
3 4456 0353251 3

. , .l_--l

c. or per:: .
& c,. ,̂ ' - - - I tu,- -. irlmy!y f t5 end

7s of auil;ois

a

ORNL/TM-12032

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A FORTRAN 90 CODE FOR MAGNETOHYDRODYNAMICS
PART I: BANDED CONVOLUTION

David W. Walker

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

Date Published: March 1992

Research sponsored by the Office of Fusion Energy, U. S. Depart-
ment of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05-840R21400

3 4Y5b 035325L 3

Contents

. 1 Introduction 1
2 Banded Convolution . 1
3 Fortran 90 Implementation . 5
4 Banded Convolution on the CM-2 . 10

6 Acknowledgements . 16
. 5 Conclusions 15

7 References 17 .

... . 111 .

A FORTRAN 90 CODE FOR MAGNETOHYDRODYNAMICS
PART I BANDED CONVOLUTION

David W. Walker

Abstract

This report describes progress in developing a Fortran 90 version of the KITE code
for studying plasma instabilities in Tokamaks. In particular, the evaluation of convolution
terms appearing in the numerical solution is discussed, and timing results are presented
for runs performed on an 8k processor Connection Machine (CM-2). Estimates of the
performance on a full-size 64k CM-2 are given, and range between 100 and 200 Mflops.
The advantages of having a Fortran 90 version of the KITE code are stressed, and the
future use of such a code on the newly announced CM5 and Paragon computers, from
Thinking Machines Corporation and Intel, is considered.

- v -

1. Introduction

This is the first in a series of reports describing progress towards a Fortran 90 implementation
of the KITE code, and similar spectra1 codes. The KITE code uses a magnetohydrodynamic
(MHD) approach to study turbulence and transport in Tokamak plasmas, and has been used,
for example, in investigations of tearing mode turbulence [4], and the dynamo effect in reversed-
field pinch configurations [5]. A finite difference grid is used in the radial direction, and a Fourier
series expansion in the poloidal and toroidal directions. Details of the equations and algorithms
are given elsewhere ([3],[4]), and so will not be repeated here. The important point to note is
that the two major computational tasks are,

0 The evaluation of 2-D convolutions at each radial grid point. These arise from the Fourier
representation of nonlinear terms in the governing PDEs.

0 The solution of a block tridiagonal linear system for each mode included in the compu-
tation. These systems are due to implicit terms that arise in the radial discretization,
and, in the models run so far, the size of the blocks ranges from 1 to 7, depending on the
complexity of the model physics.

In this report we shall deal with the Fortran 90 implementation of the 2-D convolutions. Subse-
quent reports will consider the solution of the block tridiagonal systems, and the implementation
of a complete Fortran 90 version of the KITE code.

2. Banded Convolution

For the types of problem being studied only (m, n) modes within a narrow helicity band are of
interest, as shown in Fig. 1 in which the crosses indicate which modes are actually included in
the computation. We shall refer t o the convolutions performed as “banded convolutions”.

An alternative approach to implementing spectral codes like KITE is to regard the problem
as a dense convolution and use fast Fourier transform methods. This method uses more memory
than the banded convolution method, but requires less data movement, and may be the best
approach on machines for which data movement is costly. In addition, direct convolution has
a smaller operation count than the FFT method only for a sufficiently narrow band of modes.
The FFT approach is being investigated by Kerbel [6] on the Connection Machine CM-2, for
which optimized FFT routines already exist.

In the Fortran 77 version of the KITE code the modes of interest are labeled ! = 1,2 , . . . , .ernax.
Indirection arrays are initialized at the start of the KITE code to store which modal interactions
contribute to a given mode. Thus the convolution of two arrays C and Ii for mode P = (m, n)
is written in terms of index arrays A’: and as follows,

where P (t) is the set of modes contributing to mode C, and S@) is either -1, 0, or 1, depending
on what types of function the arrays being convolved represent. For clarity we shall assume
that Si(!’) = 1 for the rest of this report.

Although Fortran 90 permits the use of vector subscripts to perform the indirect indexing in
Eq. (I) , the use of such constructs generally results in ineficient code on advanced architecture

90

80

70

60

50

40

30

20

n

- 2 -

I I I I 1 I I I I I I I

10

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
Figure 1. (.m, n) modes are indicated by crosses.

machines, since it inhibits vectorization, results in a high cache miss ratio, and/or requires
irregular interprocessor communication. In designing a Fortran 90 version of the KITE code
we, therefore, avoid the use of indirect indexing. As we shall see, indirect indexing is “overkill”
for the problem at hand since the problem does involve a certain regularity of structure. The
use of indirect indexing only makes sense in genuinely sparse or irregular problems.

The banded convolutions that are evaluated in the KITE code at each radial grid point are
actually of the form,

F (m , n) = { :(,I .) + F2(m> .) for (m , n) # (0,O) E S
for (m ,n) = (0,O)

where S is the set of modes used in the simulation, and,

where n*[m’) = max(l,nl(m’)). In Eq. (3) we assume that the index n runs from nl(rn) to
nz(m) for each m, and that G(m, n) = H(m, n) = 0 for (m , n) not in S.

The Fortran 90 language is designed for the convenient and efficient manipulation of arrays

- 3 -

(see, for example, [l]). We, therefore, must reformulate the convolution in Eq. (3) in terms of
elementwise operations between conformal arrays without any indirect indexing. With this aim
in mind, we next rewrite Fl(m, n) as,

where,

N1 = n2(m) - n l (m)) + I (5)

In Eq. (4), nl(m’) has been added to the n’ index because G(m’,n’) = H(m‘,n‘) = 0 for
n’ < nl(m‘). Reformulating the expression for F2(rn, n) we have,

G(m’, n’ + nl(m’)) H (m - m‘, n - n’ - nl(m’))] (6)
- [G(O, n‘) H (m , n - n’) + G(m, n - n’) . H (0 , n’)]

[G(nt’,O) . H(m - m’, n) + G(m - m’, r t) . H(m’, O)]

ra‘EN(m,n)

-2
rn‘ E M (m)

-G(O, 0) . H(m, n) - G(m, n) . H(0,O)

where we define the following index sets,

(7)
M (m) = {m’ I (m ’ , O) E S a n d m ’ E (l , m - - l) }

N(m, n) = { n’ I (0, n’) E S and n’ E (1, n - nl(m)) }

where (;t.,y> denotes the set of integers in the range z to y, inclusive.
For dense convolution of M x N arrays, nl(m) = 0 and N1 = N so M (m) = (1, m - l),

and N(m, n) = (1, n) . For the types of banded convolutions that are of interest here we shall
assume that the only mode for which either rn or n is zero is the (0,O) mode. Under this
assumption M (m) and N(m,n) are empty sets for m,n > 1. The distribution of modes in
Fig. 1 is of this type. With this assumption we may write,

- 4 -

-G(O, 0) . H (m , n) - G(m, ? E) . H(0,O)

Now we have transformed the banded convolution in Eq. (3) into a dense convolution in
Eqs. (4) and (8), and we can further modify the convolution so that it involves only dense
arrays as follows,

where,

g(m,n) = G(m, 12 + nl(m)) h(m, a) = N(m, n + ni(m)) (10)

with similar relationships existing between f 1 and F1, and between f 2 and F2. Finally, for
notational convenience, we introduce two offsets,

h (m , m’) = n1(ni) + n1(m‘) - n1(m + m’)
kz(m, m’) = n1(m) - a1(m’) --- n1(m - m’)

We also take into account the symmetry between g and h in the expressions for f 1 and fi, and
write the convolution as,

for m = 1, . . . , M - 1, and n = 1,. . . , N1 - 1 , where,

Eqs. (13) and (14) recast the banded convolution in a form that may be readily implemented
in Fortran 90. It is also possible to express Eqs. (13) and (14) in terms of matrix-vector products,
and this gives some insight into the Fortran 90 implerrientation. Thus, we write,

- 5 -

where,

Ni-1

-q&Jn) = Xrt;,Jn -I- n’) * Yml(nf)

Zr;;,&) = X;,m,(n - n‘) . Yml(n’)

n‘=O

N1-1

n‘=O

and

= z(m + m’, p + h (m , m%, Yrn’(Q) = Y (4 n) (19)

x;,m,(q) = e (m - m‘,q-I-kz(f=,m’)),

With this notation ZA,m, can be expressed as the product of a Hankel matrix, with zeros
below the minor diagonal, and a vector,

] .[1 Z+(O) X+(O) X+(l) ... X + (N 1 - 1)
x+ (1) . . . X+(N1- 1) 0 [zt;)] = [

0 m.r,t’ Y (N 1 - 1) ,n‘ X+(N1-1) 0 ...
77z.m’

Z+(N1 - 1)

(20)
where for notational clarity the subscripts on Z+, X t , X - , and Y have been used to label the
matrices, rather than the matrix elements. Similarly, Z;,ml can be expressed as the product
of a lower-triangular Toeplitz matrix and a vector,

z- (0) x-(0) 0

X-(l) . * .

3. Fortran 90 Implementation

To clarify the basic structure of the Fortran 90 implementation of banded convolution we shall
first consider the simple case in which nl(m) = m. In this case kl(m,m’) = Icz(m,m’) = 0,
and we have,

na‘=O n‘=O

M-1 N1-1

f~21y) (m, n) = z (m - rn’, n - a’) . y (d , ra’) - ~ (0 ~ 0) . y(m, a) (23)
m’=l tz ’=O

From Eqs. (22) and (23) it clear that the Fortran 90 implementation of banded convolution
has a doubly-nested loop structure. On each pass through the loop the elementwise product of
two matrices must be accumulated in a third result matrix. On pass m’, n’ through the loop

- 6 -

one of the product matrices has all elements set to y(ni’, n’). In Fortran 90 such a matrix can
be generated using the SPREAD function, which broadcasts copies of a source array along a
specificd dimension. In evaluating fiz”), the (m, n)th element of the second product matrix
is t (m + m’, n + n’), which can be generated at each pass through the loop by shifting copies
of the convolution array, 2, using the Fortran 90 function EOSHIFT. To find fizvy) we need
simply shift a copy of array t in the opposite direction. It should be noted that the use of the
function EOSIIIFT ensures that the appropriate elements in the shifted product array get set
to zero, as required by the condition G(m,n) = H(nz,n) = 0 for (m ,n) not in S. Thus, the
Fortran 90 implementation of a dense, 2-D convolution can be written as shown in Fig. 2. In
an efficient implementation, the evaluation of f i (21y) and fJZny) may be performed within the
same double loop in order to reduce the number of calls t o the SPREAD function. For clarity
we have assumed in Fig. 2 that separate loops are used. mnmask is a logical array that indicates
which modes are included in the simulation.

fl = 0.0
xsm = x
DO MPRIME=O,M-I

ysm
xshift = xsm

= SPREAD (y(:,HPRIHE,:), DIH=2, NCOPIES=H)

DO NPRIHE=O,Nl-I
yspred = SPREAD (ysm(:,:,NPBIME), DIH=3, NCOPIES=NI)
WHERE (mnmask)

fl = f l + xshift*yspred
END WHERE
xshift = EOSHIFT (x s h i f t , DIH=3, SHIFT=l)

END DO
xsm = EOSHIFT (xsrn, DIM=2, SHIFT=I)
END DO

Figure 2(a). Fortran 90 code to find f i (z ’ y) for banded convolution when nl(m) = m.

It should be noted that in Fig. 2 all arrays are three-dimensional since we must evaluate a
convolution at each radial grid point. Thus, the first array dimension corresponds to the radial
grid point index, j , and the second and third dimensions to the Fourier mode indices, rn and
n, respectively. So, for exa.mple, an array x might be declared as follows;

PARAMETER (JSTAR=128, MSTAR=128. NSTAR=16)
REAL, DIHENSION(0:JSTAR-1,O:NSTAR-1,O:NSTAR-I) : : x

- 7 -

f2 = 0.0
xsm = EOSHIFT (x, DIH=2, SHIFT=-l)
DO HPRIME=I,H-I

ysm
x s h i f t = xsm

= SPREAD (y(:,HPRIHE,:), DIH=2, NCOPIES=H)

DO NPRIHE=O,NI-I
yspred = SPREAD (ysm(:,:,NPRIME), DIM=3, NCOPIES=NI)
WHERE (mnmask)

END WHERE
x s h i f t = EOSHIFT (x s h i f t , DIH=3, SHIFT=-I)

f2 = f2 + xshift*yspred

END DO
xsm = EOSHIFT (xsrn, DIM=2, SHIFT=-l)

END DO
WHERE (mnmask)

END WHERE
f2 = f2 - y*SPREAD (SPREAD (x(:,O,O),DIH=~,NCOPIES=~),DIH=~,NCOPIES~H

Figure 2(b) . Fortran 90 code to find f;’”) for banded convolution when nl(m) = m.

The algorithm for banded convolution shown in Figs. 2(a) and (b) can also be interpreted
in terms of the matrix-vector representation of Eqs. (20) and (2 l) , if these two equations are
rewritten as,

- 8 -

and,

m.mf

Each pass through the inner loop in Fig. 2(a) or (b) evaluates and accumulates one term
on the righthand side of Eq. (24) or (25). It is clear from Eqs. (24) and (25) how the call
to EOSHIFT in the inner loop shifts the XL,m, and Xi,,, vectors in the evaluation of the
vectors Z:,m, and Z;,m,, respectively.

Performing the banded convolution as prescribed by Eqs. (12)--(14) when the offsets k1 and
k2 are nonzero is somewhat more difficult because we need to shift the 3: array by the appropriate
offset before entering the inner loop. Since the offsets may be positive or negative the Fortran
90 function CSHIFT must be used to shift the 2 array by the correct offset in the outer loop,
and to rotate the array in the inner loop. CSHIFT performs these shifts periodically, and so
ensures that we don’t “lose” values that are shifted off the end of an array when applying an
offset, but which must be rotated back into use in the inner loop. The use of CSI-IIFT places
the following constraint on the dimensioning of arrays,

max (nz(rn’) - nl(m’) - kl(rn, m‘)) < N ,

max (n z (n ‘) -nl(rn’)+kz(m,m‘)) < N ,
O< m’ < M -m

l<rn’<m

for all m, where N , correspoiids to NSTAR in the parameter statement above. A check must
be made at the start of the program to ensure that these conditions are satisfied. Since many
convolutions are performed in each time s k p , the overhead in performing this check will be
amortized over the computation.

In order to evaluate the offsets kl(m,rn‘) and k2(rnrm’) the SPREAD and JWSIIIFT
functions must he applied to nl . The Fortran 90 code for performing banded convolution with
nonzero offsets is shown in Figs. 3(a) and (b).

- 9 -

fl = 0.0
nlsh = nl
lshif = lmask
xsrn = x
DO MPRIHE=O,M-l

IF (LDOIT(MPR1ME)) THEN
ysm = SPREAD (y(: ,#PRIME, : 1, DIH=2. HCOPIES=M)
nlsp = SPREAD (nl(:,WPRIHE,:), DIH=2, BCOPIES=M)
Bl = o
WHERE (lshif)

END WHERE
xshift = CSHIFT (xsrn, DIH=3, SHIFT=kl)

kl = nltnlsp-nlsh

DO HPRIME=O,Bl-l
yspred = SPREAD (ysra(:,:,NPRIHE), DIM=3, ICOPIES=Ii)
WHERE (mask)

f 1 = f 1 t xshift*yspred
END YHERE
xshift = CSHIFT (xshift, DIH=3, SHIFT=I)

END DO
END IF
lshif = EOSHIFT (lshif, DIM=2, SHIFT=l)
nlsh = EOSHIFT (nlsh, DIM=2, SHIFT=l)
xsm = EOSHIFT (xsrn, DIM=2, SHIFT=l)

END DO

Figure 3(a). Fortran 90 code to find fi (+”) for banded convolution

In Figs. 3(a) and (b) the one-dimensional logical array LDOIT is set to false if there are no
modes included in the simulation for a particular value of m, and is true otherwise. m a s k

is a logical array that indicates which modes are included in the simulation. The logical array
lmask is the array LDOIT spread over the radial grid point index. The arrays LDOIT and lmask
are needed to handle cases in which no modes are included in the model for certain values of m
between 0 and hf - 1. To ensure that sensible values are assigned to the offsets, kl and k2, the
array lmask must be shifted in the outer loop. The arrays kl, k2, lmask, lshif, nl, nlsp, arid
nish are all twc-dimensional arrays that are dimensioned the same as the lower 2 dimensions
of the three-dimensional arrays x, y, f l q f2, ysm, xsrn, xshif, yspred, and mnmask.

- 10 -

f2 = 0.0
lshif = EOSHIFT (lmask, DIX=2, SHIFT=-1)
nlsh = EOSHIFT (nl, DIX=2, SHIFT=-1)
xsm = EOSHIFT (x, DIM=2, SHIFT--1)
DO MPRI#E=l,X-l

IF (LDOIT(NPRIl4E)) THEN
ysm = SPREAD (y(:,HPRIHE,:), DIH=2, NCOPIES=M)
nlsp = SPREAD (nl(:,HPRIHE,:), DIX=2, NCOPIES=M)
k2 = o
WHERE (lshif)

END WHERE
xshift = CSHIFT (xsm, DIM=3, SHIFT=k2)
DO NPRIXE=O,Nl-l

k2 = nl-nlsp-nlsh

yspred = SPREAD (ysm(:,:,NPRIME), DIM=3, NCOPIES=Nl)
WHERE (numask)

f2 = f2 + xshift*yspred
END WHERE
xshift = CSHIFT (xshift, DIM=3, SHIFT=-1)

END DO
END IF
lshif - EOSHIFT (lshif, DIM=2, SHIFT=-1)
nlsh = EOSHIFT (nlsh, DIH=2, SHIFT=-1)
xsm = EOSHIFT (xsm, DIM=2, SHIFT=-1)

END DO
WHERE (m a s k)

f2 = f2 - y*SPREAD (SPREAD (x (: ,O,O) ,DIM=2,NCOPIES=H) ,DIM=3,NCOPIES=Nl)
END WHERE

Figure 3(b). Fortran 90 code to find fizly) for banded convolution

4. Banded Convolution on the CM-2

When implementing the Fortran 90 code for banded convolution on the Connection Machine
CM-2 additional statements are used to indicate if and how arrays are to be distributed over
the processing elements. By default, each element of a distributed matrix is assigned to a

separate virtual processor (VP). However, by declaring one of the array dimensions to be a
serial dimension we can assign a vector of elements to each VP. For example, the directive,

CHF$ LAYOUT x(,,:SERIAL)

indicates that the array x is decomposed over just its first two dimensions, so the VP set is a 2-D

- 11 -

Loop

Outer

Inner

array, with the VP at location (j , m) containing the vector z(j , m, n) for n = 0 , 1 , . . . , N , - 1.
These directives are interpreted by the CM Fortran compiler, but are regarded as comment
lines by other compilers, so the Connection Machine code can be compiled and run on any
other machine with a Fortran 90 compiler with no modifications to the code. More complete
details of the layout of distributed arrays on the CM-2 are given in the CM Fortran Reference
Manual [SI. In Figs. 2 and 3, the variables in lower case reside on the Connection Machine,
while upper case variables reside on the front end computer.

The Fortran 90 code for banded convolution described in Sec. 3 was run on a CM-2 with
8192 processors for a number of different problem sizes. The problems considered were based
on the (m, n) modes shown in Fig. 1, with the size of the problem being characterized by M ,
the maximum value of m included in the computation. Values of M ranging from 70 to 127
were considered, corresponding to 333 to 783 modes. The number of radial grid points was
held constant at 98, and the maximum number of modes for any given rn was N1 = 8. The 3-D
arrays were dimensioned as in Sec. 3, Le., as 128 x 128 x 16 arrays. Two different data layouts
were investigated. In the first the data are distributed over all three dimensions, so the VP
set is three-dimensional with each VP containing a single matrix element from each distributed
3-D matrix. In the second data layout considered the third dimension, corresponding to the n
index, is declared to be a serial dimension, as in the example LAYOUT directive above. Thus,
the data are distributed over just the radial grid point and m indices, and the VP set has a

two-dimensional structure. The code in all cases was double precision (64 bits), and compiled
with optimization turned on by means of the -0 compiler flag.

In order to optimize the banded convolution code an execution profile was obtained €or the
M = 127 case (783 modes) by inserting calls to the CMF Fortran timing routines in the code.
Results for the code shown in Figs. 3(a) and (b), which will be referred to as “Version 1” of
the code, are given in the columns headed “Vl-2D” arid “Vl-3D” of Table 1. The two cases
correspond to distributing the data over two and three dimensions, respectively.

Task v1-2D V1-3D

SPREAD 3.04 1.98
CSHIFT 14.58 34.03
EOSIiIFT 3.94 2.80

SPREAD 3.68 14.71
Evaluate f i , f2 4.56 4.56
CSIiIFT 3.05 16.96

V2-2D I V2-3D

3.68 14.79
4.56 4.56
3.05 16.97

Table 1. CM times in seconds for major sections of the banded convolution code

The V1-2D and V1-3D execution profiles show that aIi appreciable amount of time is spent
on the CSHIFT calls in the outer loop, namely,

and,

In the V1-2D code these calls account for over 40% of the execution time. These CSHIFT
calls are expensive because the SHIFT argument is an array, and so for each value of rn the
xsm array must be shifted by a different amount. Presumably each time this type of CSIIIFT

xshift = CSHIFT (xsm, D I M = 3 , SHIFT=ki)

xsh i f t = CSHIFT (xsm, D I M = 3 , SHIFT=k2)

- 12 -

is called the maximum and minimum offsets in the array specifying the shift (kl or k2) must
be computed so the appropriate number of shifts can be performed. In a production run of the
KITE code many calls to the coiivolution routine are made, and in each call the following four
quantities remain unchanged;

kf(rn’) = min (kl(rn, r n ’)) ,

k i (r n ’) = min (Rz(rn, rn’)),

ky(rn’) = max (k l (r n , r n ’))

k y (r n ’) = max (kz(rn, m’))
(27) rn rn

m rn

so some of the overhead in the outer loop calls to CSHIFT can be avoided by precomputing
these quantities and storing them in one-dimensional arrays. Then, when evaluating f i (o l y) in
the outer loop, the correct offset can he applied to the x array by first shifting it by ky(m’) in
one direction, and then shifting it by kf(rn’) in the other direction, using a WHERE construct
to assign the appropriate value to the array x s h i f t . In Version 2 of the code, when computing
f i (s ’y) , we replace the evaluation of ki and the call to CSIIIFT in the outer loop by the code
section shown in Fig. 4. In the evaluation of f i z I y) a very similar code is used.

kl = nl i- nisp - nlsp
klsp = SPREAD (ki, DIH=3, NCOPIES=NSTAR)
x s h i f t = xsm

DO K=i,KIU(MPRINE)
WHERE (klsp>O)

x s h i f t = CSHIFT (x s h i f t , DIH=3, SHIFT=l)
kisp = kisp - I

END WHERE
END DO
Do K=~,-KIL(MPRIME)

WHERE (klsp<O)
x s h i f t = CSHIFT (x s h i f t , DIM=3, SHIFT=-l)
k l s p = kisp + 1

END WHERE
END DO

Figure 4. Fortran 90 code to find x s h i f t in the outer loop when evaluating fir'') in Version 2
of the code

Table 1 also gives execution profiles for Version 2 of the code. Comparing Versions 1 and
2 it is clear that by introducing the modification shown in Fig. 4 to eliminate overhead in the
outer loop calls to CSHIFT a significant improvement in performance is achieved. However,
even in the best case (V2-2D) about 80% of the time is spent in moving data by calls to spread
and shift routines. Table 1 also shows that distributing the data over two dimensions is faster
than over three dimensions. This is because calls that spread data over the n index dimension,

- 13 -

V1-2D
17.22117.22
19.61119.61
22.09122.09
24.56124.56
27.04127.04
29.51129.51
31.25131.25

or shift data in this direction, require communication between VPs in the 3-D case, whereas no
communication is necessary in the 2-D case. It is interesting to note that the calls to SPREAD
and EOSBIFT in the outer loop, which move data along the 7n index dimension, actually run
a little faster in the 3-D case than in the 2-D case. This because the V P ratio is higher in
the 3-D case, and so data must be communicated between fewer physical processors than in
the 2-D case. Although the 2-D data decomposition runs faster on an 8k-processor CM-2 for
the problem considered, the 3-D data decomposition should win out on larger machines as it
allows more parallelism to be exploited. There is little point in running the code on more than
16k processors with a 2-D data decomposition, as the VP ratio will be less than 1 and some
PES will be idle. However, for production runs of the KITE code much larger problems will be
considered, so a 2-D decomposition may still be fastest, even on a 64k-processor CM-2.

In Table 2 timings of the banded convolution are given for a number of different problem
sizes. The modes included in the computation are as shown in Fig. 1, with problem size being
determined by the value of M , the cutoff in the rn index. S77 is the number of floating point
operations per radial grid point required to convolve two arrays in the original Fortran 77
version of the KITE code.

V1-3D V2-2D V2-3D

41.36141.36 11.67111.68 31.16131.16
47.96147.96 13.72113.72 37.23137.23
54.22154.22 15.76115.76 42.50142.50
60.49160.49 17.71117.71 47.61147.61
66.61/66.61 19.75119.75 52.90152.99
71.90/71.90 21.99121.99 58.52158.53
73.48173.49 23.43123.43 62.24162.24

Problem Size

M Modes 577

70 333 160524
80 407 243732
90 487 354204

100 567 489912
110 647 652440
120 727 842088
127 783 991080

Table 2. Timing results on an 8k CM-2.

A measure of how effectively the CM-2 is being used is given by the ratio of the number of
floating point operations performed by the sequential code and the CM-2 code. This will be
referred to as the “utilization ratio”, U , and is given by,

where J , x M, x N , is the declared size of the 3-D data arrays, and S ~ O = 3M2Nf is the number
of floating point operations per radial grid point for the Fortran 90 code. The factor of 3 arises
in the expression for S ~ O because fis”) and f$z,y) are evaluated within the same double loop,
which saves one multiplication. If separate loops were used the factor would be 4. In all the
timing runs J , = 128, M, = 128, and N , = 16. A small value of U indicates that the compute
power of the CM-2 is not being used effectively. In Fig. 2 we plot the utilization rate and
speed in Mflops for the problem sizes considered in Table 2 for the V2-2D version of Lhe code.
The Mflops rates, M77 and M ~ o , are computed using the floating point operation count of the
Fortran 77 and Fortran 90 codes, respectively. M77 can be used to compare the performance of
the Fortran 90 code on a computer such as the CM-2, with that of the original Fortran 77 code

- 14 -

14

12

- 10
?+!
3

s 8

v

c
0 m
Lc

2

0

Maximum m

Figure 2. Utilization ratio and Mflops as a function of problem size for V2-2D

on some other machine, such as a workstation or vector supercomputer. The ratio of M77 for
runs using the Fortran 90 and Fortran 77 codes equals the ratio of their respective execution
times. A490 gives the actual execution rate in Megaflops for the Fortran 90 code.

For the problems considered the utilization ratio is always below 12.5%, so that the per-
formance of the CM-2, as indicated by the Mflops rate, is rather poor, reaching only about
M77 = 4 and M ~ o = 13 Mflops for the largest problem considered. The low value of U is
due to the mismatch between the set of radial grid points and modes actually involved in the
computation, and the 3-D arrays used to store these quantities. In Fig. 3 we plot n - nl(rn)
against rn to indicate which modes are involved in the M = 128 problem. In this plot the blank
area represents those array elements not actively involved in the computation at a particular
radial grid point, and thus gives a measure of how much of the CM-2 is being wasted. The
fact that N I / N , = 0.5 means that half the compute power of the CM-2 is wasted because
we are constrained to choose N, = 16 even though N1 = 8. This constraint comes from the
reqiiirement that Eq. (26) be satisfied, and the fact that, array dimensions on the CM-2 must
be an exact power of two. A more carefully designed algorithm may eliminate this constraint,
thereby halving the Chl-2 execution times.

The expected performance in Mflops of the V2-2D code for a problem that fully utilizes the
CM-2 may be estimated as,

so extrapolating from the M = 128 case we get a value of M,,, M 34 Mflops for an 8k CM-2.
This drops to 17 Mflops if the N1/N, = 0.5 constraint applies. Scaling this up to a 64k CM-2,

- 15 -

15 I 1

E
F
v T

c

0
0 1 27

m
Figure 3. Schematic representation of active memory locations at a radial grid point.

we would expect a performance of about 136 Mflops for a problem that fully utilizes the CM-2,
or 272 Mflops if the N l / N t = 0.5 constraint can be eliminated without degrading performance.

It is worthwhile at this point to return to the question of whether direct convolution is faster
than convolution using FFTs. If the evaluation of each FFT butterfly requires 10 floating point
operations, and a real-to-complex FFT is used for the two forward and one inverse transforms
required, then the operation count per radial grid point is approximately,

If M and N are required to be powers of 2 in the F F T version, Le., M = N = M,, then the
F F T method will have a lower operation count than the direct method if,

Thus, if the width of the band is Nl = 4, and M = M,, the direct method has a lower operation
count if M, 2 32. However, if Nl is 8 the direct method only wins if M* 2 16384. Equation
(31) shows how the choice of best algorithm depends sensitively on the width of the band, with
the direct convolution method being appropriate only for very narrow bands of modes.

5 . Conclusions

In comparing the Performance of the Fortran 90 banded convolution code with the original
Fortran 77 version the following factors must be considered;

1.

2.

3.

The movement of data by calls to the SPREAD, CSHIFT, and EOSHIFT functions in
the Fortran 90 code.

The ratio of the number of floating point operations per radial grid point for the Fortran
77 and Fortran 90 codes. The original Fortran 77 code uses indirect indexing, which
results in a lower operation count since the Fortran 90 code is constrained to compute
some modal interactions that are not required.

On some machines, such as the CM-2, grain size constraints may require array dimensions
to be powers of two in the Fortran 90 code.

- 16 -

4. The ability of the codes to take advantage of advanced architectural features, such ils

vector and pipeline units, caching, and massive parallelism.

On multiprocessor systems the spreading and shifting of data may, or may not, result in inter-
processor communication, and the efficiency with which these tasks are performed depends on
the hardware, and the ability of the compiler to exploit it. On the CM-2 we have found it best
to decompose the data over just the radial grid point and m indices, and on the commercial
supercomputers currently available it is probably best to use as large a grain size as possible,
subject to t,he requirement that all processing units have at least some data on which to work.
This choice reflects the fact that data movement is expensive.

The direct convolution method has a lower operation count than the fast Fourier transform
approach only for a suficiently narrow band. However, the FFT convolution method requires
more memory, and this may limit its usefulness on some machines.

On the CM-2 the requirement that array dimensions be powers of two significantly degrades
performance for the problems considered. ‘This problem is exacerbated by the constraint on N ,
imposed by Eq. (26). Future work will look at efficient ways of removing this constraint, and
further tuning the code for the CM-2.

A major advantage of the Fortran 90 code is its ability to make eficient use of the advanced
architectural features of modern supercomputers. The original Fortran 77 code made use of
indirect indexing to reduce the operation count and memory usage, however, this also inhibits
vectorization and results in the inefficient use of cache. In the original code the loop over
radial grid points was made the inner loop in order to increase the vector length, and improve
caching. In a recent MIMD Fortran 77 implementation of the KITE code ([2],[7]), the code
was parallelized by decomposing the data over just the radial grid point index. This approach
allowed the code to be ported to machines such as the Intel iPSC/S60 hypercube with only few
modifications. In particular the indirect indexing was retained in the MIMD code. However,
since the data are distributed over the radial grid point index the vector length is reduced, so

that the pipeline units of the i860 cannot be exploited efficiently. The cache hit ratio is also
low. The Fortran 90 code would avoid these problems.

A second important advantage of the Fortran 90 code is its portability. To port the Fortran
90 banded convolution code to a new machine one just needs to specify how the data are
decomposed. On the CM-2 this is done by means of a LAYOUT directive. In the near future
we expect Fortran 90 compilers to become available on all supercomputers, and their ability to
exploit these machines to steadily improve.

Although the performance of the banded convolution on the CM-2 was rather disappoint-
ing for the problems considered, we believe it is important to develop a Fortran 90 version of
the KITE code, with a view to implementing it on the next generation of concurrent super-
computers. Potential target machines include Thinking Machines Corporation’s ChI-5, Intel’s
Paragon, and new rnachines from Kendall Square and Alliant. The portability of Fortran 90
codes, and their ability to exploit advanced architectural features, justify the effort required
to convert the KITE code from a Fortran 77 code using indirect indexing to an array-oriented
Fortran 90 code.

6. Acknowledgements

The results reported in this work were obtained on the Connection Machine CM-2X at Sandia
National J,aboratories, Albuquerque, NM.

- 17 -

7. References

[l] W. S . Brainerd, C. H . Goldberg, and J . C. Adams. Programmers Guade lo Fortran 90.
McGraw-Hill, 1990.

[2] B. A. Carreras, N. Dominguez, J. B. Drake, J . N . Leboeuf, L. A. Charlton, J . A. Holmes,
D. K. Lee, V. E. Lynch, and L. Garcia. Plasma turbulence calculations on supercomputers.
Int. J . Supercomputer Applications, 447-110, 1990.

[3] L. Garcia, H. R. Hicks, B. A. Carreras, L. A. Charlton, and J. A. Holmes. 3d nonlinear
mhd calculations using implicit and explicit time integration schemes. J . Comput. Phys,
65:253, 1986.

[4] B. R. Hicks, B. A. Carreras, J . A. Holmes, D. K . Lee, and B. V. Waddell. 3d nonlinear
calculations of resistive tearing modes. J. Comput. Phys., 44:46-69, 1981.

[5] J . A. Holmes, B. A. Carreras, P. B. Diamond, and V. E. Lynch. Nonlinear dynamics of
tearing modes in the reversed field pinch. Physics of Fluids, 31:1166, 1988.

[6] G. Kerbel. Private communication, Summer 1991

[7] V. E. Lynch, B. A. Carreras, J . B. Drake, and J . N. Leboeuf. Plasma turbulence calculations
on the Intel iPSC/860 (RX) hypercube. Computing Systems in Engineering, 2:299-305,
1991.

[8] Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142-1264. Ch4 Fortran
Reference Manual, July 1991.

- 19 -

ORNLjTM-12032

INTERNAL DISTRIBUTION

1.
2.
3.

4 5 .
6.
7.
8.
9.

10.
11.
12.

13.
1418.

B. R. Appleton

C. Bottcher
B. A. Carreras
T. S. Darland
E. D’Azevedo
J . J. Dongarra
J. B. Drake
T. H. Dunigan
R. E. Flanery

J . N. Leboeuf
V. E. Lynch

C. E. Oliver
S. A. Raby

19-23.

24.
25.

26-30.
31-35.

36.
37.
38.

39.
40.
41.

42-43.

R. F. Sincovec

G . M. Stocks
M. R. Strayer
D. W. Walker
R. C. Ward
P. €1. Worley
Central Research Library
ORNL Patent Office
K-25 Applied Technology Library
Y-12 Technical Library
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

44. Christopher R. Anderson, Department of Mathematics, University of California, Los An-
geles, CA 90024

45. David C. Bader, Atmospheric and Climate Research Division, Office of Health and En-
vironmental Research, Office of Energy Research, ER-76, U S . Department of Energy,
Washington, DC 20585

46. David H . Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet
Field, CA 94035

47. Edward H . Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia National
Laboratory, Albuquerque, NM 87185

48. Colin Bennett, Department of Mathematics, University of South Carolina, Columbia, SC
29208

49. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedex,
FRANCE

50. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street, New
York, NY 10012

51. Mike Berry, Department of Computer Science, University of Tennessee, 107 Ayres Hall,
Knoxville, T N 37996- 1301

52. Ake Bjorck, Department of Mathematics, Linkoping University, 5-581 83 Linkoping, Swe-
den

- 20 -

53. John I€. Rolstad, Lawrence Livermore National Laboratory, L-16, P. 0. Box 808, Liver-
more, CA 94550

54. George Rourianoff, Superconducting Super Collider Laboratory, 2550 Beckleymeade Av-
enue, Suite 260, Dallas, T X 75237-3946

55. Ralph G. Brickner, Los Alamos National Laboratory, Mail Stop B265, C-3, Los Alamos,
NM 87545

56. Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences, Harvard
University, Cambridge, MA 02138

57. Bill L. Buzbee, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO
80307

58. Captain Edward A. Carrriona, Parallel Computing Research Group, Phillips Laboratory,
Kirtland AFB, Albuquerque, N M 87117

59. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical Sci-
ences, Ofice of Energy Research, U.S. Department of Energy, Washington, DC 20585

60. I-liang Chern, Mathematics and Computer Science Division, Argonne National Labora-
tory, 9700 South Cass Avenue, Argonne, IL 60439

61. Ray Cline, Sandia National Laboratories, Livermore, CA 94550

62. Alexandre Chorin, Mathematics Department , Lawrence Berkeley Laboratory, Berkeley,
CA 94720

63. James Corones, Ames Laboratory, Iowa State University, Ames, IA 50011

64. Jean Cotd, RPN, 2121 Transcanada Highway, Suite 508, Ilorval, Quebec H9P 153, CANADA

65. John J . Dorning, Department of Nuclear Engineering Physics, 'I'hornton Hall, McCormick
Road, University of Virginia, Charlottesville, VA 22901

66. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville, T N 37235

67. Iain S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX,
England

68. John Dnkowicz, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

69. Richard E. Ewing, Department of Mathematics, University of Wyoming, Laramie, WY
82071

70. Ian Foster, Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439

71. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY 13244-4100

72. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Ave. N, Suite 500, Seattle, WA
98119

- 21 -

73. Paul 0. Frederickson, RIACS, MS 230-5, NASA Arnes Research Center, Moffet Field, CA
94035

74. Dennis B. Gannon, Computer Science Department, Indiana University, Bloomington, IN
47401

75. J. Alan George, Vice President, Academic and Provost, Needles Hall, University of Wa-
terloo, Waterloo, Ontario, CANADA N2L 3G1

76. James Climm, Department of Mathematics, State University of New York, Stony Brook,
NY 11794

77. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

78. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA 50011

79. Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. 0. Box 808, Livermore,
CA 94550

80. William D. Gropp, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

81. Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, NJ 07974

82. James J . Hack, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO
80307

83. Michael T. Heath, NCSA, University of Illinois, 4157 Beckman Institute, 405 North Math-
ews Avenue, Urbana, IL 61801-2300

84. Michael Henderson, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

85. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-1214

86. Kirk Jordan Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-1214

87. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg., Cornel1
University, Ithaca, NY 14853-3901

88. Hans Kayer, Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439

89. Alan 13. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

90. Kenneth Kennedy, Department of Computer Science, Rice University, P. 0. Box 1892,
Houston, Texas 77001

91. Gary D. Kerbel Lawrence Livermore National Laboratory Mail Stop L-561 7000 East
Avenue Livermore, CA 94550

92. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff, Office
of Energy Research, Office C-437 Germantown, Washington, DC 20585

93. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251
Mercer Street, New York, NY 10012

- 22 -

94. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

95. Rich Loft, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO 80307

96. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. 0. BOX 808,
Livermore, CA 91550

97. Robert hlalone, Los Alamos National Laboratory, C-3, Mail Stop B265, Los Alamos, NM
87545

98. Len Margolin, Los Alamos National Laboratory, Los Alamos, Nhl 87545

99. Frank McCabe, Department of Computing, Imperial College of Science and Technology,
180 Queens Gate, London SW7 2132, ENGLAND

100. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808, Liver-
more. CA 04550

101. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. California
Ulvd. Pasadena, CA 91125

102. Neville Moray, Department of Mechanical and Industrial Engineering, University of Illi-
nois, 1206 West Green Street, Urbana, IL 61801

103. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station B,
Nashville, T N 37235

104. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA 94305

105. Robert O'Malley, Department of Mathematical Sciences, Rensselaer Polytechnic Institute,
Troy, NY 12 180-3590

106. James M . Ortega, Department of Applied Mathematics, Thornton Hall, University of
Virginia, Charlottesville, VA 22901

107. Ron Peierls, Applied Mathematical Department, Brookhaven National Laboratory, Up-
ton, NY 11973

108. Richard Pelz, Dept. of Mechanical and Aerospace Engineering, ltutgers University, Pis-
cataway, NJ 08855-0909

109. Paul Pierce, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton, OR
97006

110. R.ohert J . Plemmons, Departments of Mathematics and Computer Science, North Car-
olina S t a k University, Raleigh, NC 27650

11 1. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville, T N
37996-1300

112. Andrew Priestley, Institute for Coiriputational Fluid Dynamics, Reading University, Read-
ing RGG 2AX, ENGLAND

113. Daniel A. Reed, Coinputer Science Department, University of Illinois, IJrbana, IL 61801

- 23 -

114. Lee Riedinger, Director, The Science Alliance Program, University of Tennessee, Knoxville,
TN 37996

115. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Labor&
tory, Livermore, CA 94550

116. Ahmed Sameh, Center for Supercomputing R & D, 1384 W. Springfield Avenue, Univer-
sity of Illinois, Urbana, IL 61801

117. Dave Schneider University of Illinois at Urbana-Champaign, Center for Supercomputing
Research and Development, 319E Talbot - 104 S. Wright Street Urbana, IL 61801

118. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton,
OR 97006

119. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA
94035

120. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

121. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316, Los
Alamos, NM 87545

122. Peter Smolarkiewicz, National Center for Atmospheric Research, MMM Group, P. 0. Box
3000, Boulder, CO 80307

123. Jurgen Steppeler, DWD, Frankfurterstr 135, 6050 Offenbach, WEST GERMANY

124. Rick Stevens, Mathematics and Computer Science Division, Argonne National Labora-
tory, 9700 South Cass Avenue, Argonne, IL 60439

125. Paul N . Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000, Boul-
der, CO 80307

126. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo, On-
tario, Canada N2L 3G1

127. Harold Trease, Los Alamos National Laboratory, Mail Stop B257, Los Alamos, NM 87545

128. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Bampton, VA
23665

129. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. 0. Box 1892,
Houston, T X 77251

130. Andrew B. White, Los Alamos National Laboratory, P. 0. Box 1663, MS-265, Los Alamos,
NM 87545

131. David L. Williamson, National Center for Atmospheric Research, P. 0. Box 3000, Boulder,
CO 80307

132. Samuel 'fee, Air Force Geophysics Lab, Department LYP, Hancom AFB, Bedford, MA
01731

- 24 -

133. Office of Assistant Manager for Energy Research aiid Development, U.S. Department of
Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N 37831-8600

134-143. Ofice of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

