
Thomas H. Dblnigan

ORNL/TM-12065

Engineering Physics and Mathematics Division

Mathematical Sciences Section

KENDALL SQUARE MULTIPROCESSOR: EARLY
EXPERIENCES AND PERFORMANCE

Thomas H. Dunigan

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

t hd@ornl.gov

Date Published: April 1992

Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy R2-
search, U.S. Department of Energy.

1

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05-840R21400

3 4 4 5 6 0 3 b L 0 9 2 9

Contents

1 Introduction . 1
2 Implementation . 2
3 Single Cell Performance . 4
4 Parallel Performance . 5
5 Early Experiences . 15
6 References . 17
A Comparative Architectures . 19

... . 111 .

KENDALL SQUARE MULTIPROCESSOR: EARLY
EXPERIENCES AND PERFORMANCE

Thomas H. Dunigan

Abstract

Initial performance results and early experiences are reported for the
Kendd Square Research multiprocessor. The basic architecture of the
shared-memory multiprocessor is described, and computational and 1/0
performance is measured for both serial and parallel programs. Experiences
in porting various applications are described.

- v -

1. Introduction

In September of 1991, a Kendall Square Research (KSR) multiprocessor was

installed at Oak Ridge National Laboratory (ORNL). This report describes the
results of this initial field test. The performance of the KSR shared-memory
multiprocessor is compared with other shared-memory and distributed-memory
multiprocessors, using synthetic benchmarks and real applications. Performance
figures must be considered preliminary, since the I S R system was in its first field
test.

The KSR multiprocessor runs a modified version of OSF/l (Mach). To
the user, the KSR system appears like typical UNiXTM, but providing perfor-
mance advantages similar to those provided by the Sequent Symmetry and BBN
TC2000 multiprocessors and providing scalability similar to the Intel iPSC/SGO
and DELTA. Piped processes and background jobs can utilize the multiprocessor
architecture to provide improved throughput and response time.

A programmer on the KSR system is provided with a parallel make and with
automatic parallelization for FORTRAN. The programmer can assist the auto-
matic parallelization (a FORTRAN pre-processor from Kuck Associates) with
compiler directives, or can do explicit parallelization using the pthread subrou-
tine library. The pthread library is provided to the C programmer along with
language extensions to manage shared variables.

Shared Memory

The distinguishing feature of the KSR multiprocessor is its shared-memory ar-
chitecture. Each processor has 32 megabytes of memory. Up to 32 processors are
connected to a slotted, pipelined ring, called a Ring:O. Larger systems are formed
by connecting Ri11g:O’s to an interconnecting Ring:l, providing up to 1,088 pro-
cessors. The memory of all of the processors is part of a 40-bit virtual address
space managed as a cache, where the ring is used to transport cache lines to
satisfy “cache faults.” Custom CMOS chips manage the cache, ring, and ring-
to-ring routing. The KSR architecture and chip set are designed specifically to
support a shared-memory multiprocessor. Section 2 and [18] provide more detaii
on the actual implementation.

The KSR shared-memory architecture is similar to the bus-based Sequent
systems in that there is one cached address space, but it differs from the Se-
quent in that the Sequent does not have a notion of “local cache,” and the KSR
architecture is extensible beyond 30 processors. The BBN shared-memory multi-
processors share KSR’s extensibility, but under the BBN’s Uniform system there

- 2 -

is no caching, rather a reference to a “remote” shared location will always be
remote, and replication is under software control. KSR differs from the mesh-
based distributed shared-memory systems DASH [14] and PLUS (11 in that these
systems do not provide strongly ordered read/write memory operations. DASH
and PLUS must use explicit synchronization operations when a specific order-
ing is required in accessing a shared location. The KSR memory system is both
sequentially consistent [121 and strongly ordered [4], so ordinary read/write mem-
ory operations can be used to implement synchronizations. The KSR’s ring-based
memory system is quite similar to MEMNET [2], except that MEMNET still has
a local memory for each processor independent of the ring-based shared memory.
Also, a shared memory location on MEMNET has a “home” location, a feature
not required on the KSR. Delp [2] notes that the ring topology supports broad-
cast and provides an ordering of memory accesses so a coherency protocol is easy
to implement. Both KSR and MEMNET pipeline the ring, so that more than
one memory transaction may be on the ring at the same time.

Additional details of the implementation of the shared-memory architecture
are provided in Section 2 along with a summary of the processor architecture
and implementation. Section 3 compares the computational performance of a

single KSR processor to other superscalar processors and compares KSR’s UNIX
performance to other UNIX systems. Section 4 measures the parallel perfor-
mance of the KSR multiprocessor and compares it to other shared-memory and
distributed-memory multiprocessors. Section 5 relates our early experiences in
porting various applications to the KSR.

2. Implementation

The KSR ring:0 consists of a 34 slot backplane, populated with 32 processor
boards, or cells. The remaining two slots are used for ring:l interconnect boards.
Each cell consists of 12 custom CMOS chips. The shared-memory is managed by 4
Cell Interconnect Units (CIU) and 4 Cache Control Units (CCU). The remaining
chips comprise the four functional units - the Cell Execution unit (CEU), the 30
Megabytes/second (MBs) external 1 / 0 unit (XIU), the integer unit (IPU), and
floating point unit (FPU). An instruction pair is executed on each cycle, with one
member of the pair coming from either the CEU or XIU and the other member
being either an FPU or IPU instruction. Thus an address calculation, load/store,
or branch can be executed concurrently with either an integer or floating point
instruction.

Each cell runs at 20 MHz, and the floating point unit supports a pipelined

- 3 -

from: I
hardware cache I

adder and multiplier for a peak performance rate of 40 Megaflops per cell. Thus
the KSR processor is very similar to other superscalar processors such as the Intel
i860 and the IBM RS/6000 (see Appendix A). The floating point unit uses 64
64-bit registers, and the integer unit has 32 64-bit registers. The CEU uses an
additional set of 32 40-bit address registers. Each cell holds a 256KB data cache
and a 256KB instruction cache, and a 32 Megabyte daughter board is attached to
the back of each processor board. KSR calls the local memory on each processor
cache and refers to the 256KB data cache as the sub-cache.

The memory of every cell is part of a single 40-bit virtual address space
managed as a hierarchy of caches. If a processor requests a location that is not in
the local data cache then the data is fetched from the on-cell memory. If the data
is not in the on-cell memory, then the data is fetched from the memory of one of

the other cells on the ring(s). In each case the processor is stalled until the data
arrives. The latencies and capacity of each level of the cache hierarchy are listed
in Table 2.1 [MI. The hardware cache (sub-cache) is two-way set associative with
random replacement and write-back and uses a 64-byte cache line. The memory
cache is 16-way set associative with a 12&byte cache line from the ring. Various
options are available for managing a “set-full” in the memory cache [18], and
alternate strategies are still being evaluated.

cycles capacity

2 256KB

I Memory Latencies 1

local memory
ring 0

Table 2.1: Vendor-stated memory latencies and capacities.

The programmer or compiler can use a non-blocking pre-fetch instruction (up
to four may be in progress from each processor) and a post-store instruction to
reduce the latency. Synchronization, or locking, is provided by instructions to
lock and unlock a 128-byte subpage.

The KSR configuration at ORNL is a 32 cell-system. An Ethernet and Ex-
abyte 8mm tape drive are connected to the 1 / 0 port of cell 1. A Multi-channel
Disk (MCD) controller is attached to cell 3. The MCD has 5 SCSI controllers,
each with two 1-gigabyte drives. These drives are presently mounted as indepen-
dent UNIX disk partitions. In the future, the drives can be configured as RAID

arrays and as one logical volume with the files striped across the drives. Ap-
pendix A summarizes the configurations of other machines (BBN TC2000, IBM

- 4 -

RS/6000-530, Intel iPSC/860, and Sequent 80386-Symmetry) used for compari-
son in the following sections.

For the tests described in the following sections, the KSR software release
used was PR1.14. Unless otherwise noted, - 0 2 optimization was used. Timings
were provided by either the UNIX time command, or by timer calls within the
application. The KSR supports a “global” time-of-day clock with a 10 millisecond
resolution and two sub-microsecond timers on each cell. One timer provides user
time, and the other is a free-running timer. The timers all run at the same
frequency, but the free-running timer is initialized as each cell is started. Each
cell is started serially after cell 1, so all of the free-running timers are offset from
each other. Thus if a process/thread migrates to another cell, timings reported
by the free-running timer cannot be trusted. We used the free-running timer
for many of our tests, but we always bound the thread to the cell for the test,
preventing the scheduler from moving it.

3. Single Cell Performance

The single processor performance of the KSR functional units was measured with
several widely used benchmarks. Floating point performance was measured with
the FORTRAN Livermore Loops, SLALOM (version 2) [ll], and the 100 x 100
double-precision LINPACK. As of this writing, KSR FORTRAN codes performed
somewhat faster than the equivalent C programs. As a rough measure of integer
performance the C Dhrystone (version 1) was used. Figure 3.1 shows the re-
sults of these benchmarks. For comparison, results from the Intel 860 and IBM
RS/6000-530 processor are displayed as well (see Appendix A for configurations
and compiler options). The 20 MHz KSR is competitive with the faster clocked
i860 and 530. The KSR compiles were done with - 0 2 optimization, except “auto-
inline” was used for LINPACK. Unfortunately, with “auto-inline” the LINPACK
compile takes more than an hour. Without “auto-inline”, the compile still takes
several minutes and performance slows from 15 Mflops to 11 Mflops.

The KSR compilers have not yet been optimized for compile-time speed. The
KSR takes over 6 minutes to compile the 3000-line Livermore Loops FORTRAN
code with - 0 2 optimization. Compile times for the i860 (a Sun 4/390 cross-
compiler) and the IBM RS/6000-530 are under one minute. A similar disparity
in performance is exhibited by the BYTE benchmark suite, a set of C programs
and shell scripts that exercise various UNIX features including multiple processes,
pipes, and compiles. The time for a BYTE run on the KSR was more than five
minutes, compared with under one minute for the IBM 530. (The BBN TC2000

- 5 -

Figure 3.1: Single processor performance.

ran the BYTE suite in 113 seconds, the Sequent Symmetry in 117 seconds.) Some
of the slowness caa be attributed to the development stage of the OS and 1/0
subsystem. The disk subsystem will eventually support a RAID organization
with striping, but at present each disk is a separate UNIX partition.

Basic 1/0 data rates from the disk subsystem measured with a file system
exerciser (FSX) and simple write/read tests are competitive with data rates from
the IBM 530. There was some measurable performance difference if the 1/0 test
was performed on the cell attached to the disk subsystem. Write times dropped
from nearly 1 Megabtye/second on the 1/0 cell to 0.31 MBs on other cells. Read
times were about 1 MBs and showed little variation from cell to cell, presumably
due to disk buffer caching. (A 16 Megabyte file was written/read using 16 KB
blocks.) Concurrent 1/0 tests, multiple processes writing/reading independent
files on separate disks, showed promising results with a 2.4 MBs aggregate read
rate on four cells - results competitive with concurrent 1/0 rates on the Intel
hypercube file system (CFS) [7]. More extensive I/O tests will be performed
when the disk system is more optimally configured.

The performance of a single KSR processor in executing some simple pro-

- 6 -

fork/wait
thread/join
lock/unlock

KSR BBN Symmetry

108,000 44,000 14,000
100 79 26

3 8 10

The computational performance of the IGR depends on the effectiveness of
the user’s program in utilizing the memory hierarchy. The large number of reg-
isters and dual instruction streams permit the compiler to generate code to do
computations in one instruction stream while loading and storing data in the
other. The large register set makes it feasible to unroll loops to a greater depth.
A hand-unrolled FORTRAN double-precision (64-bit) matrix multiply achieved
33.3 Mflops.

Data for the registers are fetched from a 256 KB data cache (sub-cache).
This large cache sustains high performance over larger vector sizes. Figure 3.2
illustrates the performance of a repeated double-precision complex zazpy vector
computation for various vector sizes. The zazpy is repeated 10,000 times on the
same two vectors for various vector sizes. Although this test is not representative
of any application, it does serve to illustrate cache behvior. When the cache can
no longer contain all of the data, performance drops as data has to be fetched
from the slower main memory. The advantage of the larger cache is evident when
compared with the smaller caches of the i860 (8 KB data cache) and 530 (64
KB data cache). The 256 KB cache actually will hold all of the data for the
100 x 100 LINPACK. Performance for a 128 x 128 matrix drops to 5 Megaflops
for the unmodified FORTRAN code. However, by using a blocked algorithm as
KSR has done for the 1000 x 1000 LINPACK, performance reaches 31 Megaflops

- 7 -

I I I I I I

2oM) 4000 fiOD0 EO00 10000
vector dlmension

Figure 3.2: Cache capacity and performance for repeated zaxpy.

on a single processor. (Additional results for the 1000 x 1000 LINPACK are
presented in the next section.)

If the KSR processor fails to find a data item in the local memory, it must issue
a request to the ring to fetch the data from one of the other processors. In the
absence of other activity on the ring, we measured this latency to average about
6.7 microseconds (p s) . For the BBN TC2000, a remote access takes less than 2
ps, but on the BBN the remote access is not cached to the requesting processor.
By contrast, on the KSR, subsequent references will be local {in the absence of
other exclusive requests for that location from other processors). A remote access
on the iPSC/SSO or DELTA would require a send/recv and would take roughly
150 ps. Faulting a large vector from one KSR cell to another, using a 128-byte
stride, resulted in a data rate of 19.5 MBs. Using the prefetch instruction (up to
four may be in progress at once), the measured data rate increases to 34 MBs. By
comparison, the peak data rate for iPSC/SSO is 2.8 MBs, and the measured peak
for the DELTA is about 17 MBs IS]. In the following section we run these memory
tests concurrently on multiple processors and measure both single processor and
aggregate data rates.

- 8 -

4. Parallel Performance

To measure the parallel performance of the IiSR system, we ran a number of the
tests in the previous section concurrently on multiple processors. In addition,
we measured parallel performance of the memory system under various loads.
Parallel tests of various synchronization primitives were conducted as well. The
parallel tests were conducted using the pthread library and “binding” each thread
to a separate processor.

Concurrent Memory Tests

The prefetch test was run concurrently on independent pairs of processors. There
was little or no interference among the pairs, each pair averaged about 30 MBs.
The aggregate memory throughput increased linearly to 490 MBs for 16 pairs
(Figure 4.1). The data rate decreases to about 23 MBs if each processor both
fetches and supplies data concurrently. That is, cell i is prefetching data in from
cell i + 1 while cell i - 1 is faulting in data from cell i. The d a h rate for this test
increases linearly to 731 MBs for 32 cells (Figure 4.1). The linear response and
aggregate data rate are quite good, but these tests were not able to achieve the
vendor-stated peak of 1 GBs.

8oo t
g 600
r
La a
2
f
6
f 400
E

2
g a

0)

m m
c

200

A m iz z. g 600-

6

r
La a
2
f

f 400.-
E

2
g a

h . 2 w.”

0)

m m
c

200 .-

I L I I c
4 8 12 16 20 24 28 32

D r o c e s s o r s

-

- h . 2 w.”

I L I I c
4 8 12 16 20 24 28 32

D r o c e s s o r s
Figure 4.1: Aggregate memory throughput for concurrent prefetch.

- 9 -

To stress the memory subsystem, we measured the average time for doing

an unrestricted update of a shared variable with varying number of processors.
The unrestricted update is unrealistic, since in a real application such an update
would be coordinated with a lock. However, the test is adequate for our intent
of measuring the response of the memory subsystem to a very hot spot. For
comparison, the same test was performed on the BBN and Sequent systems. For
all three machines, the compute time is comparable and increases linearly with
the number of processors (Figure 4.2). Though the Sequent has a slower CPU, its

70

60

50

$ 40
Y

r +
Y
435

20

10

L

-

-

-

4 8 12 16 20 24 28 32
processors

Figure 4.2: Average time for 5 = z + 1.

memory latency is better than either the BBN or KSR, so the compute times for
this test are comparable. For both the BBN and KSR, the memory subsystem
does not reach saturation until more than four processors are contending for the
shared location. For further cornparison, we conducted the hot-spot test on the
distributed memory iPSC/860 and DELTA. Multiple processors send a message
to the owning processor requesting the current value, followed by a message
updating the value. For 32 processors, the average update time was 5.7 ms for
iPSC/S60 and 5.9 ms for the DELTA compared to 63 ps for the KSR.

To further study the effects of a hot spot in a shared memory, we used the
workload generator described in [16]. An input file to the generator describes
the various workload characteristics for exercising a shared-memory system. One

- 1 0 -

can specify the number of shared locations, the percentage of shared references
to local references, and whether locking is required. We ran the workload using a

single shared memory location and no locking for various percentages of shared-
to-local references. The occurrence of the shared reference within the workload
can be deterministic or probabilistic [16]. The tests were run on the KSR, BBN,
and Sequent systems. Figure 4.3 shows the efficiency of each system for a 1%
and 10% shared access ratio using the probabilistic model. Efficiency is mea-
sured as the average time for executing the workload on a single processor (the
"shared" location is local in this case) divided by the average time for executing
the workload concurrently on p processors, T1/Tp.

1

0.8

0.6

- ;
!i

0.4

0.2

Figure 4.2

IC - _ - g

5 10 15 20

- - 6 -
\

- - k.

I I I I

processors
Memory efficiency (T1/Tp) for referencing a shared location as 1 %

and 10% of the workload.

Although the three systems performed comparably when the memory subsys-
tems were saturated (Figure 4.2), their behavior under lighter loads is markedly
different. The Sequent shared-bus can easily keep up with the demand from the
workloads. The efficiency for the KSR falls off faster than for the BBN, but
response of the memory subsystems (shape of the curve) are roughly the same.
The KSR has a faster processor and longer remote memory latency than the
BBN which accounts for most of the performance difference. Figure 4.4 are the
same workloads with performance measured as the average time to complete a

- 11 -

2400

2200

2000

.-

.- K K M /

H

/

I n N
0- /

/
--

5 10 15
processors

20

Figure 4.4: Average workload time for referencing a shared location as I % and
iO% of the workload.

workload. The KSR is noticeably slowed in relation to the other two systems,
suggesting the need for coarser-grained applications for the KSR shared-memory
system.

Locks and barriers

Access to a shared location is usually controlled by an atomic locking operation.
A synthetic lock/unlock test was run on the three shared-memory systems to
measure the performance of locking operations on a single lock (Figure 4.5). The
performance of the KSR hardware lock instruction, gsp (blocking version), i s
better than the mutes library routine for a few processors, but gsp performance
degrades rapidly for more than 15 processors. The mutex version is thus preferred
and performs well compared to the BBN and Sequent.

The lock controls data access, the barrier controls synchronization of pro-
cesses or threads. Figure 4.6 compares the barrier times for both shared-memory
and distributed-memory systems for varying number of processors. If the bar-
rier is implemented with a single lock, then performance degrades linearly with
the number of processors. The BBN, Sequent, and the KSR (the solid line in
Figure 4.6) use a single-lock barrier. The hypercube and mesh use a spanning

- 12 -

1000

800

a
2)

Y
Y

3 600 c

.j.= 0 -
400

zoo

5 10 15 20 25
processors

Figure 4.5: Average lock/unlock time for a single lock.

tree to implement the barrier, so performance goes as the log2 of the number of
processors. The KSR barrier function also provides an option for a spanning-tree
like implementation. The dashed line in Figure 4.6 shows the improved KSR
performance using a tree of width four. (Presumably a similar implementation
for the BBN would improve its barrier performance as well.) The bus-based
Sequent shared-memory system provides the best performance, but the archi-
tecture is not extensible beyond 50 processors. Memory (or message-passing)
latency, bandwidth, and contention account for most of the difference in barrier
performance for the different machines. Since we are using wall-clock time, the
barrier times may also be affected by the OS overhead on one or more processors
on each system. OS timer interrupts typically occur every 10 ms. The timer-
interrupt overhead on the Intel nodes is only about 50 ps, but for the UNIX-based
systems (KSR, BBN, and Sequent) the overhead is on the order of 500 ps.

Parallel applicatians

The next class of benchmarks we used in comparing the KSR with other archi-
tectures consisted of small C applications that utilize shared memory, threads,
barriers, and locks. The applications do simple numeric integration using spatial
decomposition (static allocation), matrix multiply using spatial decomposition

- 1 3 -

4 8 12 16 20 24 28 32
processors

Figure 4.6: Average time for a barrier synchronization.

(static allocation), finite difference using chaotic Jacobi iterative method with
static spatial decomposition, a parallel quick sort using a queue-of-tasks model
(dynamic allocation), and solve a linear system using Cholesky factorization (dy-
namic allocation). The codes use explicit parallelization and were easily ported
to the KSR from the Sequent version. The main objective was to compare the
shared-memory architectures running identical source programs (except for the
translation of the calls that manage the parallelism).

Figure 4.7 illustrates the Cholesky performance for the shared-memory mul-
tiprocessors and for the Intel distributed-memory multiprocessors. The shared-
memory code could not be run on the Intel multiprocessors, so the Intel perfor-
mance includes the effects of a different algorithm - the program must explicitly
move portions of the matrix among the various processors. The performance of
the serial code is represented as processor 0 in the figure. The BBN outperformed
the KSR in the parallel (and serial) quick sort and numerical integration. The
quicksort is integer work and the 3BN also performed the dhrystones faster than
the KSR (Appendix A). The numerical integration is dominated by floating-point
divides which the KSR does in software and the BBN does in hardware.

The performance of these tests was consistent with the underlying speed of the
individual processors and memory subsystem. In general, the Sequent was slower

- 14 -

12

10

8

::
O 6 I

4

2

2 4 6 8
processors

Figure 4.7: Megaflops for 400 x 400 double-precision C Choiesky.

in absolute time, but maintained a higher efficiency (speedup divided by the
number of processors) with increasing processors. The Sequent’s low latency bus
architecture accounts for the high efficiency, but the architecture is not extensible
to more than 30 processors. The KSR was faster than the BBN in most tests and
maintained a higher efficiency. Even though the BBN memory hierarchy has a

lower latency than the KSR ring, the KSR’s ability to “fault” a remote reference
into a local reference results in higher performance for these tests. (A BBN-tuned
application would see that work was assigned to a processor that “owned” the
distributed portions of the global data structures - such tuning is not required
for the KSR, though it too can profit from such tuning.)

To compare the architectures with a larger problem, optimized for each ar-
chitecture, we used the 1000 x 1000 double precision LINPACK [3]. The ItSR
implementation was based on a block algorithm implemented by KSR’s Nick
Camp in FORTRAN with some assembly language. The matrix is manipulated
in groups of columns to optimize the use of the 256KB cache, and post-store’s
are used to reduce ring latency. Figure 4.8 shows the results over 32 processors
along with results from the iPSC/860 and DELTA. (The Intel implementation
is also based on a block algorithm implemented by Robert van de Geijn.) A
different algorithm is used for 4 or fewer KSR processors, which explains the first

- 15 -

8 16 24
DtOChBsOrs

32

Figure 4.8: Megaflops for 1000 1000 double-precision LINPACK.

few data points of the KSR performance curve. The two Intel machines share
the same processor and roughly the same message latency, thus the difference in
their performance is due to the higher bandwidth of the DELTA mesh. The KSR
outperforms the Intel multiprocessors because it has both higher bandwidth and
lower latency. (Performance figures are not available for the BBN and Symme-
try, but since their single-processor performance is low, their parallel performance
would not be competitive for this test.)

5. Early Experiences

As the various benchmark kernels were being developed and tested other users
were working on porting applications to the IiSR. The MSR multiprocessor is de-
signed to make porting applications easy and that has been our initial experience,
both for serial and parallel codes. The first parallel application to be ported was a

19,000 line FORTRAN code that calculates energy densities for high temperature
superconducting materials [9]. The code already contained explicit Cray parallel
micro-tasking directives, so porting to the IiSR merely required changing the
names and arguments for thread creation and joining and for lock management.
The parallel version exhibited near linear speedup and achieved 243 Mflops on

- 1 6 -

32 processors.
Serial and parallel versions of a sparse-matrix library (SPARSPAK, [17]) and

a large FORTRAN global climate modeling code are also being ported to the
KSR. Each of these large FORTRAN applications has usually uncovered one
or more bugs in the - 0 2 optimization of the FORTRAN compiler. These bugs
were usually fixed quickly. SPARSPAK includes implicit parallel directives for
the Cray and Sequent, and those directives map nicely into corresponding KSR
directives. The climate modeling code also has Cray parallel directives.

A number of UNIX C codes were ported as well, including the Network Time
Protocol (NTP) [15], a variety of hypercube simulators [5] , and PVM [lo]. Some
of the C codes had to be modified to account for 64-bit long’s. The hypercube
simulators use fork() to create sub-tasks and then use pipes, sockets, or System
V shared memory to communicate among the sub-tasks. Performance for these
simulators was poor, since the scheduler presently runs only one sub-task at a

time.
Hardware reliability has been very good, with only two board failures during

the first four months. The compilers and operating system have improved with
each release, and KSR support has been very responsive. The OS still lacks
several features for full multi-user support, but those features will be available in
the first production release of the OS.

We will continue tracking KSR performance with the new releases and hope
to expand the system to include a second ring. A second ring would permit us to
better understand the extensibility of the architecture. We would like to develop
analytical models of the performance of the memory hierarchy in terms of latency,
hit ratio, and contention. A hardware memory event monitor will be installed on
each cell in early summer. Data from the event monitor will permit us to better
measure architecture and application performance. Finally, the user community
will be expanded, providing more applications and a better understanding of the
ease of use of the KSR multiprocessor.

Acknowledgements

A special thanks to the Advanced Computing Research Facility at Argonne Na-
tional Laboratory for providing access to the BBN TC2000 and Sequent Symme-
try. Arun Nanda of Michigan State University graciously provided source to the
workload program used in [16].

- 1 7 -

6. References

[l] R. Bisiani and M. Ravishankar. PLUS: A distributed shared-memory sys-
tem. In International Symposium on Computer Architecture, pages 115-124,
1990.

121 G. S. Delp. The architecture and impelmentation of MEMNET: A high-
speed shared-memory computer communications network. Technical report,
University of Delaware, 1988. Ph.D. Dissertation.

[3] J. Dongarra. Performance of various computers using standard linear equa-
tions software. Technical report, University of Tennessee, January 1991.
cs-89-85.

[4] M. Dubois, C. Scheurich, and F. Griggs. Memory access buffering in mul-
tiprocessors. In 13th International Symposium on Computer Architecture,

pages 434-442, 1986.

[5] T. H. Dunigan. A message-passing multiprocessor simulator. Technical re-
port, Oak Ridge National Laboratory, Oak Ridge, TN, 1986. ORNL/TM-
9966.

[6] T. H. Dunigan. Hypercube clock synchronization. Technical report, Oak
Ridge National Laboratory, 1991. ORNL/TM-11744.

[7] T. H. Dunigan. Performance of the Intel iPSC/860 and Ncube 6400 hyper-
cubes. Purullel Computing, 17:1285 - 1302, 1991.

[SI T. H. Dunigan. Communication performance of the Intel Touchstone
Technical report, Oak Ridge National Laboratory, 1992. DELTA mesh.

ORN L/TM- 1 1983.

[9] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A Users’ Guide to
PICL A Portable Instrumented Communication Library. Technical report,
Oak Ridge National Laboratory, October 1990. ORNL/TM-11616.

[lo] G. A, Geist and V. S. Sunderam. Network Based Concurrent Computing on
the PVM System. Technical report, Oak Ridge National Laboratory, June
1991- ORNL/TM- 1 1760.

[ll] John Gustafson, Diane Rover, Stephen Elbert, and Michael Carter. The
design of a scalable, fixed-time computer benchmark. Technical report, Ames
Labor ator y, 1990.

- 18-

[12] L. Lamport. Solved problems, unsolved problems, and non-problems in con-

currency. Operating Systems Review, 19:3444, 1985.

[13] R. P. LaRowe and C. S. Ellis. Experimental comparison of memory manage-
ment policies for numa multiprocessors. Technical report, Duke University,
April 1990. CS-1990-10.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. In
International Symposium on Computer Architecture, pages 148-159, 1990.

[15] D. L. Mills. Network time protocol (version 2) specification and implementa-
tion. Technical report, DARPA Network Working Group, September 1989.
RFC- 11 19.

[16] A. K. Nanda, H. Shing, T. Tzen, and L. M. Ni. Resource contention in

shared-memory multiprocessors: A parameterized performance degradation
model. Parallel and Distributed Computing, 12:313 - 327, 1991.

[17] E. Ng and B. Peyton. Block sparse cholesky algorithms on advanced unipro-
cessor computers. Technical report, Oak Ridge National Laboratory, Oak
Ridge, TN, 1991. ORNL/TM-11960.

[181 Kendall Square Research. I<SRI Principles of Operations. Kendall Square
Research, Waltham, MA, 1991. KSR 8/1/91 Rev 5.5.

[19] R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S. Tomlinson. The
Computer, 23: 18-30, April monarch parallel processor hardware design.

1990.

- 19 -

A. Comparative Architectures

The KSR is compared with a number of other processors. This appendix sum-
marizes the architectures and configurations used in this report. The processor
architecture of the IBM RS/6000 and the Intel i860 share several common char-
acteristics with the KSR processor: independent integer and floating point units
and pipelined independent adder/multipliers in the floating point units. The Se-
quent and BBN parallel processors provide contrasting shared-memory archi tec-
tures. Finally, the Intel distributed-memory parallel processors provide contrast
to KSR’s shared-memory model.

BBN TC2000

The BBN TC2000 at Argonne National Laboratory (ANL) is a 45 processor
shared-memory parallel processor. Each processor is a Motorola SSOOO running
at 20MHz with 16 MB of memory fronted by a 16KB data cache and a 16KB in-
struction cache. All of the memories are interconnected by a 2-stage s-way switch.
The system can be expanded up to 512 processors. The Uniform programming
environment (under nX 2.0.6) provides the program with both local and explic-
itly allocated shared memory. The shared memory may be allocated in another
processor’s memory, and thus a non-uniform memory access (NUMA) model is
supported. In the absence of contention, a remote reference typically takes less
than two microseconds, and a single channel of the switch has a bandwidth of
40 MBs [19]. The architecture could be used with other memory management
policies 1131. Compiles on the BBN were done with -0 -1us. LINPACK 100 x 100
double-precision was 1.0 Mflops using -0LM -autoinline. Dhrystone (v1.0) was
19.4 Mips.

IBM RS/6000-530

The IBM RS/6000-530 uses a 25 MHz processor with a 64 KB data cache and
a 400 MBs memory bandwidth. The processor has an independent integer and
floating point unit, and the floating point unit has an independent adder and
multiplier. The peak performance is thus 50 Mfiops. The workstation used in the
tests was running AIX 3.1 in 16 MB of memory. Compiles used -0 optimizations.
LINPACK 100 x 100 double-precision was 11 Mflops [3]. Dhrystone (v1.0) was

23.7 Mips.

- 20 -

I s1

Intel iPSC/860 and DELTA

The Intel iPSC/860 hypercube and DELTA mesh distributed-memory parallel
processors both use the 40 MHz i860 processor. The is60 has an SKB data cache
and 8 MB of memory (16 MB on the DELTA) with a memory bandwidth of

160 MBs. The processor has independent integer and floating point units, and
the floating point unit has an independent pipeIined adder and multipIer for a

peak rate of 64 Mflops. The iPSC/860 has a maximum configuration of 12s
processors. The processors are interconnected with a hypercube network with
a latency of about 60 microseconds and a bandwidth of 2.8 MBs per channel

[7!. The DELTA is a mesh connected parallel processor located at Cal Tech
with a maximum configuration of 512 processors. The mesh has a latency of

about 50 microseconds and a measured bandwidth of about 17 MBs/channel
[6]. The processors run NX 3.3 and compiles were done with - 0 3 -1hoieee on a
separate “host” processor. LINPACK 100 x 100 double-precision was 6.5 hjflops
[3]. Dhrystone (v1.0) was 29.4 Mips.

Sequent Symmetry

The 26 processor Sequent Symmetry located at ANL is based on 80386/387 pro-
cessors (16 MHz) with a Weitek 3167 floating point co-processor. Each processor
has a 64KB cache, and 32 MB of memory is shared by all processors on a 54 MBs
bus. The maximum configuration is 30 processors. The processors run Dynix
3.1.2, and compiles were done using -0. LINPACK 100 x 100 double-precision
was 0.37 Mflops [3]. Dhrystone (v1.0) was 3.6 Mips.

clock rate (MHz)
data cache (KB)
memory size (MB/CPU)
memory bandwidth (MBs)
remote rnem. bandwith (MBs)
remote mem. latency (p s)
peak mflops (64-bit)
linpack mflops (100 x 100)
dhrystone mips (v1.0)
max processors

stem Metrics
KSR I BBN I Seq I 530 1 i860

150

6.5
29.4
512

Table A. l : System metria for systems used in this report.

- 21 -

ORNL/TM-12065

INTERNAL DISTRIBUTION

1. B. R. Appleton
2-3. T. S. Darland

4. J. J . Dongarra
5-9. T. H. Dunigan

10. G . A. Geist
11. M. R. Leuze
12. C. E. Oliver
13. R. T. Primrn

14-18. S. A. Raby
19-23. R. F. Sincovec

24-28. R. C. Ward
29. P. H. Worley
30. Central Research Library
31. ORNL Patent Office
32. K-25 Plant Library
33. Y-12 Technical Library /

34. Laboratory Records - RC
Document Reference Station

35-36. Laboratory Records Department

EXTERNAL DISTRIBUTION

37. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

38. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, MN 55455

39. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

40. Lawrence J . Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

41. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

42. Edward €I. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

43. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

44. Ake Bjorck, Department of Mathematics, Linkoping University, $581 83 Linlcop-
ing, Sweden

45. Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

46. James C. Browne, Department of Computer Science, University of Texas, Austin,
T X 78712

47. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, 60 80307

48. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

WA 98124-0346

- 22 -

49. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy h e a r c h , U.S. Department of Energy, Washington, DC
20585

50. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

51. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

52. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triaugle Park,
NC 27709

53. Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada NlG 2W1

54. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

55. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY
14853

56. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

57. Andy Conn, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

58. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

59. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

60. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

61. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

62. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 3261 1-2024

63. John J . Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

64. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Uidcot, Oxon OX11 OQX, England

65. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

66. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

67. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

68. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat-
tle, WA 98124-0346

- 23 -

69. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 132444100

70. Paul 0. Fredericksn, NASA Ames Research Center, RIACS, hl/S T045-1, Moffett
Field, CA 94035

71. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

72. K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

73. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

74. C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

75, W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

76. J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G 1

77. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

78. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

79. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550

80. John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

81. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL

82. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

83. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

84. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

85. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

86. Lennart Johnson, Thinking Machines Inc., 245 Fird Street, Cambridge, MA

87. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

88. Malvyn €I. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

89. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL GO439

61801-2300

02142-1214

- 24 -

90. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, T X 77001

91. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

92. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

93. Alan J . Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

94. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

95. Charles Lawsori, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

36. James E. Leis, Rt. 2, Box 142C, Broadway, VA 22815

97. John G . Lewis, Boeing Computer Services, P.O. Box 24346, M/S 71,-21, Seattle,
WA 98124-0346

98. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

99. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY
14853

100. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

101. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

102. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

103. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

104. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

105. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

106. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

107. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 296341906

108. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

109. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

110. Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

111. Jesse Poore, Department of Computer Science, Ayres Hall, University of Teii-
nessee, Knoxville, T N 37996-1301

- 25 -

112. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

113. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

114. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

115. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

116. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

117. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

118. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

119. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

120. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

121. Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

122. Robert Schreiber, RJACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

123. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

124. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

125. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

126. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

127. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

128. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, TX 77251

129. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

130. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

131. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

132. Phuong Vu, Cray Research, Inc., 19607 franz rd., Houston, T X 77084

- 26 -

133. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, TX 77251

134. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663, MS-265, Los Alamos, NM 87545

135. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

136. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN

137-146. O5ce of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

37831-8600

