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ABSTRACT

A signal is required to control the flow of UF; in gaseous diffusion plant
freezer/sublimer systems. The original strategy envisioned for deriving a flow signal was to
take the derivative of the freezer/sublimer weigh cell signal. However, the derivative of
the digitized weight signal is noisy, preventing good control. In addition, a disturbance is
introduced into the weight derivative signal because a refrigerant is circulated through a
shell-and-tube heat exchanger inside the freezer/sublimer. The weight of the refrigerant is
included in the weight measured by the weigh cell. If the circulation rate of the
refrigerant is not steady state, a disturbance exists.

Measurements of upstream pressure, vessel pressure, and output to the system control
valve are available to the control system. Thus, if the flow through the control valve is
characterized properly by these measurements, a Kalman filter can be used in conjunction
with these auxiliary inputs and the weigh cell input to overcome the noise and disturbance
problem and provide an improved estimate of flow rate.

A discussion of the development of a Kalman filter that could be used for this
application is given, and recommendations are given for its implementation.

vii






1. INTRODUCTION

The purpose of gaseous diffusion plant freezer/sublimer systems is to control the
inventory of UF in the process cascade. When it is desired to decrease process inventory,
UF; vapor is transferred from the process cascade into the freezer/sublimer and frozen
out. When it is desired to increase process inventory, UF; is sublimed out of the
freezer/sublimer and transferred back to the process cascade. This process technology has
proven to be economically attractive for gaseous diffusion plants because it enables the
plant to increase power usage during periods of low electrical utility demands—such as at
night when inexpensive, nonfirm power is available—and decrease power usage during
periods of high electrical utility demands. Power usage is proportional to process
inventory. Control of freeze rate and sublime rate is important to this operation,
especially when several freezer/sublimer systems must operate in harmony during a major
inventory swing. The purpose of this report is to recommend an improved method to
estimate and contro} the freeze and sublime rates of freezer/sublimer systems.

1.1 BACKGROUND

To control the flow of UF; into the freezer/sublimer during freeze mode and out of
the freezer/sublimer during sublime mode, a flow signal is required. The original strategy
envisioned for deriving a flow signal was to take the derivative of the freezer/sublimer
weigh cell signal. Because flow phenomena exhibit relatively fast dynamics compared with
other typical process signals, measurement samples should be taken at a rate not less than
once per second to ensure good controllability. Because the weigh cell has such a broad
range, little resolution will exist between samples. At a sample rate of once per second,
the derivative of the digitized weight signal used by the control system will be very noisy.

Another problem associated with the weight derivative method is that unobservable
inputs are present in the freezer/sublimer system. As shown in Fig. 1.1, Freon-114 is used
to cool and heat the freezer/sublimer system during freeze and sublime modes respectively.
The weight of the Freon-114 is included in the weight measured by the weigh cell. If the
circulation rate of Freon-114 is anything but steady state, an unobservable input is added
to the weight-rate signal. The beginning of a typical freeze operation of the prototype
freezer/sublimer system at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah,
Kentucky, is shown in Fig. 1.2. The filtered weight-rate signal has many oscillations. On
the basis of this signal alone, it appears that a flow reversal has occurred. However,
pressure measurements taken inside the vessel and upstream of the control valve do not
confirm this. Obviously, the signal has been corrupted. A current hypothesis is that the
period of oscillations in the graph corresponds to the time it takes for Freon-114 to make
one pass through its circuit. The step change in UF; flow causes a perturbation in the
Freon-114 circulation rate that is a function of the flow rate and circuit path length of the
Freon-114.
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1.2 INCENTIVE FOR USING KALMAN FILTER

A successful implementation of a Kalman filter has been used by Dow Chemical
Company in an application very similar to ours.! The idea behind the method is to use
other inputs in addition to the weigh cell signal to obtain the desired UF, flow rate. In
our application, vessel pressure, stage 4 upstream pressure, and the control valve output
signals are all available to facilitate the determination of flow rate. The additional
measurements can be combined with a mathematical model of the system to obtain an
improved status of weight rate. This approach is shown in Fig. 1.1.

13 REPORT OVERVIEW

The first exercise that must be undertaken is to derive the system model. This
exercise is detailed in Sect. 2. Section 3 discusses the development and application of the
Kalman filter to the system. A control strategy based on the Kalman filter technique is
presented in Sect. 4. Section 5 summarizes the major conclusions and recommendations
of this work.






2. FLOW MODEL DEVELOPMENT

To help develop a simulator/trainer system for the process inventory control system
(PICS) project, a previous flow model had been developed from earlier, limited testing of
the freezer/sublimer system.? This model proved unsatisfactory on the basis of new data.
Therefore, a new approach was taken to improve the flow model for use with the Kalman
filter.

21 NEW MODEL DERIVATION

Empirical data were used to develop the flow model for the freezer/sublimer system.
A series of test data was taken in late 1990 to help characterize flow through the
weight-rate control valve. Pertinent data consisted of freezer/sublimer internal pressure,
upstream stage 4 pressure, control valve output signal, and vessel weight.

An expression that describes compressible flow through a control valve is given by®

l M
F=N'F,CPY|Z=, (2.1)
PYUN TZ

X = , (2.2)

where

and

F = flow rate,
N" = numerical constant,
F, = piping geometry factor,
C, = valve flow coefficient,
P, = upstream absolute pressure,
P, = downstream absolute pressure,
Y = gas expansion factor,
X = ratio of pressure drop across valve to absolute upstream pressure,
M = molecular weight of fluid,
1 = upstream absolute temperature,
Z = gas compressibility factor.

In the data gathered at Paducah on the prototype freezer/sublimer, the upstream
temperature was not measured and will have to be considered a constant. The terms N”,
F;, M, and Z are also constant. Combining constants in Eq. (2.1) yields



F = N'YP,C,JX , (23)

where N’ is a proportionality constant. The gas expansion factor varies from 1 (when

X = 0) to 0.67 (when flow is choked). Also at choked flow, X has an upper limit. The
valve flow coefficient C, is predominantly a function of the valve position 4. In the earlier
flow model development, it was attempted to characterize the system on the basis of a
single freezer/sublimer run in which valve position changed constantly. C,, N’, and the
point of choking were all determined from a single set of data. Because more data were
available for the second model development, a new approach was taken in which the
system characteristics were based on several runs of the system. In addition, the new data
contained periods where the control valve position remained constant for long periods,
thus allowing a better characterization at that valve position. In the earlier model
development, three C, relationships were assumed, and the best was chosen on the basis
of least-squares analysis. The new model development consists of taking data at several
valve positions and determining the C, function from this, rather than assuming a

relationship. To find the relationship, Eq. (2.3) is solved for C, , or F/(N'YP,y/X). Valve
choking and the gas expansion factor are addressed in Sect. 2.2. For now, assume Y = 1.

The method consisted of plotting data points of F/(P,yX) vs u, where F is found by
using the weight derivative during periods when the Freon-114 circulation rate was
considered to be at steady state. The plot is shown in Fig. 2.1 for different data sets. The
next step was to find an equation that provides the best fit of the data. Roffel and

Rijnsdorp describe a valve characterization of the following form which appears to match
our data,* :

N
C, = —), (2.4)

1+ aRs(l-u)

where N is a constant that we will use to incorporate the proportionality constant of

Eq. (2.3) with that required for the C, relationship here, « is the ratio of the squares of
system capacity to valve capacity, R, is the valve rangeability, and u is the valve output
scaled between 0 and 1. It is necessary to solve Eq. (2.4) for the three parameters N, a,
and R, by using data from tests. Because the equation is nonlinear, a least-squares
solution cannot be solved explicitly. However, preliminary parameters can be found by a
method in which a computer program is written to scan through bracketed values of each
parameter by using nested loops and saving the set of parameters with the least sum of
squared errors compared to the test data. The values of the parameters are bracketed by
using engineering judgment. The interval between the bracketed values is divided into as
many subintervals as is practical. A computer program uses nested loops to loop through
each value of each parameter, and the sum of squared errors as compared with actual data
is computed. As the program proceeds from loop to loop, the least sum of squared errors
is saved along with the values of the parameters for the least sum. A preliminary set of
parameters (N = 1.6, a = 0.029, and R, = 47) was derived by using this method.
However, this method does not provide the optimum solution, because it depends on the



resolution assigned to the parameters in the bracketed method (i.e., the number of
subintervals that the bracketed values are divided into).

A better method can be used that begins with the preliminary parameters and uses a
lincarized sum of squares to provide a better fit to the data. A truncated Taylor series
expansion is performed on Eq. (2.4). Partial derivatives are required for the truncated
Taylor series expansion. Partial derivatives of Eq. (2.4) with respect to the three
parameters are given in the next three equations.
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Fig. 2.1. Summary of C, data points. Symbols refer to test numbers: 0, 1106C;
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€y o _aNA-mRE™ [q 2107 (2.7)
aR——a(-—u)Rv [+aRv ] .

v

The truncated Taylor series expansion, using only first partial derivatives, is given by
the following equation, where the deltas refer to changes in parameters from their initial
values, and the zero subscripts refer to the initial parameter values, which is where the
partial derivatives are evaluated:

ac ac ac
- cw Ny ap R) + S AN+ —Ae + —XAR,. 28)

P, VX N oa oR,

Because Eq. (2.8) is linear, it can be solved by traditional least-squares techniques.
All variables in Eq. (2.8), except parameter-related values, can be obtained from
experimental testing. Described earlier was how to derive initial values of the parameters;
changes from those initial values, AN, Aa, and AR, , are what we are solving for. With
several sets of data, a matrix is set up of the following form, where the nonzero subscripts
refer to data point numbers:

F r
1 — Cv(ul) No’ ao’ Rvo)-1 xv(u 1) wv(u l) acv(ul) W
F ac aC
2 - Cv(uz, NO’ ao, &o) acv(uZ) v(uz) v(uz)
Plz@ oN da 3 Rv AN
= - . o llae], @9
AR,
B Cuy Ny 2y R) oCfu) OCu) oCw,)
Y un’ a v,
.Pln‘/j('” o %o oJ oN da 2R,
or
y =@8, (2.10)

where y is an (n x 1) vector, @ is an (n x 3) matrix, and 8 is a (3 x 1) vector. This matrix
equaton is over-specified when the number of data points exceeds the number of
parameters being solved for as is our case. The equation is solved by using the
least-squares technique with



0= (@To) Ty . (2.11)

Equation (2.11) is solved, the changes are made 1o the parameters, the parameters are
reentered into the equation as new initial values, and the routine is continued iteration by
iteration until the parameters change no more than a specified tolerance. The
parameters, as determined by this exercise, are N = 1.69, a = 0.055, and R, = 33.7. The
fit is shown in Fig. 2.2. Because a butterfly valve is used as the system control valve,
leakage exists when the valve is closed. That is why the curve does not go through the
origin.
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Fig. 22. Valve characterization and test data.

22 CHECK FOR CHOKED FLOW

Choked flow exists when flow is no longer a function of (X, usually occurring when
downstream pressure drops to the point where flow is sonic through the vena contracta of
a control valve. Further decreases in downstream pressure do not result in further
increases in flow rate—sonic flow is the limiting factor. To check for choked flow, a graph

of F{P, vs yX was prepared at constant valve positions u. If flow choking exists in the
flow regime of interest, F/P, will be a linear function of yX until a maximum (X is
reached. At this point, F/P, will level off and will no longer be a function of yX. Two

9



examples are shown using data from the tests at Paducah. Enough data to make this test
are available at only two valve positions, at ~15% and ~36%. Figure 2.3 shows the test at
~15%, and Fig. 2.4 shows the test at ~36%. In each figure, two clusters of data are

present: a set at lower (/X and a set at somewhat higher X. If F/P, is strictly linear with

yX, a straight line should go through both sets of data and the origin. If choking exists, a
line through the origin and the lower set of data may not go through the higher set of

data. The data in Fig. 2.3 show a strong argument that choked flow exists at X = 0.71
or X = 0.50. However, Fig. 2.4 is not such a strong argument. If there is choking, it

exists around X = 0.81 or X = 0.66. In both cases, the determination of the C, function
will not worsen considerably if it is assumed that choked flow is not present. Notice also
that the gas expansion factor is assumed to be unity. Because this value is a function of
flow choking, it is difficult to specify the gas expansion factor without more knowledge of
choking conditions. Attempts to incorporate the gas expansion factor scattered the data
more than the data shown in Fig. 2.2. Given the fact that this model will be used as only
a starting point estimate in the Kalman filter, it is not worthwhile to determine a flow
equation with any more accuracy than shown here. The modeled flow will be compared
with on-line data to determine a refined estimate.

The resulting model of flow (or weight rate) as a function of upstream stage 4
pressure, vessel pressure, and valve position is shown in the next equation. In freeze
mode, P, is upstream stage 4 pressure and P, is the vessel pressure. In sublime mode, P,
is the vessel pressure and P, is upstream stage 4 pressure divided by 5. Based on
operating experience, the rule of thumb is that A-line pressure is about one fifth B-line
pressure. During freeze mode, UF; is transferred from B-line; and in sublime mode, UF;
is transferred to A-line:

NP /X

\/1 + aR24Y

F = (2.12)

23 DEAD TIME

Because the control valve is not in very close proximity to the freezer/sublimer vessel,
a dead time will exist between the time action is taken at the control valve and the time a
corresponding change is noticed in the reading from the weigh cell. Tests have shown
that this dead time is on the order of 10 to 12 s. Therefore, in calculations where the
weight rate, as determined from weigh cell readings, is compared with the flow rate, as
determined from the model developed here, dead time 1, should be included in the
equation as shown in

k- Xk -
AW | Ry = YOG TIXE ) @.13)
At \/ 201 -u(k- )]
1+ aR,

10
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3. KAILMAN FILTER DEVELOPMENT

A Kalman filter is analogous to closed-loop control in that it samples a measurement,
compares this measurement against its own estimate, and takes corrective action via the
Kalman gain and the error between the two. A schematic is shown in Fig. 3.1. A
full-fledged Kalman filter recursively adjusts the Kalman gain K to minimize the
covariance matrix of the error between the actual measurement and the estimate.
Steady-state Kalman filters use a constant value for the Kalman gain that has been derived
by analysis of filter performance. Development of the flow model for our system was
covered in Sect. 2. This model will be used by the Kalman filter. Development of a
full-fledged Kalman filter as well as a steady-state filter for freezer/sublimer systems is
presented in this section. In our system, the plant and model observable inputs are the
control valve signal, upstream pressure, and downstream pressure. The unobservable
input is Freon-114 weight. The measurement is freezer/sublimer weight, and the estimates
are flow and freezer/sublimer weight.

KALMAN FILTER

u z - X
PLANT K MODEL

PLANT INPUTS MEASUREMENT S ESTIMATES
WALMAN GA TN

FEEDAACK
MATA | X

Fig. 3.1. Analogy of Kalman filter to feedback controller.

3.1 SYSTEM MODEL EQUATION

The system model equation is represented in state space discrete-time form by the
following general matrix equation, where A is the state matrix, B is the input matrix, x is
the state vector u is the input vector (not to be confused with the scalar u used as valve
position in the preceding section), and w is noise, or the mismatch between the model and

1 data:
actual data x(k+1) = Ax(®) + Bu®) + wik) . (3.1)

13



For our system, we are interested in two states: flow (or weight rate) and weight.
The inputs to the system are upstream and downstream pressure and control valve output.
Because the relationship of these inputs to actual flow and weight is nonlinear, it is easier
to use modeled flow as the input. The linearized system state equation then takes the
following form, where x; = flow or weight rate, x, = weight, and F = modeled flow:

x(k+)} 1 o0 xl(k)] H wl(k)] (32)
[xz(k+1) = [At 1] x,(8) *lo [F(k+1) - Fk)] + wy)|

3.2 MEASUREMENT MODEL EQUATION

The state space measurement equation, in general, is given by the following matrix
equation:

z(k) = Hx(k) + v(k) , (3.3)

where z is the measurement vector, H is the measurement matrix, and v is the
measurement noise. For our system, weight is the only real measurement—other inputs
are incorporated into the model. The equation is

z(k) = [0 1]

x, (k)
+ k) . (34)
x, (k)] k)

3.3 KALMAN FILTER EQUATIONS

A classical Kalman filter consists of five distinct steps*®: (1) computation of Kalman
gain, (2) updating the estimate, (3) updating the covariance matrix, (4) projecting the
estimate, and (5) projecting the covariance matrix. The classical equations and
corresponding equations for our application are shown in this section.

33.1 Computation of Kalman Gain

Computation of the Kalman gain is given by the following matrix equation:

K(k) = POHT[HPGRHT + R®]™!, (3-5)

where K is the Kalman gain, P is the estimation error covariance matrix, and R is the
covariance matrix of the measurement noise v. Because there is only one measurement
(weight), R is a scalar and can be represented by 7, the variance of the weight
measurement. The remainder of the equation is broken down as follows, where p;; are
elements of the estimation error covariance matrix:

Then the Kalman gain equation for our system is

14



.Pn Py |0
HPHT = [0 1]
Py Pn|ll
'pu (3.6)
=[0 1]
P
= Pzz ,
PHT - M Py [0] ) 12] . 3.7
n Pa|ll 2
[ Py
P P, + 1| [K®
K@ = L |72 . (38)
Pyl Pp + 7 Py K, (k)
Py + T
3.3.2 Updating the Estimate
The general matrix equation for updating the estimate is
%) = (k) + K@®[zk) - H®)1, (39

where the hat represents an estimate and the superposed minus sign represents a
preliminary estimate based on the last output projected forward one step by the system
model. Then, for our system,

K
K: ECEENCIR (3-10)

= +
£,(k)

[x',(k)] £ (k)
X0

Inspection of Eq. (3.10) shows that both flow (x;) and weight (x,) are based on just
onc raw measurement, weight. This may appear odd at first, but because the units of K|
are inverse time, then it is obvious that units of flow, or weight per unit time, are used.
Equation (3.10) also points out the job of the Kalman filter—to compromise between raw
measurement data and modeled data. It is easier to see this with the weight estimate. If
K, = 0, the Kalman estimate is based wholly on the system model. If X, = 1, the Kalman
estimate is based wholly on the raw weight measurement. In practice, the Kalman gain
will lie between these two extremes.

15



33.3 Updating the Estimation Error Covariance Matrix

The general equation for updating the estimation error covariance matrix and its
interpretation to our system is given by

P = [I - KGQH] P (®)

10 [K
01

1 -k,

o 1-K,
Py - KiPy

[0 1]}P )

(3.11)

Pu P

p22
Pi-Kipyn

P21

Py —KoPy P~ K.pn

3.3.4 Projecting the Estimate

The estimate for the upcoming time step, based on the system model, equation (3.2) is
10
Ar 1

33.5 Projecting the Estimation Error Covariance Matrix

2 (k+1) ()

£,(k)

(3.12)

%, (k+1)

. [(1)] [Fl+1) - F®)] .

The projection of the estimation error covariance matrix for the upcoming time step is
derived as follows, where Q is the model covariance matrix:

P-(k+1) = AP(AT + Q
(1 0| {Pu P|[1 At
= + Q
A7 1) |p,, Pyl [0 1
Py P 1 At
= + Q
At py + Py ATpy + Pyl 1 (3.13)
[ Py At p,; + py u qxz]
= +
At pyy + Py At? p, + At(py + Py) + Pn| |9n 92
[ Py *tdn Atp,, + Py *+ 42
(At pyy + Py *+ 4y AP p,, + At(py + Pyy) + P * 4

16



34 DETERMINATION OF THE MODEL COVARIANCE MATRIX

The model covariance matrix Q is a measure of the model vs data mismatch shown by
win Eq. (3.1). It can be determined from experimental data. The definition of the
covariance matrix is given in the following equation, where x is the state vector that
contains both the flow state and the weight state, and the tilde refers to modeled values of
the state vector based on the system model equation (3.2):

Q= E{x - )x - x)7}. (3.14)
For our system, the model covariance is a (2 x 2) matrix of the form

E{(x, - £,)*) E{(x; - £)(x; - %)}

- (3.15)
E{(x, - )x - £)}  E(lx - )

Notice that to determine Q properly, a value of x, flow is needed. Because an actual
measurement of flow is not available, the derivative of weight was used. Because the
correlation of UF flow rate to the weight derivative varies from data set to data set (it is
affected by Freon-114 flow rate), several of the data sets must be analyzed to yield a
general value for the model covariance. This was done by determining the model
covariance matrix of all the data sets shown in Appendix A and choosing the model
covariance matrix whose element values lay in the midrange of all element values of the
complete set of data. The matrix chosen is

013 72] (3.16)
72 2900

Values of the elements of the covariance matrix affect how the Kalman filter will
compromise between the system model and the raw measurements. As the ratio q,,/g,,
increases, x; will follow measurements closer; when the ratio decreases, x, will follow the
model closer.

3.5 STEADY-STATE KALMAN FILTER

The estimation error covariance matrix element values usually will converge to a
constant over a certain length of time. A simplified, steady-state Kalman filter can be
used that is based on the ultimate values of the covariance values. Tests of the prototype
data show that values converge to K, = 0.0067 and K, = 0.995 given the covariances in
Eq. (3.16). The closeness of the value of K, to one indicates that an estimate of weight is
probably not necessary; the raw value could be used just as well.
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3.6 OFF-LINE RESULTS FROM TEST DATA

A comparison of the original filtered weight-rate signal, modeled flow signal, and
Kalman-filtered flow signal for Test 1126A is shown in Fig. 3.2. The original data are the
same as those shown in Fig. 1.2. As described earlier, the original weight-rate signal shows
extreme oscillations, so extreme that flow reversal is implied. The modeled flow does
show high initial flow followed by one valley before stabilizing. However, an offset exists
between the modeled flow and the raw weight-rate signal after the raw signal has
stabilized. The Kalman-filtered signal begins with a high initial signal followed by a valley
lower than that of the modeled signal, but the Kalman-filtered signal then converges with
the raw weight-rate signal after the raw signal has stabilized.

a |
8 AW/AL
7
5 .
™
(]
3 >
J
o} 4
7
& 3 MODELED FLOW
.
o 2
$ - KALMAN-FILTERED FLOW
0 IJ‘JHI
.
-2
-3 T T T T T T T T T T 1
n] 4 8 12 16 20 24

Time (min2

Fig. 3.2. Comparison of raw weight-rate signal, modeled flow signal, and Kalman-
filtered flow signal for test 1126A data.

Plots of all the experimental data sets are compared in Appendix A. In addition to
the weight-rate comparisons, graphs of weight comparisons between the actual vessel
weight and the weight as determined by integrating the Kalman-estimated flow are shown.
The vessel weight signal is less noisy than the raw weight rate signal; therefore, it serves as
a better guide as to whether the Kalman-estimated flow signal is accurate. The two
signals should converge. In the graphs of sublime tests, the integrated Kalman flow signal
is reset to that of the raw weight signal after completion of the Freon-114 transfers. The
Freon-114 transfer in sublime mode represents a drastic bias error to the weight derivative
and, consequently, an error in the flow signal. Therefore, at the beginning of sublime
mode (for the first ~220 s) the Kalman filter should be coded to rely totally on the
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modeled flow rate and to ignore the weight signal. The sublime-mode graphs in
Appendix A reflect the addition of this code to the Kalman filter.

Given the results of the test data, it appears that a Kalman filter is useful in this
application. However, on-line testing of the Kalman filter should be carried out before
proceeding fully. Because more instrumentaion is involved in deriving the weight-rate
signal using this method, calibration of one instrument with respect to another becomes
more crucial. Preliminary testing data indicate that at low flow rates, zero shifts in the
pressure transmitters may cause a problem not only because of a negative differential
pressure but also because the square root of this signal is taken. A square root taken of a
negative signal would cause an error in the processing algorithm.

3.7 IMPLEMENTATION

The analysis up to this point may seem to indicate that the Kalman filter is a
complicated system. Like many developments, the theory behind the implementation is
more complicated than the actual mechanism for carrying out the implementation. In our
case, the Kalman filter can be coded into standard data acquisition and control systems.

3.7.1 Personal-Computer-Based Data Acquisition System

A pseudolisting of code is given in Appendix A which can be used to test the Kalman
filter on the prototype freezer/sublimer system by using a personal-computer-based data
acquisition system. This listing is for the steady-state Kalman filter; the full-fledged
Kalman filter would take more code than shown here.

3.72° Texas Instruments Df3 Control System

Figures 3.3 and 3.4 represent an implementation of the Kalman filter in the Texas
Instruments D/3 control system. Figure 3.3 is a block diagram of the continuous control
strategy required, and Fig. 3.4 is a logic diagram of a device that feeds status bits to the
continuous control strategy. The D/3 is the control system chosen for inventory control at
PGDP. The Kalman filter is not a straightforward application for the fill-in-the-blank,
connect-the-block configuration used in control systems like the D/3. However, the
strategy is implementable, and if greater processing capability is required, the D/3
Sequencing and Batch Language could be used. The digital device logic assumes that
signals arc available to determine whether the system is in freeze or sublime mode. The
diagrams shown here convey the concept for implementation. The actual configuration
will probably differ when the strategy is studied in detail by the end programmer.
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4. CONTROL STRATEGY

The goal of the Kalman filter is to provide a suitable freeze or sublime rate signal of
the freezer/sublimer system that can be used as an input to a controller. This section
discusses two types of control strategies to be considered when developing the control
strategy. The first makes use of the flow model that was developed in Sect. 2, and the
second is a conventional control strategy.

4.1 PROCESS MODEL-BASED CONTROL STRATEGY

An existing method of nonlinear control, process model-based control,” could be used
with the flow equation already developed. An explanation of this method follows.

The characterized flow of the prototype freezer/sublimer system as a function of
upstream and downstream pressure and valve output is shown by

NP /X

‘/1 + aRXH .

But what if the equation is solved for u? This equation would give a steady-state
valve output as a function of flow set point as well as upstream and downstream pressure
as

F= (4.1)

—ln(Rfa) +In

2
hd

4.2)

NP\(P, - P) 1]

2R,

where F,, is the flow set point.

Figures 4.1, 4.2, and 4.3 show what the behavior of the valve output signal should be
relative to the flow set point, upstream pressure, and downstream pressure respectively.

Of course, the calculation block shown in Eq. (4.2) will not perfectly remove biases
and other modeling errors; therefore, the loop should be closed with a control block
added. But the control block could feed into the calculation block in such a way that the
calculation block could linearize the output and adjust it for varying process conditions.
Instead of acting on the raw flow set point F,, , the calculation block could act on the
controller output U*. Input ranges to the block would have to be checked to ensure that
no divisions by zero or memory overloads occurred in the calculation block.

A block diagram of the proposed scheme along with the Kalman filter is shown in
Fig. 44.
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42 CONVENTIONAL LINEAR CONTROL STRATEGY

Flow is typically one of the fastest responding process variables in industrial
manufacturing facilities. Ideally, a control loop should be linearized to capitalize fully on
linear feedback control strategies. However, when the time constants involved are small,
it does not take long to recover from the effects of controlling a nonlinear system with
lincar feedback control.

A conventional linear control strategy for the freezer/sublimer system would entail
using the Kalman-filtered flow rate as the process variable input to a standard
proportional-integral-derivative controller. No linearization would be involved.



5. CONCLUSIONS AND RECOMMENDATIONS

Unless the characteristics of the freezer/sublimer system are found to change
drastically with time, we recommend the use of a steady-state Kalman filter to estimate
freeze and sublime rates of the freezer/sublimer systems. This strategy is simpler than
continuously updating the Kalman gain factors, but preliminary testing indicates that it
works for a fairly broad range of test cases. The steady-state Kalman gains can be used
for both freeze and sublime modes.

No benefits are foreseen in using a nonlinear control strategy or any other
characterization or compensation of the controlled variable. Use of these techniques
would only complicate the control system. We recommend the use of conventional linear
control strategy.

Because the analysis in this report represents only off-line analysis of actual plant
data, we highly recommend that the algorithms be tested on-line with the prototype
freezer/sublimer system before using them in the design of the remainder of the control
system.

The premise of this report is that using a flow meter to measure flow of UF; into and
out of the freezer/sublimer vessel is not feasible, because of high costs associated with
installation of a meter on several parallel freezer/sublimer systems or because it is simply
not practical to install a flow meter in the line for physical or mechanical reasons. If these
premises are not true, installation of a flow meter should be addressed.
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Appendix A

FREEZE AND SUBLIME DATA, WEIGHT-RATE AND WEIGHT COMPARISONS,
AND KALMAN FILTER AND CONTROL ALGORITHM PSEUDOCODE






Freeze Data

Table A.1. 1106C data

U % | FP | X | Xus|F(E@VX)

560 | 0.142 0.43 0.62 0.22

15.95 0.213 0.38 0.42 0.34

36.4 0.381 0.26 0.38 0.73

55.9 0.511 0.18 0.25 1.17

76.2 0.539 0.15 0.18 1.37

96.6 0.556 0.14 0.15 1.48

16.0 0.232 0.35 040 0.38

36.2 0.397 0.20 033 0.83

56.5 0.446 0.13 0.18 1.18

Table A2. 1103C data

U % | FP| X | Xuwl|F(@ VX !l
s62 | 0143] o032| o0s55] 023

16.0 0.192 0.26 0.30 0.37

371 0.330 0.16 0.26 0.81

57.2 0.388 0.10 0.16 1.14

Table A3. 1126A data

U%| FP | Xgw| Xug|FI(P,vX)

—]

36.2 0.447 0.33 0.36 0.82

Table A4. 1110A data

vz

F/P,

Xlow

Xiigh

F/(P, vX)

" 15.93

0.232

0.34

0.40

0.38
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Sublime Data

Table A.5. 1108B data

U, % | FP, Xiow | Xuig | FAP, vX) ||
15.72 | 0.246 067 072] o020 |
360 | 0593 067 072] 0714
565 | 0838 055 067| 1.086
770 | 1.03 046 | 055| 1459
1058 | 1.11 044 | 046| 1661
Table A.6. 1103E data
U, % | F/P, Xiow | Xuign | FI(P, vX)
157 | 0254 073 | 076| 0294
362 | 0.582 067 076| 0693
569 | 0837 0541 067| 1.095
772 | 1.06 040 | 054| 1.569
98.7 | 1.13 021 | 0.40 1.84
529 10248 | 066) 071| 0300
Table A.7. 1105C data
U, % | FP, Xiow | Xuigs | FI(P, vX)
168 | 0277 076| o0s0| o313 |
366 | 0.601 075 080] 0687
504 {028 | 073]| 076 0332
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"Kalman Filter and Control Algorithm Pseudocode

DIM $(-12 TO 0), P1(-12 TO 0}, P2(-12 TO 0), PY301(-12 TO @), E(-1 TO 0), FO TO 1)

dT =1 'scan period in seconds
Ke = 1.5 ‘controller proportional gain used in simulations
Ki=04 ‘controller reset rate used in simulations

'Set initial conditions of estimates
X1=0 flow estimate
X2=0 ‘weight estimate

"Begin looping
DO

"Reset variables in FIFO arrays
FOR i =-12t0 -1

S(@) = S(i+1)

P1(i) = P1(i+1)

P2(i) = P2(i+1)

PY301(i) = PY301(i+1)
NEXT i

"Read pew variables for this scan
READ S, UPRES, PT306, W

S(0)=S$
PY301(0) = PY301

’Set new values of array variables
IF S = 53 THEN

F/S is in sublime mode

P1(0) = PT306

P2(0) = UPRES/S
ELSEIF S = 66 THEN

’FSS is in freeze mode

P1(0) = UPRES
P2(0) = PT306
ENDIF

This section of code checks to see if the F/S has just been switched to sublime mode.
If it has, a flag is set for 220 s. During this time, the F/S weight input is ignored,
‘and the controller acts on the modeled flow only.
IF S(-11) <> 53 THEN
SublimeStartup% = false%
Timer = 0
ENDIF
IF S(-11) = 53 AND S(-12) <> 53 THEN SublimeStartup% = true%
IF SublimeStartup% THEN
Timer = Timer + 1
IF Timer > 220 THEN
SublimeStartup = false%
Timer = 0
ENDIF
ENDIF



"Update estimates
IF SublimeStartup% THEN

X1 =X1 ’ignore weight input during sublime startup
X2 = X2-.134 *dT + 0.995 * (W -X2) ’freon transfers around 13.4 Ibjs
ELSEIF S(-11) = 66 THEN
X1 = X1 + 0.0067 * (W-X2) ’frecze mode weight rate
X2 =X2+0995 *(W-X2) "freeze mode weight
ELSEIF §(-11) = 53 THEN
X1 = X1 - 0.0067 * (W - X2) 'sublime mode weight rate
X2 =X2+0995 *(W-X2) ’sublime mode weight
ELSE
Xi=0 ‘weight rate = 0 except in freeze or sublime mode
X2=W ‘use raw weight input
ENDIF

’Set old and new error terms

E(1) = E©)
E(0) =SP-X1

’Control Algorithm (PI mode--no derivative)
PY301 = PY301 + Ke * (E(O) - E(-1) + Ki * dT ® E(Q))

’Limit eontrol output between 0 and 100%
IF PY301 > 100 THEN PY301 = 100
IF PY301 < 0 THEN PY301 =0

'Calculate modeled flow
F(0) = F(1)
IF 5(-11) = 53 OR S(-11) = 66 THEN
F(1) = 1.6*P1(-11)*SQR((P1(-11)-P2(-11))/P1(-11))/SOR(1 +.029*47 ~ (2*(1-(PY301(-11)/100))))

ELSE
F1) =0 ’set modeled flow to zero if not in freeze or sublime mode

ENDIF

"Project Bew estimate for next scan

X1 = X1 + F(1) - F(0) ‘weight rate

IFS =66 THEN X2 = X2 + dT* X1 ‘weight (increases in freeze mode)

IFS =53 THEN X2 =X2-4T°®Xl1 ‘weight (decreases in sublime mode)
LOOP

END

Variable Definitions

Ke = controller proportional gain
Ki = controller integral term (resets/s)
PT306 = freezer/sublimer pressure (psia)

PY301 = controller output signal to valve (%)

S = freezer/sublimer status (53 = sublime, 66 = freeze)
SP = controller set point (Ib/s)

Timer = freon weight shift timer at beginning of sublime mode
UPRES = upstream stage 4 pressure (psia)

w = measured weight (Ib)

X1 = estimated weight rate (Ibjs)

X2 = estimated weight (1b)

Arrays

Arrays are used to store past values of key variables to enable calculating flow with deadtime and to track past values of other variables.

= controller error term array

FQ = flow model array (1bs) )

P10 = general upstream pressure used for both freeze and sublime modes (= UPRES in freeze mode, = PT306 in sublime mode)
P20 = general downstream pressure used for both freeze and syblime modes (= PT306 in freeze mode, = UPRES/S in sublime mode)
SO = freezer/sublimer status array

PY301() = valve output array
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