
3 4 4 5 6  I3287847 4 

Robe?? A. van de Geijn 



n Service, U S  

....... ~ - ........... ~ ~ ~ _ _ _  ............. ~ . ... . 



ORNLD'M-12006 

Engineering Physics and Mathematics Division 

Mathematical Sciences Section 

REDUCTION TO CONDENSED FORM FOR THE EIGENVALUE PROBLEM 

ON DISTRIBUTED MEMORY ARCHITECTURES 

Jack Dongarraf 
Robert A. van de Geijnt 

Computer Science Department? 
University of Tennessee 

Knoxville, TN 379%-1301 

Mathematical Sciences Section? 
Engineering physics and Mathematics 

P.O. Box 2008, Bldg. 6012 
Oak Ridge National Laboratory 

Oak Ridge, TN 37831-6367 

Computer Science Department$ 
University of Texas, Austin 

Austin, TX 787 12 

D A T E  PUBLISHED: JANUARY 1992  

This wok was supported in part by the National Science Foundation 
and Technology Center Cooperative Agreement No. CCR-8809615 and by the 

. Applied Mathematical Sciences subprogram of the Office 
of Energy Research, U.S. Department of Energy. 

prepared by the 
Oak Ridge National Laboratory 
Oak Ridge, Tennessee 3783 1 

managed by 
MARTIN MARIETTA ENFLRGY SYSTEMS, INC. 

for the 
US. DEPARTMENT OF ENERGY 

under Contract No. DE-AC05-84OF21400 MARTIN MARIETTA ENERGY SYSTR.6 LIERAA,ES 

3 4456 0 2 8 7 8 4 7  4 





CONTENTS 

Abstract ........................................................................................................................................................ 
1 . 
2 . 
3 . 

4 . 

5 . 

6 . 

Introduction .......................................................................................................................................... 
Assumptions and Notation ................................................................................................................... 
Unblocked Algorithms ......................................................................................................................... 

3.1 Sequential Implementation: Hessenberg Reduction ....................................................................... 
3.2 Sequential Implementation: Tridhgonal Reduction ....................................................................... 
3.3 Parallel Implementation: Hesenberg Reduction ........................................................................... 
3.4 Parallel Implementation: Tridiagod Reduction ........................................................................... 
Blocked Algorithms ............................................................................................................................... 

4.1 Sequential Implementation: Blocked Hessenberg Reduction ......................................................... 
4.2 Sequential Implementation: Blocked Tridiagonal Reduction ......................................................... 
4.3 Parallel Implementation: Blocked Hessenberg Reduction .............................................................. 
4.4 parallel Implementation: Blocked Tridiagonal Reduction .............................................................. 
Experiments .......................................................................................................................................... 

5.1 Reduction to Hessenberg Form ....................................................................................................... 
5.2 Reduction to Tridiagonal Fom ....................................................................................................... 
Conclusion ............................................................................................................................................. 

Acknowledgements ...................................................................................................................................... 
References .................................................................................................................................................... 

1 

1 

2 

3 

3 

3 

4 

5 

5 

5 

6 

6 

8 
8 

9 

10 

10 

11 

11 





Reduction to Condensed Form for the Eigenvalue Problem 
on Distributed Memory Architectures * 

Jack J. Dongarra t and Robert A. van de Geijn 

December 3, 1991 

Abstract 

In this paper, we describe a parallel implementation for the reduction of general and sym- 
metric matrices to Hessenberg and tridiagonal form, respectively. The methods are based on 
LAPACK sequential codes and use a panel-wrapped mapping of matrices to nodes. Results 
from experiments on the Intel Touchstone Delta are given. 

1 Introduction 

In this paper, we are concerned with the parallel implementation on distributed memory MIND 
parallel computers of the LAPACK routines for performing the reduction to Hessenberg form and 
the reduction to tridiagonal form. These reductions are an important first step in the computation 
of the eigenvalues of matrices. 

The LAPACK project is an effort to update the classical linear algebra software packages LIN- 
PACK and EISPACK to allow more efficient use of shared memory or traditional supercomputers. 
Efficiency is attained by writing these routines as much as possible in Level 2 and 3 BLAS [ S ,  61, 
reducing the ratio of memory accesses to floating point operations executed and allowing for en- 
capsulation of parallel operations on shared memory architectures. 

While parallel implementations of algorithms for solving linear systems have been widely studied 
[4, 91, the reduction to condensed form has not enjoyed the same attention. A parde l  unblocked 
Hessenberg reduction algorithm based on column wrapped storage is given in [lo, 111. In [8], a 
reduction based on Gaussian transformations is reported. The reduction of symmetric matrices 
assuming row wrapped and grid wrapped storage is addressed in [2, 31. Our approach is different 
in that we start with highly efficient sequential code [7]. Efficiency on each node is attained by 

'This work was supported in part by the National Science Foundation Science and Technology Center Cooperative 
Agreement No. CCR-8809615 and by the Applied Mathematical Science Research Program, Office of Energy Research, 
U.S. Department of Energy, under Contract DEAC05-840R21400. 

tDept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, and Mathematical Sciences Section, ORNL, 
Oak Ridge, TN 37831, dongarraQcs .utk. edu 

*Dept. of Computer Sciences, Univ. of TX, Austin, TX 78712, rvdgQcs.utexas.edu. Most of this work was 
performed while this author was on leave at the Univ. of TN. 



use of Level 1, 2, and 3 BLAS. Communication is through a proposed communication library, the 
Basic Linear Algebra Communication Subprograms (BLACS) [l], which makes the code portable. 

The paper is organized as follows: Assumptions and notation are given in Section 2. As an 
introduction to  the parallel implementation of blocked algorithms, unblocked algorithms and their 
parallel implementation are given in Section 3. Blocked versions are discussed in Section 4. Results 
from experiments on the Intel Touchstone Delta system can be found in Section 5. Concluding 
remarks are given in the final section. 

2 Assumptions and Notation 

We wiU assume that our multicomputer consists of p nodes, labeled Po,. . . , Pp-l  which are con- 
nected by some communication network that allows broadcasting of messages and combining of 
global data (in the form of global summation). 

For our formulae, we adopt the following notation: Scalars, vectors, and matrices are denoted 
by lower case Greek, lower case, and upper case arabic letters, respectively. The ith element of 
a vector is denoted by a corresponding greek letter with subscript i (x;, vi, Y;, and u; for vectors 
z, y, a, and o, respectively). Given a vector z, the vector consisting of its elements i, . . , j  is denoted 
by xi:,. Given matrix A ,  the submatrix consisting of elements of rows i, . . . , j  and columns k, .. . , 1 
is denoted by [A]i:j,k:g. If all rows are involved, the notation [ A ] + , k : l  will be used. Superscripts are 
generally reserved for iteration indices. 

We will use the following mapping of matrices to nodes: Given A E Rnxn and panel width 
m 2 1, assume for simplicity that n = T t m and partition 

where Aj (k) E Rnx" is a panel of width m. The panel-wrapped storage scheme assigns A?' to node 

P(j-l)mo+. I.e., A;+1, Ai+p+l, .  . . are assigned to P;. If m = 1, the result is the familar coIurnn- 
wrapped storage scheme [9]. For notational convenience, we define j E P; to be true if and only if 
column j of the matrix is assigned to node Pi. 

The basic operations utilized by the reduction algorithms are the computation and application 
of Householder transformations: 

Theorem 1 Given a vector x E R", one can find a vector u E K" and scalar p s.t. 

(1 - PuaT)z = ( X I , .  . . , Xk, f?), 0,. . - 7  o)T 

where 77 = (lzk+1:nl12- 

Indeed, u = (0, . . . , 0, x k + l  q,  x k + 2 , .  . . , x , ) ~  and p = 2/uTu will give the desired result. The sign 
is chosen to correspond to the sign of X k + l ,  thereby minimizing roundoff error in the computation 
of u. 

The transformation I - PuuT will subsequently be denoted by H ( k ) ( z ) ,  where here the su- 
perscript indicates that elements XI,. . . , Xk are not affected. This notation is consistent with the 

2 



previous use of superscripts since in the reduction algorithms the Householder transformation com- 
puted during the kth iteration has this property. We will also use the pair (u,,f?) to denote the 
transformation, Le., (u,,f?) = H ( k ) ( s )  will denote the vector u and scalar p s.t. H ( k ) ) z )  = ( 1 - p ~ ~ ~ ) .  
Since u and p are not uniquely defined, we wjU always take u to be normalized so that it has a unit 
kth element. 

3 Unblocked Algorithms 

In this section, we explain how simple algorithms for the reductions to Hessenberg and tridiagonal 
forms for the eigenvalue computation can be implemented on sequential and parallel architectures. 

3.1 Sequential Implementation: Hessenberg Reduction 

The reduction of matrix A(') = A to Hessenberg form can be written as A("-'), where 

where 
vT = and w = A("u - P(uTAu)u 

This yields the following algorithm for reducing a matrix to Hessenberg form: 

Algorithm 2 Hessenberg Reduction 

do k = l ,  ..., n - 2  
compute (u ,p)  = H(k) ( [A] , , k )  
vT = uTA 
w = Au - P(uTAu)u 
update A = A - PuvT - PwuT 

enddo 

3.2 

If A is symmetric, then Equations (1) can be replaced by y = PAu and = w = y - 1/2,f?uTyu, 
and the matrix is being reduced to  tridiagonal form. In this case, it is only necessary to update 
the lower triangular part of matrix A at each iteration. 

Sequential Implement at ion: Tridiagonal Reduct ion 

3 



3.3 Parallel Implementation: Hessenberg Reduction 

Given p processing nodes P o , .  . . , Pp-l, our parallel implementation will assume that the columns 
of A have been assigned to the nodes in column-wrapped fashion. 

This choice of assignment allows us to parallelize Algorithm 2 as follows: 

1. For all k, updating of column j of matrix A is performed by node P(j-l)modp. 

2. During the kth iteration, the computation of (u ,p )  is performed by P; such that k E P;, , 
i.e., P(k-l)modp, after which it is distributed to all nodes. 

3. Subtracting the j t h  column of PuvT from column j requires only j t h  element of v,  u j ,  to be 
known to the node that owns column j. This is convenient, since uj = uT[A]*,j, which can 
be formed by this node once u has been received. This means can be computed in parallel, 
leaving the different elements of II on the nodes that computed them. 

4. Subtracting the j t h  column of PwuT from column j requires both vj  and w = Au to be known 
to node P(j-l)modp. Vector w E Rn is computed as follows: Let B; equal the columns of A 
that are assigned to node P;. If the corresponding elements of u are appropriately packed 
into a vector U T ,  then Av = x&,odgy;, where y; = B;uT. Hence Au can be formed by first 
computing partial results y; in parallel on all nodes, followed by a global summation of the 
partial results, leaving Au on all nodes. Next, uTAu = vTy and w can be formed. Notice that 
there is some (insignificant) redundant computation in this last step, since all nodes perform 
the same computation. 

The resulting parallel implementation of Algorithm 2 is given by the following pseudo-code that 
drives each node P;: 

Algorithm 3 Parallel Hessenberg Reduction 

i = index of node 
do k =  1, . . . , n -  2 

if k E P; then 
compute (u ,p)  = H ( k ) ( [ A ] r , k )  
broadcast (u,/?) to all nodes 

receive (u ,p )  
else 

y; = 0 
do j = k , n  

i f  j E P, 
~j = uTA 
~i = yi + vj[A]*,j 

enddo 
gsm Y = CYi 
w = y - P(uTy)u 

4 



do j = k , n ,  (16) 
(1 7) 

enddo (18) enddo (19) 
if j E Pi then update [A]+  = [A],,j - /?vi.- pvjw 

Statement (14) indicates that y is the result the global summation of vectors y;. A minor redun- 
dancy exists since all processors compute w once y has been computed. This can be overcome by 
replacing statements (14) and (15) by 

yi = y, - P(uTy)u (14) 
gsum w = y; (15) 

(part of length M ( n  - j ) / p )  

so that all processors participate in subtracting P(uTy)u before the global summation. 

3.4 Parallel Implementation: Tridiagonal Reduction 

Parallel implementation of the reduction to tridiagonal form for a symmetric A proceeds similarly, 
with one major difference: Since only the lower triangular part of matrix A contains useful in- 
formation, we compute y as follows: Let A = L +- R,  where L and R equal the lower triangular 
and strictly upper triangular parts of A, respectively. Notice that RT equals the strictly lower 
triangular portion of L ,  and hence both are assigned to nodes in column-wrapped fashion. Now 
y = Au = Lu + Ru can be computed by: 

4 Blocked Algorithms 

In [7] it is shown how reorganizing portions of the above algorithms in terms of Level 3 BLAS 
yields algorithms that perform considerably better on computers with vector processors and/or 
hierarchical memories. In this section we discuss sequential blocked algorithms for reduction to 
Hessenberg and tridiagond form as well as their parallel implementation. 

4.1 

We first consider how the application of rn Householder transformations can be combined: 

Sequential Implementation: Blocked Hessenberg Reduction 

(2) H(k+") . . .H(k))A(k))H(k) .  . .B(k+m) = A(k)  - UVT - WUT 

5 



where 

The general strategy for reorganizing Algorithm 2 now becomes: 

1. Partition the matrix into panels of width rn. 

2. For k = 1, compute matrices U ,  V ,  and W by computing the successive Householder trans- 
formations. (Notice that for given j ,  in order to compute u, only the (A + j ) t h  column of 
A(k+J) needs to  be formed.) 

3. Update A@+") = A(k)  - UVT - WUT. (Note: only columns k+ m, . . . , n need to be updated, 
since columns k, . . . , C + rn - 1 were updated during the computation of U, V ,  and W . )  

4. Repeat for k = m + 1,2m + 1, .  . .. 
Notice that the third step can now be written as two matrix-matrix operations. The bulk of the 
formation of the matrices requires m matrix-vector operations. 

4.2 

The blocked algorithm for the reduction to tridiagond form for the symmetric problem is reorga- 
nized similarly, except that in this case W = V ,  so Equation 2 becomes 

Sequential Implementation: Blocked Tridiagonal Reduction 

f J ( k + " ) .  . . H ( " ) A ( k ) H ( k ) .  . .H("-tm) = A(k)  - UVT - VUT 

and only the lower triangular portion of A is updated. 

4.3 

We now describe the parallel implementation of the blocked reduction to  Hessenberg form. We will 
use panel-wrapped storage, where the panel width corresponds to rn, the width of the panel used 
for the sequential blocked algorithm. 

Understanding how to perform the computation in parallel is closely related to how matrices U ,  
V ,  and W must be distributed in order to be able to perform the update in Equation 2. Partition 
VT like A(k):  

Parallel Implementation: Blocked Hessenberg Reduction 

V T =  (V?V,. e - .  v:) 
If we update Aik) on node P(j-l)mo+, then U, W and V, must be known to this node. Hence we 
must compute these matrices in such a way that U and W eventually reside on all nodes, while VT 
is panel-wrapped distributed among the nodes. 

6 



Finally, we examine how the computation of U ,  V, and 14' can be distributed among the nodes. 
Assume the computation has progressed to where panel s is being reduced, Le., k = (s - 1)nz + 1. 
Assume the first j columns of U ,  V ,  and W have been computed and are distributed as desired. 
The computation of the (j -+ 1)st column of these matrices proceeds as follows: 

1. On node P(s-l)mo~p, form the ( j  t 1)st column of the current panel of A(k+j): 

Since 
[V]k+j,l:j = [K]j+l,~:j  

atl information for this operation is available on this node. 

2. On P(s-l)mo~p, compute ([U]*, j+l ,p)  and distribute to all nodes. ' 

3. Next, we must form three intermediate results,n 

2 = [VIT,l:j[v),>+l 
Y = [VI: 1 : j [UI * ,j+1 

= [WI?,1:j[uI*,j+1 

The first requires partial sums of vectors to be accumulated on each processor, followed by 
a global summation of the results, leaving the results on all processors. The latter two can 
either be computed in the same way or they can be computed separately on each processor, 
leading to redundant computation, but less communication overhead. 

4. Assuming x, y, and I have been computed, 

[v]*,j+~ = A(k)TIU]*,j+l - [V]*,1:jz - [ u ] * , ~ : j z  

can be computed, leaving the resulting column distributed among the nodes. 

5. Computing W.,j+l requires 

w = A(k)[U]*,j+l - [u]* ,~ : j~  - [W]* , l : j~  

to  be computed. Just like the computation of w in Algorithm 3, this proceeds in two stages: 
columns of A(k)  on each of the processors are summed after being multiplied by appropriate 
elements of [U],,j+l. Next, each of the vectors [U],,1:jz and [W],~:jy is partitioned into 
p approximately equal subvectors and computation of each subvector is assigned to a node. 
After each node computes its section of these two vectors, and subtracts them from the partial 
sum of columns, a global summation computes the desired 20, leaving the result on all nodes. 

6 .  FinaUy, 
[ ~ I * , j + l  = w - ~ t w ~ [ ~ I * , j + l ) [ ~ I * , j + ,  

is formed on all nodes. 

7 



DELTA: HadalglB u=4Gm 

1% 

1 
g I @ -  
I 

I '  I 

- 
I - I  

__ - __ .- . -. -__.. ~ ___. -. _.---- . ___.-- 
si . , , , ;.I 
'0 2 4 6 I IO 12 I4 

150 

1 
j la, 

h 

Figure 1: Total computation time for 128 nodes when n = 4000 and the block size 126 is varied. 
The space between two curves equals the time spent in the indicated operation. The times for the 
global sum (GSUM) and broadcast (BCAST) include some idle time that is due to load imbalance. 

4.4 Parallel Implementation: Blocked Tridiagonal Reduction 

The parallel implementation of the reduction to tridiagonal form for symmetric A proceeds similarly. 
Consider the steps given in Section 4.3: In Step 1, [W].,l:j = [V],,,:j; In Step 3, z = 5, which can 
be either formed separately on all  nodes or distributed among the nodes, which requires a global 
summation; Step 4-6 are merged, where [W].,j+l = [V],,j+l is computed by 

where pA(k)[U]*,j+l is computed using the same trick as in Section 3.4. 

5 Experiments 

In this section, we report the performance of the parallel reduction algorithms on the Intel Touch- 
stone Delta system using the Portland Group compiler and assembly coded single precision BLAS 
routines by Kuck and Associates. 

The Intel Touchstone Delta system is a distrjbuted-memory, message-passing multicomputer of 
the Multiple Instruction Multiple Data (MIMD) class developed jointly by the Defense Advanced 
Research Projects Agency (DARPA) and the Intel Corporation [12]. It is comprised of 520 i860- 
based nodes, each having 16 Megabytes (MBytes) of memory, interconnected via a communications 
network having the topology of a two-dimensional rectangular grid. (Scaling is not restricted to 
a power-of-two increment typical of hypercube topologies.) It has a peak performance of = 32 

8 



30- 

iu- 

IO - 
B W  

Figure 2: Allocation of execution time when p = 128, nb = 3 and the problem size n is varied. 
Again, the space between two curves equals the time spent in the indicated operation. 

Gigaflops double precision, M 40 Gigaflops single precision, and an aggregate system memory of = 8 
Gigabytes. The interconnection network employs a Mesh Routing Chip (MRC), developed at the 
California Institute of Technology, at each system node. Each MRC provides five channels, one for 
its associated node and four for its adjacent neighbors in the two-dimensional mesh. The channels 
are comprised of two, unidirectional buses: one for data flow into the MRC, one for data flow out of 
the MRC. The peak interprocessor communications bandwidth is z 30 MBytes/s in each direction. 
The system supports explicit message-passing, with a latency of w 75 microseconds via worm-hole 
routing using a packet-based protocol. Interconnect blocking is minimized by interleaving packets 
associated with distinct messages which need to traverse the same interconnect path. 

5.1 Reduction t o  Hessenberg Form 

Figure 1 shows the performance of the parallel reduction to Hessenberg form as a function of the 
problem size n and the block size nb for p = 128. Performance is most influenced by the performance 
of the Level 2 and 3 BLAS. From this graph, it can be concluded that nb = 3 yields reasonable 
performance. We will use this block size in subsequent discussions. 

Communication overhead is the main contributor to the reduction in performance, as can be 
seen from Figures 1 and 2. In particular, the global summation and broadcast operations are major 
contributors to the total execution time. This is not supprising, considering a broadcast of a vector 
of length O ( n )  and global summation of vectors of length n is required for each column of W that 
is formed (in addition to the summation of at least one smaller vector). 

The performance attained as a function of problem size is clear from Figure 3. In this graph, 
nb = 3 and performance is given for various numbers of nodes. The overall performance is somewhat 
disappointing: The LAPACK reduction routine on a single processor attains about 45 MFLOPS. 

9 



DELTk TriRaJnCIZ 

i------- 

Figure 3: GFLOPS atained for various numbers of nodes when the problem size i s  varied. For the 
Hessenberg reduction, nb = 3, for the tridiagonal reduction, nb = 12. 

5.2 Reduction to Tridiagonal Form 

Figure 1 also shows the execution time for the parallel reduction to tridiagonal form. From this 
graph, it can be concluded that large block sizes yield better performance. This is due to the fact 
that during the update given by Equation 2 the submatrix must be updated one panel at a time, 
since the lower triangular part of the matrix A is wrapped onto the processors. For the same reason, 
the performance of the matrix-vector product (BLAS2) is affected. 

The overall performance of the reduction to tridiagonal form is worse than that of the reduction 
to Hessenberg form (Figure 3). This citn be explained as follows: The number of floating point 
operations is reduced by a factor 2.5 as compared to the reduction to Hessenberg form. The time 
spent in the broadcast is unchanged. The time spent in the global summation is approximately 
halved. As a result, the ratio of communication to  computation is higher than for the reduction to 
Hessenberg form. 

6 Conclusion 

We have demonstrated that the LAPACK code for reducing a matrix to Ilessenberg or tridiagonal 
form can be rewritten for current generation MIMD distributed memory computers in a relatively 
straight forward manner. 

On the Intel Touchstone Delta, efficiency is hampered to a large degree by the cost of communi- 
cation and the synchronous nature of the algorithm. If larger problems are solved, this becomes less 
significant. Although the Intel Touchstone Delta system has sufficient memory to store matrices of 
order 25000, we limited ourselves to problems that required less than 30 minutes to complete. 

10 



We have started to investigate different methods for mapping matrices to nodes. In [13], we 
show that wrapping onto logical tori greatly improves the performance of the LU factorization on 
the Intel Touchstone Delta. Future work will include the investigation of using this storage method 
for the reduction algorithms. 

Acknowledgements 

We would like to thank A1 Geist for commenting on an early draft of this paper. Special thanks 
are given to the members of the Concurrent Supercomputing Consortium for their cooperation and 
contribution of time and access to the Touchstone Delta System. 

References 

[l] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and 
R. van de Geijn. Basic Linear Algebra Communication Subprograms. In Sisth Distributed 
Memory Computing Conference Proceedings, pages 287-290. IEEE Computer Society Press, 
1991. 

[2] H.Y. Chang, S. Utku, M. Salama, and D. Rapp. A parallel Householder tridiagonalization 
strategem using scattered row decomposition. Inti. J .  Num. Meth. Eng., 26:857-873, 1987. 

[3] H.Y. Chang, S .  Utku, M. Salama, and D. Rapp. A parallel Householder tridiagonalization 
strategem using scattered square decomposition. Parallel Computing, 6:297-312, 1988. 

[4] Jack Dongarra and Susan Ostrouchov. LAPACK block factorization algorithms on the Intel 
iPSC/SSO. LAPACK Working Note 24, Technical Report CS-90-115, University of Tennessee, 
Oct. 1990. 

[5] Jack J.  Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic 
linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1-17, March 1990. 

[6] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended 
set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1-17, 
March 1988. 

[7] Jack J. Dongarra, Sven J. Hammarling, and Danny C. Sorensen. Block reduction of matri- 
ces to  condensed forms for eigenvalue computations. Journal of Computational and Applied 
Mathematics, 27, 1989. 

[8] G.A. Geist and G.J. Davis. Finding eigenvalues and eigenvectors of unsymmetric matrices 
using a distributed-memory multiprocessor. Parallel Computing, 13:199-209, 1990. 

[9] I.C.F. Ipsen, Y. Saad, and M.H. Schultz. Complexity of dense-linear-system solution on a 
multiprocessor ring. Lin. Alg. Appl. ,  77:205-239, 1986. 

11 



[lo] G.W. Juszczak. Efficient portable parallel matrix computations. Master’s thesis, University 
of Texas at Austin, 1989. Technical Report TR-89-38. 

[ll] J.W. Juszczak and R.A. van de Geijn. An experiment in coding portable parallel matrix 
algorithms. In Proceediags of the Fourth Conference on Hypercube Concurrent Computers and 
Applications, 1989. 

[12] S.L. Lillevik. The Touchstone 30 Gigaflop DELTA Prototype. In Sixth Distributed Memory 
Computing Conference Proceedings, pages 671-677. IEEE Computer Society Press, 1991. 

[13] R.A. v m  de Geijn. Massively pardel  LINPACK benchmark on the Intel Touchstone Delta 
and iPSC/SSO systems. Computer Science report TR-91-28, Univ. of Texas, 1991. 

12 



- 13 - 

ORNUTM-12006 

INTERNAL DISTRIBUTION 

1. 
2-3. 
4. 
5. 

6-10. 
11. 
12. 
13. 
14. 
15. 
16. 

17-21. 
22. 

B. R. Appleton 
T. S. Darland 
E. F. D’Azevedo 
J. M. Donato 
J. J. Dongarra 
T. H. Duniga 
G. A. Geist 
M. R. Leuze 
E. G. Ng 
C. E. Oliver 
B. W. Fkyton 
S. A. Raby 
C. H. Romine 

23. 
24-28. 
29-33. 
34. 
35. 
36. 
37. 
38. 

39. 
40. 

41-42. 

T. H. Rowan 
R. F. Sincovec 
R. C. Ward 
P. H. Worley 
A. Zucker 
Central Research Library 
ORNL Patent Office 
K-25 Applied 

Technology Library 
Y-12 Technical Library 
Laboratory Records - RC 
Laboratory Records Department 

EXTERNAL DISTRIBUTION 

43. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA 

44. Robert G. Babb, Department of Computer Science and Engineering, Oregon Graduate 

45. David H. Bailey, NASA Ames Research Center, Mail Stop 258-5, Moffett Field, CA 

46. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University, 

47. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia 

48. Eric Barszcz, NASA Ames Research Center, MS TO45-1, Moffett Field, CA 94035 

98124-0346 

Institute, 19600 N.W. Walker Rd., Beaverton, OR 97006 

94035 

University Park, PA 16802 

National Laboratories, Albuquerque, NM 87185 

49. Robert E. Benner, Parallel Pnxessing Division 1413, Sandia National Laboratories, P. 

50. Donna Bergmark, Comell Theory Center, Engineering and Theory Center Building, 

51. Chris Bischof, Mathematics and Computer Science Division, Argonne National 

52. Ake Bjorck, Depament of Mathematics, Linkoping University, 5-581 83 Linkoping, 

0. Box 5800, Albuquerque. NM 87185 

Ithaca, NY 14853-3901 

Laboratory, 9’700 South Cass Ave., Argonne, E. 60439 

Sweden 



- 1 4 -  

53. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of Tennes- 
see, Knoxville, TN 37996-1301 

54. Daniel Boley, Department of Computer Science, University of Minnesota, 200 Union 
St. S.E. Rm.4-192 Minneapolis, MN 55455 

55. Roger W. Bmckett (EPMD Advisory Committee), Wang Professor of Electrical 
Engineering and Computer Science, Division of Applied Sciences, Harvard Univer- 
sity, Cambridge, MA 02138 

56. James C. Browne, Department of Computer Sciences, University of Texas, Austin, 
TX 78712 

57. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric 
Research, P.O. Box 3000, Boulder, CO 80307 

58. Donald A. Calahan, Department of Electrical and Computer Engineering, University 
of Michigan, Ann Arbor, MI 48109 

59. John Cavallini, Office of Scientific Computing, Office of Energy Research, ER-7, 
Germantown Building. U.S. Department of Energy, Washington, DC 20545 

60. Ian Cavers, Department of Computer Science, University of British Columbia, Van- 
couver, British Columbia V6T 1 W5, Canada 

61. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405 
Hilgard Ave., Los Angeles, CA 90024 

62. Jagdish Chandra, Army Research Office, P.O. Box 1221 1, Research Triangle Park, 
NC 27709 

63. Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo, 
Ontario, Canada N2L 3G1 

64. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington, DC 
20550 

65. Thomas Coleman, Department of Computer Science, Comell University, Ithaca, NY 
14853 

66. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley, 
CA 94720 

67. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown 
Heights, NY 10598 

68. George Qbenko, Center for Supercomputing Research and Development, University 
of Illinois, 104 S. Wright St., Urbana, IL 61801-2932 

69. George J. Davis, Department of Mathematics, Georgia State University, Atlanta, GA 
30303 

70. John J. Doming, (EPMD Advisory Committee), Department of Nuclear Engineering 
Physics, Thomton Hall, McCormack Rd., University of Virginia, Charlottesville, VA 
22901 



-15- 

71. lain S Duff, Atlas C a m ,  Rutherford Appleton Laboratory, Chilton, Oxon OX11 
OQX England 

72. Patricia Eberlein, Depamnent of Computer Science, SUNY at Buffalo, Buffalo, NY 
14260 

73. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box 2158 
Yale Station, New Haven, CI' 06520 

74. Lars Elden, Department of Mathematics. Linkoping University, 581 83 Linkoping, 
Sweden 

75. Howard C. Elman, Computer Science Department, University of Maryland, College 
Park, MD 20742 

76. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M / S  7L-21, Seattle, 

77. Ian Foster, Mathematics and Computer Science Division, Argonne National Labora- 
tory, 9700 South Cass Ave., Argo=, IL 60439 

78. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Technol- 
ogy, Pasadena, CA 9 1 125 

79. Paul 0. Frederickson, NASA Ames Research Center, RIACS, M / S  T.045-1 Moffett 
Field, CA 94035 

80. Fred N. Fiitsch, Computing & Mathematics Research Division, Lawrence Livermore 
National Laboratory, P. 0. Box 808, L-316 Livermore, CA 94550 

81. Robert E. Funderlic, Department of Computer Science, North Carolina State Univer- 
sity, Raleigh, NC 27650 

82. Dennis B. Gannon, Computer Science Department, Indiana University, Bloomington, 
IN 47405 

83. David M. Gay, Bell Laboratories. Ciao Mountain Ave., Murray Hill, NJ 07974 

84. C. William Gear, Computer Science Department, University of Illinois, Urbana, IL 
61801 

85. W. Morven Gentleman, Division of Electrical Engineering, National Research Coun- 
cil, Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada K1A OR8 

86. J. Alan George, Vice President, Academic and Pmvost, Needles Hall, University of 
Waterloo, Waterloo, Ontario, Canada N2L 3G1 

87. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, 
CA 94304 

88. Gene H. Golub, Department of Computer Science, Stanford University, Stanford, CA 
94305 

89. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA 94550 

90. Sven Hammarling, Numerical Algorithms Group Ltd. Wilkinson House, Jordan Hill 
Road Oxford OX2 8DR, United Kingdom 

WA 98124-0346 



- 16- 

91. 

92. 

93. 

94. 

95. 

96. 

97. 

98. 

99. 

100. 

101. 

102. 

103. 

104. 

105. 

106. 

107. 

108. 

109. 

Per Christian Hansen, UNI*C Lyngby, Building 305, Technical University of Den- 
mark, DK-2800 Lyngby, Denmark 

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., 
Houston, TX 77042-3020 

Michael T. Heath, National Center for Supercomputing Applications, 4157 Beckman 
Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL 6 1801 -2300 

Don E. Heller, Physics and Computer Science Department, Shell Development Co., 
P.O. Box 481, Houston, TX 77001 

Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt Man- 
chester, M13 9PL, England 

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air 
Force Base, Washington, DC 20332 

Robert E. Huddleston, Computation Department, Lawrence Livennore National 
Laboratory, P.O. Box 808, Livermore, CA 94550 

Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale 
Station, New Haven, 06520 

Elizabeth Jessup, University of Colorado, Department of Computer Science, Boulder, 

Lennart Johnson, Thinking Machines Inc., 245 First St., Cambridge, MA 02142- 
1214 

Harry Jordan, Department of Electrical and Computer Engineering, University of 
Colorado, Boulder, GO 80309 

Bo Kagstrom, Institute of Infomation Processing, University of Umea, 5-901 87 
Wmea, Sweden 

Malvin H. Kalos, Comell Theory Center, Engineering and Theory Center Building, 
Comell University, Ithaca, NY 14853-3901 

Hans Kaper, Mathematics and Computer Science Division, Argonne National Labora- 
tory, 9700 South Cass Ave., Argonne, IL 60439 

Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories, 
Livermore, CA 94550 

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 
1892, Houston, TX 77005 

Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of 
Energy Research, ER-7, Office G-236 Gemantown, Washington, DC 20585 

Richard Lau, Code l l l lMA,  800 N. Quincy Street, Boston Tower, 1 Arlington, VA 

Alan J. h u b ,  Department of Electrical and Computer Engineering, University of Cal- 
ifornia, Santa Barbara, CA 93106 

CO 80309-0430 

222 17-5000 



- 17- 

110, Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park, 
North Carolina 27709 

111. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Dr., 
Pasadena, CA 91 109 

112. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 25 1 
Mercer St., New York, NY 10012 

113. James E. kis s  @PMD Advisory Committee), RL 2, Box 142C, Broadway, VA 22815 

1 14. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA 

115. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston, TX 

116. Joseph Liu, Department of Computer Science, York University, 4700 Keele St., North 
Yo&, Ontario, Canada M3J 1P3 

117. Franklin Luk, School of Electrical Engineering, Comell University, Ithaca, NY 14853 

118. Thomas A. Manteuffel, Department of Mathematics, University of Colorado - 
Denver, Denver, CO 80202 

119. Peter Mayes, NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, 
United Kingdom 

112. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. Cali- 
fornia Blvd. Pasadena, CA 91 125 

113. James McGraw, Lawrence Livennore National Laboratory, L-306, P.O. Box 808, 
Livermore, CA 94550 

114. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025 

115. Neville Moray (EPMD Advisory Committee), Department of Mechanical and Indus- 
trial Engineering, University of Illinois, 1206 West Green Street, Urbana, IL 61801 

116. Brent Monis, National Security Agency, Ft. George G. Meade, MD 20755 

117. Dianne P. O’Leary, Computer Science Department, University of Maryland, College 
Park, MD 20742 

118. James M. Ortega, Department of Applied Mathematics, Thornton Hall University of 
Virginia, Charlottesville, VA 22903 

119. Chris Paige, Depamnent of Computer Science, McGill University, 805 Sherbrooke St. 
W., Montreal, Quebec, Canada H3A 2K6 

120. Roy P. Pargas, Department of Computer Science. Clemson University, Clemson, SC 

121. Beresford N. Parlett. Department of Mathematics, University of California, Berkeley, 
CA 94720 

98 124-0346 

77042-3020 

29634- 1906 



- 18- 

122. Merrell Patrick, Department of Computer Science, Duke University, D u m a ,  NC 

123. Robert J. Plemmons, Departments of Mathematics and Computer Science, North 
Carolina State University, Raleigh, NC 27650 

124. Jesse Poon, Department of Computer Science, Ayres Hall, University of Tennessee, 
Knoxville, TN 37996-1301 

125. Alex Pothen, Department of Computer Science, Pennsylvania State University, 
University Park, PA 16802 

126. Michael J. Quinn, Computer Science Department, Oregon State University, Cowallis, 
OR 9733 1 

127. Giuseppe Radicati di Bmzolo, IBM European Center for Scientific and Engineering 
Computing, 00147 Roma, via Giorgione 159, Italy 

128. Noah Rhee, D e p m e n t  of Mathematics, University of Missouri-Kansas City, Kansas 
City, MO 641 10-2499 

129. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas Cen- 
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX 1 1 OQX, England 

130. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of Pitts- 
burgh, Pittsburgh, PA 15260 

131. John R. Rice, Computer Science Department, Purdue University, West Lafayem, IN 
47907 

132. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory, 
Livermore, CA 94550 

133. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC 
27706 

134. A b e d  H. Sameh, Computer Science Department, University of Illinois, Urbana, IL 
61801 

135. Michael Saunders, Systems Optimization Laboratory, Operations Research Depart- 
ment, Stanford University, Stanford, CA 94305 

136. Robert Schreiber, WACS, Mail Stop 230-5, NASA Ames Research Center, Moffet 
Field, CA 94035 

137. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box 2158 
Yale Station, New Haven, CT 06520 

138. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaverton, 
OR 97006 

139. Lawrence F. Shampine, Mathematics Department, Southern Methodist University, 
Dallas, TX 75275 

27706 



- 19- 

140. 

141. 

142. 

143. 

144. 

145. 

146. 

147. 

148. 

149. 

150. 

15 1 - 155. 

156. 

157. 

158. 

159. 

160. 

161. 

162. 

Kennit Sigmon, Department of Mathematics, University of Florida, Gainesville, FL 
3261 1 

Horst Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA 
94035 

Larry Snyder, Department of Computer Science and Engineering, FR-35, University 
of Washington, Seattle, WA 98195 

Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. 
Box 1892, Houston, TX 77251 

Rick Stevens, Mathematics and Computer Science Division, Argonne National 
Laboratory, 9700 South Cass Ave., Argonne, lL 60439 

G. W. Stewart, Computer Science Department, University of Maryland, College Park, 
MD 20742 

Quentin F. Stout, Department of Electrical and Computer Engineering, University of 
Michigan, Ann Arbor, MI 48109 

Daniel B. Szyld, Depamnent of Computer Science, Duke University, Durham, NC 

W.-P. Tang, Department of Computer Science, University of Waterloo, Waterloo, 
Ontario, Canada N2L 3G1 

Michael Thomason, Department of Computer Science, Ayres Hall, University of 
Tennessee, Knoxville, 'I" 37996-1301 

Bernard Tourancheau, LIP ENS-Lyon 69364 Lyon cedex 07. F m c e  

Robert A. van de Geijn, Department of Computer Science, University of Texas, Aus- 
tin, TX 78712 

Charles Van Loan, Department of Computer Science, Comell University, Ithaca, NY 
14853 

James M. Varah, Centre for Integrated Computer Systems Research, University of 
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T 
1W5. Canada 

27706-2591 

Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA 
23665 

Michael Vose, Department of Computer Science, Ayres Hall, University of Tennes- 
see, Knoxville, TN 37996-1301 

Phuong Vu, Cray Research Inc., 1408 NortNand Dr., Mendota Heights, MN 55120 

E. L. Wachspress, Department of Mathematics, University of Tennessee, Knoxville, 
TN 37996- 1300 

Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall, Clem- 
son University, Clemson, SC 2963 1 



-20-  

163. D. S .  Watkins, Department of Pure and Applied Mathematics, Washington State 
University, Pullman, WA 99164-2930 

164. Mary F. Wheeler (EPMD Advisory Committee), Rice University, Department of 
Mathematical Sciences, P.O. Box 1892, Houston, TX 7725 1 

165. Andrew B. White, Computing Division, Los Alamos National Laboratory, Lm 
Alamos, NM 87545 

166. Michael Wolfe, Oregon Graduate Institute, 19600 N.W. von Neumann Dr., Beaver- 
ton, OR 97006 

167. Margaret Wright, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 

168. David Young, University of Texas, Center for Numerical Analysis, IUN 13.150, 
Austin, TX 7873 1 

169. Office of Assistant Manager for Energy Research and Development, U.S. Department 
to Energy, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 3783 1-8600 

170-179. Office of Scientific Technical Information, P.O. Box 62, Oak Ridge, TN 37831 


