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Abstract 

Concurrent computing environments based on loosely coupled networks have 
proven effective as resources for multiprocessing. Experiences with and 
enhancements to PVM (Parallel Virtual Machine) are described in this paper. 
PVM is a software package that allows the utilization of a heterogeneous net- 
work of parallel and serial computers as a single computational resource. This 
report also describes an interactive graphical interface to PVM, and porting and 
performance results from production applications. 
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1. Introduction 

Concurrent computing environments based on networks of computers can be an 

effective, viable, and economically attractive complement to hardware multiprocessors. 

A case in point is the number field sieve project of Lenstra and Manasse [ 11, whose most 

recent milestone is the factoring of the ninth Fermat number (148 digits) using over 

1 ,OOO computers worldwide. Although such large scale use of network-based concurrent 

computing may be rare, there exist many examples of this mode of multicomputing on a 

smaller scale. In all these cases, a collection of general purpose computer systems inter- 

connected by existing networks and support services have been successfully used to 

achieve parallelism in applications. 

Some of these network-based concurrent computitig environments are specialized, 

in that they are either based upon distributed operating systems (e.g. IBCUS [2], the V- 

kernel [3]), or they support special-purpose programming paradigms (e.g. Linda [2 11, the 

Cainelot transaction processing facility [ 171). While these systems arc highly effective, 

they impose many constraints and requirements on application end-users and resource 

administrators that are often difficult to meet. We are concerned in this paper with the 

other class of distributed computing environments - those that provide general-purpose 

programming environments and require underlying support from the rnachincs and their 

operating systems at levels that are normally considered “standard”. As examples, pro- 

gramming paradigms based on the imperative model with procedure-call access to sys- 

tem facilities, operating system support for limited inter-process communication within a 

machine, and network services that provide unreliable data delivery are characteristics 

that such a distributed computing system would assume. Several systems that fall into 

this category have been described in the literature; representative examples may bc found 

in [4,5]. 

In addition to utilizing available computing resources, network-based general pur- 

pose Computing environments offer several other benefits. One of the most important is 

the potential for partitioning a computing task along lines of service functions. Typically, 

networked computing environments possess a variety of capabilities; the ability to exe- 

cute subtasks of a computation on the processor most suited to a particular function both 

enhances performance and improves utilization. ‘The Plan 9 distributed system from Bell 

Labs [6] is based entirely on this model, and initial results are very promising. But the 

implementation of Plan 9 appears to suffer from lack of flexibility and special require- 

ments in terms of nctwork characteristics and processing/storage elements. These factors 

imply that widespread use of Plan 9 will be possible only with a long-term and substan- 

tial commitment to the model and environment 011 the part of potential users. 
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Another advantage in network-based concurrent computing is the ready availabiliiy 

of development and debugging tools, and the potential fault tolerance of the network(s) 

and the processing elements. Typically, systems that operate on loosely coupled net- 

works permit the direct use of editors, compilers, and debuggers that are available on 

individual machines. These individual machines are quite stable, and substantial exper- 

tise in their use is readily available. To the user, these factors translate into reduced 

development and debugging time and effort, in addition to lowered contention for 

resources and possibly more effective implementations of the application. Yet another 

attractive feature of loosely coupled computing environments is the potential for user or 

program level fault-tolerance that can be implemented with little effort - either in the 

application or in the underlying operating system. Most multiprocessors do not support 

such a facility; hardware or software failures in one of the processing elements often lead 

to a complete crash. 

There are, however, many aspects relating to user interface, efficiency, compatibil- 

ity, and administrative issues that play a significant role in the effectiveness of network- 

based concurrent computing environments. In this paper, we analyze several of the 

design features of the PVM (Parallel Virtual Machine) system and report on experiences 

gained with its use over time. An overview of PVM, followed by significant aspects of the 

user interface and implementation strategies are presented in the following sections. 

Finally, representative examples of porting and performance are described. 

2. An Overview of the PVM System 

The PVM system is composed of a suite of user-interface primitives (shown in Table 

1) and supporting software that together enable concurrent computing on loosely coupled 

networks of processing elements. Several design features distinguish PVM from other 

similar systems such as Cosmic [7], Marionette [4], ISIS [22], and Dpup [SI. Among 

these are the combination of heterogeneity, scalability, multilanguage support, provisions 

for fault tolerance, the use of multiprocessors and scalar machines, an interactive graphi- 

cal front end, and support for profiling, tracing, and visual analysis. 

2.1. PVM Architecture 

PVM may be implemented on a hardware base consisting of different machine archi- 

tectures, including single CPU systems, vector machines, and multiprocessors. These 

computing elements may be interconnected by one or more networks, which may them- 

selves be different (e.g. one implementation of PVM operates on Ethernet, the Internet, 

and a fiber optic network). These computing elements are accessed by applications via a 
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Table 1: PVM user routines. 

void barrier(char *barrier-name, int num) 

void bcast(char *component-name, int msgtype) 

int enroll(char *component-name) 

blocks caller until nun1 calls with same barrier name made. 

broadcasts message in send buffer to all instances of component name. 

enrolls process in PVM and returns instance number. 

extracts value of dabtype [type] from received message and assigns it to x, 
eg. getfloat( x ). [type] must be int, float, dfloat, cplx, dcplx, string, or bytes. 

int initiate(char *object-file) 
initiates a new process and returns instance number. 

int initiateM(char *object-file, char *arch [, char *machine]) 
initiate a process on the specified architecture [machine]. 

void initsend(int size) 
initializes send buffer of specified length. 

void leavc(char *component.-name, int instance) 
process exiting PVM. 

int probe(in t msgtype) 
probe for message arrival of specified type or 'any' if msgtyp-1. 

void get[typel([typel *XI 

.-__-- 

Returns message typg-pr -1 (not arrived)" 
_I 

int probemulti(int num, int *msgtypes) 

void pilt[typcI([typel 

same as probe-ennits specifying an array of num message types. 

inserts x into send buffer in machine independent form. 
[type] must be int, float, dfloat, cplx, dcplx, string, or bytes,-- 

sends signal wi@-spccjfied (abstract) name. 

receives a message of specified type or 'any' if msgtyp-1 (Blocking). 
Returns actual message type. 

int rcvmulti(int nom, int *msgtypes) 
same as rcv, but permits specifying an array of num message types. 

int rcvolim(int msgtype, int num) 
Same as rcv, but limits the number of other messages that may 
arrive in the interim. 

int rcvtlim(int msgtype, int seconds) 
same as rcv, but blocking limited to seconds. 

void rcvinfo(int *bytes, int *msgtype, char "component, int *instance) 
returns the length, type, and sender of last received message. 

void snd(char *component, int instance, int msgtype) 
sends message in send buffer to the specified instance of component. 

void shmat-[typel(char *key, [type] *ptr) 
attaches shared memory segment with name key to local address space 
at pa for size units in typed form. 

void shmdt-[typel(char *key, [type] *ptr) 
detaches shared memory segment with name key from local address space. 

void shmget(char *key, int bytes, char *flag) 
creates shared memory segment with name key of size bytes,-nag = (RO or RW). 

void ready(char *event-name) 

int rcv(int msgtype) 

--11 
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int status(char *component, int instance) 

void terminate(char *component, int instance) 

int uinitiate(int argc, int *argv) 

returns 1 if specified component is active, 0 otherwise. 

terminates a specified component. 

same as initiate, but argv contains object name, arch type, 
machine name, and command line arguments. 

same as initiate, but permits 1/0 redirection. 

same as vinitiate, but specifies a specific machine. 

suspends caller until specified signal name occurs. 

returns component name and instance number of caller. 

int vinitiate(char *object-file, char *stdin, char 'stdour, char *arglist) 

int vinitiateM(char *object-file, char *machine, char *stdin, char *sldout, char *arght ) 

void waituntil(char *event-name) 

void whoami(char *component, int *instance) 

standard interface that supports common concurrent processing paradigms in the form of 
well-defined primitives that are embedded in procedural host languages. Application 
programs are composed of components that are subtasks at a moderately large level of 
granularity. During execution, multiple instances of each component may be initiated. 
Figure 1 depicts a simplified architectural overview of the PVM system. 

Component i n s t a n c e s  

! QQQQQQQ 

Figure 1: PVM Architectural Model 

Application programs view the PVM system as a general and flexible parallel computing 

resource that supports shared memory, message passing, and hybrid models of cornputa- 

tion. This resource may be accessed at three different levels: the transparent mode i n  

which component instances are automatically located at the most appropriate sites, the 

architecture-dependent mode in which the user may indicate specific architectures on 

which particular components are to execute, and the low-level mode in which a particular 

machine may be specified. Such layering permits flexibility while retaining the ability to 

exploit particular strengths of individual machines on the network. The PVM user 
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interface is strongly typed; support for operating in a heterogeneous environment is pro- 

vided in the form of special constructs that selectively perform machine-dependent data 

conversions where necessary. Inter-instance communication constructs include those for 

the exchange of data structures as well as high-level primitives such as broadcast, barrier 

synchronization, mutual exclusion, global extrema, and rendezvous, 

PVM supports two general parallel programming models - tree computations as 

supported by the DIB [SI and Schedule [9] packages, and crowd computations [ 113. Sup- 

porting both paradigms increases the flexibility and power of the system significantly, 

especially since individual subtasks within either of these models may themselves bc 

parallel programs expressed in the other. At present, the model, individual subtasks, and 

their interactions are described in procedural terms; work is in progress to provide graph- 

ical specification. 

Application programs under PVM may possess arbitrary control and dependency 

structures. In other words, at any point in the execution of a concurrent application, the 

processes in existence may have arbitrary relationships between each other and, further, 

any process may communicate and/or synchronize with any other. This is the most 

unstructured fomi of crowd computation, but in practice a significant number of con- 

current applications are more structured. Two typical structures are the tree and the “reg- 

ular crowd’’ structure. We use the latter tern to denote crowd computations in which 

each process is identical; frequently such applications also exhibit regular communica- 

tion and synchronization patterns. Any specific control and dependency struc lure may be 

implemented under the PVM system by appropriate use of PVM constructs and host 

language control flow statements. 

2.2. Heterogeneity Issues 

The PVM system is heterogeneous in several respects: 

Applications: Heterogeneous applications are those that are coinposed of subtasks 

that differ significantly from one another. Particularly in  scientific compu ling, there 

are many such applications. The components of such applications exhibit diverse 

characteristics including vector processing, large-grained SIMD computing, and 

interactive 2-D and 3-D graphics. The traditional solution to this problem is to exe- 

cute each component separately on the most suitable architecture and construct 

manual, application-specific interfaces among them. 

Processing Elements: The PVM system is supported on various machine architec- 

turcs including shared-memory multiprocessors, hypercubes, and scalar computers. 

In order to make the most effective use of any multiprocessors that may be available 
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to an application, two options are provided. The first is the ability to treat multipro- 

cessors as an atomic resource - applications may execute programs that are hard- 

coded for specific multiprocessors under PVM control; such components retain the 

ability to interact with other components executing elsewhere in the system. The 

second is the provision for dynamic incorporation of application modules in a selec- 

tive manner, depending upon the architecture on which an application component 

executes. Tn the latter scheme, an application specifies several alternative modules 

to perform a given function, each suitable for one of the different programming 

models supported. At execution time, PVM selects the most appropriate module to 

utilize, depending upon the actual machine(s) on which the application will execute. 

Networks: Several different network architectures are supported by the PVM system, 

both for reasons of wider applicability as well as to be better able to exploit specific 

features of particular networks. For example, Internet protocols may be used both 

on the DAWA Internetwork and on Ethernets. However, specialized low level pro- 

tocols on Ethernet significantly improve perfomiance and efficiency in distributed 

applications. The PVM system presently supports the Internet protocols[ 111, low 

level Ethernet protocols [ 121, and the IMCS interface [ 131. 

0 

2.3. Other Aspects 

Multiprocessing on loosely coupled networks provides facilities that are normally 

not available on tightly coupled multiprocessors. Debugging support, fault tolerance in 

the form of checkpoint-restart, uniprocessor level I/O facilities, and profiling and moni- 

toring to identify hot-spots or load imbalances within an application are examples. On the 

other hand, several obstacles and difficulties are also associated with networked eon- 

current computing. Among these are generating and maintaining multiple object modules 

for different architectures, considerations of security and intrusion into personal worksta- 

tions, and a number of administrative and housekeeping functions. In its present form, 

PVM supports two auxiliary components that provide some desirable features and over- 

come several of the obstacles. First, the XPVM interface is a graphical tool that eases 

many of the application tasks of specifying components, handling input and output, 

interacting with PVM during execution, managing multiple objects, and providing a 

debugging interface. Second, the PICL library [ 141 supports portable parallel program- 

ming and profiling. These components are discussed in the following sections. 

The PVM support software (a daemon process that executes on each participating 

host) is replicated for each user of the system. The (small) overheads incuned are con- 

sidered acceptable since this scheme eliminates many of the security and addressing 
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issues that are encountered when common support software caters to all users. To 

achieve location transparency and fault tolerance, the PVM system uses the strategy of 

global knowledge among the daemon processes and identifies component instances using 

symbolic names and instance numbers. In the common daemon scheme, naming 

conflicts are possible, and further, hosts that are not used by a particular application are 

required to participate in all events, leading to performance degradation and delays. 

The PVM system supports a limited form of fault tolerance at several levels. First, 

since individual component instances are independent processes (usually on different 

machines), failure of an instance does not affect others. The PVM system attempts to pro- 

vide this level of tolerance even on multiprocessors provided that the operating system 

facilities permit partial degradation. In addition, individual instances that have failed may 

be migrated or restarted if the application so desires, subject once again to host operating 

sy s tem constraints. 

In addition to the above, nearly all the user interface constructs provided by PVM 

contain provisions for the detection and recovery from failures, a feature rarely available 

as a native facility in typical tightly coupled multiprocessors. For example, to preempt 

some forms of deadlock, blocked message reception may be aborted either on timeouts or 

by placing a limit on the number of alternative messages. Barrier synchronization prirni- 

tives permit the specification of a quorum of processes that are required; if it is impossi- 

ble to form such a quorum, processes that invoke barrier constructs are so notified. Distri- 

buted locks may be specified as having a limited “lifetime”; if a component instance 

aborts prematurcly, any locks held by that process are forcibly released. While some of 

these facilities must be used with caution, they are nevertheless valuable - essentially, 

the PW system permits applications to incorporate significant levels of fault tolerance 

when desired. 

3. ’I’he XPVM Interface 

PVM suppoi-ts a wide range of facilities including the ability to configure the set of 

participating hosts dynamically, to debug selected component instances, to position 

specific processes, and to execute multiple processes that make up an application using 

several different control structures. These features may be used under program control, 

augmented by manual execution of standard utilities available on most host environ- 

ments. However, in order to exploit them fully in the most effective way, a user-friendly, 

interactive interface is desirable and necessary. The XPVM front-end is designed to 

enable convenient access to the PVM facilities using a graphical interface, and will be 
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described in this section. XPVM is still evolving, but sufficient functionality is available 

in its present form to allow a substantial number of operations to be performed. 

The XPVM interface essentially sets up an interactive “session” with the PVM sys- 

tem in a manner analogous to a login session. Sessions are on a “per-user” basis; 

indirectly, the XPVM interface permits multiple users to share simultaneously some of 

the support functions provided by PVM. Interaction with XPVM is accomplished via a 

menu-driven interface. In the remainder of this section, the functions supported by the 

XPVM system are described with illustrative examples extracted from an actual session. 

3.1. Configuration Management 

The XPVM interface consists of five major components. The first is configuration 

management and is responsible for managing the pool of hosts that are accessible during 

a session. Using this fxility, PVM users may add to or delete from the pool of hosts on 

which a concurrent application is to execute. The configuration example shown in Figure 

2 is a snapshot at the moment immdeiately preceding the addition of a transputer based 

machine, with hostname “cogent”. In addition, configuration management perfomis 

authentication functions and ensures that specified hosts are indeed accessible by the 

user. PVM daemons are started up on each host, and information regarding the current 

configuration is shared among the active daemons. In addition, the daemons cooperate to 

assign each host an identification number for use in the execution of distributed PVM 

primitives such as broadcast, barrier synchronization and distributed mutual exclusion. 

During this phase, the YVM system also attempts to classify hosts on the basis of geo- 

graphical distance, relative computing power, and load conditions. These parameters are 

obtained using a combination of statically defined tables and instantaneous measurements 

and are used during execution time to select the configuration that is likely to be most 

effective using simple heuristic rules. 

Error diagnostics are provided in the case of authentication failure or when a 

specified machine or architecture type does not exist. It should be noted that additions to 

the host pool may be made while applications are executing; deleting a host with a live 

component instance causes the operation to be delayed until the instance has terminated. 

3.2. Object Management 

One of the most cumbersome aspects of concurrent computing in a heterogeneous 

network is the management of multiple object modules for each component of an appli- 

cation system. To assist the user in handling this issue, XPVM supports an object 

management interface. In its present fomi, this interface is somewhat limited. An 
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Figure 2: Sample XPVM Session 

example scenario showing the present facilities in the object management interface is 

shown in Figure 2. Work is in progress to include dictionary facilities, version control, 

and automatic object code generation to simplify the task of object maintenance. 

3.3. Application 

The XPVM iriterface contains facilities for unstructured and regular crowd cornpu- 

tatioaa models. In addition, tree structured computations will be supported using the 

Schedule [9] system. In the regular crowd model, the XPVM interface permits the 

specification of an object m~du le  and the number of instances that are to be initiated; the 

specified number of processes are then executed automatically by the PVM system, 

thereby avoiding the need for a user-written driver program. In the unstructured model, it 

is assumed that a “host” program assumes responsibility for initiating the application 

component instances if any. The XPVM interface essentially enables the individual ini- 

tiation of separate programs (each of which may subsequently spawn others) once again 

without the need for a control or clriver program. In addition, the application execution 

function of XPVM permits the specification of command line arguments, as well as input 
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and output files and redirection, either for individual component instances or for groups 

of processes. An example of the use of the “RUN” function is shown in Figure 2. 

3.4. Debugging and Monitoring 

One of the most attractive features of the PVM system from the user viewpoint is the 

ability to execute selected, individual instances of a concurrent application under control 

of a debugger. This facility is rarely available on tightly coupled distributed-memory 

multiprocessors, and its absence is a significant obstacle to rapid program development. 

Given this situation, YVM also becomes attractive as an emulator of a variety of 

distributed-memory multiprocessors, in addition to being useful in its own right. ‘me 

XPVM interface enables interactive debugging of selected application component 

instances in a simple and straightforward manner. The “DEBUG” function in the XPVM 

front end permits the user to specify the component name and instance numbers of those 

processes that are to be executed under control of a debugger. When the specified 

instances are initiated, the PVM system executes them under debugger control. At present 

the xdbx debugger is used, and a separate window for each selected process is created. 

An a1 ternative debugging interface that will support debugging functions for all selected 

processes using a single window is being investigated. Such an interface will be very 

valuable for actions such as simultaneous single-step execution in all selected instances. 

An example of the debugging interface that is available at present is shown in Figure 2. 

In addition to debugging individual component instances, the XPVM “MONI- 

TOR” interface can monitor global events. This includes hardware status, link failures, 

synchronization between application instances, and communication delays. The PICL 

interface, described in the following section, is a major component of the monitoring 

function. Essentially, applications that are written in terms of this interface may option- 

ally enable tracing, which globally logs all events including message transmission and 

reception, synchronization, and other distributed events. At present, these global logs 

may be analyzed visually using the ParaCraph tool r151, which graphically displays 

events, their relationships, and (indirectly) parameters such as processor utilization and 

load imbalances. The monitoring facility of the XPVM interface will soon be able to 

display event information dynamically to assist in interactive debugging. 

4. Portable Programming Using PICL 

PICL (Portable Instrumented Communication Library) is a collection of library rou- 

tines that facilitates portable development of multiprocessor programs. A complete 

description of the PICL primitives may be found in 11 61. The PICL, libraries have been 



- 12-  

ported to the PVM system in order to allow applications also to be portable to a network- 

based multiprocessing system. The main issues in porting PICL to a heterogeneous 

environment are discussed in this section. 

The PICL library contains a set of high-level communications routines such as 

broadcast, barrier synchronization, and global extrema finding. ‘fie generic PlCL release 

implements these in terms of low-level PICI, routines, thereby achieving greatcr portabil- 

ity. In the PVM implementation, it was found that better performance could be attained for 

some of these high-level functions if they were translated directly into corresponding 

PVM priniitives, and thercfore this approach was adopted. 

One of the most valuable features of the PICL library is the “trace” option that per- 

mits all communication and synchronization events to be logged. Effective iisc of this 

information for performance analysis, however, is dependent on synchronized clocks on 

all processing elements. While clock synchronization is a problem even on machines 

such as comriiercial hypercubes, the granularity of synchronization attainable on local 

networks is coarser than hypercubes and continues to be an issue of concern in the PVM 

implementation. At present, a combination of the network time protocol [ 191 and internal 

PVM synchronization is used and is acceptable for short-running applications. 

4.1. Portability in Heterogeneous Environments 

TWQ important issues in programming for heterogeneous network environments are 

the issue of data representation and byte ordering. The options available are simple - 
the sending process either converts data to the format on the destination machine, or the 

sender converts data into a machine-independent (or network) format and the receiver 

converts from this format to the local representation. Typically, existing systems use the 

latter scheme (e.g. Sun XDR 1181); although conversion is pcrformed twice, senders do 

not need to know the architecture type of the destination processor, nor do representa- 

tions for every possible architecture have to be known at each sender. 

The, PVM system employs the following strategy - the representation that is com- 

mon to a majority of the hosts in the pool is chosen dynamically as the “standard”, and 

data are transmitted over the communications network i n  this format. Processors in the 

host p o l  that use different data representations or byte ordering perfom conversions 

locally on both transmission and reception, thereby reducing overheads significantly and 

performing conversions only in a (usually) small number of exchanges. However, the 

present implementation performs conversions (at each end) evcn when two “minority” 

processors with the same format exchange data; while this could be avoided, it is not 

believed to be worth the benefit. 
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The generic release of the PICL library is not strongly typed. Since the library was 

originally intended only for homogeneous environments, all communication is performed 

on untyped byte streams. The port of the PICL libraries to the PVM system therefore 

necessitated a few changes in both the PICL package and the PVM system. The PICL 

library was expanded to include two new routines, pacO and unpad) that perform trans- 

lation of typed data to and from the “standard” format. This enhancement is a natural 

extension of the untyped send0 and rem0 constructs that exchange sequences of bytes. 

In order to provide backward compatibility, the PVM system also supports the unryped 

send and receive primitives, with the understanding that knowledgeable users might wish 

to execute existing PICL programs on PVM in a homogeneous networked environment. 

Another issue in implementing the PICL library in a heterogeneous environment is 

the handling of various machine dependent constants, initialization procedures, and other 

characteristics. For example, some message passing multiprocessors require that a subset 

of the processing elements be allocated in a dedicated fashion to an application, while 

others employ the notion of processes “occupying” and “vacating” a CPU. Machine- 

dependent limits on the number of different message types allowed and the maximum 

length of each message are other attributes that must be handled. In addressing these 

issues, the general philosophy adopted by the PVM implementation is to avoid limitations 

wherever possible, or to use an encompassing strategy that is a superset of the limitations 

on existing multiprocessors. For example, the Pvki system does not constrain message 

lengths, each (virtual) processing element is considered capable of simultaneously exe- 

cuting many component instances, and no initialization or processing element allocation 

is necessary. Given the general nature of the PVM system and the operating system 

infrastructure on most machines on typical networks, most of these issues are resolved in 

a straightforward manner. 

4.2. Experiences with PICL on PVM 

In order to test the PICL implementation on PVM, applications written using the 

PICL primitives were ported and tested. The porting effort required no modifications to 

the original programs. Performance figures for these applications under PVM using native 

constructs and PICL are compared in Table 2, which shows that the introduction of the 

additional PICL layer causes little or no significant overhead. 

As important as this ready portability is the fact that tracing and performance visual- 

ization tools can now be used with the PVM system. This facility is extremely useful, and 

efforts are in progress to allow event logging from within native PVM constructs in addi- 

tion to its current availability via the PICL library. To illustrate a few of the kinds of 
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Problem size (Order of Matrix) 

processors 200 5 0  1000 

2.0 (2.0) 9.2 (9.0) 140.6 (141.5) 1046.6 (1040.2) 

Table 2 : Times (in seconds) for Cholesky factorization: PICL (native PVM) 

postmortem analysis possible, displays from the use of the ParaGraph tool are presented 

below. ‘The application chosen is Cholesky factorization of a matrix using 8 processors 

and a 100x100 matrix. The experiment was run on an Intel iPSC/2 hypercube and is con- 

trasted to a network of sun4 workstations in the PVM environment. It should be noted that 

the granularity of this problem size is too fine to be effective in networked environments; 

it was deliberately chosen to highlight the value of the visualization tool i n  understanding 

the behavior of parallel programs executing on PVM. 

Figure 3 shows the Kiviat diagram at an advanced stage in the program’s execution. 

This display gives a geometric depiction of individual processor utilization and overall 

load balance. The dark regions indicate recent utilization by shading a polygon fonnetl 

by connecting individual processor utilizations, with the center representing an idle state 

and thc circumference 100% utilization. The lighter region depicts “high-water” points 

in an analogous manner. 

The diagram shown for the iPSC/2 is typical for this application on a homogeneous, dedi- 

cated distributed-memory rmultiprocessor. l ’he PVM figure however, shows some interest- 

ing aspects. First, thc marked load imbalance is evident. Second, the high-water arca 

shows 100% utilization for aEZ processors (not simultaneous) at some previous time. Both 

these factors are a direct consequence of greatly increased asynchrony in a networked 

environment, and external loads on the workstations causing their effective computing 

capabilities to be different. 

The Gantt chart shown in Figure 4 for the PVM experiment displays a snapshot of 

the execution. Figure 4 shows the asynchrony, as well as elongated busy and idle times in 

comparison to the i P W 2  run. Some of this difference is also attributable to the inhercnt 

differencc in processor speeds, although it is believed that the nature of the network and 

external factors are the primary causes. Therefore, thesc two diagrams in particular must 
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Figure 3: Kiviat Diagrams for Cholesky Factorization (100x100 matrix) 

be interpreted carefully in the PVM context, but they are nevertheless valuable for under- 

standing program behavior and locating errors particularly when the animation is viewed. 

The Feynman diagram (called Space-Time diagram in later versions of ParaGraph) 

is a display that depicts interaction between processing elements as a function of time. 

Processor activity is indicated by horizontal lines, while slanted lines show message 

transmission and reception events. This view, observed at nearly identical points on the 

iPSC/2 and YVM, is shown in Figure 5. This example clearly displays the difference in 

communication speeds in the two environments, and also shows the possible variation in 

communication rates between the same two processing elements. Once again, this 

display is useful in locating bottlenecks, detecting deadlock, and as a basis for fine tuning 

of the application. 

5. Porting Two Scientific Applications to PVM 

In order to assess the practicality and ease of use of PVM, two scientific applications 

were ported to PVM. Each application had been parallelized previously to run on hyper- 

cube multiprocessors. The size of the codes, communication patterns, and communica- 

tion volumes are very different between the two applications. 
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Both applications are written in Fortran. This required that a Fortran-to-C interface 

be designed so that the PVM C functions could be called. A list of these Fortran interface 

routines is given in Tablc 3. 

Scvcral problems arose during the development of this interface. The first problem was 

the different calling conventions of C from Fortran by different compilers. For example, 

some compilers prepcnd C routine names with underscores; others do not. ?‘his problem 

was resolved by having ifdefs for each of the different calling conventions in the inter- 

face routines. A second problem, common to Fortan-to-C interfaces, was correct passing 

of arguments. Fortran passes arguments by reference and C passes arguments by value. 

Because of problems on some supported machines with passing values to Fortran func- 

tions, only subroutines are used in the interface. This causes the user intcrface to PVM to 

be slightly different when programming in Fortran rather than C. A third problem 

encountered was string termination. Several PVM routines pass strings, such as program 

names and signals. C terminates strings with NIJLLs, but this is not a requirement in For- 

tran so some Fortran compilers do not terminate strings. Instead, they keep track of the 

length of strings in an internal table. Sending a C routine a pointer to the beginning of a 

nonteminated string leads to nondeterministic behavior at best and a memory fault at 

worst. The solution to this problem requires that Fortran programmers append all the 

string arguments in their codes with v). For example, calf jinitiate( ’prograrn\O’, 

instancenurn ). The development of this Fortran-to-C interface was the most difficult part 

of porting the two scientific applications. 

The first application calculates the electronic structurc of metallic alloys from first 

principles and is based on the KKR-CPA algorithm [23]. The algorithm is parallelized 

using a “Master/Slave” paradigm in which the host proccss initiates tasks to perform the 

majority of the work. The host also coordinates the tasks to achieve good load balance. 

The code consists of 16000 lines of Fortran divided among 127 subroutines, but only 

about 20 subroutines are involved explicitly with the algorithm’s parallelization. 

The second application performs a molecular dynamics simulation and is used to 

study the interaction and vibration in rnoleculeq. The algorithm is parallelized by having 

multiple copies of the codc solve a PDE on different spatial legions of a 3-D volume. 

Data are exchanged across the boundarieq, and the solution is time steppcd. The code 

consists of only 700 lines of Fortran, but nearly every subroutine is involved in some 

aspect of the algorithin’s parallelization. 

The conversion of both applications to run under P V I I ~  was straightforward. 

Changes were required in three areas. First, initiating tasks is different than in  
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Figure 4: Gantt Charts for Cholesky Factorization (100x100 matrix) 
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Figure 5: Feynman Diagrams for Cholesky Factorization (100x100 matrix) 
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fshmatfloat( key-name, real-buff, isize ) 

fshmatint( key-name, int-buff, isize ) 
fshmdt( key-name, char-buff ) 
fshmdtfloat( key-name, realbuff ) 
fshmdtint( key-name, int-buff ) 

fshmfree( key-name ) 

fshmget( key-name, isize, flags ) 

fterminate( process-name, instancc-number ) 

fwaituntil( event-name ) - 

Table 3: Routines in Fortran-to-pw interface. 

fbarrier( barrier-name, n ) 

fbcast( component-name, msg-id ) 
fenroll( component-name, instance-number ) 

fgetcplx( variable ) 
fgetdcplx( variable ) 
fgetdfloat( variable ) 
fgetfloal( variable ) 
fgetint( ivariable ) 

fgetstring( string ) 

finutcolx( variable ) 

fputdcplx( variable ) 
fputdkloat( variable ) 

I fDutfloat( variable ) I 

frecv( msg-id ) 

ensure that tasks have enrolled before conmunicating with one another. If an enrolled 

task sends a message to a task that has not yet enrolled, the message is lost. Constructs, 
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such as waituntil(), are provided in PVM to ensure that tasks are ready. Second, in  order 

to facilitate the use of heterogeneous architectures, PVM routines are called to convert all 

messages to a “standard” format before sending and to convert them to a machine- 

specific fonnat on receipt. As discussed earlier, the PVM routines may not actually do a 

conversion depending on the architectures of the sending task and receiving task. Third, 

sending of messages is changed to account for the fact that the user often does not know 

on which machine a task is running. A task (or instance) is defined by a process name 

and instance number. These two values are used to specify uniquely the message destina- 

tion. 

Having made these changes, these two applications were run on a network of Sun 

and TRM workstations connected by Ethernet. XPVM was used during these experiments 

to relieve the tedium of starting PVM on all the machines and in the case of the molecular 

dynamics simulation, starting each copy of the application program. Results from these 

experiments are given in the next section. 

6. Results 

The electronic structurc application is computationally intensive with only a few 

hundred very large (10KB - 500KB) messages. Because the message traffic is small corn- 

pared to the computation time, this application actually ran faster on a network of eight 

IBM RS/6000 workstations than on eight nodes of an Intel iPSC3/860 hypercube with 

dedicated communication channels. The execution times for the test problem were 33 

minutes and 40 minutes respectively. All of this performance gain is due to the higher 

execution rate of RS/6000 versus the i860 processors for this application. All 128 proces- 

sors of the Intel machine have becn used during computational cxperiments on supcrcon- 

dwtors producing cxecution rates in excess of 2.5 Gflops. The performance of compar- 

able expcrinients on various PVM configurations of RS/6000 workstations is shown i n  

Table 4. 

The results of the molecular dynamics application for a range of processors and 

problem sizes are given in Table 5. The table compares the execution times of PVM using 

a network of RS/6000 workstations and the iPSC/860 hypercube. Again for a small 

number of processors, PVM over a 1.2 MR/sec Ethcsnet is quite competitive with a hyper- 

cube with dedicated 2 8  MB/sec channels. Load imbalances became worse on PVM when 

eight processors were used because the workstations had different computational rates. 

With an even more heterogeneous tnixture of machines, the load imbalances would be 

expected to gct much worse given this application’s method of parallelization. (These 

load imbalances arc not seen in the electronic structure application because its method of 
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Model 320 model 530 

nprm 1  flops 

serial 18.2 

2 31.3 

4 63.1 

N/A --- 

I 6 (530’s) + 4 (320’s) 206.5 I 

nproc I  flops 

serial 24.4 
2 45.9 

4 92.2 

7 161.9 

I 7 (530’s) + 4 (320’s) 226.0 I 
I 1 (550) + 8 (530’s) + 4 (320’s) 261.0 I 

Table 4 : Perfomance of the KKR-CPA code on various IBM RS/6000 configurations. 

Table 5: Comparing execution time (secs) for molecular dynamics application. 

parallelization employs a dynamic load balancing scheme.) 

Overall the performance of these two applications show the viability of using rvM 

to achieve supercomputer performance with existing hardware. Even higher perfor- 

mance is expected as faster networks become available. 
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