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EXECWIVE SUMMARY 

To compensate for the potential for overly conservative estimates of risk using 
standard U.S. Environmental Protection Agency methods, an uncertai anafysis should 
be performed as an integral part of each ri ssment. Uncertainty lyses atlow one 
to obtain quantitative results in the form o dence intervals that will aid in decision 
making and will provide guidance for the tion a€ additional data. To perform an 
uncertainty analysis, one must frequently rely on subjective judgment in the absence of 
data to estimate the range and a probability distribution describing the extent of 
uncertainty about a true but unknown value for each parameter of interest. This 
information is formulated from profession ment based on an extensive review of 
literature, anaiysis of the data, and inte with experts. Various analytical and 
numerical techniques are available to allow statistical propagation of the uncertainty in 
the model parameters to a statement of u tainty in the risk to a potentially exposed 
individuai. Although an be straightforward for relatively simple 
models, they rapidly bec for more involved risk assessments. Because of 
the tedious efforts requ cally derive analytical approaches to  propagate 
uncertainty in complicated risk assessments, numerical methods such as Monte Carlo 
simulation should be employed, The primary objective of this report is to provide an 
introductory guide fur performing uncertainty analysis i risk assessments being performed 
for Superfund sites. 

V 





1. INTRODUCTION 

When hazardous substances are inadvertently or  purposefully introduced into the 
environment, the primary concern is what the effect will be on the environment and on 
human health. To provide some sort of answer to this question, a risk assessment is 
performed to quantify the potential detriment to exposed individuals and to evaluate the 
effectiveness of proposed remediation measures. The U. S. Environmental Protection ; 
Agency (EPA), in its current risk assessment guidance document for Superfund sites 
(EPA 1989), recommends that either a qualitative or quantitative uncertainty analysis 
accompany risk assessments so that the confidence in the results can be expressed. A 
discussion of uncertainty is critical to the full characterization of risk, because it provides 
a better understanding of the implications and limitations of the risk assessment (EPA 
1991a). Uncertainty analysis is a valuable tool for prioritizing the contaminants and 
exposure pathways of concern to guide the acquisition of additional data to reduce 
uncertainty in risk predictions. An uncertainty analysis is especially necessary when 
balancing the cost against the benefits of remedial action options. The primary objective 
of this report is to address the issue of uncertainty in quantitative risk assessments and 
to present methods that can be used to perform an uncertainty analysis on risk estimates. 

1.1 BACKGROUND ON EPA METHODS FOR RISK ASSESSMENT 

The generic equations used in EPA methods for baseline risk assessment differ 
depending on whether the chemical is a noncarcinogen or a carcinogen. For noncarcin- 
ogens, a quantity called the Hazard Index (HI) is calculated using the following formula. 

C x I x ED x EF 
3 M x A T x R f D  ’ HI = 

where 

C = concentration of the chemical in the contaminated medium, 
I = estimated intake rate of the contaminant, 
ED = exposure duration, 
EF = exposure frequency, 
BM = body mass, 
A T  = averaging time, 
RfD = reference dose for the chemical of interest. 

If the HI is below 1, it is highly unlikely that exposure to the chemical would lead to an 
adverse health effect. If the HI is greater than unity (1.01, remediation may be warranted. 

1 
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For carcinogenic substances, a lifetime cancer risk (CR) is calculated from the 
following formula. 

C x I x ED x EF x SF 
BM x AT 

CR = 2 

where 

C = concentration in the contaminated medium, 
I = estimated intake of the contaminated medium, 
ED = exposure duration (30 years), 
EF = exposure frequency (days per year divided by 365 days), 
SF = slope factor (or cancer potency factor) for the chemical of interest, 
BM = body mass, 
AT = averaging time (70 years). 

A primary difference in evaluating risk from noncarcinogens and evaluating risk from 
carcinogens is that there is always some risk associated with a carcinogen. For 
carcinogens, it is assumed that there is no threshold below which a risk is assumed to be 
zero; any exposure to a carcinogen results in some excess risk. 

Performing a baseline risk assessment using EPA methods yields point estimates for 
the risk. These point estimates obscure the inherent uncertainty in the calculations. To 
better demonstrate the EPA methods, a brief example is provided. 

Example 1 

Situation. An inadvertent release of methyl mercury has contaminated a nearby lake. 
After further testing, a 95% upper confidence limit of the mean concentration of 
1.57 x lo-' mg/kg was obtained for the concentration in the fish. What would be the HI 
for adverse noncancer health effects to a maximally exposed individual? This is deter- 
mined by asking: What is the HI for this concentration, and what is its interpretation? 

Solution. A value of 70 kg (reference man) will be used for body mass. Assuming 
2 fish meals per week, 50 weeks a year, and 230 grams per fish meal averaged over 1 year, 
one obtains a value of 0.065 kg/d for the daily ingestion rate. Finally, the RfD value of 
3.00 x lo4 mg/kg/d is obtained from the Health Effects Assessment Summary Tables 
(EPA 1991b). Using Eq. 1.1, one obtains an HI of 0.49. From this value, one would 
conclude that it is highly unlikely that exposure to methyl mercury in this case would 
warrant remedial action. 

From this example, one can see that the EPA baseline risk assessment mcthods do 
not incorporate explicit estimates of uncertainty. This can lead to incorrect decisions 
based on risks that are either grossly overestimated or are associated with high and 
disproportionate amounts of uncertainty. Therefore, an uncertainty analysis should be 
performed in any risk assessment to quantify the degree of confidence about the estimate 
of risk. 
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It should be noted that, primarily, the type of uncertainty analysis presented in this 
report is €or a true but unknown value [referred to in IAEA (1989) as a Type B 
uncertainty analysis]. In most EPA Superfund risk assessments, the objective is to obtain 
a reasonable estimate of the risk to a maximally exposed individual. In more advanced 
problems, one may be interested in the uncertainty about a true but unknown distribution 
of values such as the distribution of risk per individual within an exposed population 
[referred to in IAEA (1989) as a Type A uncertainty analysis]. This problem requires that 
confidence intervals (CIS) be obtained for the predicted distribution. A brief discussion 
of the procedure €or including a Type A uncertainty analysis is presented at the end of 
Chap. 2. 

1.2 AN OVERVIEW OF QUANTITATIYE UNCERTAKNTY ANALYSIS 

A quantitative uncertainty analysis requires knowledge about the potential range of 
values likely to encompass the true but unknown value for each parameter used in the 
equations employed for a reasonable estimate of the risk to a maximally exposed 
individual. These parameters include quantification of the source term, environmental 
transport of the contaminant in various environmental media, the factors used for the 
estimate of exposure, and the factors used to convert exposure to risk. In addition, 
knowledge about the potential for uncertainty resulting from use of the wrong model or 
equation is required. 

To evaluate the magnitude of uncertainty about a risk estimate, statistical error 
propagation procedures should be utilized. The objective is to use these methods to 1 
obtain a CI about the risk estimate. This CI (usually described by a 90% or 95% CI) ; 
provides a quantitative region in which there is high confidence of bounding the true but 
unknown risk. Statistical error propagation procedures also provide the most appropriate I 

means for prioritizing and ranking the assumptions and model subcomponents that 1 
dominate the uncertainty in the risk estimate. Such prioritization is crucial in guiding the ' 

needs for additional sampling and focused research. 

i 

The estimation of likely ranges and estimates of statistical distributions for each 
uncertain parameter requires a high level of expertise, because professional judgment 
must often be employed in the absence of data. One cannot simply look up the statistical 
information required €or quantifying the uncertain parameters o€ interest in a reference 
manual of generic parameter values. Furthermore, the uncritical adoption of published 
statistical distributions of data for use in the uncertainty analysis is not recommended; 
these data may not apply to the conditions under consideration for risk assessment. Under 
no circumstance should a risk assessor treat an uncertain assumption or  parameter as a 
constant simply because data are unavailable to define a range and distribution. In the 
absence of data, it may be necessary to contact experts outside Martin Marietta Energy 
Systems, Inc./Department of Energy (DOE) organizations to  obtain the essential data 
and/or for assistance in judgmentally deriving uncertainty estimates. Where judgment is 
used to derive estimates of uncertainty, the assumptions and sources of information used 
must be documented in the analysis. 



4 

2. METHODS FOR UNCERTAINTY ANALYSIS 

This section provides a description of methods and examples for performing statistical 
error propagation to  quantify uncertainty in environmental and human-health-risk 
assessment. The methods involve analytical equations €or simple models and numerical 
Monte Carlo approaches, which involve the use of computer technology to select values 
at random from a prescribed distribution, for more complex models. Other approaches to 
uncertainty analyses are referenced as well. The distributions describing uncertain 
parameters in the examples are provided for illustrative purposes only and should not be 
taken as a referenceable estimate of uncertainty for actual risk assessments. 

2-1 LIMITLNG THE SCOPE THROUGH SCREENING 

When taking into account the various exposure pathways for every hazardous 
substance found at a contaminated site, the risk assessment can become extremely lengthy 
and complicated. An uncertainty analysis on every parameter involved in a scenario such 
as this is impractical if not infeasible. Therefore, the first step in any risk assessment 
should be to narrow the scope of the problem. 

To limit the risk assessment problem, one must clearly define the objective(s) of the 
assessment and use a screening procedure to identify the contaminants and exposure 
pathways warranting a more detailed analysis (NCRP 1989, Hoffman et al. 1991, and 
Hoffman and.Gardner 1983). Screening can be considered a first step in the approach to 
uncertainty analysis. Conservative assumptions used to produce a result that is not likely 
to  underestimate the risk to a maximally exposed individual can be used to represent an 
upper bound estimate. Removing the conservatism in these assumptions to produce a 
result that is unlikely to overestimate the risk to a maximally exposed individual can be 
used to  represent a lower bound estimate. The current EPA baseline risk assessment 
methods may be used as the conservative upper bound estimate of risk as long as the 
parameters are selected in a manner such that the actual risk will not be underestimated. 
This method is useful €or rapidly identifying pathways and contaminants that may be given 
low priority for further investigation. A nonconservative (lower bound) screening 
calculation, on the other hand, is useful for rapidly identifying contaminants that warrant 
immediate consideration €or remedial action. Examples of assumptions used in the general 
approaches for performing conservative and nonconservative screening are provided in 
Table 2.1. 

To distinguish between low priority, potentially high priority, and high priority 
contaminants and pathways, one must establish baseline screening indexes. These should 
be chosen based on a distinction between risk levels that are clearly acceptable versus 
those that are clearly unacceptable. In most cases, this distinction may be influenced by 
risk levels associated with current regulatory standards. An examplc of previously chosen 
screening indexes €or carcinogens is provided in Fig. 2.1, and a list €or noncarcinogens is 
presented in Fig. 2.2 (Blaylock e t  al. 1991). Two primary sources of equations and 
parameter values used in screening calculations are NCRP (1989 In Press) for metals and 
radionuclides and Lyman et al. (1982) €or organic chemicals. A brief example of the use 
of the described screening procedure is provided. 
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Conservative Estimate of 
Exposure 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

Nonconserva t i ve Estimate of 
Exposure 

SI 

to establish low priority 

Screening index (SI) = exposure multiplied by a lifetime cancer slope factor. 

Fig. 2.1 Criteria for conservative and nonconservative screening of carcinogens (Blaylock 
et al. 1991). 
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Conservative Estimate of 
Exposure 

Nonconservative Estimate of 
Exposure 

SI 

Screening index (SI) = exposure divided by reference dose factor (RfD). 

Fig. 2 2  Chteria far conservative and noneonservative screening of noncarcinogens (Blaylock 
et al. 1991). 
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Table 2.1. An example of assumptions used for conservative 
and nonconsemtive screening (Hoffman et a t  1991) 

Conservative screening Nonconservative screening 

Maximum concentration reported for a defined 
location 

Models used to estimate concentrations in 
media that are not sampled or detected 

Reasonable estimate of maximum diet and 
occupancy times assumed 

Human receptor exposed for 70 years 

Multiple pathway exposure considered 

Exposure to dredged sediment considered 
separately from the consumption of water, fish, 
and irrigated agricultural produce 

Calculated exposure should not underestimate 
actual maximum exposures 

Screening approach most useful for identifying 
definitely low-priority contaminants 

Average of detected values reported for a 
defined location 

Only measured concentrations in 
sediment, water, or fish are considered 

Estimates of diet and occupancy times are 
generally a factor of 10 less than assumed 
for reasonable maximum 

Probability of exposure period being less 
than 70 years considered in estimates of 
diet and occupancy times 

Multiple pathway exposure not considered 

Dredging of sediment not considered; 
use of water for irrigation not considered 

Calculated exposure should not 
overestimate potential maximum exposures 

Screening approach most useful for 
identifying definitely and potentially high- 
priority contaminants 

Example 2 

Situation. Suppose that you have been contracted to perform a risk assessment for 
a contaminated site. When the results are received from the initial samples, you find that 
there are -100 contaminants present at the site in four different environmental media, 
each giving rise to five to ten different exposure pathways. Because of time and money 
constraints, it would be questionable to perform an uncertainty analysis for each contami- 
nant and exposure pathway represented at this site. What should you do? 

Soiution. Before embarking on a formal quantitative uncertainty analysis, you should 
narrow the scope of this problem. This is best accomplished by performing conservative 
and nonconservative screening calculations to aid in prioritizing pathways and contami- 
nants warranting further investigation. Conservative screening will typically show that all 
but a few situations are of low priority with respect to potential health risk. These 
situations are contamination of sediment and fish with 137Cs, As, Hg, and polychlorinated 
biphenyls (PCBs). Nonconservative screening may indicate that no situation warrants 
immediate action, but mercury and PCBs in fish are found to have potentially high priority 
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for further investigation because limits of concern are approached. Therefore, 137Cs, As, 
Hg, and PCBs in sediment and fish are considered further within a formal quantitative 
uncertainty analysis. This analysis is carried out to first guide the acquisition of additional 
data and then to guide decisions for the need €or remedial action. 

2.2 GENERAL APPROACH TO UNCERTAINTY ANALYSIS 

Once the scope of the problem has been refined to a smaller listing of contaminants 
and pathways, uncertainty analysis can be used to assess the extent of confidence in the 
estimate of health risk. In this report, it is assumed that uncertainty in the estimate of risk 
can be derived from an estimate of uncertainty in each of the parameters used in the risk- 
assessment equations. This approach is referred to as a “parameter uncertainty analysis” 
(IAEA 1989). Any additional uncertainty resulting from model structure should be 
represented either by alternative equations or by additional parameters added to the risk 
assessment model. 

To perform parameter uncertainty analysis, one should use the following steps 
(IAEA 1989). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

List all uncertain parameters (include additional parameters to represent uncertainty 
in model structure). 

Specify the maximum conceivable range of potential values relevant for unknown 
parameters with respect to the endpoint. 

Specify a subjective probability distribution (pdf) for values occurring within this 
range. 

Account for dependencies and/or correlations among parameters. 

Using either analytical or numerical procedures, propagate the joint probability 
density function of the uncertain model parameters to generate a subjective 
probability distribution of model predictions. 

Derive quantitative statements of uncertainty in terms of a subjective CI interval for 
the true but unknown value [representing the prediction endpoint (Le., excess cancer 
risk or Hr)]. 

Rank the parameters contributing most to uncertainty in the model prediction. 

Present and interpret the results of the analysis. 

Steps 2 and 3 are usually obtained by using professional judgment based on an extensive 
review of available literature, collected data, and interviews with experts on the parameter 
of interest. In addition, one can incorporate correlations among the parameters by either 
specifying a correlation coefficient or changing the model structure to include the 
additiona1 parameters that determine interdependencies among the original parameters 
of interest. 

After the subjective probability distributions are analyzed, one obtains a subjective 
probability distribution for the risk, using one of the methods described in the next two 
sections. From this qualitative expression, one can formulate a quantitative description 
of the risk in the form of a subjective CI in which the true but unknown risk should lie. 
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The term “subjective CI” is used to denote that the probability distribution specified for 
the uncertain model parameters have been derived using subjective judgment in the 
absence of perfect data. 

2.3 GUIDANCE ON THE SELECTION OF SUBJECTIVE PROBABILITY 
DISTRIBUTIONS FOR UNCERTAIN MODEL PARAMETERS 

To perform an uncertainty analysis, one must assign subjective probability 
distributions for each of the uncertain parameters. The distributions reflect the degree of 
belief that the true but unknown value for a parameter lies within a specified range of 
values for the  parameter. Where data are limited but uncertainty is relatively low (less 
than a factor of lo), a range may be used to specify a uniform distribution. If there is 
knowledge about a most likely value or midpoint, in addition to a range, a triangular 
distribution may be assigned. When the range of uncertainty exceeds a factor of 10, it is 
often prudent to assume either a log-uniform or log-triangular distribution. The 
assumption of normal, lognormal, o r  empirical distributions is usually dependent on the 
availability of relevant data. Many other distribution types are suitable for Monte Carlo 
analysis. A few of these other types are gamma, beta, Poisson, and Weibul and a variety 
of discrete distributions (Decisioneering 1991, Palisade Corporation 1991). In genera), we 
have found that as long as the mean and variance of a distribution are held constant, the 
exact shape of the distribution of a parameter in a risk-assessment equation has minimal 
effect on the mean, variance, and general shape of the distribution of the model 
prediction (Gardner 1988). When dealing with several different distributions, it is more 
efficient to use Monte Carlo analysis than to use various analytical methods (algebraic 
equations). Analytical methods are options, however, when one has similar distributions 
€or all of the parameters or  when one has access to the formulas for the various 
distributions representing the uncertainties about the parameters. 

2 4  ANALYTICAL METHODS FOR UNCERTAINTY ANALYSIS 

For relatively simple equations, uncertainty analysis can be performed using analytical 
methods €or statistical error propagation. Two types of analytical approaches frequently 
used for uncertainty analysis are variance propagation and moment matching (IAEA 
1989). This section will discuss in more detail the technique of variance propagation €or 
simple equations. 

To best demonstrate an example of variance propagation, a simple additive model is 
desired. In the case of an additive model, the mean of the result is equal to the sum of 
the means of the parameters, and the variance of the result is equal to the sum of the 
variances of the parameters (1- 1989, Hoffman and Gardner 1983). 

and 
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where p is the number of parameters in the model. 

In a series of summations of uncertain parameters, the result will tend to conform to a 
normal distribution even if the shapes of the distributions assigned to the model 
parameters are other than normal. 

Note, however, that the basic form of EPA risk assessment models is a multiplicative 
chain of parameters for each contaminant and exposure pathway. Multiplicative models 
can be reduced to additive form by logarithmically transforming the variables. This is 
shown in equation form below. 

Y = a x b x c .  (2-3) 

h(Y) = h ( u )  + In@) -I- h(c) . (2-4) 

Therefore, the distribution of Y will tend to be approximately lognormal even when the 
parameters a, b, and c are assigned distribution shapes other than lognormal (Hoffman 
and Gardner 1983). For multiplicative calculations, one can find the median value (or 
geometric mean) for the risk simply by summing the means of the logarithms for the 
various parameters and exponentiating the sum. This relationship is presented in equation 
form by 

where Xg,, is the geometric mean of the result. 

In addition, the standard deviation of the risk is found by taking the square root of the 
sum of the parameter variances obtained from the above equations and exponentiating 
(IAEA 1989, Hoffman and Gardner 1983). This formula is represented in the equation 

SgR = e lJG 

where S,, = the geometric standard deviation of the result. 
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The upper confidence limit is determined by multiplying the median value by the square 
(or some other power) of S,,: the exponentiated standard deviation of logarithms. The 
lower confidence limit is obtained by dividing the median by the square (or some other 
power) of the exponentiated standard deviation of the logarithms. The exponential 
standard deviation of logarithms is often referred to as the geometric standard deviation 
(GSD). The use of the square of the GSD will lead to a 95% CI assuming that the 
distribution of the model prediction will be lognormal. Taking the GSD to a power of 1.65 
will lead to a 90% CI for a lognormal distribution. The formula used to estimate mean 
and variance of logarithms for each uncertain parameter depends on the type of subjective 
probability distribution chosen to represent the uncertain parameter. Formulas for the 
mean and variance of logarithms of lognormal, log-uniform, and log-triangular 
distributions are provided in the Appendix. 

Example 3 

Situation. Let us assume, as in Example 1, that there has been an accidental spill of 
methyl mercury in a nearby lake. Using the technique of variance propagation, obtain a 
90% CI on the HI to a maximally exposed individual. After reviewing the literature and 
available data and consulting with other experts, the subjective probability distributions 
shown in Table 2.2 are obtained for this problem. 

Table 2.2. Information for EbmDle 3 

Standard 
Parameter Distribution Minimum Maximum Mean deviation 

Fish concentration Lognormal 7.10E-2 3.43E-2 
(FC), mg/kg 
Intake ( I ) ,  kg/d Log-uniform 2.00E-2 1.30E-1 6.50E-2 

Body mass (BM), kg Log-triangle 4SOE+ 1 1.20E+2 7.00E-t-1 

RfD, m@dd Log-triangle 1.50E-4 3.00E-3 3.00E-4 

Nore: 
distributions represent subjective confidence about the uncertainty associated with estimating a true 
but unknown value for each parameter. 

The mean given for the intake, body mass, and RfD is the most likely value (mode). The 

Solution. The form of the equation used for this problem is: 

HI = FC x I x (JIM)-' x (€a))-' . 

By log-transforming, this equation becomes: 

Therefore, the logarithmic mean and variance of the HI is found by using Eqs. 2.1 and 2.2. 
The mean equations given in the Appendix must be used to find the mean and variance 
of logarithms for each of the model parameters. Using Eqs. A1 and A.2, one obtains a 
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mean of the logarithms €or the fish concentration of -2.75 and finds that the variance of 
the logarithms for the fish concentration is 0.21. 

Equations A.3 and k 4 ,  given for the log-uniform distribution, will be used to find p 
(the mean o f  logarithms) and CI (the variance of logarithms) for the intake. These values 
are calculated bclow. 

(2-9) 

(2.10) 

Equations AS and A.6, given €or the log-triangular distribution, are the ones that are 
used for the body mass and RfD. To demonstrate, the p and a for the body mass is 
calculated below. 

1 
3 

paM = -*(70) + h(120) + h(45)] = 4.28 . (2.11) 

This same process is performed €or the RfD, from which one obtains a mean value of 
-7.58 and a variance of 0.41. One is now able to find the mean of logarithms and, thus, 
the geometric mean of the HI. 

p, = -2.75 - 2.98 - 4.28 +- 7.58 = -2.43 . (2.13) 

(2.14) 

The variance of the HI and, consequentially, the geometric standard deviation of the HZ 
is found. 
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a,[ 2 = 0.21 + 0.29 + 0.04 + 0.41 = 0.95 . 

I.. 

The upper and lower confidence limits for a 90% subjective CI are calculated. 

g = XB" x s;'" = (0.09)(2.65)'-65 = 0.45 . 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Therefore, there is high confidence (at a subjective level of 90%) that the HI should lie 
between 0.02 and 0.45. 

As one can see, variance propagation is a straightforward process for simple additive 
and multiplicative models. For more complex calculations, variance propagation 
techniques are more difficult to derive analytically, and in some cases their derivation may 
not be practical. For current Superfund risk assessment, both variance propagation 
methods and numerical methods for propagating the uncertainty may be appropriate. 

25 NUMERICAL METHODS FOR UNCERTAINTY ANALysrs 

To overcome problems encountered with variance propagation equations, various 
numerical methods are useful in performing an uncertainty analysis with the aid of a 
computer. Two such numerical techniques are Monte Carlo simulation (Hoffman and 
Gardner 1983, IAEA 1989) and deterministic uncertainty analysis (Worley 1987). Monte 
Carlo analysis usually employs two random selection processes: Simple Random Sampling 
(SRS) and Latin Hypercube Sampling (LHS) (IAEA 1989). 

The random selection process known as SRS is conceptually Straightforward. For each 
iteration a random number is chosen from within each distribution specified for an 
uncertain parameter. Even though this technique does work relatively well, it is less 
efficient than its counterpart, LHS. With LHS, fewer samples are required to obtain the 
same result achieved with SRS (IAEA 1989). In LHS, the distribution for each parameter 
is divided into sections. The number of sections depends on how many samples (or 
iterations) the assessor wants the simulation to take. Another feature of these divisions 
is that they each have the same area. During the simulation run, the numbers are selected 
at random within a section with only one random number being chosen from a specific 
section. In other words, once a random number has been selected from a section, that 
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section is disregarded from the rest of the analysis. In this manner the distributions are 
represented more efficiently; therefore, it takes less time to reach a stable mean and 
variance of the prediction endpoint. 

Monte Carlo analysis may be performed in many ways. One may write one’s own 
numerical code or use one of several currently available software packages. Several 
available Monte Carlo simulation programs are listed below. 

MOUSE Klee (1986) 
TAM3 
PRISM 
Crystal Ball Decisioneering, Inc. (1991) 
@RISK Palisade Corporation (1991) 
ORMONTE Williams and Hudson (1989) 

Kanyar and Nielsen (1989) and Gardner (1988) 
Gardner and Trabalka (1985) and Gardner et al. (1983) 

The following example provides a more detailed description of a Monte Carlo 
simulation. 

Example 4 

Situation. Use the scenario presented in Example 3 to demonstrate the use of Monte 
Carlo simulation. With 90% subjective confidence, what is the risk to the maximally 
exposed individual? Please note that this example does not account for dependencies 
among parameters; this will be demonstrated in Example 6. 

Solution. To begin an uncertainty analysis, one must describe the uncertainty about 
each variable with a subjective probability distribution. This is done through judgment 
after extensive review of all relevant data. The information presented in Table 2.2 is used 
as input for a Monte Carlo simulation for this problem. 

When running a Monte Carlo technique, values are selected at random from each 
uncertain variable to produce a prediction. This procedure is repeated for a specified 
number of iterations and forms a distribution of predicted values. A sample of randomly 
selected values obtained by running 500 iterations of LHS for this problem is provided 
in Table 2.3. 

This process yields a subjective probability distribution for the HI from which a 
quantitative representation of the HI can be formed. Figure 2.3 contains the result for the 
risk after 500 iterations using LHS. 

From this Monte Carlo simulation, a 90% CI of [1.70E-2,4.17E-l] is obtained. This 
implies that after taking into account the uncertainties on the parameters, one is highly 
confident (at a subjective level of 90%) that the true HI should lie between 1.70E-2 and 
4.17E-1. 

Once familiarization with the Monte Carlo simulation software package has taken 
place, this technique becomes extremely quick to use. Even if a risk analysis becomes 
more complicated, the Monte Carlo technique does not. One reason that Monte Carlo 
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Table Z3. A sample of random values obtained from 500 iterations of LHS for Example 4. 

Sample Fish concentration Intake Body mass Reference dose Hazard index 
number (mg/kg) (kg/d) (kg) (m@g/d) (unitless) 

1 1.01E-01 3.408-02 4.7 1E +O 1 5 .25844 1.38E-01 

2 1.14E-0 1 1.19E-01 7.68E+01 5.64E-04 3.15E-01 

3 8.11E-02 1.05E-01 6.78E+01 1.76E-04 7.10E-01 

4 6.5 1 E-02 3.63E-02 7.50E+01 3.00E-04 1.05E-01 

499 9.40E-02 9.21E-02 7.04E+01 2.7 1 E-03 4.53E-02 

500 8.60E-02 2.66E-02 8.15E+01 8.96E-04 3.13E-02 

Forecast: Hazard 
Cell D8 Frequency D is t ri b uti o n 491 Trials 

2 6  

2 o  -n 

13 g 
'T 
(z, 
L3 

3 
0 
Lc 

6 

0 

O.OOe+O 1.37e-1 2.75e-1 4.1 2e-1  5.50e-1 

Fig. 2.3 Subjective probability distribution of the hazard index for Example 4. 
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calculations are more useful than other approaches to uncertainty analysis is that the 
variance propagation techniques can become complicated and time consuming for more 
involved risk analyses. Setting up simulations to run on the computer is much more 
efficient and accurate than performing hand calculations. The inputs required for Monte 
Carlo simulations are the subjective probability distributions and uncertainty bounds for 
each parameter. To come up with these subjective probability distributions and 
uncertainty bounds, one must use professional judgment after extensively reviewing the 
available literature and data. With the various input distributions, the Monte Carlo 
simulation program then provides a forecast of the risk in terms of a subjective probability 
distribution about which CIS for the risk can be obtained. A demonstration of this 
technique for a more complicated risk analysis situation is presented in Example 5. 

Example 5 

Situation. Let us assume that as the result of waste management practices, a mixture 
of contaminants is released inadvertently to  the environment. Eventually, through various 
pathways, this contamination is transported to aquatic systems such as rivers and lakes 
where various fish and biota are exposed. After further investigation, it is discovered that 
the contaminants released were Aroclor-1254, Aroclor-1260, chlordane, and methyl 
mercury. Suppose that a fisherman catches some contaminated fish and eventually eats 
them. The assessment problem is as follows: What is the risk to the maximally exposed 
individual? 

To perform this risk assessment, Eqs. 1.1 and 1.2 will be used. To quantify the 
uncertainty associated with each of the parameters introduced in these equations, one 
must derive (with the use of a considerable amount of judgment) subjective probability 
distributions from very limited sets of data and other relevant facts in the published 
literature. Once these distributions have been specified, one can utilize Monte Carlo 
techniques to obtain a probability distribution of the HI. From this propagated 
distribution, a subjective CI (90%) can be obtained for use in setting limits that are useful 
for decision making. 

Table 2.4 contains values for the estimates of uncertainty on each of the parameters 
that would be used in an environmental risk assessment of Aroclor-1254, Aroclor-1260, 
chlordane, and methyl mercury in the fish potentially harvested from a contaminated 
fresh-water system. 

Solution. The values given in Table 2.4 were used to find the median, the lower 5% 
subjective confidence limit, and the upper 95% subjective confidence limit for the 
noncarcinogen HI for chlordane and methyl mercury and for the cancer risk involved with 
the given concentrations of Aroclor-1254, Aroclor-1260, and chlordane in fish. These 
values (presented in Table 2.5) were obtained by using 500 iterations of the LHS Monte 
Carlo technique. 



Table 24. Subjective probability distributions specified for the Monte Carlo Analysis of Example 5. 

Subjective 
probability Mean Standard 

Chemical Parameter distribution Minimum Maximum (mode) deviation 
Aroclor-1254 

Aroclor-1260 

Chlordane 
(carcinogen) 

Chlordane 
(noncarcinogen) 

Methyl mercury 

Fish concentration, mg/kg 

Intake, kg/d 

Body mass, kg 

Slope factor, (mg/kg/d)-' 

Fish concentration, mg/kg 

Intake, kg/d 

Body mass, kg 

Slope factor, (mglkg/d)-' 

Fish concentration, mg/kg 

Lognormal 

Log-uniform 

Log-triangle 

Triangle 

Lognormal 

Log-uniform 

Log-triangle 

Triangle 

Lognormal 

Intake, kg/d Log-uniform 

Body mass, kg Log-triangle 
Slope factor, (mg/kg/d)" Triangle 

Fish concentration, mg/kg Lognormal 

Intake, kg/d Log- uniform 

Body mass, kg Log- triangle 

Reference dose, mg/kg/d Log-triangle 

Fish concentration, mg/kg Ldgnormal 

Intake, kg/d Log-uniform 

Body mass, kg Log-t riangle 

Reference dose, mg/kg/d Log-triangle 

4.00E-03 

1.658-02 

4.50E+ 01 

0.00E+00 

3.19E-01 

1.65E-02 

4.50E+Ol 

O.OOE+Mi 

3.96E-02 

1.65E-02 

4.50E+01 

O.OOE + 00 

3.96E-02 

2.00E-02 

4.50E+01 

3.00E-05 

2.55E-02 

2.00E-02 

4.50E + 01 

1.50E-04 

3.79E+OO 

8.25E-02 

1.20E +02 

1.00E+01 

2.29E+00 

8.25E-02 

1.20E +02 

1.00E+01 

3.06E-01 

8.25E-02 

1.20E+02 

5.OOE+00 

3.06E-01 

1.30E-01 

1.20E+02 

1.90E-03 

1.57E-01 

1.30E-0 1 

1.20E +02 

3.00E-03 

5.34E-01 

7.00E+01 

7.70E + 00 

9.75E-01 

7.00E+ 01 

7.70E+ 00 

1.27E-01 

7.00E+01 

1.30E.tOO 

1.27E-01 

7.00E+01 

6.00E-05 

7.10E-02 

7.00E+ 01 

3.00E-04 

2.268 +OO 

5. i6E-1 

6.98E-02 

6.98E-02 

3.43E-02 
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Table 2.5. Results obtained from Monte Carlo simulation using values from Table 2.4 

Chemical Type of result Median confidence confidence 
5% subjective 95% subjective 

Aroclor-1254 Cancer risk 3.4E-04 6.OE-05 7.5E-03 

Aroclor- 1260 Cancer risk 2.5E-03 5.7E-04 8.5E-03 

Chlordane Cancer risk 1 .OE-04 2.0E-05 4.4E-04 

Total Cancer risk 3.4E-03 8.4E-04 1.4- 

Chlordane Noncarcinogen HI 5.3E-01 6.7E-02 3.2E+00 

Methyl mercury Noncarcinogen HI 8.6E-02 1.7E-02 3.9E-01 

Total HI 6.3E-01 1.3E-01 3.8E+OO 

As one can see from Table 2.5, the primary chemical contributing to the total cancer 
risk is Aroclor-1260, and the chemical contributing the majority of the total HI is 
chlordane. By performing a sensitivity analysis, one can determine which parameter has 
the most effect on the total result. This is done by simply holding a potentially sensitive 
parameter constant while varying the others. After this process is repeated for all of the 
parameters of interest, the different results obtained for each parameter are compared 
and ranked according to the parameters creating the biggest difference. These parameters 
are said to be the most sensitive parameters. Descriptions of alternative statistical 
approaches to sensitivity analysis using regressions of the randomly selected values of the 
uncertain parameters on the values produced for the model predictions can be found in 
IAEA Safety Series No. 100 (IAEA 1989). 

For the total cancer risk, performing a sensitivity analysis shows that the amount of 
fish ingestion has the most effect, followed by the concentration of Aroclor-1254 in the 
fish. One might not expect the latter result, but the uncertainty involved with the 
Aroclor-1254 fish concentration is much greater than with the fish concentration for 
Aroclor-1260. For the total HI, a sensitivity analysis would show that the two parameters 
that are the most significant contributors to the total uncertainty are the amount of fish 
ingestion and the RfD for chlordane. 

kample  6 

Situation. The purpose of this example is to study the effect of the correlation 
between body mass and intake on  the total cancer risk and the total HI for the situation 
given in Example 5. First, assume that a minimum correlation of 0.3 has been determined 
to exist between body mass and intake, and second, compare the results with those 
obtained with a correlation of 0.5 and 0.7. 

Solution. In this case, rank correlations are used (Decisioneering, Inc. 1991) to 
account for interdependencies between body mass and intake. As can be seen from 
Table 2.6, where the results are produced From 500 iterations using LHS, the correlation 
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coefficients do not have a dramatic effect on the total risk. The values for the total cancer 
risk are virtually the same. 

A slight difference is detected in the 95% upper confidence limits for the total HI. 
The values obtained with a correlation coefficient applied to the analysis are slightly lower 
than the value calculated without the correlation applied. One reason that the correlation 
does not have an obvious effect on the results is that the body mass is not a sensitive 
parameter. 

Table 2.6. Results obtained for correlations between body mass and intake 
for the situation described in J3xample 6 

Rank correlation coefficient 

0.3 0.5 0.7 

Total cancer risk 

5% 

50% 

95% 

Total hazard index 

5% 

50% 

95 % 

8.9E-4 9.1E-4 

3.4E-3 3.4E-3 

1.3E-2 1.3E-2 

1.2E-1 1.3E-1 

6.8E-1 7.OE-1 

3.4E+O 3.3E+O 

9.6E-4 

3.48-3 

1.3E-2 

1.2E-1 

7.OE-1 

3.3E4-0 

26 ADVANTAGES OF AN UNCERTAINTY ANALYSIS 

One of the steps in a risk assessment is to rank the importance of the pathways and 
chemicals in terms of their potential contribution to the total risk. The first attempt at 
this is performed in the screening process. By screening, one obtains those pathways and 
chemicals that could be of potential concern. However, if the risk assessor attempts to 
rank the pathways and chemicals at this stage, the wrong conclusions may be reached, 
because the uncertainty involved is not necessarily equal among contaminants and 
exposure pathways. This is best demonstrated in the following example. 

Example 7 

Situation. Upon investigation of a potentially contaminated site, it was discovered that 
a nearby lake and the surrounding sediment were contaminated with methyl mercury and 
inorganic mercury, respectively. The 9S% upper confidence limit value for the inorganic 
mercury in soil is found to be 700 mgkg, and the 95% upper confidence limit for the 
concentration of methyl mercury in fish is 3.05 x lo-' mgkg. Which is the most hazardous 
pathway to the maximally exposed individual? 
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Solution. A summary of the values obtained for this example is provided in Table 2.7. 

Table 27. Information for Example 7 

Standard 
Parameter Distribution Minimum Maximum Mean deviation 

Fish concentration Lognormal 
(FC), 

2.06E- 1 4.22E-2 

Intake of fish (ZF), Log-uniform 2.00E-2 1.30E-1 6.50E-2 
kg/d 

Soil concentration Lognormal 
(SC), mg/kg 

3.11E+2 1.50E + 2 

Intake of soil ( Is ) ,  Log-uniform 5.00E-5 2.00E-4 1.00E-4 

kg/d 

(EF) 
Exposure frequency Log-uniform 2.70E-1 7.00E-1 7.00E-1 

Body mass (BM), kg Log-triangle 4.50E+1 1.20E+2 7.00E+ 1 

Inorganic mercury Log-uniform 3.00E-4 3.00E-2 3.00E-4 

Methyl mercury RfD Lag-triangle 1.50E-4 3.00E-3 3.00E-4 

RfD (RfDIM), mg/kg/d 

(RfDMM), mg/kg/d 

Nore: The mean given for the intake, body mass, and RfD is the most likely value (mode). 

The values €or the HIS for the two pathways will be compared with each other for two 
situations: (1) by using EPA's generic equations and (2) by incorporating uncertainty 
analysis. The Hls for the fish and soil pathways follow. 

= 2.33 . (2.19) 

- - (3.05 x 10-')(6.50 x = o.94 . (2.20) FC x IF 
HI, = 

BM x RiD, (70)(3.00 10-4) 

From these calculations, one would conclude that the risk to the maximally exposed 
individual results from the soil-ingestion pathway. However, by incorporating the 
uncertainties for the parameters and using Monte Carlo simulation, one obtains different 
results. After a Monte Carlo simulation run of 500 iterations of LHS, the 95% upper 
confidence limit of the HI for the soil ingestion pathway is 0.72, and the 95% upper 
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confidence limit of the HI for the fish ingestion pathway is 1.20. This implies that the fish 
ingestion pathway is the source of most of the risk to the maximally exposed individual. 
The reversal of the ranking from that of the EPA calculations is primarily because of the 
large uncertainty in the RfD for inorganic mercury. If the uncertainty of this parameter 
had not been taken into account, an inaccurate conclusion and, possibly, an inappropriate 
course of action would have resulted. 

The incorporation of uncertainty analysis portrays more confidence in the outcome 
of a risk assessment. An uncertainty analysis through a quantitative description provides 
better direction for further investigation. If uncertainty analysis is used in every risk 
assessment, money that would be more wisely spent on specific areas that need further 
study may be saved by preventing unwarranted remedial action. 

2.7 BRIEF INTRODUCTION TO UNCERTAINTY ANALYSIS FOR AN 
ASSESSMENT ENDPOINT THAT IS A STOCHASTIC VARIABLE 

All of the examples and the general subject of this report to this point have coincided 
with uncertainty about a true but unknown value [referred to in IAEA Safety Series No. 
100 (1989) as “Type B” uncertainty]. However, some risk assessments may have an 
endpoint defined as a stochastic variable. An uncertainty analysis dealing only with 
stochastic variability is referred to as “Type A” uncertainty in IAEA Safety Series No. 100 
(1989). An example that must include both types of uncertainty would be the estimation 
of the distribution of individual doses or risks within an exposed population group. The 
goal of this section, therefore, is to briefly describe the process of uncertainty analysis 
when the assessment endpoint is a stochastic variable and when there is lack of knowledge 
about the true distribution that describes this variable. 

To perform this type of uncertainty analysis, one must first generate numerous 
alternative values for each of the uncertain deterministic quantities in the risk assessment 
equation. Deterministic quantities are those for which the true value is fiied with respect 
t o  the assessment endpoint. The true mean, variance, and shape of a stochastic variable 
are fiied with respect to the assessment endpoint and therefore are also considered as 
deterministic quantities. Alternative values for each deterministic quantity are achieved 
through Monte Carlo simulation as is illustrated in Fig. 2.4. In this figure, P, represents 
a true but unknown deterministic value, and P, reflects a stochastic variable for which 
there i s  lack of knowledge about the true but unknown mean and variance. An example 
would be for an assessment of the distribution of individual risks in a defined population 
of exposed persons in which P, is the true but unknown amount of released material and 
P, is the parameter that translates the amount released into the estimate of individual 
risk. After each alternative set of deterministic values have been simulated, the next step 
is to generate a realization of the stochastic endpoint for all sets of values. This will 
produce a probability distribution of the stochastic endpoint for each set of deterministic 
values . 

In Fig. 2.5, one can see that “n” sets of values were obtained for PI and P,. The 
various values for the mean and standard deviation are used to simulate the corresponding 
normal distribution for P,. Next, the value of P, and the normal distribution of P, are 
combined to provide a simulation of the stochastic endpoint. This is repeated for each set 
of alternative values of P, and alternative distributions of P,. 
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Finally, to obtain confidence limits for the result, all of the alternative realizations 
of the stochastic endpoint must be plotted. To be computationally efficient, one may use 
Simple Random Sampling (SRS) with 59 samples for the deterministic uncertain 
quantities; it should be noted that the sampling procedure for the analysis of the 
stochastic variability may be different from the one used for the deterministic uncertain 
quantities. The 59 samples for the deterministic uncertain quantities will be sufficient to 
provide a 90% confidence interval or a 95% upper confidence limit at which the true 
value will not be underestimated (IAEA 1989). Figure 2.6 represents a cumulative 
probability plot of various alternative realizations of a stochastic endpoint which were 
obtained from 59 simple random samples. For the example presented in Fig. 2.6, one 
could say that with 90% confidence, the dose for the 95th percentile of the population 
is between 8 and 37, or one could say that the dose to the 95th percentile of the 
population will be less than or equal to 37 with 95% confidence. 

When performing an uncertainty analysis where there is both stochastic variability and 
lack-of-knowledge uncertainty, correct interpretation of the results requires that these two 
sources of uncertainty be analyzed separately. One obtains various distributions 
representing the endpoint that is analogous to the various values obtained for the result 
in an uncertainty analysis where only true but unknown values are considered. The 
combination of these types of uncertainty analyses is facilitated using Monte Carlo 
simulation. 
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distributions that reflect lack of knowledge uncertainty for each of these quantities. 
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Fig. 25. Alternative values for a true but unknown value, PI, and alternative representations of a stochastic variable, Pa are combined to obtain 
numerous alternative realizations of stochastic variability for the assessment endpoint. 
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3. SUMMARY 

The methods used to determine risk to an individual from ingestion of contaminated 
fish are straightforward. However, the methods currently recommended by EPA do not 
explicitly account for uncertainty and may tend to produce overly conservative estimates 
of risk by combining, through multiplication, several conservatively biased parameters. To 
compensate, an uncertainty analysis should be explicitly incorporated in risk assessments. 
As an alternative, the EPA’s baseline methods should be more appropriately viewed as 
an initial screening tool. One may choose to perform the uncertainty analysis by using 
either analytical approaches (Le., variance propagation techniques) or by using a Monte 
Carlo simulation package. Because variance propagation techniques can become compli- 
cated and time consuming, it is usually most efficient to use Monte Carlo methods. 

You could say this report deals primarily with uncertainty about a true but unknown 
value. In more advanced problems, one may be interested in the uncertainty about a true 
but unknown distribution of values (Le., the case for a distribution of risks per individual 
in a specified population of exposed individuals). This problem requires that CIS be 
obtained for the predicted distribution. 

Incorporating uncertainty analysis into the risk assessment utilizes a major tool 
necessary in decision making. An uncertainty analysis will allow the risk assessor to rank 
the contaminants and pathways more accurately. In this manner, uncertainty analysis 
allows the assessor to see where further study is needed or where remediation must take 
place. Not only does uncertainty analysis allow one to rank pathways and contaminants, 
but it also provides a subjective probability distribution about which CIS can be formed 
to represent the risk. 

This information can be used to guide decision analysis. For example, if a 5% lower 
confidence limit is above a regulatory standard of concern, then remediation is probably 
needed. If the 95% upper confidence limit is below the standard, remediation is probably 
not required. If the 95% upper confidence limit is above the standard but the 50th 
percentile is below the standard, further study should be recommended on those 
parameters that dominate the overall uncertainty. However, if the 50th percentile is above 
the standard, further study may still be recommended, but under some circumstances one 
may opt to proceed with remediation depending on the cost-effectiveness of measures for 
risk reduction. 

Recognizing uncertainty provides more credibility to the risk assessment and is the 
first step in gaining more knowledge. We recognize that the most difficult task in 
quantitative uncertainty analysis is not associated with analytical or numerical methods for 
statistical error propagation in risk assessment equations; it is associated with the 
subjective judgment required to obtain subjective probability distributions for the 
uncertain model parameters. The extent of knowledge required to exercise this judgment 
often exceeds the capacity of any one individual. Thus, the judgment of several experts 
must often be solicited to estimate parameter uncertainty. Nevertheless, prior to  
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performing an uncertainty analysis for risk assessment, it may be useful to consider an 
ancient Arabic proverb that is cited in Finkel (1990). 

“He who knows and knows he knows, 
He is wise-follow him; 

He who knows not and knows he  knows not, 
He is a child-teach him; 

He who knows and knows not he knows, 
He is asleep-wake him; 

He who knows not and knows not he knows not, 
He is a Eooldhun him.” 





29 

REFERENCES 

Beauchamp, John J. 1991. Personal Communication. Oak Ridge National Laboratory, Oak 
Ridge, Tennessee. 

Blaylock, B. G., M. L. Frank, L. A. Hook, F. 0. Hoffman, and C. J. Ford. 1992. White 
Oak Creek Embayment Site Characterization and Contaminant Screening Report. 
ORNLER-81. Oak Ridge National Laboratory, Oak Ridge, Tennessee. 

Decisioneering, Inc. 1991. Crystal Ball: User’s Guide. Denver, Colorado. 

EPA (U.S. Environmental Protection Agency). 1989. Interim Final: Risk Assessment 
Guidance for Superfund. Vol. I: Human Health Evaluation Manual. OSWER 
Directive 9285.7-01a. EPA Office of Emergency and Remedial Response, 
Washington, D.C. 

EPA (U.S. Environmental Protection Agency). 1991a. Guidance for RiskAssessment. Risk 
Assessment Council. 

EPA (U.S. Environmental Protection Agency). 1991b. Health EffectsAssessment Summary 
Tables (HEAST). OERR 9200.6-303 (91-1). EPA Office of Emergency and Remedial 
Response, Washington, D.C. 

Finkel, Adam M. 1990. Confronting Uncertainty in Risk Management: A Guide for 
Decision-Makers. Center for Risk Management, Resources for the Future, 
Washington, D.C. 

Gardner, R. H., B. Rojder, and U. Bergstrom. 1983. PRISM;- A systematic method for 
determining the effect of parameter uncertainties on model predictions. Studsvik 
Energiteknik AB report/NW-83/555, Nykoping Sweden. 

Gardner, R. H. and J. R. Trabalka. 1985. Methods of Uncertainty Analysis for a Global 
Carbon Dioxide Model. DOE/OR/21400-4. Department of Energy Oak Ridge 
Operations. 

Gardner, R. H. 1988. TAM3: A Program Demonstrating Monte Carlo Sensitivity and 
Uncertainty Analysis. Document prepared for the workshops of Biospheric Model 
Validation Study, BIOMOVS. Oak Ridge National Laboratory, Oak Ridge, 
Tennessee. 

Hoffman, E 0. and R. H. Gardner. 1983. “Evaluation of Uncertainties in Radiological 
Assessment Models.” Chapter 11 of Radiological Assessment: A textbook on 
Environmental Dose Analysis. J .  E. Till and H. R. Meyer (eds.), NRC Office of 
Nuclear Reactor Regulation, Washington, D.C. 



30 

Hoffman, F. O., B. G. Blaylock, M. L. Frank, L. k Hook, E. L. Etnier, and 
S. S. Talmage. 1991. Preliminary Screening of Contaminants in the Off-Site Surface 
Water Environment Downstream of the US. Department of Energy Oak Ridge 
Reservation. ORNLER-9. Oak Ridge National Laboratory, Oak Ridge, Tennessee. 

IAEA (International Atomic Energy Agency). 1989. Evaluating the Reliability of 
Predictions Made Using Environmental Transfer Models. IAEA Safety Series 100. 
Vienna, Austria. 

Johnson, N. L., and S. Kotz. 1970. Continuous Univariaie Distributions. Vol. 2. Houghton 
Mifflin Company, Boston, Massachusetts. p. 64-65. 

Kanyar, Bela, and Sven P. Nielsen. 1989. Users Guide for the Program TAMDYN. 
Document prepared for the workshops of Biospheric Model Validation Study, 
BIOMOVS. Swedish National Institute for Radiation Protection, Stockholm, Sweden. 
Technical Report 4. 

Klee, Albert J. 19%. The MOUSE Manual. U.S. Environmental Protection Agency, 
Cincinnati, Ohio. 

Lyman, W. J., W. F. Reehl, and D. H. Rosenblatt (eds.). 1982. Handbook of Chemical 
Property Estimation Methods: Environmental Behavior of Organic Compounds. Mcgraw 
Hill, New York. 

NCRP (National Council on Radiation Protection and Measurements). 1989. Screening 
Techniques for Determining Compliance with Environmental Standards, Releases of 
Radionuclides to the Atmosphere. NCRP Commentary 3. Bethesda, Maryland. 

NCRP (National Council on Radiation Protection and Measurements). In Press. Task 
Group 6. NCRP Scientific Committee 64. 

Palisade Corporation. 1991. @RISE Risk Analysis and Simulation Add-Zn for Microsoft 
Excel; User’s Guide. Newfield, New York. 

Williams, K. A. and C. R. Hudson 11. 1989. ORMONTE: An Uncertainty Analysis Code 
for Use with User-Developed Systems Models on Mainframe or Personal Computers; A 
User’s Guide. ORNL/TM-10714. Oak Ridge National Laboratory, Oak Ridge, 
Tennessee. 

Worley, Brain A. 1987. Deterministic Uncertainly Analysis. ORNL-6428. Oak Ridge 
National Laboratory, Oak Ridge, Tennessee. 



Appendix 

FORMULAS FOR THE MEAN AND VARIANCE OF LOGARITHMS 

DISTRIBUTIONS 
OF LOGNORMAL., LOG-UNIFORM, AND L0G-T"GULA.R 

The following distributions are suggested for subjective probability distributions in 
analysis of multiplicative models. 

Lognormal distribution (Hoffman and Gardner 1983): 

and 

u2 = In [l + ($1, 
where x is the arithmetic mean of the distribution and S is the standard deviation of the 
distribution. 

Log-uniform distribution (Hoffman and Gardner 1983): 

(min) = In(rnaX)] 
r = P  2 ¶ 

and 

31 
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Asymmetrical log-triangular distribution (Beauchamp 1991, Johnson and Kotz 1970): 

(A51 1 
3 

p = -[ln(H') + In(@ + In(u)] , 

and 

where 

H' = the mode of the triangular distribution, 
b = the maximum of the triangular distribution, 
a = the minimum of the triangular distribution. 

The following distributions are suggested for use as subjective probability distributions 
in analysis of additive models. 

Normal distribution: 

The mean value of the normal distribution is simply the value at the 50th percentile. 
With a normal distribution the median, mode, and mean are all the same. The variance 
of the normal distribution is the second central moment of the variable or the square of 
the standard deviation. 

Uniform distribution: 

- p n + m a x ] ,  n =  
2 

and 

12 
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Asymmetrical triangular distribution (Beauchamp 1991, Johnson and Kotz 1970): 

(A91 
- 1  x = -["+ b + a ] ,  

3 

and 

s2 = -[(& 1 + (by - (a)(@ + (Hy - (")(a + b)] . (A-10) 18 

In addition to these suggested distributions, a few more distributions that one may 
use are Poisson, Weibul, gamma and beta distributions, custom designed, and any number 
of discrete distributions (Decisioneering 1991, Palisade Corporation 1991). 
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