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Reduction to Condensed Form for the Eigenvalue Problem 
on Distributed Memory Architectures * 

Jack J. Dongarra t and Robert A. van de Geijn 

December 3, 1991 

Abstract 

In this paper, we describe a parallel implementation for the reduction of general and sym- 
metric matrices to Hessenberg and tridiagonal form, respectively. The methods are based on 
LAPACK sequential codes and use a panel-wrapped mapping of matrices to nodes. Results 
from experiments on the Intel Touchstone Delta are given. 

1 Introduction 

In this paper, we are concerned with the parallel implementation on distributed memory MIND 
parallel computers of the LAPACK routines for performing the reduction to Hessenberg form and 
the reduction to tridiagonal form. These reductions are an important first step in the computation 
of the eigenvalues of matrices. 

The LAPACK project is an effort to update the classical linear algebra software packages LIN- 
PACK and EISPACK to allow more efficient use of shared memory or traditional supercomputers. 
Efficiency is attained by writing these routines as much as possible in Level 2 and 3 BLAS [ S ,  61, 
reducing the ratio of memory accesses to floating point operations executed and allowing for en- 
capsulation of parallel operations on shared memory architectures. 

While parallel implementations of algorithms for solving linear systems have been widely studied 
[4, 91, the reduction to condensed form has not enjoyed the same attention. A parde l  unblocked 
Hessenberg reduction algorithm based on column wrapped storage is given in [lo, 111. In [8], a 
reduction based on Gaussian transformations is reported. The reduction of symmetric matrices 
assuming row wrapped and grid wrapped storage is addressed in [2, 31. Our approach is different 
in that we start with highly efficient sequential code [7]. Efficiency on each node is attained by 
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Agreement No. CCR-8809615 and by the Applied Mathematical Science Research Program, Office of Energy Research, 
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use of Level 1, 2, and 3 BLAS. Communication is through a proposed communication library, the 
Basic Linear Algebra Communication Subprograms (BLACS) [l], which makes the code portable. 

The paper is organized as follows: Assumptions and notation are given in Section 2. As an 
introduction to  the parallel implementation of blocked algorithms, unblocked algorithms and their 
parallel implementation are given in Section 3. Blocked versions are discussed in Section 4. Results 
from experiments on the Intel Touchstone Delta system can be found in Section 5. Concluding 
remarks are given in the final section. 

2 Assumptions and Notation 

We wiU assume that our multicomputer consists of p nodes, labeled Po,. . . , Pp-l  which are con- 
nected by some communication network that allows broadcasting of messages and combining of 
global data (in the form of global summation). 

For our formulae, we adopt the following notation: Scalars, vectors, and matrices are denoted 
by lower case Greek, lower case, and upper case arabic letters, respectively. The ith element of 
a vector is denoted by a corresponding greek letter with subscript i (x;, vi, Y;, and u; for vectors 
z, y, a, and o, respectively). Given a vector z, the vector consisting of its elements i, . . , j  is denoted 
by xi:,. Given matrix A ,  the submatrix consisting of elements of rows i, . . . , j  and columns k, .. . , 1 
is denoted by [A]i:j,k:g. If all rows are involved, the notation [ A ] + , k : l  will be used. Superscripts are 
generally reserved for iteration indices. 

We will use the following mapping of matrices to nodes: Given A E Rnxn and panel width 
m 2 1, assume for simplicity that n = T t m and partition 

where Aj (k) E Rnx" is a panel of width m. The panel-wrapped storage scheme assigns A?' to node 

P(j-l)mo+. I.e., A;+1, Ai+p+l, .  . . are assigned to P;. If m = 1, the result is the familar coIurnn- 
wrapped storage scheme [9]. For notational convenience, we define j E P; to be true if and only if 
column j of the matrix is assigned to node Pi. 

The basic operations utilized by the reduction algorithms are the computation and application 
of Householder transformations: 

Theorem 1 Given a vector x E R", one can find a vector u E K" and scalar p s.t. 

(1 - PuaT)z = ( X I , .  . . , Xk, f?), 0,. . - 7  o)T 

where 77 = (lzk+1:nl12- 

Indeed, u = (0, . . . , 0, x k + l  q,  x k + 2 , .  . . , x , ) ~  and p = 2/uTu will give the desired result. The sign 
is chosen to correspond to the sign of X k + l ,  thereby minimizing roundoff error in the computation 
of u. 

The transformation I - PuuT will subsequently be denoted by H ( k ) ( z ) ,  where here the su- 
perscript indicates that elements XI,. . . , Xk are not affected. This notation is consistent with the 
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previous use of superscripts since in the reduction algorithms the Householder transformation com- 
puted during the kth iteration has this property. We will also use the pair (u,,f?) to denote the 
transformation, Le., (u,,f?) = H ( k ) ( s )  will denote the vector u and scalar p s.t. H ( k ) ) z )  = ( 1 - p ~ ~ ~ ) .  
Since u and p are not uniquely defined, we wjU always take u to be normalized so that it has a unit 
kth element. 

3 Unblocked Algorithms 

In this section, we explain how simple algorithms for the reductions to Hessenberg and tridiagonal 
forms for the eigenvalue computation can be implemented on sequential and parallel architectures. 

3.1 Sequential Implementation: Hessenberg Reduction 

The reduction of matrix A(') = A to Hessenberg form can be written as A("-'), where 

where 
vT = and w = A("u - P(uTAu)u 

This yields the following algorithm for reducing a matrix to Hessenberg form: 

Algorithm 2 Hessenberg Reduction 

do k = l ,  ..., n - 2  
compute (u ,p)  = H(k) ( [A] , , k )  
vT = uTA 
w = Au - P(uTAu)u 
update A = A - PuvT - PwuT 

enddo 

3.2 

If A is symmetric, then Equations (1) can be replaced by y = PAu and = w = y - 1/2,f?uTyu, 
and the matrix is being reduced to  tridiagonal form. In this case, it is only necessary to update 
the lower triangular part of matrix A at each iteration. 

Sequential Implement at ion: Tridiagonal Reduct ion 
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3.3 Parallel Implementation: Hessenberg Reduction 

Given p processing nodes P o , .  . . , Pp-l, our parallel implementation will assume that the columns 
of A have been assigned to the nodes in column-wrapped fashion. 

This choice of assignment allows us to parallelize Algorithm 2 as follows: 

1. For all k, updating of column j of matrix A is performed by node P(j-l)modp. 

2. During the kth iteration, the computation of (u ,p )  is performed by P; such that k E P;, , 
i.e., P(k-l)modp, after which it is distributed to all nodes. 

3. Subtracting the j t h  column of PuvT from column j requires only j t h  element of v,  u j ,  to be 
known to the node that owns column j. This is convenient, since uj = uT[A]*,j, which can 
be formed by this node once u has been received. This means can be computed in parallel, 
leaving the different elements of II on the nodes that computed them. 

4. Subtracting the j t h  column of PwuT from column j requires both vj  and w = Au to be known 
to node P(j-l)modp. Vector w E Rn is computed as follows: Let B; equal the columns of A 
that are assigned to node P;. If the corresponding elements of u are appropriately packed 
into a vector U T ,  then Av = x&,odgy;, where y; = B;uT. Hence Au can be formed by first 
computing partial results y; in parallel on all nodes, followed by a global summation of the 
partial results, leaving Au on all nodes. Next, uTAu = vTy and w can be formed. Notice that 
there is some (insignificant) redundant computation in this last step, since all nodes perform 
the same computation. 

The resulting parallel implementation of Algorithm 2 is given by the following pseudo-code that 
drives each node P;: 

Algorithm 3 Parallel Hessenberg Reduction 

i = index of node 
do k =  1, . . . , n -  2 

if k E P; then 
compute (u ,p)  = H ( k ) ( [ A ] r , k )  
broadcast (u,/?) to all nodes 

receive (u ,p )  
else 

y; = 0 
do j = k , n  

i f  j E P, 
~j = uTA 
~i = yi + vj[A]*,j 

enddo 
gsm Y = CYi 
w = y - P(uTy)u 
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do j = k , n ,  (16) 
(1 7) 

enddo (18) enddo (19) 
if j E Pi then update [A]+  = [A],,j - /?vi.- pvjw 

Statement (14) indicates that y is the result the global summation of vectors y;. A minor redun- 
dancy exists since all processors compute w once y has been computed. This can be overcome by 
replacing statements (14) and (15) by 

yi = y, - P(uTy)u (14) 
gsum w = y; (15) 

(part of length M ( n  - j ) / p )  

so that all processors participate in subtracting P(uTy)u before the global summation. 

3.4 Parallel Implementation: Tridiagonal Reduction 

Parallel implementation of the reduction to tridiagonal form for a symmetric A proceeds similarly, 
with one major difference: Since only the lower triangular part of matrix A contains useful in- 
formation, we compute y as follows: Let A = L +- R,  where L and R equal the lower triangular 
and strictly upper triangular parts of A, respectively. Notice that RT equals the strictly lower 
triangular portion of L ,  and hence both are assigned to nodes in column-wrapped fashion. Now 
y = Au = Lu + Ru can be computed by: 

4 Blocked Algorithms 

In [7] it is shown how reorganizing portions of the above algorithms in terms of Level 3 BLAS 
yields algorithms that perform considerably better on computers with vector processors and/or 
hierarchical memories. In this section we discuss sequential blocked algorithms for reduction to 
Hessenberg and tridiagond form as well as their parallel implementation. 

4.1 

We first consider how the application of rn Householder transformations can be combined: 

Sequential Implementation: Blocked Hessenberg Reduction 

(2) H(k+") . . .H(k))A(k))H(k) .  . .B(k+m) = A(k)  - UVT - WUT 
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where 

The general strategy for reorganizing Algorithm 2 now becomes: 

1. Partition the matrix into panels of width rn. 

2. For k = 1, compute matrices U ,  V ,  and W by computing the successive Householder trans- 
formations. (Notice that for given j ,  in order to compute u, only the (A + j ) t h  column of 
A(k+J) needs to  be formed.) 

3. Update A@+") = A(k)  - UVT - WUT. (Note: only columns k+ m, . . . , n need to be updated, 
since columns k, . . . , C + rn - 1 were updated during the computation of U, V ,  and W . )  

4. Repeat for k = m + 1,2m + 1, .  . .. 
Notice that the third step can now be written as two matrix-matrix operations. The bulk of the 
formation of the matrices requires m matrix-vector operations. 

4.2 

The blocked algorithm for the reduction to tridiagond form for the symmetric problem is reorga- 
nized similarly, except that in this case W = V ,  so Equation 2 becomes 

Sequential Implementation: Blocked Tridiagonal Reduction 

f J ( k + " ) .  . . H ( " ) A ( k ) H ( k ) .  . .H("-tm) = A(k)  - UVT - VUT 

and only the lower triangular portion of A is updated. 

4.3 

We now describe the parallel implementation of the blocked reduction to  Hessenberg form. We will 
use panel-wrapped storage, where the panel width corresponds to rn, the width of the panel used 
for the sequential blocked algorithm. 

Understanding how to perform the computation in parallel is closely related to how matrices U ,  
V ,  and W must be distributed in order to be able to perform the update in Equation 2. Partition 
VT like A(k):  

Parallel Implementation: Blocked Hessenberg Reduction 

V T =  (V?V,. e - .  v:) 
If we update Aik) on node P(j-l)mo+, then U, W and V, must be known to this node. Hence we 
must compute these matrices in such a way that U and W eventually reside on all nodes, while VT 
is panel-wrapped distributed among the nodes. 
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Finally, we examine how the computation of U ,  V, and 14' can be distributed among the nodes. 
Assume the computation has progressed to where panel s is being reduced, Le., k = (s - 1)nz + 1. 
Assume the first j columns of U ,  V ,  and W have been computed and are distributed as desired. 
The computation of the (j -+ 1)st column of these matrices proceeds as follows: 

1. On node P(s-l)mo~p, form the ( j  t 1)st column of the current panel of A(k+j): 

Since 
[V]k+j,l:j = [K]j+l,~:j  

atl information for this operation is available on this node. 

2. On P(s-l)mo~p, compute ([U]*, j+l ,p)  and distribute to all nodes. ' 

3. Next, we must form three intermediate results,n 

2 = [VIT,l:j[v),>+l 
Y = [VI: 1 : j [UI * ,j+1 

= [WI?,1:j[uI*,j+1 

The first requires partial sums of vectors to be accumulated on each processor, followed by 
a global summation of the results, leaving the results on all processors. The latter two can 
either be computed in the same way or they can be computed separately on each processor, 
leading to redundant computation, but less communication overhead. 

4. Assuming x, y, and I have been computed, 

[v]*,j+~ = A(k)TIU]*,j+l - [V]*,1:jz - [ u ] * , ~ : j z  

can be computed, leaving the resulting column distributed among the nodes. 

5. Computing W.,j+l requires 

w = A(k)[U]*,j+l - [u]* ,~ : j~  - [W]* , l : j~  

to  be computed. Just like the computation of w in Algorithm 3, this proceeds in two stages: 
columns of A(k)  on each of the processors are summed after being multiplied by appropriate 
elements of [U],,j+l. Next, each of the vectors [U],,1:jz and [W],~:jy is partitioned into 
p approximately equal subvectors and computation of each subvector is assigned to a node. 
After each node computes its section of these two vectors, and subtracts them from the partial 
sum of columns, a global summation computes the desired 20, leaving the result on all nodes. 

6 .  FinaUy, 
[ ~ I * , j + l  = w - ~ t w ~ [ ~ I * , j + l ) [ ~ I * , j + ,  

is formed on all nodes. 

7 



DELTA: HadalglB u=4Gm 

1% 

1 
g I @ -  
I 

I '  I 

- 
I - I  

__ - __ .- . -. -__.. ~ ___. -. _.---- . ___.-- 
si . , , , ;.I 
'0 2 4 6 I IO 12 I4 

150 

1 
j la, 

h 

Figure 1: Total computation time for 128 nodes when n = 4000 and the block size 126 is varied. 
The space between two curves equals the time spent in the indicated operation. The times for the 
global sum (GSUM) and broadcast (BCAST) include some idle time that is due to load imbalance. 

4.4 Parallel Implementation: Blocked Tridiagonal Reduction 

The parallel implementation of the reduction to tridiagonal form for symmetric A proceeds similarly. 
Consider the steps given in Section 4.3: In Step 1, [W].,l:j = [V],,,:j; In Step 3, z = 5, which can 
be either formed separately on all  nodes or distributed among the nodes, which requires a global 
summation; Step 4-6 are merged, where [W].,j+l = [V],,j+l is computed by 

where pA(k)[U]*,j+l is computed using the same trick as in Section 3.4. 

5 Experiments 

In this section, we report the performance of the parallel reduction algorithms on the Intel Touch- 
stone Delta system using the Portland Group compiler and assembly coded single precision BLAS 
routines by Kuck and Associates. 

The Intel Touchstone Delta system is a distrjbuted-memory, message-passing multicomputer of 
the Multiple Instruction Multiple Data (MIMD) class developed jointly by the Defense Advanced 
Research Projects Agency (DARPA) and the Intel Corporation [12]. It is comprised of 520 i860- 
based nodes, each having 16 Megabytes (MBytes) of memory, interconnected via a communications 
network having the topology of a two-dimensional rectangular grid. (Scaling is not restricted to 
a power-of-two increment typical of hypercube topologies.) It has a peak performance of = 32 
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Figure 2: Allocation of execution time when p = 128, nb = 3 and the problem size n is varied. 
Again, the space between two curves equals the time spent in the indicated operation. 

Gigaflops double precision, M 40 Gigaflops single precision, and an aggregate system memory of = 8 
Gigabytes. The interconnection network employs a Mesh Routing Chip (MRC), developed at the 
California Institute of Technology, at each system node. Each MRC provides five channels, one for 
its associated node and four for its adjacent neighbors in the two-dimensional mesh. The channels 
are comprised of two, unidirectional buses: one for data flow into the MRC, one for data flow out of 
the MRC. The peak interprocessor communications bandwidth is z 30 MBytes/s in each direction. 
The system supports explicit message-passing, with a latency of w 75 microseconds via worm-hole 
routing using a packet-based protocol. Interconnect blocking is minimized by interleaving packets 
associated with distinct messages which need to traverse the same interconnect path. 

5.1 Reduction t o  Hessenberg Form 

Figure 1 shows the performance of the parallel reduction to Hessenberg form as a function of the 
problem size n and the block size nb for p = 128. Performance is most influenced by the performance 
of the Level 2 and 3 BLAS. From this graph, it can be concluded that nb = 3 yields reasonable 
performance. We will use this block size in subsequent discussions. 

Communication overhead is the main contributor to the reduction in performance, as can be 
seen from Figures 1 and 2. In particular, the global summation and broadcast operations are major 
contributors to the total execution time. This is not supprising, considering a broadcast of a vector 
of length O ( n )  and global summation of vectors of length n is required for each column of W that 
is formed (in addition to the summation of at least one smaller vector). 

The performance attained as a function of problem size is clear from Figure 3. In this graph, 
nb = 3 and performance is given for various numbers of nodes. The overall performance is somewhat 
disappointing: The LAPACK reduction routine on a single processor attains about 45 MFLOPS. 
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Figure 3: GFLOPS atained for various numbers of nodes when the problem size i s  varied. For the 
Hessenberg reduction, nb = 3, for the tridiagonal reduction, nb = 12. 

5.2 Reduction to Tridiagonal Form 

Figure 1 also shows the execution time for the parallel reduction to tridiagonal form. From this 
graph, it can be concluded that large block sizes yield better performance. This is due to the fact 
that during the update given by Equation 2 the submatrix must be updated one panel at a time, 
since the lower triangular part of the matrix A is wrapped onto the processors. For the same reason, 
the performance of the matrix-vector product (BLAS2) is affected. 

The overall performance of the reduction to tridiagonal form is worse than that of the reduction 
to Hessenberg form (Figure 3). This citn be explained as follows: The number of floating point 
operations is reduced by a factor 2.5 as compared to the reduction to Hessenberg form. The time 
spent in the broadcast is unchanged. The time spent in the global summation is approximately 
halved. As a result, the ratio of communication to  computation is higher than for the reduction to 
Hessenberg form. 

6 Conclusion 

We have demonstrated that the LAPACK code for reducing a matrix to Ilessenberg or tridiagonal 
form can be rewritten for current generation MIMD distributed memory computers in a relatively 
straight forward manner. 

On the Intel Touchstone Delta, efficiency is hampered to a large degree by the cost of communi- 
cation and the synchronous nature of the algorithm. If larger problems are solved, this becomes less 
significant. Although the Intel Touchstone Delta system has sufficient memory to store matrices of 
order 25000, we limited ourselves to problems that required less than 30 minutes to complete. 
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We have started to investigate different methods for mapping matrices to nodes. In [13], we 
show that wrapping onto logical tori greatly improves the performance of the LU factorization on 
the Intel Touchstone Delta. Future work will include the investigation of using this storage method 
for the reduction algorithms. 
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