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A STANDARD TEST SET FOR NUMERICAL APPROXIMATIONS TO 
THE SHALLOW WATER EQUATIONS IN SPHERICAL GEOMETRY 

David L. Williamson 
John R.  Drake 
Jarries J .  Ha,& 
Riidiger Ja,kob 

Paul  N. Swarztrauber 

Abstract  

A suite of seven test ca.scs is proposed for the eva,lua.tion of nnnierical methods 
intended for the solution of t,hc shallow water equa.tions ill spherical geoirietry. The 
shallow water eqiia.t.ioiis txhibit, t,he ma.jor r1iflic:ulties associated with the horizon- 
tal dyiiamica.1 aspects of a.tmosp1icric niodeliiig on the spherical earth. These cases 
are designed for use i n  the evidrmtioii of nuinerical irietliods proposed for climate 
inodelitig a.nd to identify the pot,eiit,ial tra.de--offs which must always be made in 
numerica.1 riiotleliug. Before a proposed scheme is a.pplied to n full lmroclinic at- 
mospheric model it must perfom1 well on these probleins in comparison with other 
currently accepted numerical methods. The ca.ses a.re presented in order of corn- 
plexity. T h y  coiisist of advect,ion across t8he poles, steady sta.te geostrophically 
balaiiced flow of both global a.nd 1oca.l scales, forced iioiiliiiear a.dvection of ai1 iso- 
lated low, zonal flow impirrging on a.11 isohted iiiount8aiu, Rossby-Raurwitz waves 
and observed atmospheric sta.t,es. One of the cases is also identified as a coin- 
puter perforriiauce/algori~,~iini efficiency 1-mic.hiiia~rli for assessing tlie performaiice 
of algorithms a.tlapted kJ massively parallel computers. 
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1. Introduction 

The early days of global atmospheric modeling saw significmt efforts in adapting then 
current numerical methods to  solving fluid flow oil the surface of the sphere. A large 
component of this effort was directed towa,rd finite difference approaches. The review 
article b y  Willia.mson [as] discusses the many fiiiite djfference approaches that  were 
applied to  the problem at that  time a i d  gives a lengthy list of references. The intro- 
duction of tlie spectral tra,nsform method by Orszag [15], and Eliasen, Machenhauer 
and Ra,srnussen [7] made the spectral method cost effective in terms of storage and pro- 
cessor time compa.rec1 with fiiiite difference a,pproaches. The review by Machenhauer 
[13] discusses the various app1ica.tion.s of the spectral method in detail. The spectral 
method presents a natural sohitiou to problems introd-uced by spherical geometry in 
part because it provides an  isotropic representation in spectral space even though the 
commonly adopted underlying Gaussian grid does not. The spectral tra,nsforni method 
is widely accepted as the basis of opera.tioira.1 numerical weather prediction and globa,l 
climate models. Althougli not iiiiiversaUy a,dopted the inetlmd has become the rule 
rather than tlie exception. As a. result little effort ha.s been directed in the last decade 
toward developiiig alternative methods of approximatiou for globd atmospheric models. 

Currently there is renewed interest in alt,erna,tive methods for ;t variety of reasons. 
'Ihe European Centre for Mediuiii Ra.nge Weather Forecasts (ECMWF) has reported 
[6] that  a.t resolutioiis grea,ter than those curreiitly used in in operational niiinerical 
forecast models the coniputr-ltional cost of the T q p i d r e  transform associated with the 
spectral method will become a. sigiiificail, fraction of the total cost of the model. Thus 
other methods a.re likely to  become economically competitive. The spectral representa- 
tion contributes to  unpliysical st,ruct,iires in the predicted fields such as negative water 
vapor [2O]. Traditiona,l fiiiite difrerence approximations also suffer from this defect. 
However, recently shape preserving m d  esseiitia,lly non-oscillatory schemes h.ave been 
developed to  address this deficiency. Spectral models require a global domain and have 
thus been based on a normalized vertical coordinate such as pressure divided by surface 
pressure. Over steep nrountabns the horizontal pressure gradient force in such systems 
is a stiiall difference of two large terms a.nd diffic~llt to  approximate accurately. Mesh 
refinement near mountains, or a,dniitta.nce of esplicit lateral boundaries where moun- 
tains can penetrate the grid, appear as  potentlid alternatives. The  spectral. method 
also presents problems with efficient inrpleiii(?i~t~tioii on some of the new computer 
architectures a,lthougli these are iiot nccessa,rily unique to  the spectral method. The  
global coiiiniritiicatioii required 1)y tlie spectra,l tra,iisform may be difficult t o  achieve 
efficiently on massively paridel coniputers with distributed memory. With grid point 
based schemes a, simi1a.r couiniiniica,tjon problem ma,y arise however associaied with 
the elliptic problem introduced by a semi-implicit tinie stepping algorithm. 

The reuewed interest i n  algorithin development has led to the need to define stan- 
dard test cases with which potential scliemes ma.y be compared. Strict compa.risons 
based 011 siicli test ca.ses will aid in ra.tionally choosing the compromises which must  be 
inade in iiumerical niotleliiig. We present i1. suite of test m s e s  in this report lor iiuiner- 
i c d  approsiimtions to tlie shallow wa.ter equa tioils in spherical geometry. The shallow 
water equations oil a. rotaking sphere swve as a. priimry test problem for numerical 



methods used in modeling global ati-iospheric Rows. ‘They describe the behavior of a 
shallow homogeneous incompressible a.nd inviscid fluid 1a.yer. They present the major 
difficulties found in the horizontal aspects of three dimensional global atmospheric mod- 
eling, Thus they provide a first test t o  weed out potentially non-competitive schemes 
without the effort of biiildiiig a complete model. However, because they do not rep- 
resent the complete atmospheric system, the shallow water equations are oiily a first 
test. Ultimately schemes which look attractive ba.sed on these tests must be applied to  
the complete ba.roclinic problem. We hope that  the existence of a standard test set for 
the shallow water equations will encourage the continued exploration of alternative nu- 
merical methods aiid provide the community with a mechanism for judging the relative 
merits of numerical schemes and pa,ra,llel coiiiputers for atmospheric Row caleiilatioiis. 

We present here a suite of seven test ca.ses in increasing order of complexity. Several 
analytic treatments included iii tlie suite provide objective standards for judging the 
accuracy of numerica.1 schemes aiid provide quick checks on the validity of code. The 
first test consists of a,dvectioii of a structure of compa.ct support by a specified wind field 
corresponding to  solid body rotation whose axis is not necessarily coincideiit with that  
of the rotation of tlie earth. As sucli this case deals with o d y  a. subset of the shallow 
water equations, naaiely the continuity equation: but concentrates on a scheme’s ability 
to  deal with the poles of tlie sphcrical coordiiia.t,e system. 

The  second a.ud t.liird ca.ses prcsent steady state, nonliiicar zonal geostrophic flow. 
They arc‘ a global form with the wind corresponding to solid body rotation aiid a local 
form where the wind field has compact support. In both cases the spherical coordinate 
poles a.re iiot iiecessa.rily coiiicidriit, witli tlie ea,rth‘s rotation axis. As with the first 
case t,hese t,est a, scheme’s ability t.o liaiitlle the poles, but in  addition nonlinea,rities can 
come into play. 

The siicceeding t,est cases ilrt of increasing complexity and realism, exercising the 
more subtle a.spects of atinosplieric flows. One case uses an analytic forcing function to  
drive a low around the sphere. Tlie ca.se mimics the more complicated local structures 
observed i i i  the a.tinosphere. Aiiot,liei. ca.se coiisists of zonal flow impinging on an 
isola,ted mounta.in in wliich a. don~iistream wavetrairi is set up. ‘4 Rossby-I-laurwitz 
wave case is a,lso included. Aiialytic solutions for tlie R.ossby-Ha.urwitz wave in  the 
shallow water context are not. li11o\vn but, this wa.ve l i x  become a stamdard test case in 
meteorology. A reference solution is provided by a high resolution spectral transform 
model integra.tion. Finally, actual weather patterns are presented for initial conditions. 
Since they obviously have no analytic solution a reference solution is provided a.gain by 
a high resolutioii spectral transform inodel run. As mentioned above, analytic solutions 
for tlie last three es are  iiot known. R.efereiice solutions will be provided by a higlr 
resolutioii spectral tmnsforni iiiodel. k’or it to  be accepted it must be duplicated by a 
high resolution solution provided by at, least one other different method. 

With each test ca.se we asli for a va.riety of specific mea.sures of tlie error of the 
iii.imerical solution. .lust. as  there is iio siiigle itlea,l test cas(?. there is no single measure 
that determiiies tlie quality of a sclieiiie for atmospheric modeling. We include the 
variety of test cases a,nd error iiieahures to provide a,s niucli information as possible to  
\voiild-be users so they can eLduate  tlic various tradeoff’s involved with the schemes. 

The second t,est. in thc siiitc is also proposed as  a. performance benchma.rking prob- 
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lem. Such bencliaiarkiiig is particularly iiuportant since the efficiency of schemes must 
be evaluated considering tlie computing environment for which they are designed. 

As an initial basis of comparisoii we provide in a companion report solutions t o  
these prohleins from a spectral tra.nsform approximation a t  resolutions currently used 
in atmospheric inodels. Spectral iriodels are widely but not universally adopted in 
climate modeliiig and numerical weather prediction. We encourage centers currently 
using other methods to run these tests with their schemes and to  submit the results for 
comparison. To facilitate comparison of schemes, a machine readable copy of standard 
FORTRAN routines which calculate the initial conditions aiid analytic or reference 
solutioiis is available from netlib@ornl.gov. A file summarizing performance statis- 
tics contributed by members of the community will also be maintained. In addition 
a list of corrections to tliis paper will be niaiiitained along with a bibliography of re- 
ports presenting results of tests of numerical schemes based on this test suite and any 
inodifcations to the test suite g ~ t i ~ r a l l y  agreed upon by the community. Please sub- 
mit additional performance data and references for the bibliography as they become 
available to  ~7ollii Drake (hbdQornl.gov). 

2. The Shallow Water Equatioiis on a Sphere 

For conveiiience, we sumniariw many forms in whicli the shallow water equations can 
be written. The reader is referred to standard texts such as TIoltoii [lo] and IIaltiiier 
and Williams [8] for inorr general developmeiit. 

2.1.  Flux Forin 

The shallow water equations 0x1 a rotating sphere can he written in flux form as 

aiid 

(2) 

where h" is the depth of the fluid and h is the lieiglit of tlie free surface above a refererrce 
sphere (sea level). If h, denotes tlie hciglit of the underlying niountains, h = h* -+ h,. 
The horizontal (on the splielo) vector velocity is denoted v with components ?L and u 

in the longitudinal ( A )  and latitudinal ( 0 )  directions respectively. The V operator is 
tlie spherical horizontal graclieiit operator given by 

and 0-  is tlie spherical ltorizoiital divcrgeiice operator given 

v . v G  ~ 1 
[atL - +  B ( ~ ~ ~ ~ ~ ) I  

r icosH ax do 

(3) 

(4) 



The longitudinal, latitudinal and outward radial unit vectors are P ,  3 and k, respectively, 
f is the Coriolis parametel. y is the gravitational constant and a is the radius of the 
earth. The Coriolis parametel is given by 2R sin r9 where !d is the rotation rate of the 
ear th  

The equations for the spheiical coniponents can be derived by writing v - ui + v j  

and using 

L A  

(5) 
dli*v :dh*u :dh*v dP dj^ 

d t  d t  + Jdt d t  dt 
- 1- h * ~ -  + h*v-.  ~ -1- 

Equation (1) in terms of spherical components is then 

= 0 ,  
gh* d h  

__ + V - ( h * ~ )  -- 
dh*u 

dt 

dh*v  

at 

U gh* d h  + v . ( I Z ' Z T )  + ti3110 h*u + = 0.  ) a 
___ ( 7 )  

2.2 .  Advective Form 

The advective foriii of the horizontal niomentiim and nmss continuity equations can be 
written 

dv 
.....- = - f k  x v - gVh. 
clt 

a,n d 
d h  
__ + ll*V . v = 0 

f l  t 

and 

The equations for the spherical components a.re 

ah* 
___ + v .  V;7h' + - - + 
at (1 cos 0 do 

h* (;; Dvcosr9) = 0. 

2 . 3 .  Vorticity Divergence Form 

The horizoiitdl nionieiituni c r l i i  alio be >pecifitd in terms of relative vorticity. 

< L k . ( T  x V I ,  

and  horizon t a1 (1 i  vergc>ii CP.  



The curl operator is given by 

8uiise1 k * ( V  x v) = - [" - 1 
ncose dX 

Using the vector identity 

v . v  
( v .  0 ) v  = v (T) + [ ic  x v,  

the horizontal momeiit uin equation becomes 

v . v  8V 
- at = -(C t f)l; x v - V(gh f -)) 2 

or in spherical component form 

1 1 8  = ([ + f ) V  - -- 
aU 

at a cos 0 ax 

- -(< + f ) ~  - 

- 

BV 

8t 
- _  

Applying the curl and divergence operators & .  V x ( ) and V ( ) t o  the momentum 
equation yields 

(21) 
a< - = -v . ([ t f ) v  
at 

- = k . 0  x ([t f ) v -  v2 g h t  i_ ( '2')) 
a6 
at 

or in terms of sp1ierica.l components 

where 
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2.4. Bounded Differential Expression Forin 

The spherical vector coinponent forms of the equations contain individual unbounded 
differential expressions approaching the poles. Swarztrauher [3] has developed a form 
for the equations containing only bounded differential expressions 

(26) 

(27) 

d U  _- --.6- u ---I v a t 1  udv + fv-- I______- 9 ah - -  
dt a a 6 8  a d d  a cos e ax 

u udu vdv g ah - ._ --c fu ___I d V  

d t  n a dQ a d 0  a 80' 
- 

2.5.  Stream Function, Velocity Potential Forin 

The spherical velocity components can be avoided by thc introduction of a horizontal 
stream function, LI,, and velocity potcnt,ial, y.  The equation relating horizontal velocity 
and these two scalar quantities is 

The spherical w i i i d  components a r ~  related to  the stream function and velocity potential 

by 
l a $  1 ax + ___ - 
n a0 ctcosHdA 

1 181 t , = -  +--- 
ncos0dX n d H '  

(1 = - - (29) 

(30) 

l'he application of the curl and divergence operators to  (29) and (30) gives the 
absolute vorticity 

77 2 ( + f - T2?f!J + f (31) 

and divergence 
0 = v2\. ( 3 2 )  

In terms of the streaiii function a n d  velocity potential the horizontal moincnturn and 
iiiass coiitiiiuity equations ca.11 be lwritteii [I43 

( 3 3 )  

(34) 

i) 7) 
- + v .  (7/V\) - J(q,?+h) = 0, 

- --- G . (?]V<j) - J (  ?],I) = -V2(1i 4- g h ) ,  

d t  

dh  
81 

and 
all* 
__ Jr T .  ( h * V \ )  - J ( h * .  $1 == 0 
Br 

111 spherical coordinates the Jacobian operator is defined by 

( 3 5 )  

Here I< is the kinetic energy +(  a 2 + v 2 )  and can be expressed in terms of stream function 
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and velocity potential as 

(371 
1 

IC = $V * (+V$j - .ti,v2+ t v . (XVX) - XV2XI t J ( + , x ) .  

The J and V. operators, curl and divergence, have the following integral properties 
according to Gauss’s theorem, 

and 

where & is the derivative along C‘ and is the derivative normal to the curve. 

2.6. General Orthogonal Coordinates 

The general orthogonal coordinate form is useful when considering approximations 
based on various map projections. Let (.c,y) be the orthogonal coordinates and rrh, 
and rrzy be the metric coefficialts so the distance iiicrerrieiit (de)  satisfies 

= n&x2 t n2:dy2. (401 

The velocity vector v 1ia.s components 

dn: 
U = nz,- 

d t  

dy I/ = 172 - 
d t  

in the .c and y directions, respectively. The equations of motion are 

where 

The cont,iiiuity eqmtion is 
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Note, for spherical coordinates 

in, = ncosO , my = a (48) 

Commonly used map projectioiis are north aiid south polar stereographic 

1 4a2 
m, = iny = -(1 AZ siii 8) = - 

2 2 2  f y2 + 4a2 

and Mercator's 
171, - I1ZY = cos@. (52) 

,411 ilia jor i m p  projections are described froni a geographical point of view by Steers 
[23]. Saucier [22] discusses the cominoii projections used in meteorology. More recently 
Pearsoii [17] has suiniiiarizcd the field. 

2.7. Three-Dimensional, Constrained Foriii 

C6t6 [.I] developed a three tlinieiisioiial vector form for the horizontal momentum equa- 
tions usiiig the uiideterinined Lagrange iaultiplier inethod to  coiistraiii tlie motion t o  
be 011 the surfacca of thc sphere. 

dV 
- F + / l r  
d t  

where 
dl. 
rlt 

v 

( 5 3 )  

(54) 

is the thiee-diineiisioilal velocity vector in  a rotating frame, 

aiid p is the Lagraiige multipler determiiietl by requiriitg 

be sa.tisfied for all tinie; r is the positjon vector. Evaluation of the Lagrange multiplier 
for tlic coiitiiiuous eqiia.tioiis gives 11 = ---V . V aiid leads to tlie usual Eulerian form. 
There a.re advantages, hoivever. i i i  det,erniiiiiiig the La.gra.iige multiplier after the time 
discretizatioii [j]. In this a,ppioacli the three~diiiiei~sioiial equation is solved rather thaii 
the usual two-diiiiciisioiial aiid 1-1' reprcseiits a suppleiiientary force which keeps fluid 
eleiiieiits 011 tlie surface of t h e  splierv. Aftcr discretization, lioxvever, the ca.lculation 
caii be ca.rriec1 out, in  two-dinrcnsioiial space. 
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2.8. Cartesian form 

It may be advantageous to  evaluate the surface derivatives using a Cartesian form. By 
extending the surface vector v = (u, u ) ~  to the three-dimensional v, = ( 2 0 ,  u, u ) ~  the 
shallow water equations can be embedded in the system 

(57) 
dv, - + S(VS)VS t t p t 6 = 0, at 

l ( 3 w  - a cos B 8~ u COS 0) 
where 

(58) 

aw 1 aw - 
ar ,(m - v> 

t(% f I l l )  

1 all 
-J---(h acos8 3 X  - ?L sin e) 

A(& - usin0 t wcosi3) _ _ _  a IL 
3 r  a a0 
- 

T is the radial coordinate ( T  = u a t  the earth’s surface) and 

and 

If we define V = ( X ,  Y ,  Z ) T  as the vrlocity in Cartesian coordinates (x, y, z )  then 

where 

(63) 1 cos 6, cos X cos i3 sin X sill 6 

- sin X cos x 0 
4= ( - sin B cos X - sin 0 sin X cos 0 . 

Substitilting (62) into (ti7) and iiiultiplying by QT’ we obtain the Cartesian forin 
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and 

where 

and 

Similarly the continuity equation in Cartesian form is 

811" 
at (71) ~ -1 VTPVV,ll* + ll*V,. v = 0. 

The matrix f' projects an arbitrary Cartesiaii vector onto a plane that is tangent to  the 
sphere at  the point (x, y, 2).  For iiietliodh of evaliiatiiig the C matrix and the Cartesian 
gradient the readcr is referred to ['24]. 

3. Test Cases 

'I'he following test ca.ses a.re proposed to evaluate and compare numerical schemes 
iiiteiided for global a.tiiiospheric iiiodcls. Tlie scries iiicrea.ses in complexity. We suggest 
the tests be run in  order witliout proceeding to  the nest, until the numerical scheme 
is reasoiiahly successfiil on the cur ren t  otic. F'or some scheiiies some of the requested 
pil.rat11eter settings define t,rivial t,ests and  rcnlist,ically provide only a superficial check 
of the code ratlier tliaii a. useful iiieasurc of the quality of the sclieme. These situa,tions 
should be idetitijietl so t 1i;i.t rio iiilsc coricliisions arc drawn. Ideally the full set should 
be report,ed for each proposed sclleluc. a ~ ~ d  triviid cases for that scheme acknowledged. 

Clase 'L also provides a benchiiiarli for tiiiiiiig iinpleitientatioiis 011 various machines. 
11. exercises the coiiipletc set of equatioiis a.nd siiice it is a steady state solutioii no 
extra coniput.atioiis are required during the integration. For timiiig purposes an iiite- 
gratiori shoiild be performed wi th  a11 extra output, processes removed a,ftex it lms heen 
demonstrated tliat the sclicine a.nd codes solve the problein properly. 

'l'liese tests represent necessa.ry coiiditions only, i.e. any scheme must do well in 
these tests compa.red to currently accepta.ble schemes. A n y  scheme that  performs well 
in these tests ca.11 then be incorporat,cd i n  a global barocliiric general circulation model 
with state-of-the-a.rt physics aiid definitive tests can be conducted. 
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Paraliieters relevau t t o  tlie ea.rth aitd all test ca.ses are 

a = 6.37122 x 10Gin 

n = 7.292 x 

g = S.SO(ilG 111 s-~. 

Unless specifically irientioned, the height of the inounta.ins is talien to be zero (h ,  = 0) 
and hl = h.  

3.1. Advection of Cosine Bell over the Pole 

This is the only case of tlle suite that does not deal with the coinplcte shallow watcr 
equations. I t  tests the advective component iu isolation. Many shallow water codes call 
be easily changed for this test by overwriting tlie predicted wind field every time step 
with the analytically 5pecificti advcctiiig wind. Since this wind field is nodivergent  
tlie equatioii for the lieiglrt of the f iw  burface reduce.; to the advection equation. For 
some inethods, semi-implicit f a  esaniplp, somc additional changes inay bc required to  
isolate the height forecast frc~iu the wind forecast. 

A cosine bell is advected once around the sphere. Several orientations of the ad- 
vecting wind are spccified including around tlie equator, directly over the poles and 
minor shifts fiorn tliese trvu oriciitatioris to avoid symmetries. This case is specificd in 
eqns. (4.2)-(4.5) of Williamson and Hasch [31]. The advecting wind is given by 

I I  = tio( cos H cos CY + sin 8 cos X sin a )  ( 7-5 ) 

In terms of stream function aiitl velocity potential this is 

(77) %/. , -. - - n u g (  sin 8 cos CY - cos X cos H sill a )  

x = 0. 

The parameter N is tlie angle hetnrcen the axis of solid body rotation and thc polar axis 
of the spherical coordinate systmi. Tebts should he 1'1111 with c\ = 0.0,0.05, ~ / 2  - 0.05 
and ~ / 2 .  

The iuitial cosine bell teht pat t r in  that is to be ac1vc)cted is given by 

where ho = 1000 i n  and r is tlic great, circle tlista.itcc lietween ( A ,  0) and the center, 

iiiitiaJly ta,ken a.s (A,..S,) = ( J ~ , o ) .  

(80) 7' = ci arcros [sin 0, sin H 4- cos 8, cos 8 cos( X -. A,)] . 

l'he radius R = 3 and tlre advectiug wind velocity u g  = 2na/ (12  days), which is 
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cquivalent to  about 40 m/sec. This solution translates without a n y  change of shape. 
100 m with zero contour) on 

orthographic projection with perspective centered over the true solution. 'True solution 
should also be coiitoured 011 the Yxne plot with dashes but without the zero contour. 
Plot after one rotation. Contour maps of the error should also be provided after one 
rotation. 

Some global measures of the error are also desirable. Define 1 t o  be a discrete 
approsimation to the global integral 

Error measurc6: Plots of contour lilies (interval 

I (  1 2 )  - I'i' 1:; h(X, 8) cos OdOdX, 

which is consistent witli the numerical a.pproxiniations beiiig tested; for example, Gaiis- 
sia.n qi ia .di~~ture  would be select,ed for t,he spectral transforin method. 'The following 
normalized g1oba.l errors should be gra,plietl a.s a. function of time sampled cacli time 
step whcre 1i.1, is the true solution. 

In adtlitioii. the iiormalized ineaii, variance, rniiiimum and maximuin values should be 
graphed as a function of time sairiplctl each time step. Let h denote the mean 

then the> iiorinalized iiieaii ant1 variance are written 

a 11 d the iii i 11 i i n  uiii a 11 d m a s  i 111 111 i I 

whcre Ah is the tliffvrcncc bet iveeii tlic iiiasiuium aiid iiiiiiiinuiri valiies of the true 
solution initial11 a i i d  h~ and h o  arc  the true solutioii and initial field respectively. 

3 . 2 .  Global Steady State Nonlinear Zoiial Geostrophic Flow 

I his (:as(' is a stc>a.tlJ. s t x t c  solution t o  the nowlinear shallow water equations. It 
coiisist,s of solitl body  rota.tioir 01' zoiial flow wit,lr the corresponding geostrophic height 

r 7  
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field. The  Coriolis parairieter is a function of latitude and longitude so the flow can 
be specified with the sphcricd coorcliiiate poles not tieccssarily coincident with earth's 
rotation axis. Again several orientations are specified. 

The  velocity field from cqns. (4.1) (4.2) of Williamson and Browning [29] is initially 
(and for all time) 

u = uo(cos B cos CY + cos X sin B sin a) (90) 

(91) v = - t io  sin X sin a. 

In this report tlie angle u' lias tlie opposite sign as that  in Williamson and Browning [29] 
but the same sign as that in Williamson and ICascli [31]. In terms of stream function 
and velocity potential, tlie velocity field is 

x = 0. 

The  abso1ut.e vorticity is 

The analytic 12 field is given by 

(93) 

It may be desirable to modify the init id wind and lieight fields so they satisfy a discrete 
nonlinear geostrophic relationship consistent with the scheme being tested. This could 
prevent spurious gravity wa,ves froin conta.mina,tiiig the numerical solution. The discrete 
balance may also be used to  define the true solution for the purposes of calculatiiig the 
error diagnostics. These clia.nges are allowed but must he reported with the results 
along with the error compa.ring the discrete initial state to  the analytic. The Coriolis 
parameter associa,ted with this solution is 

(96) f = 'LO( - cos X cos 8 siii CY + sin H cos cy) .  

The patanietcsr values used should be I L ~  = '2au/j12 days) as in case 1 and gho = 
2.94 x io4  in2/s2.  

Tests shoiild be ruii \villi 
Error 777eas~1rcs: Contour iiiaps on an 0 1  thograpliic projection centered un ( 3 ~ / 2 ,  ~ / 4 )  

= 0 . 0 , 0 . 0 5 , ~ / 2  -- 0.05, and ~ / 2 .  

of 12 field and error after f ivr  days. Graphs of tlic -Pl,fz. and los errors of h and v versus 
time. 'The h errors are coinputccl LCS in (S2) - (S4). The v eirors are givcti by 



- 14 - 

In addition to  these graphs a mesh convergence study should be performed. The &(h) 
and 4 ( v )  errors a t  five da.ys for three different resolutions should be shown and a rate 
of convergence for the method estimated. 

3.3. Steady State Nonlinear Zonal Geostrophic Flow with Compact Support 

This case is similar to  the previous except the wind field is nonzero in a limited region. 
It was introduced by Browiiing et 4. [3]. In tlie editorial process for that  paper some 
terms were dropped from the last eqiiatioii in the first colurnii on page 1068. It should 
read 

This case is ea,siest to write first in a coordiiiate system (A’,  0‘) whose poles are 
coincident with tlie Earth’s rotakiori axis, followed by a rotation through an angle 
ci to  tlie system (,\,e) in which the jet is not pa.ralle1 to  the coordinate lines. This 
is esscntially the process used to  derive the equations a.bove for solid body rotation, 
however, i n  t,lic case with coiiipact. support, it is inore difficult to write the equations 
iu  closed forni in the ( A ,  N )  systeni. Therefore: we present the equations in a. series of 
steps. The velocities components (u’, d) in tlie (A’, 0’) system are given by 

\v hc re 

r ,  
I h e  parameters are u g  = ’27ru/(l’L clays), 81, = - r /6 ,  8, = n-/2 arid x, = 0.3. Note 
that u’ is infinitely differentiable and lias compact support. The stream function and 
velocity potential are given by 

(104) 

and 
1’ zx 0. 
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FollowiIig (5.13) t o  (5.17) of [31] (with XA = 0 and 6 A  = CY) the rotated form can be 
writ ten 

v cos 6 = -u’ sin CI sin X‘ 
u cos A = ‘u sin 6 sin X + 11’ cos A’ 

with the coordinates related b y  

sj t i  8’ = siii 6 cos cy - cos 6 cos X sin Q (108) 

s i n  A‘ cos 8‘ = sin X cos 8. (109) 

The quadrant iii which A’ falls can be detcriiiiried by insuring that  

sin 0 = sin 0’ cos a -+ cos 6’ sin CY cos A’ (1 10) 

is also satisfied. Equation (1 10) may suifer froin precisioii problems because of the 
nesting of tiigoiioinctric aiicl inverse trigonometric functions. A more stable test is 
that  the principal value (A;) is used for A’ when 

cos Q cos A cos 6 + siii cy siii 8 2 0 (111) 

otherwise A’ = a - Ab. This relatioilship ca.n be obtained by transforming to  Cartesian 
coordinates, rotatiiig the Cartesian coordinates aiid noting that  tlie principal value is 
rreeded in tlie primed systeiii when 1:’ 2 0. [The x and z coordiiiates are chosen to go 
tlirough (A,  8) = (0,O) a.nd (0, $), respectively, and the y coordiiiste can. be ignored.) 
The Coriolis parameter in the two systems is 

f = 2 0  sin 6’ 

f = ‘2f2(-cosXcos6siiicu f s in6cosa) .  

For a steady s ta te  solution 11’ must satisfy 

(11.2) 

(113) 

For the general case the height is difficult t o  obtaiir analytically. Thercfore, wc integrate 
the form in the priure systciti 

nnunerically to  ohtain a liighlj accurate h .  ‘Tlte bacligrountl height, ho, is given by 
g l ~ o  = 2.94 x 10“ in2/s2 as iii Case 2 and t hc limit 8’ is reldtcd to  (A, S), the point a t  
which the gcopoteiitial is desired, by (10s) 

Tests should be run w i t h  crr = 0 0, and ~ / 3 .  
Error measiire.5: C‘ontonr m a p  of field arid e i ~ o r  after five days on an  ortliographic 

projection ccnteretl on (37i/2,7r/-l) . Giaplks of the C1,P2 and C, errors of h and v 



as fuiictioiis of time. In addition to  these graphs a mesh convergence study should be 
performed. The t z ( h )  arid t,(v) errors a t  five days for three different resolutions should 
be shown for the a - $ case and a rate of convergence for the method estimated. 

3.4. Forced Nonlinear System with a Translating Low 

The nonlinear steady state tests presented in the previoiis sections are the simplest 
measure of tlie adequacy of a particular numerical method. The performance of a 
scheme on the iioiiliiiear uiisteady equations is also desirable, but analytic solutions 

are all but nonexistent. Thus, we take the approach followed by Browning et al. [3] 
who choose a flow 71.6, and fL  that  i s  similar in structure t o  flows observed in the 
atruosphrre. This flow is a solution to  the forced shallow water system which can be 
written in  advective form as 

(117) 

where the height of the inouiitaiils h ,  is taken to be zero arid tlie substantial derivative 
is defined as 

and the forciiig teriiis a.re defined a.s 

The flow is given by 
$18 

11 = 11 - - 
(1 

(121) 

(122) 

(123) 
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-0 I--c ? j ( A , B ,  t )  = $"e 1tc 

with $0 = -0.03gh0 -5' 0 = ( 12.7424q2 and 

'II 0 C = sin Bo sin B + cos Bo cos 0 cos(X - -t - j. 
Q 

The center of the low is initially located at (Xo, 8,) 
x, is zero while the stream function is given by 

rB 

$(O, A ,  t )  = - J n?i(.r)ctr 
Ir _ _  
2 

(127) 

(1 28) 

(129) 

= (-E, t) .  The velocity potential, 

+ $(e ,  A, t j .  (130) 

The flow is a tra,nslating low pressurr-: cenler superimposed on a jet stream which is 
syininetrical about the equa.tor. Figure 5 of [3] illustrates the initial height field. This 
field exhibits some of the properties of middle level tropospheric flow (;.e., a short-wave 
trough embedded in a. westerly jet), 

The a.rialytic expressions for tho  forcing are presented above for ~rroinentuiri. Schernes 
predicting other va.riables such as vorticity/divergeiicc or stream function/velocity yo- 
tential must be able to accept tlie forcing in terms of inorneiituni as that  i s  what is 
provided froin the parairieterizatiolls in a.t,niosplieric models (see for exaiiiple [3O].) 
Thus solutions sbou.ld be provided using tlie rnomeiituni forcing as prescribed. How- 
ever, for the purpose of compa,rison witli other schemes it may be advantageous to  
specify the forcing analytically in terms of the predicted variables if other than 1710- 

mentum. This approach is a,lso allowed for these tests, but if it is chosen, then results 
with moment iim forcing should also be presented. 

Tests should be run with P L ~  L- 20 and 40 ni/s. 
Error measures: Contour maps of sohition and error after 5 days on an orthLographic 

projection centered uxi (Ac,  71./4), where A,: is the longitude of the center of the cell. The 

e l ,  l j ,  errors of 11' a,nd v' should be plotted as ii functioii of time. Here h' and v' are 
the perturbation fields obta.inet1 by sul>tractirig the background zoiirtl flow 

(131) 

(133) 

(132) 

where fi a.nd it are given I)y ( 126) and  (127)  respectively. The true solution is modified 
i i r  the same way for tlie error calculation. 'The mean zonal coniponeiiL is removed so 
that  the error priinarily represents that a.ssocia.led wit11 the cell. The graphs should 
include da ta  sampled every tilire step s o  that  any oscillatory behavior ca,n be seen. 
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3.5.  Zoiial Flow Over an Isolated Mountain 

This case was used by Takacs t o  study the effect of a posteriorimethods for conservation 
of integral invariants [25]. It consists of zonal flow as in case 2 impinging on a mountain. 
The wind and height field are as in case 2, with Q = 0, but the mean height is changed 
to  ho = 5400 m. The surface or niouiitaiii height is given by 

where h,, 2 2000 in, 
As no analytical solution is 

known, a reference solution will be provided by a high resolution spectral transform 
model integration. This will be provided as spectral coefficients a t  5-day intervals and 
a routine to  generate point values a t  arbitrary points. Agreement miist be found with 
at  least one other high resolution solution provided by a different numerical scheme in 
older to  have confidelice in the error measures. 

Error measures: Contour maps on a rectangular latitude/longitude projection 
(AA/A.u = AH/Ay) of the h field and error a t  days 5 ,  10 and 15. Graphs of the 
ll. t2 and C, errois of h and v calculated oersus the high resolutioii solution plotted 
as a fuiictioii of tiiiie sampled daily. 

= ~ / 9  and r 2  = iniii[R2, ( A  - + ( 0  - f? , )2 ] .  

The center is taken as A, = -7r/2 and 0, = w/G.  

3.6. Rossby-Haurwitz Wave 

Rossby-Ha,urwitz waves are analytic solutions of the nonlinear harotropic vorticity equa- 
tion 011 the sphere [9]. Although they are not amlytic solutions of the shallow water 
equations they have been used so frequently for meteorological tests that  since Phillips' 
[19] first tests they have become de facto standard test cases dthougli generally with 
different pa.raiiieters selected by ea.ch investigakor. 

The initial velocity field is nondivergent and given by the stream function, 

'$1 = ---a2w sill 9 + a2 IC cosR 8 sin 9 cos RX, [ 135) 

where &,I< and R are constants. Haurwitz [9] showed that  this pattern moves from 
west t o  east without change of shape in  a nondivergent barotropic model with angular 
velocity v given by 

(136) 
R(3  + f l ) w  - 2 9  

= (1 t R ) ( ! i i .  

The velocity components are giveii by 

and the vorticity by 

C = 2d sin 0 -- I< sill N cosR O( R2 + 3 R  t 2) cos RA. (139) 

'The height is obtained from the stream function by solving the balance equation SO the 
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initial tendency of the divergence is zero [19]. 

gh = g h o  + a2A(0)  + a21?(8) COS RA + a2C(8) cos(2RA) (140) 

(141) 
1 

:(2Q f w )  cos2 8 + - K 2  cos2' 8[(R + 1) cos2 8 
2 4 
+(2R2 - R - 2) - 2R2 cos--2 81 

A(B) = 

- ( R  $- 1)2cos2#] 

1 
C(8)  = -1<2cos2126[(R+ 4 l )cos"- (R+2)] .  

(1.42) 

(143) 

In the past the qualitative aspects of the solutioiis have generally been examined. 
To compliment the qualitative a.spects we provide a reference solution from a high 
resolution spectra,l transform rnodel integra,tion. This will be provided as daily spectl-a.1 
coefficients and a routine to geverate point values at an a.rbitra.ry point. The parameters 
are w = I< = 7.848 x l~-"sec-*  aiid hu = 8 x 1 0 ~  111. Only a wave nurnber 4 is chosen 
for the initial conditioii. Unsta~hle waves [ I  I ]  are not chosert since slightly dif-ferent 
perturbations iiiay 1ea.d to growth of differelit illistable modes as might be indicated in 
Kreiss a i d  Oliger [12]. 

Error mea,sw,rcs: Contoui+ 1iia.t)~ 011 a rectaiigular latitude/loogitude projection 
( 4 A / 4 x  = A#/Ay) of the 11 field and error at day 0, 7 a.ud 14. Th.e l,,P,,&, er- 

rors of h and v calculated 2;erms the high resolution sohition plotted as a function of 
time sampled daily. Various nornialized global ill va,riaiits of the coritiniious quatioris 
should also be plotted as B fuiiction of time. Defiiie the normalized integral 

I z (+( t ) )  = {w(~ \?s , t ) l -  r[ l j t(~,R,O)]}/~[l i,(X,8,0)] (144) 

where the discretcr iiitegral operatoi I is defined as (81). Thc following invariants should 
be presented: 

geopoteii tial ( i  = 1 ) 

total energy ( i=2j  

vorticity (i=3) 

(14.5) 

(146) 

(147) 

divergence ( i d )  

li, = 6, 



- 20 - 

and potential enstrophy (i=5) 

3.7. Analyzed 500 mb Height and Wind Field Initial Conditions 

The last case consists of atmospheric initial conditions of the 500 mb height and winds 
from several atmospheric states. The first is for 0000 GMT 21 December 1978, which 
Ritchie [all used to test his semi-Lagrangian scheme. ‘This case, with strong flow over 
the North Pole, has pointed out shortcomings of schemes in the past. A second case is 
0000 G M T  16 January 1979. This case is characterized initially by two cut-off lows. The 
flow pattern develops into a typical blocking situation. I t  has been studied extensively 
by Bengtsson [a]. The third case is 0000 GMT 9 January 1979, which initially ha,s 
strong zonal flow. The last two cases axe from the F’GGE case studies selected by 
WGNE and discussed by Bauinhefiier and Bettge [l]. The shallow water equations 
should not necessarily be expected to  predict the atmosphere well in these cases. The 
variety is chosen to  illustrate any variability in the characteristics of schemes depending 
on atniospheric sta.te. 

In all cases the initial data  a.re truncated to  T42 spectral resolution, which includes 
all scales resolved by the aualyses. Ideally, nonlinear iiorinal inode initialization coii- 
sisteiit with the scheme being tested should be applied to  the initial data  to  prevent 
gravity waves from coiita.minating the solution. The clianges made by the initializa- 
tion scheme should be submitted along with the error summary. However, because of 
the extra work necessary to  develop the initialization codes, an initialized da ta  set is 
also provided which is obtained via nonlinear normal inode initialization with a high 
resolution spectral transform model. Although it may be advantageous to  use an ini- 
tiadization procedure consistent with the scheme being tested, the choice is left t o  the 
scheme’s proponents. 

Error 17ieusures: The ‘true’ or reference solution will be obtained initially with 
the spectral transforination method applied to  the finest resolution possible. Agree-. 
rnent must be found between at  least two different schemes at  high resolution to  have 
confidence. The reference solution will be provided in terms of spherical harmonic 
coefficients so that i t  can be reconstituted on any computational grid. The !l,!2 and 
em errors of h and v should be plotted daily from 5-day forecasts. In addition, plots 
on north and south polar stereographic projections of the forecast and forecast error 
should be provided for da.y 1 and day 5 .  The five global invariants listed with the 
Itossby-IIaurwitz wa.ve (Ca.se 6 )  should also be graphed a.s a function of time. 

4. Per fo r in an c e B e 11 c 11 111 ark 

To exhibit the perfoiinarice of a niiinerical scheme on a given computer system, the 
computer C‘PU tjiiic and storage requirements for a 5-day run of case 2 with a = 7 ~ / 4  
(to avoid most syninietries) should be reported for various resolutions. The number 
of time steps talien aiid the errors in 11 and v a t  5 days, as in (S2)-(84) and (97)-(99) 
should be give11 for each resolution. Any time step restrictions or special cases should 
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be recorded so that  the computational effort corresponding to  a climate siniulation 
can be judged. Enough da ta  should be provided so that  comparisons can be made 
between schemes based on the computational resources required to  acliicve a given 
level of accuiacy. Tlresc. should include the total CPU time required, the number of 
operations required for the calculation, a measure of the sustained computational rate 
in gigaflops, and the da ta  space storage required for each resolution. The machine and 
the compiler used should also be documented, 

For parallel computers the wall clock time, s measured on the host computer, 
should be reported as well as the rnaxirnum time spent on any one processor. The 
maximum size of the da ta  space required oil aiiy processor should also be reported. 
Execution times for a given resolution with the use of increasing numbers of proces- 
sors, should be given t o  indicate how the algorithm scales. The speedup and parallel 
efficiency for each resolution should be given as a function of the number of processors. 
The parallel speedup is defined as S,, = T,/T,, where TI is the tjme required to  cxecutc 
the sequential algorithm on a single processor and Tp is the execution time for the 
parallel algorithni using p proccssurs. The parallel efficiency is given by ,!$ = 5‘,>/p. 
These measures may require an approxirncttioii of Ti due to  meinory coilstrailits in the 
siiigle yrocessoi cabe. 7 he method and as5urnptions used lo  ayproxiiiiate TI should bc 
clearly stated. N o  output or unnwcqsary computation should be perforin4 during the 
5-day siin ulatioil. 

5 .  General Comments 

Ideally, all conlouring should be via. liltear interpolation on the origiml coInpu tstional 
grids without sntoothirig or additioiial i n  terpolation to an intermediate grid in order 
to provide an indication of any  mise in the solution. The utilily uf the various tests 
iiicluded in this suite will hecoine a,pya.reiit inore investigators apply llicir schemes 
to thcm. We hope investigators will use all the tests and publish in refereed jour- 
nals selected results that  illustrate both the st,rengtlis and weakii.esses of the scheIces. 
hi-house techiiical reports containing tlie ~.esriIts froin all the t h t s  could provide the 
coiriplete docuinenta.tion of a sclieiiie. We expect the suite will evolve informally with 
time as investigators point out weaknesses in the tests and suggest alternatives with 
arguments as t o  why they are good test cases. Severa.1 other cases are ciirrently under 
coilsideration for inclusion. ‘These consist of Thompson’s nonlinear series solution to  
the equations [26] a.nd iiiocloiis in  spherical geornetry [27]. The latter do not h;~ve a,n 
anaJytica1 solution for the shallow wa.ter equations and a high resolution nuinerical 
solution will be required for a reference solution. J .  C6t6 (persoml coniiriiinic.atioii) 
is deve1ol)ing a, test, case followitig tlie recent studies of inertial iilotion on the sphere 
[16] ~ [18] . 7’his case will complement the pure advection Case 1 and deal only with 
the momeiitiini equations. 

The test suite will only become standard to  the extent tlie community firtds it 
useful. This suite is fairly large but conta.ins a variety of test cases and error measures. 
This va.riety is needed in order to provide i ts  much information as possible to  would-be 
users so they can evalmte the iinportarrce of the va,rious tradeOKs required. in their 
a,pplications. 
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