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BAYESIAN DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS: 
USE OF DERIVATIVES IN SURFACE PREDICTION 

Max D. Moms, Toby J. Mitchell, and Don Ylvisaker 

ABSTRACT 

The work of Cunin et al. (1988) and others in developing "fast predictive approximations" of 
computer models is extended for the case in which derivatives of the output variable of interest 
with respect to input variables are available. In addition to describing the calculations required 
for the Bayesian analysis, the issue of experimental design is also discussed, and an algorithm is 
described for constructing "maximin distance" designs. An example is given based on a 
demonstration model of eight inputs and one output, in which predictions based on a maximin 
design, a Latin hypercube design, and two "compromise" designs are evaluated and compared. 

Key Words: Bayesian Prediction, Computer Experiment, Computer Model, Interpolation, Latin 
Hypercube Design, Maximin Design, Random Functions. 





1 

I. INTRODUCTION 

In the past few decades, computer models have become important tools in virtually all fields of 
scientific research. As surrogates for physical or behavioral systems, computer models can be 
subjected to experimentation, the goal being to predict how the corresponding real system would 
behave under certain conditions. Here we regard a computer model as a computer program that 
maps a vector of input variables t into a vector of output variables y, where t and y are physically 
meaningful. We view y as a function y(t) over some domain T in the space of the input variables. 
This function is deterministic; if the program is run twice on the same computer using ‘the same 
value oft, the same value of y will result We are specifically interested here in computer models 
which, in addition to calculating the response at a given set of input values. also provide 
derivatives of y with respect to elements oft. 

We consider a computational experiment to be a collection of runs of the computer model, made 
for the purpose of investigating y(t) for tET. For convenience, we shall consider T to be defined 
only by the design variables, i.e., those variables that are changed during the course of the 
experiment. In a typical experiment of n runs, the i* computer run is made using inputs t%T, 

i = 1.2, . . , n; this collection of input configurations is called the experimental design. 

One of the most fundamental problems that can be approached through computational 
experiments is the prediction of y(t) at sites t that have not been directly observed. This is 
motivated by applications requiring a large number of evaluations of y, such as numerical 
optimization, in which repeated execution of the model may be prohibitive due to computing 
expense. Hence, we seek to develop a fast predictive approximation to a computer model, that is 
sufficiently accurate for many purposes, based on relatively few actual runs. In this paper, we 
shall resaict our attention to a single output variable, i.e. scalar y. 

Recently, there has emerged an interest in using random functions (stochastic processes, random 
fields) as a s t r u m  on which to base the design and analysis of computational experiments, 
particularly for the purpose of constructing fast predictive approximations. Sacks, Schiller, and 
Welch (1989) and Sacks, Welch, Mitchell, and Wynn (1989) use an approach similar in some 
ways to the spatial modeling techniques of kriging for prediction of a computer model. Currin, 
Mitchell, Moms, and Ylvisaker (1988) also use random functions as a basis for model prediction, 
but they foxmulate the problem from a Bayesian point of view, under which uncertainty about the 
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function y is expressed by means of a probability distribution over all possible response 
functions. In these approaches, the values of y generated by the computational model are 
regarded as "data" that, unlike most physical measurements, are exactly reproducible. 

Many modem computer models have the potential for providing not only the output values 
themselves, but also partial derivatives of outputs with respect to inputs, ay(t)/atj. Recent 
research has produced computer-automated methods for "enhancing" computer codes; Le. 
expanding codes that compute only outputs so that they also compute derivatives (e.g., Griewank 
(1988). Oblow, Pin, and Wright (1986). and Worley, Wright, Pin, and Harper (1986)). These 
derivatives are of interest to users of computer models who are often concerned about the 
"sensitivity" of model outputs to inputs -- the amount of change induced in y by a small change in 
one or more elements of t. When derivatives are calculated in the execution of a computer 
model, they are a source of additional infomation that may be useful in computer experiments. 
For example, Worley (1987) discusses a method of uncertainty analysis (determination of the 
probability distribution of y that results from a known probability distribution of t) that uses 
values both of the output of interest and its derivatives. 

In this report, we will discuss a natural extension of our work in fast predictive approximation 
based on the stochastic process model, that allows use of derivative information about y. Our 
approach to Bayesian prediction is outlined in Section II, and an example of a fast predictive 
approximation based on output values and their derivatives is presented in Section 111. In Section 
IV, we discuss the experimental design problem - how the values of t can be chosen for the 
needed runs of the computer model. Our emphasis here is on D-optimal design based on weak 
prior information. In Section V, the example problem is continued with an examination of fast 

predictive approximations based on data from several different designs. 

II. METHODOLOGY 

DetaiIs of our approach to the Bayesian prediction problem where derivative values are not used 
may be found in Cumn, et al. .(1988). Here, we offer a brief description and indicate the 
modifications necessary for incorporation of derivative information. 

. 
We r e p a n t  prior "knowledge" about the unknown function y(t), tcT, by the Gaussian process 
Y = (Y(t), tcT}, with mean function M(t) = E[Y(t)] and positive definite covariance function 
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K(t,s)=Cov[Y(t),Y(s)]. For every finite set S c T ,  the response vector 
yS = (~ ( s , ) ,  Y ( S ~ ,  - * , ~(s,,,))~. where m is the number of sites in S. is multinormal with mean 
E[Ys] = and covariance matrix Cov[Ys, Ys] = 0s. Normality is chosen for convenience; the 
posterior process, given the vector of observed responses YD on the set of n design sites Dc T, is 
well known and is also Gaussian, with mean and covariance: 

where BSD is, for example, the covariance matrix Cov(Ys, YD], ps and p~ are the expectations of 
YS and YD respectively, and YD is the observed value of YD. Following execution of the 
computer model at each site in design D, we use the posterior mean of Y(s) as the fast predictive 
approximation for the true response y(s) at any site s, and the posterior standard deviation of Y(s) 
as a measure of the uncertainty of prediction there. Of course, the specification of the prior is the 
central issue in practice. We simplify matters by adopting various stationarity restrictions: For 
any pair of sites t, s in T, M(t) = M(s) = p and K(t, s) = d R ( s  - t), where R is a "correlation 
function" that depends only on the difference vector (s - t), with R(0) = 1 and R(s-t) = R(t-s). 
Further simplification comes from adoption of the "product correlation rule": 

(2.3) 

The Rj's are chosen from a parametric family of correlation functions on the real line; the 
correlation parameters, as well as p and a, are chosen using maximum likelihood or cross- 
validation. 

The specification of a prior process, with appropriate mean and covariance functions, detenines 
also various derivative processes. (See Parzen 1962, p. 83, for formal definitions and conditions 
for existence.) For example, the first partial of Y with respect to tl is: 
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A given stochastic pmess may then have a number of derivative processes, associated with 
different orders of derivatives involving different subsets of the elements of t .  We shall denote 

by y('l*> * . . 4 the derivative of order in input ti, i.e. 

It can be shown that for Gaussian processes Y, the existing derivative processes are also 
Gaussian, with 

(2.4) 

and 

Since Y and its derivative processes are jointly Gaussian, prediction using derivative values as 
well as response values can be done using appropriately modified versions of (2.1) and (2.2). 
Here we treat the case where the available derivatives are the k first-order partial derivatives with 
respect to each of the elements oft. Let the random variables that correspond to the response and 
derivative values at the design sites be held in the n(k+l) vector: 

The prior mean pi and covariance matrix C& of Yi can be calculated via (2.4) and (2.5), as can 
the matrix a& of covariances between YS and Yi,  whexe S is any finite set of sites in T. 

Prediction at S can then be made be substituting y& pi, a&, and a&) for YD, VD. ODD, and QSD in 
(2.1) and (2.2). 

Simpler versions of (2.4) and (2.5) result from our stationarity restrictions and the product 
correlation rule (2.3). Specifically 

EIY(oo..o)(t)J = E[Y(t)] = p (2.7a) 
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and 

if at least one aj > 0. Also, 

(2.7b) 

Of course, the chosen Rj's must cofiespond to differentiable processes. For example, Gaussian 
processes with the conelation function used by Sacks et al. (1989) 

-ej I s,- I pj Rj(s,--tj) = e (2.9) 

with €Ij > 0 and 0 c pj I 2, are infinitely differentiable for p, = 2 but not differentiable at all for 
pj < 2. In his discussion of that paper, Michael Stein refers to an alternative class of processes that 
is exactly m times differentiable, m > 1. In the present context, we require that Y be at least once 
differentiable. A useful way to derive such pmesses is by integrating known processes -- see 

Mitchell, Moms, and Ylvisaker (1990) for some examples that are stationary on an interval. In 
the examples of this paper, we shall use (2.9) with p, = 2. 

The expressions above for posterior means and covariances require specification of the scalars v 
and 6 and the functions Rj. In practice, we choose a parametric family for each Rj a priori, but 
allow its parameters. and also p and 6, to be determined by the data, usually by maximum 
likelihood. We can isolate the parameters p and Q in the likelihood by defining 

and 
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it is evident that C& depends on the correlation parameters (but not on p or a), and v is a binary 
vector with 1 in position (i-l)(k+l)+l, i=l, ..., n, Le., in each position corresponding to the mean 
of some Y(t('9, and 0 everywhere else. The log likelihood is. apart from additive and 
multiplicative constants, 

where dependence on the correlation parameters, collectively denoted as 8 here, is now explicitly 
indicated. For fixed 8, maximization of L over p and t3 is obtained by: 

(2.1 1) 

(2.12) 

Determination of 6, which requires maximization of L(i(8),6(8),8) is usually done by 
constrained iterative search. Although this can be done using routines from standard 
mathematical software libraries, it may require a considerable amount of computation, depending 
on the dimension of 8. 

Generalization to the case where p and o have the usual "noninformative" prior distributions, Le. 
p and logo  have independent unifonn prior distributions over arbitrarily large domains, is 

Felatively suaightforward, but a fully Bayesian approach, in which vague priors are also attached 
to the correlation parameters, appears difficult to implement 

EL EXAMPLE: BOREHOLE MODEL 

In his discussion of a method of uncertainty analysis, Worley (1987) uses a simple demonstration 
model of the flow of water through a borehole that is drilled from the ground surface through two 
aquifers. (His use of this particular model follows that of Harper and Gupta (1983), who use it in 
demonsmting other methods of uncertainty analysis.) The response variable he examines from 
this model is Q, the flow rate through the borehole in m3/yr, which is determined by the equation: 
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Q =  

where the eight inputs and their respective ranges of interest and units are: 

r, = radius of borehole, 0.05 to 0.15 m 
r = radius of influence, 100 to 50,000 m 
Tu = transmissivity of upper aquifer, 63,070 to 115,600 m2/yr 
H,, = potentiometric head of upper aqwfer, 990 to 11 10 m 
TI = transmissivity of lower aquifer, 63.1 to 1 16 m2/yr 
HI = potentiometric head of lower aquifer, 700 to 820 m 
L = length of borehole, 1120 to 1680 m 
K, = hydraulic conductivity of borehole, 9855 to 12,045 m/yr . 

Since Q can be expressed as a simple, explicit equation in the "inputs", it certainly is not typical 
of the computationally intensive computer models that motivate this work. However, it is useful 
for demonstration purposes, since its simplicity will allow us to quickly assess the accuracy of 
predictions at a large number of test sites via direct evaluation. In Section V, we shall 
demonstrate the use of our methodology for predicting Q as a function of all 8 inputs. Here, to 
illustrate the pattern of required calculations, we shall consider only two, r, and K,, and fix the 
remaining outputs at their respective lowest values. The range of K, has been extended (for this 
calculation only) to [1500,15,000] to produce a somewhat more nonlinear, nonadditive function. 
Also, the two input variables considered here have been scaled so that each takes its values from 
the unit interval; the scaled versions of r, and K,,, are denoted by tl and tg, respectively. Figure 1 

is a contour graph of Q as a function of tl and tg over the region of interest. 

For demonstration purposes, consider the experimental design at the 3 sites marked as heavy dots 
on Figure 1. The data, Q and its first derivatives with respect to tl and tg, are displayed in Table 
1. We place these values in the data vector y;, as indicated at (2.6): 

~6 = ( 3.0489,12.1970,27.4428 ,71.6374 , - * * ,244.4854 )T . 
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Table 1. Design and data for a simple example. 
site tl t8 Q @/at1 a ~ i a t ,  

t(l) O.oo00 O.(Moo 3.0489 12.1970 27.4428 
to) 0.2680 l.oo00 71.6374 185.7917 64.185 
to) 1.oo00 0.2680 93.1663 123.6169 244.4854 

I . &  that the data are organized into segments of k+l = 3 elements each, where the i* segment 
corresponds to tB), the i* design site. Conforming to this pattern, the prior covariance matrix O;D 

is organized as a nxn = 3x3 array of (k+l)x(k+l) = 3x3 blocks, where the i* diagonal block holds 
the within-site covariances at tB) and the (i,j)* offdiagonal block holds the between-site 
covariances corresponding to the pair (tc", t($. That is, 

where, for example, 

To compute the elements of C&, we use (2.8). where the correlation functions R, are given at 
(2.9) with pj =2. It is evident that C&, is independent of d. For example, if 81 = 0.4 and 
08 = 0.5, the (1.3) and (2.2) elements of C& 2) are, respectively, 

where we have used the fact that 

2 -eF2 . 2 
Rj'(x) = -2Ojxe4P , RY(x) = (-2ej + 4ej% )e 
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Noting that v = (1 o o 1 o o 1 o o ) ~  here, we maximize the likelihood for fixed (el, 08) = (A, s) ,  
using (2.1 1) and (2.12); this yields &.4, .5) = 70.77 and 6(.4, .5) = 135.70. Substitution into 
(2.10) gives the maximurn log likelihood at (el, = (.4, S). A search of the (el, e,) - space 
using a standard numerical optimization routine finds that the greatest log likelihood occurs at 
61 = .429 and 6 8  = .467; the corresponding maximum likelihood values for p and Q are G =  69.15, 
6 = 135.47. 

Now suppose we wish to calculate the posterior mean and variance of Y(s) at an arbitrary site s. 

Equations (2.1) and (2.2) imply 

where we have chosen p = i and Q = 6. The data vector y i  is given at (3.1) and the matrix C& 
is available from the final iteration of the likelihood maximization. The one remaining ingredient 
is the lxn(k+l) = 1x9 vector C;D = C20,&, which can be partitioned into n=3 segments: 

where, for instance, 

(Because of the constant multiplier, C:D is independent of d.) These values are computed in the 
same way as the envies of CGD were computed above, with the correlation parameters 01 and 0s 
fixed at their maximum likelihood values. 

Now predictions can be made at any set of Sites S, using (3.3) and (3.4). Here we find, for 
example, the posterior mean at s = (.5,.5) is 69.4 with a postenor standard deviation of 2.7. At 

s = (l,l), the posterior mean is 230.0 and the posterior standard deviation is 19.2. The posterior 
means can be computed quickly, once the n(k+l)m(k+l) = 9x9 linear system 
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is solved for the 9x1 vector g. Predictions may then be made at any site s by . 
J 

Predictions on a 21x21 grid were generated in this way and used to produce the contour graph of 
, tg) over the region of interest, as shown in figure 2. 

IV. OPTIMALDESIGN 

An advantage to the use of random functions for prediction is that the posterior variability of Y 
can be used to provide measures of uncertainty, and designs can be sought to minimize the 
expected uncertainty in some sense. See Ylvisaker (1987) and Sacks et al. (1989) for references 
to some previous work along these lines. Criteria that have been considered are G-optimality 
(minimization of the maximum variance of YIl~ for SE T), A-optimality (minimization of the 
average variance of YslD for SE T), and D-optimality (minimization of the generalized variance 
of YslD for a specific Sc T). 

Johnson, Moore, and Mvisaker (1990) establish an interesting link between these criteria and the 
geometric properties of certain designs, for the case in which only the response is observed. They 
show that, when the prior correlation between sites is exuemely weak and is a decreasing 
function of an appropriately defined intersite distance, necessary conditions for a design to be D- 
optimal are (1.) the minimum distance between pairs of points in the design is maximized, and 
(2.) the number of point pairs separated by this distance is minimized. 

Mitchell, Moms, and Mvisaker (1991) discuss similar results for the case in which both the 
response and its derivatives are observed. Arguments are given there to justify the maximization 
of tC&I as a convenient way to minimize the generalized variance of yslD or Y ; , ~ ;  we 
therefore refer to designs that maximize this d e t e d a n t  as D-optimal. Here, we briefly 
summarize without proof one of their results. Define a product correlation function such that 
R(s-t) is a decreasing function of the Euclidean nom of its argument, Ils-til; for 
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example, the correlation defined by equations (2;3) and (2.9) has this property if Oj = 1 and p, = 2 
for all j. Next, define a family of correlation functions: 

RJs-t) = R(s-t)]" 

indexed by the positive integer IC. For any design D, let d'@) be the smallest Euclidean distance 
between any two sites. F a y ,  let J@), called the index of the design, be the number of site 
pairs separated by this distance d'@). Then the following result holds: 

Theorem: As IC tends to infinity, the designs that maximize I C& I are such that (1 .) d'@) is 
maximized, and among the designs for which this is me ,  (2.) J(D) is minimized. 

Designs for which conditions (1.) and (2.) of the theorem are satisfied will be called maximin 
distance designs, or simply maximin designs. 

A practical weakness of design optimality for a given R is that one seldom knows, at design time, 
what correlation function will be selected for analysis. This difficulty has a parallel in optimal 
design for regression experiments, where the optimal design is highly dependent on the choice of 
regression model, which is not usually made until the data are analyzed. A pragmatic approach 
there is to base the design on weaker prior information than one expects to invoke in the analysis, 
e.g. use a cubic rather than a linear or quadratic polynomial model for design. Our use of 
maximin designs in this context is similarly motivated. Although the limiting (weak) correlation 
needed to link the maximin property to D-optimality is not usell for analysis, a somewhat 
"pessimistic" design strategy based on weak correlation seems prudent. 

In order to construct specific maximin distance designs, we wrote a computer progriun to find 
designs that minimize a surrogate criterion function: 

where d@) is the Euclidean distance between the ith and jth design points in design D. To see 

the motivation for this, first rewrite (5.1) as 
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For pairs of sites separated by distance d'@), the corresponding term in the sum is one. If a large 
value is chosen for p, pairs of site separated by greater distances wil l  have associated terms in the 
sum that are approximately zero. Hence, for large p, 

For large enough p, minimizing Qp is primarily accomplished by maximizing d', and to a much 
smaller degree by minimizing J. 

Our computer program for minimizing Qp implements a simple point-exchange algorithm based 
on the optimization technique of simulated annealing. (See Kirkpatrick, Gelatt, and Vechhi 
(1983) for a discussion of simulated annealing, or Bohachevsky. Johnson, and Stein (1986) for a 

generalization of this technique applied to a statistical problem.) Briefly, a search begins with a 
randomly constructed design, which is sequentially modified as follows. First, one site from the 
design is randomly selected, and each coordinate of that site is subjected to a (trial) random 
perturbation. (Specific distributions of perturbations used, and other particulars of the search, are 
specified for the example application of Section V.) If the modification is such as to decrease the 
value of $p, the change is made. If the value of t$p would not be decreased by the change, a 
random choice is made either to make the change anyway or to ignore the change. The 
probability that such a change (to a design with higher $4 is made decreases with the amount of 
increase which would result in $. The pmbability that a change resulting in any given increase 
in $p is made also decreases as the optimization proceeds, according to an "annealing schedule". 

V. EXAMPLE REVISITED 

We now return to our example model, described by equation (3.1), to demonstrate an application 
of this methodology for an 8dimensional input vector. For this purpose, a l l  eight inputs were 
scaled as in Section IIl so that the range of each 4 was the unit interval, T=[O,l]*. Initially, we 
applied the prediction method to the design used by Worley (1987) in his demonstration of a 
methodology he calls deterministic uncertainty analysis, which uses both observed values of Q 

and its first derivatives. Although his primary interest is in exploring how a specified probability 
distribution on t is propagated to Q, his analysis includes an interim step that involves prediction 
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of Q at sites not included in the design, using essentially a first order Taylor series expansion of 
Q. In his demonstration, Worley's experimental design was a 10-run Latin hypercube sample, 
generated using a non-uniform distribution across T, and he compared predictions of Q with its 

actual value at sites in a 50-run Latin hypercube test set, generated using the same dismbution 
Worley reports mt mean square errors, over these 50 sites, of 1.89, 2.45, and 2.37 for three 
versions of his method; for comparison, the range of true values of Q over the test set is 24.97 to 
144.57. Using our procedure, the corresponding mot mean square error is 0.610. Encouraged by 

this result, we undertook a more extensive investigation using the same model. 

We first tried two different experimental designs, each of 10 runs. The first design is a Latin 
hypercube sample, as introduced by McKay, Beclanan, and Conover (1979). (Actually, our 
version of the Latin hypercube is a bit different than what is described in this reference, since we 
used 10 equally-spaced values within the range of each input, instead of randomly chosen values 
from 10 non-overlapping intervals of equal length; we suspect that this modification has very 
little effect in this application.) One hundred random Latin hypercube samples were generated, 
and the one used here was selected so as to minimize the largest correlation between any two 
columns of the design ma-. 

We also generated a maximin distance design in 10 runs using the algorithm described in Section 
IV. After some initial experimenting to find annealing parameters that a p p e e  to be effective 
for this problem, our first attempt at finding an optimal design consisted of ten searches, in which 
each element of the starting design matrix was chosen from the unit interval, perturbations were 
normally distributed with a standard deviation of 0.3 (except when this would result in a value 
outside the unit interval, in which case the change was modified to yield either 0 or l), p = 1O00, 
and a schedule of 100 "temperatures" was used. Five of these searches resulted in designs with 
d' = 2, and the other five produced smaller values. Of the five with d' = 2, one had an index of 
42. three had indexes of 38, and one had an index of of 37. These five designs (unlike the others) 
placed all sites in the comers of T. 

Following this last observation, ten additional searches were made using a modified search in 
which only designs on the 2* comers of T were considered, Le. each coordinate in the initial 
design was 0 or 1 with equal probability. Here, once a site was selected for modification, the 
level of an individual coordinate was reversed with probability 0.3; again p =  1OOO. Of these 
searches, nine yielded designs with d' = 2, one of these with index 40 and the remaining eight 
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with index 36. Our (tentative) conclusion based on this search was that these last eight designs 
are optimal, although they are not all equivalent. The design we chose from this set is given in 
Table 2. 

The correlation function associated with each of the eight inputs was chosen to be of the form 
shown in equation (2.9) with pj=2. Using each of the two designs individually, the parameters of 
the process (p, a, and ej, j=1,2, ,8) were estimated by the method of maximum likelihood, as 
described in Section III. In order to evaluate how well our predictions match the true model, we 
selected two "test sets" of sites at which to compare Q and Q. The first of these is a random 
sample of 400 sites, selected from the uniform distribution over T. The second set of test sites is 
the 256 comers of T, Le. those points at which each of the inputs takes either the high or low 
extreme value in its range. The first set is intended to provide an indication of how well each 
predictor does throughout the interior of T, while the second allows us to compare their 
performance at the extreme sites. Values of Q range from 12.4035 to 230.6478 in the first test 
set, and fium 7.8197 to 309.5756 in the second. Predictions were made for each design, at the 
sites in each test set, and emrs of prediction (0 - Q) were calculated. These emrs  are 
summarized in Table 3; errors for the maximin design are based on the 246 comer points not 
included in the design. 

Table 3 indicates mixed ~sults for the preclictors based on these two designs. The Latin 
hypercube appears to produce better predictions on the random test set, while the maximin 

Table 2. A maximin distance design in [0,118 for n = 10. 
(d' = 2, J = 36) 

tl t2 t3 t4 ts ta t7 t g  

1 1 0 0 1 0 1 1 
1 1 1 1 0 0 1 0 
1 0  0 1 1 0 0 0 
0 1  0 0 1 1 0 0 
1 1 0 1 0 1 0 1 
0 1  1 0 0 0 0 1 
0 0  1 1 1 0 1 1 
0 0  0 0 0 1 1 1 
0 0  1 1 0 1 0 0 
I O  1 0 1 1 1 0 

Y 
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Table 3. Comparison of predictive errors for two test sets: 
Latin hypercube design and maximin design. 

Design 400 random points in T 256 cornem of T 
Test set 

Latin hypercube maximum error = 5.68 
minimum error = -1 i.82 
mot m.s.5. = 3.162 
Con[Q,Q] = 0.998438 

maximin design maximum e m r  = 5.12 
minimum error = -28.34 

Corr(Q,Q] = 0.990784 
mot m.s.s. = 9.547 

maximumerror = 15.73 
minimum error = -40.69 
root m.s.5. = 9.217 
Corr[Q,Q] = 0.995634 

maximumerror = 15.67 
minimum error = -12.78 
root m.s.5. = 4.681 
Con[Q,Q] = 0.998860 

distance design does a somewhat better job on the corners of T. These results may be due in part 

to the proximity of each design to the two test sets. To investigate this, we calculated Euclidean 
distances from each site in the test sets to each of the two experimental designs. The minimum, 
maximum, and average distances from points in each test set to each design are given in Table 4; 

again, distances from the maximin design are calculated only on the 246 comer points not 
included in the design. As we suspected, the Latin hypercube design is considerably closer (on 
average) to the random test set than is the maximin design, and this may partially explain the 
difference in performance we see here. Surprisingly, the Latin hypercube design is also 
somewhat closer (on average) to the 256-site test set than is the maximin design. On this test set, 
however, the maximin design yielded a smaller root mean square error by a factor of about 2, and 
a smaller absolute e m r  by a factor of about 3. 

Table 4. Comparison of design to prediction-site distances for two test sets: 
Latin hypercube design and maximin design. 

Design 400 random points in T 256 comers of T 
Test set 

Latin hypercube minimum distance = 0.187 minimum distance = 0.903 
maximum distanm = 1.148 maximum distance = 1.478 
average distance = 0.788 average distance = 1.107 

maximin design minimum distance = 0.591 minimum distance = 1.OOO 
maximum distance = 1.445 maximum distance = 1.732 
average distance = 1.142 average distance = 1.342 
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Another relevant consideration in the comparison pf the two designs is the nature of the true 
function Q, which appears to be mainly a function of the first two inputs. When one considers the 
projection of the designs into the low dimensional subspaces defined by the coordinates, it is 
clear that the Latin hypercube design does better than the maximin design, even if one adheres to 
the maximin criterion. (For example, the projection of the Latin hypercube design onto any 
coordinate is a maximin design in that onedimensional space.) On the other hand the maximin 
design, by definition, spreads the design sites as much as possible in the full k-dimensional space, 
whereas the intersite distances in the Latin hypercube design are to some extent left to chance. 
We therefore continued our investigation by generating a couple of "compromise" designs, both 
of which are Latin hypercube designs in that their onedimensional projections onto every 
coordinate produces equispaced sites on [0,1]. 

The design we shall call compromise #1 is a modification of our maximin design to give it the 
desired onedimensional projections. Starting with each column of the design matrix of Table 2, 

the five 0's were replaced with the values 0,1/9,2/9,3/9, and 4/9, assigned in random order, and 
the five 1's were similarly replaced with 519, 6p), 7/9, 8/9, and 1. This procedure is essentially 
the same as randomly selecting a Latin hypercube design from among those which, if each entry 
were rounded to 0 or 1, would be the maximin design given in Table 2. 

Compromise #2 is intended to apply the maximin criterion within the class of Lurin hypercube 
designs. It was constructed using our simulated annealing algorithm with minor modifications. 
A randomly consmcted Latin hypercube was used as the Stamng design in each search, and trial 
perturbations were created by exchanging two enuies in a randomly chosen column of the design 
matrix; the result of any such exchange is another Latin hypercube. Although 20 searches were 
attempted, the apparent maximin design in this class was generated only once, so it is quite 
possible that the result is only a "near maximin" design. 

Summaries of the prediction emrs generated at the test sets by these two designs, and of 
distances from the test sets to the designs, are given in Tables 5 and 6. Compromise #1 seems to 
be particularly successful in comparison to our first two designs, in that mot mean square errom 
are smaller than were attained previously for either design, for both test sets. Although the error 
summaries are somewhat less impressive for compromise #2, they st i l l  represent general 
improvement over the first two designs examined, yielding a somewhat larger mot mean square 

error than the maximin design on the comers of T, and more accurate predictions on the interior 
of T than either the maximin or (original) Latin hypercube designs. Distances from these 



19 

Table 5. Comparison of predictive emrs  for two test sets: 
two compromise Latin hypercube designs. 

Test set 

Design 400 random points in T 256 comers of T 

compromise #1 maximum e m r  = 5.76 
minimum e m r  = -2.43 
mot m.s.5. = 0.765 
Corr( Q,Q] = 0.999862 

compromise #2 maximum e m r  = 5.66 
minimum e m r  =-6.63 
mot m.s.c. = 1.584 
Con[ Q,Q ] = 0.999485 

maximum e m r  = 10.04 
minimum e m r  = -10.28 
root m.s.2. = 3.222 
Cod Q,Q ] = 0.999414 

maximum e m r  = 14.19 
minimum emr = -27.94 
root m.s.g. = 6.242 
Corr[Q.Q] = 0.997846 

Table 6. Comparison of design to prediction-site distances for two test sets: 
two compromise Latin hypercube designs. 

Design 400 random points in T 256 comers of T 
Test set 

cumpromise #1 minimum distance = 0.325 minimum distance = 0.910 
maximum distance = 1.552 

. average distance = 0.774 average distance = 1.124 
maximum distance = 1.168 

compromise #2 minimum distance = 0.378 minimum distance = 0.903 
maximum distance = 1.112 maximum distance = 1.445 
average distance = 0.772 average distance = 1.100 
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Latin hypercubes to the points in the test sets appear to be similar for each test set. They are also 
similar to the distances reported for the first Latin hypercube, with the exception of minimum 
distance to the 400 point test set, which is somewhat larger for the compromise designs. 

Fmally, to see how much was gained by using the derivative information, we repeated the 
example for a couple of the designs, using only the observed Q at each of the ten design sites, 
with the same type of correlation function. For the Latin hypercube design, the maximum 
absolute emrs  and mot mean squared emrs  were roughly four times larger than those shown in 
Table 3, while for compromise #1, these emrs were roughly ten times larger than those shown 
for the same design in Table 5. 

VI. CONCLUSION 

We have described a generalization of the methods of Currin et al. (1988). for developing a fast 
predictive approximation of a computer model based on evaluations of the output and its partial 
derivatives at a set of design sites. A generalization of the work of Johnson, Moore, and 
Ylvisaker (1990), as elaborated in Mitchell, Moms, and Ylvisaker (1991). provides an asymptotic 
argument for the use of maximin distance designs in this context. In the example calculation 
described here, a comparison of predictions based on a Latin hypercube design and a maximin 
design lead to mixed results, with the Latin hypercube performing better on the interior of the 
input domain and the maximin design performing better at the extremes of the region. Two 
compromise designs, which are constructed in an effort to preserve the strengths of both the Latin 
hypercube structure and the maximin criterion, are more generally successful. 

While the design and analysis procedures described here are straightforward in principle, some 
questions will require further attention. In particular, the type of correlation function used in an 
analysis may have considerable influence on the predictions. Our somewhat arbitrary selection of 
a correlation function has produced reasonably good results in the example of Section V. 

However, more complicated computer models with inputs of higher dimension will undoubtedly 
pose more difficult challenges, and both theoretical consideration and empirical investigation of 
the effect of different correlation functions will be important Funher investigation of what may 
be expected from maximin (and other "optimal") designs, Latin hypercube designs, and designs 
constructed from other approaches, is also in order. When these and other issues are better 
resolved, it wil l  eventually be important to consider how both design and analysis may be 

implemented sequentially as data are collected. 

Y 
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