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COMMUNICATION PERFORMANCE OF THE INTEL 
TOUCHSTONE DELTA MESH 

Thomas H. Dunigan 

Abstract 

The communication performance of the i860-based Intel DELTA mesh 
supercomputer is compared with the Intel iPSC/860 hypercube and the 
Ncube 6400 hypercube. Single and multiple hop communicationbandwidth 
and latencies are measured. Concurrent communication speeds arid speed 
under network load are also measured. File 1/0 performance of the mesh- 
attached Concurrent File System is measured. 

Keywords: mesh communication, hypercube communication. 
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1. Introduction 

In conjunction with a consortium of institutions led by Cal Tech, Intel has de- 

veloped a massively parallel, distributed memory parallel processor called the 
Touchstone DELTA system. The DELTA processors are interconnected by a 

mesh, rather than the hypercube topology used in Intel’s earlier parallel systems 

(iPSC/l, iPSC/2, and iPSC/860). The Intel i860 processor is used as the comput- 

ing element in the DELTA, the same processor used in the iPSC/860 hypercube. 
This report describes the DELTA system and contrasts its performance with the 

iI’SC/S60 hypercube and the Ncube 6400 hypercube. 
The DELTA project is a prototype to demonstrate that a mesh topology 

using byte-wide communication channels is a more cost-effective utilization of 

“communication wires” than the bit-wide hypercube topology. That is, given 

a fixed number of wires, can a more effective parallel processor be constructed 

using more wires among fewer adjacent processors versus using those wires to 
provide more direct connectivity? Since the DELTA and iPSC/860 use the same 

processor, measuring and comparing communication performance bet ween these 

two parallel processors should provide some answers. 
The mesh has some potential advantages over a hypercube topology. Though 

both topologies are extensible, in practice? commercial hypercubes have a fixed 

maximum dimension. For example, the largest iYSC/860 is seven dirnensions or 
128 processors. Hypercubes must be expanded in powers of two, which is often 

prohibitively expensive. Meshes can be expanded at linear costs by adding an 

additional row or column. Of course, the hypercube topology has advantages as 

well. The maximum distance between two processors in an n processor system 

is only log2n for a hypercube, compared with Jn for the mesh. The lower con- 

nectivity of the mesh may lead to communication “hot spots” in the mesh or to 
slower aggregate communication operations such as barriers. 

In the following section, the hardware specifications of the DELTA mesh are 

described. In section 3, the corrimunication performance of the mesh is dcscribed 
and contrasted with hypercube communication performance. In section 4, the 

performance of the attached file system is measured. Section 5 calculates some 

communication rnetrics and contrasts the performance of two parallel applications 

on the mesh and on hypercubes. 

2. DELTA configuration 

The Intel Touchstone DELTA system is a mesh-connected parallel processor, 
consisting of 528 is60 compute nodes, 32 50386 I/O nodes, two 80386 network 
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interface nodes, six services nodes, and two tape nodes [5]. Each compute node 

has 16 million bytes of memory and is connected to a Mesh Routing Chip (MRC) 

through a Mesh Interface Module (MIM). Each MRC chaiinel is 8-bits wide and 

has a bandwidth of 65 million bytes/second (MB/s), but the FIFO's on the MIM 
have only a 26.7 MB/s data rate (Figure 2.1). (As of August, 1991, the pcak 
data rate of the communication system was limited to 22 MB/s [6].) The largest 
mesh available to an application is 16 x 32. 

?--- 
Ethernet 

Figure 2,1: DELTA mesh and nodes. 

The prograniming environmerit, attached file system (Concurrent File Sys- 

tem, CFS), and network interface nodes are the same as that used on the Intel 

iPSC/S60 [3]. At  the time of the tests, the DELTA operating system was NX 

3.3, X012 tmnsmittal. The computational performance of a single $60 node is 

the same as the iPSC/860 node performance reported in [3]. The main difference 

between the 1)XCLTA and iPSC/860 is the number of nodes, 512 versus 128, and 
the architecture and speed of the communications. The iPSC/860 has bit-serial 

channels with a peak data rate of 2.8 MB/s connected in a hypercube network. 
Thus the iPSC/860 has more but slower channels than the DELTA. 

For comparison, the following sections include performance data from the 
iPSC/860 and the Ncube 6400 hypercubes. The hypercube configurations and 
details of the benchmarks are described in [3]. 
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3. Communication Performance 

In this section, we analyze the communication performance of the DELTA mesh, 
first looking at adjacent node performance, then at communication to more dis- 

tant nodes. A simple echo test is used, where a message is sent and echoed back 
by the receiver. The sender measures the round-trip time €or 1000 iterations. Ad- 
ditional tests are performed with an artificial load on the communication channel 

(contention) and with multiple senders (concurrency). 

3.1. Node- t o-node comrnunicat ion 

Figure 3.1 shows the data rate for two adjacent nodes echoing messages of various 
message lengths. The data rate increases linearly with message sizes from 8 to 
8192 bytes, with the DELTA reaching a peak of about 13.1 MB/s €or a message 

size of 100,000 bytes. For large message sizes, the data rate is over a factor 
of four greater than the iPSC/860 data rate. Also shown in the figure are the 
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Figure 3.1: Echo test one- and six-hop data rates. 

data rates for two non-adjacent nodes in a 64-node ensemble, where the distance 
between the two nodes is 16 hops for an 8 x 8 mesh and 6 hops for a dimension-6 

hypercube. The multi-hop data rates for the DELTA and Ncube are nearly the 
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same as their respective one-hop rates. ('l'he discontinuities in the Intel data 
rates will be explained later.) 

The extra time required for a multi-hop message is more clearly seen if we look 
at the latency for small messages (Figure 3.2). Though the bandwidth between 
nodes has increased on the DELTA in comparison to the iPSC/860, the latency 
has remained about the same. The latency is dominated by housekeeping chores 

(argument checking, context switch on interrupt, etc.) on the i860 on both the 

sending and receiving nodes. In a separate study ([2]), the time to handlc the 

time-slice interrupt on the iPSC/860 was about 50 microseconds, which suggests 
that interrupt context switch overhead could be the dominant factor in message 
latency. 

I I__..- B 

30Q 1 _-.- 5 I, 

20 40 60 80 100 120 

Figure 3.2: Echo test message latency. 
message size (bytes) 

For the hypercubes and the mesh, communication time, T ,  grows linearly with 

the size of the message ( N ) .  T is comprised of a startup time,.cr, transport time 
( p )  proportional to N ,  and a per-hop delay, y. 

Using a linear least-squares fit to our measured communication times for various 
message sizes and hops, we can estimate the cornmunication coefficients (Table 
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DELTA 
Startup (CY) 72 
Bvte transfer (f?) 0.08 

3.1). 

iPSC/S60 N6400 

136(75) 154 
0.4 0.6 

I Coefficients of Communication 

Table 3.1: Least-squares estimates of communication coefficients. 

Though communication time is on the average linear, Figures 3.1 and 3.2 
illustrate some discontinuities in the iPSC/860 and DELTA communication times 

at some specific message sizes. The iPSC/860 uses a buffer-request /reply protocol 

for messages larger than 100 bytes. The DELTA communication protocol breaks 
messages larger than 476 bytes into 476-byte segments, and for messages longer 

than 6 segments, a buffer-request/reply protocol is employed as well. Figure 

3.3 illustrates the DELTA discontinuities in more detail. If the application can 

d*l FORCE-TVPE 

5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 
message size (bytes) 

Figure 3.3: DELTA packet and buffering discontinuities. 

guarantee a receive will be pending, the buffer-request can be eliminated with 

the FORCE-TYPE option. (If a receive is not pending, the message will be lost.) 
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8 
16 

TJsing FORCE.-TYPE, the DELTA data rate reaches 17 Megabytes per second for 
100,000 byte messages. 

Even though the communication performancc of the DELTA is generally bet- 

ter than the iPSC/860, the hypercube topology performs some communication 

primitives faster than the mesh. For example, using Intel’s gsync(), barrier syn- 

chronization time grows with the number of nodes for the mesh, but only as the 

109 of thc number of nodes for the hypercube (Table 3.2). 

microseconds 

109 

473 38 1 375 
923 546 569 

I 

234 I 375 1 

I 

847 I 970 1 
Table 3.2: Barrier syxichronization times. 

3.2. Contentioil 

All of the communication data rates that we have reported have been measured 

on idle systems. In actual applications, other message traffic may compete for 

the communication channels, either from the application itself or from applica- 

tions in other sub-cubes (sub-meshes). Other sub-cubes may need to use another 

sub-cube’s communication channels to reach the host processor, 1/0 processor, 

or other service nodes. The iPSC/860, DELTA, and Ncube 6400 use circuit- 

switching to inanage the communication channels. When a message is to be sent, 

a header packet is sent to reserve the channels required. When this “circuit” is 

established, the message is transmitted, and an end-of-message indicator releases 
the channels. 

A program was developed to measure the effect of contention on the data 
rate of a communication channel. For the hypercubes, the program has node 0 
continuously send messages to nodc 7. The messages froin node 0 to node 7 pass 

through node 1 and node 3. The amount of load (measured as a percentage of 

the total available bandwidth of a single channel) presented by node 0 is varied 
by selecting various messages sizcs. With a communication load from node 0 to 
node 7, node 1 then sends a stream of messages to node 3. Node 3 measures the 
data rate of messages arriving from node 1 under various loads and for various 
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Figure 3.4: Data rates for the DELTA with channel contention. 
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Figure 3.5: Data rates for the iPSC/860 and Ncube 6400 with channel con- 
ten tion. 
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message sizes. For the JIELTA mesh, nodes 1 and 2 communicate in the presence 

of load from nodes 0 and 3 in a 1 x 4 rnesh. The mesh (Figure 3.4) shows little 

effect from contention under the tested loads, whereas both hypercubes (Figure 

3.5)  exhibit the expected behavior, as the load from node 0 to 7 increases, the 
data rate from node 1 to node 3 decreases. The effect of contention can vary 
froiii run to run and can slow down an application. Since thc DELTA mesh 

has fewer channels between nodes than the hypercube architecture, one would 

expect increased contention for the mesh channels. The higher data rates of the 
DELTA rnesh channels will reduce the effect of contention, but communication 

“hot spots” may still develop for some mesh applications. 

3.3. Concurrent Communiicat ion 

Thc message-passing performance of a node may be improved by utilizing more 

than one of its communication channels at the same time. A fan-in test was 

constructed to measure the aggregate data rate of a single node when one or more 
of its nearest neighbors are sending it messages. Figure 3.6 shows the aggregate 
receive data rate for various size messages when 1 , 2 ,  3, and 4 mesh neighbors send 

4 6 8 10 12 
message size (log2 bytes) 

3.6: Aggregate receive data rates for concurrent sends. 

4 6 8 10 12 
message size (log2 bytes) 

3.6: Aggregate receive data rates for concurrent sends. 

concurrently, contrasted with 1, 2, 4, and 6 nearest hypercube neighbors sending 



- 9 -  

concurrently [3]. The iPSC/860 shows only a slight improvement in data rate as 
more neighbors send messages. The DELTA shows improvement for message sizes 

smaller than the 476-byte segment size, but for larger messages, the interleaving 

of segments results in no apparent improvement in data rate. Even though the 

Intel channels for the iPSC/860 and DELTA can operate concurrently, only one 

channel can use the node FIFO at a time, thus limiting the amount of concurrent 

communication to a single nodc. In contrast, the data rate measured by the 

receiving Ncube 6400 node increases markedly as additional nearest neighbors 

transmit to it concurrently [3]. 
In summary, the communication performance of the DELTA mesh provides 

fewer but higher bandwidth channels between adjacent nodes than the iPSC/860 
hypercube. Both Intel communications systems have about the same latency 

for small messages, but the wider mesh channels provide nearly six times the 

bandwidth. The high bandwidth and fast routing of the DELTA rnesh further 

help reduce contention. Although therc are more hops in a mesh than for a 

hypercube with the same number of nodes, the multi-hop penalty on thc DELTA 
mesh is much smaller than that of the iPSC/860. So small, in fact, an application 

can treat the mesh nodes as if they were all "adjacent" nodes. 

4. File System Performance 

The DELTA system provides 32 1/0 nodes supporting the Concurrent File Sys- 

tem (CFS). Files are striped across the drives, under the control of the user. 

The 1/0 nodes are directly connected to the mesh, but otherwise thc hardware 

and software is the same as the iPSC/860 CFS. Figure 4.1 compares the read 

throughput of thc T)EL’I’A CFS with earlier iPSC/SSO results [3]. The iPSC/860 
configuration had only 10 1/0 nodes. As the figure illustrates, the CFS perfor- 

mance for the DELTA when using 10 or less 1/0 nodcs differs little from the 

iYSC/860 performancc. Even though the DELTA communication is faster, the 

communication rate from the compute nodes to the 1/0 nodes is only a small 

percent of the total T/O pcrformance data rate (which includes disk latency, SCSI 
bus data rate, and file-system software overhead). Using all 32 1/0 nodes, the 

aggregate date rate for 32 compute nodes each reading their own 16 megabyte 
files is 11 MB/s. For both the iPSC/SSO and DELTA, throughput decreases for 
this simple read test when the number of computc nodes exceeds the number of 

I/O nodes, mainly because of thrashing within the 1/0 node buffers. 
DELTA provides two 80386-based network nodes, each with 4 megabytes of 

memory and an Ethernet interface; the same hardware/software that is used on 
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Figure 4.1: CFS’ read throughput. 

the iPSC/860 network nodes, The TCP data rate for one of these Ethernet 
nodes is roughly the same as for the iPSC/860 [3], ranging from 40 KB/s (8-byte 
message) to 304 KB/s (4096-byte messages). As with CFS, the mesh data rate 

is only a small factor in the Ethernet date rates. 

5.  Summary 

The Intel DELTA mesh provides improved communication performance over the 

Intel iI’SC/860 hypercube. The DELI’A mesh provides wider and faster commu- 
nication channels between nodes, plus faster routing hardware, but the reduced 

connectivity of the mesh slows some communication primitives such as barriers. 
The message startup times are nearly identical, being dominated by software 

overhead and the speed of the i860. Table 5.1 summarizes the communication 
and computational performance of the DELTA machine. The data rates repre- 
sent the 8192-byte transfer speeds, and the megaflops rate is calculated from a 

five operation expression [3]. The 8-byte transfer time is based on the 8-byte, 
one-hop, echo times. The structure of a parallel algorithm will be dictated by the 

amount of memory available on a node, the host-to-node communication speed, 

and the ratio of communication speed to computation speed. As can be seen from 



- 11 - 

DELTA 

Data rate (MB/s) 11.9 
Megaflops 18 
8-byte transfer time (ps) 62 
8-byte multiply time (ps) 0.08 
Comm. / Comp. 775 

the table, the DELTA and iPSC/S60 have roughly equivalent communication-to- 
computation ratios. (The ratio was calculated using the 8-byte transfer and 

multiply times.) For larger messages, the DELTA would show a more balanced 
ratio than the iPSC/860. 

iPSC/860 N6400 

2.6 1.6 
18 2.5 
80 161 

0.08 1.5 
1000 107 

To compare the performance of the DELTA machine to the earlier machines, 

in an application involving both communication and computatiou, we solved 

a 1000 x 1000 linear system of equations (C double precision) using Cholesky 
factorization on 16 nodes. The DELTA ran at 30.1 Megaflops compared with 

22.2 Megaflops from the iPSC/860 (the Ncube 6400 was 5.3 Megaflops). These 

results are consistent with the LINPACK results reported in [l]. Thc LTNPACK 

peak performance (measured by solving the largest linear system the memory 
can support) for 128 nodes was 3.6 Gigaflops for the DELTA (16 Megabytes of 

memory per node) versus 1.9 Gigaflops for the iPSC/860 (8 Megabytes) and 0.24 
Megaflops for the Ncube 6400 (4 Megabytes) 111. Using all available nodes, the 
peak LINPACK was 13.9 Gigaflops for the 512-node DELTA versus 1.9 Gigaflops 
for the 1024-node Ncube. (The maximum number of nodes for an iPSC/SSO is 

128.) 

To measure the performance of all of the DELTA subsystems (computation, 

communication, and I/O), we ran the FORTRAN SLALOM benchmark (version 

1) [4] on a 64-node mesh. SLALOM on the DELTA ran at 205 Megaflops on 

a 64-node mesh, as compared with 135 Megaflops for a 64-node iPSC/860 and 

16 Megaflops for a 64-node Ncube 6400. Sincc the compute nodes are identical 

on the iPSC/860 and the DEJJTA, the improved performance results from the 

faster communications. The contribution of a larger CFS Rad little effect on thc 
SLALOM performance. So the faster mesh communication of the DELTA results 

in improved application performance. 
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