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A FORTRAN 90 CODE FOR MAGNETOHYDRODYNAMICS 
PART I BANDED CONVOLUTION 

David W. Walker 

Abstract 

This report describes progress in developing a Fortran 90 version of the KITE code 
for studying plasma instabilities in Tokamaks. In particular, the evaluation of convolution 
terms appearing in the numerical solution is discussed, and timing results are presented 
for runs performed on an 8k processor Connection Machine (CM-2). Estimates of the 
performance on a full-size 64k CM-2 are given, and range between 100 and 200 Mflops. 
The advantages of having a Fortran 90 version of the KITE code are stressed, and the 
future use of such a code on the newly announced CM5 and Paragon computers, from 
Thinking Machines Corporation and Intel, is considered. 

- v -  





1. Introduction 

This is the first in a series of reports describing progress towards a Fortran 90 implementation 
of the KITE code, and similar spectra1 codes. The KITE code uses a magnetohydrodynamic 
(MHD) approach to  study turbulence and transport in Tokamak plasmas, and has been used, 
for example, in investigations of tearing mode turbulence [4], and the dynamo effect in reversed- 
field pinch configurations [5]. A finite difference grid is used in the radial direction, and a Fourier 
series expansion in the poloidal and toroidal directions. Details of the equations and algorithms 
are given elsewhere ([3],[4]), and so will not be repeated here. The important point to  note is 
that the two major computational tasks are, 

0 The evaluation of 2-D convolutions at each radial grid point. These arise from the Fourier 
representation of nonlinear terms in the governing PDEs. 

0 The solution of a block tridiagonal linear system for each mode included in the compu- 
tation. These systems are due to implicit terms that arise in the radial discretization, 
and, in the models run so far, the size of the blocks ranges from 1 to 7, depending on the 
complexity of the model physics. 

In this report we shall deal with the Fortran 90 implementation of the 2-D convolutions. Subse- 
quent reports will consider the solution of the block tridiagonal systems, and the implementation 
of a complete Fortran 90 version of the KITE code. 

2. Banded Convolution 

For the types of problem being studied only (m,  n) modes within a narrow helicity band are of 
interest, as shown in Fig. 1 in which the crosses indicate which modes are actually included in 
the computation. We shall refer t o  the convolutions performed as “banded convolutions”. 

An alternative approach to implementing spectral codes like KITE is to  regard the problem 
as a dense convolution and use fast Fourier transform methods. This method uses more memory 
than the banded convolution method, but requires less data movement, and may be the best 
approach on machines for which data movement is costly. In addition, direct convolution has 
a smaller operation count than the FFT method only for a sufficiently narrow band of modes. 
The FFT approach is being investigated by Kerbel [6] on the Connection Machine CM-2, for 
which optimized FFT routines already exist. 

In the Fortran 77 version of the KITE code the modes of interest are labeled ! = 1,2 ,  . . . , .ernax. 
Indirection arrays are initialized at  the start of the KITE code to  store which modal interactions 
contribute to  a given mode. Thus the convolution of two arrays C and Ii for mode P = (m, n )  
is written in terms of index arrays A’: and as follows, 

where P ( t )  is the set of modes contributing to mode C, and S@) is either -1, 0, or 1, depending 
on what types of function the arrays being convolved represent. For clarity we shall assume 
that  Si(!’) = 1 for the rest of this report. 

Although Fortran 90 permits the use of vector subscripts to perform the indirect indexing in 
Eq. ( I ) ,  the use of such constructs generally results in ineficient code on advanced architecture 
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Figure 1. (.m, n)  modes are indicated by crosses. 

machines, since it inhibits vectorization, results in a high cache miss ratio, and/or requires 
irregular interprocessor communication. In designing a Fortran 90 version of the KITE code 
we, therefore, avoid the use of indirect indexing. As we shall see, indirect indexing is “overkill” 
for the problem at hand since the problem does involve a certain regularity of structure. The 
use of indirect indexing only makes sense in genuinely sparse or irregular problems. 

The banded convolutions that are evaluated in the KITE code at  each radial grid point are 
actually of the form, 

F ( m ,  n )  = { :(,I .) + F2(m> .) for ( m ,  n )  # (0,O) E S 
for (m ,n )  = (0,O) 

where S is the set of modes used in the simulation, and, 

where n*[m’) = max(l,nl(m’)).  In Eq. (3)  we assume that the index n runs from nl(rn) to 
nz(m) for each m,  and that G(m, n )  = H(m, n )  = 0 for (m ,  n )  not in S. 

The Fortran 90 language is designed for the convenient and efficient manipulation of arrays 
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(see, for example, [l]). We, therefore, must reformulate the convolution in Eq. (3) in terms of 
elementwise operations between conformal arrays without any indirect indexing. With this aim 
in mind, we next rewrite Fl(m,  n) as, 

where, 

N1 = n2(m) - n l (m) )  + I ( 5 )  

In Eq. (4), nl(m’) has been added to the n’ index because G(m’,n’) = H(m‘,n‘) = 0 for 
n’ < nl(m‘). Reformulating the expression for F2(rn, n)  we have, 

G(m’, n’ + nl(m’)) H ( m  - m‘, n - n’ - nl(m’))] (6) 
- [G(O, n‘) H ( m ,  n - n’) + G(m, n - n’) . H ( 0 ,  n’)] 

[G(nt’,O) . H(m - m’, n)  + G(m - m’, r t ) .  H(m’, O)] 

ra‘EN(m,n) 

-2 
rn‘ E M (m) 

-G(O, 0) .  H(m, n)  - G(m, n)  . H(0,O) 

where we define the following index sets, 

(7) 
M ( m )  = {m’ I ( m ’ , O ) E S a n d m ’ E ( l , m - - l ) }  

N(m, n)  = { n’ I (0, n’) E S and n’ E (1, n - nl(m)) } 

where (;t.,y> denotes the set of integers in the range z to y, inclusive. 
For dense convolution of M x N arrays, nl(m) = 0 and N1 = N so M ( m )  = (1, m - l), 

and N(m, n )  = (1, n ) .  For the types of banded convolutions that are of interest here we shall 
assume that the only mode for which either rn or n is zero is the (0,O) mode. Under this 
assumption M ( m )  and N(m,n)  are empty sets for m,n > 1. The distribution of modes in 
Fig. 1 is of this type. With this assumption we may write, 
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-G(O, 0) . H ( m ,  n )  - G(m, ? E )  . H(0,O)  

Now we have transformed the banded convolution in Eq. (3) into a dense convolution in 
Eqs. (4) and (8), and we can further modify the convolution so that it involves only dense 
arrays as follows, 

where, 

g(m,n) = G(m, 12 + nl(m)) h(m,  a )  = N(m, n + ni(m))  (10) 

with similar relationships existing between f 1  and F1, and between f 2  and F2. Finally, for 
notational convenience, we introduce two offsets, 

h ( m ,  m’) = n1(ni) + n1(m‘) - n1(m + m’) 
kz(m, m’) = n1(m) - a1(m’) --- n1(m - m’) 

We also take into account the symmetry between g and h in the expressions for f 1  and fi, and 
write the convolution as, 

for m = 1, .  . . , M - 1, and n = 1,.  . . , N1 - 1 ,  where, 

Eqs. (13) and (14) recast the banded convolution in a form that may be readily implemented 
in Fortran 90. It is also possible to express Eqs. (13) and (14) in terms of matrix-vector products, 
and this gives some insight into the Fortran 90 implerrientation. Thus, we write, 
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where, 

Ni-1 

-q&Jn) = Xrt;,Jn -I- n’) * Yml(nf )  

Zr;;,&) = X;,m,(n - n‘) . Yml(n’) 

n‘=O 

N1-1 

n‘=O 

and 

= z(m + m’, p + h ( m ,  m%, Yrn’(Q) = Y ( 4  n) (19) 

x;,m,(q) = e ( m -  m‘,q-I-kz(f=,m’)), 

With this notation ZA,m, can be expressed as the product of a Hankel matrix, with zeros 
below the minor diagonal, and a vector, 

] .[ 1 Z+(O) X+(O) X+(l)  ... X + ( N 1 -  1) 
x+ (1) . . .  X+(N1- 1) 0 [ zt;) ] = [  

0 m.r,t’ Y ( N 1  - 1) ,n‘ X+(N1-1) 0 ... 
77z.m’ 

Z+(N1  - 1) 

(20) 
where for notational clarity the subscripts on Z+, X t ,  X - ,  and Y have been used to  label the 
matrices, rather than the matrix elements. Similarly, Z;,ml can be expressed as the product 
of a lower-triangular Toeplitz matrix and a vector, 

z- (0) x-(0) 0 

X-( l )  . * .  

3. Fortran 90 Implementation 

To clarify the basic structure of the Fortran 90 implementation of banded convolution we shall 
first consider the simple case in which nl(m) = m. In this case kl(m,m’) = Icz(m,m’) = 0, 
and we have, 

na‘=O n‘=O 

M-1 N1-1 

f~21y) (m,  n )  = z (m - rn’, n - a’) . y ( d ,  ra’) - ~ ( 0 ~ 0 ) .  y(m, a )  (23) 
m’=l tz ’=O 

From Eqs. (22) and (23) it clear that the Fortran 90 implementation of banded convolution 
has a doubly-nested loop structure. On each pass through the loop the elementwise product of 
two matrices must be accumulated in a third result matrix. On pass m’, n’ through the loop 
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one of the product matrices has all elements set to y(ni’, n’). In Fortran 90 such a matrix can 
be generated using the SPREAD function, which broadcasts copies of a source array along a 
specificd dimension. In evaluating fiz”), the (m, n)th element of the second product matrix 
is t ( m  + m’, n + n’),  which can be generated at  each pass through the loop by shifting copies 
of the convolution array, 2, using the Fortran 90 function EOSHIFT.  To find fizvy) we need 
simply shift a copy of array t in the opposite direction. It should be noted that the use of the 
function EOSIIIFT ensures that the appropriate elements in the shifted product array get set 
to zero, as required by the condition G(m,n) = H(nz,n) = 0 for (m ,n )  not in S.  Thus, the 
Fortran 90 implementation of a dense, 2-D convolution can be written as shown in Fig. 2. In 
an efficient implementation, the evaluation of f i (21y)  and fJZny) may be performed within the 
same double loop in order to  reduce the number of calls t o  the SPREAD function. For clarity 
we have assumed in Fig. 2 that separate loops are used. mnmask is a logical array that indicates 
which modes are included in the simulation. 

fl = 0.0 
xsm = x 
DO MPRIME=O,M-I 

ysm 
xshift = xsm 

= SPREAD (y(:,HPRIHE,:), DIH=2, NCOPIES=H) 

DO NPRIHE=O,Nl-I 
yspred = SPREAD (ysm(:,:,NPBIME), DIH=3, NCOPIES=NI) 
WHERE (mnmask) 

fl = f l  + xshift*yspred 
END WHERE 
xshift = EOSHIFT ( x s h i f t ,  DIH=3, SHIFT=l) 

END DO 
xsm = EOSHIFT (xsrn, DIM=2, SHIFT=I) 
END DO 

Figure 2(a). Fortran 90 code to find f i ( z ’ y )  for banded convolution when nl(m) = m. 

It should be noted that in Fig. 2 all arrays are three-dimensional since we must evaluate a 
convolution at  each radial grid point. Thus, the first array dimension corresponds to  the radial 
grid point index, j ,  and the second and third dimensions to the Fourier mode indices, rn and 
n,  respectively. So, for exa.mple, an array x might be declared as follows; 

PARAMETER (JSTAR=128, MSTAR=128. NSTAR=16) 
REAL, DIHENSION(0:JSTAR-1,O:NSTAR-1,O:NSTAR-I) : :  x 
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f2 = 0.0 
xsm = EOSHIFT (x, DIH=2, SHIFT=-l) 
DO HPRIME=I,H-I 

ysm 
x s h i f t  = xsm 

= SPREAD (y(:,HPRIHE,:), DIH=2, NCOPIES=H) 

DO NPRIHE=O,NI-I 
yspred = SPREAD (ysm(:,:,NPRIME), DIM=3, NCOPIES=NI) 
WHERE (mnmask) 

END WHERE 
x s h i f t  = EOSHIFT ( x s h i f t ,  DIH=3, SHIFT=-I) 

f2 = f2 + xshift*yspred 

END DO 
xsm = EOSHIFT (xsrn, DIM=2, SHIFT=-l) 

END DO 
WHERE (mnmask) 

END WHERE 
f2 = f2 - y*SPREAD (SPREAD (x(:,O,O),DIH=~,NCOPIES=~),DIH=~,NCOPIES~H 

Figure 2(b) .  Fortran 90 code to find f;’”) for banded convolution when nl(m) = m. 

The algorithm for banded convolution shown in Figs. 2(a) and (b) can also be interpreted 
in terms of the matrix-vector representation of Eqs. (20) and (2 l ) ,  if these two equations are 
rewritten as, 
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and, 

m.mf 

Each pass through the inner loop in Fig. 2(a) or (b) evaluates and accumulates one term 
on the righthand side of Eq. (24) or (25). It is clear from Eqs. (24) and (25) how the call 
to  EOSHIFT in the inner loop shifts the XL,m, and Xi,,, vectors in the evaluation of the 
vectors Z:,m, and Z;,m,, respectively. 

Performing the banded convolution as prescribed by Eqs. (12)--( 14) when the offsets k1 and 
k2 are nonzero is somewhat more difficult because we need to shift the 3: array by the appropriate 
offset before entering the inner loop. Since the offsets may be positive or negative the Fortran 
90 function CSHIFT must be used to shift the 2 array by the correct offset in the outer loop, 
and to rotate the array in the inner loop. CSHIFT performs these shifts periodically, and so 
ensures that we don’t “lose” values that are shifted off the end of an array when applying an 
offset, but which must be rotated back into use in the inner loop. The use of CSI-IIFT places 
the following constraint on the dimensioning of arrays, 

max (nz(rn’) - nl(m’) - kl(rn, m‘)) < N ,  

max ( n z ( n ‘ )  -nl(rn’)+kz(m,m‘)) < N ,  
O< m’ < M -m 

l<rn’<m 

for all m, where N ,  correspoiids to NSTAR in the parameter statement above. A check must 
be made at  the start of the program to ensure that these conditions are satisfied. Since many 
convolutions are performed in each time s k p ,  the overhead in performing this check will be 
amortized over the computation. 

In order to  evaluate the offsets kl(m,rn‘) and k2(rnrm’) the SPREAD and JWSIIIFT 
functions must he applied to nl .  The Fortran 90 code for performing banded convolution with 
nonzero offsets is shown in Figs. 3(a) and (b). 
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fl = 0.0 
nlsh = nl 
lshif = lmask 
xsrn = x 
DO MPRIHE=O,M-l 

IF ( LDOIT(MPR1ME) ) THEN 
ysm = SPREAD (y(: ,#PRIME, : 1, DIH=2. HCOPIES=M) 
nlsp = SPREAD (nl(:,WPRIHE,:), DIH=2, BCOPIES=M) 
Bl = o  
WHERE (lshif ) 

END WHERE 
xshift = CSHIFT (xsrn, DIH=3, SHIFT=kl) 

kl = nltnlsp-nlsh 

DO HPRIME=O,Bl-l 
yspred = SPREAD (ysra(:,:,NPRIHE), DIM=3, ICOPIES=Ii) 
WHERE (mask) 

f 1 = f 1 t xshift*yspred 
END YHERE 
xshift = CSHIFT (xshift, DIH=3, SHIFT=I) 

END DO 
END IF 
lshif = EOSHIFT (lshif, DIM=2, SHIFT=l) 
nlsh = EOSHIFT (nlsh, DIM=2, SHIFT=l) 
xsm = EOSHIFT (xsrn, DIM=2, SHIFT=l) 

END DO 

Figure 3(a). Fortran 90 code to find fi (+”)  for banded convolution 

In Figs. 3(a) and (b) the one-dimensional logical array LDOIT is set to false if there are no 
modes included in the simulation for a particular value of m, and is true otherwise. m a s k  

is a logical array that indicates which modes are included in the simulation. The logical array 
lmask is the array LDOIT spread over the radial grid point index. The arrays LDOIT and lmask 
are needed to handle cases in which no modes are included in the model for certain values of m 
between 0 and hf - 1.  To ensure that sensible values are assigned to the offsets, kl and k2, the 
array lmask must be shifted in the outer loop. The arrays kl, k2, lmask, lshif, nl, nlsp, arid 
nish are all twc-dimensional arrays that are dimensioned the same as the lower 2 dimensions 
of the three-dimensional arrays x, y, f l q  f2, ysm, xsrn, xshif, yspred, and mnmask. 
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f2 = 0.0 
lshif = EOSHIFT (lmask, DIX=2, SHIFT=-1) 
nlsh = EOSHIFT (nl, DIX=2, SHIFT=-1) 
xsm = EOSHIFT (x, DIM=2, SHIFT--1) 
DO MPRI#E=l,X-l 

IF ( LDOIT(NPRIl4E) ) THEN 
ysm = SPREAD (y(:,HPRIHE,:), DIH=2, NCOPIES=M) 
nlsp = SPREAD (nl(:,HPRIHE,:), DIX=2, NCOPIES=M) 
k2 = o  
WHERE (lshif) 

END WHERE 
xshift = CSHIFT (xsm, DIM=3, SHIFT=k2) 
DO NPRIXE=O,Nl-l 

k2 = nl-nlsp-nlsh 

yspred = SPREAD (ysm(:,:,NPRIME), DIM=3, NCOPIES=Nl) 
WHERE (numask) 

f2 = f2 + xshift*yspred 
END WHERE 
xshift = CSHIFT (xshift, DIM=3, SHIFT=-1) 

END DO 
END IF 
lshif - EOSHIFT (lshif, DIM=2, SHIFT=-1) 
nlsh = EOSHIFT (nlsh, DIH=2, SHIFT=-1) 
xsm = EOSHIFT (xsm, DIM=2, SHIFT=-1) 

END DO 
WHERE ( m a s k )  

f2 = f2 - y*SPREAD (SPREAD ( x ( :  ,O,O) ,DIM=2,NCOPIES=H) ,DIM=3,NCOPIES=Nl) 
END WHERE 

Figure 3(b). Fortran 90 code to find fizly) for banded convolution 

4. Banded Convolution on the CM-2 

When implementing the Fortran 90 code for banded convolution on the Connection Machine 
CM-2 additional statements are used to indicate if and how arrays are to be distributed over 
the processing elements. By default, each element of a distributed matrix is assigned to  a 

separate virtual processor (VP). However, by declaring one of the array dimensions to  be a 
serial dimension we can assign a vector of elements to  each VP. For example, the directive, 

CHF$ LAYOUT x(,,:SERIAL) 

indicates that the array x is decomposed over just its first two dimensions, so the VP set is a 2-D 
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Loop 

Outer 

Inner 

array, with the VP at location ( j ,  m) containing the vector z( j ,  m, n )  for n = 0 , 1 , .  . . , N ,  - 1. 
These directives are interpreted by the CM Fortran compiler, but are regarded as comment 
lines by other compilers, so the Connection Machine code can be compiled and run on any 
other machine with a Fortran 90 compiler with no modifications to  the code. More complete 
details of the layout of distributed arrays on the CM-2 are given in the CM Fortran Reference 
Manual [SI. In Figs. 2 and 3, the variables in lower case reside on the Connection Machine, 
while upper case variables reside on the front end computer. 

The Fortran 90 code for banded convolution described in Sec. 3 was run on a CM-2 with 
8192 processors for a number of different problem sizes. The problems considered were based 
on the (m, n )  modes shown in Fig. 1,  with the size of the problem being characterized by M ,  
the maximum value of m included in the computation. Values of M ranging from 70 to 127 
were considered, corresponding to  333 to 783 modes. The number of radial grid points was 
held constant at 98, and the maximum number of modes for any given rn was N1 = 8. The 3-D 
arrays were dimensioned as in Sec. 3, Le., as 128 x 128 x 16 arrays. Two different data layouts 
were investigated. In the first the data are distributed over all three dimensions, so the VP 
set is three-dimensional with each VP containing a single matrix element from each distributed 
3-D matrix. In the second data layout considered the third dimension, corresponding to  the n 
index, is declared to be a serial dimension, as in the example LAYOUT directive above. Thus, 
the data  are distributed over just the radial grid point and m indices, and the VP set has a 

two-dimensional structure. The code in all cases was double precision (64 bits), and compiled 
with optimization turned on by means of the -0 compiler flag. 

In order to optimize the banded convolution code an execution profile was obtained €or the 
M = 127 case (783 modes) by inserting calls to  the CMF Fortran timing routines in the code. 
Results for the code shown in Figs. 3(a) and (b), which will be referred to as “Version 1” of 
the code, are given in the columns headed “Vl-2D” arid “Vl-3D” of Table 1. The two cases 
correspond to  distributing the data over two and three dimensions, respectively. 

Task v1-2D V1-3D 

SPREAD 3.04 1.98 
CSHIFT 14.58 34.03 
EOSIiIFT 3.94 2.80 

SPREAD 3.68 14.71 
Evaluate f i  , f2  4.56 4.56 
CSIiIFT 3.05 16.96 

V2-2D I V2-3D 

3.68 14.79 
4.56 4.56 
3.05 16.97 

Table 1.  CM times in seconds for major sections of the banded convolution code 

The V1-2D and V1-3D execution profiles show that aIi appreciable amount of time is spent 
on the CSHIFT calls in the outer loop, namely, 

and, 

In the V1-2D code these calls account for over 40% of the execution time. These CSHIFT 
calls are expensive because the SHIFT argument is an array, and so for each value of rn the 
xsm array must be shifted by a different amount. Presumably each time this type of CSIIIFT 

xshift = CSHIFT (xsm, D I M = 3 ,  SHIFT=ki) 

xsh i f t  = CSHIFT (xsm, D I M = 3 ,  SHIFT=k2) 
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is called the maximum and minimum offsets in the array specifying the shift (kl or k2) must 
be computed so the appropriate number of shifts can be performed. In a production run of the 
KITE code many calls to  the coiivolution routine are made, and in each call the following four 
quantities remain unchanged; 

kf(rn’) = min (kl(rn, r n ’ ) ) ,  

k i ( r n ’ )  = min (Rz(rn, rn’)), 

ky(rn’)  = max ( k l ( r n , r n ’ ) )  

k y ( r n ’ )  = max (kz(rn, m’)) 
(27) rn rn 

m rn 

so some of the overhead in the outer loop calls to  CSHIFT can be avoided by precomputing 
these quantities and storing them in one-dimensional arrays. Then, when evaluating f i ( o l y )  in 
the outer loop, the correct offset can he applied to the x array by first shifting it by ky(m’) in 
one direction, and then shifting it by kf(rn’) in the other direction, using a WHERE construct 
to assign the appropriate value to the array x s h i f t .  In Version 2 of the code, when computing 
f i ( s ’y) ,  we replace the evaluation of ki and the call to CSIIIFT in the outer loop by the code 
section shown in Fig. 4. In the evaluation of f i z I y )  a very similar code is used. 

kl = nl i- nisp - nlsp 
klsp = SPREAD (ki, DIH=3, NCOPIES=NSTAR) 
x s h i f t  = xsm 

DO K=i,KIU(MPRINE) 
WHERE (klsp>O) 

x s h i f t  = CSHIFT ( x s h i f t ,  DIH=3, SHIFT=l) 
kisp = kisp - I 

END WHERE 
END DO 
Do K=~,-KIL(MPRIME) 

WHERE (klsp<O) 
x s h i f t  = CSHIFT ( x s h i f t ,  DIM=3, SHIFT=-l) 
k l s p  = kisp + 1 

END WHERE 
END DO 

Figure 4. Fortran 90 code to find x s h i f t  in the outer loop when evaluating fir'') in Version 2 
of the code 

Table 1 also gives execution profiles for Version 2 of the code. Comparing Versions 1 and 
2 it is clear that by introducing the modification shown in Fig. 4 to  eliminate overhead in the 
outer loop calls to  CSHIFT a significant improvement in performance is achieved. However, 
even in the best case (V2-2D) about 80% of the time is spent in moving data by calls to  spread 
and shift routines. Table 1 also shows that distributing the data over two dimensions is faster 
than over three dimensions. This is because calls that spread data over the n index dimension, 
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V1-2D 
17.22117.22 
19.61119.61 
22.09122.09 
24.56124.56 
27.04127.04 
29.51129.51 
31.25131.25 

or shift data in this direction, require communication between VPs in the 3-D case, whereas no 
communication is necessary in the 2-D case. It is interesting to  note that the calls to SPREAD 
and EOSBIFT in the outer loop, which move data along the 7n index dimension, actually run 
a little faster in the 3-D case than in the 2-D case. This because the V P  ratio is higher in 
the 3-D case, and so data must be communicated between fewer physical processors than in 
the 2-D case. Although the 2-D data decomposition runs faster on an 8k-processor CM-2 for 
the problem considered, the 3-D data decomposition should win out on larger machines as it 
allows more parallelism to  be exploited. There is little point in running the code on more than 
16k processors with a 2-D data  decomposition, as the VP ratio will be less than 1 and some 
PES will be idle. However, for production runs of the KITE code much larger problems will be 
considered, so a 2-D decomposition may still be fastest, even on a 64k-processor CM-2. 

In Table 2 timings of the banded convolution are given for a number of different problem 
sizes. The modes included in the computation are as shown in Fig. 1, with problem size being 
determined by the value of M ,  the cutoff in the rn index. S77 is the number of floating point 
operations per radial grid point required to  convolve two arrays in the original Fortran 77 
version of the KITE code. 

V1-3D V2-2D V2-3D 

41.36141.36 11.67111.68 31.16131.16 
47.96147.96 13.72113.72 37.23137.23 
54.22154.22 15.76115.76 42.50142.50 
60.49160.49 17.71117.71 47.61147.61 
66.61/66.61 19.75119.75 52.90152.99 
71.90/71.90 21.99121.99 58.52158.53 
73.48173.49 23.43123.43 62.24162.24 

Problem Size 

M Modes 577 

70 333 160524 
80 407 243732 
90 487 354204 

100 567 489912 
110 647 652440 
120 727 842088 
127 783 991080 

Table 2. Timing results on an 8k CM-2. 

A measure of how effectively the CM-2 is being used is given by the ratio of the number of 
floating point operations performed by the sequential code and the CM-2 code. This will be 
referred to as the “utilization ratio”, U ,  and is given by, 

where J ,  x M, x N ,  is the declared size of the 3-D data arrays, and S ~ O  = 3M2Nf is the number 
of floating point operations per radial grid point for the Fortran 90 code. The factor of 3 arises 
in the expression for S ~ O  because fis”) and f$z,y) are evaluated within the same double loop, 
which saves one multiplication. If separate loops were used the factor would be 4. In all the 
timing runs J ,  = 128, M, = 128, and N ,  = 16. A small value of U indicates that  the compute 
power of the CM-2 is not being used effectively. In Fig. 2 we plot the utilization rate and 
speed in Mflops for the problem sizes considered in Table 2 for the V2-2D version of Lhe code. 
The Mflops rates, M77 and M ~ o ,  are computed using the floating point operation count of the 
Fortran 77 and Fortran 90 codes, respectively. M77 can be used to compare the performance of 
the Fortran 90 code on a computer such as the CM-2, with that of the original Fortran 77 code 
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Figure 2. Utilization ratio and Mflops as a function of problem size for V2-2D 

on some other machine, such as a workstation or vector supercomputer. The ratio of M77 for 
runs using the Fortran 90 and Fortran 77 codes equals the ratio of their respective execution 
times. A490 gives the actual execution rate in Megaflops for the Fortran 90 code. 

For the problems considered the utilization ratio is always below 12.5%, so that the per- 
formance of the CM-2, as indicated by the Mflops rate, is rather poor, reaching only about 
M77 = 4 and M ~ o  = 13 Mflops for the largest problem considered. The low value of U is 
due to the mismatch between the set of radial grid points and modes actually involved in the 
computation, and the 3-D arrays used to store these quantities. In Fig. 3 we plot n - nl(rn) 
against rn to indicate which modes are involved in the M = 128 problem. In this plot the blank 
area represents those array elements not actively involved in the computation at a particular 
radial grid point, and thus gives a measure of how much of the CM-2 is being wasted. The 
fact that N I / N ,  = 0.5 means that half the compute power of the CM-2 is wasted because 
we are constrained to choose N, = 16 even though N1 = 8. This constraint comes from the 
reqiiirement that Eq. (26) be satisfied, and the fact that, array dimensions on the CM-2 must 
be an exact power of two. A more carefully designed algorithm may eliminate this constraint, 
thereby halving the Chl-2 execution times. 

The expected performance in Mflops of the  V2-2D code for a problem that fully utilizes the 
CM-2 may be estimated as, 

so extrapolating from the M = 128 case we get a value of M,,, M 34 Mflops for an 8k CM-2. 
This drops to 17 Mflops if the N1/N, = 0.5 constraint applies. Scaling this up to a 64k CM-2, 
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we would expect a performance of about 136 Mflops for a problem that fully utilizes the CM-2, 
or 272 Mflops if the N l / N t  = 0.5 constraint can be eliminated without degrading performance. 

It is worthwhile at  this point to return to the question of whether direct convolution is faster 
than convolution using FFTs. If the evaluation of each FFT butterfly requires 10 floating point 
operations, and a real-to-complex FFT is used for the two forward and one inverse transforms 
required, then the operation count per radial grid point is approximately, 

If M and N are required to be powers of 2 in the F F T  version, Le., M = N = M,, then the 
F F T  method will have a lower operation count than the direct method if, 

Thus, if the width of the band is Nl = 4, and M = M,, the direct method has a lower operation 
count if M, 2 32. However, if Nl is 8 the direct method only wins if M* 2 16384. Equation 
(31) shows how the choice of best algorithm depends sensitively on the width of the band, with 
the direct convolution method being appropriate only for very narrow bands of modes. 

5 .  Conclusions 

In comparing the Performance of the Fortran 90 banded convolution code with the original 
Fortran 77 version the following factors must be considered; 

1. 

2. 

3. 

The movement of data by calls to the SPREAD, CSHIFT, and EOSHIFT functions in 
the Fortran 90 code. 

The ratio of the number of floating point operations per radial grid point for the Fortran 
77 and Fortran 90 codes. The original Fortran 77 code uses indirect indexing, which 
results in a lower operation count since the Fortran 90 code is constrained to compute 
some modal interactions that are not required. 

On some machines, such as the CM-2, grain size constraints may require array dimensions 
to be powers of two in the Fortran 90 code. 
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4. The ability of the codes to take advantage of advanced architectural features, such ils 

vector and pipeline units, caching, and massive parallelism. 

On multiprocessor systems the spreading and shifting of data may, or may not, result in inter- 
processor communication, and the efficiency with which these tasks are performed depends on 
the hardware, and the ability of the compiler to exploit it. On the CM-2 we have found it best 
to  decompose the data over just the radial grid point and m indices, and on the commercial 
supercomputers currently available it is probably best to use as large a grain size as possible, 
subject to t,he requirement that all processing units have at least some data on which to  work. 
This choice reflects the fact that data movement is expensive. 

The direct convolution method has a lower operation count than the fast Fourier transform 
approach only for a suficiently narrow band. However, the FFT convolution method requires 
more memory, and this may limit its usefulness on some machines. 

On the CM-2 the requirement that array dimensions be powers of two significantly degrades 
performance for the problems considered. ‘This problem is exacerbated by the constraint on N ,  
imposed by Eq. (26). Future work will look at  efficient ways of removing this constraint, and 
further tuning the code for the CM-2. 

A major advantage of the Fortran 90 code is its ability to make eficient use of the advanced 
architectural features of modern supercomputers. The original Fortran 77 code made use of 
indirect indexing to reduce the operation count and memory usage, however, this also inhibits 
vectorization and results in the inefficient use of cache. In the original code the loop over 
radial grid points was made the inner loop in order to increase the vector length, and improve 
caching. In a recent MIMD Fortran 77 implementation of the KITE code ([2],[7]), the code 
was parallelized by decomposing the data over just the radial grid point index. This approach 
allowed the code to  be ported to machines such as the Intel iPSC/S60 hypercube with only few 
modifications. In particular the indirect indexing was retained in the MIMD code. However, 
since the data are distributed over the radial grid point index the vector length is reduced, so 

that the pipeline units of the i860 cannot be exploited efficiently. The cache hit ratio is also 
low. The Fortran 90 code would avoid these problems. 

A second important advantage of the Fortran 90 code is its portability. To port the Fortran 
90 banded convolution code to a new machine one just needs to  specify how the data are 
decomposed. On the CM-2 this is done by means of a LAYOUT directive. In the near future 
we expect Fortran 90 compilers to become available on all supercomputers, and their ability to 
exploit these machines to steadily improve. 

Although the performance of the banded convolution on the CM-2 was rather disappoint- 
ing for the problems considered, we believe it is important to develop a Fortran 90 version of 
the KITE code, with a view to implementing it on the next generation of concurrent super- 
computers. Potential target machines include Thinking Machines Corporation’s ChI-5, Intel’s 
Paragon, and new rnachines from Kendall Square and Alliant. The portability of Fortran 90 
codes, and their ability to exploit advanced architectural features, justify the effort required 
to convert the KITE code from a Fortran 77 code using indirect indexing to  an array-oriented 
Fortran 90 code. 
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