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AN EFFICIENT ALGORITHM TO COMPUTE 
ROW AND COLUMN COUNTS FOR 

SPARSE CHOLESKY FACTORIZATION 

John R. Gilbert 
Esmond G .  Ng 

Barry W. Peyton 

Abstract  

Let an undirected graph G be given, along with a specified depth-first spanning 
tree T.  We give almost-linear-time algorithms to solve the following two problems: 
First, for every vertex a, compute the number of descendants w of v for which 
some descendant of w is adjacent (in G) to v. Second, for every vertex v ,  compute 
the number of ancestors of v that are adjacent (in G) to at least one descendant 
of u. 

These problems arise in Cholesky and QR factorizations of sparse matrices. Our 
algorithms can be used to determine the number of’ nonzero entries in each row and 
column of the triangular factor of a matrix from the zero/nonzero structure of the 
matrix. Such a prediction makes storage allocation for sparse matrix factorizations 
more efficient. Our algorithms run in time linear in the size of the input times 
a slowly-growing inverse of Ackermann’s function. The best previously known 
algorithms for these problems ran in time linear in the sum of the nonzero counts, 
which is usually much larger. We give experimental results demonstrating the 
practical efficiency of the new algorithms. 

Keywords: sparse Cholesky factorization, sparse QR factorization, symbolic fac- 
torization, graph algorithms, chordal graph completion, disjoint set union, column 
counts, row counts. 
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1. Introduction 

Direct solution of a sparse symmetric positive definite linear system requires four 
steps [7,14]: reordering, symbolic factorization, sparse Cholesky factorization, and 

sparse triangular solutions. Let A be the n x n coefficient matrix of the linear system 

after it has been reordered to  reduce fill, and let L be the lower triangular Cholesky 
factor of A .  This paper presents improved algorithms for computing the number of 

nonzero entries in each row and column of L prior to the synzbolic factorization step. 
We will refer to  these parameters as the row counts and colunin counts of L.  

In least squares computations, A is m x n, with m 2 n. It is often necessary to  

compute the orthogonal factorization A = QR. Our algorithms can be used also to  

predict the row counts and column counts of the upper triangular factor R ,  since the 
structure of R is always contained in the structure of the Cholesky factor of A T A  [ll]. 

Throughout the paper we assume familiarity with graphs, trees, and such basic tecli- 

niques as depth-first search [23]. We also assume a basic knowledge of the four steps in 
solving sparse systems by Cholesky factorization, and with the use of graphs in these 

algorithms [14]. More specifically, we assume familiarity with elimination trees [18], 
skeleton graphs [17], postorderings, supernodes [1,2,15,19,20], and the subscript com- 
pression scheme for L [14,23]. 

1.1. Applications 

Here we survey some of tlie sparse matrix settings in which it is useful to precompute 
the row counts, the column counts, or the total  number of nonzeros in the Cholesky 

factor of a sparse matrix. 

Either the row or column counts can be used to compute ILI, the total number 

of noiizeros in the factor. (We write 1x1 for the number of nonzeros in a matrix X,  
or the number of elements in a set X . )  Knowing ILI before the numeric factoriza- 

tion step makes it possible t o  allocate storage all a t  once, instead of dynamically. In 

sparse Cholesky factorization, the time required to compute ]LI by existing methods is 

dominated by the time required for numerical factorization; but there are a t  least two 

settings in which it is valuable to  be able to  compute IL1 as fast as possible. 

First, some methods for large-scale numerical optimization use Cholesky factoriza- 
tion on a Hessian matrix [5,6]. If the Hessian is indefinite, Cholesky factorization will 
abort, but the partial factorization contains enough information to  help determine a 

good descent direction containing negative curvature information. In this case, the 
symbolic factorization time may dominate the time spent on the numeric factorization 

before it aborts. Thus it may be more efficient to skip the symbolic phase and to  build 

the  da ta  structure for 1, during the numeric factorization. However, for this to  be 
efficient, we still need to  find ILI (and perliaps the column counts) before starting the 

factorization. 
Second, much research remains to be done on the issue of how best t o  reorder the 
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initial matrix to  reduce fill (i.e., t o  reduce ILI). It is sometimes useful t o  compute ILI 
for many different orderings of the same matrix, both in experiments with reordering 
algorithrns and when trying to  optimize an ordering for a specific matrix. Our new 

algorithms make this much faster. 

Besides fill, there are several other measures of the quality of a reordering. Some 

of them can be computed from the column counts; for example. the total number of 
arithmetic operations is the sum of the squares of the column counts, and the maximum 

front size is equal t o  the largest column count. The smallest maximum front size, over 

all reorderings of a graph, is one more than the graph’s treewidth [3]. Thus the fast 

column count algorithm may also be useful in experimental studies of treewidth. 

Two applications related to  the supernodal structure of L also require the column 

counts. Supernodes are clusters of columns with related nonzero patterns, which can be 
exploited to  use fast dense matrix computation kernels in sparse factorization; Section 3 
describes them in more detail. First, there is a simple, flexible O ( n )  scheme for comput- 

ing supernode partitions [2.16] that  takes the column counts and the elimination tree 
as input. This algorithm is more versatile and faster than the O(lA1) algorithm of Liu, 

Ng, and Peyton [19], which takes the original matrix and its elimination tree as input. 
The latter algorithm computes the so-called fundamental supernode partition. Given 
a fast algorithm to compute column counts, the more flexible scheme could be used 
efficiently to  compute other kinds of supernode partitions, such as Ashcraft’s relaxed 

supernode partition [a] (which trades extra fill for a simpler sparsity structure that  can 

be used to  improve efficiency on vector supercomputers or to  reduce synchronization 
overhead on shared-memory multiprocessors). 

The second supernodal application of the column counts is t o  compute the storage 

required for indexing information for L ,  in the usual compressed format generated by 
the symbolic factorization step [24]. Current software packages [4,9] do not precompute 

the space needed for this compressed symbolic factorization, because it is too expensive 
using the currently known algorithms. The storage required for the other three steps in 

the solution process is usually computed in advance; we believe that  the new algorithms 
introduced here are efficient enough to  be used by a software package to  precompute 

the storage requirement of the symbolic factorization step as well. 

Finally, we know of only one application that  specifically requires the row counts 

rather than the column counts. The row counts are the numbers of column modifica- 
tions (sparse SAXPY’s) required to  complete each column in sparse Cholesky factor- 

ization algorithms. Some parallel implementations [12,13] need the row counts t o  tell 
when all the modifications have arrived for each column. 

1.2. Previous work 

Like many combinatorial algorithms in sparse matrix factorization, all the efficient 
algorithms for row and column counts begin by computing the elimination tree of the 
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matrix (defined in the next section). The fastest known elimination tree algorithm is 

due t o  Liu [18]. The time complexity for this algorithm is dominated by disjoint set 
union operations, which take time O(mcr(m,n)), where A is n x n and has 2m off- 

diagonal nonzeros. Here ~ ( m ,  n )  is a slowly-growing inverse of Ackermann’s function 

defined by Tarjan [2G]; for all values of m and n less than the number of elementary 

particles in the observable universe, a (m,  n) 5 4. Thus a function that  is O(m a(m, 7 1 ) )  

is often called “almost linear.n 

The  fastest previously known algorithm for computing row and column counts is 

also due to Liu [MI. It first computes the elimination tree of A and then traverses each 

“row subtree” of the elimination tree (defined in the nest section). The total size of the 

row subtrees is the number of nonzeros in the factor, so the running time of this step 
is O(lLI). Unless the factor is extremely sparse, the subtree traversals dominate the 

time to  find the elimination tree. To put this in perspective, suppose A is the matrix 
of an n-node finite difference mesh ordered by nested dissection. Then ni is O(n) ,  and 

ILI is O ( n  log n)  in two dimensions or O(n4’3) in three dimensions. 

The algorithm in this paper also takes A and the elimination tree as input but 
runs in almost-linear time O(m a(m,  n ) ) ;  the time complexity for the new algorithm 

is dominated by disjoint set union operations. Thus it computes the row and column 
counts in the same asymptotic time needed to  find the elimination tree. As we will see 

in Section 4, this asymptotic efficiency is also reflected in practice. 

1.3. Outline of the rest of the paper 

Section 2 presents the row and column count algorithm from a graph-theoretic point 
of view. Here it is convenient to think of the input not as the graph G ( A )  of a matrix, 
but as the graph G ( A )  LJ T ( A )  that has edges both for the matrix nonzeros and for 
the elimination tree. The elimination tree is a depth-first spanning tree of this graph 

(and also of the graph of L ) ;  thus for the purpose of the high-level view in Section 2 
the  input is just an undirected graph with a specified depth-first spanning tree. In 
this setting, we suspect that our results may be useful in efficient algorithms involving 

chordal graphs, chordal completion, and treewidth. 

In Section 3 we return to the matrix-computation point of view, and discuss details 

of the implementation in the sparse matrix setting. Two points of practical importance 

arise here: we modify the algorithm slightly to  make only one pass over its input, and 
we take advantage of supernodal structure to  compute only with a subgraph called 

the skeleton graph. We show how to organize the entire computation, including the 
skeleton graph reduction, within the framework of Liu et al.’s fundamental supernode 

algorithm [19]. 
Section 4 contains experimental results. We experiment with both the nodal and 

supernodal versions of the algorithm, and also with several implementations of the dis- 
joint set union operations (UNIOK and FIND) that  dominate the asymptotic running 
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time. The best version is the supernodal algorithm with path-halving and no union by 

rank (definitions are in Section 3.3); it performs well enough that  we argue it should 

be a standard part of high-performance sparse factorization codes. Finally, Section 5 
contains concluding remarks. 

2. The algorithm 

2.1. Defini t ions and p rob lem statement 

Let G = (V, E )  be a connected undirected graph with n vertices and m edges, and let 

T be a specific depth-first spanning tree for G. iVe will call vertices v and w adjacent 
if they are joined by an edge in G; that  is, if (v,’w) E E .  We say that  vertex v is an 
ancestor of vertex w if v is on the path in T from w to  the root of T.  Vertex v is a 

descendant of w if w is an ancestor of v. Note that  a vertex is its own ancestor and 

its own descendant; a proper ancestor or descendant is one that  is different from the 
vertex itself. We will write T[v]  for the set of descendants of v, and also for the subtree 

of T (rooted a t  v )  that  those vertices induce. 

Since T is a depth-first spanning tree, every edge of G (whether or not it is an edge 
of T )  joins an ancestor in T to a descendant in T .  

To simplify notation, we will assume that  the vertices of G are the integers 1 

through n. We will also assume that the vertex numbers are a postorder on T ,  that  
is, that  for every vertex v, the vertices of T [ v ]  are numbered consecutively, with 2, 

numbered last. Thus vertex n is the root of T .  
The level of vertex v, which we write level(v),  is its distance in T from the root. The 

least common ancestor of vertices v and w, which we write lca(v, w), is the ancestor of 
and w with the smallest postorder number (or the largest level). Both a postorder 

numbering and the vertex levels for an arbitrary tree can be computed in linear time 

by depth-first search 1251. Given a set of I; pairs {v, w} of vertices, the k least common 

ancestors I ca (v ,w)  can be computed in O ( k c r ( k , n ) )  time, where a is the very slowly 
growing inverse of Ackermann’s function mentioned above [27]. We describe these 

algorithms in more detail in Section 3. 

We consider the following two problems. 
P r o b l e m  1 (row counts ) .  For every node u E V ,  let row[u] be the set of descen- 

dants u of u for which either v = u or there exists an edge ( u , ~ )  with w E T[v] .  The 
problem is t o  compute rc (u )  = Irow[u]I for every u. 

P r o b l e m  2 ( c o l u m n  counts ) .  For every node v E V ,  let col[u] be the set of 
ancestors u of v for which either ti = v or there exists an edge (u, w) with w E T[v] .  
The problem is t o  compute C C ( ~ )  = Icol[v]l for every v. 

Note that  v E row[u] if and only if u E col[v], and that  u is an element of both 
T O U ) [ ~ L ]  and coI[u]. For each u, the subgraph of T induced by row[u],  denoted by T,[u] 
and referred t o  as the roo211 subtree of u, is connected; it is a “pruned subtree” rooted 
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at 21. The subgraph of T induced by col[v] may not be connected. 

We conclude by briefly describing the relationship between these problems and 

sparse Cholesky factorization. It may seem a bit confusing that  we include the elimi- 

nation tree edges in the graph G in the graph problem but not in the matrix problem; 

however, the answer is the same in either case. 

Let an n x n symmetric, positive definite matrix A be given, and let G(A) be its 

undirected graph (whose vertices are the integers 1 through n). Let G + ( A )  be the 
filled gruph of G(A) [21] obtained by adding to G ( A )  edge ( v , w )  whenever there is a 
path in G ( A )  from v to w whose intermediate vertices are all smaller than both v and 

w. The graph G + ( A )  is chordal, and (ignoring numerical cancellation) is the graph of 

L i- L T ,  where L is the Cholesky factor of A [22]. 
The elimination tree of A, denoted T ( A ) ,  has vertices 1 through n, and the parent 

of vertex v is the smallest 20 > ‘1: such that  (0, w )  is an edge of G+(A). Liu [18] surveys 

the uses and properties of this structure. It is a forest with one tree for each connected 
component of G(A); if A is irreducible then T(A) is a tree. The elimination tree may 
not be a subgraph of G(A), but it is a subgraph of G+(A), and in fact it is a depth-first 
spanning tree of that  graph. If A‘ is a matrix whose graph is G(A’) = G(A) U T ( A ) ,  it 
is straightforward that G+(A’) = G + ( A )  and T(A’)  = T(A). 

Now consider problems (1)  and (2) above for G = G(A’) and T = T(A’) .  It  is easy 
to show [18] that the edges of G + ( A )  = G+(A’) are exactly those ( u , ~ )  for which v # u 
and v f TOW[U] (or u E coI[v]) .  Thus T C ( U )  is the number of nonzeros in row u of the 
Cholesky factor L of A,  and cc (v )  is the number of nonzeros in column v of L. 

2.2. Row counts 

We will count the vertices in ~ o w [ u ]  by counting the edges in the pruned subtree T,[u] 
of T that  T O W [ U ]  induces. The following lemma lets us partition those edges into paths. 

Lemma 1. Let pl 5 p2 5 - 5 pk be some of the vertices of a rooted tree R (where 

< is postorder), and suppose all the leaves and the root of R are  among the p ,  ’s. Let 

qI be the least common ancestor o f p ,  and p I + l ,  for 1 5 i < k. Then each edge (s, t) of 
the  tree is on the tree path from p3 to q3 for exactly one j. 

Proof: Suppose t is the parent of s in R. The descendants of s include a t  least one 
leaf, so they include at  least one p , .  Let p ,  be the largest p ,  among the descendants of s. 
Then p3 5 s < p3+1. (There must be a pJ+I-that is, we cannot have j = k-because 

p k  is the root, which is a proper ancestor of s.) Since s is an ancestor of p3 but not 

of p J + l ,  the least common ancestor q3 of p3 and p,+l is a proper ancestor of s, and 
hence an ancestor of 1. Therefore (s, t )  is on the path from p3 to q3. 

Now consider an i # j .  If s is not an ancestor of p , ,  then ( s , t )  is not on the 

path from p ,  to its ancestor 4,. If s is an ancestor of p a ,  then p ,  _< s, and i # j implies 
p1 _< p,+l  5 s. Since postorder assigns consecutive numbers to the vertices in a subtree, 
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Figure 1: Example of path decomposition. 

this means that  s is also an ancestor of p ; + l ,  and hence of the least common ancestor q;. 

Thus ( s , t )  is not on the path from pi to  q;.  0 

The hypotheses of the lemma allow a vertex to  be p ,  for more than one i. Thus it 
is possible that  pi = p;+l = q, and the path from pi t o  qt is trivial. Figure 1 shows an 
example of the path decomposition (with no trivial paths). 

Recall that  T is a depth-first spanning tree of G and hence every edge of G joins 

an ancestor in T t o  a descendant in T .  Now consider a vertex ti of G. If the lower- 

numbered neighbors of u in G are p1 < p2 < . . . < pk-1, and if pk = u, then the pruned 
subtree R = T,[u] induced by TOW[U] satisfies the hypotheses of Lemma 1. Thus the 

number of edges in Tr[u] is the sum of the lengths of the paths in the lemma. The 

length of the path from p ,  t o  its ancestor q; is the difference of their levels. The number 

of vertices in T O W [ U ]  is one more than the number of edges, so 

(Here lca and level are taken in T rather than Tr[u], but it is clear tha t  for any two 

vertices in T O Z U [ ~ ]  the least common ancestor and the difference in levels are the same 

in either tree.) 

The algorithm to compute T C ( U )  for all u first sorts the lower-numbered neighbors 
of each vertex by postorder, then computes all the necessary least common ancestors, 
and finally computes the sum above for each u. Computing level numbers (and the 
postorder itself if necessary) takes linear time, and sorting all the lower-numbered 
neighbors by postorder takes linear time by a lexicographic bucket sort. There is one 
least-common-ancestor computation for each edge of G, so the dominant term in the 

algorithm's time complexity is O ( m  a(m,  n ) ) .  



2.3. Column counts 

Because u E col[v] if and only if w E T O W [ U ] ,  the column count C C ( V )  is equal t o  the 

number of row subtrees T,.[u] that  contain v. We could compute C C ( V )  by traversing each 

row subtree in turn,  and counting the number of times each vertex was traversed [18]. 
This, however, would take time proportional t o  E, C C ( V ) .  

To get a faster algorithm, we will define weights w t ( v )  on the vertices of G in such 

a way that  the column count for vertex v will turn out to be the sum of the weights of 
the descendants of w. The key observation will be that  we can compute these weights as 

a sum of contributions from each row subtree, and that the row subtree contributions 
can be computed efficiently using the same least common ancestors as in the row count 

algorithm. 
Here are the details. For each vertex u, define xu to be the characteristic function 

of T O W [ U ] ,  so that xu(.) = 1 if E row[u] and xu(.) = 0 otherwise. Define wt, by 

These weights may be positive, negative, or zero. This definition implies that  

In a sense, wt, is a “first difference” down the tree of the characteristic function of 
row[u]. Finally, define 

uEV 

Now we prove three lemmas relating the column counts to  the weights, the weights 

t o  the sets  TOW[^], and finally the T O W [ U ] ,  once more, to the least common ancestors. 

Lemma 2. For every vertex v ,  

Proof: Because 1, E T O W [ U ]  if and only if u E col [v] ,  we have 

Equation 2 says that this is equal to  
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The result follows by reversing the order of summation and using Equation 3. 0 

Lemma 2 implies that  we can compute the column counts easily and efficiently 

from the weights, by traversing the tree in postorder and summing the weights of the 

subtrees. It remains to describe how to compute the weights. 

Lemma 3. Let u and v be vertices. Suppose that d o f  the children o f  v are vertices o f  
T O W [ U ] .  Then 

if v E T O W [ U ] ,  

if v is the parent of u, 
otherwise. 

wtu(v )  = 

Proof: This is immediate from Equation 1 and the definition of xu. 0 

Lemma 3 implies that  the only vertices v for which wt,,(v) is nonzero are the leaves 

of the pruned row subtree Tr[u], the internal vertices of Tr[u] that  have more than one 
child in T,[u], and the parent of u. The following lemma will let us compute wt,(v) for 
each v from the same pi’s and qi’s we used in the row count algorithm. 

Lemma 4. Let p l  5 p2 5 5 p k  be some o f  the vertices o f  a rooted tree R (where 
< is postorder), and suppose all the leaves and the root o f  R are among the pi’s. Let 
qi be the least common ancestor ofp; and for 1 5 i < k. Then for each vertex v 
of R, the number o f  children of  v in R is 

I{i : q; = 2, }I  - l{i :pi = .}I + 1. 

Proof: Let Q = I{i : q; = v}], let P = I{i : p ;  = v}I, and let d be the number of 
children of v in R. Consider the set of directed paths from p; to  q; in R,  for 1 5 i < k. 
For any collection of directed paths, each path that includes vertex v either begins a t  v 
or enters v along edges from other vertices. Similarly, each path that  includes vertex v 
either ends a t  v or leaves v along edges to  other vertices. Consequently: 

The number of paths that either begin a t  v or enter v along edges from 
other vertices must be equal to  the number of paths that  either end a t  v or 

leave ‘u along edges to  other vertices. 

(This is essentially I<irchoff’s law for a flow of unit size from p;  t o  qi for each i.) 
Lemma 1 says that every edge of Il is on exactly one of these paths. Therefore one 
path enters u from each of the d children of v; exactly one path leaves v, t o  its parent, 
unless v is the root; one path begins a t  v for each i such that  pi = v (except for i = k 
if ‘u is the root); and one path ends a t  v for each i such that  q; = v. A trivial path with 
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p ;  = q; = v both starts and ends a t  D ,  but does not enter or leave D. Thus the relation 

above is 
P + d = Q + l  

if v is not the root of R, or 
( P -  1) + d =  Q+O 

if D is the root. In either case, we have d = Q - P + 1 as desired. 0 

Now consider a vertex u of G. If the lower-numbered neighbors of u in G are 

p l  < p2 < - - - < pk-l, and if p k  = u,  then the pruned subtree R = T,[u] induced by 

row[u] satisfies the hypotheses of Lemma 4. Therefore, using Lemma 3, if D is a vertex 

of row[u] then wt&j = I{i : pi = .}I - I{i : q; = .>I.  Thus we could compute wt,(v) 
for all v by initializing each weight to  zero, setting the weight of the parent of u to  -1, 
and then adding one t o  the weight of each p ;  and subtracting one from the weight of 

each 9;. 

In fact we do not need t o  compute u t l l ( v )  separately for each u; we can compute 
wt(v )  = E, tutu(.) all a t  once. The  algorithm begins, like the row count algorithm, by 
sorting the lower-numbered neighbors of each vertex into postorder and computing all 
the necessary least common ancestors. It initializes w t ( v )  to  zero for each v. Then, for 

each u, it subtracts one from the weight of the parent of u,  adds one to the weight of 
each lower-numbered neighbor of u,  and subtracts one from the weight of the least com- 

mon ancestor of each pair of consecutive (in postorder) lower-numbered neighbors of u. 
Finally, the algorithm computes CC(.) for all v by summing the weights of each subtree 
in postorder. Figure 2 sketches the algorithm to compute both row and column counts. 

The  only step that  takes more than linear time is the least-common-ancestor compu- 
tation, and the dominant term in the algorithm’s time complexity is O ( m  a ( m ,  n)). 

3. Implementatioii 

The  discussion in the previous section was in a general graph theoretic setting. However, 

in order t o  obtain the most efficient implementation of the new algorithm for our 

applications, we need t o  switch back to a sparse matrix setting. 

Consider a symmetric matrix A and its graph G ( A ) .  Assume that  the elimination 

tree T ( A ) ,  the postordering, and the values level(u) (with respect to T ( A ) )  have been 

computed, as required in Figure 2. Two other requirements must be met to obtain a 

practical and efficient implementation of the new algorithm. 
First, we must reorganize the computation to avoid sorting the adjacency lists by 

postorder and precomputing all the least common ancestors. Indeed, direct implemen- 

tation of the algorithm in Figure 2 would require that G ( A )  be processed three times, 
and we doubt that  any multiple-pass implementation will come close to realizing the 
practical efficiency of the single-pass implementation presented in this section. 

Second, we must discard some edges of G ( A )  that  do not affect the result. Recall 
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Sort the vertices and their lists of neighbors by a postorder of T ;  
Assign u and the lower-numbered neighbors of u t o  adj [u ] ,  for all u; 
Compute l eve l (u)  as the distance from u t o  n (the root), for all u; 
Compute Ica(p,p’) for every p and its successor p’ in ad j [u ] ,  for all u; 
T C ( U )  +- 1, for all u; 
w t ( u )  t 0, for all u; 
for 11 +- 1 to n do 

if u # n then 

end if 
for p E adj [u ]  do 

w t ( p a r e n t ( u ) )  t wt(parent (u) )  - 1; 

.wW +- w t ( d  t 1; 
if p is the last member of adj[u]  then 

else 
rc(u)  t T C ( U )  + l e v e l ( p )  - l e v e l ( u ) ;  

p’ + the successor of p in ad j [u ] ;  

T C (  u) +- T C (  u) + IeveE(p) - level(q); 
4 - Ica(p,p’);  

.wt(rl) + W 4 )  - 1; 
end if 

end for 
end for 
cc(v) +-- w t ( v ) ,  for all v ;  
for v + 1 to n - 1 do 

end for 
cc(parent(  v)) t cc(parent(  v)) +- CC( v); 

Figure 2: Algorithm to compute row and column counts. 
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from Liu [17] that  the skeleton graph G- = G - ( A )  is obtained from G(A) by removing 

every edge ( u , v )  for which 2: < u and the vertes 2, is not a leaf of T,.[u]. The skeleton 

graph is the smallest subgraph of G(A)  whose filled graph is identical with that of 
G ( A ) .  Consequently, the new algorithm produces the same results when applied to  G- 
as when applied to  G(A). Indeed, if G = G- U T ( A )  rather than G = G ( A )  U T ( A )  
in Lemmas 1 and 4, then every vertex p l , p 2 , .  . . ,p+l is a leaf in the tree R, which 

reduces the number of edges searched and least common ancestors computed by the 
new algorithm to  the minimum possible. Since G- often has far fewer edges than G(A)  
in practice, an  implementation that processes G- rather than G ( A )  promises t o  be 
substantially faster; we see in Section 4 that  this is indeed the case. 

The  skeleton graph G- is closely related t o  the fundamental supernodes of A, and 

can be computed efficiently in linear time by a simple modification of Liu, Ng, and 
Peyton's algorithm [19] to  find fundamental supernodes. Indeed, that  algorithm is a 

good framework for implementing our new algorithm, whether the skeleton graph is 
exploited or not. We can combine the two algorithms t o  obtain an  efficient single-pass 

implementation. As this implementation processes the edges of G( A ) ,  i t  discards edges 
not in the skeleton graph, and uses only the skeleton edges to  compute the da ta  for the 

row and column counts. If rn- is the number of edges in G-, then this scheme runs in 

O(m + m- cy(nz-, n)) time. 
Section 3.1 below ieviews the material we need from Liu et  al. [19]. Section 3.2 

presents a detailed version of the new combined implementation. Section 3.3 briefly 
describes our implementation of the disjoint set union algorithm for computing the 

least common ancestors, upon which the time complexity of our algorithm depends. 

3.1. A fast algorithm for finding supernodes 

Liu, Ng, and Peyton [19] introduced an  O(lA1) algorithm t o  compute a fundamental 

supernode partition. Their algorithm assumes that  the elimination tree T(A) has been 

computed and that  the vertices are numbered by a postordering of T(A). Let the 
monotone adjacency set of v, denoted by rnadj[v], be the set of neighbors of .u in the 
filled graph G + ( A )  that  are numbered higher than v. Ashcraft and Grimes [2] defined 
a fundanzentul supernode as a maximal contiguous set of vertices {v, .u + 1 , .  . a ,  .u + s} 

such that  v+ i is the only child of v +  e ' +  1 in the elimination tree (for i = 0,1,  - - .  , s - 1)  
and 

madj[v]  = rnadj[v + s] u {v + l , v  + 2, * - * ,  .u + s}. 
The fundamental supernodes partition the vertices of G ( A ) .  

In matrix terms, a supernode is any group of consecutive columns in L with a 

full diagonal block and with identical column patterns below the diagorial block. A 
fundamental supernode is maximal subject to the following condition: every column 
of the supernode except the last is an only child in the elimination tree. Liu et al. [19] 

give several reasons why fundamental supernodes are the most appropriate choice of 
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supernodes for most applications, one of which is that  they are independent of the 

choice of postordering for T ( A ) .  
Finding the set of fundamental supernodes is equivalent t o  finding the first vertex 

of each supernode. These ‘‘first vertices” are characterized by the following result. 

Theorem 5 (Liu, Ng, and Peyton [19]). Vertex ‘u is the first vertex in a funda- 

mental supernode if and only if vertex v has two or more children i n  the elimination 
tree, or v is a leaf of some row subtree of T ( A ) .  0 

The key observation is that  the vertices required by the row/column count algorithm 
(the pi’s and qi’s) are in fact first vertices of fundamental supernodes. I t  follows from 

the discussion immediately after Lemma 3 in Section 2.3 that  the vertex pairs p ; , ~ ; + ~  
whose least common ancestors must be found can be restricted to  vertices that  are 

leaves of some row subtree of T (  A ) .  This is equivalent to  restricting the algorithm in 

Figure 2 to  the skeleton graph G-. Furthermore, when the pi’s are restricted in this 

manner, it is clear that  every least common ancestor q; = Ica(p; ,p;+l)  has two or more 
children. Consequently, the Liu et al. algorithm is an excellent vehicle for an efficient 
implementation of our new algorithm. 

3.2. Detailed implementation of the new algorithm 

The details of our single-pass, column-oriented implementation are given in Figure 3. 
Here we take adj[p] t o  be the set of neighbors u of p in G ( A )  for which u > p ;  thus 

each undirected edge of G ( A )  is represented only once. Note that  p 4 adj[p]. Again, 

the vertices are numbered by a postorder of the tree T ( A ) ,  but here no assumption is 
made concerning the order of the vertices in the adjacency lists adj[p], nor are the least 

common ancestors computed in advance. Consequently, this implementation makes 
only a single pass through G ( A ) .  

The vector of markers prev-p(u) stores the most recently visited vertex p‘ that  is 

a leaf in T,[u]. The pairs p , p ‘  produced by the algorithm are precisely the multiset 
consisting of every consecutive pair of leaves in every row subtree T,[u]. The reason 

for this is that  one of the if tests in the algorithm screens out all edges in G ( A )  except 

those in the skeleton graph G-. The lines marked with asterisks have been added to 
the algorithm solely for this purpose. Of these, the key line is the test for whether or 

not the first (i.e., lowest numbered) descendant of p ( f s t -desc (p ) )  is greater than the 

most recently visited vertex in the lower adjacency set of u,  namely the vertex stored 
in the marker variable prev-nbr(u). It  is not difficult t o  verify that  when the condition 
holds true, no descendant of p is adjacent t o  u in G( A ) ;  hence p is indeed a leaf in T,[u]. 
For full details of this test, see Liu et al. [19]. 

The implementation is correct with or without the starred lines. We have imple- 
mented both versions: we call the one with tlie starred lines the supernodal version, 
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Sort the vertices by a postorder of T ( A ) ;  
Assign the higher-numbered neighbors of u to udj [u ] ,  for all u;  
Compute lewel(u) as the distance from u to  n (the root), for all u; 
Compute fst-desc(u) as the first (least) descendant of u in T ( A ) ,  for all u; 
prev-p(u)  c 0, for all u;  

* 

* 

* prev-nbr(u)  t 0 ,  for all u; 
T C ( U )  c 1, for all u;  
wt(u)  t 0, for all non-leaves u in T ( A ) ;  
wt(u)  c 1, for all leaves u in T ( A ) ;  
for p t 1 to n do 

if p # n then 

end if 
for u E aa!j[pJ do 

wt(parent(p)) - wt(purent(p)) - 1; 

if fst-desc(p) > prev-nbr(u) then 
wt(p> + W P )  + 1; 
p' - prev-p(u);  
if p' = 0 then 

else 
rc(u) +- T C ( U )  + level(p) - leveE(u); 

q - FIND($); 
rc( u )  + TC( u )  + Zevel(p) - Zevel(q); 

4 7 )  + w+?) - 1; 
end if 
Prev-P(u) + P; 

* end if 
* prev-nbr( u )  t p; 

end for 
UNION(p, parent (p) ) ;  

end for 
C C ( V )  t wt(v) ,  for all v ;  
for v t 1 to n - 1 do 

end for 
cc(purent( TI)) c cc(purent( TI)) + cc( TI); 

Figure 3: Implementation of algorithm to compute row and column counts. 



- 14 - 

and the one without these lines the nodal version.’ lye experiment with both versions 

of the algorithm in our tests in Section 4. 

3.3. Disjoint set union 

In order t o  compute least common ancestors, the algorithm in Figure 3 must manipulate 
disjoint sets of vertices, each of which induces a subtree of the elimination tree. The 

highest numbered vertex in each set ( the root of the subtree) is used t o  “name” the 
set, and is called the representative vertez of the set. Initially each vertex p from 1 

to  n is a singleton set. As the algorithm proceeds, it executes a sequence of FIND and 

UNION operations, which are defined as follows. 

0 FIND(p): return the representative vertex of the unique set that  contains p .  

0 UNION(u, v): combine the two distinct sets represented by ‘u and v into a single 

set, which will be represented by the larger of u and v.  

It is straightforward to  verify that the call t o  FIND($) in our algorithm returns 
Ica(p’ ,p) ;  see Tarjan [27] for details. 

Each disjoint set is implemented as a tree stored using a parent vector (not t o  be 
confused with the parent vector in the elimination tree). The operation UNION(u, u )  

joins the two distinct trees represented by u and v together by making one of the roots 
a child of the other root. Consequently, UNION is a constant-time operation. This is 
not the case for FIKD. The operation FIND(p) traces the find path from p to the root 

of p’s tree. This root either is the representative vertex or contains a pointer t o  the 

representative vertex, depending on the implementation of UNION. 
Tarjan [28] describes several techniques t o  shorten the find paths and thus reduce 

the amount of work spent on the FIND operations. Union by rank makes the shorter 
tree’s root a child of the taller tree’s root in UNION, which tends t o  keep the trees 

short and bushy. With no other enhancements, union by rank ensures that  find paths 
are no longer than O(log,( u)). This is usually combined with one of two techniques for 

shortening the find path during a FIND operation. The first of these is path compres- 
sion, which, after finding the root, makes the parent for each vertex on the find path 

point to  the root during a second pass along the path. Alternatively, path halving resets 

the parent pointer for every other vertex on the find path to  point t o  its grandparent. 

Path compression shortens the find path more but requires two passes over the find 

path; path halving needs only one pass. 
Tarjan [2G,28] showed that when union by rank is combined with either path 

compression or path halving, any sequence of n UNION’S and m FIND’S takes only 

O ( m a ( m , n ) )  time. Tarjan [27] pointed out how to  use the disjoint set union algo- 
rithm to find the least common ancestors of an arbitrary set of pairs of vertices from 

’ In  the  nodal version, p r e t i q ( u )  functions precisely as prew-nb+(u)  does in the supernodal version. 
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the same tree; our implementation of the row and column count algorithm uses the 

same method. Consequently, we can implement the nodal version of our algorithm to 

run in O(m o(m,  n)) time, and similarly we can implement the supernodal version t o  
run in O ( m  + m- a(m-,  n ) )  time. 

Gabow and Tarjan [lo] showed that  if the order of the UNIOK operations is known 

in advance (as is the case in our problem), then disjoint set union can be implemented 

so tha t  a sequence of n Un’IOX’s and m (2 n )  FIND’S takes only O(m)  time. Their 
sophisticated hybrid algorithm partitions the vertices into microsets and performs all 
the operations in a hierarchical fashion, using table look-up t o  answer queries within 

the microsets, and using the standard disjoint set union algorithm on the microsets 

themselves. We did not implement this algorithm; we believe i ts  increased overhead 

would wipe out the difference between O ( m  a(m, n ) )  and O ( m )  in our application. 

We implemented and tested the following six combinations: 

1. no union by rank, no path compression or halving. 

2. no union by rank, path compression. 

3. no union by rank, path halving. 

4. union by rank, no path compression or halving. 

5. union by rank, path compression. 

6. union by rank, path halving. 

We found surprisingly little difference in performance among the various options. Far 
more important is whether or not the row/column count processing is limited to the 

skeleton graph, as we shall see in the next section. We found that  any gains due to  
union by rank were more than offset by the additional overhead required for its im- 
plementation. The third option-no union by rank, path halving-performed slightly 

better on most machines we tried. Path halving was clearly superior to  path com- 
pression when the skeleton adjacency structure was not exploited. Consequently, we 

recommend path halving t o  those implementing the method, and in the next section 

all our timings were obtained using path halving and no union by rank. 

4. Experimental results 

We have run the new algorithms 011  several problems from the Harwell-Boeing sparse 

matrix collection [SI. Table 1 lists our test problems, and Table 2 contains the problem 
statistics that  have a bearing on the observed performance of our algorithms. Through- 
out this section supcnt refers to the “~~pern0da.1” version of the algorithm (Figure 3 
with the starred lines), which identifies the edges of the skeleton graph G- and uses 

only those edges in its row and column count calculations, and nodcnt refers t o  the 
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problem 
KASA1824 
NASA2910 
NASA4704 
BCSSTK13 
BCSSTKl4 
BCSSTK15 
BCSSTK16 
BCSSTKli 
BCSSTK18 
BCSSTK23 
BCSSTK24 

brief description 

Structure from NASA Langley, 1824 degrees of freedom 
Structure from NASA Langley, 2910 degrees of freedom 
Structure from NASA Langley, 4704 degrees of freedom 
Stiffness matrix-fluid flow generalized eigenvalues 
Stiffness matrix-roof of Omni Coliseum, Atlanta 
Stiffness matrix-module of an offshore platform 
Stiffness matrix-Corps of Engineers darn 
Stiffness matrix--elevated pressure vessel 
Stiffness matrix-R. E. Ginna nuclear power station 
Stiffness matrix-portion of a 3D globally triangular building 
Stiffness matrix-winter sports arena 

problem 

NASA 1824 
N AS A29 10 
N A S .44 704 
BCSSTK13 
BCSSTK14 
BCSSTK15 
BCSSTKlG 
BCSSTK17 
BCSSTK18 
BCSSTK23 
B C SST K24 

dimension 
n 

1824 
2910 
4704 
2003 
1806 
3948 
4884 

10974 
11948 
3134 
3562 

edges in G ( A )  
m 

18692 
85693 
50026 
40940 
30824 
56934 

142747 
208838 

68571 
21022 
78 174 

edges in G- 
m- 

3565 
8113 
9672 
5598 
4352 

13186 
11665 
24569 
23510 

8500 
6977 

Table 2: Problem statistics. 

edges in G+ 
m+ 

71875 
201493 
276768 
269668 
110461 
647274 
736294 
994885 
650777 
417177 
275360 

4.1. Performance of the disjoint set union options 

The  primary purpose of Table 3 is to explain two things we have observed in our tests: 
(1) why exploiting the skeleton graph is so beneficial, and (2) why the various disjoint 
set union (DSU) implementation options have so little influence on the performance of 
our code. The number of FIND operations required by nodcnt and supcnt is bounded 
above by m and m-,  respectively, and bounded below by m - n and m- - n. Thus, 

the huge difference between the number of FIND’S required by nodcnt  and the number 
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of FISD’s required by supcnt  (see Table 3) simply reflects the fact that  the skeleton 

graph of A is typically much sparser than the graph of A (see Table 2). 

NASA1824 2.1 
NASA2920 2.0 
NASA4704 2.2 
BCSSTK13 2.1 
BCSSTK14 2.1 
BCSSTKl5 2.2 
BCSSTKlG 2.1 
BCSSTK17 2.1 
BCSSTKl8 2.3 
BCSSTK23 2.4 
BCSSTK24 2.0 

nodcnt /I - -  
ITS 

F;- 
PEI 
1 
2.3 
2.1 
2.3 
2.2 
2.2 
2.3 
2.1 
2.1 
2.5 
2.7 
2.1 

’ - 
L _ -  

- 

I 1  
ver 

P 
- 

r- 

29200 
53468 
38121 

18419 

e 

R 
1.9 
1.6 
1.9 
2.2 
1.7 
2.0 
2.0 
1.9 
2.2 
2.4 
1.7 

- 
- 
- 
N It 
2.3 
2.1 
2.2 
2.2 
2.2 
2.2 
2.1 
2.2 
2.5 
2.4 
2.1 

- 

supcnt 
:es - - 
- 
R 
1.6 
1.4 
1.6 
1.8 
1.5 
1 .6 
1.7 
1 .€I 

1.8 
1.9 
1 .6 

- 
P II - 

NR 
2.5 
2.2 
2.4 
2.4 
2.3 
2.3 
2.2 
2.2 
2.8 
2.6 
2.2 

- 
- 

R 
1.6 
1.4 
1.6 
1.8 
1.5 
1.7 
1.7 
1 .6 
1.9 
1.9 
1 .6 

- 
FIND’S 

1923 
5491 
5455 
3783 
2728 
9720 
7039 

14823 
14563 
5897 
3565 

Table 3: Average number of vertices on a find path for DSU implementation options: 
PC is path compression, PI1 is path halving, R is union by rank, and N R  is no union 
by rank 

Each FIKD(p) operation traverses the find path in p’s tree beginning a t  p and ending 
at the root of the tree. The average number of vertices on these find paths is reported for 

each DSU implementation. \Ne tested only two options for nodcnt:  path compression 
and path halving, both without union by rank. Note that  the average number of vertices 

on a find path ranges from 2 to  2.7, with path compression faring slightly better than 

path halving. The performance of path compression suffers, however, because the 

find path must be traversed twice, compared with once for path halving. Our tests 
indicate that path halving does indeed substantially outperform path compression, and 
in nodcnt ,  where the number of FIKD’s is large, the gain in efficiency is substantial. 

We tried all six options mentioned in Section 3.3 in our implementations of supcnt ,  

and as  noted earlier, we saw little difference in performance from one option to  the next. 

The primary explanation for this phenomenon is the small proportion of supcnt’s  total 

work devoted to DSU operations. The number of FIND operations is small relative t o  

m, and the average number of vertices on a find path is small (from 3.4 to  2.6) for five 
of the six options tested. For the sixth option (no DSU enhancements), the average 
number of vertices on a find path is still quite modest (from 3.6 t o  5.8)’ with less work 

required for each vertex visited. Consequently, even this option is competitive in our 
tests. 

When path compression or path halving is used, union by rank obtains only modest 
reductions in the average number of nodes visited. The overhead costs associated with 
union by rank more than offset any advantages conferred by the technique. Comparing 
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[ 

problem 

NASA1824 
NASA2920 
NASA4704 
BCSSTK13 
BCSSTK1.I 
BCSSTKl5 
BCSSTKlG 
BCSSTKl7 
BCSSTK18 
DCSSTIi23 
BCSSTK24 

path compression and path halving with no union by rank, the same observations made 

previously for nodcnt hold for supcnt  also. The primary difference is that  the total 

work associated with DSU operations in supcnt  is so small that  the performance edge 

of path halving over path compression is quite small. Nonetheless, path halving with 

no union by rank has proven most effective overall and has the added advantage of 
simplicity. Finally, note that for our chosen option the total number of vertices visited 

by FIND operations is much less than m for most of the test problems. 

e-tree 

.035 

.15G 

.09G 

.078 

.057 

.lo$ 

.2G2 
3 9 1  
.144 
.044 
.143 

4.2. P e r f o r m a n c e  of t h e  row a n d  co lumn coun t  a l g o r i t h m  

We coded nodcnt and supcnt  in Fortran 77 and ran our tests on an IBM RS/6000 
(model 320). We used tlie standard Fortran compiler and compiler optimization flag 

(xlf -0). We used a high-resolution timer ( r e a d r t c )  to obtain our timings on this 
machine, repeating each run t,en times in succession and returning the average elapsed 

time. The results are shown in Table 4. We used path halving and no union by rank 
in the implementation of the disjoint set union algorithm for both nodcnt and supcnt .  
The time required to  c.ompute the elimination tree and postordering are of interest 

post- 
ordering 

.OOG 

.009 

.016 

.006 

.005 

.013 

.016 

.037 

.040 

.010 

.012 

row/column counts 
Liu's 

l n z c n t  
.07G 
.25G 
.2G1 
.238 
.118 
.513 
.691 
.965 
3 4 9  
.310 
.295 

new 
nodcnt 

.047 

.198 

.128 

.098 

.074 

.142 

.331 

.500 
,197 
.059 
s a 4  

supcnt  
.038 
.144 
.lo4 
.074 
.056 
.113 
.239 
.408 
.181 
.054 
.134 

super- 
nodes 

.031 

.128 

.064 

.048 

.091 

.216 

.329 

.141 

.039 

.120 

-085 

Table 4: Run times in seconds on an IBM RS/GOOO (model 320). 

for two reasons. First, they must be computed before the row/column counts can be 
computed. Second, the algorithm for computing the elimination tree is, like nodcnt and 
supcnt ,  a single-pass O ( m  cr(m, n ) )  algorithm that relies on efficient implementation 

of the disjoint set union operations for efficiency. Thus it is interesting to  compare its 
performance with that  of the new algorithms. 

Both nodcnt and supcnt  are much more efficient than l n z c n t ,  the O( ILI) algorithm 

from Liu [lS]. Algorithm nodcnt is 1.29 to  5.25 times faster than l n z c n t ,  while supcnt  

is, in turn,  1.08 to 1.39 times faster than nodcnt. For every problem but one, supcnt  
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is at least twice as fast as l n z c n t .  (For KASA2920, supcn t  is 1.77 times faster than 

lnzcnt.) For four of the problems, supcn t  is more than three times faster than l n z c n t .  

For BCSSTK15 supcn t  is 4.54 times faster, and for BCSSTK23 supcnt is 5.74 tinies 

faster. 

Finally, it  is interesting to  compare the timings for the elimination tree algo- 
rithm [IS] and the supernode algorithm [19] with those for supcnt .  First, supcnt  

can be viewed as an extension of the supernode algorithm, and consequently the time 
for supcn t  should be bounded below by the time for the supernode algorithm. Though 
there are some differences in the amount an3 kind of @(n)  work performed by the two 

algorithms before and after the main loop, the difference in the two timings can never- 
theless be viewed as a crude measure ra f  the cost of adding the instructions necessary 

to compute row and column counts to  the supernode algorithm. Clearly, this cost is 

quite small, especially considering the simplicity and demonstrated practical efficiency 

of the supernode algorithm. Note also that the timings for supcn t  and the elimination 

tree algorithm closely track each other. From these observations, we conclude that it 
is probably not possible to  improve the performance of supcn t  much beyond what we 

are currently observing. 

5 .  Conclusion 

We have considered in this paper the problem of predicting the row counts and column 
counts in the Cholesky factor L of a sparse symmetric positive definite matrix A ,  given 

the zero/nonzero structure of A and the elimination tree T ( A ) .  We have presented new 

algorithms for determining the counts, the complexities of which are linear in IAI times 
a slowly growing inverse of Ackermann’s function; the previously known algorithms ran 

in O(lL1) time. The  key to  the new algorithms is the computation of least common 

ancestors in a tree using the disjoint set union algorithm. We have investigated different 
ways of implementing the disjojnt set union operations in our algorithms. Based on 

our experimental results, we conclude that  path halving with no union by rank is the 

best technique for an efficient implementation of the disjoint set union algorithm. 

We have further improved our new algorithms by exploiting the skeleton graph of 
A.  We have demonstrated that the supernodal version is faster than the nodal version 

in all of the problems we tested. Moreover, both the nodal and supernodal versions 
are much more efficient than the previously known @(ILI)-time algorithms. We expect 

the algorithms dpscribed in this paper t o  be of practical use in a wide range of sparse 
matrix computations. 
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