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ABSTRACT

Positive limiter biasing on the currentless Advanced Toroidal Facility (ATF) tor-
satron produces a significant increase in the particle confinement with no improvement in
the energy confinement. Experiments have been carried out in 1-T plasmas with
~400 kW of electron cyclotron heating (ECH). Two rail limiters located at the last closed
flux surface (LCFS), one at the top and one at the bottom of the device, are biased at
positive and negative potentials with respect to the vessel. When the limiters are
positively biased at up to 300 V, the density increases sharply to the ECH cutoff value.
At the same time, the H, radiation drops, indicating that the particle confinement
improves. When the density is kept constant, the H,, radiation is further reduced and
there is almost no change in the plasma stored energy. Under these conditions, the
density profile becomes peaked and the electric field becomes outward-pointing outside
the LCFS and more negative inside the LCFS. In contrast, negative biasing yields some
reduction of the density and stored energy at constant gas feed, and the plasma potential
profile remains the same. Biasing has almost no effect on the intrinsic impurity levels in
the plasma. '






1. INTRODUCTION

Biasing experiments on tokamaks have been very successful in improving the
global confinement parameters (to H-mode-like values) by setting up a radial electric
field at the plasma edge [1, 2]. Experiments on the B-3 stellarator [3] also showed that a
radial electric field induced by edge biasing resulted in rapid plasma rotation and
improved particle confinement. These experiments have been extended to the current-
free Advanced Toroidal Facility {4] (ATF) for further study and characterization of the
effects of an electric field on plasma confinement. ATF has a torsatron configuration
with [ =2, 12 field periods (M = 12), a major radius R, = 2.1 m, and an average plasma
radius a = 0.27 m. The current-free magnetic configuration of ATF, which is produced
by external means, has moderate shear; the rotational transform (/27 = 1/q, where q is
the safety factor) at the last closed flux surface (LCFS) is ¥2xn = 1, which is about a
factor of 3 higher than the central value. Initial biasing experiments have been carried out
in plasmas with electron cyclotron heating (ECH). ECH plasmas are created at a mag-
netic field B = 0.95 T using a 53-GHz gyrotron source with heating power up to PEcy ~
400 kW. In these ECH plasmas, a representative line-averaged plasma density is
e ~ 5 x 1012 cn3, and the plasma stored energy Wp =2 kJ. A pair of rail limiters [5],
which are normally floating, one at the top and one at the bottom of the device, can be
biased at positive and negative potentials with respect to the vacuum vessel.

2. EXPERIMENTAL SETUP

Most of the cxperirhents for this study have been carried out by inserting the
limiters, which are not on the same field line, slightly inside the internal separatrix
defining the LCFS, where the normalized radius in flux coordinates is p = rfa = 1. The
poloidal cross section of the plasma varies with the toroidal angle ¢. At the locations of
the limiters, @ = 0° and 30", the plasma cross section is vertically elongated (almost
elliptical); at @ = 15°, it is horizontally elongated [4]. For these experiments, the limiters
are simply considered as electrodes for providing the biasing because their particle flux
coverage is only ~18%, owing to their small physical size and to the low g value, g ~ 1,
at the edge [5]. The limiters do not affect the edge plasma potential profile when they are
floating, which they typically do at about ~40 V with respect to the vacuum vessel. For
biasing the limiters, a 300-V dc power supply that can deliver a maximum output current
of 200 A is used. The locations of the limiters on ATF, the biasing setup, and the
diagnostics used for this study are shown in Fig. 1. The limiters are kept under bias
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Fig. 1. Locations of the limiters on ATF, the biasing setup, and the diagnostics used
for this study.

throughout a discharge. To characterize the effects of limiter biasing on confinement,
comparison experiments with and without biasing were performed using either a constant
gas feed or a constant density obtained with feedback control.

3. EXPERIMENTAL OBSERVATIONS AND RESULTS

The first comparison experiment was carried out with a constant gas feed and a
positive biasing voltage of Vpias = +120 V with respect to the vacuum vessel applied to
the limiters (Fig. 1). After the plasma discharge was initiated, the line-averaged plasma
density increased rapidly, as shown in Fig. 2(a), by about a factor of 3 from the value
when the limiters were floating and reached the cutoff density of the ECH at the second
harmonic resonance, ~1013 cm™3; this occurred at time . ~0.125 s. At the same time, the
particle recycling, as indicated by a number of Hy monitors around machine, was
significantly lower than in the nonbiased case. For example, as shown in Fig. 2(a), a drop
in the intensity of the Hg radiation, 7 H,-> from both the limiter and the wall indicates
reduced particle recycling as a result of improved particle confinement with the positive
biasing. Similar results are observed on the Texas Experimental Tokamak (TEXT) [6],
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Fig. 2. Time evolution of plasma parameters (n,, Hy signals, Wp, Teo » and gas feed)
for floating limiter, shot 17493, and positively biased (+120-V) limiter, shots 17495 and
17497, for (a) constant gas feed and (b) constant density. The ECH cutoff for shot 17495
is indicated; at this time, the plasma collapses.

DIII-D [7], and the Tokamak de Varennes [8] but with negative limiter biasing. Again
relative to the floating case, the plasma stored energy Wy, measured with diamagnetic
loops, initially increased with the density but then collapsed for a time ¢ > 1., after the
ECH was cut off. ,

When this experiment was repeated at a constant plasma density, obtained by
feedback control of the gas feed, Fig. 2(b), a further reduction of Iy, and almost no
change in W, were observed. With positive biasing, the gas input required to keep the
density constant was much lower than that required in the case without biasing—almost



zero. This observation again indicates that the particle confinement is substantially
higher with positive biasing, and for this case it is as much as an order of magnitude
higher. The central electron temperature T, from the electron cyclotron emission (ECE)
measurements shows a drop from 925 eV to about 725 eV at ¢ = 0.3 s; this temperature
drop was also measured with Thomson scattering (TS). Measurements from the heavy-
ion beam probe [9] (HIBP) and the fast reciprocating Langmuir probe [10] (FRLP)
indicate that the plasma potential ¢ at the LCFS, p ~ 1, increased by about +100 V,

Fig. 3, as if as a result of the shift in the peak of ¢ from outside the edge, p ~ 1.1, toward
the inside, p ~ 1. Similar results are also observed on TEXT [6]. This spatial shift in ¢
results in a change in the sign of the radial electric field E,, which becomes outward-
pointing outside the LCFS and more negative inside the LCFS. With positive biasing, the
estimated radial electric field changes from E, = —6 V/cm to E, = 25 V/cmatp 2 1.

As observed in earlier edge turbulence studies on ATF, the peak of ¢ is related to
the location of the shear layer of the poloidal phase velocity of the electrostatic
fluctuations [10]. Therefore, positive biasing affects the location of the velocity shear
layer and, in turn, the edge fluctuation characteristics [11,12]. For example, the power
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spectrum of the edge plasma fluctuations in electron density 7 and plasma potential ¢ at
the LCFS, as measured with the FRLP, is less broad with biasing because of the
quenching of the high-frequency (>100-kHz) components, as shown in Fig. 4. The
fluctuation levels (rms) 7, and 6,,“5 are reduced significantly, Fig. 5, with positive
biasing. At the same time, the propagation direction of the electrostatic fluctuations
reverses to the ion diamagnetic direction with positive biasing. This result is shown in
Fig. 6, which displays the measured wave number k in the poloidal direction as a
function of the applied bias voltage to the limiters. Moreover, we see from Fig. 6 that the
wavelength and the correlation length (~ 1/k) of the fluctuations are longer with positive
biasing. ,
As a consequence of these reductions in the fluctuation parameters, the fluctuation-
induced particle flux T, ~ (k/B)7igmg &rms is also reduced, Fig. 7, by almost an order of
magnitude at the LCFS. One explanation for this reduction is decorrelation of the
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turbulence mechanism around the shear layer, resulting in suppression of the fluctuation-
induced particle transport [12]. This reduction in T, is consistent with the observed
improvement in Hf,/[HOl (TH,, from the wall), which is related to the global particle con-
finement time, by about an order of magnitude as shown in Fig. 7. The core plasma
density profile, Fig. 8, obtained from TS at r = 0.3 s shows a higher central value, by
about a factor of 2, while the edge density as measured with the FRLP drops, Fig. 9(a),
indicating a more peaked density profile. The edge electron temperature profile,

Fig. 9(b), with positive biasing, also measured with the FRLP, indicates lower values, by
almost a factor of 2. The core plasma pressure, Pe ~ neTe, profile from the TS measure-
ments remains approximately the same with positive biasing, consistent with W,
measurements. Power deposition on the limiters is also reduced, by about a factor of 6, as
a result of reduced edge plasma density and temperature, since the particle heat flux to
the limiters is ~ neTel .
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4. CONCLUSION

Even though global particle confinement improves with positive biasing on ATF,
so far almost no improvement in the energy confinement is observed. This result strongly
suggests that the edge radial electric field affects the fluctuation characteristics by
changing the location of the velocity shear layer, which leads to strong decorrelation of
the turbulence around it and, in turn, to suppression of the turbulence, which is the
dominant mechanism for global particle transport. In contrast to tokamak biasing
experiments [1, 2], a strong decoupling of the energy confinement and the particle
confinement is found. In experiments with negative biasing, on the other hand, there is
some reduction of the density and stored energy at constant gas feed and almost no
change at constant density. Simultaneous measurements of the plasma potential proﬁie
indicate almost no significant change with negative biasing of the limiters. Biasing
causes almost no increase in the iron impurity signal from the plasma center or in the
oxygen impurity signal from the edge.
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