors of the initial eight pieces of the grid have been completed at the 

instant shown, and precisely eight distinct tasks are currently in progress. 

4.3.4. Task Summary (Figure 18) 

This display, which is defiutd orily at the elid of the simulation run, indicatcs the 

duration of tach task (from earliest beginning to  last completion by any processor) as 

a percentage of the overall execution time of the parallel program, and furthermore 

places thc duration interval of each task within the overall execution interval of the 

parallel program. The percentage of the total execution time is shown on the vertic a1 

axis, and the task numbtlr is shown on the 1iorizont;tl axis. Figure 18 provides another 

striking depiction of the divide-and-conquer sparse matrix example, with thc 8-4-2-1 

sequence clearly visible. 

4.4. Other Displays 

In this section we describe some additional displays that eithtr do  not fit into any of 

the three categories above or else cut across more than one category. 

... 

4.4.1. Phase Portrait (Figure 19) 

This display is patterned after the phase portraits used in differential equations and 

classical mechanics t o  depict the relationship between two variables (e.g., position and 
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velocity) that  depend on some independent variable (e.g., time). In our case, we are 

attempting t o  illustrate pictorially the relationship over time between communication 

and processor utilization. At any given point in time, the current percentage utilization 

(i.e., the percentage of processors that  are in the busy state), and the percentage of 

the maximum volume of communication currently in transit, together define a single 

point in a two-dimensional plane. This point changes with time as communication and 

processor utilization vary, thereby tracing out a trajectory in the plane that is plotted 

graphically in this display, with communication and utilization on the two axes. Since 

the overhead and potential idleness due to  communication inhibit processor utilization, 

one expects communication and utilization generally to  have an inverse relationship. 

Thus one expects the phase trajectory to  tend t o  lie along a diagonal of the display. 

This display is particularly useful for revealing repetitive or periodic behavior in a 

parallel program, which tends to  show up in the phase portrait as an orbit pattern. In 

the example shown on the left in Figure 19, two distinct phases of the computation 

can be seen, each of which exhibits a high degree of periodic behavior. By setting task 

numbers appropriately, the user can color code the trajectory to  highlight either major 

phases (Figure 19, left) or individual orbits (Figure 19, right). 

4.4.2. Critical Path (Figure 20) 

This display is similar to the Spacetime display described earlier, but uses a different 

color coding to  highlight the longest serial thread in the parallel computation. Specifi- 

cally, the processor and message lines along the critical path are shown in red, while all 

other processor and message lines are shown in light blue. This display is intended to  

aid in identifying performance bottlenecks and tuning the parallel program by focusing 

attention on the portion of the computation that is currently limiting performance. 

Any improvement in performance must necessarily shorten the longest serial thread 

running through the computation, so this is a primary place to  look for potential algo- 

ri thm improvements. 

4.4.3. Processor Status (Figure 21) 

This is a comprehensive display that attempts to capture detailed information about 

processor utilization, communication, arid tasks, but in a compact format that scales up 
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well t o  large nunibcrs of processors. This display contains four subdisplays, in each of 

which the processors are represented by a two-dimensional array of squares, with pro- 

cessor numbers filling the array in row-wise order. The upper left subdisplay shows the 

current state of each processor (busy/overhead/idle), using the usual green/yellow/red 

color scheme. The upper right subdisplay shows the task currently being executed by 

each processor, using one of six colors chosen as discussed previously. The lower left 

subdisplay shows the volume in bytes of messages currently being sent by each proces- 

sor, and the lower right subdisplay shows the volume in bytes of messages currently 

awaiting receipt by each processor; both of these communication subdisplays indicate 

message volume in bytes using the same color code as discussed previously for the other 

comrriunication displays. Although this comprehensive display is soiriewhat difficult t o  

follow due to  the large amount of information it contains, it has the virtue of scaling 

t o  very large numbers of processors more readily than any of the other displays in 

ParaGrapli. The example shown in Figure 21 illustrates a run with 64 processors. 

4.4.4. Clock 

This display provides both digital and analog clock readings during the graphical sim- 

ulation of the parallel program. The current sumulation time is shown as a numerical 

reading, and the proportion of the fill1 tracefile that  has been completed thus far is 

shown by a colored horizontal bar. The clock reading is updated synchroriously with 

the other displays, and it “ticks” through all integral time values, not j u s t  those that 

happen to  come from event timestamps. 

4.4.5. Trace 

This is a non-graphical display that prints an annotated version of each trace event as 

it is read from the tracefile. It is primarily useful in the single-stpp mode for debugging 

or other detailed study of the parallel program on an event-by-event basis. Altlioiigh 

the trace records are drawn in this display one a t  a time, space is allowed to  show 

several conswutivc trace records, and the display scrolls vertically as necessary with 

time. 
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4.4.6. Stat is tical s urn mary 

This is a non-graphical display that gives numerical values for various statistics sum- 

marizing processor utilization and communication, both for individual processors and 

aggregates over all processors. While this tabular display may yield considerably less 

insight than the graphical displays provided by ParaGraph, exact numericall quanti- 

ties are occasionally useful in preparing tables and graphs for printed reports, or for 

analytical performance modeling. 

4.5. Application- S p eci fic Displays 

All of the displays we have discussed thus far are generic in the sense that they are 

applicable to  any parallel program based on message passing and do not depend on 

the particular application or problem domain that the program addresses. While this 

wide applicability is generally a virtue, knowledge of the specific application ran often 

enable one to design a special-purpose display that reveals greater detail or insight 

than generic displays alone would permit. In studying a parallel sorting algorithm, 

for example, generic displays can show which processors are communicating with each 

other, and the volume of communication, but they cannot show which specific data 

items are being exchanged between processors. Since we obviously could not provide 

such application-specific displays as part of ParaGraph, we instead made ParaGraph 

extensible so that users can add application-specific displays of their own design that 

can be selected froin the incnu and viewed along with the usual generic displays. 

The mechanism we use for supporting this capalility works as follows. ParaGraph 

contains calls a t  appropriate points to routines that provide initialization, data input, 

event handling, drawing, etc., for an application-specific display. If the corresponding 

routines for such a display are not supplied By the user when the executable module for 

ParaGraph is built, then dummy “stlib” routines are linked into ParaGraph instead, 

and no user-supplied display selection appears in the menu. When an application- 

specific display has been linked into ParaGraph and the resulting module is executed, 

the user-snpplied display is givtn access to  all of the event records in the tracefile that 

I’araGraph reads and can use t h a n  in any manner it chooses. 

The usual events generated by PICL may suffice for the application-spccific dis- 

play, or the user may wish to insert additional events during execution of the parallel 
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program in  order t o  siipply additional data for the application-specific display. The 

tracemarks event of PICL is perhaps the most useful for this purpose, as it allows 

the user to  insert into the tracefile timestamped records containing arbitrary lists of 

integers, which might be used to provide loop indices, array indices, memory addresses, 

or any other information that would enable thc laser-supplied display to convey more 

fully and prt4sely the activity of the parallel program in the context of the particular 

application. 

Unfortunately, writing thc necessary routines to support an application-specific 

display is a decidedly nontrivial task that requires a general knowledge of X Window 

System programming. Rut at  least the potential user of this capability can concentrate 

on only those portions of thc graphics programming that are relevant to his application, 

taking advantage of the supporting infrastructure of ParaGraph to provicle all of the 

other necessary Facilities to drive the overall graphical simulation. As an aid to iisers 

who may wish to  develop application-specific displays to add to ParaGrapli, we have 

developed two such prototype displays, one for depicting parallel sorting algorithnzs and 

one for depictitig parallel matrix transposition. These example routines are distributed 

along with the source code for ParaGraph. Figure 22 illustrates the application-specific 

display for matrix transposition, which is driven by tracemarks event records that 

indicate which data items are being exchanged among the processors. 

5 .  Options 

The execution behavior and visual appearance of I’araChaph can be customized in a 

number of ways to suit each iiscr’s taste or needs. In this section, we briefly discuss 

some of the choices available in the Options menu. 

e In many of the displays, the user can clioose to have the processors arranged in 

either rratural or Gray code order, and the choice will affect the appearance of 

communication pat terns. 

0 Those windows that represent time along the horizontal dimension of the screen 

can smoothly scroll or jump scroll by a user-specified airmint as simulation time 

advances. Smooth scrolling provides an appealing sense of visual con tin uity, but 

results in a slower drawiiig speed. 
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e The relationship between simulation time and the timestamps of the trace events 

is determined by the time unit chosen. The user can override the value that 

ParaGraph heuristically chooses for a given tracefile. 

0 A related parameter is the scale width, which is defined to be the width, in 

simulation time units, of the horizontal axis for the displays that scroll with 

time. The scale width chosen implicitly determines the number of pixels on the 

screen that represent each unit of simulation time. A larger number of pixels per 

time unit in effect magnifies the horizontal dimension of the scrolling displays to  

bring out more detail, but with less of the overall behavior of the program visible 

at once. Again, the user can override the value that ParaGraph chooses. 

0 By default, ParaGraph starts the simulation at  the beginning of the tracefile arid 

proceeds to  the end of the tracefile. By choosing other starting and ,stopping 

times, however, the user can isolate any particular time period of interest for 

visual scrutiny without having to  view a possibly long simulation in its entirety. 

0 The uscr can also select the amount of smoothing uscd in the Kiviat Diagram 

and Phase Portrait displays to  avoid an excessively noisy or jumpy appearmce. 

6. Future Work 

In terms of the nnmber and appearance of displays it provides, ParaGraph is a rea- 

sonably mature software tool, although wc intend to add more displays as helpful new 

perspectives are devised. There are a few minor technical points about ParaGraph that 

could stand improvement. We have already mentioned that it would be nice to  have 

more explicit control over the apparent speed of the simulation. As another example, 

the contents of many of the displays are lost if the window is obscured and tlien reex- 

posed. ‘Ihis inability to  repair or redraw windows, short of rerunning thc simulation 

from the beginning, was a deliberate design decision based on a desire to conserve the 

substantial amount of memory that would bc required to save the contents of all win- 

dows for possible restoration. Nevcrtheless, this “feature” can he annoying a t  times 

and should eventually be fixed. 

A more serious liniitation of ParaGraph in its current form is the niiniber of yro- 

cessors that can be depicted effectively. A few of the current displays are simply too 
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detailed to  scde up beyond about 128 processors and still be comprehensible. Most 

of the displays scale up well to  a level of 512 or 1024 processors on a normal sized 

workstation screen, but at  this point they are down to  representing each processor by 

a single pixel (or pixel line), and hence cannot be scaled any further in their current 

form. To visualize programs for massively parallel architectures having thousands of 

processors, we must either devise new displays that scale up to  this level, or else we 

must adapt the existing displays, either by aggregating or selecting information. For 

example, the current displays could depict either clusters of processors or subsets of 

individual processors (e.g., cross sections). 

While it is fairly easy to imagine how graphics technology might be adapted to meet 

the needs of visualizing massively parallel computations, it is much less obvious how 

to  handle the vast volume of execution trace data that would result from monitoring 

thousands of processors. Even with the more modest numbers of processors ctirreiitly 

supported by PICL and ParaGraph, storage and processing of the large volume of 

trace data resulting from runs of significant duration are alrcady diflicult prolderns. To 

go beyond the present level will almost certaj lily require some degrec of abstraction 

of essential behavior in a more concise and cornpact form, both in the data and in 

its graphical presentation. We simply cannot afford to continue to  record or display 

all commiinication events when they Lcconie so voluminoiis. Unfortunately, many 

of the current displays in I’araCraph depend critically on the availability of data on 

each individual event. Thus, the development of new visual displays and ncw data 

abstractions must proceed in tandem so that the execution monitoring facility will 

produce data that can be visually displayed in a meaningful way to  provide helpful 

insights into program behavior and performance. 
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