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FIGURE LEGENDS 

Figure 1. Schematic diagram showing the basic components of the coding recognition 
module. Seven sensor algorithms are used to characterize different attributes of the DNA 
sequence related to coding probability within a 100 base pair sequence window. These 
signals are input to a neural network trained to interpret them and make a decision 
regarding the presence of coding D N A  The entire structure represents onc recognition 
module of the GENESIS system. 

Figure 2. Signals produced by the seven sensors described in the text for the 6500 base 
pair human ras proto-oncogene sequencc region. The signal amplitudes at each given 
sequence position are used by the neural net to predict the coding probability corres- 
ponding to that position. 

Figure 3. Examples of output predictions for several regions of test D N A  The 
GENEBANK sequence entry names are indicated, and the arrows correspond to the 
actual coding segment positions in these sequences. 
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ABSTRACT 

A central focus of the Human Genome Project is to locate and characterize genes within 
genomic DNA sequence data. Of particular importance are genes related to cancer and 
other major human genetic diseases. Identification of gene segments within the DNA 
sequence currently relies upon tedious and time-consuming experimental methods. A 
new computational method developed at Oak Ridge National Laboratory [ORNL] 
represents an efficient alternative to these experimental procedures. This method 
combines a set of statistical sensors and a neural network into a single structure which 
is capable of locating gene segments with considerable speed and accuracy. The 
approach provides a powerful tool for investigators scarching for disease genes. 
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INTRODUCTION 

One of the major challenges facing the Human Genome Project is to  develop the 
computing technology necessary to analyze vast amounts of raw DNA sequence data for 
biologically important features. Major sequencing efforts, using currently available 
technology, are already underway in several laboratories, and are producing significant 
amounts of DNA sequence data for both the human genome and other model organisms. 
Several of these programs are directed toward localization and identification of major 
human disease genes. A fundamental problem in these studies is locating within the 
sequence the segments constituting the genes. Even very precise genetic mapping, using 
current methodology, can only localize a disease gene to il region of several million base 
pairs. Since the gene product of most disease genes is not known, cDNAs cannot be 
used to gain access to the exact chromosomal location of the genes of intcrest. As a 
result, current experimental protocols for locating coding regions are highly labor 
intensive and time consuming. Furthermore, currently available computational methods 
for recognition of coding DNA sequence regions have proved to be unreliable. 

The purpose of this report is to describe a new computational methodology developed 
at ORNL, which locates coding segments accurately and efficiently. This methodology 
can be of significant benefit to many investigators currently analyzing sequence data in 
search of genes, including those related to cancer and other genetic diseases. 

The approach described in this report is being used to solve a wide range of sequence 
feature recognition problems within the framework of an ongoing ORNL research and 
development project. The overall goal of this project is to combine parallel computing, 
artificial intelligence, and molecular biology based technologies to produce a high-speed 
integrated artificialiy intelligent system for the location, identification, and interpretation 
of genes, regulatory regions, and other biologically important features in Human Genome 
sequence data. This system, called the Genetic Sequence Interpretation System, or 
GENESIS, will take several years to construct. In the interim, however, certain modular 
parts, which can function in a stand-alone manner, can be made available as tools to aid 
current sequence analysis efforts. The "coding recognition module", or CRM, described 
in this report, is the modular block of GENESIS designed to locate protein coding 
segments within sequence data, and demonstrates the principles being used to recognize 
other sequence features as well. 
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CODING RECOGNITION MODULE DEIGN OVERVIEW 

We have approached the problem of DNA sequence data interpretation as a pattern 
recognition process utilizing information from multiple sensors. This is analogous to the 
situation in sensor-based robotic systems where the perception of the robot’s 
surroundings occurs through integration of information from multiple sensors, e.g. CCD 
cameras, sonar transducers, laser range finders, tactile sensors, etc. These sensors supply 
partially redundant information with different levels of accuracy and uncertainty 
depending on the state of the environment being sensed. By optimally integrating the 
information presented by thc sensors, a combined best estimate of the environment can 
be obtained that is better than estimates based on individual sensors alone. 

This basic scheme, translated into the realm of DNA sequence analysis, provides the 
basis for the recognition module in GENESIS. The CRM described in this report, for 
example, incorporates a group of seven sensor algorithms (described below), each 
designed to provide an indication of a sequence property related to coding probabil- 
ity. Integration of the sensor algorithm outputs is accomplished with a neural network, 
which has been subjected to a training procedure to learn how to interpret this 
information, and subsequently make a decision about the presence of coding DNA. The 
idea is to use the neural network’s learning ability to develop the most reliable indicator 
possible from a complex and rich array of sensory input. The CRM, and other sequence 
feature recognition modules, will each have independent learning capabilities, and each 
undergo its own training process to optimize its function. Figure 1 shows a schematic 
diagram of the CRM. 

There is an important conceptual difference between the way neural networks are used 
here for sensor integration, and the approach used by several other investigators using 
neural networks for DNA sequence analysis (1). Typically, neural networks arc trained 
to recognize DNA sequence patterns by direct examination of the DNA sequcnces 
corresponding to the desired features. The net is expected to learn what is necessary for 
feature recognition using only the base pairs (letters) in the example sequences used in 
training. However, there are limitations on what nets can extract in this manner. Some 
improvement in learning from direct sequence examination may be possible with very 
large networks, though such networks are likely to be unmanageable and learn very 
slowly. 

The alternative demonstrated by the CRM is to show examples of the DNA sequence 
data to the neural network indirectly, filtered through a series of sensors designed to 
reveal the important characteristics of the sequence data to the net. The addition of this 
intewening layer of sensors gives the net a Icg up on the problem, strengthening the 
network’s recognition capabilities and increasing its learning speed. This approach to 
DNA sequence pattern recognition is unique to the ORNL effort, and is likely to have 
wide applicability to DNA sequence feature recognition. 

The basic module design contains considerable flexibility in that additional or alternative 
sensors can be incorporated into a module with relatively simple alterations to the neural 
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net, and a subsequent retraining process. The structure of the overall GENESIS system 
is not affected. The design therefore contains the ability to incorporate parallel 
developments in sensors in a number of different laboratories, and unify them within a 
single framework. 
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SENSOR ALGORITHM DESCRlPTIONS 

The recognition module designed to identify coding segments in Human genomic DNA 
(shown in Figure 1) currently consists of seven semi-independent algorithms designed to 
provide indicators related to the presence or absence of a coding region, and a neural 
network which has been trained to interpret the sensor algorithm outputs. The sensor 
algorithms evaluate a number of different attributes of coding DNA including triplet 
positional biases resulting from codon usage, sequence fractal characteristics, k-tuple 
vocabularies, and the presence and length of open reading frames. 

An important consideration is that the characteristics of k-tuple usage, reading frame 
bias, and other attributes of DNA are organism specific. As a result, recognition 
processes may be strengthened by specializing the construction of modules, such as the 
CRM, for a specific DNA type; in this case, human DNA. It is a relatively simple task 
to create similar modules for other species, simply by incorporating the appropriate 
statistical information for the organism’s k-tuple usage, bias, etc., into the standard sensor 
algorithms, and training the neural net. 

To evaluate the probability that a given sequence position is within a coding segment, 
the seven algorithms are evaluated in a 100 base pair sequence window centered at  the 
position, and the sensor signals are then evaluated by the neural net. A brief overview 
of the sensor algorithms follows: 

(1) Frame Bias Matrix: This method seeks to identify coding regions based on the 
non-random frequency with which each of the four bases occupies each of the three 
positions within codons, due to unequal use of amino acids, and preferrcd use of codons 
related to such factors as overall DNA composition (2). This bias, expressed as a matrix, 
is used as a probe to identify potential coding regions and preferred reading frame from 
the correlation coefficient between the matrix and each 100 base DNA window. 

(2) Fickett: This algorithm is a modification of an algorithm developed by Fickett (3), 
and is a measure of total triplet positional bias. The algorithm window as used here is 
changed from 200 base pairs to 100 base pairs. 

(3) Open Reading Frame: At each sequence position, the output value of this algorithm 
is proportional to the length of the open reading frame for the preferred frame as 
predicted by the Frame Bias Matrix algorithm above. 

(4) Dinucleotide Fractal Dimension: Dinucleotide occurrence is known to be far from 
random, with dinucleotides such as AA, TC, being common and CG being rare. It is thus 
possible to view a DNA sequence as a dynamic function by considering changes in 
energy in the Boltzmann sense, and using the energy scale E=-ln(p), where p is each 
dinucleotide’s probability. These fluctuations can be characterized by a fractal dimension 
(2,4). Coding DNA usually has lower dimension than non-coding. 
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(5) Coding Segment 6-tuple word preferences: One way of characterizing the sequences 
of the human genome is to  assemble an annotated compilation of all the k-tuple "words" 
of a given length, noting their frequency of occurrence in various feature types. A 
"sequence dictionary" has been constructed at ORNL which contains statistics for the 
usage of 4-, 5, 6-, 8-, and 10-tuple words in coding segments compared to non-coding 
DNA, and also in other contexts. In this sensor aigorithrn, within a 100 base pair sliding 
window, the observed 6-tuple word preferences are scored and summed to provide a 
coding indicator. Each word is scored by the log ratio of its occurrence in coding vs. 
non-coding DNA. An additional sensor algorithm which examines the preferences for 
6-tuple words occurring in the appropriate reading frame is being constructed and will 
represent an eighth sensor for the module. 

(6) Intron 5-tuple word preferences: Similar to the preceding algorithm except statistics 
from the sequence dictionary for intronic DNA vs. bulk DNA are used. This output 
represents a negative coding indicator. An additional sensor is being designed which 
contrasts intron vocabulary with coding vocabulary, and this should contribute to propcr 
coding segment edge detection. 

(7) Repetitive 5-tuple word preferences: Similar to preceding two algorithms except that 
5-tuple dictionary statistics for various classes of repetitive DNAs are used in comparison 
to  coding DNA This is also a negative coding indicator. 

As an example of the application of these seven algorithms, Figure 2 shows the sensor 
outputs for the 6500 base pair human ras proto-oncogene region. 
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NEURAL NlETwORK TFWNING A N D  CRM APPLICATION 

A backpropagation neural network (S) ,  consisting of 7 input nodes, two hidden layers 
of 12 and 5 nodes, and an output node, was used to integrate the sensor data. In the 
training procedure, the seven sensor algorithms were applied to 240 kilobases of human 
genomic DNA sequence data containing 24 genes and 149 exons, along with intronic and 
flanking DNA, etc. Input training vectors were calculated at consecutive positions every 
10 base pairs along the sequence, and the sensor algorithm outputs supplied to the 
neural net, along with a logical input (1 or 0) to indicate whether the input vector was 
generated from a coding or non-coding segment. The net was subjected to lxlOE6 
training examples. 

To test learning, the entire CRM (sensors plus net) was applied to a number of DNA 
sequence regions not used in the training set. Typical results are shown in Figure 3. The 
first test output corresponds to the sensor inputs shown for the human ras pro- 
to-oncogeny region in Figure 2. Despite the apparcnt complexity of the sensor data, the 
CRM output is very decisive and very noise free. In the module output for the five test 
genes, virtually all significant peaks correspond to actual coding segments (shown by 
arrows). In most cases, the extent of the coding segments in the sequence is also well 
predicted. In its present form, the CRM locates more than 90% of all coding segments 
in the tested human DNA, including a significant percentage of coding segments shorter 
than 100 base pairs. Furthermore, even with application of a fairly low significance 
threshold, less than 10% of the observed peaks correspond to non-coding regions. With 
the addition of the two sensors under construction, and other minor refinements, it is 
expected that the sequence window size used by the sensors can be reduced from 100 
base pairs to 50 base pairs, making recognition of very short coding segments ( < S O  base 
pairs) quite reliable. Further experiments are also planned with other neural net types 
and configurations. 
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CONCLUSION 

The foundation of the sequence analysis process is necessarily built on its ability to 
recognize feature related patterns in DNA sequence data. Examining DNA sequence 
regions with sensor algorithms, and then integrating the outputs of these algorithms with 
neural networks, has proved to be a powerful mechanism for strengthening thc 
recognition process. We have demonstrated that neural networks are capable of 
combining the outputs of coding DNA sensor aigorithms to provide a combined indicator 
that is better than 90% correct for human genomic DNA. This same technology is being 
applied at ORNL to many other DNA sequence pattern recognition problems. In its 
present form, the CRM represents a powerful tool which could greatly aid current 
experimental efforts to locate important human genes. 
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Figure 1. Schematic diagram showing the basic components of the coding recognition 
module. Seven sensor algorithms are used to characterize different attributes of the DNA 
sequence related to coding probability within a 100 base pair sequence window. These 
signals are input to a neural network trained to interpret them and make a decision 
regarding the presence of coding DNA The entire structure represents one recognition 
module of the GENESIS system. 
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Figure 3. Examples of output predictions for severaI regions of test DNA. The 
GENEBANR sequence entry names are indicated, and the arrows correspond to the 
actual coding segment positions in these sequences. 
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