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VISUALIZING PERFORMANCE OF PARALLEL PROGRAMS

Michael T. Heath
Jennifer A. Etheridge

Abstract

In this paper we describe a graphical display system for visualizing the be-
havior and performance of parallel programs on message-passing multiprocessor
architectures. The visual animation is based on execution trace information mon-
itored during an actual run of a parallel program on a message-passing parallel
computer. The resulting trace data are replayed pictorially to provide a dynamic
depiction of the behavior of the parallel program, as well as graphical summaries
of its overall performance. Several distinct visual perspectives are provided from
which to view the same performance data, in an attempt to gain insights that
might be missed by any single view. We describe this visualization tool, outline
the motivation and philosophy behind its design, and illustrate its usefulness in

analyzing parallel programs.



1. Motivation and Design Philosophy

Graphical visualization is a standard technique for facilitating human comprehension of
complex phenomena and large volumes of data (see, for example, [12,18]). The behavior
of parallel programs on advanced computer architectures is often extremely complex,
and hardware or software performance monitoring of such programs can generate vast
quantities of data. Thus, it seems natural to use visualization techniques to gain insight
into the behavior of parallel programs so that their performance can be understood and
improved. We have developed such a software tool, called ParaGraph, that provides a
detailed, dynamic, graphical animation of the behavior of message-passing parallel pro-
grams, as well as graphical summaries of their performance. The purpose of this paper
is to describe this visualization tool, outline the motivation and philosophy behind its

design, and illustrate its usefulness in analyzing parallel programs.

1.1. Graphical Simulation

For lack of a better term, we will often use the word “simulation” to refer to the graph-
ical animation of a parallel program. The use of this term should not be taken to
suggest that there is anything artificial about the programs or their behavior as we
portray them. ParaGraph displays the behavior and performance of real parallel pro-
grams running on real parallel computers to solve real problems. In effect, ParaGraph
simply provides a visual replay of the events that actually occurred when a parallel
program was run on a parallel machine.

To date, ParaGraph has been used only in such a “post processing” manner, using
a tracefile created during the execution of the parallel program and saved for later
study. But the design of the package does not rule out the possibility that the data
for the visualization could be arriving at the graphical workstation as the parallel
program executes on the parallel machine. In practice, however, there are major im-
pediments to such real-time performance visualization. With the current generation
of distributed-memory parallel architectures, it is difficult to extract performance data
from the processors and send it to the outside world during execution without signif-
icantly perturbing the application program being monitored. Moreover, the network
bandwidth between the parallel processor and the graphical workstation, as well as

the drawing speed of the workstation, are usually inadequate to handle the extremely
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high data transmission rates that would be required for real-time display. Finally, even
if these other limitations were not a factor, human visual perception would be hard
pressed to digest a detailed graphical depiction as it flies by in real time. One of the
strengths of ParaGraph is the insight that can be gained from repeated replays of the
same execution trace data.

Algorithm visualization can be thought of in either static or dynamic terms. After
a parallel program has completed execution, the tracefile of events saved on disk can
be considered as a static, immutable object to be studied by various analytical or
statistical means. Some performance visualization packages reflect this philosophy in
that they provide graphical tools designed for visual browsing of the performance data
from various perspectives using scrollbars and the like. In designing ParaGraph, we
have adopted a more dynamic approach whose conceptual basis is algorithm animation.
We see the tracefile as a script to be played out, visually re-enacting the original live
action of parallel program execution in order to provide insight into the program’s
dynamic behavior. There are advantages and disadvantages in both the static and
dynamic approaches. Algorithm animation is good at capturing a sense of motion and
change, but it is difficudt to control the apparent speed of the simulation. The static
“browser with scrollbars” approach, on the other hand, gives the user control over the
speed with which the data are viewed (indeed, “time” can even move backward), but
does not provide such an intuitive feeling for the dynamic behavior of parallel programs.
In designing ParaGiraph, we have opted for the dynamic animation approach, sacrificing

some control over simulation speed (as will be discussed in greater detail below).
1.2. Design Goals
In designing ParaGraph, our principal goals were:

o ease of understanding,

¢ ecase of use, and

o portability.

We now briefly discuss each of these goals in turn.



1.2.1. Ease of understanding

Since the whole point of visualization is to facilitate human understanding, it is imper-
ative that the visual displays provided be as intuitively meaningful as possible. The
charts and diagrams should be aesthetically appealing, and the information they con-
vey should be as self-evident as possible. A diagram is not likely to be useful if it
requires an extensive explanation. The type of information conveyed by a diagram
should be immediately obvious, or at least easily remembered once learned. The choice
of colors used should take advantage of existing conventions to reinforce the meaning of
graphical objects, and should also be consistent across views. Above all, it is essential
to provide many different visual perspectives, since no single view is likely to provide
full insight into the complex behavior and large volume of data associated with the
execution of parallel programs. ParaGraph in fact provides more than twenty different

displays or views, all based on the same underlying execution trace data.

1.2.2. Ease of use

One of the main purposes of software tools is to relieve tedium, not promoteit. Through
the use of color and animation, we have tried to make ParaGraph painless, perhaps
even entertaining, to use. It certainly seems reasonable that any graphics package
should have a graphical user interface. ParaGraph has an interactive, mouse- and
menu-oriented user interface so that the various features of the package are easily
invoked and customized. Another important factor in ease of use is that the user’s
parallel program (the object under study) need not be modified extensively to obtain
the data on which the visualization is based. ParaGraph currently takes its input data
from execution tracefiles produced by PICL (Portable Instrumented Communication

Library {20,21]), which enables the user to produce such trace data automatically.

1.2.3. Portability

There are two senses in which portability is important in the present context. One is
that the graphics package itself be portable. ParaGraph is based on the X Window
System, and thus runs on a wide variety of scientific workstations from many different
vendors. ParaGraph does not require any X toolkit or widget set, as it is based directly

on the standard Xlib library, which is available in any distribution of the X Window
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System. ParaGraph has been tested with the MIT distributions of X11R2, X11R3,
and X11R4, as well as several vendor-supplied versions of X Windows. Although Para-
Graph is most effective in color, it also works on monochrome and gray-scale monitors,
and it automatically detects which type of monitor is in use. A second sense in which
portability is important is that the package be capable of displaying execution behavior
from different parallel architectures and parallel programming paradigms. ParaGraph
inherits a high degree of such portability from PICL, which runs on parallel architec-
tures from a number of different vendors (e.g., Cogent, Intel, Ncube, Symult). On
the other hand, many of the displays in ParaGraph are based on a message-passing
paradigm, and thus the package does not currently offer support for displaying the

behavior of programs based explicitly on shared-memory constructs.

1.3. Previous Work

ParaGraph is certainly not the first software tool to be developed for visualizing
parallel programs. Graphical animation techniques for visualizing serial algorithms
have received considerable study [6,7,8,9,33,56]. Visualization of parallel computations
has been the subject of a number of recent Ph.D. theses [11,34,48], technical articles
[2,27,31,32,36,38,42,44,47,49,50,55,57], and even a book [53]. Graphical visualization
has also been an important component of several environments that have been de-
veloped for parallel programming [1,5,16,22,46,54], debugging [25,26,37,60], and mon-
itoring [23,29,39,40], as well as integrated environments that combine several of these
components [17,35,52]. Algorithm visualization tools have also been developed for spe-
cific applications, such as matrix computations [3,4,13,43,58]. ParaGraph is a general-
purpose performance visualization tool that is distinguished from previous efforts in

the following ways:

¢ The sheer multiplicity of displays provided by ParaGraph is unigue. Other pack-
ages have emphasized the impottance of multiple views (e.g., [11,31,36,46]), but
ParaGraph provides a substantially greater variety of perspectives than any other
package of which we are aware. Some of the displays we have incorporated into
ParaGraph appear to be original, while others have been motivated by similar

displays found in previous packages.
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e Many previous packages for visnalizing parallel programs have targeted a partic-
ular parallel architecture and/or been based on a proprietary graphical display
system. ParaGraph is applicable to any parallel architecture having message
passing as its programming paradigm, and ParaGraph itself is based on the X

Window System, which is widely available on workstations from many vendors.

¢ Wehave tried to attain new standards in the intuitive appeal and aesthetic quality
of the displays provided by ParaGraph, including both the new displays we have
devised and the displays we have borrowed from previous packages. Of course,
the perceived success of this attempt is in the eye of the beholder and can be

judged only by users.

¢ We have also tried to make ParaGraph exceptionally easy to use, both through
its interactive, graphical user interface and by relying on an instrumented com-
munication library (PICL) to provide the requisite trace data without requiring

the user to instrument explicitly the parallel program under study.

o Another unusual feature of ParaGraph is its extensibility. ParaGraph provides a
mechanism for users to add new displays of their own design that can be viewed
along with the other displays already provided. This capability is intended pri-
marily to support special-purpose displays for particular applications, and is de-

scribed in more detail below.

An indication of our degree of success in making ParaGraph easy to use and easy
to understand is the fact that many users have obtained an early version from Netlib
[14] over the Internet during the past year, and have been able to build the program at
their locations and use it effectively without the benefit of any documentation beyond

a one-page README file.

1.4. Relationship to PICL

PICL is a Portable Instrumented Communication Library {20,21] that runs on a variety
of message-passing parallel architectures. As its name implies, it provides both porta-
bility and instrumentation for programs that use its communication facilities for passing
messages between processors. On request, PICL provides a tracefile that records impor-

tant events in the execution of the user’s parallel program (e.g., sending and receiving
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messages). The tracefile contains one event record per line, and each event record
consists of a set of integers that specify the event type, timestamp, processor number,
message length, and other similar information.

ParaGraph has a producer-consumer relationship with PICL: ParaGraph consumes
trace data produced by PICL. By using PICL rather than the “native” parallel pro-
gramming interface for a particular machine, the user gains portability, instrumenta-
tion, and the ability to use ParaGraph in analyzing the behavior and performance of
the parallel program. These benefits are essentially “free” in that once the parallel pro-
gram is implemented using PICL, no further changes are required to the source code to
move it to a new machine (provided PICL is available on the target machine), and little
or no effort is required to instrument the program for performance analysis. On the
other hand, since ParaGraph’s dependence on PICL is solely for its input data, Para-
Graph could in fact work equally well with any other source of data having the same
format and semantics. Thus, other message-passing systems could be instrumented to
produce trace data in the format expected by ParaGraph, or else ParaGraph’s input
routine could be adapted to a different input format. In this manner, ParaGraph can
be, and indeed has been, used in conjunction with communication systems other than
PICL.

For a meaningful simulation, the timestamps of the events should be as accurate
and consistent across processors as possible. This is not necessarily easy to accomplish
on a machine in which each processor may have its own clock with its own starting time,
running at its own rate. Moreover, the resolution of the clock may be inadequate to
resolve events precisely. Poor resolution and/or poor synchronization of the processor
clocks can lead to “tachyons” in the tracefile, that is, messages that appear to be
received before they are sent. Such an occurrence will confuse ParaGraph, since much
of its logic depends on correctly pairing sends and receives, and will invalidate the
information in some of the displays. For this reason, PICT goes to considerable lengths
to synchronize the processor clocks, and also to adjust for potential clock drift, so
that the timestamps will be as consistent and meaningful as possible [15]. On some
machines, PICL actually provides a higher resolution clock than the one supplied by
the system vendor.

Another important issue is the amount of additional overhead introduced by the
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collection of trace information compared to the execution time of an equivalent unin-
strumented program. PICL tries to minimize the perturbation due to tracing by saving
the trace data locally in each processor’s memory, then downloading it to disk only
after the program has finished execution. Nevertheless, such monitoring inevitably
introduces some extra overhead; in PICL the primary additional cost is due to the
clock calls necessary to determine the timestamps for the event records to be placed
in the tracefile [20]. These clock calls, plus other minor overhead, add a fixed amount
(independent of message size) to the cost of sending each message. The overall pertur-
bation is thus a function of the frequency and volume of communication traflic, and
it also varies from machine to machine. In general, we believe that this perturbation
is small enough that the behavior of parallel programs is not fundamentally altered.
It is certainly true that in our experience the lessons we learn from visual study of

instrumented runs invariably lead to improved performance of uninstrumented runs.

2. Using ParaGraph

ParaGraph supports command line options that specify a hostname for remote display
across a network, forced monochrome display mode (useful if black-and-white hard-
copies are to be made from a color screen), or a tracefile name. The tracefile can also
be specified (or changed) during execution by typing the filename in the appropriate
entry of the options menu. ParaGraph preprocesses the input tracefile to determine
relevant parameters automatically (e.g., time scale, number of processors) before the
graphical simulation begins; most of these values can be overridden by the user, if
desired.

ParaGraph initially displays only its main menu, which contains buttons for con-
trolling execution and for selecting various additional menus. The submenus available
include those for three types, or families, of displays (utilization, communication, and
tasks), an additional menu of miscellaneous displays, and a menu for specifying various
options and parameters. As many displays can be selected as will fit on the screen;
the displays can be resized within reasonable bounds. Although it is difficult to pay
close attention to many displays at once, it is still useful to have several available
simultaneously for comparison and selective scrutiny with repeated replays.

After selecting the desired displays, the user presses start to begin the graphical
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simulation of the parallel program based on the tracefile specified. The animation
then proceeds straight through to the end of the tracefile, but it can be interrupted
for detailed study by use of the pause/resume button. For even more detailed study,
the step button provides a single-step mode that processes the tracefile one event at
a time. A particular time interval can be singled out for study by specifying starting
and stopping times (the defaults are the beginning and ending of the tracefile), or the
simulation can be optionally stopped each time a user-specified event occurs in the
tracefile. The entire animation can be restarted at any time (whether in the middle
or at the end of the tracefile) simply by pressing the start button again. Most of
the displays show program behavior dynamically as individual events occur, but some
show only overall summary information at the end of the run (a few displays serve both
purposes, as will be discussed below).

The relationship between the apparent simulation speed and the original execution
speed of the parallel program is necessarily somewhat imprecise. The speed of the
graphical simulation is determined primarily by the drawing speed of the workstation,
which in turn is a function of the number and complexity of displays that have been
selected. There is no way, in general, to make the apparent simulation speed uniformly
proportional to the original execution speed of the parallel program. For the most
part, ParaGraph simply processes the event records and draws the resulting displays
as rapidly as it can. If there are gaps between consecutive timestamps, however, the
intervening time is “filled in” by a spin loop so that there is at least a rough (but not
uniform) correspondence between simulation time and original execution time. For-
tunately, this issue does not seem to be of critical importance in visual performance
analysis. The most important consideration in understanding parallel program behav-
ior is simply that the correct relative order of events be preserved in the graphical
replay. Moreover, the figures of merit produced by ParaGraph are based on the actual
timestamps, not the apparent speed with which the simulation unfolds.

Since ParaGraph’s speed of execution is determined primarily by the drawing speed
of the workstation, it can be slowed down or speeded up by selecting more or fewer
displays. The speed is also affected by the complexity of the displays and the type
and amount of scrolling used. In its initial design, when there were only a few displays

available, we included parameterized delay loops to slow the drawing down in case it
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moved too quickly for the human eye to follow. However, as we added more displays,
this ceased to be a problem and we dispensed with the delay loops, opting instead
for the more indirect control over simulation speed mentioned above. We find that
now users tend to complain more that the simulation is too slow rather than too fast,
since most like to have many displays open at once. Moreover, one can always resort
to single-step mode if arbitrarily slow drawing speed is desired for very close study of

program behavior.

3. Software Design

ParaGraph is an interactive, event-driven program. Its basic structure is that of an
event loop and a large switch that selects actions based on the nature of each event.
There are in fact two separate event queues: a queue of X events produced by the user
(mouse clicks, keypresses, window exposures, etc.) and a queue of trace events pro-
duced by the parallel program under study. Thus, ParaGraph must alternate between
these two queues to provide both a dynamic depiction of the parallel program and re-
sponsive interaction with the user. Menu selections determine the execution behavior
of ParaGraph, both statically (e.g., initial selection of displays, options, and parameter
values) and dynamically {e.g., pause/resume, single-step mode).

ParaGraph is written in C, and the source code contains about 10,000 lines. The
main program of ParaGraph calls the preprocess function to determine necessary
parameters, initializes many variables, allocates graphical resources such as windows
and fonts, and then goes into a while loop that repeatedly calls the functions get_event
and get_trace, which check the X event queue and the trace event queue, respectively,
for the next event upon which to act. The get_event routine is simply a switch
containing a series of calls to appropriate routines to handle the various X events. The
get_trace routine calls scan to read a trace event record, and then calls draw to update
the drawing of the displays that have been selected.

The X event queue must be checked frequently enough to provide good interactive
responsiveness, but not so frequently as to degrade the drawing speed during the sim-
ulation. On the other hand, the trace event queue should be processed as rapidly as
possible while the simulation is active, but need not be checked at all if the next pos-

sible event must be an X event (e.g., before the simulation starts, after the simulation
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finishes, when in single-step mode, or when the simulation has been paused and can be
resumed only by user input). To address these issues, the alternation between the two
queues is not strict. Since not all trace event records produced by PICL are of interest
to ParaGraph, it “fast forwards” through any series of such “uninteresting” records be-
fore rechecking the X event queue. Moreover, both blocking and nonblocking calls are
used to check the X event queue, depending on the circumstances, so that workstation

resources are not consumed unnecessarily when the simulation is inactive.

4. Displays

In this section we describe and illustrate the individual displays provided by ParaGraph.
Some of these displays change in place dynamically as events occur, with execution time
in the original run represented by simulation time in the replay. Others depict time
evolution by representing execution time in the original run by one space dimension
on the screen. The latter displays scroll as necessary (by a user-controllable amount)
as simulation time progresses, in effect providing a moving window for viewing what
could be considered a static picture. No matter which representation of time is used, all
displays of both types are updated simultaneously and synchronized with each other.
In illustrating these displays in a printed manuscript, we obviously cannot convey
the dynamic movement portrayed by ParaGraph in actual practice, but must content
ourselves with snapshots taken during a typical execution. The figures were produced
from tracefiles made on an Intel iPSC/2 hypercube.

As stated earlier, most of the displays fall into one of three basic categories
utilization, communication, and task information - although some displays contain
more than one type of information, and a few do not fit these categories at all. Below
we provide brief descriptions and still-picture illustrations of the displays. For clarity
and simplicity, the illustrative examples use only a small number of processors. Many
of the displays scale up well to much larger numbers of processors, but a few contain
too much detail to scale up well. We will discuss later the numiber of processors that
can be supported effectively and the limitations we see in our approach.

The parallel program illustrated in most of the figures is a common computation
in scientific computing, the solution of a large sparse system of linear equations by

Cholesky factorization. For details of the parallel algorithm used, see [24]. In the
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example, the sparse matrix of the linear system arises from a 15 x 15 square grid,
so that the matrix is of order 225. The nodes of the grid, and hence the rows and
columns of the matrix, are ordered by nested dissection, which is a type of domain
decomposition that leads to a typical divide-and-conquer parallel algorithm for the
factorization. In the example, each of the eight processors initially computes the portion
of the factorization corresponding to the interior of its own part of the grid, and can
do so independently of the other processors. Eventually, however, the processors reach
a point where interprocessor communication is required to supply boundary data from
neighboring portions of the grid that are needed before computations can proceed any
further. The processors team up in four pairs, then two sets of four, and finally all
eight together, as they work their way up the elimination tree and communicate across

higher level boundaries.

4.1. Utilization Displays

The displays described in this section are concerned primarily with processor utilization.
They are helpful in determining the effectiveness with which the processors are used

and how evenly the computational work is distributed across the processors.

4.1.1. Utilization Count (Figure 1)

This display shows the total number of processors in each of three states — busy, over-
head, and idle - as a function of time. The number of processors is on the vertical
axis and time is on the horizontal axis, which scrolls as necessary as the simulation
proceeds. The color scheme used is borrowed from traffic signals: green (go) for busy,
yellow (caution) for overhead, and red (stop) for idle. By convention, we show green
at the bottom, yellow in the middle, and red at the top along the vertical axis. At
any given time, ParaGraph categorizes each processor as idle if it has suspended ex-
ecution awaiting a message that has not yet arrived (or if it has ceased execution at
the end of the run), overhead if it is executing in the communication subsystem (but
not awaiting a message), and busy if it is executing some portion of the program other
than the communication subsystem. Since the three categories are mutually exclusive
and exhaustive, the total height of the composite is always equal to the total number

of processors. ldeally, we would like to interpret busy as meaning that a processor is
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doing useful work, overhead as meaning that a processor is doing work that would be
unnecessary in a serial program, and idle as meaning that a processor is doing nothing.

Unfortunately, the monitoring required to make such a determination would almost
certainly be nonportable and/or excessively intrusive. Thus, the “busy” time we report
may well include redundant work or other work that would not be necessary in a serial
program, since our monitoring detects only overhead associated with communication.
However, we find that the definitions we have adopted based on the data provided by
PICL are quite adequate in practice to convey the effectiveness of parallel programs
pictorially. In the example shown in Figure 1, the all-green portion at the far left
depicts the final part of the perfectly parallel phase with which the divide-and-conquer

algorithm begins.

4.1.2. Gantt Chart (Figure 2)

This display, which is patterned after graphical charts used in industrial management
[19], depicts the activity of individual processors by a horizontal bar chart in which the
color of each bar indicates the busy/overhead/idle status of the corresponding processor
as a function of time, again using the traffic-signal color scheme. Processor number is
on the vertical axis and time is on the horizontal axis, which scrolls as necessary as
the simulation proceeds. The Gantt chart provides the same basic information as the
Utilization Count display, but on an individual processor, rather than aggregate, basis;
in fact, the Utilization Count display is simply the Gantt chart with the green sunk to

the bottom, the red floated to the top, and the yellow sandwiched between.

4.1.3. Utilization Summary (Figure 3)

Unlike the displays described previously, which show current behavior and change dy-
namically with time, the Utilization Summary display is defined only at the end of a run.
It shows the perceutage of time, over the entire run, that each processor spent in each
of the three busy/overhead/idle states. The percentage of time is shown on the vertical
axis and the processor number on the horizontal axis. Again, the green/yellow/red
color scheme is used to indicate the three states. In addition to giving a visual im-
pression of the overall efficiency of the parallel program, this display also gives a visual

indication of the load balance across processors. In the sparse matrix example shown
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in Figure 3, four of the processors are assigned the four corners of the grid, while the
other four are assigned central portions of the grid, leading to a load imbalance that is

clearly visible.

4.1.4. Utilization Meter (Figure 4)

This display uses a colored vertical bar, with the usual green/yellow/red color scheme,
to indicate the percentage of the total number of processors that are currently in
each of the three busy/overhead/idle states. The visual effect is similar to that of a
thermometer or some automobile speedometers. This display provides essentially the
same information as the Utilization Count display, but saves screen space (which may

be needed for other displays) by changing in place rather than scrolling with time.

4.1.5. Concurrency Profile (Figure 5)

This is another summary display that becomes defined only at the end of a run. For
each possible number of processors k, 0 < k < p, where p is the maximum number of
processors for this run, this display shows the percentage of time during the run that
exactly k processors were in a given state (i.e., busy/overhead/idle). The percentage
of time is shown on the vertical axis and the number of processors k is shown on the
horizontal axis. The profile for each possible state is shown separately, and the user can
cycle through the three states by clicking the mouse on the appropriate subwindow.
The actual concurrency profile for real programs shown by this display is usually in
marked contrast to the idealized conditions that are the basis for Amdahl’s Law, where
the concurrency profile is assumed to be bimodal, with nonzero values at k¥ = 1 and
k = p and zero elsewhere (i.e., at any given time the computational work is either
strictly serial or fully parallel). Figure 5 shows the busy and idle profiles for the sparse

matrix example; the overhead profile is not shown.

4.1.8. Kiviat Diagram (Figure 6)

This display, which is adapted from related graphs used in other types of performance
evaluation [28,41], gives a geometric depiction of the utilization of individual processors
and the overall load balance across processors. Each processor is represented by a spoke

of a wheel. The recent average fractional utilization of each processor determines a
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point on its spoke, with the hub of the wheel representing zero (completely idle) and
the outer rim representing one (completely busy).

Taken together, the points for all the processors determine the vertices of a polygon
whose size and shape give a pictorial indication of both processor utilization and load
balance across processors. Low utilization causes the polygon to be concentrated near
the center, while high utilization causes the polygon to lie near the perimeter. Poor
load balance across processors causes the polygon to be strongly skewed or asymmetric.
Any change in load balance is clearly shown pictorially; for example, with many ring-
oriented algorithms the moving polygon has the appearance of a rotating camshaft as
the heavier workload moves around the ring. The current utilization is shown in dark
shading, while the “high water mark” seen thus far is shown in lighter shading. The
“current” utilization is in fact a moving average over a time interval of user-specified
width, since instantaneous utilization would of course always be either zero or one for

each processor.

4.2. Communication Displays

The displays described in this section are concerned primarily with depicting inter-
processor communication. They are helpful in determining the frequency, volume,
and overall pattern of communication, and whether there is congestion in the message

queues.

4.2.1. Communication Traffic (Figure 7)

This display is a simple plot of the total communication traffic in the interconnection
network (including message buffers) as a function of time. The carve plotted is the total
of all messages that are currently pending (i.e., sent but not yet received), and can be
optionally expressed either by message count or by volurne in bytes. The communica-
tion traffic shown can also optionally be either the aggregate over all processors or just
the messages pending for any individual processor the user selects. Message volume or
count is shown on the vertical axis, and time is shown on the horizontal axis, which
scrolls as necessary. Iigure 7 shows the successively higher peaks in communication

traffic for the sparse matrix exatnple as higher level grid separators are encountered.
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4.2.2. Spacetime Diagram (Figure 8)

This display is patterned after the diagrams used in physics, particularly in relativity
theory, to depict interactions between particles through space and time.

This type of diagram has been used by Lamport [30] for describing the order of
events in a distributed computing system. The same pictorial concept was used over
a century ago to prepare graphical railway schedules [59, page 31]. In our adaptation
of the Spacetime Diagram, processor number is on the vertical axis, and time is on
the horizontal axis, which scrolls as necessary as time proceeds. Processor activity
(busy/idle) is indicated by horizontal lines, one for each processor, with the line drawn
solid if the corresponding processor is busy, and blank if the processor is idle. Messages
between processors are depicted by slanted lines between the sending and receiving pro-
cessor activity lines, indicating the times at which each message was sent and received.
These sending and receiving times are from user process to user process (not simply
the physical transmission time), and hence the slopes of the resulting lines give a visual
indication of how soon a given piece of data produced by one processor was needed
by the receiving processor. The communication lines are color coded to indicate the
sizes of the messages being transmitted. The Spacetime Diagram is one of the most
informative of all the displays, since it depicts both individual processor utilization and
all message traflic in full detail. For example, it can easily be seen which particular
message “wakes up” an idle processor that was previously blocked awaiting its arrival.
Unfortunately, this fine level of detail does not scale up well to large numbers of pro-
cessors, as the diagram becomes extremely cluttered. The divide-and-conquer nature
of the sparse matrix example can be clearly seen in Figure 8. The eight processors
initially work independently, then combine in successively larger groups as they move

up the elimination tree.

4.2.3. Message Queues (Figure 9)

This display depicts the size of the queue of incoming messages for each processor by a
vertical bar whose height varies with time as messages are sent, buffered, and received.
The processor number is shown on the horizontal axis. At the user’s option, the queue
size can be measured either by the number of messages or by their total length in bytes.

The input queue size for a given processor is incremented each time a message is sent to
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that processor, and decremented each time the user process on that processor receives
a message.

On most message-passing parallel systems, the physical transmission time between
processors is negligible compared to the software overhead in handling messages, so that
the time interval between the send and receive events is a reasonable approximation to
the time a given message actually spends in the destination processor’s input queue. Of
course, depending on message types, the messages may not be received in the same order
in which they arrive for queuing, so the queues may grow and shrink in complicated
ways. As before, dark shading depicts the current queue size on each processor, and
lighter shading indicates the “high water mark” seen so far. The Message Quene display
gives a pictorial indication of whether there is communication congestion in a parallel
program (i.e., whether messages are accumulating in the input queue), or the messages
are being consumed at about the same rate as they arrive. Of course, it is best if
messages arrive slightly before they are actually needed, so that the receiving processor
does not become idle awaiting a message. But a large backlog of incoming messages
can consume excessive buffer space, so a happy medium (analogous to “just in time”
manufacturing) is desirable. In the example shown in Figure 9, processor 2 currently
has no messages in its input queue; the remaining processors all have messages awaiting

receipt by their user processes, but only the queue on processor 3 is at its maximum

size seen so far.

4.2.4. Communication Matrix (Figure 10)

In this display, messages are represented by squares in a two-dimensional array whose
rows and columns correspond to the sending and receiving processors, respectively,
for each message. During the simulation, each message is depicted by coloring the
appropriate square at the time the message is sent, and erasing it at the time the
message is received. The color used indicates the size of the message in bytes, as given
in the separate Color Code display that can also be selected from the menu. Thus,
the sizes, durations, and overall pattern of messages are depicted by this display. The
nodes can be ordered along the axes in either natural or Gray code order, and the
user’s choice may strongly affect the appearance of the communication pattern. At

the end of the simulation, the Communication Matrix display shows the cumulative
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communication volume for the entire run between each pair of processors.

4.2.5. Communication Meter (Figure 4)

This display uses a vertical bar to indicate the percentage of maximum communication
volume (or number of messages) currently pending (i.e., sent but not yet received).
This display provides essentially the same information as the Communication Traffic
display, but saves screen space (which may be needed for other displays) by changing
in place rather than scrolling with time. Conceptually, this thermometer-like display
is similar to the Utilization Meter display, except that it shows communication instead

of utilization, and the two are interesting to observe side by side.

4.2.6. Animation (Figure 11)

In this display, the multiprocessor is represented by a graph whose nodes (depicted by
numbered circles) represent processors, and whose arcs (depicted by lines between the
circles) represent communication links. The status of each node (busy, idle, sending,
receiving) is indicated by its color, so that the circles can be thought of as the “front-
panel lights” of the multiprocessor. An arc is drawn between the source and destination
processors when a message is sent, and erased when the message is received. Thus,
both the colors of the nodes and the connectivity of the graph change dynamically as
the simulation proceeds. The small circles depicting the processors are arranged in a
large circle merely for convenience in drawing straight lines between arbitrary pairs of
processors without intersecting any other processors; this is not meant to suggest that
the underlying architecture is necessarily a ring. The nodes can be ordered around the
circle in either natural or Gray code order, and the user’s choice may strongly affect the
appearance of the communication pattern among processors. The arcs represent the
logical, rather than physical, connectivity of the multiprocessor network, and possible
routing of messages through intervening nodes is not depicted unless the program being
visualized does such forwarding explicitly. In the example shown in Figure 11, a total
of four messages are pending receipt. Note that various combinations of states are
possible for the sending and receiving processors. For example, both processers 2 and
3 are busy, one having already sent the message and resumed computing, while the

other has not yet stopped computing to receive it. Upon conclusion, this display shows
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a summary of all (logical) communication links used throughout the run.

4.2.7. Hypercube (Figures 12 and 13)

This display is similar to the Animation display, except that it provides a number of ad-
ditional layouts for the nodes in order to exhibit more clearly communication patterns
corresponding to the various networks that can be embedded in a hypercube [10,51].
The layouts provided include ring, ring of rings, web, cube, lateral cubes, nested cubes,
mesh, linear, tree, tesseract, and polytope arrangements, some of which are illustrated
in Figure 12. Note that this display does not require that the interconnection network of
the machine on which the parallel program executed actually be a hypercube; it merely
highlights the hypercube structure as a matter of potential interest. The scheme for
coloring nodes and drawing arcs is the same as that for the Animation display, except
that curved arcs are often used to avoid, as much as possible, intersecting intermediate
nodes. To help the user of a hypercube to determine if the network’s physical con-
nectivity is correctly honored by the communication in the parallel program, message
arcs corresponding to genuine physical hypercube links are drawn in a different color
from message arcs along “virtual” links that do not exist in a hypercube and therefore
entail indirect routing through intervening processors. In Figure 13, for example, the
message between nodes (0 and 5 must travel over a virtual link by being forwarded
through an intermediate processor, whereas the message between nodes 0 and 2 travels
directly over the physical link between those two processors. Upon conclusion, this
display shows a summary of all (logical) communication links used throughout the run.
Unfortunately, the method used to draw this rather elaborate display does not scale

up well to large numbers of processors.

4.2.8. Node Statistics (Figure 14)

This display provides, in graphical form, detailed communication statistics for a single,
user-selected processor. The choices of statistics plotted are the source/destination,
type, length, and Hamming distance traveled for all messages sent to or from the cho-
sen processor. Time is on the horizontal axis, and the chosen statistic is on the vertical
axis, with incoming and outgoing messages shown in separate windows. This display is

helpful in analyzing communication behavior in detail, especially in perceiving trends
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or patterns in the communication structure that improve understanding of program be-
havior and performance. It has been used as an aid in designing “synthetic programs,”
which are simple programs that mimic the behavior and performance of much more

complex programs, and are useful for performance modeling and benchmarking [453].

4.3. Task Displays

The displays we have considered thus far depict a number of important aspects of
parallel program behavior that help in detecting performance bottlenecks. However,
they contain no information indicating the location in the parallel program at which
the observed behavior occurs. To remedy this situation, we considered a number of
automated approaches to providing such information (e.g., picking up line numbers in
the source code from the compiler), but all of these encounter nasty practical difficulties
(such as dealing with multiple source files). Thus, we reluctantly made an exception to
our rule that the user need do nothing to instrument the parallel program under study
in order to use ParaGraph.

We developed a number of new “task” displays that use information provided by
the user, with the help of PICL, to depict the portion of the user’s parallel program
that is executing at any given time. Specifically, the user defines “tasks” within the
program by using special PICL routines to mark the beginning and ending of each
task and assign it a user-selected task number. The scope of what is meant by a
task is left entirely to the user: a task can be a single line of code, a loop, an entire
subroutine, or any other unit of work that is meaningful in a given application. For
example, in matrix factorization one might define the computation of each column
to be a task, and assign the column number as the task number. Tasks are defined
simply by calling PICL’s traceblockbegin and traceblockend routines, with the
desired task number as argument, immediately before and after the selected section of
code. This canses PICL to produce event records that are interpreted appropriately by
ParaGraph to depict the given task, using displays to be described in this section. We
should emphasize that task definitions are required only if the user wishes to view the
task displays. If the tracefile contains no event records defining tasks, then the task
displays will simply be blank, but the remaining displays in ParaGraph will still show

their normal information.
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Note that tasks can be nested, one inside another, but if so these should be properly
bracketed by matching task begin and end records. Note also that more than one
processor can be assigned the same task (or, more accurately, each processor can be
assigned its own portion of the same task); indeed, the model we have in mind is that
all processors collaborate on each task, rather than that each task is assigned to a single
processor. In many contexts, such as the matrix example mentioned above, there is a
natural ordering and corresponding numbering of the tasks in a parallel program. In
most of the task displays described below, the task numbers are indicated by a color
coding. Since the number of tasks is likely to be larger than the number of colors that
can be easily distinguished, we recycle a limited number of colors to depict successive
task numbers. We use one of six basic colors for indicating each task, with the choice of
color given by the task number modulo six. In the sparse matrix example, we defined
the computation of each column of the factorization to be a separate task, with the

column number as task number, for a total of 225 tasks.

4.3.1. Task Count (Figure 15)

During the simulation, this display shows the number of processors that are executing
a given task at the current time. The number of processors is shown on the vertical
axis and the task number is shown on the horizontal axis. At the end of the run,
this display changes to show a summary over the entire run. Specifically, it shows
the average number of processors that were executing each task over the lifetime of
that task (i.e., the time interval starting when the first processor began the task and
ending when the last processor finished the task). In the example shown in Figure 15,
four processors are currently working on task 4, two are working on task 3, and one

processor each on tasks 1 and 2.

4.3.2. Task Gantt (Figure 16)

This display depicts the task activity of individual processors by a horizontal bar chart
in which the color of each bar indicates the current task being executed by the cor-
responding processor as a function of time. Processor number is on the vertical axis
and time is on the horizontal axis, which scrolls as necessary as the simulation pro-

ceeds. This display can be compared with the Utilization Gantt chart to correlate
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busy/overhead/idle status with the task information. For instance, comparing Figure
16 with Figure 2 shows that for the sparse matrix example the longer tasks tend to
be caused by extended idle periods within the task while the processor awaits needed

data, rather than by a heavier work load for that processor.

4.3.3. Task Status (Figure 17)

In this display the tasks are represented by a two-dimensional array of squares, with
task numbers filling the array in row-wise order. Initially, all of the squares are white.
As each task is begun, its corresponding square is lightly shaded to indicate that that
task is now in progress. When a task is subsequently completed, its corresponding
square is then darkly shaded. Again, the divide-and-conquer nature of the sparse
matrix example is clearly visible in Figure 17, where several factor columns associated
with the interiors of the initial eight pieces of the grid have been completed at the

instant shown, and precisely eight distinct tasks are currently in progress.

4.3.4. Task Summary (Figure 18)

This display, which is defined only at the end of the simulation run, indicates the
duration of each task (from earliest beginning to last completion by any processor) as
a percentage of the overall execution time of the parallel program, and furthermore
places the duration interval of each task within the overall execution interval of the
parallel program. The percentage of the total execution time is shown on the vertical
axis, and the task number is shown on the horizontal axis. Figure 18 provides another
striking depiction of the divide-and-conquer sparse matrix example, with the 8-4-2-1

sequence clearly visible.

4.4. Other Displays
In this section we describe some additional displays that either do not fit into any of

the three categories above or else cut across more than one category.

4.4.1. Phase Portrait (Figure 19)

This display is patterned after the phase portraits used in differential equations and

classical mechanics to depict the relationship between two variables (e.g., position and
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velocity) that depend on some independent variable (e.g., time). In our case, we are
attempting to illustrate pictorially the relationship over time between communication
and processor utilization. At any given point in time, the current percentage utilization
(i.e., the percentage of processors that are in the busy state), and the percentage of
the maximum volume of communication currently in transit, together define a single
point in a two-dimensional plane. This point changes with time as communication and
processor utilization vary, thereby tracing out a trajectory in the plane that is plotted
graphically in this display, with communication and utilization on the two axes. Since
the overhead and potential idleness due to communication inhibit processor utilization,
one expects communication and utilization generally to have an inverse relationship.
Thus one expects the phase trajectory to tend to lie along a diagonal of the display.
This display is particularly useful for revealing repetitive or periodic behavior in a
parallel program, which tends to show up in the phase portrait as an orbit pattern. In
the example shown on the left in Figure 19, two distinct phases of the computation
can be seen, each of which exhibits a high degree of periodic behavior. By setting task
numbers appropriately, the user can color code the trajectory to highlight either major

phases (Figure 19, left) or individual orbits (Figure 19, right).

4.4.2. Critical Path (Figure 20)

This display is similar to the Spacetime display described earlier, but uses a different
color coding to highlight the longest serial thread in the parallel computation. Specifi-
cally, the processor and message lines along the critical path are shown in red, while all
other processor and message lines are shown in light blue. This display is intended to
aid in identifying performance bottlenecks and tuning the parallel program by focusing
attention on the portion of the computation that is currently limiting performance.
Any improvement in performance must necessarily shorten the longest serial thread
running through the computation, so this is a primary place to look for potential algo-

rithm improvements.

4.4.3. Processor Status (Figure 21)

This is a comprehensive display that attempts to capture detailed information about

processor utilization, communication, and tasks, but in a compact format that scales up
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well to large numbers of processors. This display contains four subdisplays, in each of
which the processors are represented by a two-dimensional array of squares, with pro-
cessor numbers filling the array in row-wise order. The upper left subdisplay shows the
current state of each processor (busy/overhead/idle), using the usual green/yellow/red
color scheme. The upper right subdisplay shows the task currently being executed by
each processor, using one of six colors chosen as discussed previously. The lower left
subdisplay shows the volume in bytes of messages currently being sent by each proces-
sor, and the lower right subdisplay shows the volume in bytes of messages currently
awaiting receipt by each processor; both of these communication subdisplays indicate
message volume in bytes using the same color code as discussed previously for the other
communication displays. Although this comprehensive display is somewhat difficult to
follow due to the large amount of information it contains, it has the virtue of scaling
to very large numbers of processors more readily than any of the other displays in

ParaGraph. The example shown in Figure 21 illustrates a run with 64 processors.

4.4.4. Clock

This display provides both digital and analog clock readings during the graphical sim-
ulation of the parallel program. The current sumulation time is shown as a numerical
reading, and the proportion of the full tracefile that has been completed thus far is
shown by a colored horizontal bar. The clock reading is updated synchronously with
the other displays, and it “ticks” through all integral time values, not just those that

happen to come from event timestamps.

4.4.5. Trace

This is a non-graphical display that prints an annotated version of each trace event as
it is read from the tracefile. It is primarily useful in the single-step mode for debugging
or other detailed study of the parallel program on an event-by-event basis. Although
the trace records are drawn in this display one at a time, space is allowed to show
several consecutive trace records, and the display scrolls vertically as necessary with

time.
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4.4.6. Statistical Summary

This is a non-graphical display that gives numerical values for various statistics sum-
marizing processor utilization and communication, both for individual processors and
aggregates over all processors. While this tabular display may yield considerably less
insight than the graphical displays provided by ParaGraph, exact numerical quanti-
ties are occasionally useful in preparing tables and graphs for printed reports, or for

analytical performance modeling.

4.5. Application-Specific Displays

All of the displays we have discussed thus far are generic in the sense that they are
applicable to any parallel program based on message passing and do not depend on
the particular application or problem domain that the program addresses. While this
wide applicability is generally a virtue, knowledge of the specific application can often
enable one to design a special-purpose display that reveals greater detail or insight
than generic displays alone would permit. In studying a parallel sorting algorithm,
for example, generic displays can show which processors are communicating with each
other, and the volume of communication, but they cannot show which specific data
items are being exchanged between processors. Since we obviously could not provide
such application-specific displays as part of ParaGraph, we instead made ParaGraph
extensible so that users can add application-specific displays of their own design that
can be selected from the menu and viewed along with the usual generic displays.

The mechanism we use for supporting this capability works as follows. ParaGraph
contains calls at appropriate points to routines that provide initialization, data input,
event handling, drawing, etc., for an application-specific display. If the corresponding
routines for such a display are not supplied by the user when the executable module for
ParaGraph is built, then dummy “stub” routines are linked into ParaGraph instead,
and no user-supplied display selection appears in the menu. When an application-
specific display has been linked into ParaGraph and the resulting module is executed,
the user-supplied display is given access to all of the event records in the tracefile that
ParaGraph reads and can use them in any manner it chooses.

The usual events generated by PICL may suflice for the application-specific dis-

play, or the user may wish to insert additional events during execution of the parallel
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program in order to supply additional data for the application-specific display. The
tracemarks event of PICL is perhaps the most useful for this purpose, as it allows
the user to insert into the tracefile timestamped records containing arbitrary lists of
integers, which might be used to provide loop indices, array indices, memory addresses,
or any other information that would enable the user-supplied display to convey more
fully and precisely the activity of the parallel program in the context of the particular
application.

Unfortunately, writing the necessary routines to support an application-specific
display is a decidedly nontrivial task that requires a general knowledge of X Window
System programming. But at least the potential user of this capability can concentrate
on only those portions of the graphics programming that are relevant to his application,
taking advantage of the supporting infrastructure of ParaGraph to provide all of the
other necessary facilities to drive the overall graphical simulation. As an aid to users
who may wish to develop application-specific displays to add to ParaGraph, we have
developed two such prototype displays, one for depicting parallel sorting algorithms and
one for depicting parallel matrix transposition. These example routines are distributed
along with the source code for ParaGraph. Figure 22 illustrates the application-specific
display for matrix transposition, which is driven by tracemarks event records that

indicate which data items are being exchanged among the processors.

5. Options

The execution behavior and visual appearance of ParaGraph can be customized in a
number of ways to suit each user’s taste or needs. In this section, we briefly discuss

some of the choices available in the Options menu.

e In many of the displays, the user can choose to have the processors arranged in
either natural or Gray code order, and the choice will affect the appearance of

communication patterns.

¢ Those windows that represent time along the horizontal dimension of the screen
can smoothly scroll or jurup scroll by a user-specified amonunt as simulation time
advances. Smooth scrolling provides an appealing sense of visual continuity, but

results in a slower drawing speed.
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¢ The relationship between simulation time and the timestamps of the trace events
is determined by the time unit chosen. The user can override the value that

ParaGraph heuristically chooses for a given tracefile.

o A related parameter is the scale width, which is defined to be the width, in
simulation time units, of the horizontal axis for the displays that scroll with
time. The scale width chosen implicitly determines the number of pixels on the
screen that represent each unit of simulation time. A larger number of pixels per
time unit in effect magnifies the horizontal dimension of the scrolling displays to
bring out more detail, but with less of the overall behavior of the program visible

at once. Again, the user can override the value that ParaGraph chooses.

s By default, ParaGraph starts the simulation at the beginning of the tracefile and
proceeds to the end of the tracefile. By choosing other starting and stopping
times, however, the user can isolate any particular time period of interest for

visual scrutiny without having to view a possibly long simulation in its entirety.

o The user can also select the amount of smoothing used in the Kiviat Diagram

and Phase Portrait displays to avoid an excessively noisy or jumpy appearance.

6. Future Work

In terms of the number and appearance of displays it provides, ParaGraph is a rea-
sonably mature software tool, although we intend to add more displays as helpful new
perspectives are devised. There are a few minor technical points about ParaGraph that
could stand improvement. We have already mentioned that it would be nice to have
more explicit control over the apparent speed of the simulation. As another example,
the contents of many of the displays are lost if the window is obscured and then reex-
posed. This inability to repair or redraw windows, short of rerunning the simulation
from the beginning, was a deliberate design decision based on a desire to conserve the
substantial amount of memory that would be required to save the contents of all win-
dows for possible restoration. Nevertheless, this “feature” can be annoying at times
and should eventually be fixed.

A more serious limitation of ParaGraph in its current form is the number of pro-

cessors that can be depicted effectively. A few of the current displays are simply too
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detailed to scale up beyond about 128 processors and still be comprehensible. Most
of the displays scale up well to a level of 512 or 1024 processors on a normal sized
workstation screen, but at this point they are down to representing each processor by
a single pixel (or pixel line), and hence cannot be scaled any further in their current
form. To visualize programs for massively parallel architectures having thousands of
processors, we must either devise new displays that scale up to this level, or else we
must adapt the existing displays, either by aggregating or selecting information. For
example, the current displays could depict either clusters of processors or subsets of
individual processors (e.g., cross sections).

While it is fairly easy to imagine how graphics technology might be adapted to meet
the needs of visualizing massively parallel computations, it is much less obvious how
to handle the vast volume of execution trace data that would result from monitoring
thousands of processors. Even with the more modest numbers of processors currently
supported by PICL and ParaGraph, storage and processing of the large volume of
trace data resulting from runs of significant duration are already difficult problems. To
go beyond the present level will almost certainly require some degree of abstraction
of essential behavior in a more concise and compact form, both in the data and in
its graphical presentation. We simply cannot afford to continue to record or display
all communication events when they become so voluminous. Unfortunately, many
of the current displays in ParaGraph depend critically on the availability of data on
each individual event. Thus, the development of new visual displays and new data
abstractions must proceed in tandem so that the execution monitoring facility will
produce data that can be visually displayed in a meaningful way to provide helpful

insights into program behavior and performance.
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