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Abstract

A suite of seven test cases is proposed for the evaluation of numerical methods
intended for the solution of the shallow water equations in spherical geometry. The
shallow water equations exhibit the major difficulties associated with the horizon-
tal dynamical aspects of atmospheric modeling on the spherical earth. These cases
are designed for use in the evaluation of numerical methods proposed for climate
modeling and to identify the potential trade-offs which must always be made in
numerical modeling. Before a proposed scheme is applied to a full baroclinic at-
mospheric model it must perform well on these problems in comparison with other
currently accepted numerical methods. The cases are presented in order of com-
plexity. They consist of advection across the poles, steady state geostrophically
balanced flow of both global and local scales, forced nonlinear advection of an iso-
lated low, zonal flow impinging on an isolated mountain, Rossby-Haurwitz waves
and observed atmospheric states. Oune of the cases is also identified as a com-
puter performauce/algorithin efficiency benchmark for assessing the performance
of algorithms adapted to massively parallel computers.
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1. Introduction

The early days of global atmospheric modeling saw significant efforts in adapting then
current numerical methods to solving fluid flow on the surface of the sphere. A large
component of this effort was directed toward finite difference approaches. The review
article by Williamson [28] discusses the many finite difference approaches that were
applied to the problem at that time and gives a lengthy list of references. The intro-
duction of the spectral transform method by Orszag [15], and Eliasen, Machenhauer
and Rasmussen [7] made the spectral method cost effective in terms of storage and pro-
cessor time compared with finite difference approaches. The review by Machenhauer
[13] discusses the various applications of the speciral method in detail. The spectral
method presents a natural solution to problems introduced by spherical geometry in
part because it provides an isotropic representation in spectral space even though the
commonly adopted underlying Gaussian grid does not. The spectral transform method
is widely accepted as the basis of operational numerical weather prediction and global
climate models. Although not universally adopted the method has become the rule
rather than the exception. As a result little effort has been directed in the last decade
toward developing alternative methods of approximation for global atmospheric models.

Currently there is renewed interest in alternative methods for a variety of reasons.
The European Centre for Medium Range Weather Forecasts (ECMWF) has reported
[6] that at resolutions greater than those currently used in in operational numerical
forecast models the computational cost of the Legendre transform associated with the
spectral method will become a significant {raction of the total cost of the model. Thus
other methods are likely to become economically competitive. The spectral representa-
tion contributes to unphysical structures in the predicted fields such as negative water
vapor [20]. Traditional finite difference approximations also suffer from this defect.
However, recently shape preserving and essentially non-oscillatory schemes have been
developed to address this deficiency. Spectral models require a global domain and have
thus been based on a normalized vertical coordinate such as pressure divided by surface
pressure. Over steep mountains the horizontal pressure gradient force in such systems
is a small difference of two large terms and difficult to approximate accurately. Mesh
refinement near mountains, or admittance of explicit lateral boundaries where moun-
tains can penetrate the grid, appear as potential alternatives. The spectral method
also presents problems with efficient implementation on some of the new computer
architectures although these are not necessarily unique to the spectral method. The
global communication required by the spectral transform may be difficult to achieve
efficiently on massively parallel computers with distributed memory. With grid point
based schemes a similar communication problem may arise however associated with
the elliptic problem introduced by a semi-implicit time stepping algorithm.

The renewed interest in algorithm development has led to the need to define stan-
dard test cases with which potential schemes may be compared. Strict comparisons
based on such test cases will aid in rationally choosing the compromises which must be
made in numerical modeling. We present a suite of test cases in this report for numer-
ical approximations to the shallow water equations in spherical geometry. The shallow
water equations ou a rotating sphere serve as a primary test problem for numerical
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methods used in modeling global atmospheric flows. They describe the behavior of a
shallow homogeneous incompressible and inviscid fluid layer. They present the major
difficulties found in the horizontal aspects of three dimensional global atmospheric mod-
eling. Thus they provide a first test to weed out potentially non-competitive schemes
without the effort of bnilding a complete model. However, because they do not rep-
resent the complete atmospheric system, the shallow water equations are only a first
test. Ultimately schemes which look attractive based on these tests must be applied to
the complete baroclinic problem. We hope that the existence of a standard test set for
the shallow water equations will encourage the continued exploration of alternative nu-
merical methods and provide the community with a mechanism for judging the relative
merits of numerical schemes and parallel computers for atmospheric flow calculations.

We present here a suite of seven test cases in increasing order of complexity. Several
analytic treatments included in the suite provide objective standards for judging the
accuracy of numerical schemes and provide quick checks on the validity of code. The
first test consists of advection of a structure of compact support by a specified wind field
corresponding to solid body rotation whose axis is not necessarily coincident with that
of the rotation of the earth. As such this case deals with only a subset of the shallow
water equations, namely the continuity equation, but concentrates on a scheme’s ability
to deal with the poles of the spherical coordinate systein.

The second and third cases present steady state, nonlinear zonal geostrophic flow.
They arc a global form with the wind corresponding to solid body rotation and a local
form where the wind field has compact support. In both cases the spherical coordinate
poles are not necessarily coincident with the earth’s rotation axis. As with the first
case these test a scheme’s ability to handle the poles, but in addition nounlinearities can
come into play.

The succeeding test cases are of increasing complexity and realism, exercising the
more subtle aspects of atmospheric flows. One case uses an analytic forcing function to
drive a low around the sphere. The case mimics the more complicated local structures
observed in the atmosphere. Another case consists of zonal flow impinging on an
isolated mountain in which a downstream wavetrain is set up. A Rossby-Haurwitz
wave case is also included. Analytic solutions for the Rossby-Haurwitz wave in the
shallow water context are not known but this wave has become a standard test case in
meteorology. A reference solution is provided by a high resolution spectral transform
model integration. Finally, actual weather patterns are presented for initial conditions.
Since they obviously have no analytic solution a reference solution is provided again by
a high resolution spectral transform model run. As mentioned above, analytic solutions
for the last three cases are not known. Reference solutions will be provided by a high
resolution spectral transform model. For it to be accepted it must be duplicated by a
high resolution solution provided by at least one other different method.

With each test case we ask for a variety of specific measures of the error of the
nmnerical solution. Just as there is no single ideal test case, there is no single measure
that determines the quality of a scheme for atmospheric modeling. We include the
variety of test cases and error measures to provide as much information as possible to
would-be users so they can evaluate the various tradeoffs involved with the schemes.

The second test in the suite is also proposed as a performance benchmarking prob-
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lem. Such benchmarking is particularly important since the efficiency of schemes must
be evaluated considering the computing environment for which they are designed.

As an initial basis of comparison we provide in a companion report solutions to
these problems from a spectral transform approximation at resolutions currently used
in atmospheric models. Spectral models are widely but not universally adopted in
climate modeling and numerical weather prediction. We encourage centers currently
using other methods to run these tests with their schemes and to submit the results for
comparison. To facilitate comparison of schemes, a machine readable copy of standard
FORTRAN routines which calculate the initial conditions and analytic or reference
solutions is available from netlib@ornl.gov. A file summarizing performance statis-
tics contributed by members of the community will also be maintained. In addition
a list of corrections to this paper will be maintained along with a bibliography of re-
ports presenting results of tests of numerical schemes based on this test suite and any
modifications to the test suite generally agreed upon by the community. Please sub-
mit additional performance data and references for the bibliography as they become
available to John Drake (bbd@ornl.gov).

2. The Shallow Water Equations on a Sphere

For convenience, we summarize many forms in which the shallow water equations can
be written. The reader is referred to standard texts such as Holton [10] and Haltiner
and Williams [8] for more general development.

2.1. Flux Form

The shallow water equations on a rotating sphere can be written in flux form as

dh*v

T +V . (vh*v) = —fk x hi*v — gh*Vh (1)
and o=
) o
—0—;4»\7-(/1 v) =0, (2)

where h* is the depth of the fluid and /& is the height of the free surface above a reference
sphere (sea level). If h; denotes the height of the underlying mountains, h = h* + h,.
The horizontal (on the sphere) vector velocity is denoted v with components v and v
in the longitudinal (M) and latitudinal (8) directions respectively. The V operator is
the spherical horizontal gradient operator given by

19 jo
V()Zﬁgg;@gﬁ(ﬂf&gg() (3)

and V- is the spherical horizontal divergence operator given by

V.vz=

1 Q—zf N 6(0 coso)]
acosf I 06

(4)
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The longitudinal, latitudinal and outward radial unit vectors are 1, ) and k, respectively,
f is the Coriolis parameter, ¢ is the gravitational constant and a is the radius of the
earth. The Coriolis parameter is given by 2Q sin § where £ is the rotation rate of the
earth.

The equations for the spherical components can be derived by writing v = ul + v)
and using

dh*v . dh*u N ~dh*v { h*udi N h*vdj
a  Ta T a dt ' dt’

Equation (1) in terms of spherical components is then

(5)

oh*u gh* O0h _

* u x, ,  gnoon _
5 + V- (h*uv) —<f+atan6>hv+acosea/\ 0, (6)
oh*v R u . gh* Oh ‘
5 + V- (h @v)+(f+gta.110)h U+ — 50 = 0. (7)

2.2. Advective Form

The advective form of the horizontal momentum and mass continuity equations can be

written
dv

..... -=—fkxv—gVh. (8)

and
dh™

dt

where the substantial derivative is given by

+h*V.-v=0 (9)

d J

E( ) = 5{( Y+ (v-V)()- (10)

The equations for the spherical components are

ou U g Oh
— -Vu -~ —tan @) v+ ——— e =
0t+v ¢ <f+a an )l +(LCOS§0/\ ’ (1)
Jdv , u gdh ‘
—_()—t+v~Vv+<f—|—;ta.n(9>u+;~(;)~§_ , (12)
and o b (0w Ovcosd
. Vv Ou Jv cos .
VA —— =0 1
ot tv +ac050 (8z\+ a0 ) 0 (13)
2.3. Vorticity Divergence Form
The horizontal momentum can also be specified in terms of relative vorticity,
C=k-(Vxv), (14)

and horizontal divergence.

6=V-v. (15)



The curl operator is given by

- 1 Ov  OQucos@
k'(vxv)"(zcos() [Eﬁ* Il ] (16)
Using the vector identity
(V-V)V:V(X—é-v—) + ¢k x v, (17)
the horizontal momentumn equation becomes
ov
& = (¢ + )k x v = V(gh+ T, (18)
or in spherical component form
du , 1 J |
-‘~(C+f)7f—m“a’x[gh+§(“ +U)} (19)
Bv 10 1, .,
= —(C+ flu— T {gh + §(u + v )] . (20)

Applying the curl and divergence operators k-V x () and V -( ) to the momentum
equation yields

¢

e = V(4 v (21)
o8 _ 9 v
or in terms of spherical components
a¢ 1
ot T acosb (9/\[ ¢+ fiul
12
‘—acmH(?O{CJrfUCOSH] (23)
dé 1
o acos()a_/\[(c )]
1 0
B acosG(’)H[(C+ f)ucost]
v [gh + ;lz'(zﬁ + v2)] (24)

where

V()= 1 9%) 19 (00598( )) .

a?costd gX2 a? cos b 99 a9
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2.4. Bounded Differential Expression Form

The spherical vector component forms of the equations contain individual unbounded
differential expressions approaching the poles. Swarztrauber [3] has developed a form
for the equations containing only bounded differential expressions

du u vdu  udv g Oh

o " Tat T aae e T U Seesoon (26)
dv u wou vdv g oh

3 7 Tat w00 a6 Tt ade (27)

2.5. Stream Function, Velocity Potential Form

The spherical velocity components can be avoided by the introduction of a horizontal
stream function, ¥, and velocity potential, . The equation relating horizontal velocity
and these two scalar quantities is

v =kxVy+ Vy. (28)

The spherical wind components are related to the stream function and velocity potential
by
199 1 dx
4 d8 ' acosf IN
I gy 10y

Y s o T adh (30)

The application of the curl and divergence operators to (29) and (30) gives the

(29)

U =

absolute vorticity

n=(+f=ViY+f (31)

and divergence
6= Viy. (32)

In terms of the stream function and velocity potential the horizontal momnentum and
mass continuity equations can be written [14]

J ,
STV V) = T, 1) = 0, (33)
06 , 20 e ’
i V. V)= J{n,x)=—-V*(K + gh), (34)
and e
o+ V- (TVY) = TR ) = 0. (35)

In spherical coordinates the Jacobian operator is defined by

1 (0adB  dadp .
N B) = o ('a/\ 9 79'29"’87)’ (36)

Here K is the kinetic energy %(‘ u?4v?%) and can be expressed in terms of stream function



and velocity potential as

f =

K = [V - ($Vy) — »V + V- (xVx) = xVix] + J (¥, x)- (37)

[\~]

The J and V- operators, curl and divergence, have the following integral properties
according to Gauss’s theorem,

/LJ(a,ﬁ)dA:/Ca%gds (38)

/Lv-(avmdA:/Cag—f:—ds (39)

where 33; is the derivative along C and 5% is the derivative normal to the curve.

and

2.6. General Orthogonal Coordinates

The general orthogonal coordinate form is useful when considering approximations
based on various map projections. Let (z,y) be the orthogonal coordinates and my
and my be the metric coefficients so the distance increment (df) satisfies

(d€)? = mZda® + m2dy®. (40)

The velocity vector v has components

dz
U = My (41)
dy
V= My (42)
in the 2 and y directions, respectively. The equations of motion are
du 1 dm Omy g Oh
—_— VX1 l) Vti— =
dt [f+ My ( Oz 4 oy } + my Oz 0 (43)
1% 1 am, dm,, g Oh
- I/r Ty . _ @ U AR /
dt + [f+ MMy ( e v dy )J + my Jy 0 (44)
where
dt 3t mydr  my Oy’ (45)
The continuity equation is
dh* h* i .0
! ' —(myU) + —(m;V)| = 0. (46)

dt .y, L0z dy



Note, for spherical coordinates

€T = A , Y= g (47)

77"%;«(1(‘056 , my = a (48)

U = 171, = @ Cos 0(2;\ (49)
dy  df )

v = 7?2y"('i't“ = (Ia—. (00)

Commonly used map projections are north and south polar stereographic
m 1( 1+ sin8) (51)
My = = —(1+sin B —
Z Y 2 y T |

and Mercator’s
My = my = cosf. (52)

All major map projections are described from a geographical point of view by Steers
[23]. Saucier [22] discusses the common projections used in meteorology. More recently
Pearson [17] has summarized the field.

2.7. Three-Dimensional, Constrained Form

Coté {4] developed a three-dimensional vector form for the horizontal momentum equa-
tions using the undetermined Lagrange multiplier method to constrain the motion to
be on the surface of the sphere.

dVv

o F+ur {(53)
where d
r .
V= - 4
dt (54)

is the three-dimensional velocity vector in a rotating frame,
F=~frxV-g¢gVh (55)
and g is the Lagrange multipler determined by requiring
ror=a (56)

be satisfied for all time; r is the position vector. Evaluation of the Lagrange multiplier
for the continuous equations gives ;& = -V -V and leads to the usual Fulerian form.
There are advantages, however, in determining the Lagrange multiplier after the time
discretization [5]. In this approach the three-dimensional equation is solved rather than
the usual two-dimensional and ur represents a supplementary force which keeps fluid
elements on the surface of the sphere. After discretization, however, the calculation
can be carried out in two-dimensional space.



2.8. Cartesian form

It may be advantageous to evaluate the surface derivatives using a Cartesian form. By
extending the surface vector v = (u,v)7 to the three-dimensional v, = (w,v,u)T the
shallow water equations can be embedded in the system

v,
3‘; +S(vy)vet+ta+ B+ 6=0, (57)
where s 18 1 8
S YT¥-v) 708 (g% — wcosh)
S(Vs) = %q Zl{(g_:}i + ’UJ) accl)SB % — usin 9) ’ (58)
2u 1oy —L (8% — vsinf + w cos b)

r is the radial coordinate (r = @ at the earth’s surface) and

u?ty?
a

a= 0 , (59)

B=1 %% |, (60)
g

and

§= fu . (61)

If we define V = (X, Y, Z)T as the velocity in Cartesian coordinates (z,y, z) then
vy = QV (62)

where
cos @ cos A cosfsin A siné

Q=] —-sinfcosA —sinfsin\ cosf |. (63)
—sin A cos A 0

Substituting (62) into (57) and multiplying by QT we obtain the Cartesian form

ov
57+CV+QT(a+,B+6):0. (64)
In this equation
29X 88X 8X
d B 9z
c=Q'sq=| 35 & % |, (65)
8z 9z 9z

|

il
ey

D
b

D
2
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. (X24 Y2+ 2%)
Qla=— | y(X?+¥?+2%) |, (66)
1
Z( X2+ Y24+ 7%
0 -z y X
202
Q==L ] = 0 -z Y |, (67)
¢ —~y 0 Z
and
QB =PV.h (68)
where
a®> -z? -2y —z2z
P= % -2y a?-y? —yz , (69)
-z —yz  a® - 2?
and -
dh dh 0h
Veh = | —, —, = .
& (81 Jdy z) (70)
Similarly the continuity cquation in Cartesian form is
oh* T . .
7 + V'PVV.L + 1"V, V =0. (71)

The matrix P projects an arbitrary Cartesian vector onto a plane that is tangent to the
sphere at the point (2, ¥, z). For methods of evaluating the C matrix and the Cartesian
gradient the reader is referred to [24].

3. Test Cases

The following test cases are proposed to evaluate and compare numerical schemes
intended for global atmospheric models. The series increases in complexity. We suggest
the tests be run in order without proceeding to the next until the nurmerical scheme
is reasonably successful on the current one. For some schemes some of the requested
parameter settings define trivial tests and realistically provide only a superficial check
of the code rather than a useful measure of the quality of the scheme. These situations
should be identified so that no false conclusions are drawn. Ideally the full set should
be reported for ecach proposed schewme and trivial cases for that scheme acknowledged.

Case 2 also provides a benchmark for timing iinplementations on various machines.
It exercises the complete set of equations and since it is a steady state solution no
extra computations are required during the integration. For timing purposes an inte-
gration should be performed with all extra output processes removed after it has been
demonstrated that the scheme and codes solve the problem properly.

These tests represent necessary conditions only, i.e. any scheme must do well in
these tests compared to currently acceptable schemes. Any scheme that performs well
in these tests can then be incorporated in a global baroclinic general circulation model
with state-of-the-art physics and definitive tests can be conducted.
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Parameters relevant to the earth and all test cases are

a = 6.37122 % 10°m (72)

= 7.202x 1075571 (73)

g = 980616 m s (74)

Unless specifically mentioned, the height of the mountains is taken to be zero (h; = 0)

and h* = h.

3.1. Advection of Cosine Bell over the Pole

This is the only case of the suite that does not deal with the complete shallow water
equations. It tests the advective component in isolation. Many shallow water codes can
be easily changed for this test by overwriting the predicted wind field every time step
with the analytically specified advecting wind. Since this wind field is nondivergent
the equation for the height of the free surface reduces to the advection equation. For
some wethods, semi-implicit for example, some additional changes may be required to
isolate the height forecast from the wind forecast.

A cosine bell is advected once around the sphere. Several orientations of the ad-
vecting wind are specified including around the equator, directly over the poles and
minor shifts from these two orientations to avoid symmetries. This case is specified in
eqns. (4.2)-(4.5) of Williamson and Rasch [31]. The advecting wind is given by

u = to(cos f cos a + sin f cos A sin ) (75)
v = —ug sin A sin a. (76)

In terms of stream function and velocity potential this is
1 = —aup(sin f cos v — cos A cos 8 sin &) (77)

x = 0. (78)

The parameter a is the angle between the axis of solid body rotation and the polar axis
of the spherical coordinate system. Tests should be run with « = 0.0,0.05,7/2 - 0.05
and 7/2.

The initial cosine bell test pattern that is to be advected is given by

_ ) U/2)(1 4 cos3F) ifr < R
h(A, ) = { 0 ifr> R (79)

where hg = 1000 m and r is the great circle distance between (A, 8) and the center,
initially taken as (A.,0.) = (%’-’—,0).
r = aarccos [sin 8, sin 6 4 cos 0, cos @ cos(A ~ A.)]. (80)

The radius £ = § and the advecting wind velocity up = 27a/(12 days), which is
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equivalent to about 40 m/sec. This solution translates without any change of shape.

Error measures: Plots of contour lines (interval = 100 m with zero contour) on
orthographic projection with perspective centered over the true solution. True solution
should also be contoured on the same plot with dashes but without the zero contour.
Plot after one rotation. Contour maps of the error should also be provided after one
rotation.

Some global measures of the error are also desirable. Define I to be a discrete
approximation to the global integral

27 z
I(h) = / /2 h(), 0) cos 0d6dA, (81)
o I

which is consistent with the numerical approximations being tested; for example, Gaus-
sian quadrature would be selected for the spectral transform method. The following
normalized global errors should be graphed as a function of time sampled each time
step where hp is the true solution.

Gy = IO R) — ha(A )|}/ Tz (X, 0)]] (82)
balh) = {I[(M(A0) = he(A0))2}2 {I[he(, )2} (83)
loolh) = max|h(A.0) = hr(A,0)|/max [hp(A, 0)]. (84)

In addition, the normalized mean, variance, minimum and maximum values should be
graphed as a function of time sampled each time step. Let A denote the mean

h = I[h(),8)]/47, (85)
then the normalized mean and variance are written
M = (h-hy)/h (86)

{I[(h = W)*) = I[(hy — hp)2 3/ T[(ho — Ro)?) (87)

I

V

and the minimum and maximum

lpax = (illlll:c::\g'/l(x\.()) - (1111%(\1; hr{A,0))/Ah (88)
hnin = (min 2(A8) — min hy(A,0))/ AR (89)

where Ah is the difference between the maximum and minimuin values of the true
solution initially and hr and kg are the true solution and initial field respectively.
3.2. Global Steady State Nonlinear Zonal Geostrophic Flow

This case is a steady state solution to the non-linear shallow water equations. It
cousists of solid body rotation or zonal flow with the corresponding geostrophic height
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field. The Coriolis parameter is a function of latitude and longitude so the flow can
be specified with the spherical coordinate poles not necessarily coincident with earth’s
rotation axis. Again several orientations are specified.

The velocity field from eqns. (4.1)-(4.2) of Williamson and Browning [29] is initially
(and for all time) '

u = ug(cos 6 cos a + cos Asin 8 sin a) (90)
v = —upsin Asin a. (91)

In this report the angle o has the opposite sign as that in Williamson and Browning [29]
but the same sign as that in Williamson and Rasch [31]. In terms of stream function
and velocity potential, the velocity field is

P = ~aug(sin § cos « — cos A cos #sin o) (92)

x = 0. (93)

The absolute vorticity is

n= (2“0 + QQ) (— cos A cos B sin a + sin 6 cos a). (94)

a
The analytic h field is given by

2
gh = ghy - (aQuo + %) (— cos A cos @ sin o + sin § cos a)?. (95)

It may be desirable to modify the initial wind and lLeight fields so they satisfy a discrete
nonlinear geostrophic relationship consistent with the scheme being tested. This could
prevent spurious gravity waves from contaminating the numerical solution. The discrete
balance may also be used to define the true solution for the purposes of calculating the
error diagnostics. These changes are allowed but must be reported with the results
along with the error comparing the discrete initial state to the analytic. The Coriolis
parameter associated with this solution is

f = 2Q(~ cos A cos @ sin a + sin  cos a). (96)

The parameter values used should be g = 27a/{12 days) as in case 1 and gho =
2.94 x 10 m?/s2.

Tests should be run with o = 0.0,0.05,7/2 — 0.05, and = /2.

Error measures: Contour maps on an orthographic projection centered on (37/2, 7 /4)
of h field and error after five days. Graphs of the £y, f2, and { errors of h and v versus
time. The h errors are computed as in (82) - (84). The v errors are given by

I{(w( A, 0) — ur( A, 8))2 + (v(A, 8) — vr(X, 0))2} 2]

b(v) = e
[[{uz(X, 0) + vr (A, 0)2H]

(97)
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{I[(u(A,0) ~ ug(),0) + (v(\, 0) — vr(), 0))%]}3
{Ilur(X, 8)2 + vr(X,0)2]}2

max, o[ {(2(A,0) — ur (X, 0))% + (v(A, 8) — vr(A, 0))2}2]
maxan o[ {ur(A, 0)2 + vr(}, 6)2} 2]

I

ta2(v) (98)

lo(v) = (99)

In addition to these graphs a mesh convergence study should be performed. The £3(h)
and £€o(v) errors at five days for three different resolutions should be shown and a rate
of convergence for the method estimated.

3.3. Steady State Nonlinear Zonal Geostrophic Flow with Compact Support

This case is similar to the previous except the wind field is nonzero in a limited region.
It was introduced by Browning et al. [3]. In the editorial process for that paper some
terms were dropped from the last equation in the first column on page 1068. It should
read

v = wu(cosacosAsin Asiné

— cos Asin Asin @ -+ sin arsin A cos 8). (100)

This case is easiest to write first in a coordinate system (A, #) whose poles are
coincident with the Farth’s rotation axis, followed by a rotation through an angle
a to the systemn (A,0) in which the jet is not parallel to the coordinate lines. This
is essentially the process used to derive the equations above for solid body rotation,
however, in the case with compact support it is more difficult to write the equations
in closed form in the (A, #) system. Therefore, we present the equations in a series of
steps. The velocities components (u’,v’) in the (N, &) system are given by

W = ’uob(vcr)b(l’e—l‘)eti/“ (101)
S = 0 (102)
where
0, x <0
bla) = - B
(l) {(—:1‘1’ 0<.IT
aud
r= a0 - 0,)(0 — 0)" (103)
The parameters are ug = 2wa/(12 days), 6y = -7 /6, . = /2 and v, = 0.3. Note

that u’ is infinitely differentiable and has compact support. The stream function and
velocity potential are given by
f O — 0y yjp. [¥ e
W) = —a—5e 3'11,06’4/‘“/ € Fae=a") g’ (104)
Te Te
and
' = 0. (105)
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Following (5.13) to (5.17) of [31] (with A4 = 0 and 4 = «) the rotated form can be
written

veosd = —u'sinasin N (106)
ucosA = vsinfsin A+ v’ cos N (107)

with the coordinates related by

sind = sinfcosa — cosfcosAsina (108)
sin A cos®’ = sinAcosé. (109)

The quadrant in which A falls can be determined by insuring that
sin # = sin @' cos a + cos ' sin « cos X' (110)

is also satisfied. Equation (110) may suffer from precision problems because of the
nesting of trigonometric and inverse trigonometric functions. A more stable test is
that the principal value (A]) is used for A’ when

cosacos Acosf +sinasinfd > 0 (111)

otherwise A" = x — Aj. This relationship can be obtained by transforming to Cartesian
coordinates, rotating the Cartesian coordinates and noting that the principal value is
needed in the primed system when 2’ > 0. (The 2 and z coordinates are chosen to go
through (A, 8) = (0,0) and (0, §), respectively, and the y coordinate can be ignored.)

2
The Coriolis parameter in the two systems is
f = 2Qsind (112)
f = 29Q(—cosAcos@sina + sin 8 cos ). (113)

For a steady state solution A’ must satisfy

(u')?tan@ g o’ .
- + Y + fu' = 0. (114)
For the general case the height is difficult to obtain analytically. Therefore, we integrate

the form in the prime system

a' !
h = hy - E/ <'2Q sin T + —U(—T)Em—‘r) u'(r)dr (115)

gJ-z a

numerically to obtain a highly accurate h. The background height, hy, is given by
gho = 2.94 x 10" m?/s? as in Case 2 and the limit ¢ is related to (), ), the point at
which the geopotential is desired, by (108).

Tests should be run with a = 0.0, and = /3.

Error measures: Contour maps of field and error after five days on an orthographic
projection centered on (37/2,7/4) . Graphs of the £1,€; and {, errors of A and v
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as functions of time. In addition to these graphs a mesh convergence study should be
performed. The €y(h) and £o(v) errors at five days for three different resolutions should
be shown for the a = % case and a rate of convergence for the method estimated.
3.4. Forced Nonlinear System with a Translating Low

The nonlinear steady state tests presented in the previous sections are the simplest
measure of the adequacy of a particular numerical method. The performance of a
scheme on the nonlinear unsteady equations is also desirable, but analytic solutions
are all but nonexistent. Thus, we take the approach followed by Browning et al. [3]
who choose a flow @, and h that is similar in structure to flows observed in the
atmosphere. This flow is a solution to the forced shallow water system which can be
written in advective form as
du wvtané g Oh

dt a * acosf ON fo=Fu, (116)

dv uutand g oh Y
JI+T— ’ ()0+fu £y, (11‘)

dh h du  Jvcosb
— | = F}, 118

5+ 5 ] & (118)
where the height of the mountains Ay is taken to be zero and the substantial derivative

is defined as
d d u 0 v J

@b acosox T adb (119)

and the forcing terms are defined as

dt + acosl

dii  H4vtand g
F, = — -~ 7, 12
dt @ * acos ()/\ A (120)
dt  4dtan 0 9 oh
F, = — 4 - 121
dt a a 08 A (121)
, dh h ou  dvcosl )
= Gt e (122)
The flow is given by )
I 27 ,
=i — 12
Q== (123)
- (124)
acosf ‘
gh = gh+ fi, (125)

where ghg = 10%n?/s? | fo = 2Qsin § and

W= upsint(28), (126)
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gh = ghg — /0 [af(r)+ @(7)tan r]a(r)dr, (127)

-3
BN, 0, 1) = poe ™" TFE (128)
with 4o = —0.03%2, o = (12.74244)? and

C' = sin by sin 8 + cos by cos § cos(A — %o, Ao)- (129)
a
The center of the low is initially located at (Xo,8y) = (=%, ). The velocity potential,

X, is zero while the stream function is given by

8

B(0, A, 1) = _/‘ wi(T)dr + B8, A, 1) (130)

(S E]

The flow is a translating low pressure center superimposed on a jet stream which is
symmetrical about the equator. Figure 5 of [3] illustrates the initial height field. This
field exhibits some of the properties of middle level tropospheric flow (i.e., a short-wave
trough embedded in a westerly jet).

The analytic expressions for the forcing are presented above for momentuim. Schemes
predicting other variables such as vorticity/divergence or stream function/velocity po-
tential must be able to accept the forcing in terms of momentum as that is what is
provided from the parameterizations in atmospheric models (see for example [30].)
Thus solutions should be provided using the momentum forcing as prescribed. How-
ever, for the purpose of comparison with other schemes it may be advantageous to
specify the forcing analytically in terms of the predicted variables if other than mo-
mentum. This approach is also allowed for these tests, but if it is chosen, then results
with momentum forcing should also be presented.

Tests should be run with wy = 20 and 40 m/s.

Error measures: Contour maps of solution and ervor after 5 days on an orthographic
projection centered on (A.,7/4), where A, is the longitude of the center of the cell. The
£y, 0,0 errors of i/ and v’ should be plotted as a function of time. Here A’ and v’ are
the perturbation fields obtained by subtracting the background zonal flow

K = h~h (131)
W o= wu-u (132)
Vo= v (133)

where @ and h are given by (126) and (127) respectively. The true solution is modified
in the same way for the error calculation. The mean zonal component is removed so
that the error primarily represents that associated with the cell. The graphs should
include data sampled every time step so that any oscillatory behavior can be seen.
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3.5. Zonal Flow Over an Isolated Mountain

This case was used by Takacs to study the effect of a posteriori methods for conservation
of integral invariants [25]. It consists of zonal flow as in case 2 impinging on a mountain.
The wind and height field are as in case 2, with a = 0, but the mean height is changed
to hg = 5400 m. The surface or mountain height is given by

hs = hso(1—1/R) (134)

where hy, = 2000 m, £ = /9 and 72 = min[R? (A — A:)® + (6 - 6.)?].

The center is taken as A, = —7/2 and 6, = ©/6. As no analytical solution is
known, a reference solution will be provided by a high resolution spectral transform
model integration. This will be provided as spectral coeflicients at 5-day intervals and
a routine to generate point values at arbitrary points. Agreement must be found with
at least one other high resolution solution provided by a different numerical scheme in
order to have confidence in the error measures.

Error measures: Contour maps on a rectangular latitude/longitude projection
(AXN/ Az = A8/Ay) of the h field and error at days 5, 10 and 15. Graphs of the
ly, €, and ¢, errors of h and v calculated versus the high resolution solution plotted
as a function of time sampled daily.

3.6. Rossby-Haurwitz Wave

Rossby-Haurwitz waves are analytic solutions of the nonlinear barotropic vorticity equa-
tion on the sphere [9]. Although they are not analytic solutions of the shallow water
equations they have been used so frequently for meteorological tests that since Phillips’
[19] first tests they have become de facto standard test cases although generally with
different parameters selected by each investigator.

The initial velocity field is nondivergent and given by the stream function,

Y = —a’wsin 0 + a*K cos™ §sin 8 cos R, (135)

where w, i’ and R are constants. Haurwitz [9] showed that this pattern moves from
west to east without change of shape in a nondivergent barotropic model with angular

velocity v given by
R34+ R)w —29Q

- . 136
(1+R)(2+ R) (136)
The velocity components are given by
v = awcosf 4+ ak cos™ (R sin? 8 — cos® @) cos RA (137)
v = —al Rcos™ 1 8sinfsin RA (138)
and the vorticity by
(= 2wsinf — Ksinfcos® 0(R? + 3R + 2) cos RA. (139)

The height is obtained from the stream function by solving the balance equation so the
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initial tendency of the divergence is zero [19].

gh = gho+ a®A(8) + a®B(8) cos RX + a*C(0) cos(2RA) (140)

A(8) = %(29 + w)cos? 8§ + %Kz cos?®O[(R + 1) cos? 8 (141)
+(2R? — R —2) — 2R* cos 2 6]

B(#) = At w)K cos® [(R? + 2R + 2) (142)

(R+1)(R+2)
~(R+ 1)? cos? 4

ce) = :111(2 cos?BO[(R + 1) cos? 6 — (R + 2)). (143)

In the past the qualitative aspects of the solutions have generally been examined.
To compliment the qualitative aspects we provide a reference solution from a high
resolution spectral transform model integration. This will be provided as daily spectral
coefficients and a routine to generate point values at an arbitrary point. The parameters
are w = K = 7.848 x 10=%sec~! and hg = 8 x 10° m. Only a wave number 4 is chosen
for the initial condition. Unstable waves [11] are not chosen since slightly different
perturbations may lead to growth of different unstable modes as might be indicated in
Kreiss and Oliger [12].

Error measures: Contour maps ou a rectangular latitude/longitude projection
(AX/Az = AG/Ay) of the h field and error at day 0, 7 and 14. The £1,45, £, er-
rors of h and v calculated versus the high resolution solution plotted as a function of
time sampled daily. Various normalized global invariants of the continuous equations
should also be plotted as a function of time. Define the normalized integral

L(p(1)) = {T1E(A0,0)] = I[H(X, 6,0)]}/Tle(A, 0, 0) (144)

where the discrete integral operator 1is defined as (81). The following invariants should
be presented:
geopotential (i=1)

¥ = gh, (145)
total energy (i=2)
Y = h(gh+ v v/2), (146)
vorticity (1=3)
v = (147)

divergence (i=4)

¥ =8, (148)
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and potential enstrophy (i=5)
¥ = 0.5(C + f)?/(gh). (149)

3.7. Analyzed 500 mb Height and Wind Field Initial Conditions

The last case consists of atmospheric initial conditions of the 500 mb height and winds
from several atmospheric states. The first is for 0000 GMT 21 December 1978, which
Ritchie [21] used to test his semi-Lagrangian scheme. This case, with strong flow over
the North Pole, has pointed out shortcomings of schemes in the past. A second case is
0000 GMT 16 January 1979. This case is characterized initially by two cut-off lows. The
flow pattern develops into a typical blocking situation. It has been studied extensively
by Bengtsson [2]. The third case is 0000 GMT 9 January 1979, which initially has
strong zonal flow. The last two cases are from the FGGE case studies selected by
WGNE and discussed by Baumhefner and Bettge [1]. The shallow water equations
should not necessarily be expected to predict the atmosphere well in these cases. The
variety is chosen to illustrate any variability in the characteristics of schemes depending
on atmospheric state.

In all cases the initial data are truncated to T42 spectral resolution, which includes
all scales resolved by the analyses. Ideally, nonlinear normal mode initialization con-
sistent with the scheme being tested should be applied to the initial data to prevent
gravity waves from contaminating the solution. The changes made by the initializa-
tion scheme should be submitted along with the error summary. However, because of
the extra work necessary to develop the initialization codes, an initialized data set is
also provided which is obtained via nonlinear normal mode initialization with a high
resolution spectral transform model. Although it may be advantageous to use an ini-
tialization procedure consistent with the scheme being tested, the choice is left to the
scheme’s proponents.

FError measures: The ‘true’ or reference solution will be obtained initially with
the spectral transformation method applied to the finest resolution possible. Agree-
ment must be found between at least two different schemes at high resolution to have
confidence. The reference solution will be provided in terms of spherical harmonic
coefficients so that it can be reconstituted on any computational grid. The {1, {2 and
£, errors of h and v should be plotted daily from 5-day forecasts. In addition, plots
on north and south polar stereographic projections of the forecast and forecast error
should be provided for day 1 and day 5. The five global invariants listed with the
Rossby-Haurwitz wave (Case 6) should also be graphed as a function of time.

4. Performance Benchmark

To exhibit the performance of a numerical scheme on a given computer system, the
computer CPU time and storage requirements for a 5-day run of case 2 with a = 7 /4
(to avoid most symmetries) should be reported for various resolutions. The number
of time steps taken and the errors in A and v at 5 days, as in (82)-(84) and (97)-(99)
should be given for each resolution. Any time step restrictions or special cases should
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be recorded so that the computational effort corresponding to a climate simulation
can be judged. Enough data should be provided so that comparisons can be made
between schemes based on the computational resources required to achieve a given
level of accuracy. These should include the total CPU time required, the number of
operations required for the calculation, a measure of the sustained computational rate
in gigaflops, and the data space storage required for each resolution. The machine and
the compiler used should also be documented.

For parallel computers the wall clock time, as measured on the host computer,
should be reported as well as the maximum time spent on any one processor. The
maximum size of the data space required on any processor should also be reported.
Execution times for a given resolution with the use of increasing numbers of proces-
sors, should be given to indicate how the algorithm scales. The speedup and parallel
efficiency for each resolution should be given as a function of the number of processors.
The parallel speedup is defined as S, = T1/7),, where T4 is the time required to execute
the sequential algorithm on a single processor and T}, is the execution time for the
parallel algorithm using p processors. The parallel efficiency is given by £, = 5,/p.
These measures may require an approximation of 77 due to memory constraints in the
single processor case. The method and assumptions used to approximate T3 should be
clearly stated. No output or unnecessary computation should be performed during the
5-day simulation.

5. General Comments

Ideally, all contouring should be via linear interpolation on the original computational
grids without smoothing or additional interpolation to an intermediate grid in order
to provide an indication of any noise in the solution. The utility of the various tests
included in this suite will become apparent as more investigators apply their schemes
to thern. We hope investigators will use all the tests and publish in refereed jour-
nals selected results that illustrate both the strengths and weaknesses of the schemes.
In-house technical reports containing the results from all the tests could provide the
complete documentation of a scheme. We expect the suite will evolve informally with
time as investigators point out weaknesses in the tests and suggest alternatives with
arguments as to why they are good test cases. Several other cases are currently under
consideration for inclusion. These consist of Thompson’s nonlinear series solution to
the equations [26] and modons in spherical geometry [27]. The latter do not have an
analytical solution for the shallow water equations and a high resolution numerical
solution will be required for a reference solution. J. Coté (personal communication)
is developing a test case following the recent studies of inertial motion on the sphere
[16] , [18]} . This case will complement the pure advection Case 1 and deal only with
the momentum equations.

The test snite will only become standard to the extent the community finds it
useful. This suite is fairly large but contains a variety of test cases and error measures.
This variety is needed in order to provide as much information as possible to would-he
users so they can evaluate the importance of the various tradeoffs required in their
applications.
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