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PARALLELIZING THE SPECTRAL TRANSFORM METHOD -~ PART II

David W. Walker
Patrick H. Worley
John B. Drake

Abstract

This paper describes the parallelization and performance of the spectral method for
solving the shallow water equations on the surface of a sphere using a 128-node Intel
iPSC/860 hypercube. The shallow water equations form a computational kernel of more
complex climate models. This work is part of ‘a research program to develop climate
models that are capable of much longer simulations at a significantly finer resolution than
current models. Such models are important in understanding the effects of the increasing
atmospheric concentrations of greenhouse gases, and the computational requirements are
so large that massively parallel multiprocessors will be necessary to run climate. models
simulations in a reasonable amount of time.

The spectral method involves the transformation of data between the physical, Fourier,
and spectral domains. Each of these domains is two-dimensional. The spectral method
performs Fourier transforms in the longitude direction followed by summation in the lat-
itude direction to evaluate the discrete spectral transform. A simple way of parallelizing
the spectral code is to decompose the physical problem domain in just the latitude di-
rection. This allows an optimized sequential FFT algorithm to be used in the longitude
direction. However, this approach limits the number of processors that can be brought to
bear on the problem. Decomposing the problem over both directions allows the parallelism
inherent in the problem to be exploited more effectively - the grain size is reduced and
more processors can be used.

Results are presented that show that decomposing over both directions does result in a
morte rapid solution of the problem. The results show that for a given problem and number
of processors, the optimum decomposition has approximately equal numbers of processors
in each direction. Load imbalance also has an impact on the performance of the method.
The importance of minimizing communication latency and overlapping communication
with calculation is stressed. General methods for doing this, that may be applied to many
other problems, are discussed.






1. Introduction

In order to understand the effects of the increasing atmospheric concentrations of greenhouse
gases, climate models are needed that are capable of much longer and more numerous sim-
ulations at a significantly finer resolution than are currently available. Developing such an
advanced climate model will require advances in hardware, numerical algorithms, and model
physics. In particular, it is clear that massively parallel niultiprocessors will be necessary to
run such a simulation in a reasonable amount of time. As part of this research effort, we are
investigating whether current numerical techniques are suitable for use in an advanced climate
model.

The spectral transform method [5] is the standard numerical technique used to solve partial
differential equations on the sphere in global climate modeling (see, for example, [1]). For
example, it 1s used in CCM1 [10] (the Community Climate Model 1), and its successor CCM2.
There are both numerical and algorithmic issues to be considered before using the spectral
transform method for climate models with much finer resolutions. In the work described here,
we restrict ourselves to investigating how efficiently the spectral transform method can be
parallelized on distributed memory multiprocessors, and how this performance is likely to scale
as both the problem size and the number of processors increase.

In this paper, which follows on from the preliminary work described in [11], results are
presented for a parallel FORTRAN program that uses the spectral transform method to solve
the nonlinear shallow water equations on the sphere. These results show that an efficient
implementation is possible on a 128-node Intel iPSC/860, and that the high-resolution cases of
interest are expected to run efficiently on larger, more powerful, distributed memory machines,
such as the Intel Delta and Sigma multiprocessors. The results also highlight the need for
specialized programming techniques on machines for which computation is fast compared with
the asymptotic communication speed and message latency. Except for embarassingly parallel
problems, such machines can be exploited efficiently only if steps are taken to reduce and/or
mask the effects of communication overhead. In this work we use large granularity pipelining
and task interleaving to reduce the impact of communication overhead to an acceptably low
level. These techniques, discussed in more detail in Section 5.4, are applicable to a large class
of scientific. and engineering problems.

2. The Problem

The shallow water equations constitute a simplified weather prediction model that has been used
to investigate numerical methods, and benchmark a number of machines. The sequential code,
SSWMSB, from which the parallel version described in this work was derived, was originally
written by Dr. J. J. Hack at NCAR. This particular code is a good approximation to the
computational kernel of CCM2, which is currently being developed at the National Center for
Atmospheric Research (NCAR). We are currently developing a parallel version of CCM2 that
will run on the Intel iPSC/860 and similar multiprocessors, and will present our initial results
in parallelizing CCM2 in a subsequent paper.

The SSWMSB code uses the spectral transform method to solve the shallow water equations
on the surface of a sphere. In each timestep the state variables of the problem: are transformed
between the physical domain, where most of the physical forces are calculated,; and the spectral
domain, where the terms of the differential equation are evaluated. A more complete description
of the method is given in [11]. The spectral representation of a state variable, £, on the surface
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of a sphere is defined by an approximation to the variable by a truncated series of spherical

harmonic functions,
M  N(m)

Eqm= ) D ErPr(pe™ (1)

m=-M nz={m)|
where u = sinf, 8 is latitude, A is longitude, and P7*(p) is the associated Legendre func-
tion. State variables are approximated on an I x J longitude-latitude grid. Exact, unaliased
transforms of quadratic terms are obtained if M is chosen to satisfy J > (3M + 1)/2, and if
I =2J, and N(m) = M. In this case the value of M characterizes the grid resolution, and the
term “TM” is used to denote a particular discretization. Thus, for example, the T85 case has

that requires I to be a power of 2.

Transforming from physical coordinates to spectral coordinates involves performing an FFT
for each line of constant latitude, followed by integration over latitude using Gaussian quadra-
ture to obtain the spectral coeflicients,

J-1

€M = )€™ () Pt (1) w (2)

j=0

where £™ is the mth Fourier coeflicient, and w; is the Gaussian quadrature weight corre-
sponding to latitude g;. In the parallel implementation, the fast Fourier transform and the
integration over latitude, that together give the Legendre transform, define the problem. All
other calculations are perfectly parallel and require no interprocessor communication.

3. Data Distribution

In general, a one-dimeunsional array of data can be distributed (or decomposed) among a set of
processors by first arranging the data into non-intersecting subsets, and then uniquely assigning
one subset to each processor. In many cases, the decomposition of arrays over more than one
dimension can be expressed as the Cartesian product of one-dimensional decompositions over
each array dimension.

The indices of a one-dimensional array of N items can be partitioned into N, subsets, J;,

as follows,
Ti={j:7j€Zt & kmin(d) <PU)<kmaz(i) & 0<j< N} 3)
fori=10,1,..., N, —1, where it has been assumed that array indices are non-negative and start

at 0. Here Z1 is the set of non-negative integers, and ky;n and kp,qc are integers satisfying,

kmin(o) =
kmin()) = kmaz(i—1)  (i=1,2,...,N, —1) (1)
knw.z:(Np - ]) = N

where N, = [N/N,| x Np, and P(-) is the partitioning function that reorders the index set
{0,1,...,N — 1}. Thus, the partitioning in Eq. (3) can be regarded as taking place in two
phases. First the index set is reordered so that the integers P(j) form a sequence running from
0 up to N — 1. This ordering of the indices is then divided into blocks of contiguous items. The
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kinin and ke should be chosen to ensure good load balance.

Two common examples of data distributions are the linear and scattered (or wrap) parti-
tionings. In a linear partition the index set is simply divided into contiguous blocks. Thus,
no reordering is required, and P(j) = j. In a scattered partitioning the data are reordered
according to the function,

P(j) = |j/Np] + (i mod Np) * [N/ Np] ()

with kyin(i) = i * [N/N,]. This groups together data items whose indices differ by multiples
of Ny.

Having partitioned the data each subset must next be assigned to one of the N, processors.
This can be expressed as A(i) = p, where A(-) is the essignment function, indicating that
the ith subset is assigned to processor p. Examples of assignment functions are the identity
mapping, A(i) = i, and the binary-reflected Gray code mapping, A(i) = G(i). If cx(i) denotes
the kth most significant bit of i, then the bitwise definition of G(-) is,

cx(G(i)) = XOR (er41(d), cx(d)),  k=0,1,... | (6)

where XOR denotes the bitwise exclusive OR of its arguments.

In solving the shallow water equations, computations are performed in both the physical
and the spectral domains, and transforming from one domain to the other involves passing
through the Fourier domain. Thus, we must be concerned with the distribution of data in
three domains. In all three domains the basic data structures are two-dimensional, and the
decompositions in the physical and Fourier domains {(but not the spectral domain) can be
expressed as Cartesian products of two.one-dimensional decompositions, as explained in rmore
detail below. In all three domains a Ny x Ny processor grid is used. In the next section we
describe the data decomposition in each domain, and give a specific example for the T10 case
decomposed onto a 4 x 4 processor grid.

3.1. Decomposition of the Physical Domain

The physical domain of the problem is two-dimensional, with longitude being one dimension,
and latitude the other. Longitude and latitude are discretized to form an I x J grid. In the
evaluation of the spectral coefficients, FFTs are performed over the longitude direction, and
integration (i.e., weighted summation) is performed over the latitude direction. Since there is
no coupling between different data points in either the physical or spectral domain, the data
partitioning can be optimized in the longitude direction for the evaluation of the FF'Ts, and in
the latitude direction for the integration. Thus, in the physical domain the data are divided
into N, and N, subsets in the longitude and latitude directions, respectively.

In the FFT algorithm data items interact in a pairwise fashion, and the array indices of
each interacting pair of data items differ in exactly one bit. For this reason, on hypercube
multiprocessors non-local communication in the concurrent FFT algorithm is minimized if
the input data are decomnposed in “natural” order.. Thus, in the physical domain a linear
partitioning is used in the longitude direction, and the assignment function in the longitude
direction is the identity function.

A linear partitioning could also be used in the latitude direction, but it-is computationally
more efficient to process the corresponding latitude lines in the north and south hemispheres
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in pairs. Thus, if i = J/Ny is the number of latitudes per processor, and we define

) =i | 33| + 3 mod G72) M
then in the physical domain the partitioning function in the latitude direction is,

~ [ k() ifj<lI/4
P(?)“{ I-1-b() ifj>1/4 X

The kpin and ke in Egs. (3) and (4) are chosen so that, as nearly as possible, each processor
contains the same number of data points.

A ring algorithm is used to perform the integration over latitude, and a Gray code assign-
ment function is used in this direction, since this ensures that neighbors in the ring are directly
connected by a communication channel. It should be noted that this assignment function is
appropriate only for a hypercube topology. For a mesh topology, for example, the identity
function should be used in both the longitude and latitude directions.

The partitioning of the longitude-latitude grid in the physical domain can be expressed as
the Cartesian product of the one dimensional partitionings in each direction. Thus, each subset
of the data is labeled by two indices, (¢, 7). The assignment function can be written as,

A1, §) =i+ G(j) * Ny, (t=0,1,...,N; —-1, j=0,1,...,N,~1) 9)

where G(j) denotes the binary-reflected Gray code of j (see Eq. (6)). Note that here it has
been assumed that blocks of contiguous bits in the binary representation of the processor
number have been assigned to each dimension. That is, the least significant log, N, bits of the
processor number correspond to the longitude dimension, and the most significant log, N, bits
to the latitude dimension. In general, the partitioning of bits over dimensions can be done in
any unique way, just as the items in a one-dimensional array can be partitioned.

3.2. Decomposition of the Fourier Domain

The Fourier domain can be regarded as a wavenumber-latitude grid, so like the physical domain,
the Fourier doisn is two-dimensional. However, a different decomposition is used. The differ-
ences arise because of the way in which the FFT algorithm permutes the ordering of the output
Fourier coefficients. The one-dimensional FFT produces Fourier coefficients in “bit-reversed”
order. That is, if the number of data points to be transformed is I = 2%, then the array index
of the mth Fourier coefficient is given by the k bits of m written in reverse order. Denoting
this quantity by By (m) then, for example, B4(12) = 3 since if the 4 bits in the binary represen-
tation of 12 are written in reverse order we get 0011, the decimal representation of which is 3.
A second factor also influences the partitioning in the Fourier domain. As described in Section
4.1, a version of the FIF'T algorithm designed for transforming real functions is used. Having
performed the FFT on the half-length complex array, the Fourier coefficients of the original
real data are found by combining data for indices m and I/2 — m. In general, communication
is needed to bring these points into the same processor. This is done by reordering the data so
that data points to be combined differ by 1 in their array indices. Thus, in the Fourier domain
the partitioning function, P(-), in the wavenumber direction includes the combined effects of
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bit reversal and the reordering needed to extract the Fourier coefficients, and is given by,

| Be(h) ifj < 1/4
PG) = { B:(31/4-j) if j > 1/4 (10)

The partitioning function in the latitude direction is the same as in the physical domain.

The assignment function in the Fourier domain also differs from that in the physical domain.
The difference arises because of the way that data are communicated in the outer loop of the
FFT algorithm, which is explained in more detail in Section 4.2. In the Fourier domain the
ith set of data in the wavenumber direction is assigned to the processor obtained by cyclically
shifting the d bits of the processor number one bit to the right (where the number of processors
is 29). Denoting this quantity by Ra(i) then, for example, Rs(1) = 4, since if the 3 bits, 001, of
the binary representation of 1 are cyclically shifted one bit to the right we get 100, the decimal
representation of which is 4. A binary-reflected Gray code assignment function is still used in
the latitude direction, so in the Fourier domain the assignment function is,

A(ivj): Rdm(i)+(;(j)*Nz (11)

where dy = log, N,.

3.3. Decomposition of the Spectral Domain

In decomposing the spectral coefficients, £, a two-dimensional processor. grid is-again used.
In the Fourier domain, the ith subset of wavenumbers is assigned to column number R4 (%)
in the processor grid. A similar partitioning over wavenumber is used in the spectral domain.
However; wavenumbers for which m > M are not used, so in the spectral domain we have the
following partitioning over wavenumber;

Si == {] : ] & Z+ & ‘kmin(i) S P(]) < kmar(’) & 0 S J S M} (12)

Fach column of the processor grid contains Ny processors, and column number Ry, (i) is
responsible for the spectral coefficients 7%, where m € §; and n = m,m + 1,..., M. Within
each column of processors these coefficients can be ordered as a linear array by running first
over n and then over m. This array is then divided into subsets using a linear partitioning,
and 1s assigned to the processors in the column using a binary-reflected Gray code assignment
function.. It should be noted that, since the number of spectral coefficients assigned to.each
column of processors will differ slightly, the partitioning of the spectral coefficients cannot be
expressed as the Cartesian product of two one-dimensional partitionings. Some degree of load
imbalance will also arise from this partitioning, and this topic is discussed in Section 5.3.

3.4. Data Decomposition for an Example Problem

To demonstrate how the physical, Fourier; and spectral domains are decomposed for a specific
problem; we consider the T10 case for a 4 x 4 processor grid. The T10 case does not have
sufficient resolution to be of practical interest, however, it is useful for illustrative purposes.
For the T10 problem there are 32 data points in the longitude direction and 16 data points in
the latitude direction.

We first consider the decomposition of the physical domain. A linear partitioning function
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is applied in the longitude direction leaving the ordering of the longitude indices unchanged.
In the latitude direction the partitioning function given in Eq. (8) is used in order to pair up
corresponding latitude lines in the north and south hemispheres. Since there are 4 processors
in each direction, each processor is responsible for a subblock of 8 x 4 data points. This is
shown in Figure 1(a), in which the thicker lines show the divisions between processors, and
each small cell represents one data point. The assignment given in Eq. (9) is used to uniquely
associate each data subblock with a processor. A linear assignment function is applied in the
longitude direction, while in the latitude direction a Gray code assignment function is used.
This assignment is shown in Figure 1(a) by the numbered circles, which indicate the number
of the processor assigned to each data subblock.

Since we evaluate the Fourier coefficients of real functions in the longitude direction, only the
coefficients, €™, for m = 0,1,...,1/2, need be explicitly stored. Also, the imaginary parts of £°
and €2/ are identically zero, so the real part of £/2 can be stored as the imaginary part of £°.
The Fourier domain, therefore, is only half the size of the physical domain, as shown in Figure
1(b), with each processor containing a 4 x 4 subblock of Fourier coefficients. However, since
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the Fourier coefficients are complex numbers the total storage required for a real function and
its Fourier coeflicients is the same, and the transform can be done in-place. In performing the
FFTs the ordering of the latitudé indices is unchanged: However, the order of the wavenumber
index is scrambled according to the partitioning function given in Eq. (10). This function
permutes the indices into bit-reversed order, and then reorders them so that indices m and
I/2 —m are adjacent. Thus, in Figure 1(b), the wavenumber indices are arranged in successive
pairs, each of which sums to 16. The assignment of data subblocks to processors is as prescribed
in Eq. (11), that is, the ith subblock in the wavenumber direction is assigned to column Ry, (7)
of the processor grid, and the jth subblock in the latitude direction is assigned to row G(j) of
the processor grid.

The decomposition of the spectral domain is illustrated in Figure 2. 1t should be recalled
that the spectral transform is truncated at m = M, and that for a particular value of m the
index n runs from m to M. In this example M = 10, so wavenumber indices 11, 12, 13, 14, 15,
and 16 are discarded. This is shown in Figure 2(a) by empty columns. The shaded columns
in Figure 2(a) represent the spectral coeflicients included in the spectral transforms. Thus,
for example, the first column represents the coefficients £3,€9,...,€9,. The decomposition
over wavenumber index is the same as in Fourier space, and determines which column of the
processor grid €7 lies in for fixed m.

Figure 2(a) only shows which spectral coefficients are to be included in the decomposition
of the spectral domain. The actual decomposition is shown in Figure 2(b). In each column of
processors the spectral coefficients to be used are arranged as a single array by running first
over the n index, and then over the mn index: This is shown, for example, in the first column
of Figure 2(b). Here the first 11 shaded boxes represent &2 for n = 0,1,...,10; the next 3
unshaded boxes represent £ for n = 8,9,10; and the next 7 shaded boxes represent &2 for
n = 4,5,...,10. The shading of boxes is chosen to clearly distinguish different m values, and
has no other significance. Having produced, for each processor column, a one-dimensional array
of spectral coefficients, this array is decomposed among the processors in each column using
a linear partitioning function and a Gray code assignment function. Thus, in Figure 2(b),
processor 0 is assigned the first 6 spectral coefficients in the first column, and processors 4,
12, and 8 each are assigned 5 spectral coefficients. The decomposition of the spectral domain
cannot be expressed as the Cartesian product of two one-dimensional decompositions, rather
it should be regarded as a set of N, one-dimensional decompositions, each over Ny processors.
Figure 2(b) shows the load imbalance that arises from discarding spectral coeflicients with
m > M. Processor 0 has 6 coeflicients, while other processors such as 10 and 11 have only 3
coefficients. The impact of this imbalance will be discussed in Section 5.3.

4. Algorithmic Details

4.1. The Sequential FFT Algorithm

The sequential, I-point, forward FFT algorithm consists of k steps, where I = 2%, In each step,
/2 “butterfly” computations are performed to update the data values in-place. Each butterfly
takes two data items whose array indices differ by exactly one bit, and uses them to compute
two new values that replace the values of the original two data items. At the end of the & steps
the Fourier coeflicients are obtained in bit-reversed order, and the computational complexity is
O(I log1). The FFT algorithm, therefore, consists of -an outer loop over k steps, and an inner
loop over I/2 butterfly computations.
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Figure 2. The decomposition of the spectral do-
main over a 4 X 4 grid of processors. The shaded (b)
cells in figure (a) represent the spectral coeffi-
cients to be included in the spectral transform,
and how these are decomposed over processor
columns. Figure (b) shows the actual decompo-
sition within each processor column.

(a)
Processor Column Numiber
0 1 2 3

indax

. S -
0 REN

08 412214610 1155113137 9
wavanumber index

The computational complexity can be reduced by a factor of two if we seek the FFT of a
real function, rather than that of a complex function. The method followed was that given in
Numerical Recipes [7], which for completeness we shall now outline. Given the real array, f;
for j = 0,1,...,1— 1, to be transfortned, we generate a complex array, h, of length I/2, the
real and imaginary values of which are the even and odd points in f, respectively. Thus,

R(hj) = fa5, S(h;) = foj+1, (G=01,...,I/2-1) (13)

After performing a complex I/2-point FFT on the array h, to give the Fourier transform, H,
the transform, F'| of the original real function f can be extracted as follows;

Fyp = (Hm + H;‘/Zwm) - % (11,,, - 11;/2_m) o/l (m=0,1,...,1/2)  (14)
where z* denotes the complex conjugate of z, and i = /=1. Since Ff_, = Fy,, in general we
need store only the spectrum for m = 0 to m = I /2. For the spectral method used in this work
the spectrum is truncated at some value M satisfying I > 3M + 1, so the upper half of the
spectrum is not needed in any case. To perform the inverse transform, the complex transform
H can be recovered from Eq. (14), and an I/2-point inverse FFT is performed on this array,
leading directly to the real-valued array, f.




4.2. The Parallel FFT Algorithm

The parallel FFT of 2* points on a d-dimensional hypercube has a d-step parallel phase, followed
by a (k — d)-step sequential phase [3,8]. The parallel phase is similar to the first d steps of the
sequential algorithm, except that interprocessor communication is required to-bring the pairs of
data points updated in each butterfly into the same processor. In addition, in both the parallel
and sequential phases, the number of “local” butterflies done per step in each processor is /2,
where i is the number of data items per processor.

In the early parallel FFT algorithms (for example [4]), communication was performed within
the inner loop of the algorithm. Thus, a message was sent in each pass through the inner
loop, each time incurring a communication latency cost. For early hypercubes, such as the
Caltech/JPL Mark II hypercube, this latency cost was small compared with the total cost of
sending a message, and so inner loop commuiiication did not degrade performance too much.
However, for modern machines the overhead due to latency for short messages can dominate the
communication cost, and this precludes the use of inner loop communication for most algorithms
on machines like the Intel iPSC/860 hypercube. We, therefore, move the communication in the
parallel phase of the FFT to the outer loop. This reduces the communication latency by a
factor of about /2, and also reduces the communication volume by a factor of 2.

In step r of the parallel phase of the algorithm (r=0,1,...,d — 1), processor p swaps half
of its data items with half of those:in processor g; where ¢ is the number obtained by fipping
bit (d — r — 1) of p. Bits are numbered in order of increasing significance, startingfrom 0. If
bit (d — r = 1) of processor p is 0 then p swaps its-upper i/2 data items with the lower i/2
data items of processor ¢; otherwise, p swaps its lower i/2 data items with the upper i/2 data
items of ¢. This communication of data in the parallel phase can be expressed as a series of d
bitwise exchanges in the binary representation of the global index. Swarztrauber [8] refers to
these types of bitwise transformation of the global index as i-cycles (see also [6]). The global
index consists of k bits. For a linear partitioning function the (k — d) least significant bits give
the local index within a particular processor, and if the assignment function is the identity
function the d most significant bits give the processor number. In step r of:the parallel phase,
bit (k — d — 1) of the global index, which is the most significant bit of the local index, and bit
(k — r — 1) are swapped. After the d steps of the parallel phase the original bits of the global
index have been permuted as follows;

Original bit order Bit order after d steps
(k-1,%-2,...,1,0) = (k—-d-1,k-1k-2,.. k—d+1Lk~dk~d-2,...,1,0)

Now one more communication step exchanging bits (k—1) and (k—d—1) results in the following
ordering,
k—dk—-1,k-2, .. k—-d+1k—-d-1,...,1,0)

The (k — d) least significant bits are now in their original order, indicating that the ordering
of data items within each processor has been left unchanged by the (d + 1) communications.
The d most significant bits, however, have been cyclically shifted one bit to the right. This
means that the net effect of the communication is to place the data that would otherwise
be in processor p in processor Rg(p). Thus, the assignment function has changed from the
original identity function, A(Z) =i, to A({) = Ry(i). These changes occur in addition to the bit
reversal produced by the FFT algorithm, which changes the partition function from P(j) =.j
to P(j) = Bk (j)-
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Having performed the FFT on the complex array, H, it is still necessary to combine the
data items at array indices m and I/2 —m for m = 1,2,...,I/4 — 1 in order to get the FFT
of the original real array (see Eq. (14)). To do this the data to be combined need to be in the
same processor, and this requires that the partition function be further modified to the form
given in Eq. (10).

4.3. Integration over latitude

Having evaluated the Fourier coefficients, €7 (y;), along each latitude line, y;, the spectral
coefficients are found by summing over latitude,

J~1 Ny-1 Ny-1
er = S e Prwi = 3 | YD em ) PRuw | = S TG (15)
j=0 i=0 \JEL i=0

where £; is the ith index subset in the partitioning over latitude. The partial sums, 7;7*(7), can
be evaluated within each processor with no communication. Thus, the evaluation of the spectral
coefficients, £, requires the summation of Ny partial sums. This summation is performed
independently in each column of the processor grid using a ring algorithm, and is described in
detail in {11]. The ring algorithin proceeds in Ny — 1 steps. Initially each processor evaluates
the partial sums, 77, for the spectral coefficients assigned to its neighbor in the decomposition
of the spectral domain. In the first step of the ring algorithm each processor passes these partial
sums one step around the ring. Each processor receives a set of partial sums, and evaluates its
contribution to each. The contributions are then added to the partial sums. After Ny — 1 such
steps all contributions have been summed, and the decomposition of the spectral coefficients is
as described in Sections 3.3 and 3.4.

5. Results and Discussion

We shall first describe the incremental steps taken in developing the concurrent code for solving
the shallow water equations, and then results for the optimum implementation will be presented
and discussed. In all cases the code was compiled with release 1.1 of The Portland Group 1860
Fortran compiler, with the default optimization level of 1.

The process of implementing the shallow water equation code on the 128-node Intel iPSC/860
hypercube began with a sequential version suitable for executing on a Unix workstation. In
the first phase of the concurrent implementation the data were decomposed only over the y
direction, which corresponds to latitude in the physical and Fourier domains and to spectral
coeflicient index in the spectral domain. The data were not decomposed over the z direction
(the latitude/wavenumber direction). This allowed the original FFT routines in the sequential
code to be used, and effort was focused on optimizing the parallel summation over latitudes
in Eq. (2). In the second phase of the implementation, decomposition over both the y and z
directions was investigated.

5.1. Parallel Summation

Results for the parallel summation in Section 4.3 have been presented and discussed at length
in Part I [11], so we shall just summarize these results here. In Part I the problem domains were
partitioned in only the y direction, so N, = 1. In the physical and Fourier domains each pro-
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cessor is responsible for a set of latitude lines, as in Eq. (8). In the first attempt at parallelizing
the code the spectral coefficients were dupligated in all processors. Each processor evaluated
its contribution to each spectral coefficient, and these contributions were then summed over all
processors. In this case the inverse transform could be found locally since each processor holds
all the spectral coefficients. This approach is simple to implement, requiring few changes to the
original sequential code. However, it was found to be unacceptable due to high communication
costs, and the duplication of computation in the spectral domain. The duplication of spectral
coefficients also wastes memory. ‘

The second approach also partitioned the spectral coefficients, as described in Section 3.
This eliminated most of the redundant computation, and also improved the concurrent efficiency
of the summation phase of the spectral transform. This summation was performed using a ring
pipeline; as described in Section 5.4, and the application ran efficiently for problem sizes of
interest on the 128-node Intel iPSC/860 hypercube. For the T340 problem running on 128
nodes a‘speed of 340 Mflops was achieved.

5.2. Parallel FFTs

Decomposing the data over just the y direction limits the number of processors that can be
brought to bear on the solution of the shallow water equations, and hence the extent to which
the-problem’s inherent parallelism can be exploited:: In order to make effective use of the
computational power of massively parallel MIMD computers, containing hundreds or thousands
of processors, it is necessary to decompose data domains in the z direction as well as the y
direction. In the shallow water equation code Fourier transforms are performed in the longitude
direction, and so decomposition in this direction requires the development of a parallel FFT
algorithm.

The basic structure of the parallel FET algorithm has already been described in Section
4.2, and will be referred to as version 1. However; some tuning was required to get.acceptable
performance. The tuning concentrated on the following three areas;

1. replacing the evaluation of the complex exponentials in the butterfly calculations by a
lookup table,

2. reducing communication latency by reducing the number of messages sent,
3. masking communication costs by overlapping communication and calculation.

We refer to the code produced by replacing the evaluation of the complex exponentials by a
lookup table as version 2. As shown in Table 1, version 2 runs significantly faster than version
1. For the T85 case with Ny x Ny = 1 x32 (i.e., for sequential FF'Ts) the performance improved
by a factor of 4. It is important to note that although the concurrent efficiency of version 1is
larger than that of version 2, its performance is poorer - judging an algorithm on the basis of
efficiencies can be misleading. The efficiency is useful in gauging the scalability of an algorithm,
but by itself cannot be used to determine the best algorithm on a given concurrent machine.
The memory requirements for the lookup tables for the forward FFT are O(i), while for the
invérse FFT they are O(ilog N;). If only asingle FFT needs to be computed the lockup tables
may consume a relatively large amount of memory. -However, in the shallow water equation
code each processor, in general; evaluates several FFTs, thereby amortizing the memory cost.

The next step in tuning the parallel algorithm involved attempting to modify version 2
to reduce communication latency, and to overlap communication and calculation. As noted
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by Walker [9], if the communication is performed in the outer loop the butterfly calculations
in a single FFT cannot be overlapped with communication. The evaluation of the complex
exponentials can be overlapped with communication, but since we are using a lookup table
this is not an option. We could put the communication back inside the inner loop, which
does permit the butterfly calculation to be overlapped with communication. This may be a
good approach on some machines, however, for the Intel iPSC/860 any gains from overlapping
communication and calculation would be swamped by the higher latency overhead.

Fortunately the shallow water equation code contains another outer loop that we have so far
ignored. Namely, the loop over the latitudes in each processor. By making the loop over latitude
the inner loop (rather than the outer loop) we can perform the communication necessary at a
given step of the FFT for all latitudes at the same time. This approach requires data to be
packed into and unpacked out of communication buffers, and the communication buffers require
memory of order the size of the original data, however the communication latency is reduced by
a further factor of ny., the number of latitude lines per processor. Essentially, exchanging the
order of the outer two loops has allowed us to push the communication to the next outermost
level of the loop hierarchy, and that is why latency is reduced.

Since the FFTs over different latitude lines are independent we can now also overlap com-
munication and calculation. This is done by dividing the latitude lines in each processor into
two equally-sized sets. While the calculations for the first set are being performed the commu-
nication for the second set is done, and vice versa. We refer to the code that incorporates these
modifications as version 3.

In Table 1, we present results for the T85 case for versions 1, 2 and 3 on up to 128 nodes
of the Intel iPSC/860 hypercube. Version 3, in which latency is lowest and communication is
overlapped with computation, is clearly the best algorithm. In version 2, decomposing over the
z-direction for a fixed number of processors always results in poorer performance. However,
in version 3 the performance at first improves as N, increases, and then falls off when it is
increased further, as shown in Figure 3. This behavior arises because as N, increases the time
to do the FFTs also increases due to the higher concurrent overhead. However, for a fixed
number of processors an increase in N, reduces Ny, so the concurrent summation described
in Section 4.3 will be performed more efficiently. An increase in N, also increases the load
imbalance in the summation phase. The net effect of these conflicting trends is to produce
a shallow minimum in the plot of processing time versus N,. However, if the grain size in
both directions is large enough, then both the FFT and summation phases will be computed
efficiently, and load imbalance will result in a monotonic rise in the processing time as N;
increases, as may be seen in some of the entries in Table 2 (for example, T85 on up to 16
processors).

Having determined that version 3 gives reasonably good performance, we then went on
to use version 3 for problem sizes T21, T42, T85, T169, and T340, for processor grids with
different sizes and shapes. The results are presented in Table 2.

Figure 4 illustrates how the shape of the processor mesh affects performance. In Figure 4 the
tume for 10 time steps of the T85 case is plotted as a function of the total number of processors

and for the mixed decomposition that gives the best performance. Both Figures 3 and 4 show
how a mixed decomposition results in better performance, particularly for smaller grain sizes.
Figure 4 also shows that for a mixed decomposition 128 processors can be used, whereas for a
pure longitudinal (latitudinal) decomposition only up to 64 processors can be used due to an
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T85 timings for 10 time steps
Nz x Ny Version 1 Version 2 Version .3
1x32 7:98 2.05 2.02
2x 16 8.14 2.39 1.82
4x8 9.70 4.21 1.78
8x4 8.88 3.55 1.85
16 x 2 12.18 6.39 2.05
32x1 20:12 12.69 2.32
1 x 64 4.43 1.43 1.59
2 x 32 4.29 1.43 1.30
4 x 16 4.96 2.22 1.18
8 x8 4.52 1.84 1.17
16 x 4 6.15 3.23 1.25
32x2 10.09 6.33 1.38
64 x 1 19.01 13.32 1.70
1x128 ‘ Too few latitudes
2 x 64 2.50 1.05 1.03
4 x 32 2.66 1.29 0.88
8 x 16 2:35 1.02 0.80
16 x 8 3:12 1.67 0.81
32 x4 5.08 3.20 0.87
64 x 2 9.53 6.68 1.04
128 x 1 Too few longitudes

Table 1. Timings for the T85 case on 32, 64, and 128 nodes of the Intel iPSC/860 hypercube.
The: three versions are discussed in theitext.

insufficient number of longitude (latitude) points. Thus, the mixed decomposition allows more
parallelism to be exploited.

In Figure 5 the parallel efficiency of the shallow water equation code is shown for a number
of problem sizes as a function of the number of processors. The results shown are for the best
mixed decomposition case, except in the T340 case where memory constraints precluded a more
complete investigation. Figure 5 shows that for the larger problem sizes of interest ('T85, T169,
T340) good parallel efficiency is achieved. The results indicate that for the T169 and T340
cases high efficiency would be achieved on larger machines, provided the characteristics of the
communication system were at least as good as those of the machine used here. In particular,
we expect the T169 and T340 cases to run efficiently on the 528-processor Intel Delta system.

5.3. Load Imbalance

The maximum number of spectral coefficients assigned to any column of processors is given by

Linaz = (R+1) (M +1- N;R> (16)

where R = [(M + 1)/N_]. Since the same amount of work is done on each spectral coefficient
the load imbalance, £, in the spectral domain (defined as the maximum excess computational
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Version 3 timings for 10 time steps

Nz x Ny T21 T42 T85 T169 T340
1x1 1.13 6.21 40.83 NEM¥* NEM
1x2 0.61 3.06 20.43 NEM NEM
2x1 0.81 3.72 22.55 NEM NEM
1x4 0.36 1.62 10.41 NEM NEM
2x2 0.48 1.91 11.42 NEM NEM
4x1 0.61 2.12 12.10 NEM NEM
1x8 0.24 0.94 5.43 30.39 NEM
2x%x4 0.33 1.05 5.86 31.25 NEM
4x2 0.44 1.17 6.19 NEM NEM
8 x1 0.51 1.34 6.66 NEM NEM
1x16 0.21 0.61 3.10 16.15 NEM
2x8 0.28 0.64 3.14 15.94 NEM
4x4 0.37 0.71 3.25 16.42 NEM
8 x2 0.42 0.80 3.48 NEM NEM
16 x 1 0.49 0.92 3.90 NEM NEM
1x 32 LATT 0.55 2.02 9.14 NEM
2% 16 0.22 0.52 1.82 8.75 NEM
4x8 0.24 0.57 1.78 8.66 NEM
8 x4 0.26 0.61 1.85 8.78 NEM
16 x 2 0.30 0.69 2.05 NEM NEM
32x1 LON} 0.82 2.32 NEM NEM
1 x 64 LAT LAT 1.59 5.95 31.22
2 x 32 LAT 0.45 1.30 5.02 NEM
4 %16 0.25 0.45 1.18 4.70 NEM
8 x8 0.25 0.46 1.17 4.68 NEM
16 x 4 0.27 0.50 1.25 4.92 NEM
32 x2 LON 0.58 1.38 NEM NEM
64 x 1 LON LON 1.70 NEM NEM
1 x 128 LAT LAT LAT 4.52 20.20
2 x 64 LAT LAT 1.03 3.33 16.20
4% 32 LAT 0.38 0.88 2.79 NEM
8 x 16 0.27 0.33 0.80 2.62 NEM
16 x 8 0.27 0.33 0.81 2.68 NEM
32 x4 LON 0.36 0.87 2.84 NEM
64 x 2 LON LON 1.04 NEM NEM
128 x 1 LON LON LON NEM NEM

iNot enough latitudes. {Not enough longitudes. *Not nough Memory

Table2. Timings for the version 3 code on up to 128 nodes of the Intel iPSC/860 hypercube
for a range of problem sizes.
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Figure 3. Performance of the T85 case as.a function of the shape of the processor mesh.

load in any processor divided by the average load) is

2N, [Lomaz /Ny]

SRR ER S

1 (17)

where N, = NN, is the total number of processors. In Figure 6 we plot the load imbalance,
¢,, as a function of the number of processors for a range of problem sizes for the.case N, = 1.
For the N, = 1 case, the load imbalance is maximized for a given number of processors. As
may be-deduced from Figure 6, the load imbalance is less than 20% provided there are at least
16 longitude points per processor. Of course, the overall impact of this load imbalance on the
performance of the application depends on ithe relative amounts of computation performed in
the physical, Fourier, and spectral domains. o

5.4. Masking Communication Overhead

Our results have shown the importance of reducing communication overhead on concurrent
multiprocessors, such as the Intel iPSC/860 hypercube, by overlapping communication and
calculation. 'We, therefore, devote this subsection to-a:more general discussion of how comriua-
nication.and-calculation can be overlapped in'loosely synchronous parallel algorithms. The use
of these techniques is illustrated with examples from our parallel implementation of the shallow
water equations code, SSWMSB.

Loosely synchronous algorithms are characterized: by a series of compute-communicate cy-
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Figure 4. Performance of the T85 case as a function of the number of processors for pure
latitudinal and longitudinal decompositions, and for the best mixed decomposition.

cles in which the communication phase imposes a degree of synchronization on the processors
(3]. In the computational phase between communications the processors can run completely
asynchronously. Each cycle can be labeled by a global counter. Typically a cycle begins with
each processor receiving data from one or more processors. The processors then independently
perform some computation using the data received, and send the resnlts to some set of proces-
sors for use in the next cycle. We shall refer to the work done by a single processor in a cycle
as a subtask, and the process of transforming some initial data through a series of subtasks
to produce some desired output will be referred to as a task. In general the compute phase
of a subtask can be divided into a critical phase in which the computation depends on data
from the preceding subtask(s), and a non-critical phase that is independent of the preceding
subtask(s). The effective use of concurrent computers characterized by high communication
overhead, such as the Intel iPSC/860 hypercube used in this work, requires commmunication
costs to be masked by overlapping communication and computation. Two approaches used in
this work are to overlap the communication phases of a task with (1) the computation phases
of another task, and (2) the non-critical computation phases of the same task.

A pipeline can be used to perform a set of independent tasks, the number of subtasks in each
of which equals the number of processors. In a linear pipeline the processors are arranged in a
line, and the 7th subtask for cach task is assigned to the processor at position ¢ in the line. Each
task is initiated in the processor at the beginning of the line, and the results are accumnulated
in the last processor, as shown in Figure 7(a). If all the subtasks take approximately the
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Figure 5. Parallel efficiency of the shallow water equation code for the best mixed decomposition
as a function of number of processors for a number of problem resolutions. -In the T21 case
grain size constraints did not permit the best decomposition to be unambiguously determined
for runs on 32 and 64 processors. In the T169 and T340 cases memory constraints prevented
a timing run on one node being done.” The parallel efficiencies in these cases are, therefore,
derived from an estimated one-processor runtime based on an empirical model.

same length of time the linear pipeline can provide an efficient means of exploiting parallelism,
particularly when the inner loop(s) of the algorithm contain little inherent parallelism. This
approach has been used, for example; in the solution of multiple tridiagonai systems arising
in a plasma instability problem [2]. In many problems it is desirable to have the final results
distributed evenly across the processors. This can be achieved by using a ring pipeline, in'which
each processor in turn initializes a task. As shown in Figure 7(b), the tasks now terminate in
different processors. An advantage of the ring pipeline over the linear pipeline is that, if the
number of tasks is exactly divisible by the number of processors, there is no pipeline startup
cost — all processors are kept busy. The advantage of the linear pipeline is that the computation
of one task can be performed while receiving data for the next task. In the ring pipeline only the
non-critical computation of a task can be performed while receiving data needed for the critical
computation phase of the same task. Thus, in general, a larger fraction of the computation is
available for overlap in the linear pipeline.

Whereas the tasks in a pipeline algorithm are independent, in a dimensional exchange
algorithm they overlap, and a subtask sends data to subtasks in different tasks. Each task can
be represented as a binary tree, with each node being a subtask. The dimensional exchange
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Figure 6. Load imbalance, £, as a function of number of processors, Np, when Ny = 1.

algorithm overlaps these trees, as shown in Figure 7(c). On a hypercube multiprocessor a
dimensional exchange algorithm involves exchanging data over each communication channel in
turn. The parallel phase of a FF'T is an example of a dimensional exchange algorithm.

In summing the contributions to the Legendre transform the non-critical phase is the eval-
uation of the local contributions to a spectral coefficient, referred to as 17" in Eq. (15). The
critical phase is simply the summation of the local contribution with the running sum received
from the preceding subtask. In the FFT algorithm the critical phase is the evaluation of but-
terfly pairs, and the non-critical phase is the determination of the complex exponential in the
“twiddle factor”. The ratio of the time spent communicating between two subtasks and the
time for a non-critical computation determines the extent to which communication and calcu-
lation can be overlapped. In the evaluation of the spectral coefficients in Eq. (15) the time for
the non-critical phase is proportional to the number of latitudes per processor, and hence the
amount of overlap (and the concurrent efficiency) increases as the grain size increases in the
latitude direction. In the FFT algorithm a lookup table is used to find the twiddle factors,
resulting in a short non-critical phase. Thus, there is little overlap of communication and com-
putation within a single FF'T. If several FFTs need to be evaluated, as is the case in the shallow
water equation code, communication and calculation can be overlapped. Taking the FFTs in
pairs, the calculation in one step of one FFT can be overlapped with the communication in the
other FFT, and vice versa. Thus, the communication and calculation phases of the two FFTs
are interleaved, and we refer to this technique as interleaving.

Communication latency also often significantly degrades concurrent performance, and should
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(c) Dimensional Exchange Algorithm
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Figure 7. Schematic representations of (a) a linear pipeline, (b) a ring pipeline, and (c)a
dimensional exchange algorithm. In all cases 4 tasks are shown, and the shaded circles represent
subtasks. The degree of shading indicates how much of the task has been completed at a given
stage —a white circle designates a subtask in the first cycle of a task, and a black circle designates
the end of the task. In (a) and (b), Pu stands for the nth position in the pipeline. In (c), we
show how the dimensional exchange algorithm is made up of overlapping binary trees.

be minimized by sending as few messages as possible. This can be done, whenever possible, by
exchanging the order of the loops over tasks and subtasks. Thus, if a code originally contains
an outer loop over tasks and an inner loop over subtasks, it should be restructured so that the
subtask loop is the outer loop and the task loop is the inner loop. This reduces latency by
moving communication from the inner loop to the outer loop. For example, in performing the
summation in the Legendre transform a single task is to find the spectral coefficient, &n, for
some m and n. The subtasks correspond to the steps in the pipeline. Thus, latency is reduced
if the inner loop is over spectral coefficients, and the outer loop is over the steps in the pipeline.
In this case, in each step of the pipeline, the running sum for a block of spectral coefficients is
updated, rather than just for a single spectral coefficient, and blocks of coefficients are commu-
nicated. Similarly, in the evaluation of the FFTs, if a task is the evaluation of a single FFT,
and a subtask involves the computation of one set of butterfly evaluations in a processor, then
latency can be reduced by making the loop over FFTs (i.e., latitudes) the inner loop. Now
when we perform the interleaving, instead of taking single FFTs in pairs, we interleave two
blocks of FFTs each containing half the number of latitude lines per processor.

It should be noted that a dimensional exchange algorithm could also be used to perform
the summation in the Legendre transform. This approach uses a version of the fold algorithm
of Fox et al. [3]. The communication volume is the same in the fold algorithm and the cor-
responding pipeline algorithm. However, fold performs fewer communication steps and hence
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incurs a lower latency cost. On the other hand, in the fold algorithm less of the non-critical
computation is available for overlap with communication since half of it must be done before
the first communication phase. The optimum method for performing the summation is, there-
fore, machine-dependent, and further work is required to determine the best method on the
Intel iPSC/860 hypercube, and similar machines. These issues will be pursued further in a
subsequent paper.

6. Summary and Conclusions

In the climate modeling comrrunity problem sizes of interest range from T85 to T340, corre-
sponding to grid resolutions from about 1.5 degrees to less than half a degree. For these types
of problem the spectral method can be parallelized efficiently on MIMD distributed memory
computers with hundreds of processors. The Intel iPSC/860 hypercube used in this work only
had 8 Mbytes of memory on each processor, and this prevented a thorough investigation of the
T340 case. Of the T340 runs that were performed, a 2 x 64 processor mesh gave the highest
performance of approximately 560 Mflops. If more memory had been available we expect the
performance would have been greater for less elongated processor meshes. This expectation is
based on the results for T85 and T169 cases running on 128 nodes.

It was found that in all cases of interest parallel performance is significantly improved by
decomposing over both coordinate directions, rather than over just one or the other. Using a
mixed decomposition resulted in performance improvements of up to 42%. In addition, a mixed
decomposition allowed more processors to be brought to bear on a given problem.

The Intel iPSC/860 hypercube, and similar multiprocessors, have high communication la-
tency and throughput costs, and acceptable levels of performance are achievable only if spe-
cialized programming techniques are used. In this work, we have emphasized the importance of
reducing latency by moving communication to the outermost loop possible. Another important
factor is the need to overlap communication and computation. This can be done by identifying
the non-critical part of each phase of computation, and overlapping this with communication.
The communication must be performed using non-blocking reads and writes. Some additional
buffers are required to maintain data integrity, but we have found the cost of this extra memory
to be small in comparison with the benefits gained.

In the FFT algorithm the time for the non-critical computation is very short compared with
the communication time, so there is no opportunity to overlap communication and computation
in a single FFT. To achieve overlap we have introduced the concept of task interleaving. By
alternating the computation and communication phases of a pair of independent tasks the
critical computation of one task can be overlapped with the communication in the other, and
vice versa.

If no attempt is made to reduce latency and overlap communication and computation,
many of the distributed memory multiprocessors currently available are only capable of running
efficiently on embarrassingly parallel problems. The techniques that have been used in this work
to reduce communication costs demonstrate that it is possible to use this type of multiprocessor
to effectively exploit parallelism in a much larger class of applications.

We intend to incorporate what we have learned from parallelizing the shallow water equa-
tions code into the design of a parallel version of CCM2. This will require addition issues to
be addressed. In particular, in CCM2 a semi-Lagrangian method will be applied in the phys-
ical domain. This will result in load imbalance since the polar and equatorial regions must
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be processed in different ways, and suggests that our method of decomposing the problem do-
mains may need to be modified. The load imbalance in the radiative calculation must also be
considered in developing an efficient parallel code.
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