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Several software systems are available for implementing automatic differentiation of 
computer programs. The forward mode of automatic diffcrentiation is limited by computational 
intensity and computer memory. The reverse mode, or adjoint approach, is limited by computer 
memory and disk storage. A modular technique for derivative computation that can significantly 
reduce memory required to compute derivatives in a complex FOR?" model using the 
reverse mode of automatic differentiation is discussed and demonstrated. 
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1. INTRODUCTION 

The calculation of derivatives necessary for sensitivity analysis, or for the optimal solution 

of systems of nonlinear equations, continues to be an important research objective. Several 

software systems have been developed or proposed for implementing automatic differentiation 

of computer programs. The forward mode of automatic differentiation is efficient for calculating 

derivatives for a large number of dependent variables with respect to a few independent 

variables. As the number of independent variables increases, the computational complexity, as 
measured in execution time and memory requirements, renders the forward mode impractical. 

The reverse mode, or adjoint approach, is efficient for derivatives of a few dependent variables 

with respect to thousands of independent variables; however, available memory and disk storage 

generally limit the application of the reverse mode to problems with less than a few million 

floating-point assignments. The fundamental problem with the reverse mode of automatic 

differentiation is that the accumulation of derivatives for every floating-point assignment is 

required. A code that uses 3 min of execution time to perform 50 million floating-point 

assignments could easily need more than 1 gigabyte (GB) to store the accumulated 

GRESS (the GRadient Enhanced Software System) was designed to  apply automatic 

differentiation to large-scale FORTRAN programs in the nuclear industry without requiring 

significant changes to the coding?"' GRESS provides two methods of calculating and reporting 

derivatives. The CHAlN option implements the forward mode of automatic differentiation to 

calculate the derivatives of a variable with respect to a user-selected subset of the input data. 

The ADGEN option incorporates the reverse mode or adjoint sensitivity analysis methods to 

calculate derivatives of selected variables with respect to thousands of input parameters. When 

the ADGEN option is chosen, partial derivatives for every arithmetic assignment statement in 

the model are stored in memory or output to a data set. Matrix-solving routines are then used 

to calculate and report derivatives and sensitivities for selected results, 

In this paper a modular differentiation technique (MDT) is presented that uses both 

forward and reverse modes to restrict the growth of execution time and storage requirements, 

thus extending the size of problems to which the reverse mode of automatic differentiation can 

be applied. MDT is implemented using GRESS and provides a compromise between the 

forward mode with its computational limitations and the reverse mode with its excessive memory 

or storage requirements. 

The effectiveness of the MDT in propagating derivatives through a computer program 

rests on the degree of modularity in the program. Most existing large-scale FORTRAN 
programs do not have the degree of modularity necessary to apply MDT in an automated 

fashion. The approach described in this paper is to provide the basic tools to allow one to 
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implement MDT on a module-by-module basis in an existing code or in the development phase 

for a new code. 

A new GRESS option, GENSUB, that permits the processing of individual program 

modules (i.e-, a do loop, subroutine, function, or a sequcnce of subroutines) for calculating 

derivatives is used to demonstrate MDT. GENSUB is designed to allow derivatives to be 

propagated in either forward or reverse mode. The decision on whether to use forward or 

reverse mode can be made by the user or by the software. 

option is described in Sect. 4. 
demonstrated in Sect. 5. 

In Sect. 2 GRESS is described. In Sect. 3 MDT is presented. The GRESS GENSUB 

The application of MDT using the GENSUB option is 

2 GRESS 

GRESS uses a method referred to as statement adjointing to process the arithmetic 

assignment statements in a FORTRAN program. The first part of this section provides an 

overview of the GRESS system. The remainder of the section describes statement adjointing 

as implemented in GRESS. 

21. OVERVIEW OF GRESS 

In a FORTRAN program, calculated variables are mathematical functions of previously 

defined variables and data. GRESS uses a precompiler to interpret FORTRAN statements and 

determine the mathematical operations embodied in them. As each arithmetic assignment 

statement in a program is interpreted, information necessary to allow the calculation of 

derivatives is generated. The result of the precompilation step is a new FORTRAN program 

that can produce derivatives for any REAL (Le., single- or double-precision) variable calculated 

by the model. Consequently, GRESS enhances FORTRAN programs by adding the calculation 

of derivatives along with the original output. GRESS accepts a majority of ANSI-X3.9 

FORTRAN 77, including subroutines, common blocks, data statements, read statements, user 

functions, intrinsic functions, block data subprograms, single-precision variables, double-precision 

variables, and equivalence statements. GRESS does not process COMPLEX variable types or 

statement functions. Specific limitations are discussed in ref. 3. GRESS is available from the 

Radiation Shielding Information Center at Oak Ridge National Laboratory and is operational 

on VAX/VMS computer systems. The author has implemented test versions of GRESS on 

VAX/ULTRIX, CRAYKJNICOS, IBM RISC/6000 Workstations, and Sun Workstations; 

however, GRESS has only been rigorously tested in the VAX/VMS environment. 
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The steps used to process a 

code with GRESS are illustrated in 

Fig. 1. A FORTRAN model is 

input to the GRESS precompiler to 

create an enhanced program. The 

enhanced model is compiled in the 

usual manner and then linked with 

a library of GRESS utility routines. 

When the enhanced model is 

executed, derivatives are calculated 

for each arithmetic assignment 

statement immediately before the 

statement is executed. 

Derivatives from a GRESS- 

I RUN I 
Model Rewlts 

Dorlvetivea 
Sendtlvltlea 

I 

Fig. 1. Processing steps for a GRESS application. 

enhanced model can be used internally (e.g.? for iteration acceleration) or externally (e.g., for 

sensitivity studies). In this paper, we focus on the calculation of derivatives of output variables 

with respect to input parameters. 

GRESS provides two methods for calculating derivatives. The CHAIN option calculates 

the derivatives of a variable with respect to a user-selected subset of the input data by repeated 

application of the chain rule in the forward mode. The CHAIN option calculates derivatives as 

the model is executing and is the recommended option when the user is only concerned with a 

very small number of input parameters. The ADGEN option incorporates the adjoint methods 

long used by nuclear engineers to calculate the derivatives of selected model responses with 

respect to thousands of input parameters.s'g When the ADGEN option is chosen, partial 

derivatives for every floating-point assignment statement in the model are output to  a data set 

or stored in memory. Matrix-solving routines are then used to  calculate and report derivatives 

€or selected results. The ADGEN option provides the user with the capability to calculate and 

report the derivatives of any calculated model result with respect to all data input to the model. 

An important advantage of the adjoint method over the chain rule method is that the derivatives 

of selected model results can be calculated with respect to thousands of input parameters at a 

cost comparable to that of executing only a few model runs. To approximate the same 

information by direct parameter perturbations would require separate model runs for each input 

parameter. 
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22. S T A " T A D J O I " G  

An arithmetic assignment statement has one dependent variable (the term on the left of 

the equal sign) and one or more independent variables (the terms on the right); therefore, it is 

most efficient to calculate derivatives for an arithmetic assignment statement using the reverse 

mode or adjoint method. This method will be referred to as statement adjointing. 

Statement adjointing is seen as an improvemcnt over other methods of automatic 

differentiation because it reduces memory requirements and computational intensity during the 

execution of the enhanced program. Many tools for automatic differentiation require storage 

of 16 to 20 bytes per floating-point operation.' Statement adjointing reduces that storage to 16 

to 20 bytes per floating-point assignment. Not only does this reduce storage, but it also reduces 

the number of calculations required to calculate derivatives during the execution of the enhanced 

code. 

To implement statement adjointing, the CRESS precompiler creates and then solves an 

adjoint matrix for each assignment statement as it is processed (Fig. 2). Once the adjoint matrix 

for a statement is solved for the derivatives of the term on the left with respect to the variables 

on the right, the FORTRAN statements necessary to calculate those derivatives during execution 

are generated. 

To compute; 
Y(I) X(I)*A + X(I)*B 

Generate temporary terms: 
T I  X W A  
T2 X W B  
Y(I) T1 + T2 

Symbolic 
adjoint matrix 

Adjoints 
of Y(I) 3 

l O O A  B O  
0 1 0 X(I) 0 0 
0 0 1 0 X(I) 0 
0 0 0  1 0 1 . 0  
0 0 0 0  1 1 . 0  
0 0 0 0  0 1 

1 0 0  A B A+B 
0 1 0 X(I) 0 X(I) 
0 0 1 0 X(I) X(I1 
0 0 0  1 0  1.0 
0 0 0 0  1 1 . 0  
o o o o o  1 

I 

Fig. 2. Creating and solving a statement adjoint matrix. 
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During the precompilation step GRESS makes a single pass through a FORTRAN 
program. Statements defining REAL variables are parsed (1) to determine mathematical 

operations and (2) to  solve the adjoint matrix for the statement. GRESS generates FORTRAN 

statements that compute the partial derivatives of the term on the left with respect to  the REAL, 
variables on the right. The original statement is output, followed by a subroutine call for 

processing the partial derivatives. The following sequence of FORTRAN is used to demonstrate 

precompilation. 

DO 10 I=1,4 
Y(I)=X(I)*A + X(I)*B 

10 CONTINUE 

Though the program generated by the precompiler appears more complicated, the 

partial derivatives that GRESS stores in the DX array are easy to find and verify. 

90002 

DO 90002 I=1,4 
DX( 1)  =A+B 
DX( 2) = X( I) 
DX(3)=X(I) 
Y(I)=X(I)*A + X(I)*B 
CALL LOCNXX(1,4,Y(I),X(I),A,B) 
CONTINUE 

The partial derivatives are initially stored in the DX array. Subroutine LOCNXX is a GRESS 

routine generated when the adjoint option is selected. When the adjoint option is selected,the 

partial derivatives are moved into a buffer for later processing. The interested reader is referred 

to  the GRESS User’s Manual for more information on the adjoint and CHAIN options. The 

GENSUB option will be discussed later in this text. 
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3. DESCRXPTION OF THE MODULAR DIFFERENTIATION TECHNIQUE (IG) 

A major limitation when considering the ADGEN option is problem size as measured 

by execution time. Since the partial derivatives for every real assignment statement are 

accumulated, the amount of data storage can be prohibitive. A program that performs SO million 

assignments may require as much as 1 GB of storage.'-2 

GRESS was designed to work with existing programs. GRESS treats a program as a 

single unit or module. Previously, GRESS could not be used to solve for derivatives from a 

subroutine or function independent of the rest of the program. GRESS was also limited in that 

it could not apply the reverse mode to solve for derivatives after each pass in an iterative type 

code. Solving for derivatives between iterations is of utmost importance in many applications 

and is a means to reduce memory required to store accumulated derivatives. MDT and the 

GENSUB option werc developed to solve some of these problems. 

To implement MDT it is necessary for a program to be thought of as a sequence of 

modules that are linked. Initially we will consider the link to a module to be the argument lists 

and return values. Later we will discuss the processing of variables provided to a module via 

common blocks. 

A module can be considered to be any sequence of FORTRAN statements. Any module 

can be represented by a computational graph. As an example, consider the following formula 

for DTST 

A computational graph for this equation is shown in Fig. 3. The squares in the computational 

graph represent arithmetic assignment statements. The reverse mode of automatic 

differentiation requires the accumulation of derivatives for every floating-point assignment that 

is dependent on a declared parameter. 
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~ 

"r'D 

DlST 

Fig. 3. Dependency graph for DIST. 

In modular form, the DIST formula could be coded as a FORTRAN subroutine or 

function with the Y array as input and DIST as the calculated result. 

A computer program can be represented as a sequence of modules, each with its own 

computational graph. Each module is assumed to  have input and output. For simplicity we are 

ignoring global variables and common blocks. For the purposes of this section we are requiring 

input and output to be on argument lists to the module. 

Figure 4 shows a computational graph for a computer program with three modules, each 

with its own computational structure. 

Fig. 4. Computational graph for a three-module program. 

7 

1 l---l 

Fig. 4. Computational graph for a three-module program. 
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The digits on the links indicate the number of input and output variables for each module. 

Module A has three inputs and one output, B has one input and three outputs, and C has three 

inputs and two outputs. 

With most reverse-mode implementations, modules A, B, and C would be run 

sequentially with all derivatives from all floating-point operations stored in mcmory or on disk. 

GRESS is somewhat improved in that only derivatives from floating-point assignments are stored; 

however, for large-scale problems the amount of storage required renders the reverse mode 

impractical. 

MDT is designed to work with each module indepcndently. Once a module is completed, 

then either forward or reverse mode is used to calculate the derivatives of the output from the 

module with respect to the input. Only the derivatives of the output with respect to the input 

need to be stored. 

In most practical cases, a simple test can be used to determine whether to use forward 

or revcrsc mode to calculate the derivatives for a module. If the number of input parameters 

is greater than the number of output variables, reverse mode of automatic differentiation should 

be used. If the number of output variables is greater, forward mode should be used. The 

decision on whether to use forward or reverse mode does not have to be made a priori, it can 

be determined when the module is finished. For the example in Fig. 4, reverse mode would bc 

applied to module A, forward mode to module B, and reverse mode to module C. 

Most large FORTRAN programs are modular in design; however, common blocks 

provide a mechanism by which modules can share global variables that are not provided on the 

link to the module. It seems to be common practice to have thousands of common block 

variables available to every subroutine in the program. When processing a module we only have 

to be concerned with global variables that are accessed or stored during the execution of a 

module. Though a single module may have thousands of common block variables, only a subset 

may actually be used as dependent or independent variables. Variables that are used can be 

determined during execution of the module. Figure 5 shows the computational graph for a 

computer program with global variables available to modules. 

8 



Independent Global  Variables 

3 
c= 

3 - 
C 

Dependent G lobal Variables 

Fig. 5. Computational graph for program with common blocks. 

When determining whether to use forward or reverse methods for calculating the derivatives for 

a module, the independent global variables are counted as input variables, and the dependent 

global variables are counted as output variables. If global variables are included, module A 
should use forward mode, and modules B and C should use reverse mode. 

For MDT to be feasible, the number of variables on the links between modules must be 

small compared with the number of variables within the modules. The more modular a code 

system, the more effectively one could implement MDT. A module can be as simple as a 

subroutine or function; however, the composition of a module is arbitrary. For example, in a 

code that does hundreds of iterations, each iteration could be treated as a module. Though in 
the long term completely automating MDT is recommended, the intent in this paper is to test 

MDT with existing technology. 

4. GENSUB STRUCTURE AND DESIGN 

The chain rule of differentiation has a natura1 linked-list structure. In designing 

GENSUB we took advantage of this natural structure for storing derivatives in memory. A 
linked-list structure can easily be traversed in forward or reverse directions, thus allowing the 

forward or reverse method of automatic differentiation to be selected after the module is 

completed. 

The GRESS GENSUB option was developed to permit testing of MDT. GENSUB is 
used to process a subset of a program (i.e., a do loop, subroutine, function, a sequence of 

subroutines, or a whole program) for calculating derivatives of dependent variables with respect 
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to independent variables. GENSUB allows the processing of program units as small as a do 

loop, and as large as an entire program. GENSUB can use either forward or reverse chaining, 

depending on which is most efficient for the given application. 

GENSUB takes advantage of the modularity in many FORTRAN programs. A modulc 

may be thought of as any sequence of FORTRAN statements with identifiable input and output. 

A subroutine or function with input and output communicated via argument lists would be an 

obvious example of a module. However, the input and output could also be in common blocks. 

While a module is considered to be a sequence of statements, a program can be thought of as 

a sequence of modules that are linked. The following section presents the linked-list structure 

used to store and calculate derivatives for a single module, followed by a discussion of the linking 

of modules. 

4.1. L I " G  FLOA?WG-POINT ASSIGNMENT STATEMENTS 

GENSUB was designed to work efficiently for small- to medium-sized modules. The 

strategy is to minimize work during the sequential processing assignment statements. Information 

necessary to propagatc derivatives is accumulated without reduction in a structure that allows 

solving for derivatives in either the forward or reverse mode. 

Each time an assignment statement is executed, a GRESS library routine will construct 

a Statement Frame, as illustrated in Fig. 6. A sequence of Statement Frames contains all the 

information necessary to apply the chain rule of differentiation in either forward or reverse mode 

to calculate derivatives of selected dependent variables with respect to variables that are input 

to a module. Memory required to hold the Statement Frames and solve for derivatives is 

allocated dynamically. 

As shown in Fig. 7, Statement Frames form a linked-list structure that can be traversed 

in either the forward or reverse direction. The information stored in the linked-list structure can 

be uscd to calculate the derivative of any calculated result with respect to any term on the right- 

hand side of an assignment statement. 

When a modulc is completed, derivatives are calculated €or output variables with respect 

to input variables. Input and output variables for a module are identified by the user through 

the insertion of subroutine calls to the GRESS library. The user also inserts a call to a routine 

that calculates the derivatives by application of the chain rule. The chain routine will determine 

whether forward or reverse mode is best for a given application. The user can also specifically 

request fonvard or reverse mode. Once the derivatives are calculated for the output variables 

with respect to the input variables, the memory used to hold the Statement Frames is released. 
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I Statement pointer (SP) I 
I Pointer to previous Statement Frame (PSF) I 

Pointer to next Statement Frame (NSF') 

Number of non-zero derivatives (NT) 

Derivative value (DV) 

Pointer to right-hand-side term (RHS) 

DV and RHS are repeated NT times 

Statement pointer is the address of a floating- 
point variable defined by the statement. 
Pointer to right-hand-side term is an address 
of a variable on the right of an equal sign. 

Fig. 6. Structure of a Statement Frame. 

PSF - Previous statement frame 
NSF - Next S!atement Frame 
HT - Number of derivatives 
DV - berivalive value 
RHS - Pointer to right-hand-side term 

Fig. 7. Statement Frames form a linked-list structure. 
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4.2 LINKING MODULES 

Linking modules is analogous to linking statements. To link statements we constructed 

Statement Frames using a linked-list structure. Module Frames can also be stored in a linked-list 

structure. 

A sequence of statements define a module. When the Statement Frames within a 

module are solved using the chain rule, in either forward or reverse mode, the information 

necessary to construct a Module Frame is retained. A Module Frame contains the derivatives 

of the dependent variables output from the module with respect to the independent variables 

input to the module. The output from a module has three components: (1) derivatives, (2) 

depcndent variables, and (3) independent variables. Each dependent and independent variable 

is assigned a row number. A row number is stored in a random access data structure using the 

associated variable’s address as a key for later retrieval. 

When a Module Frame is constructed, dependent variables that are not dependent on 

declared parameters are dropped. Parameters can be declared either by the user or 

automatically, as any real variable input via a read statement. The row numbers for the 

dependent variables can be determined by position; therefore, the row numbers for dependent 

variables do not have to be saved in the Module Frame. The structure of a Module Frame is 

shown in Fig. 8. 

Pointer to previous Module Frame (PMF) 

Pointer to next Module Frame (NMF) 

Derivative values (output by input) 

Input Variable Row Numbers 

Fig. 8. Structure of Module Frames with input variable row numbers only. 
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The Module Frames for a program contain all the information necessary to propagate 

derivatives by either forward or reverse mode. There is flexibility in how to process a Module 

Frame. For the demonstration problem, Module Frames are stored in memory until the program 

is finished, and then the derivatives for the results of interest with respect to  parameters are 

calculated. However, it should be possible to output the Module Frames to disk or to pipe them 

to another process. When a module is defined as a sequence of modules, then the Module 

Frames for the sequence can be resolved to a single Module Frame by forward or reverse mode 

of automatic differentiation. 

The amount of savings in terms of execution time and memory requirements will depend 

on the application. For MDT to be effective, the size of the Module Frames must be small 

compared with the size of the Statement Frames. In other words, the number of variables on 

the links between modules must be kept at a minimum. For a program that could be 
represented as a sequence of modules, a significant reduction in storage could be realized with 

skillful implementation of MDT. 

5. APPZJCATION OF MDT USING THE GRESS GENSUB OPTION 

An automated implementation of MDT would probably identify dependent and 

independent variables from argument lists and common blocks. GENSUB provides a mechanism 

by which MDT can be tested; however, identification of input and output variables to a module, 

as well as common block variables, must be  made by the user through the insertion of subroutine 

calls to the GRESS run-time library. This section describes the application of MDT to a 
demonstration program. Results are presented and discussed. 

If derivatives are to be calculated with the GENSUB option, independent variables must 

be declared at the beginning of the section of code being processed. Independent variables must 

have been assigned values before the section of code through which derivatives are to  be 

propagated is executed. For example, if GENSUB is used to calculate the derivatives of the 

results from a subroutine with respect to the REAL variables provided as arguments into the 

subroutine, those arguments will have to be identified as independent variables on entry to the 

subroutine. 

A run-time routine is also used to identify dependent variables. Dependent variables can 

be any floating-point variable calculated in the subroutine or section of code through which the 

derivatives are propagated. 

The user must supply a two-dimensional, single-precision array for storing the derivatives. 

The array should be dimension N by M, where N is the number of dependent variables, and M 

is the number of independent variables declared in the subsection of the program. At the end 
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of the subsection (e.g., function or subroutine) being processed with the GENSUB option, the 

user should insert a call to a chain routine with the result array as an argument. The chain 

routine will apply the chain rule in either forward or reverse mode to solve for the derivatives 

of the dependent variables with respect to the independent variables. The derivatives will be 

returned to the calling program in the array provided by the user. 

By default, the GENSUB option uses dynamic allocation. Depending on the application, 

the operating system, and the computer resources available, pre-allocating memory may be more 

efficient. The first time a section of code is processed, the chain routines provide information 

about memory usage. This information can be used in subsequent executions to specify or 

estimate the amount of memory to pre-allocate. GRESS routines are available for pre-allocating 

memory. Upon return from the chain routines the memory allocated for storing and propagating 

derivatives is released. 

To demonstrate MDT, a sample problem with a main program and two subroutines was 

selected. Each subroutinc is called per iteration in the main program. The number of iterations 

can be varied. Four parameters and one dependent variable are retained after each iteration. 

Three methods wcre used to process the sample problem: (1) the GRESS ADGEN option, used 

to implement reverse mode on the entire program; (2) the GENSUB option, treating each 

iteration as a module; and (3) the GENSUB option, treating each subroutine as a module. The 

sample problem selected is the test program provided on the GRESS distribution diskette. Of 

importance in this paper is that there are two subroutines and no global variables. Shown in 

Fig. 9 is a plot of the maximum amount of memory required to store derivatives using each 

method as a function of the number of iterations. Method 1 is provided €or comparison because 

ADGEN requires the accumulation of derivatives for every arithmetic assignment statement. 

300 

250 

Memory 
(K-bytes) 200 

150 

100 

50 

, 
/ , , 

/ 

Method 1 ' , 
/ 

0 , 
/ , ,- , 

/ , 
/ , , , 

1 10 20 30 
Number of Iterations 

Fig. 9. Memory required to store derivatives using MDT vs reverse mode. 
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The results clearly demonstrate the fundamental problem with the reverse mode of 

automatic differentiation; that is, the memory required to store derivatives is proportional to 

execution time. Interestingly, Method 3 also shows a linear growth, though not as steep as 
Method 1. For this application, as the number of iterations increases, Method 2 would be the 

most feasible in terms of memory requirements. Memory requiremcnt using Method 2 increases 

by 52 bytes per iteration. With an iterative code using Method 2, the expected increase per 

iteration would be the size of the Module Frame used to link each iteration. 

The results in Fig. 9 demonstrate that MDT is both practical and feasible. Though the 

sample problem is very limited in that it does not include common blocks and does require hand 

intervention in identifying modules, the results are very encouraging. Automating the procedure 

so that common block variables and variables on argument lists are automatically included as 

dependent or independent variables is conceptually straightforward. However, having the 

flexibility of allowing the user to identify modules is also desirable. 

The conclusion that Method 2 would be best can only be made for this application. The 

comparison between two different implementations of MDT raises the question as to whether 

it would be viable to automatically process a code to determine which method would be most 

appropriate. Much of the information required may not be available until execution of the 

model. It may be more feasible to develop tools to enable the user to implement MDT in a 

semi-automated fashion. 

6. CONCLUSIONS AND RECOMMEMlATIONS 

As implemented using the GRESS GENSUB option, MDT can significantly reduce the 

memory required to compute derivatives in a complex FORTRAN model, thus extending the size 

of problem to which the reverse mode can be applied. MDT provides a compromise between 

the forward mode with its computational limitations and the reverse mode with its excessive 

memory requirements. 

The capability of automatically identiEjing modules and dependent and independent 

variables should be implemented; however, the flexibility of allowing the user to define modules 

and variables should be maintained. 

The GENSUB option is a valuable addition to GRESS in that it allows the processing 

of individual program modules, as well as the testing of MDT. By using GENSUB it is possible 

to implement MDT in an existing code on a module-by-module basis or during the development 

of a new code. 
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Further investigation is required to determine to what level MDT should be automated. 

It is recommended that MDT be applied to a large-scale application. The results from such an 

application would provide invaluable information for future development and applications. 
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APPENDIX A 

GENSUB SAMPLE PROBLEM 

The sample problem called j1a.f provided with the GRESS distribution diskette was 

selected for the examples in this paper. This sample program was used to obtain the results 

shown in Fig. 9 for Method 1. The sample program was modified for implementation with the 

gensub option for Methods 2 and 3. Calls to library routines to identify local and global variables 

were inserted. A call to a routine to calculate the derivative of the final result with respect to 

the input parameters was also inserted. Below is a listing of the program prepared for Method 

2. Directives to the SYMG precompiler and calls to GRESS library routines are shown in bold. 

*gensub 
C 
C 
C 
C 
C 
C 
C 

C 

C 

SYMG/GRESS SAMPLE PROBLEM B.1.1 

Purpose: To test single precision real number mathematical 
operations supported by the GRESS run-time library. 
Comments denote operation code(s) that are tested 
in the next line of code. 

DIMENSION X(4),F(4,4,4) 
imalloc =O 

PRINT*,’** GRESS SAMPLE PROBLEM B.l.l **’ 
PRINT*,’* *’ 
PRINT*,’* PLEASE ENTER: *’ 
PRINT*,’* 1.3 3.0 4.0 4.5 *’ 
READ(5,*) (X(I),I= 1,4) 

C Declare X array as global independent variables (locpgg) 
C 

do 99 i=1,4 
call ~ocpa(x(i)) 

99 continue 
PRINT*,’X(I),I=1,4)’,X 
LOOP1 = 4 

C 
C lsumo specifies the number of iterations 
C 

print *, ’ enter is umo’ 
read(5, *)lsumo 

print*,’ lsumo =’,lsumo 
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C 
C TEST OPCODE # 2 , 4  
C 

D = 0.0 
DO 1 I = 1,LSUMO 

C 
C DECLARE D and array x to be local independent variables 
C (i.e., input to module) 
C 

call g~nap(x;4)  
IF(LGT.l) call genpxx(d) 

C 
C After first time through, pre-allocate memory 
C 

if(imalloc.ne.0) call allocgg(imalloc,icalloc) 
CALL SUBl(I,A,B,X) 
CALL SuB2(I,F,X,LOOPl) 
Fs = 0.0 
DO 2 J = 1,LOOPl 
DO 2 K = 1,LOOPl 
DO 2 L = 1,LOOPl 

C 
C TEST OPCODE # 18 
C 

FS = FS + F(L,KJ) 

BFS = B + FS 
D = D + B F S  

2 CONTINUE 

C 
C DECLARE D to be a dependent variable to keep 
C 

C 
C Create a module link 
C 

C 
C Record memory requirements. Imalloc is memory in bytes. 
C 
C 

lo00 format(lx,2ilO) 
1 CONTINUE 

9 FORMAT(1H ,'D',lPE16.8) 

call genresxx(d) 

call chainlink(dx,imalloc,id~) 

Icalloc is memory in words preset to zero. 

write(60,1000)imalloc,icalloc 

WRITE(6,9) D 

C 
C DECLARE D to be a global dependent variable (response) 
C 



call potrgg@) 
C 
C Solve for derivatives of D with respect to elements of x 
C and return the values in DX array. 
C 

C A I L  soIvgg(dx) 
print *,' dx = ',(&(i),i=l,4) 
STOP 
END 
SUBROUTINE SUBl(I,A,B,X) 
DIMENSION X(4) 

C 
C TEST OPCODE # 24,27 
C 

Fx = X(l)/X(2) + X(3)*X(4) 
RA" = 0.0 
CALL GETRAN(RA") 
A = R A " * F X  

C 
C TEST OPCODE # 42, 39,43,40 
C 

C 
C TEST OPCODE # 41,38 
C 

C 
C TEST OPCODE # 45,44 
C 

B = ATAN(ABS(A/(A+3.1))) - SIN(SQRT(M(4))) 

C = ALOG(ABS(B)) + EXP(B/(B+2.5)) 

B = A*B/C + ALOGlO(ABS((C+A)/B)) + COS(ABS(C)/C**2) 
c 
C TEST OPCODE # 34,33 
C 

B = A**2/ABS(B)**1.02 * B 
RETURN 
END 
SUBROUTINE SUB2(I,F,X,LOOPl) 
DIMENSION X(4),F(4,4,4) 
DO 1 I1 = 1,LOOPl 
DO 1 J = 1,LOOPl 
DO 1 K = 1,LOOPl 
RA" = 0.0 
CALL GETRAN(R.4") 
FXR = X(3)**2/COS(RANN**2) - SQRT(RA"*X(4)*X(2)) 

C 
C TEST OPCODE # 46 
C 

FXR = FXR*X(4) +- MAX(X(l),X(2),X(3),X(4)) 
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C 
C TEST OPCODE # 47 
C 

C 
C TEST OPCODE # 10, 55,54 
C 

FXR = FXR - MIN(X(l),X(2),X(3),X(4)) 

FXR = m * FLOAT(MINO(K,J,II))/FLOAT(MAXO(K,J,IT)) 
FXR = FXR*X( l )*X( l )*RA”*RN 
F(K,J,II) = X(l )**RA”  / EXP(RA”) + FXR*EXP(2.001*RA”) 

1 CONTINUE 
RETURN 
END 
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APPENDIX 3 

NEW GRESS RUN-TIME LIBRARY ROUTINES 

Shown in Table B.1 are new GRESS run-time library routines that were added to test 

MDT. These routines have only undergone limited testing. Run-time library routines are used 

to  control the application of the enhanced code. The following pages provide a description of 

each run-time library function. The format is one run-time library function per page. These 

routines are in addition to routines described in ref. 3. 

Table B.1. New GRESS run-time library routines for the GENSUB option 

Name Purpose 
LOCPGG 
CHAINLINK Creates a Module Frame 
POTRGG 
SOLVGG 

Defines a global independent variable 

Defines a global dependent variable 
Solves derivatives in Module Frames 
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GENSUB Library Routine 

Name: CHAINLINK( DERIVATIVE,MEM,ZMEM) 

Function: To create a Module Frame 

Arguments: 
(1) DERIVATIVE - array to contain derivatives 
(2) MEM - amount of memory used in bytes 

(3) ZMEM - amount of memory preset to zero used in words 

Argument type: 

(1) A two-dimensional REAL array 
(2) INTEGER 
(3) INTEGER 

Comment: CHAINLINK will apply the chain rule in either forward or reverse (adjoint) mode, 
depending on whether there are more local responses or more local parameters. 

How to use it: Insert CALL CHAINLINK at the end of the section identified as a module. The 

derivatives of the responses declared using GENRESXX with respect to parameters 
declared using GENPXX, GENAPXX, or GENDPXX for the module will be calculated, 
and a Module Frame will be created. DERIVATIVE must be a two-dimensional array, 
with the first dimension being the number of local dependent variables (responses) and 
the second dimension being the number of local independent variables (parameters). 
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GENSUB Libraxy Routine 

Name: LOCPGC(VAR) 

Function: To declare VAR to be a global independent variable 

Arguments: 
(1) VAR - variable to be declared a global parameter 

Argument type: 

(1) R J 5 . a  

Wow to use it: Insert CALL LOCPGG after the variable has been initialized or defined. Parameters 
for a GENSUB application must be independent of the section of enhanced code 
through which derivatives are to be propagated. That means that the call to LOCPGG 
must occur upon entering the subprogram or section of code that has been enhanced. 
Also, parameters that appear on the left of assignment statements will automatically be 

redefined as variables; therefore, the assignment statement that defines the parameter 
must not be part of the enhanced code. 

Example: 

(1) Declare Y to be a global parameter for a GENSUB application. 

*gensub 
SUBROUTINE ALPHA(Y,R) 
CALL LOCPGGO 
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GENSUB Library Routine 

Name: POTRGG(VAR) 

Function: To declare VAR to be a global dependent variable (response) 

Arguments: 
(1) VAR - variable to be declared a global response 

Argument type: 

(1) REAL 

How to use it: Insert CALL POTRGG after the variable has been defined. Responses for a GENSUB 
application should be dependent on the section of enhanced code through which 
derivatives are to be propagated. 

Example: 

(1) Declare Y to be a global response for a GENSUB application. 

*gensub 
SUBROUTINE ALPHA(Y,R) 

Y = B*R**2 
CALL POTRGG(Y) 
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GENSUB Library Routine 

Name: SOLVGG(DER1VATIVE) 

Function: To calculate the derivatives for a GENSUB application by applying the chain rule in 
reverse mode (adjoint mode) to Module Frames. 

Arguments: 
(1) DERIVATIVE - array to contain derivatives 

Argument type: 
(1) A two-dimensional REAL array 

How to use it: Insert CALL SOLVGG at the end of the section of enhanced code through which 
derivatives have been propagated. The derivatives of the responses declared using 
POTlXGG with respect to parameters declared using LOCPGG for the subsection of 

code enhanced for GENSUB will be calculated and returned in the array 
DERIVATIVE. DERIVATIVE must be a two-dimensional array with the first 
dimension being the number of dependent variables (global responses) and the second 
dimension being the number of independent variables (global parameters). A one- 
dimensional array is sufficient if there is only one dependent variable or one parameter. 
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