
3 4 4 5 6 D3b3141 b

ORNL/TM-I 2 195

Engineering Physics and Mathematics Division

AN EFFICIENT ALGORITHM TO COMPUTE
ROW AND COLUMN COUNTS FOR

SPARSE CHOLESKY FACTORIZATION

John It. Gilbert f
Esmond G. Ng 1

Barry W. Peyton 1

t Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304-1314

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

$ Mathematicai Sciences Section

Date Published: September 1992

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Enrisy, and by the Institute for Mathe-
matics and Its Applications with funds provided by the Na-
tional Science Foundation.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-ACO5-840R21400

3 445b 11363141 b

Contents

1 Introduction .
1.1 Applications .
1.2 Previous work .
1.3 Outline of the rest of the paper .

2 Thealgorithm .
2.1 Definitions and problem statement .
2.2 Rowcounts .
2.3 Column counts .

3 Implementation .
3.1 A fast algorithm for finding supernodes

Detailed implementation of the new algorithm 3.2
3 .3 Disjoint set union .

4 Experimental results .
4.1 Performance of the disjoint set union options
4.2 Performance of the row and column count algorithm

5 Conclusion .
6 References .

1
1
2
3
4
4
5
7
9

11
12
14
15
16
18
19
19

AN EFFICIENT ALGORITHM TO COMPUTE
ROW AND COLUMN COUNTS FOR

SPARSE CHOLESKY FACTORIZATION

John R. Gilbert
Esmond G . Ng

Barry W. Peyton

Abstract

Let an undirected graph G be given, along with a specified depth-first spanning
tree T. We give almost-linear-time algorithms to solve the following two problems:
First, for every vertex a, compute the number of descendants w of v for which
some descendant of w is adjacent (in G) to v. Second, for every vertex v , compute
the number of ancestors of v that are adjacent (in G) to at least one descendant
of u.

These problems arise in Cholesky and QR factorizations of sparse matrices. Our
algorithms can be used to determine the number of’ nonzero entries in each row and
column of the triangular factor of a matrix from the zero/nonzero structure of the
matrix. Such a prediction makes storage allocation for sparse matrix factorizations
more efficient. Our algorithms run in time linear in the size of the input times
a slowly-growing inverse of Ackermann’s function. The best previously known
algorithms for these problems ran in time linear in the sum of the nonzero counts,
which is usually much larger. We give experimental results demonstrating the
practical efficiency of the new algorithms.

Keywords: sparse Cholesky factorization, sparse QR factorization, symbolic fac-
torization, graph algorithms, chordal graph completion, disjoint set union, column
counts, row counts.

AMS(M0S) subject classifications: 65F50,68Q20

Computing Reviews descriptors: G . 1.3 [Numerical Analysis]: Numeri-
cal Linear Algebra - Linear systenzs (direct and iterative methods), Sparse and
very large systems; G.2.2 [Discrete Mathematics]: Graph Theory - Graph
algorithms; (2.4 [Matliematics of Coinputing): Mathematical Software - Al-
gori lhm analysis

- v -

1. Introduction

Direct solution of a sparse symmetric positive definite linear system requires four
steps [7,14]: reordering, symbolic factorization, sparse Cholesky factorization, and

sparse triangular solutions. Let A be the n x n coefficient matrix of the linear system

after it has been reordered to reduce fill, and let L be the lower triangular Cholesky
factor of A . This paper presents improved algorithms for computing the number of

nonzero entries in each row and column of L prior to the synzbolic factorization step.
We will refer to these parameters as the row counts and colunin counts of L.

In least squares computations, A is m x n, with m 2 n. It is often necessary to

compute the orthogonal factorization A = QR. Our algorithms can be used also to

predict the row counts and column counts of the upper triangular factor R , since the
structure of R is always contained in the structure of the Cholesky factor of A T A [ll].

Throughout the paper we assume familiarity with graphs, trees, and such basic tecli-

niques as depth-first search [23]. We also assume a basic knowledge of the four steps in
solving sparse systems by Cholesky factorization, and with the use of graphs in these

algorithms [14]. More specifically, we assume familiarity with elimination trees [18],
skeleton graphs [17], postorderings, supernodes [1,2,15,19,20], and the subscript com-
pression scheme for L [14,23].

1.1. Applications

Here we survey some of tlie sparse matrix settings in which it is useful to precompute
the row counts, the column counts, or the total number of nonzeros in the Cholesky

factor of a sparse matrix.

Either the row or column counts can be used to compute ILI, the total number

of noiizeros in the factor. (We write 1x1 for the number of nonzeros in a matrix X,
or the number of elements in a set X .) Knowing ILI before the numeric factoriza-

tion step makes it possible t o allocate storage all a t once, instead of dynamically. In

sparse Cholesky factorization, the time required to compute]LI by existing methods is

dominated by the time required for numerical factorization; but there are a t least two

settings in which it is valuable to be able to compute IL1 as fast as possible.

First, some methods for large-scale numerical optimization use Cholesky factoriza-
tion on a Hessian matrix [5,6]. If the Hessian is indefinite, Cholesky factorization will
abort, but the partial factorization contains enough information to help determine a

good descent direction containing negative curvature information. In this case, the
symbolic factorization time may dominate the time spent on the numeric factorization

before it aborts. Thus it may be more efficient to skip the symbolic phase and to build

the da ta structure for 1, during the numeric factorization. However, for this to be
efficient, we still need to find ILI (and perliaps the column counts) before starting the

factorization.
Second, much research remains to be done on the issue of how best t o reorder the

- 2 -

initial matrix to reduce fill (i.e., t o reduce ILI). It is sometimes useful t o compute ILI
for many different orderings of the same matrix, both in experiments with reordering
algorithrns and when trying to optimize an ordering for a specific matrix. Our new

algorithms make this much faster.

Besides fill, there are several other measures of the quality of a reordering. Some

of them can be computed from the column counts; for example. the total number of
arithmetic operations is the sum of the squares of the column counts, and the maximum

front size is equal t o the largest column count. The smallest maximum front size, over

all reorderings of a graph, is one more than the graph’s treewidth [3]. Thus the fast

column count algorithm may also be useful in experimental studies of treewidth.

Two applications related to the supernodal structure of L also require the column

counts. Supernodes are clusters of columns with related nonzero patterns, which can be
exploited to use fast dense matrix computation kernels in sparse factorization; Section 3
describes them in more detail. First, there is a simple, flexible O (n) scheme for comput-

ing supernode partitions [2.16] that takes the column counts and the elimination tree
as input. This algorithm is more versatile and faster than the O(lA1) algorithm of Liu,

Ng, and Peyton [19], which takes the original matrix and its elimination tree as input.
The latter algorithm computes the so-called fundamental supernode partition. Given
a fast algorithm to compute column counts, the more flexible scheme could be used
efficiently to compute other kinds of supernode partitions, such as Ashcraft’s relaxed

supernode partition [a] (which trades extra fill for a simpler sparsity structure that can

be used to improve efficiency on vector supercomputers or to reduce synchronization
overhead on shared-memory multiprocessors).

The second supernodal application of the column counts is t o compute the storage

required for indexing information for L , in the usual compressed format generated by
the symbolic factorization step [24]. Current software packages [4,9] do not precompute

the space needed for this compressed symbolic factorization, because it is too expensive
using the currently known algorithms. The storage required for the other three steps in

the solution process is usually computed in advance; we believe that the new algorithms
introduced here are efficient enough to be used by a software package to precompute

the storage requirement of the symbolic factorization step as well.

Finally, we know of only one application that specifically requires the row counts

rather than the column counts. The row counts are the numbers of column modifica-
tions (sparse SAXPY’s) required to complete each column in sparse Cholesky factor-

ization algorithms. Some parallel implementations [12,13] need the row counts t o tell
when all the modifications have arrived for each column.

1.2. Previous work

Like many combinatorial algorithms in sparse matrix factorization, all the efficient
algorithms for row and column counts begin by computing the elimination tree of the

- 3 -

matrix (defined in the next section). The fastest known elimination tree algorithm is

due t o Liu [18]. The time complexity for this algorithm is dominated by disjoint set
union operations, which take time O(mcr(m,n)), where A is n x n and has 2m off-

diagonal nonzeros. Here ~ (m , n) is a slowly-growing inverse of Ackermann’s function

defined by Tarjan [2G]; for all values of m and n less than the number of elementary

particles in the observable universe, a (m, n) 5 4. Thus a function that is O(m a(m, 7 1))

is often called “almost linear.n

The fastest previously known algorithm for computing row and column counts is

also due to Liu [MI. It first computes the elimination tree of A and then traverses each

“row subtree” of the elimination tree (defined in the nest section). The total size of the

row subtrees is the number of nonzeros in the factor, so the running time of this step
is O(lLI). Unless the factor is extremely sparse, the subtree traversals dominate the

time to find the elimination tree. To put this in perspective, suppose A is the matrix
of an n-node finite difference mesh ordered by nested dissection. Then ni is O(n) , and

ILI is O (n log n) in two dimensions or O(n4’3) in three dimensions.

The algorithm in this paper also takes A and the elimination tree as input but
runs in almost-linear time O(m a(m, n)) ; the time complexity for the new algorithm

is dominated by disjoint set union operations. Thus it computes the row and column
counts in the same asymptotic time needed to find the elimination tree. As we will see

in Section 4, this asymptotic efficiency is also reflected in practice.

1.3. Outline of the rest of the paper

Section 2 presents the row and column count algorithm from a graph-theoretic point
of view. Here it is convenient to think of the input not as the graph G (A) of a matrix,
but as the graph G (A) LJ T (A) that has edges both for the matrix nonzeros and for
the elimination tree. The elimination tree is a depth-first spanning tree of this graph

(and also of the graph of L) ; thus for the purpose of the high-level view in Section 2
the input is just an undirected graph with a specified depth-first spanning tree. In
this setting, we suspect that our results may be useful in efficient algorithms involving

chordal graphs, chordal completion, and treewidth.

In Section 3 we return to the matrix-computation point of view, and discuss details

of the implementation in the sparse matrix setting. Two points of practical importance

arise here: we modify the algorithm slightly to make only one pass over its input, and
we take advantage of supernodal structure to compute only with a subgraph called

the skeleton graph. We show how to organize the entire computation, including the
skeleton graph reduction, within the framework of Liu et al.’s fundamental supernode

algorithm [19].
Section 4 contains experimental results. We experiment with both the nodal and

supernodal versions of the algorithm, and also with several implementations of the dis-
joint set union operations (UNIOK and FIND) that dominate the asymptotic running

- 4 -

time. The best version is the supernodal algorithm with path-halving and no union by

rank (definitions are in Section 3.3); it performs well enough that we argue it should

be a standard part of high-performance sparse factorization codes. Finally, Section 5
contains concluding remarks.

2. The algorithm

2.1. Defini t ions and p rob lem statement

Let G = (V, E) be a connected undirected graph with n vertices and m edges, and let

T be a specific depth-first spanning tree for G. iVe will call vertices v and w adjacent
if they are joined by an edge in G; that is, if (v,’w) E E . We say that vertex v is an
ancestor of vertex w if v is on the path in T from w to the root of T. Vertex v is a

descendant of w if w is an ancestor of v. Note that a vertex is its own ancestor and

its own descendant; a proper ancestor or descendant is one that is different from the
vertex itself. We will write T[v] for the set of descendants of v, and also for the subtree

of T (rooted a t v) that those vertices induce.

Since T is a depth-first spanning tree, every edge of G (whether or not it is an edge
of T) joins an ancestor in T to a descendant in T .

To simplify notation, we will assume that the vertices of G are the integers 1

through n. We will also assume that the vertex numbers are a postorder on T , that
is, that for every vertex v, the vertices of T [v] are numbered consecutively, with 2,

numbered last. Thus vertex n is the root of T .
The level of vertex v, which we write level(v), is its distance in T from the root. The

least common ancestor of vertices v and w, which we write lca(v, w), is the ancestor of
and w with the smallest postorder number (or the largest level). Both a postorder

numbering and the vertex levels for an arbitrary tree can be computed in linear time

by depth-first search 1251. Given a set of I; pairs {v, w} of vertices, the k least common

ancestors I ca (v ,w) can be computed in O (k c r (k , n)) time, where a is the very slowly
growing inverse of Ackermann’s function mentioned above [27]. We describe these

algorithms in more detail in Section 3.

We consider the following two problems.
P r o b l e m 1 (row counts) . For every node u E V , let row[u] be the set of descen-

dants u of u for which either v = u or there exists an edge (u , ~) with w E T[v] . The
problem is t o compute rc (u) = Irow[u]I for every u.

P r o b l e m 2 (c o l u m n counts) . For every node v E V , let col[u] be the set of
ancestors u of v for which either ti = v or there exists an edge (u, w) with w E T[v] .
The problem is t o compute C C (~) = Icol[v]l for every v.

Note that v E row[u] if and only if u E col[v], and that u is an element of both
T O U) [~ L] and coI[u]. For each u, the subgraph of T induced by row[u], denoted by T,[u]
and referred t o as the roo211 subtree of u, is connected; it is a “pruned subtree” rooted

- 5 -

at 21. The subgraph of T induced by col[v] may not be connected.

We conclude by briefly describing the relationship between these problems and

sparse Cholesky factorization. It may seem a bit confusing that we include the elimi-

nation tree edges in the graph G in the graph problem but not in the matrix problem;

however, the answer is the same in either case.

Let an n x n symmetric, positive definite matrix A be given, and let G(A) be its

undirected graph (whose vertices are the integers 1 through n). Let G + (A) be the
filled gruph of G(A) [21] obtained by adding to G (A) edge (v , w) whenever there is a
path in G (A) from v to w whose intermediate vertices are all smaller than both v and

w. The graph G + (A) is chordal, and (ignoring numerical cancellation) is the graph of

L i- L T , where L is the Cholesky factor of A [22].
The elimination tree of A, denoted T (A) , has vertices 1 through n, and the parent

of vertex v is the smallest 20 > ‘1: such that (0, w) is an edge of G+(A). Liu [18] surveys

the uses and properties of this structure. It is a forest with one tree for each connected
component of G(A); if A is irreducible then T(A) is a tree. The elimination tree may
not be a subgraph of G(A), but it is a subgraph of G+(A), and in fact it is a depth-first
spanning tree of that graph. If A‘ is a matrix whose graph is G(A’) = G(A) U T (A) , it
is straightforward that G+(A’) = G + (A) and T(A’) = T(A).

Now consider problems (1) and (2) above for G = G(A’) and T = T(A’) . It is easy
to show [18] that the edges of G + (A) = G+(A’) are exactly those (u , ~) for which v # u
and v f TOW[U] (or u E coI[v]) . Thus T C (U) is the number of nonzeros in row u of the
Cholesky factor L of A, and cc (v) is the number of nonzeros in column v of L.

2.2. Row counts

We will count the vertices in ~ o w [u] by counting the edges in the pruned subtree T,[u]
of T that T O W [U] induces. The following lemma lets us partition those edges into paths.

Lemma 1. Let pl 5 p2 5 - 5 pk be some of the vertices of a rooted tree R (where

< is postorder), and suppose all the leaves and the root of R are among the p , ’s. Let

qI be the least common ancestor o f p , and p I + l , for 1 5 i < k. Then each edge (s, t) of
the tree is on the tree path from p3 to q3 for exactly one j.

Proof: Suppose t is the parent of s in R. The descendants of s include a t least one
leaf, so they include at least one p , . Let p , be the largest p , among the descendants of s.
Then p3 5 s < p3+1. (There must be a pJ+I-that is, we cannot have j = k-because

p k is the root, which is a proper ancestor of s.) Since s is an ancestor of p3 but not

of p J + l , the least common ancestor q3 of p3 and p,+l is a proper ancestor of s, and
hence an ancestor of 1. Therefore (s, t) is on the path from p3 to q3.

Now consider an i # j . If s is not an ancestor of p , , then (s , t) is not on the

path from p , to its ancestor 4,. If s is an ancestor of p a , then p , _< s, and i # j implies
p1 _< p,+l 5 s. Since postorder assigns consecutive numbers to the vertices in a subtree,

- 6 -

Figure 1: Example of path decomposition.

this means that s is also an ancestor of p ; + l , and hence of the least common ancestor q;.

Thus (s , t) is not on the path from pi to q;. 0

The hypotheses of the lemma allow a vertex to be p , for more than one i. Thus it
is possible that pi = p;+l = q, and the path from pi t o qt is trivial. Figure 1 shows an
example of the path decomposition (with no trivial paths).

Recall that T is a depth-first spanning tree of G and hence every edge of G joins

an ancestor in T t o a descendant in T . Now consider a vertex ti of G. If the lower-

numbered neighbors of u in G are p1 < p2 < . . . < pk-1, and if pk = u, then the pruned
subtree R = T,[u] induced by TOW[U] satisfies the hypotheses of Lemma 1. Thus the

number of edges in Tr[u] is the sum of the lengths of the paths in the lemma. The

length of the path from p , t o its ancestor q; is the difference of their levels. The number

of vertices in T O W [U] is one more than the number of edges, so

(Here lca and level are taken in T rather than Tr[u], but it is clear tha t for any two

vertices in T O Z U [~] the least common ancestor and the difference in levels are the same

in either tree.)

The algorithm to compute T C (U) for all u first sorts the lower-numbered neighbors
of each vertex by postorder, then computes all the necessary least common ancestors,
and finally computes the sum above for each u. Computing level numbers (and the
postorder itself if necessary) takes linear time, and sorting all the lower-numbered
neighbors by postorder takes linear time by a lexicographic bucket sort. There is one
least-common-ancestor computation for each edge of G, so the dominant term in the

algorithm's time complexity is O (m a(m, n)) .

2.3. Column counts

Because u E col[v] if and only if w E T O W [U] , the column count C C (V) is equal t o the

number of row subtrees T,.[u] that contain v. We could compute C C (V) by traversing each

row subtree in turn, and counting the number of times each vertex was traversed [18].
This, however, would take time proportional t o E, C C (V) .

To get a faster algorithm, we will define weights w t (v) on the vertices of G in such

a way that the column count for vertex v will turn out to be the sum of the weights of
the descendants of w. The key observation will be that we can compute these weights as

a sum of contributions from each row subtree, and that the row subtree contributions
can be computed efficiently using the same least common ancestors as in the row count

algorithm.
Here are the details. For each vertex u, define xu to be the characteristic function

of T O W [U] , so that xu(.) = 1 if E row[u] and xu(.) = 0 otherwise. Define wt, by

These weights may be positive, negative, or zero. This definition implies that

In a sense, wt, is a “first difference” down the tree of the characteristic function of
row[u]. Finally, define

uEV

Now we prove three lemmas relating the column counts to the weights, the weights

t o the sets TOW[^], and finally the T O W [U] , once more, to the least common ancestors.

Lemma 2. For every vertex v ,

Proof: Because 1, E T O W [U] if and only if u E col [v] , we have

Equation 2 says that this is equal to

- 8 -

The result follows by reversing the order of summation and using Equation 3. 0

Lemma 2 implies that we can compute the column counts easily and efficiently

from the weights, by traversing the tree in postorder and summing the weights of the

subtrees. It remains to describe how to compute the weights.

Lemma 3. Let u and v be vertices. Suppose that d o f the children o f v are vertices o f
T O W [U] . Then

if v E T O W [U] ,

if v is the parent of u,
otherwise.

wtu(v) =

Proof: This is immediate from Equation 1 and the definition of xu. 0

Lemma 3 implies that the only vertices v for which wt,,(v) is nonzero are the leaves

of the pruned row subtree Tr[u], the internal vertices of Tr[u] that have more than one
child in T,[u], and the parent of u. The following lemma will let us compute wt,(v) for
each v from the same pi’s and qi’s we used in the row count algorithm.

Lemma 4. Let p l 5 p2 5 5 p k be some o f the vertices o f a rooted tree R (where
< is postorder), and suppose all the leaves and the root o f R are among the pi’s. Let
qi be the least common ancestor ofp; and for 1 5 i < k. Then for each vertex v
of R, the number o f children of v in R is

I{i : q; = 2, }I - l{i :pi = .}I + 1.

Proof: Let Q = I{i : q; = v}], let P = I{i : p ; = v}I, and let d be the number of
children of v in R. Consider the set of directed paths from p; to q; in R, for 1 5 i < k.
For any collection of directed paths, each path that includes vertex v either begins a t v
or enters v along edges from other vertices. Similarly, each path that includes vertex v
either ends a t v or leaves v along edges to other vertices. Consequently:

The number of paths that either begin a t v or enter v along edges from
other vertices must be equal to the number of paths that either end a t v or

leave ‘u along edges to other vertices.

(This is essentially I<irchoff’s law for a flow of unit size from p; t o qi for each i.)
Lemma 1 says that every edge of Il is on exactly one of these paths. Therefore one
path enters u from each of the d children of v; exactly one path leaves v, t o its parent,
unless v is the root; one path begins a t v for each i such that pi = v (except for i = k
if ‘u is the root); and one path ends a t v for each i such that q; = v. A trivial path with

- 9 -

p ; = q; = v both starts and ends a t D , but does not enter or leave D. Thus the relation

above is
P + d = Q + l

if v is not the root of R, or
(P - 1) + d = Q+O

if D is the root. In either case, we have d = Q - P + 1 as desired. 0

Now consider a vertex u of G. If the lower-numbered neighbors of u in G are

p l < p2 < - - - < pk-l, and if p k = u, then the pruned subtree R = T,[u] induced by

row[u] satisfies the hypotheses of Lemma 4. Therefore, using Lemma 3, if D is a vertex

of row[u] then wt&j = I{i : pi = .}I - I{i : q; = .>I. Thus we could compute wt,(v)
for all v by initializing each weight to zero, setting the weight of the parent of u to -1,
and then adding one t o the weight of each p ; and subtracting one from the weight of

each 9;.

In fact we do not need t o compute u t l l (v) separately for each u; we can compute
wt(v) = E, tutu(.) all a t once. The algorithm begins, like the row count algorithm, by
sorting the lower-numbered neighbors of each vertex into postorder and computing all
the necessary least common ancestors. It initializes w t (v) to zero for each v. Then, for

each u, it subtracts one from the weight of the parent of u, adds one to the weight of
each lower-numbered neighbor of u, and subtracts one from the weight of the least com-

mon ancestor of each pair of consecutive (in postorder) lower-numbered neighbors of u.
Finally, the algorithm computes CC(.) for all v by summing the weights of each subtree
in postorder. Figure 2 sketches the algorithm to compute both row and column counts.

The only step that takes more than linear time is the least-common-ancestor compu-
tation, and the dominant term in the algorithm’s time complexity is O (m a (m , n)).

3. Implementatioii

The discussion in the previous section was in a general graph theoretic setting. However,

in order t o obtain the most efficient implementation of the new algorithm for our

applications, we need t o switch back to a sparse matrix setting.

Consider a symmetric matrix A and its graph G (A) . Assume that the elimination

tree T (A) , the postordering, and the values level(u) (with respect to T (A)) have been

computed, as required in Figure 2. Two other requirements must be met to obtain a

practical and efficient implementation of the new algorithm.
First, we must reorganize the computation to avoid sorting the adjacency lists by

postorder and precomputing all the least common ancestors. Indeed, direct implemen-

tation of the algorithm in Figure 2 would require that G (A) be processed three times,
and we doubt that any multiple-pass implementation will come close to realizing the
practical efficiency of the single-pass implementation presented in this section.

Second, we must discard some edges of G (A) that do not affect the result. Recall

- 10 -

Sort the vertices and their lists of neighbors by a postorder of T ;
Assign u and the lower-numbered neighbors of u t o adj [u] , for all u;
Compute l eve l (u) as the distance from u t o n (the root), for all u;
Compute Ica(p,p’) for every p and its successor p’ in ad j [u] , for all u;
T C (U) +- 1, for all u;
w t (u) t 0, for all u;
for 11 +- 1 to n do

if u # n then

end if
for p E adj [u] do

w t (p a r e n t (u)) t wt(parent (u)) - 1;

.wW +- w t (d t 1;
if p is the last member of adj[u] then

else
rc(u) t T C (U) + l e v e l (p) - l e v e l (u) ;

p’ + the successor of p in ad j [u] ;

T C (u) +- T C (u) + IeveE(p) - level(q);
4 - Ica(p,p’);

.wt(rl) + W 4) - 1;
end if

end for
end for
cc(v) +-- w t (v) , for all v ;
for v + 1 to n - 1 do

end for
cc(parent(v)) t cc(parent(v)) +- CC(v);

Figure 2: Algorithm to compute row and column counts.

- 11 -

from Liu [17] that the skeleton graph G- = G - (A) is obtained from G(A) by removing

every edge (u , v) for which 2: < u and the vertes 2, is not a leaf of T,.[u]. The skeleton

graph is the smallest subgraph of G(A) whose filled graph is identical with that of
G (A) . Consequently, the new algorithm produces the same results when applied to G-
as when applied to G(A). Indeed, if G = G- U T (A) rather than G = G (A) U T (A)
in Lemmas 1 and 4, then every vertex p l , p 2 , . . . ,p+l is a leaf in the tree R, which

reduces the number of edges searched and least common ancestors computed by the
new algorithm to the minimum possible. Since G- often has far fewer edges than G(A)
in practice, an implementation that processes G- rather than G (A) promises t o be
substantially faster; we see in Section 4 that this is indeed the case.

The skeleton graph G- is closely related t o the fundamental supernodes of A, and

can be computed efficiently in linear time by a simple modification of Liu, Ng, and
Peyton's algorithm [19] to find fundamental supernodes. Indeed, that algorithm is a

good framework for implementing our new algorithm, whether the skeleton graph is
exploited or not. We can combine the two algorithms t o obtain an efficient single-pass

implementation. As this implementation processes the edges of G(A) , i t discards edges
not in the skeleton graph, and uses only the skeleton edges to compute the da ta for the

row and column counts. If rn- is the number of edges in G-, then this scheme runs in

O(m + m- cy(nz-, n)) time.
Section 3.1 below ieviews the material we need from Liu et al. [19]. Section 3.2

presents a detailed version of the new combined implementation. Section 3.3 briefly
describes our implementation of the disjoint set union algorithm for computing the

least common ancestors, upon which the time complexity of our algorithm depends.

3.1. A fast algorithm for finding supernodes

Liu, Ng, and Peyton [19] introduced an O(lA1) algorithm t o compute a fundamental

supernode partition. Their algorithm assumes that the elimination tree T(A) has been

computed and that the vertices are numbered by a postordering of T(A). Let the
monotone adjacency set of v, denoted by rnadj[v], be the set of neighbors of .u in the
filled graph G + (A) that are numbered higher than v. Ashcraft and Grimes [2] defined
a fundanzentul supernode as a maximal contiguous set of vertices {v, .u + 1 , . . a , .u + s}

such that v+ i is the only child of v + e ' + 1 in the elimination tree (for i = 0,1, - - . , s - 1)
and

madj[v] = rnadj[v + s] u {v + l , v + 2, * - * , .u + s}.
The fundamental supernodes partition the vertices of G (A) .

In matrix terms, a supernode is any group of consecutive columns in L with a

full diagonal block and with identical column patterns below the diagorial block. A
fundamental supernode is maximal subject to the following condition: every column
of the supernode except the last is an only child in the elimination tree. Liu et al. [19]

give several reasons why fundamental supernodes are the most appropriate choice of

- 12 -

supernodes for most applications, one of which is that they are independent of the

choice of postordering for T (A) .
Finding the set of fundamental supernodes is equivalent t o finding the first vertex

of each supernode. These ‘‘first vertices” are characterized by the following result.

Theorem 5 (Liu, Ng, and Peyton [19]). Vertex ‘u is the first vertex in a funda-

mental supernode if and only if vertex v has two or more children i n the elimination
tree, or v is a leaf of some row subtree of T (A) . 0

The key observation is that the vertices required by the row/column count algorithm
(the pi’s and qi’s) are in fact first vertices of fundamental supernodes. I t follows from

the discussion immediately after Lemma 3 in Section 2.3 that the vertex pairs p ; , ~ ; + ~
whose least common ancestors must be found can be restricted to vertices that are

leaves of some row subtree of T (A) . This is equivalent to restricting the algorithm in

Figure 2 to the skeleton graph G-. Furthermore, when the pi’s are restricted in this

manner, it is clear that every least common ancestor q; = Ica(p; ,p;+l) has two or more
children. Consequently, the Liu et al. algorithm is an excellent vehicle for an efficient
implementation of our new algorithm.

3.2. Detailed implementation of the new algorithm

The details of our single-pass, column-oriented implementation are given in Figure 3.
Here we take adj[p] t o be the set of neighbors u of p in G (A) for which u > p ; thus

each undirected edge of G (A) is represented only once. Note that p 4 adj[p]. Again,

the vertices are numbered by a postorder of the tree T (A) , but here no assumption is
made concerning the order of the vertices in the adjacency lists adj[p], nor are the least

common ancestors computed in advance. Consequently, this implementation makes
only a single pass through G (A) .

The vector of markers prev-p(u) stores the most recently visited vertex p‘ that is

a leaf in T,[u]. The pairs p , p ‘ produced by the algorithm are precisely the multiset
consisting of every consecutive pair of leaves in every row subtree T,[u]. The reason

for this is that one of the if tests in the algorithm screens out all edges in G (A) except

those in the skeleton graph G-. The lines marked with asterisks have been added to
the algorithm solely for this purpose. Of these, the key line is the test for whether or

not the first (i.e., lowest numbered) descendant of p (f s t -desc (p)) is greater than the

most recently visited vertex in the lower adjacency set of u, namely the vertex stored
in the marker variable prev-nbr(u). It is not difficult t o verify that when the condition
holds true, no descendant of p is adjacent t o u in G(A) ; hence p is indeed a leaf in T,[u].
For full details of this test, see Liu et al. [19].

The implementation is correct with or without the starred lines. We have imple-
mented both versions: we call the one with tlie starred lines the supernodal version,

- 13 -

Sort the vertices by a postorder of T (A) ;
Assign the higher-numbered neighbors of u to udj [u] , for all u;
Compute lewel(u) as the distance from u to n (the root), for all u;
Compute fst-desc(u) as the first (least) descendant of u in T (A) , for all u;
prev-p(u) c 0, for all u;

*

*

* prev-nbr(u) t 0 , for all u;
T C (U) c 1, for all u;
wt(u) t 0, for all non-leaves u in T (A) ;
wt(u) c 1, for all leaves u in T (A) ;
for p t 1 to n do

if p # n then

end if
for u E aa!j[pJ do

wt(parent(p)) - wt(purent(p)) - 1;

if fst-desc(p) > prev-nbr(u) then
wt(p> + W P) + 1;
p' - prev-p(u);
if p' = 0 then

else
rc(u) +- T C (U) + level(p) - leveE(u);

q - FIND($);
rc(u) + TC(u) + Zevel(p) - Zevel(q);

4 7) + w+?) - 1;
end if
Prev-P(u) + P;

* end if
* prev-nbr(u) t p;

end for
UNION(p, parent (p)) ;

end for
C C (V) t wt(v) , for all v ;
for v t 1 to n - 1 do

end for
cc(purent(TI)) c cc(purent(TI)) + cc(TI);

Figure 3: Implementation of algorithm to compute row and column counts.

- 14 -

and the one without these lines the nodal version.’ lye experiment with both versions

of the algorithm in our tests in Section 4.

3.3. Disjoint set union

In order t o compute least common ancestors, the algorithm in Figure 3 must manipulate
disjoint sets of vertices, each of which induces a subtree of the elimination tree. The

highest numbered vertex in each set (the root of the subtree) is used t o “name” the
set, and is called the representative vertez of the set. Initially each vertex p from 1

to n is a singleton set. As the algorithm proceeds, it executes a sequence of FIND and

UNION operations, which are defined as follows.

0 FIND(p): return the representative vertex of the unique set that contains p .

0 UNION(u, v): combine the two distinct sets represented by ‘u and v into a single

set, which will be represented by the larger of u and v.

It is straightforward to verify that the call t o FIND($) in our algorithm returns
Ica(p’ ,p) ; see Tarjan [27] for details.

Each disjoint set is implemented as a tree stored using a parent vector (not t o be
confused with the parent vector in the elimination tree). The operation UNION(u, u)

joins the two distinct trees represented by u and v together by making one of the roots
a child of the other root. Consequently, UNION is a constant-time operation. This is
not the case for FIKD. The operation FIND(p) traces the find path from p to the root

of p’s tree. This root either is the representative vertex or contains a pointer t o the

representative vertex, depending on the implementation of UNION.
Tarjan [28] describes several techniques t o shorten the find paths and thus reduce

the amount of work spent on the FIND operations. Union by rank makes the shorter
tree’s root a child of the taller tree’s root in UNION, which tends t o keep the trees

short and bushy. With no other enhancements, union by rank ensures that find paths
are no longer than O(log,(u)). This is usually combined with one of two techniques for

shortening the find path during a FIND operation. The first of these is path compres-
sion, which, after finding the root, makes the parent for each vertex on the find path

point to the root during a second pass along the path. Alternatively, path halving resets

the parent pointer for every other vertex on the find path to point t o its grandparent.

Path compression shortens the find path more but requires two passes over the find

path; path halving needs only one pass.
Tarjan [2G,28] showed that when union by rank is combined with either path

compression or path halving, any sequence of n UNION’S and m FIND’S takes only

O (m a (m , n)) time. Tarjan [27] pointed out how to use the disjoint set union algo-
rithm to find the least common ancestors of an arbitrary set of pairs of vertices from

’ In the nodal version, p r e t i q (u) functions precisely as prew-nb+(u) does in the supernodal version.

- 1 5 -

the same tree; our implementation of the row and column count algorithm uses the

same method. Consequently, we can implement the nodal version of our algorithm to

run in O(m o(m, n)) time, and similarly we can implement the supernodal version t o
run in O (m + m- a(m-, n)) time.

Gabow and Tarjan [lo] showed that if the order of the UNIOK operations is known

in advance (as is the case in our problem), then disjoint set union can be implemented

so tha t a sequence of n Un’IOX’s and m (2 n) FIND’S takes only O(m) time. Their
sophisticated hybrid algorithm partitions the vertices into microsets and performs all
the operations in a hierarchical fashion, using table look-up t o answer queries within

the microsets, and using the standard disjoint set union algorithm on the microsets

themselves. We did not implement this algorithm; we believe i ts increased overhead

would wipe out the difference between O (m a(m, n)) and O (m) in our application.

We implemented and tested the following six combinations:

1. no union by rank, no path compression or halving.

2. no union by rank, path compression.

3. no union by rank, path halving.

4. union by rank, no path compression or halving.

5. union by rank, path compression.

6. union by rank, path halving.

We found surprisingly little difference in performance among the various options. Far
more important is whether or not the row/column count processing is limited to the

skeleton graph, as we shall see in the next section. We found that any gains due to
union by rank were more than offset by the additional overhead required for its im-
plementation. The third option-no union by rank, path halving-performed slightly

better on most machines we tried. Path halving was clearly superior to path com-
pression when the skeleton adjacency structure was not exploited. Consequently, we

recommend path halving t o those implementing the method, and in the next section

all our timings were obtained using path halving and no union by rank.

4. Experimental results

We have run the new algorithms 011 several problems from the Harwell-Boeing sparse

matrix collection [SI. Table 1 lists our test problems, and Table 2 contains the problem
statistics that have a bearing on the observed performance of our algorithms. Through-
out this section supcnt refers to the “~~pern0da.1” version of the algorithm (Figure 3
with the starred lines), which identifies the edges of the skeleton graph G- and uses

only those edges in its row and column count calculations, and nodcnt refers t o the

- 16 -

problem
KASA1824
NASA2910
NASA4704
BCSSTK13
BCSSTKl4
BCSSTK15
BCSSTK16
BCSSTKli
BCSSTK18
BCSSTK23
BCSSTK24

brief description

Structure from NASA Langley, 1824 degrees of freedom
Structure from NASA Langley, 2910 degrees of freedom
Structure from NASA Langley, 4704 degrees of freedom
Stiffness matrix-fluid flow generalized eigenvalues
Stiffness matrix-roof of Omni Coliseum, Atlanta
Stiffness matrix-module of an offshore platform
Stiffness matrix-Corps of Engineers darn
Stiffness matrix--elevated pressure vessel
Stiffness matrix-R. E. Ginna nuclear power station
Stiffness matrix-portion of a 3D globally triangular building
Stiffness matrix-winter sports arena

problem

NASA 1824
N AS A29 10
N A S .44 704
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTKlG
BCSSTK17
BCSSTK18
BCSSTK23
B C SST K24

dimension
n

1824
2910
4704
2003
1806
3948
4884

10974
11948
3134
3562

edges in G (A)
m

18692
85693
50026
40940
30824
56934

142747
208838

68571
21022
78 174

edges in G-
m-

3565
8113
9672
5598
4352

13186
11665
24569
23510

8500
6977

Table 2: Problem statistics.

edges in G+
m+

71875
201493
276768
269668
110461
647274
736294
994885
650777
417177
275360

4.1. Performance of the disjoint set union options

The primary purpose of Table 3 is to explain two things we have observed in our tests:
(1) why exploiting the skeleton graph is so beneficial, and (2) why the various disjoint
set union (DSU) implementation options have so little influence on the performance of
our code. The number of FIND operations required by nodcnt and supcnt is bounded
above by m and m-, respectively, and bounded below by m - n and m- - n. Thus,

the huge difference between the number of FIND’S required by nodcnt and the number

- 17 -

of FISD’s required by supcnt (see Table 3) simply reflects the fact that the skeleton

graph of A is typically much sparser than the graph of A (see Table 2).

NASA1824 2.1
NASA2920 2.0
NASA4704 2.2
BCSSTK13 2.1
BCSSTK14 2.1
BCSSTKl5 2.2
BCSSTKlG 2.1
BCSSTK17 2.1
BCSSTKl8 2.3
BCSSTK23 2.4
BCSSTK24 2.0

nodcnt /I - -
ITS

F;-
PEI
1
2.3
2.1
2.3
2.2
2.2
2.3
2.1
2.1
2.5
2.7
2.1

’ -
L _ -

-

I 1
ver

P
-

r-

29200
53468
38121

18419

e

R
1.9
1.6
1.9
2.2
1.7
2.0
2.0
1.9
2.2
2.4
1.7

-
-
-
N It
2.3
2.1
2.2
2.2
2.2
2.2
2.1
2.2
2.5
2.4
2.1

-

supcnt
:es - -
-
R
1.6
1.4
1.6
1.8
1.5
1 .6
1.7
1 .€I

1.8
1.9
1 .6

-
P II -

NR
2.5
2.2
2.4
2.4
2.3
2.3
2.2
2.2
2.8
2.6
2.2

-
-

R
1.6
1.4
1.6
1.8
1.5
1.7
1.7
1 .6
1.9
1.9
1 .6

-
FIND’S

1923
5491
5455
3783
2728
9720
7039

14823
14563
5897
3565

Table 3: Average number of vertices on a find path for DSU implementation options:
PC is path compression, PI1 is path halving, R is union by rank, and N R is no union
by rank

Each FIKD(p) operation traverses the find path in p’s tree beginning a t p and ending
at the root of the tree. The average number of vertices on these find paths is reported for

each DSU implementation. \Ne tested only two options for nodcnt: path compression
and path halving, both without union by rank. Note that the average number of vertices

on a find path ranges from 2 to 2.7, with path compression faring slightly better than

path halving. The performance of path compression suffers, however, because the

find path must be traversed twice, compared with once for path halving. Our tests
indicate that path halving does indeed substantially outperform path compression, and
in nodcnt , where the number of FIKD’s is large, the gain in efficiency is substantial.

We tried all six options mentioned in Section 3.3 in our implementations of supcnt ,

and as noted earlier, we saw little difference in performance from one option to the next.

The primary explanation for this phenomenon is the small proportion of supcnt’s total

work devoted to DSU operations. The number of FIND operations is small relative t o

m, and the average number of vertices on a find path is small (from 3.4 to 2.6) for five
of the six options tested. For the sixth option (no DSU enhancements), the average
number of vertices on a find path is still quite modest (from 3.6 t o 5.8)’ with less work

required for each vertex visited. Consequently, even this option is competitive in our
tests.

When path compression or path halving is used, union by rank obtains only modest
reductions in the average number of nodes visited. The overhead costs associated with
union by rank more than offset any advantages conferred by the technique. Comparing

- 1 8 -

[

problem

NASA1824
NASA2920
NASA4704
BCSSTK13
BCSSTK1.I
BCSSTKl5
BCSSTKlG
BCSSTKl7
BCSSTK18
DCSSTIi23
BCSSTK24

path compression and path halving with no union by rank, the same observations made

previously for nodcnt hold for supcnt also. The primary difference is that the total

work associated with DSU operations in supcnt is so small that the performance edge

of path halving over path compression is quite small. Nonetheless, path halving with

no union by rank has proven most effective overall and has the added advantage of
simplicity. Finally, note that for our chosen option the total number of vertices visited

by FIND operations is much less than m for most of the test problems.

e-tree

.035

.15G

.09G

.078

.057

.lo$

.2G2
3 9 1
.144
.044
.143

4.2. P e r f o r m a n c e of t h e row a n d co lumn coun t a l g o r i t h m

We coded nodcnt and supcnt in Fortran 77 and ran our tests on an IBM RS/6000
(model 320). We used tlie standard Fortran compiler and compiler optimization flag

(xlf -0). We used a high-resolution timer (r e a d r t c) to obtain our timings on this
machine, repeating each run t,en times in succession and returning the average elapsed

time. The results are shown in Table 4. We used path halving and no union by rank
in the implementation of the disjoint set union algorithm for both nodcnt and supcnt .
The time required to c.ompute the elimination tree and postordering are of interest

post-
ordering

.OOG

.009

.016

.006

.005

.013

.016

.037

.040

.010

.012

row/column counts
Liu's

l n z c n t
.07G
.25G
.2G1
.238
.118
.513
.691
.965
3 4 9
.310
.295

new
nodcnt

.047

.198

.128

.098

.074

.142

.331

.500
,197
.059
s a 4

supcnt
.038
.144
.lo4
.074
.056
.113
.239
.408
.181
.054
.134

super-
nodes

.031

.128

.064

.048

.091

.216

.329

.141

.039

.120

-085

Table 4: Run times in seconds on an IBM RS/GOOO (model 320).

for two reasons. First, they must be computed before the row/column counts can be
computed. Second, the algorithm for computing the elimination tree is, like nodcnt and
supcnt , a single-pass O (m cr(m, n)) algorithm that relies on efficient implementation

of the disjoint set union operations for efficiency. Thus it is interesting to compare its
performance with that of the new algorithms.

Both nodcnt and supcnt are much more efficient than l n z c n t , the O(ILI) algorithm

from Liu [lS]. Algorithm nodcnt is 1.29 to 5.25 times faster than l n z c n t , while supcnt

is, in turn, 1.08 to 1.39 times faster than nodcnt. For every problem but one, supcnt

- 19 -

is at least twice as fast as l n z c n t . (For KASA2920, supcn t is 1.77 times faster than

lnzcnt.) For four of the problems, supcn t is more than three times faster than l n z c n t .

For BCSSTK15 supcn t is 4.54 times faster, and for BCSSTK23 supcnt is 5.74 tinies

faster.

Finally, it is interesting to compare the timings for the elimination tree algo-
rithm [IS] and the supernode algorithm [19] with those for supcnt . First, supcnt

can be viewed as an extension of the supernode algorithm, and consequently the time
for supcn t should be bounded below by the time for the supernode algorithm. Though
there are some differences in the amount an3 kind of @(n) work performed by the two

algorithms before and after the main loop, the difference in the two timings can never-
theless be viewed as a crude measure ra f the cost of adding the instructions necessary

to compute row and column counts to the supernode algorithm. Clearly, this cost is

quite small, especially considering the simplicity and demonstrated practical efficiency

of the supernode algorithm. Note also that the timings for supcn t and the elimination

tree algorithm closely track each other. From these observations, we conclude that it
is probably not possible to improve the performance of supcn t much beyond what we

are currently observing.

5 . Conclusion

We have considered in this paper the problem of predicting the row counts and column
counts in the Cholesky factor L of a sparse symmetric positive definite matrix A , given

the zero/nonzero structure of A and the elimination tree T (A) . We have presented new

algorithms for determining the counts, the complexities of which are linear in IAI times
a slowly growing inverse of Ackermann’s function; the previously known algorithms ran

in O(lL1) time. The key to the new algorithms is the computation of least common

ancestors in a tree using the disjoint set union algorithm. We have investigated different
ways of implementing the disjojnt set union operations in our algorithms. Based on

our experimental results, we conclude that path halving with no union by rank is the

best technique for an efficient implementation of the disjoint set union algorithm.

We have further improved our new algorithms by exploiting the skeleton graph of
A. We have demonstrated that the supernodal version is faster than the nodal version

in all of the problems we tested. Moreover, both the nodal and supernodal versions
are much more efficient than the previously known @(ILI)-time algorithms. We expect

the algorithms dpscribed in this paper t o be of practical use in a wide range of sparse
matrix computations.

6. References

[I] C. C. Ashcraft. A vector implementation of the multifrontal method for large

sparse, symmetric positive definite linear systems. Technical Report ETA-TR-51,

- 20 -

Engineering Technology Applications Division, Boeing Computer Services, Seattle,

Washington, 198’7.

[2] C. C. Ashcraft and R. G. Grimes. The influence of relaxed supernode partitions
on the multifrontal method. ACM Trans. Math. Software, 15:291-309, 1989.

[3] H. Bodlaender, H. Hafsteinsson, J. R. Gilbert, and T. KIoks. Approximating

treewidth, pathwidth, and minimum elimination tree height. Proceedings of the

17th International 11’0rkshop on Graph- Theoretic Concepts in Computer Science.

Springer-Verlag Lecture Notes in Computer Science volume 570, 1992.

[4] E. C. H. Chu, A. George, J. W-€1. Liu, and E. G-Y. Ng. User’s guide for

SPARSPAK-A: W’aterloo sparse linear equations package. Technical Report CS-
84-36, University of Waterloo, Waterloo, Ontario, 1984.

[5] T. Coleman and Y. Li. Global and quadratic convergence of reflective Newton
methods for nonlinear minimization subject t o bounds. Technical Report in prepa-
ration, Cornell University Computer Science Department, Ithaca, New York, 1992.

[6] T. Coleman and Y. Li. A reflective newton method for minimizing a quadratic

function subject t o bounds on the variables. Technical Report in preparation,

Cornell University Computer Science Department, Ithaca, New York, 1992.

[7] I . S. Duff, A. M. Erisman, and J. I(. Reid. Direct Methods for Sparse Matrices.

Oxford University Press, Oxford, England, 1987.

[SI I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Trans. Math. Software, 15:l-14, 1989.

[9] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. The Yale
sparse matrix package I. the symmetric codes. Internat. J . Nurner. Meth. Engrg.,
18:1145-1151, 1982.

[lo] H. N. Gabow and R. E. Tarjan. A linear time algorithm for a special case of
disjoint set union. J . Cornput. Syst. Sci., 30:209-221, 1985.

[ll] Alan George and Michael T. Heath. Solution of sparse linear least squares prob-
lems using Givens rotations. Linear Algebra and its Applications, 34:69-83, 1980.

[la] A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse pos-
itive definite systems on a shared memory multiprocessor. Internat. J . Parallel
Programming, 15:309-325, 1986.

[13] A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Sparse Cholesky factoriza-
tion on a local-memory multiprocessor. SIAhf J . Sci. Stat. Cornput., 9:327-340,

1988.

- 21 -

[14] A. George and J. Ifr-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[15] M. T. Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear
systems. SIAM Review, 33:420-460,1991.

[16] J. G . Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse

matrices for parallel factorization. S1Ah.i J. Sci. Stat. Cornput., 10:1156-1173,

1989.

[17] J. W-II. Liu. A compact row storage scheme for Cholesky factors using elimination
trees. ACM Truns. Math. Software, 12:127-148, 1986.

[IS] J. W-€I. Liu. The role of elimination trees in sparse factorization. SIAM J . Matrix

A nul. Appl . , 1 1 : 134 - 172, 1990,

[19] J. W-H. Liu, E. Ng, and B. W. Peyton. On finding supernodes for sparse matrix
computations. To appear in SIAM J. Matrix Anal. Appl., 1993.

[20] A. Pothen. Simplicial cliques, shortest elimination trees, and supernodes in spars0
Cholesky factorization. Technical Report CS-85-13, Department of Computer Sc,-
ence, The Pennsylvania State University, University Park, Pennsylvania, 1988.

[21] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equations. In R. C. Read, editor, Graph Theory and
Computing, pages 183-217. Academic Press, 1972.

I221 D. J. Rose, R. E. Tarjan, and G . S . Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J . Cornput., 5:266-283,1976.

[23] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1983.

1241 A. 11. Sherman. On the eficient solution of sparse systems of linear and nonlineur
equations. PhD thesis, Yale University, 1975.

[25] R. E. Tarjan. Depth-first search and linear graph algorithms. SICOMP, 1:146-
160, 1972.

[2G] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22:2 15-225, 1975.

[27] R. E. Tarjan. A4pplications of path compression 011 balanced trees. J. ACM,
26:690-715, 1979.

[28] R. E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional
Conference Series in Applied Math, SIAM Publications, 1983.

- 23 -

ORNL/TM-12195

I N T E R N A L D I S T R I B U T I O N

1. B.R. Appleton
2-3. T.S. Darland

4. E.F. D’Azevedo
5 . J.hf. Donato
6. J.J. Dongarra
7. G.A. Geist
8. M.R. Leuze

14. C.E. Oliver
9-13. E.G. Ng

15-19. B.W. Peyton
20-24. S.A. Raby

25. C.H. Romine
26. T.H. Rowan

27-31. R.F. Siricovec
32-36. R.C. Ward

37. P.H. Worley
38. Central Research Library
39. ORNL Patent Office
40. I<-25 Appl Tech Library
41. Y-12 Technical Library
42. Lab Records Dept - RC

43-44. Laboratory Records Dept

E X T E R N A L D I S T R I B U T I O N

45. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 96124-0346

46. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, hlN 55455

47. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

48. Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

49. Lawrence J . Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, T X 77252-2189

50. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

51. Edward H. Barsis, Computer Science and Mathematics, P.O. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

52. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

53. Ake Bjorck, Department of hlathematics, Linkoping University, 5-581 83 Linkop-
ing, Sweden

54. Jean 1%. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

55. Roger \Y. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, IIarvard University, Cambridge, MA 02138

56. James C. Browne, Department of Computer Science, University of Texas, Austin,
T X 78712

- 24 -

57. Bill L. Buzbee, Scientific Computing Division, Xational Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

58. Donald A . Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

59. John Cavallini, Deputy Director, Scientific Computing Staff, Applied Mathemati-
cal Sciences, Ofice of Energy Research, U.S. Department of Energy, Washington,
DC 20585

60. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1iV5, Canada

61. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

62. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

63. Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada KlG 21V1

64. Melvyn Ciment, Kational Science Foundation, 1800 G Street N.W., Washington,
DC 20550

65. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

66. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 91720

67. Andy Conn, IBhl T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

68. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

69. Jane I(. Cullum, IBhl T. J . Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

70. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

71. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

72. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesvilie, FL 32611-2024

73. John J . Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCorinick Road, University of Virginia, Charlottesville, VA 22901

74. Iain Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11
OQX, England

75. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

76. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, Pu’ew Haven, CT 06520

- 2s -

77. Lars Eiden, Department of hlathematics, Linkoping University, 581 83 Linkoping,
Sweden

78. Howard C. Elman, Computer Science Department, Universit.y of Maryland, Col-
lege Park, h lD 20742

79. Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, ETA Division, P.O. Bos 24346, hfS-7L-20 Seattle, LVA 98 124-0346

80. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, N Y 13244-4100

81. Paul Frederickson, Los Alamos National Laboratory, Center for Research on Par-
allel Computing, h,lS B287, Los Alamos, Nhi 87545

82. Fred N. Fritsch, L-316, Computing and hiathematics Research Division, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550

83. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

84. I(. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

85. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

86. Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia VGT lW5, Canada

87. David M . Gay, Bell Laboratories, GOO Mountain Avenue, Murray Hill, NJ 07974

88. C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ
08540

89. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K I A OR8

90. J . Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

91-95. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

96. Gene H . Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

97. Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA

98. John Gustafson, Aines Laboratory, Iowa State University, Ames, IA 50011

99. Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DIi-2600 Lyngby, Denmark

100. Richard Hanson, IhlSL Inc., 2500 Park IVest Tower One, 2500 City West Blvd.,
Houston, T X 77042-3020

101. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL

94551-0969

61801-2300

- 26 -

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

Nicholas J . Higham, Department of hlathematics, University of hlanchester, Grt
hlanchester, hl13 9PL, England

Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Ij'ashington, DC 20332

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada

Lennart Johnson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

Malvyn H. Kalos, Cornel1 Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

Linda Kaufnian, Bell Laboratories, 600 Mountain Avenue, Murray Hill , KJ 07974

Robert J . Kee, Division 8245, Sandia National Laboratories, Livermore, CA 94551-
0969

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

Richard Lau, Office of Naval Research, Code 111MA, 800 Quincy Street, Boston
Tower 1 , Arlington, VA 22217-5000

Alan J . Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Charles Lawson, hlS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 hlercer Street, New York, NY 10012

James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

- 27 -

123. John G. Lewis, Boeing Computer Services, P.O. Box 24346, hl/S 7L-21, Seattle,
UTA 98124-0346

124. Jing Li, IblSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,

125. Heather M. Liddell. Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, hlile End Road,
London E l 4NS, England

T X 77042-3020

126. Arno Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 5 5 , CII-8092 Zurich,
Switzerland

127. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada h13J 1P3

128. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

129. Franklin Luk, Department of Computer Science, Amos Eaton Building - #131,
Rensselaer Polytechnic Institute, Troy, NY 12180-3590

130. Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

131. Consuelo Maulino, Universidad Central de Venezuela, Escuela de Computacion,
Facuttad de Ciencias, Apartado 47002, Caracas 1041-A, Venezuela

132. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

133. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd., Pasadena, CA 91125

134. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

135. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

136. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

137. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottsville, VA 2290 1

138. Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

139. Chris Paige, McGill University, School of Computer Science, McConnell Engineer-
ing Building, 3480 University Street, Montreal, Quebec, Canada H3A 2A7

140. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,

141. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

142. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

143. Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
731 1, Wake Forest University, Winston-Salem, NC 27109

SC 29634-1906

- 28 -

144. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TK 37996-1301

145. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

146. Yuanchang Qi, IBRl European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

147. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

148. John K . Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

149. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

150. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

151. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

152. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

153. Edward R,othberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

154. Axel Ruhe, Dept. of Computer Science, Chalmers University of Technology, S-
41296 Goteborg, Sweden

155. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

156. Ahmed 13. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

157. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

158. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

159. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

160. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

161. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, T X 75275

162. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

163. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

164. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

- 29 -

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East Ave., L-
316, P.O. Box 808 Livermore, CA 94551

Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P.O.
Box 1892, Houston, TX 77251

G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

Philippe Toint, Dept. of Mathematics, University of Namur, FUNOP, 61 rue de
Bruxelles, B-Namur, Belgium

Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

Hank Van der Vorst, Dept. of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

Charles Van Loan, Department of Computer Science, Cornel1 University, Ithaca,
NY 14853

Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

Udaya B. Vemulapati, Dept. of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

Robert G. Voigt, ZCASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

Phuong Vu, Cray Research, Inc., 19607 Franz Rd., Houston, T X 77084

Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

Robert P. Weaver, 1555 bckmont Circle, Boulder, CO 80303

Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O.
Box 1892, Houston, T X 77251

Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O.
Box 1663, MS-2G5, Los Alamos, N M 87545

Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N
37831-8600

185-194. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

