
OAK RIDGE
NATIONAL
LAB0 R A T 0 RY

3 4 4 5 b 03b4272 5 ORNIJTM-12040

A Comparison of Three Self-Tuning
Control Algorithms Developed for

the Bristol-Babcock Controller

P. A. Tapp

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

r - ~

I

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implii, or assumes any legal liability or responsibility for the accuracy, com-
plemwss, or usefulness of any information, apparatus. product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of tho United States
Government or any agency thereof.

Instrumentation and Controls Division

A COMPARISON OF THREE SELF-TUNING CONTROL ALGORITHMS
DEVELOPED FOR THE BRISTOCBABCXXK CONTROLLEJR

P. A. Tapp

Date Published-April 1992

Prepared by the
OAK RIDGE NATIONAL, M O R A T O R Y

Oak Ridge, Tennessee 37831-6285
managed by

MARTIN MARIEITA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY

3 V V S b 0361.1272 5

LISTOFFIGURES .. v

LISTOFTABLES .. vii

ABSTRACT ... ix

1 . INTRODUCI'ION .. 1
1.1 OBJECTIVES ... 1
1.2 BRIEF OVERVIEW OF RELATED ADAPTIVE CONTROL

METHODS ... 1
1.3 ORGANIZATION ... 2

2 . FURTHER SELF-TUNING CONTROL BACKGROUND 6
2.1 PROCESS IDENTIFICATlON TECHNIQUES 6

2.1.1 Transient-Response Analysis 6
2.1.2 Frequency-Response Analysis 8
2.1.3 Parameter Estimation Techniques 10

2.2 PID PARAMETER ADJUSTMENT TECHNIQUES 10
2.2.1 Ziegler-Nichols Methods 12
2.2.2 Pole-Placement Method 13

2.3 TWO MOST COMMON INDUSTRIALLY IMPLEMENTED
DESIGNS ... 18

2.3.1 Pattern Recognition Method 18
2.3.2 Process Identification Method 19

3 . THEORY OF OPERATION OF THE BBI STPI ALGORITHMS 20
3.1 CLOSED-LOOP CYCLING ALGORITHM THEORY 20
3.2 PATJERN RECOGNITION ALGORITHM THEORY 23
3.3 MODEL-BASED ALGORITHM THEORY 25

4 . PROCESS SIMULATIONS .. 30
4.1 INTEGRATING PROCESS 30
4.2 FIRST-ORDER SYSTEM 32
4.3 SECOND-ORDER SYSTEM 32
4.4 SYSTEM WITH INITIAL INVERSE RESPONSE 36
4.5 SYSTEM WITH VARIABLE TIME CONSTANT AND DELAY 36

5 . E S T I N G AND COMPARISON OF THE BBI STPI ALGORITHMS 41
5.1 DESCRIPTION OF TESTS 41
5.2 PERFORMANCE EVALUATIONS 43

5.2.1 Process Incompatibilities 43
5.2.2 Tuned System Performance 47
5.2.3 Deadtime Effects 48
5.2.4 Noise Effects 48

iii

CONTEN73 (continued)

5.3 ROBUSTNESS COMPARISONS 51
5.4 PI PARAMETER ADJUSTMENT EFFICIENCY 53

6 . CONCLUSIONS .. 55

7 . REFERENCES ... 58

8 . BIBLIOGRAPHY ... 59

Appendix A DEVELOPMENT OF ACCOL SELF-TUNING PI (STPI)
CONTROLMODULE .. 61

Appendix B: THE INTEGRATED STPI MODULEPROCESS SIMULATION
ACCOL PROGRAM ... 139

Appendix C: MATLAB PERFORMANCE ANALYSIS AND
PLOTI'ING ROUTINES 171

Appendix D: MATHCAD ROBUSTNESS ANALYSIS ROUTINES 179

iv

Figure

1.1 Conventional feedback controller structure 2

1.2 Gain-scheduling controller structure 3

1.3 Self-tuning controller structure 3

1.4 Model-reference adaptive controDer structure 4

2.1 Typical step response of a first-order process 7

2.2 Typical step response of a second-order process 8

2.3 Typical sinusoidal output response to a sinusoidal input 9

2.4 Varied output response plots for the same process with different
controller gains ... 11

2.5 Relay €&back controller structure 11

2.6 Sinusoidal output response generated by a relay feedback controller 12

2.7 Typicaf open-loop step-response plot 13

2.8 Effects of dominant pole location on system performance 15

2.9 Changing system dynamics by moving one point on the Nyquist curve 16

3.1 Bristol.Babcock, Inc., relay feedback controller structure 20

3.2 Output response generated by the closed-loop cycling algorithm 21

3.3 Percent overshoot vs damping ratio for the step response of a
second-order system .. 23

3.4 Phase margin vs damping ratio of a second-order system 24

3.5 Annotated output response describing the operation of the pattern
recognition algorithm ... 25

3.6 Open-loop step response to determine a suitable task rate for the
model-based algorithm .. 27

V

LIST OF FIGURES (continued)

Figure

3.7 Output response generated by the model-based algorithm pseudorandom
binarysequence . 28

4.1 Block diagram of the connections between the self-tuning
proportional-integral controller and the process simulations 31

4.2 Unbounded output response of a pure integrating process 31

4.3 Output response of a first-order process for a step input 33

4.4 Output response of an overdamped second-order system for a step input 34

4.5 Output response of a critically damped second-order system for a step
input . 35

4.6 Output response of an underdamped second-order system for a step
input ... 35

4.7 Step response plots of a second-order system for various values of the
damping factor .. 37

4.8 Initial inverse response resulting from two opposing first-order systems
to astepinput . 38

4.9 Continuous concentration control of a chemical mixing process 39

vi

LIST OF TABLES

Table

2.1

2.2

3.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

Controller parameters and dominant dynamics obtained by Ziegler-Nichols
open-loop step-response method . 14

Controller parameters and dominant dynamics obtained by Ziegler-Nichols
closed-loop frequency-response method . 14

Ziegler-Nichols ultimate frequency-response controller parameters 22

Transfer functions of the simulated processes . 42

Calculated proportional-integral parameters for the integrating
process .. 44

Calculated proportional-integra1 parameters for the first-order
process .. 44

Calculated proportional-integral parameters for the second-order process
(9, = 0.2) ... 45

Calculated proportional-integral parameters for the second-order process
(9, = 0.04) .. 45

Calculated proportional-integral parameters for the system with initial
inverseresponse. 46
Calculated proportional-integral parameters for the system with variable
time constant and delay . 46
Tuned system integral of the absolute value of the error response to both
setpointandloadchang .. 49

Calculated proportional-integral parameters for the first-order process
with deadtime ... 50

Calculated proportional-integral parameters for the first-order process
with noise ... 51

Tuned system robustness with respect to gain and deadtime increases 54

A brief overview of adaptive control methods relating to the design of self-tuning
proportional-integral-derivative (PID) controllers is given. The methods discussed
include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control
systems. Several process identification and parameter adjustment methods are discussed.
Characteristics of the two most common types of self-tuning controllers implemented by
industry (i-e., pattern recognition and process identification) are summarized. The
substance of the work is a comparison of three self-tuning proportional-plus-integral
(STPI) control algorithms developed to work in conjunction with the Bristol-Babcock
PID control module. The STPI control algorithms are based on closed-loop cycling
theory, pattern recognition theory, and model-based theory. A brief theory of operation
of these three STPI control algorithms is given. Details of the process simulations
developed to test the STPI algorithms are given, including an integrating process, a first-
order system, a second-order system, a system with initial inverse response, and a system
with variable time constant and delay. The STPI algorithms’ performance with regard to
both setpoint changes and load disturbances is evaluated, and their robustness is
compared. The dynamic effects of process deadtime and noise are also considered.
Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are
drawn from the performance comparisons, and a few recommendations are made.

1. INTRoDucfION

It used to be a difficult and time-consuming task to tune process controllers, but
in the past few years several manufacturers have begun to incorporate self-tuning
controller algorithms to automatically tune their proportional-integral-derivative (PID)
controller parameters. This work describes the research, process simulation
development, and tests €or comparison of three self-tuning controller algorithms that
were implemented by researchers at Sunderland Polytechnic, Sunderland, England, to
work in conjunction with the Bristol-Babcock PID control module. These self-tuning PI
control algorithms are based on closed-loop cycling theory, pattern recognition theory,
and model-based theory. Bristol-Babcock, Inc., extended the opportunity to evaluate
these self-tuning control algorithms prior to their commercial implementation.

The objectives of this work are to

1. investigate the operation of the three self-tuning control algorithms developed
for the Bristol-Babcock, Inc., controller;

2. develop process simulations needed to test these algorithms; and

3. test the performance and robustness of the three self-tuning algorithms prior to
their commercial implementation.

1 2 BRIEF OVERVIEW OF RELATED ADAPTIVE CONTROL h4ETHODS

Self-tuning control is just one of several related adaptive control methods. Most
single-loop controllers in use today are designed to control a constant-gain linear
Eeedback loop at a fured operating point as shown in Fig. 1.1. However, it may be
necessary or desirable to use adaptive controller tuning methods for one or more of the
following reasons.

1. Most processes are really nonlinear.

2. Process parameters may change dynamically.

3. The process may have varying disturbance inputs.

4. Adaptive tuning techniques can improve performance.

5. Self-tuning improves engineering efficiency.

Several related adaptive tuning methods have developed from modern control
theory, including gain scheduling, self-tuning, auto-tuning, and model-reference adaptive

1

2

controller
- Signal Variable

t Process i

I I

1.1. Conventional feedback controller structure.

control (Astrllm and Wittenmark 1989). A brief introduction to each of these methods
is given below.

A gain-scheduling system monitors a process variable and adjusts the controller
parameters according to a predetermined gain schedule as shown in Fig. 1.2. There is
some debate as to whether this technique should really be classified as adaptive control,
because there is really no feedback path that interactively "fine tunes" the controller
parameter values. This technique is used mainly to control processes for which the
dynamics are well understood (e.g., aircraft control).

Self-tuning controllers (STCs) continuously adjust their controller parameters by
using process identification and parameter by estimation techniques as shown in Fig. 1.3.
Some manufacturers' implementations also add a small disturbance input to the control
signal to assist with the process identification. Auto-tuning controllers (ATCs) are
essentially the same as the STCs except that ATCs calculate new PID parameters o& at
start-up and on demand whereas STCs can continuously adjust their PID parameters.

parameters to obtain the desired performance as shown in Fig. 1.4. First, an ideal model
is constructed to define the desired process behavior characteristics. Then, the
measurement is compared to the model output and the controller parameters are
adjusted as necessary to make the process behave like the model.

Self-tuning systems and model-reference systems are closely related. Both
systems have two feedback loops; the inner loops are ordinary feedback loops and the
inner loop parameters are set by the outer loop. Also, the controller adjustments for
both types of systems are based on both input and output sampling. Although much
research has been done for each of these adaptive control techniques, most of the
industrial adaptive controllers that have been developed use the self-tuning control
technique.

minimum variance, and various predictive control techniques) have been industrially
implemented, but these are considered to beyond the scope of this work.

Model-reference adaptive systems use a reference model to adjust the controller

Other adaptive control techniques (e.g., linear quadratic gaussian, generalized

13 ORGANIZATION

A literature survey was done to determine which adaptive control methods were
most commonly being used. A brief introduction to the methods that relate to the
design of currently available self-tuning PID controllers is given above. The methods

3

Gain
Scheduler

1

4
Variable

Reference , t , r 4

c
Controller b Process

1 2 cain-scheduling controtler structure

Parameter
Adjustment

- Process ID & * Parameter d F s t n I

13. SeE-tUning controller structure.

I
I +

-h

b-
Controller Process

* 1

4

R ea su red
Value

1.4. Model-reEercnoe adaptive controller structure.

discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive
control systems.

Chapter 2 provides additional background information specifically relating to self-
tuning controllers. The two most essential parts of the self-tuning controller are
examined-the process identification technique and the parameter adjustment method.
The process identification techniques discussed include transient-response analysis,
frequency-response analysis, and parameter estimation methods. The PID controller
parameter adjustment techniques presented are the Ziegler-Nichols and the pole-
placement methods. Then, the characteristics of the two most common types of self-
tuning controllers that have been implemented by industry (ie., pattern recognition and
process identification) are summarized.

(PI) control algorithms developed by researchers at Sunderland Polytechnic, Sunderland,
England, for use with the PID control module of Bristol-Babcock, Inc. (BBI) is given in
Chapter 3 (full details are given in the original research report included in Appendix A).
Bristol-Babcock graciously agreed to allow an independent evaluation of these algorithms
prior to their commercial implementation. These algorithms are based on closed-loop
cycling theory, pattern recognition theory, and model-based theory.

and to determine the types of processes for which each of the controller algorithms
might best be suited. The processes that were simulated include an integrating process,
a first-order system, a second-order system, a system with initial inverse response, and a
system with variable time constant and delay. The details of the process simulation
design and the controller tests are given in Chapter 4.

A brief theory of operation for the three self-tuning proportional-plus-integral

Various process simulations were developed to test each controller’s performance

5

In Chapter 5, the STPI algorithms’ performance with regard to both setpoint
changes and load disturbances is evaluated, and their robustness is compared. The
effects of process deadtime and noise are also considered.

in Chapter 6. Some conclusions are drawn from the performance comparisons, and
several recommendations are made.

Finally, the limitations of each of the seif-tuning controller algorithms is discussed

2 FURTHER SELF-TUNING CONTROL BACKGROUND

The two most essential parts of the self-tuning controller are the process (or
system) identification technique and the parameter adjustment method (Fig. 1.3). These
two important elements will be examined in greater detail in the following sections.

2 1 PROCESS IDENTIFICATION TECHNIQUES

Most commercially available self-tuning controllers use one of the following
process identification techniques-transient-response analysis, frequency-response analysis,
or parameter estimation methods.

21.1 Transient-Response Analyski

Transient-analysis techniques can identify simple (first- or second-order systems
with or without deadtime) processes from an open-loop step-input response plot when
the following conditions are satisfied.

1. The system is initially in steady state when the test begins.

2. The system is approximately linear (in the test range).

3. Measurement errors are negligible (i.e., the system is relatively noise free).

Although most processes are nonlinear and complex, most can also be
approximated as a first-order process with time delay as given by

Ke -L
1 + Ts

G(s) = ~ I

The process gain K time constant T and deadtime L can easily be determined
from the step-response reaction cume of a first-order process (Fig. 2.1).

Oscillatory tie., second-order) systems can also be identified by using transient-
response analysis techniques (Fig. 2.2). Once the period of oscillation Tp and damping d
are obtained, they are used to calculate the natural frequency a,, and relative damping
factor 5 to identify a second-order system of the form

where

6

7

t -
L T

L = Delay
T = Time constraint

21. Typical step response of a hrst-order proce~r
Source: K. J. Astrdrn and Tore Hsgglund, Automatic Tuning
of PID Controllers, Fig. 3.2B, p. 32, reprinted with permission
from the Instrument Society of America, Raleigh,
North Carolina, 1988.

Transient-response process identification techniques are implemented in closed-
loop self-tuning controllers in a variety of forms. Some STCs superimpose step (or
pulse) disturbances on the reference signal. Some units only retune the controller
parameters after setpoint changes or relatively large load disturbances. The desired
system performance characteristics be may also be requested in many different ways (e.g.,
desired damping, overshoot, time constant). Many units also include heuristics and
additional logic to handle systems of increased complexity.

8

k s Gain
a = Magnitude of first peak
Tp = Period of oscillation
d = Damping

2 2 Typical step response of a second-order p'~cess. Source: K J. Astrdm
and Tore Hagglund, Automatic Tuning of PID Controllers, Fig. 3.4, p. 34,
reprinted with permission from the Instrument Society of America, Raleigh,
North Carolina, 1988.

2 1.2 Frequency-Response Analysis

Frequency-response analysis techniques can also be used to identify simple
processes as well as some processes that have more complex forms. Many frequency-
response analysis techniques exist. The Ziegler-Nichols frequency-response method is
probably the most well known. However, the relay feedback method is really the most
practical.

after a brief transient response (Fig. 2.3). This means that the relationship between the
input and output of a p r o m s can be described by two numbers:

For a sinusoidal input, a stable linear system will produce a sinusoidal output

1. the quotient of the output and input amplitudes Q and

2. the phase shift between the input and output signals p.

9

0 8

t..b,.* .i(..i

I

t I I '1 . L t. I*

23. Qpical sinusoidal output response to a sinusoidal
input Source: K. J. Astrdm and Tore Hagglund, Automatic
Tuning of PID Controllers, Fig. 3.5, p. 38, reprinted with
permission from the Instrument Society of America, Raleigh,
North Carolina, 1988

However, the system response with this method can be determined at only one
point from each sinusoidal input. To completely describe the transfer function of the
process, a and p must be known at all frequencies

Fortunately, techniques have been developed that require the knowledge of the
system response at only one frequency. The Ziegler-Nichols frequency-response
technique is one experimental method of identifymg the process. This can be done with
the following steps.

1. Set the controller integral and derivative terms to zero.

10

2. Adjust the gain until uniform oscillations are obtained (Fig. 2.4). This gain is
called the ultimate gain.

3. Calculate the critical system frequency at the ultimate gain.

Several design methods could then be used if this technique could be automated.
However, implementation problems prevent the Ziegler-Nichols frequency-response
method from being a practical design for implementation in an industrial self-tuning
controller. The primary reason this technique is difficult to safely automate is that
operating some processes at or near their point of instability may be harmful to the
equipment or dangerous to personnel.

technique for identifjing a process (Fig. 2.5). It uses a relay to automatically generate a
sinusoidal output until the appropriate oscillations are obtained (Fig. 2.6). The ultimate
period and ultimate gain are easily calculated from the critical frequency, and then the
PID parameters can be determined.

specified-the initial relay amplitude. However, the most widely used process
identification method is the parameter estimation technique.

The relay feedback method (Astrbm and Hagglund 1988) is a practical design

This technique can be easily automated, and only one parameter must be

213 Parameter Estimation Techniques

Parameter estimation techniques involve sampling the controller’s input and
output and constructing a mathematical model of the process. The most common
parameter estimation technique is recursive in nature. The controller input/output (YO)
is sampled, and process model parameters are computed recursively by using matrix
manipulation techniques to fit a predetermined low-order process model.

to identify the process. The process model output is continuously refined, and the
controller can continuously update the PID parameters. However, the parameter
estimation technique also has some disadvantages. The mathematics involved are more
complex, and more prior information must be specified by the user (e.g., sampling
period, initial model parameters). Thus, most products that use this technique have a
pretuning phase (based on one of the transient or frequency analysis techniques) to
obtain the additional required information.

There are some distinct advantages to using the parameter estimation technique

2 2 PID P A R f w E E R ADJusTMENTTEc€€N?QuEs

Once the process identification is complete, the self-tuning controller uses some
technique to determine how to adjust the PID parameters. The most widely used PID
parameter adjustment methods are the Ziegler-Nichols method and the pole-placement
methods. Each of these methods will now be examined in further detail.

11

, ? r o r a r r output f e r h'7.5

I

I .
1 3

0 5 10 IS 10

24. Varied output response plots for the same process with different
controller gab. Some: K. J. Astrdrn and Tore Hagglund, Automatic Tuning
of PZD Controllers, Fig. 3.7, p. 39, reprinted with permission from the
Instrument Society of America, Raleigh, North Carolina, 1988

ref +P Y -

25. Relay feedback controUer structure. Some: K. J. Astrdm and Tore Nagglund,
Automatic Tuning of PID Controllers, Fig. 5.2, p. 109, reprinted with permission from the
Instrument Society of America, Raleigh, North Carolina, 1988.

12

0 10 ?o rn 4 0

0 10 ?a)o 4 0

26, Sinusoidal output response generated by a relay feedback controller.
Source: K J. Astram and Tore Hagglund, Automatic Tuning of PID Conlrollers,
Fig. 3.10, p. 41, reprinted with permission from the Instrument Society of
America, Raleigh, North Carolina, 1988.

2 2 1 Zegler-Nichols Methods

The two classical tuning methods that were presented by Ziegler and Nichols
(1942) are still widely used-the Z-N step-response method and the Z-N frequency-
response method. The Z-N step-response method is based on an analysis of the open-
loop step response of the system (Fig. 2.7). Once the gain and apparent deadtime have
been determined, the recommended PID parameters and an estimate of the dominant
dynamics of the closed-loop system can be determined from Table 2.1.

to calculate PID parameters and dominant system dynamics (Table 2.2). The location of
the dominant system pole has a great effect on the system performance (Figure 2.8).
The Z-N methods are based on the idea that the system dynamics can be changed by
moving one point on the Nyquist curve (Fig. 2.9).

However, much uncertainty exists with the 2-N frequency design method. It is
not possible to determine the location of all the dominant poles of the system from only
one point on the Nyquist plot. Several other techniques could be used if two or more
points on the Nyquist curve were known. However, most of these uncertainties vanish if
the pole-placement design method can be used.

The Z-N frequency response method uses the ultimate gain and ultimate period

13

a = Gain factor
L = Apparent deadtime

27. 'ihpical open-hp stepresponse p l d Same: K 3. Astrdm and
Tore Hilgglund, Automatic Tuning of PID Controllen, Fig. 4.1, p. 53,
reprinted with permission from the Instrument Society of America,
Raieigh, North Carolina, 1988.

222 Pole-Placement Method

For this technique, the process is approximated by a model of fmt or second
order. Then, the PID parameters are calculated on the basis of the desired dosed-loop
pole-placement (AstrUm and Hagglund 1988). The effectiveness of the pole-placement
method hinges on the ability to approximate the process accurately enough with a Iow-
(i.e., first- or second-) order model.

222.1 Fust-order approximation

If the process can be described by a first-order model of the following form

kP
G p = 1 + Tp ' (2-4)

14

Table 21. Controller parameters and dominant dynamics obtained by
the Ziegler-Nichols open-loop stepresponse method

Table 2 2 Controller parameters and dominant dynamics obtained by
the Ziegler-Nichols closed-loop frequency-response method

15

s
-

I
1

t Y
 - r- t

c +
.. - . c + I
P

A

"

Y

Y

_
I

n

* Y

t c.
t c.

i I I I - =I Y .I I

16

I m G l i a l t

29. Changing system dynamics by moving one point on the Nyquist curve Source:
K J. Astrdm and Tore Hagglund, Aulomatic Tuning of PID Controllers, Fig. 4.4, p. 57,
reprinted with permission from Instrument Society of America, Raleigh, North Carolina,
1988.

then the p r o w can be controlled by a controller of the form

G, = K [1 + $1.
The closed-loop system can then be described as

GPGR G, =
1 + GpGR ’

17

and the closed-loop pole can be obtained from the characteristic equation

1 + GpGR = 0 .

Substitution then shows that the characteristic equation is

(2.7)

which can be compared to the characteristic equation described by the desired relative
damping and frequency

8 2 + 2cos + o2 = 0 . (2.9)

Because the coefficients of Eqs. (2.8) and (2.9) should be equal, we have

(2.10)

Thus, the proportional-integral (PI) parameters can be determined as

21;oT, - 1

kP
K =

2.2.22 Second-order approximation

If the process can be described by a second-order model of the form

(2.11)

(2.12)

then the process can be controlled by a PID controller of the form

18

K(l + Tp + T,T/)
G, =

*P
(2.13)

Then, if the desired response is described by the characteristic equation

(s + ao)(s2 + 2 ~ 0 s + a’)= 0 , (2,14)

similar techniques can be used to show that the PID parameters can be calculated as

T1T202(1 + 2Ca) - 1
K =

kP

(2.15)

23 TWO MOST COMMON INDU-Y IMP- DESIGNS

In summary, the two most common industrially implemented self-tuning
controllers are based on one of two basic techniques-pattern recognition or process
identification. The characteristics for each type are listed in the following sections.

23.1 Pattern Recognition Method

Self-tuning controllers that use the pattern recognition method

monitor the controller’s input and output; 1.

2.

3.

4.

5.

identify the process by using transient- or frequency-response analysis;

compare the actual response to the desired response characteristics;

calculate new parameters by using Ziegler-Nichols methods;

automatically update PID values whenever possible; and

6. require only relatively simple mathematics techniques.

19

232 procesS Ideatifscation Method

Self-tuning controllers that use the process identification method

continuously monitor the controller’s inputs and outputs;

identify the process by using parameter estimation techniques;

construct a mathematical model of the process;

calculate new PID parameters regularly by using the pole-placement methods;

automatically update PID parameters whenever necessary; and

require somewhat more complex mathematics techniques.

1.

2.

3.

4.

5.

6.

3. THEORY OF OPERATION OF THE BBI STPI ALGORITHMS

The remainder of this work focuses on the testing and comparison of the three
self-tuning proportional-plus-integral (STPI) control algorithms. These STPI algorithms
were implemented by researchers at Sunderland Polytechnic, Sunderland, England, for
use with Bristol-Babcock's standard PID3TERM control module. The algorithms are
based on closed-loop cycling theory, pattern recognition theory, and model-based theory
(a copy of the original research report is included in Appendix A). An abbreviated
theory of operation is given in the following sections.

3.1 CLOSED-LOOP CYCLING ALGORITHM THEORY

This algorithm is a one-shot tuning method based on the Astrdm and Hsgglund
Relay Feedback Method (Astrdm and Wittenmark 1989). A relay controller and an
integrator used as shown in Fig. 3.1 generates a periodic triangular perturbation output,
and the process variable is forced to oscillate around its setpoint value as shown in
Fig. 3.2. The period of the oscillations is determined by the dynamics of the process, but
the user can constrain the amplitude of the oscillations by specifylng the initial relay
amplitude characteristic, maximum and minimum controller output limits, and the
maximum allowable deviation of the process variable from setpoint. The tuning phase is
automatically terminated when a number of good oscillations have been recorded.

Y -\

3.1. Bristol-Babmck, he, relay feedback controller structure Source: Reprinted with
permission from C. S. Cox et al., Development of ACCOL Self-Tuning PI (STPI) Control
Module, Pt. 111, Fig. 6, Sunderland Polytechnic, Sunderland, U.K., 1990.

20

21

1.7s

1.5

-
- PERIOD

Controller Outour
41

Controller Outour
4

3.5 TUNING

0 I I

0 50 roo 150 2 00
Time

3 2 Output response generated by the clased-kmp cycling
algorithm. Source: Reprinted with permission from C. S. Cox et al.,
Development of ACCOL Self-Tuning PI (STPI) Control Module,
Pt. 1, Fig. 2, Sunderland Polytechnic, Sunderland, U.K., 1990.

22

Upon termination, the period and amplitude of the oscillations are measured and used to
calculate new PI controller settings. If the tuning phase does not obtain good results
after the specified maximum number of cycles, then it will also terminate with no
recalculation of the PI parameters. This technique is explained in further detail in the
following paragraphs.

Mter activating the closed-loop cycling self-tuning procedure, the process should
obtain constant-amplitude fmed-frequency oscillations within a few cycles. The algorithm
is designed to automatically reduce the relay amplitude if the specified initial amplitude
is too large. However, if the initial amplitude is obviously much too large, the user may
want to manually adjust the amplitude during the tuning phase to keep the process
variable near the setpoint.

Once constant oscillations have been obtained, the Ziegler-Nichols critical gain
K, for the process is easily calculated. The ultimate frequency P, is also calculated by
using the error signal and a zero-crossing routine. Once these parameters are evaluated,
PI settings could easily be calculated (for quarter-amplitude damping) as shown in
Table 3.1. However, Astrdm’s proposed alternative approach, which allows calculation
of PI settings of any desired phase margin, is implemented in this algorithm.

Table 3.1. Zegler-Nichols ultimate frequency-response ControIler parameters

Controller Parameters

0.45 IC,,

PID 0.6 K,, -

The developers recognized that every user may not understand the concept of
phase margin. So, to make this concept more user friendly, they only require the user to
specify the maximum desired percentage overshoot, which is then used to approximate
the desired phase margin. Although this method does not allow the user to specify an
overdamped response, from Figs. 3.3 and 3.4 it can be seen that this technique can be
used over a wide range of overshoot values to approximate the desired phase margin.
The resulting PI values can then be calculated by

Two optional enhancements may be needed if the process variable is somewhat
noisy-relay hysteresis and digital filtering. The designers realized that noise

23

100

o /s 80

60

40

20

0 0 . 2 . 4 . 5 -6 .8 1.0
c

33. Percent avershoot vs damping ratio for the step
response of a second-order system. Souwe: Reprinted with
permission from C. S. Cox et al., Development of ACCOL Self
Tuning PI (STPI) C o w l Mdule, Pt. 111, Fig. 7(a), Sunderland
Polytechnic, Sunderland, U.K, 1990.

superimposed on the process variable signal could result in false relay switching and
invalidate the closed-loop cycling tuning procedure. Some hysteresis can easily be added
to the relay to improve its noise rejection. Choosing the correct bandwidth for the
digital filter is a more cumbersome problem. See the report in Appendix A,
Developmeni of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 111, pp. 14849, for
more details regarding these enhancements.

3.2 PATIERN RECOGNITLON ALGORFTHM THEORY

This algorithm provides continuous self-tuning of the PI controller parameters,
When the pattern recognition self-tuning procedure is active, the PI controlier
parameters will be recalculated following any sufficiently large disturbance or setpoint
change. New PI parameters are calculated in four distinct steps (Fig. 3.5).

1. The controller’s error signal is continuously monitored for any disturbances that
occur over a specified threshold value. When this threshold is exceeded, the

24

100

80

60

40

@m

20

0
0 . 2 .4 . 5 .6 .8 1.0

r;

3.4. Phase margin vs damping ratio of a second-order
system, Source: Reprinted with permission from C. S. Cox
e t al., Development of ACCOL Self-Tuning PI (STPI)
Control Module, Pt. 111, Fig.7@), Sunderland Polytechnic,
Sunderland, U.K, 1990.

algorithm monitors the process variable to detect its peak deviation from
setpoint, E,,

2. Then the recovery time of the loop response TL is determined. TL is calculated
to be equal to the elapsed time it takes the system to go from 90% to 50% of
the peak deviation from setpoint on return from the peak deviation.

3. T L is then used in the evaluation of two integrals: S, and S,. T, is the time when
the system has reached 50% of the peak on return from the initial peak deviation
(i.e., when T L is just determined).

S, is the area under the curve from time T,(1 + a) to T,(1 + a -t b).
S, is the area under the curve from time T,(1 + a I- /I) to T,(1 + a + #? + y) .

4. Having obtained the value of these integrals, the new PI controller parameters
can be calculated and updated as

25

P r o c e s s Var i a b 1 e
1.3

1.2

1.1

1

0.9

Emax = Peak deviation from setpoint 0.8

0.7
10 20 30 40 50 60 7 0 80 90

Time

33. Annotated output response desmiiing the operation of the pattern
recognition algoritfim. Source: Reprinted with permission from C. S. Cox
et a]., Development of ACCOL Serf-TW;ng PI (STPI) Control Module, Pt. I,
Fig. 5, Sunderland Polytechnic, Sunderland, U.K, 1990.

where
S, = Area under the curve from time T1(1 + a) to Tl(l + a + p).
S, = Area under the curve from time T,(1 + a + /3) to T,(1 + a + /? + y).
R, = Level related to desired overshoot (R, = OVERSH/900).
R, = Area related to the actual overshoot (R, = yR2).
DONE = Confidence factor related to actual overshoot,
K,, K,, K3, and & = Constants.

33 MODELBASED ALGORITHM THEORY

The model-based algorithm is primarily intended for use as a one-shot tuner,
although it may also be configured to operate in a continuous tuning mode (by the
expert user). A very important difference between this algorithm and the previous two is

26

that the task rate must be carefully matched to the response time of the process. The
developers suggest that a good rule for use with this model-based method i s to select a
task rate that is approximately one-tenth of the process rise time, which may be
determined from a step test (Fig. 3.6).

at the controller output, as shown in Fig. 3.7. The user must specify the initial mean
level, OPMEAN, and the amplitude, OPDEV, of the PRBS: the mean level should be
chosen to cause the process variable to deviate at or near its setpoint value, and the
amplitude should be sufficiently large to cause significant deviations yet keep the process
variable within acceptable limits. The mean level of the PRBS may need to be manually
adjusted during the tuning phase to keep the process variable near the setpoint.

While the PRBS is applied, the process output and the controller output data are
fed into a recursive least-squares-estimation algorithm that calculates the mathematical
model parameters. The model is a first-order lag with time delay:

During the tuning phase, a pseudorandom binary sequence (PRBS) is produced

Ke -"
1 + Ts

GJs) ~ . (3.3)

Although the digitized equivalent of this equation could theoretically have any
number of terms in the numerator to accommodate any amount of delay time, the
developers fmed the numerator terms to five. Thus, the digitized model equation is

The process output and controller output are prefiltered by a digital band-pass
filter to remove dc offsets and high-frequency noise and to make the estimation
algorithm more robust.

PI controller settings. The discrete form of the ACCOL PI controller is given by
At the end of the self-tuning phase, the identified model is used to calculate new

Kj is calculated such that the zero of the controller will cancel the pole of the
system model in Eq. (3.4). Because the sample rate T is known, Ki is easily calculated as
€0 llows :

27

Process Variable
1.5 *

1.25 - I,

1 -

RISE TIME

0.5 - 1 I I I

RISE TIME

0.5 - 1 I I I

0 10 20 30 40 50

Time

Controller Outout
3 r

I 2.5

STEP CHANGE INTRODUCED / WITH CONTROLLER IN MANUAL

0 10 20 30 40 so
Time

3.6 Open-loop step response to determine a suitable task rate for the
model-based algorithm, S o m : Reprinted with permission from C. S. Cox
et a]., Developmnt of ACCOL Self-Tuning PI (STPI) Control Mdule , Pt. I,
Fig. 6, Sunderland Polytechnic, Sunderland, U.K, 1990.

28

Process Variable
2

1.75

1.5

1.25

1

0.75

0.5

0.2 5

0
0 50 100 150 2 00

Time

4

3.5

3

2.5

2

1.5

1

0.5

0

Controller Output

0 50 100 150 200

Time

3.7. Output response generated by the model-based algorithm
pseudorandom binary sequence Source: Reprinted with permission from
C. S . Cox et al., Development of ACCOL Selj-Tuning PI (STPI) Control
Module, Pt. I, Fig. 7, Sunderland Polytechnic, Sunderland, U.K., 1990.

29

[- tan-l “g[GOL(h)] = -tan-’

Now the task is to calculate the K, that will provide the required phase margin
for the closed-loop compensated system. As with the closed-loop cycling algorithm, the
user has simply defined the desired system performance by specifSrlng the maximum
desired percentage overshoot, which is then used to approximate the desired phase
margin. However, the mathematics involved is slightly more complicated than before.
With the pole-zero cancellation obtained by determining Ki, the remaining compensated
open loop transfer function is given by

5

bpinioT

b,cmio T

(3.9)
5

i-I

To determine the required K,, the frequency response of the compensated system
must be computed. This can be done using the discrete time to frequency domain
mapping

z - I = c - j d (3.8)

The angular frequency wo at which the required phase margin occurs can be
calculated as

The particular angular frequency oo which yields the desired phase: margin is then
computed from Eqs. (3.9) and (3.10) by using a linear search algorithm in the range

0 < w < n. Once oo has been determined, K, can be calculated from
T

(3.1 1)

4. PROCFBSSIMULATIONS

To facilitate the self-tuning control algorithm tests, various process simulations
were developed. Because the self-tuning algorithms were developed for Bristol-
Babcock's distributed process controller model DPC 3330, it was the obvious process
simulator of choice because the controller could execute both the self-tuning algorithms
and the process models simultaneously. The self-tuning control algorithms and the
simulation programs were written in ACCOL 11, a language developed by Bristol-
Babcock specifically for use with their distributed process controllers.

system, a second-order system, a system with initial inverse response, and a system with
variable time constant and delay. The process simulations are connected via software to
the STPI module as shown in Fig. 4.1. More details oE the test setup are given in
Chapter 5. The simulation programs and the STPI module code have been integrated
into a single ACCOL program (Appendix B).

In physical processes, whenever the input to the system changes, there is
frequently some time interval during which no effect can be measured or observed on
the output. Thus, each of the simulations includes a delay, or deadtime, term to model
the effect of this delay time.

There are usually also some known process dynamics that cannot be accounted
for in a simple mathematical model (e-g., variance in properties of the inlet process
materials, uncon trolled process environmental variables). These dynamics can be
classified as disturbance inputs. In fact, any input that is not a result of an adjustment by
the operator or the control system may be called a disturbance input. To account for
some of these uncontrolled process dynamics and to measure their effects, each process
includes load disturbances that can be added to the process inputs.

Although any unknown process dynamic could be classified as noise, one
common source of noise is associated with measuring the process output. Thus, the
process simulations include the capability of adding a noise signal to the process output
to simulate measurement noise. This was done by using the noise generator in the
GENESIS software package that is being used to monitor the process and controller
output. Fhch process is described in more detail in the following sections.

The processes that were simulated include an integrating process, a first-order

4.1 INTEGRATINGPROCESS

Processes with integrating action are common, especially in the chemical industy
(e-g., tanks storing liquids, vessels storing gases, inventory systems storing raw materials).
A purely capacitive, or integrating, process will behave as if there were an integrator
between its input and output. Its output will grow (or shrink) linearly with time as
shown in Fig. 4.2 (depending on whether material is being added or removed). The
value of Kp (Le., the process gain) is related to the rate of increase or decrease. The
larger the value of Kp, the steeper the slope (Le., the larger the increase) will be.

30

31

Noise

+

4.1. Block diagram of the COM- betwaeo the &-tuning pmportional-integral
controller and the process simulations.

t

4 2 Unbounded output response of
a pure integrating p’ocess Source:
George Step hanopodas, Chemical Process
Conrrol: An Introductwn to Theory and
Practice, Fig. 10.3, p. 179, reprinted with
permission from Pren tice-Hall, Englewood
Cliffs, New Jersey, 1984.

The simulated integrating process (with deadtime) is described by

The code to implement this process is in Task 10 of the ACCOL program in
Appendix B. In practice, the process output will probably encounter some upper and
lower limits (e.g., a tank has a finite capacity). So, the simulation of the integrating
process has both upper and lower bounds.

32

4 2 FIRST-ORDERsYsrEM

A first-order system is so-named because the time-domain transfer function of
the process can be described by a first-order differential equation. The first-order
process simulation (with deadtime) is described by

Unlike the integrating process, when its input is changed, the first-order Zag
process automatically seeks a new equilibrium or steady state. The time constant 7p of a
process is a measure of the time necessary for the process to adjust to a change in its
input (Stephanopoulos 1984). The value of Kp corresponds to the ultimate or final value
of the output. For a step change in input, the output response would be exponential as
given by

fit) = AKJ1 - e-"P) . (4-3)

Figure 4.3 shows how the process output changes with respect to time in
response to a step change in the input. The output will reach 63.2% of its final value
when the elapsed time is equal to one time constant. After four time constants, the
output will have essentially reached its final value. The code to implement this process
is in Task 11 of the ACCOL program in Appendix B.

4 3 SECOND-ORDER SysllEM

A second-order system is a process that can be described by a second-order
differential equation. The familiar Laplace transformation for a second-order system is
given by

where

Kp = system gain,
e, = undamped natural frequency, < = damping factor.

33

4
1 .O

0.8

0.6

0.4

0.2

0 I 2 3 4 5
I -
‘P

43. Output response of a first-order process for a step
input. Source: George Stephanopoulas, Chemical €?mess
Control: An Introduction to Theory and RQctice, fig. 10.4, p. 180,
reprinted with permission from Prentice-Hall, Englewood Cliffii,
New Jersey, 1984.

Thus, the characteristic equation is given by

and its roots are

S,’ sz = -con f u , @ 7

The form of the output response depends on the roots s1 and s2, which describe
the location of the two poles in the s-plane (D’Souza 1988). Three cases are easily
distinguished:

Case 1: overdamped response,

34

Ca.e 2: critically damped response, and

Case 3: underdamped response.

When 5 > 1, two distinct real poles exist (Le., two system time constants can be
defined) as shown in Fig. 4.4, and the roots can be expressed as

sz = -UTz = -lo, - andm .

I 01

4.4. Output response of an overdamped second-order system for a step input
Source: k Frank D'Souza, Design of Control System, Fig. 4.8, p. 139, reprinted
with permission from Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

case 2: criticay. damped response

When 5 = 1, two real, equal poles exist (i.e-, a single repeated root) as sham in
Fig. 4.5, and the multiple root can be expressed as

SI = sz = -l/r = -a" . (4.8)

35

45. Output response of a critically damped samnd-order system for a
step input Source: A. Frank D'Souza, Design of Control System, Fig. 4.9,
p. 140, reprinted with permission from Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

Case 3: Underdamped response

When f c 1, two complex conjugate poles exist as shown in Fig. 4.6, and the
roots can be expressed as

sl, sz = -<a, * jo,,li-C2 . (4.9)

0

4.6 Output response of an underdamped second-order system for a step input
Source: A Frank D'Souza, Design of Contmi System, Fig. 4.10, p. 141, reprinted with
permission from Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

36

Figure 4.7 shows the output response plots for various values of 5. It can be
seen from the graph that for values of 5 > 1, the response becomes more sluggish as the
damping factor is increased. When 5 = 1, the response is similar to the first-order
response, except that its initial response is somewhat more sluggish. For values of
5 c 1, the initial response is faster, but the system tends to oscillate around the final
value. This oscillatory behavior becomes more pronounced as the damping factor is
decreased. The code to implement this process is in Task 16 of the ACCOL program in
Appendix B.

systems described above. However, to more thoroughly test the capabilities of the STPI
controller, two more processes of interest were developed-a system with initial inverse
response and a system with variable time constant and delay.

Most industrial processes can be adequately approximated by one of the three

4.4 !3YSTEM WITH INITIAL INVERSE RESPONSE

The dynamic response of a boiler level-control system is quite different from
those systems described thus far. If the flow rate of the cold feedwater to a boiler
system is increased by a step amount, the total volume of the boiling water, and
consequently the liquid level, will decrease for a short period of time before it starts to
increase due to the initial cooling effect caused by adding the cold water. Thus, the
system will initially have an inverse response to the desired behavior.

of two opposing first-order systems, yielding an overall response equal to
A system of this type can be mathematically described by the difference equation

(4.10)

This system will have an initial inverse response when both of the following
conditions are satisfied.

1. Process 1 is able to reach a higher steady-state value than Process 2 (Le.,
Kl > K2) and

2. Process 2 is able to initially dominate the overall response of the system (Le-,
K d ~ z > KIh,).

Figure 4.8 shows the overall response of the system. The code to implement this
process is in Task 14 of the ACCOL program in Appendix B.

4 5 WSTEM WITH VARIABLE TIME CONSTANT AND DELAY

For the processes that have been described thus far, it has been assumed that the
system parameters (e.g., gain, time constant) for physical processes always remain
constant. However, this is not always the case, especially for chemical processes.

37

Critically damped
response ({ = 1)

1.0

0

2.0

1.5

I .o v(r)

KP

0.5

0

------- - - - -

response

t

4.7. Step response plots of a secondsrder system for various
values of the damping factor. Sowre: George Stephanopoulas,
Chemical Rocess Control: An Introduction to Theory and F’ractice,
Fig. 11.1, p. 189, reprinted with permission from Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

38

y (t) ,4Output

Response of process I

4.8 Initial inverse response resulting from two
opposing lirst-order systems to a step input Source:
George Stephanopoulas, Chemical Process Control:
An Introduction to Theory and Practice, Fig. 12.5,
p. 219, reprinted with permission from Prenticc-Hall,
Englewood Cliffs, New Jersey, 1984.

For example, consider the problem oE controlling the chemical concentration of a
continuously flowing output stream from a mixing tank (Fig. 4.9). The tank has two inlet
streams, each of which has a distinctly different concentration of the desired chemical. A
mass rate balance at the feed end of the pipe is given by

c,(Oq&) = c141(0 + C&O - (4.11)

If only the flow rate of q2 can be controlled, then assuming the flow rate of 41 to
be constant at a particular instant in time, then

(4.12)

where

39

4’ 4.

c;: 0)

Agitator

Mixing
Tank

vd - Fluid volume in pipe
v, - Fluid volume in mixing tank -
q’s - Flow rates
c’s - Concentrations

4.9. Continuous concentration control of a chemical mixing process.

To solve the problem, one can also assume that at a given instant in time, the
volume in the mixing tank is constant. For a constant volume in the mixing tank, the
process transfer function from the feed end of the pipe to the mixing tank outlet is given
bY

T- Mt) = CJt - 5) - c(?)
d?

where

(4.13)

The Laplace transform of Eq. (4.13) is given by

c(s) = a?-

CJS) 1 +Ts *

Thus, the process transfer function is

where

(4.14)

(4.15)

(4.16)

The code to implement this process is in Task 15 of the ACCOL program in
Appendix B.

5. TESTING AND CX)MPARISON OF TME BBI s"I ALGORITHMS

Each of the three STPI algorithms (is., closed-loop cycling, pattern recognition,
and model based) was tested with each of the process simulations to determine the types
of processes for which the STPI controllers might best be suited. A summary of the
simulated processes is given in Table 5.1. By varying their parameters, these fwe
processes represent a wide range of the industrial proasses that would typically be
encountered in industry. More details of the process simulations are provided in
Chapter 3.

systems of higher order, especially when the dynamic effects of the sensors and control
elements are considered. However, most industrial processes can be approximated by
either a first- or second-order system with deadtime. Another reason for using low-order
systems is that the fundamental concepts can be tested and understood more clearly
without the additional mathematical complexity. For these reasons, most of the
simulation testing concentrated on the first- and second-order systems (processes I1
and 111).

It is acknowledged that the practical implementation of most processes results in

5.1 DESCRIPTIONOF=

The process simulations are connected via software to the STPI module as shown
in Fig. 4.1. The test procedure generally consisted of the following seven steps.

1. Select the desired process simulation and enter the appropriate process
parameters (including percent noise and process deadtime, if desired).

2. Select the STPI algorithm to test (changing its defaults only if necessary).

3. Set initial P, I, and setpoint values and allow the process to stabilize.

4. Enable self-tuning on the STPI controller (PI values are automatically
updated when self-tuning is complete).

5. Turn off self-tuning and allow the system to stabilize.

6. Test controller setpoint response with new PI values by changing setpoint
from 40 to 50%.

7. Test load step response by adding 10% load disturbance (to the process
input).

More details regarding these tests are given in the next section. A RESET
feature was added to simplify the setup procedure (steps 1, 2, and 3), and the test
procedures (steps 6 and 7) were automated to ensure repeatability.

41

42

Table 5-1. Transfer functions of the simulated processes

*NOTE: A simplified linear approximation of a
nonlinear process where

Kp = Process gain,
r,, r, = Deadtime,
T, zP, z,, r2 = Time constants,
b, = Undamped natural frequency,
5 = Damping factor,
c,, c2, c, = Concentration of input streams,
41, q2 = Flow rates of input streams.

43

5 2 PEREORMANCE EVALUATIONS

First, the desired process simulation was selected (process I, 11, 111, IV, or V),
and the appropriate process parameters were entered (including percent noise and
process deadtime, if desired). Then, the STPI algorithm to test was selected (changing
its defaults only if necessary). Each of the three STPI algorithms is somewhat different
in design, and each has several special features that may optionally be set by the user.
Thus, it would be a difficult task to exhaustively compare the performance of the
algorithms while varying all of their optional features. Therefore, the default settings
were used for all parameters except where othenvke stated. For more details about the
special features, see the report in Appendix A

algorithm of the form
The Bristol-Babcock PID3TERM module uses a noninteracting PID control

For the STPI controller tests, the controller gain was initially set to unity (i s . ,
P = l.O), the integral, or reset, was initially set to one repeat per minute (Le., I = LO),
and the derivative was not used (Le., D = 0). All the process measurements and
controller outputs were scaled from 0 to loo%, and the initial setpoint was generally set
equal to 40%.

After allowing the system to stabilize with these initial tuning values, the STPI
controller self-tuning was enabled. Self-tuning is performed without user intervention
(as described in Chapter 4), and the PI values are automatically updated when self-
tuning is complete. Tables 5.2 through 5.7 show the calculated PI tuning parameters for
each of the five processes.

that the results for both the closed-loop cycling method and the model-based method are
generally comparable, although the model-based method generally seems to design
slightly more conservative values. The values determined by the pattern recognition
method are frequently widely different from the other two methods.

Upon further inspection, it was determined that the pattern recognition method
was frequently unable to design useful controller parameters for the tests because it
encountered k20% maximum percentage change limits which are imposed on it (ie., it
can change the PI parameters from those initially specified by the user up to a maximum
of only 20% for each adaptation). The change limits are presumably imposed by the
designers in an attempt to prevent it from designing erroneous results. However, these
limits are a major hindrance to this algorithm when attempts are made to use it from a
cold start.

By comparing the calculated PI parameters in Tables 5 2 through 5.7, it seems

5 2 1 Process Incompatibilities

If the process is naturally integrating, the user can set the INTEG flag in the
ACCOL program before activating either the closed-loop cycling or model-based self-
tuning algorithm to indicate that the process is naturally integrating (the INTEG flag

44

Table 5 2 Calculated proportional-integral (PI) parameters for the integrating process

Controller parameters for Process I

Process I PI I CLC I PR I MB
parameters parameters

Kp = 0.2 Gain (I Q 1.740 1.200 0.5514
tp = 0.0 Integ (KI) 6.264 1.200 19.52

CF 70.51 % 0.0% 58.84%

Kp = 1.0 Gain (K) 0.5583 0.8320 0.33%
T p = 0.0 Intel-! (Kd 9.019 0.8333 30.66

CF 56.53% 21.27% 60.62%

CF = Confidence factor.
K , = Controller gain.
K, = Controller integral.

= Process gain.
zp = Process time constant.

Table 53. Calculated proportional-integral (PJJ parameters for the ht-order process

Controller parameters for Process I1

Process parameters PR I MB
parameters

Kp = 1.0 Gain (K) 1.556 1.200
tp = 5.0 (KI) 11.27 1.200
Zd = 0.0 CF 94.72% 0.0%

Kp = 1.0 Gain (KJ 1.548 1.0
tp = 5.0 Integ (KI) 2.038 1.0
T* = 0.0 CF 51.35% 0.0%

OVERSH = 10%

OVERSH = 0%

2.506
11.96
99.95%

0.5672
10.90
99.85%

CF = Confidence factor.
K, = Controller gain.
K, = Controller integral.
I$, = Process gain.
zd = Deadtime.
tp = Process time constant.
OVERSH = Overshoot.

45

Table 5.4. catculated pmphnal-hte@ parametem (PI) for the secondsrder pmcess
(0, = 03)

fl Controlier parameters for Process 1 Process
parameters parameters

Kp = 1.0
t d = 0.0
r; = 0.2

0.2855
7.046

70.38%

1.173
4.698
68.90%

III (9, = 0.2)

CF = Confidence factor.
K, = Controller gain.
KI = Controller integral.

Kp = Process gain.
r d = Deadtime.
f = Damping factor.

Controller parameters for Process 111 (e, = 0.04)

Process PI
parameters parameten

I$) = 1.0 Gain (KJ

- .C

7 d = 0.0 (KI)
6 = 0.2 CF

r d = 0.0 Integ (KI)
Kp = 1.0 Gain (&)

f = 1.0 CF

Kp = 1.0 Gain (I&)

5 = 2.5 CF
rd = 0.0 Integ @I>

MB
PR I CLC I

0.3830 0.8929 3.583
1.427 0.9356 0.4287

60.14% 71.43% 98.14%"

1.640 1.200 0.5741
1.303 1.200 2.143

82.24% 0.0% 87.87%

3.939
1.181

64.11%

1.200 20.98
1.199 1.106

17.22% 25.63%*

CF = Confidence factor.
K, = Controller gain.
KI = Controller integral.
I$ = Process gain.

zd = Deadtime.
f = Damping factor.
* = Calcualted value is unstable.

46

Table 5.6. Calculated proportional-integral parameters (PI) for the system with initial
inverse response

Controller parameters €or Process IV

Process PI CLC PR MB
parameters parameters

K, = 2.0 Gain (I&) 0.8423 0.9450 0.4237
tl = 5.0 Integ (KI) 5.500 0.9677 11.43

t2 = 0.5
K2 = 1.0 CF 78.32% 80.69% 99.95%

CF = Confidence factor.
Kl = Process 1 gain.
K2 = Process 2 gain.
K , = Controller gain.

K, = Controller integral.
t, = Process 1 time constant.
z2 = Process 2 time constant.

Table 5.7. calculated proportional-integral (PJJ parameten for the system with variable
t h e constant and delay

C, = Input stream 1 concentration.
C, = Input stream 2 concentration.
CF = Confidence factor.
K, = Controller gain.
KI = Controller integral.

= Process gain.
q, = Flow rate of stream 1.
V, = Fluid volume in pipe.
V, = Fluid volume in mixing tank.

47

has no effect on the pattern recognition algorithm). In the case of the closed-loop
cycling algorithm, the controller will use a square-wave perturbation output (instead of
the sawtooth waveform). In either case, a proportional-only controller should be
designed. However, some problems were experienced when attempting to use the STPI
algorithms' INTEG feature to design a proportional-only controller @.e., the feature did
not seem to work reliably). Therefore, the MTEG feature was not used, and PI
controllers were designed to control the integrating process as wet1 as for all other
processes.

implementation, is that they are not suitable for controlling fast processes. However, the
one-second update wilt probably pose no problem €or most industrial processes where
the Bristol-Babcock controller is generally used. One would also expect the STPI
algorithms to execute somewhat faster once they are commercially implemented (in
microcode in PROW) than they do when written in ACCOL.

Another limitation of the STPI controller algorithms, at least in their present

52.2 TunedSystemPerFomance

Several simple performance specifications can be used to evaluate characteristic
features of the closed-loop system response (e.g., overshoot, rise time, settling time,
decay ratio). However, several performance criterion also can be used to simultaneously
minimize multiple requirements. The most popular criteria used to evaluate the overall
quality of the tuned system response are

1. integral of the square error (ISE), where

ZSE = /"e'(?)& ;
0

2. integral of the absolute value of the error (LAE), where

3. integral of the time-weighted absolute error (ITAE), where

The determination of which criterion is best to use depends upon which
characteristics of a particular process are the most important to control.

The ISE criterion strongfy penalizes large errors because the errors are squared
and thus contribute more to the value of the integral (however, small errors of less than
one would actually be downplayed). The IAE criterion penalizes small errors the same
as large errors. The ITAE criterion severely penalizes errors that persist for a long time.
The IAE criterion seems to have the most practical significance because it gives a more

48

accurate indication of the actual error (e.g., the area under the curve that can be directly
related to operating costs). For this reason, the L4E criterion was used to evaluate the
STPI algorithms’ performance.

A controller that is tuned to provide optimum setpoint response (to step changes
in the setpoint) will not necessarily provide good load-step response. So, the controllers’
responses to both setpoint changes and load-step response were tested. During these
response tests, the controller’s output and the process measurement variable were
sampled simultaneously at one-second intervals. The STPI algorithms’ performance was
then evaluated by analyzing the tuned system IAE response data with MATLAB. The
results of the response tests are in Table 5.8.

From Table 5.8, it can be seen that the pattern recognition Outperformed the
other two algorithms only once (for Process 111, with 9, = 0.04 and 5 = 0.2). Upon
close observation of the data in Tables 5.2 through 5.7, it is obvious that this algorithm
yields unreliable tuning results when used from a cold start. With this information, it is
safe to say that this algorithm should probably not be used from a cold start, but only for
continuous tuning refinements.

The rest of the test results show that the closed-loop cycling algorithm
outperformed the model-based algorithm in 10 of the 15 other test cases. Although the
model-based algorithm generally yielded results comparable to those designed by the
closed-loop cycling method, it failed to design a controller with stable PI parameters for
three of the tested processes. Thus, it appears from these tests that the closed-loop
cycling algorithm will generally yield the best results.

Various amounts of process deadtime were added to the first-order process to
examine the effects of deadtime on the STPI algorithms. The results of these tests are
shown in Table 5.9. The data in Tables 5.8 and 5.9 indicate that the closed-loop cycling
algorithm is more likely to design better PI parameters for processes with deadtime. The
pattern recognition method was unable to design useful controller parameters for these
tests because it always encountered the k20% maximum change limits.

Note that the model-based algorithm actually computes unstable PI parameters
for the test with 20 seconds of deadtime. This is an inherent limitation of the
implementation of this algorithm. Specifically, because the developers fured the number
of numerator terms to five, only the deadtime information contained in the previous four
time samples is available to model the deadtime. Thus, processes with a large amount of
deadtime (relative to the process time constant) cannot be accurately modeled by the
algorithm.

Measurement noise was added to the first-order process output to observe the
STPI algorithms’ sensitivity to measurement noise. The results of these tests are shown
in Table 5.10. Examination of these data along with the performance results obtained

49

Table 5.8 Tuned system intepl of the absolute value of the error (ME) response to
both setpoint arid load changes

Process and
parameters*

Process I

Kp = 1.0
(zd = O)

Kp = 0.2

Process I1

OVERSH = 10%
OVERSH = 0%

(Kp = 1, tp = 5)

%d = 5.0
t d = 20.0

NOISE = 2%
NOISE = 5%

Process HI
(Kp = 1, td = 0)

(0, = 0.2)
f = 0.2
{ = 1.0
5 = 2.5

(b, = 0.04) < = 0.2
5 = 1.0
f = 2.5

Process N
K, = 2.0
71 = 5.0
KZ = 1.0
tz = 0.5

Process V
IC,, = 0.55
c1 = 10%
c.2 = 90%
q1 = 10.0

v, = lo00
v d = 100

IAE Response for setpointlflos

CLC

29.7 (122.3)
47.7 (57.4)

31.0 (36.5)
161.7 (178.3)
118.8 (113.3)
415.1 (416.1)
20.0 (32.7)
25.9 (24.6)

285.1 (398.9)
92.0 (110.5)
70.2 (38.5)

857.3 (867.1)
288.5 (233.8)
337.5 (132.5)

135.8 (172.3)

78.0 (17.1)

PR

26.2 (707.8)
76.8 (388.6)

285.4 (235.8)
400.5 (324.4)
287.0 (252.9)
UNSTABLE
285.4 (235.8)
285.4 (235.8)

391.7 (351.7)
295.4 (244.8)
315.6 (260.8)

687.1 (883.7)
351.9 (299.6)
660.5 (522.8)

359.6 (328.3)

550.1 (40.4)

) changes

m

58.9 (108.9)
122.5 (131.5)

9.9 (21.1)
86.8 (98.6)

277.0 (277.9)
UNSTABLE
13.5 (25.7)
48.5 (49.3)

754.9 (415.3)
68.8 (92.8)
62.1 (86.8)

UNSTABLE
482.3 (446.0)
UNSTABLE

114.6 (150.9)

~-

340.9 (56.0)

*See definitions on the next page.

50

Definitions for Table 5.8:

C, = Input stream 1 concentration.
C, = Input stream 2 concentration.
K, = Process 1 gain.
K, = Process 2 gain.
$ = Process gain.
OVERSH = Overshoot.
qr = Flow rate of stream 1.
v d = Fluid volume in pipe.
V, = Fluid volume in mixing tank.
e, = Undamped natural frequency.
t1 = Process 1 time constant.
t2 = Process 2 time constant.
td = Deadtime.
tp = Process time constant.
5 = Damping factor.

Tabk 5.9. Calculated proportional-integral (PI) parameters for the first-order process
with deadtime

Controller parameters for Process I1 (with deadtime)

CF = Confidence factor.
K , = Controller gain.
KI = Controller integral.
I$, = Process gain.
t d = Deadtime.
tp = Process time constant.
* = Calculated value is unstable.

51

Table 5.10. cata;rlated p ~ ~ - h t e ~ (PI) parameters for the Eirst-order gmcess
with mise

Controller parameters for Process I1 (with noise)

NOISE = 0%

CF = Confidence factor.
K, = Controller gain.
K, = Controller integral.

CLC

1.556
11.27

94.72%

1.924
10.02

51.22%

1.612
16.11

57.03%

I$, = Process gain.
r d = Deadtime.
tp = Process time constant.

for these tests in Table 5.8, indicates that for small amounts of noise the performance of
the model-based algorithm is best, but for iarger amounts of noise the closed-loop cycling
algorithm seems to yield better results. The pattern recognition method was once again
unable to design useful controller parameters for these tests because it always
encountered the k20% maximum change limits.

53 ROBUSTNESS COMPARXSONS

The two primary parameters that greatty affect the value of the PI tuning
constants are the process gain and deadtime. PI controllers can accommodate any
decrease in process gain or deadtime without destabilizing the loop, although the output
response will become more sluggish. However, the amount by which either of these two
process parameters can be increased is much more important. The amount by which
process (or controller) gain or deadtime can be increased before reaching the stability
limit of the process is a measure of the robustness of the system (using the specified
tuning constants).

52

In fact, system performance and robustness are inversely related (Shinskey 1991).
Performance can generally be improved by increasing the gain (P) and integral (I) until

the desired system performance is obtained. However, robustness can usually be
improved by detuning the controller, although performance will be decreased. Thus, to
determine which STPI controller algorithm is really best for a particular process, it is
necessary to examine both the performance and robustness of the tuned systems
simultaneously, considering which of these characteristics is most important to control for
that particular process.

The robustness of the tuned system was determined by using MathCAD with the
following method. Given a plant [GJs)], and controller [G,(s)], find the maximum
amount the gain could be increased (Le., the gain limit K,), and the maximum amount of
deadtime that could be added (Le., the deadtime limit T,) before the closed-loop system
reaches the stability limit.

open-loop system is equal to 1.0:
The gain limit K, can be determined by computing where the magnitude of the

I ~ & (j ~ ,) G , (j q I = 1 * (5.5)

To solve this equation for K,, one must know the zero crossing frequency 0,.
This is, oE course, described as the point where the phase is equal to -z rad/s:

u ~ K , G ~ (~ w ~) G ~ (~ o ~)] = -T(. (5.6)

Because Eq. 5.6 is independent of Kl (Le., K, does not affect the open-loop
phase), this equation can be solved using a linear search algorithm to obtain a,, then the
gain limit can be calculated by solving Q. 5.5 for K,:

Similarly, the deadtime limit TI can be determined by

I K,Gp(joz)G,(jo,)e -'M I = 1

such that

Because Eq. 5.8 is independent of TI, it can be solved by using a linear search
algorithm to obtain 0,. Then, noting that

atgfG,~~z)G,Ooz)e -jw T I] = arg[G,0'o3GcV0,)] - UzT, 9
(5.10)

53

the deadtime limit can be calculated by solving E%& 5.9 for T,, as

A + at#G&jw>G~(jw>]
T , = (5.11)

Although the above method calculates the gain limit and the deadtime limit
independently, both the gain and deadtime could be increased simultaneously (by lesser
amounts) to drive the closed-loop system to the stability limit. The MathCAD routines
used to calculate these limits for both the first- and second-order systems are given in
Appendix I). Table 5.11 shows the results of the robustness calculations. Because the
pattern recognition method rarely yielded reliable results from a cold start, the
robustness calculations compared the results from only the closed-loop cycling and the
model-based tuning methods.

stable when the gain (or deadtime) is increased by a factor of 2. Although no process
deadtime was specified except for two of the second-order process tests, these
calculations still give an overall indication of the robustness of the STPI algorithms.
Comparison of the data in Table 5.11 indicates that the two algorithms are nearly equally
robust, with one or the other having the edge for a particular process. Of the 11 tests,
the closed-Ioop cycling values were more robust for six of the processes, while the
model-based technique yielded better results for 5 processes. The gain limit is, of
course, infinite for the integrating process and for first-order processes with no deadtime
(because a -180' phase shift would be approached for only extremely high values of
gain). It was considered to be infinite for other processes if the gain could be increased
by an extremely large amount before the system became unstable.

The tuned system is generally considered to be robust if the system remains

The pattern recognition algorithm is the most time-effcient became it
determines new PI values after each setpoint change or disturbance without any further
process perturbation. However, this algorithm frequently failed to identi@ reliable PI
values (when used from a cold start). In their present implementations, the closed-loop
cycling algorithm is more efficient than the model-based algorithm. ?%is is because the
closed-loop cycling algorithm automatically terminates after the process oscillations have
stabilized to update the PI values, whereas the model-based algorithm just calculates new
PI values after a specified number of cycles.

54

Table 5.11 Tuned system mbustness with respect to
gainandBeadtimeincreases

~~ ~

~ 1 Gain/(deadtime) stability limits

Gain
limit limit

Process
parameters

00 2.28
00 3.56

Process I

K, = 1.0
Kp = 0.2

(rd =

Process I1
(Kp = 1, rP = 5)
OVERSH = 10%
OVERSH = 0%

r d = 5.0
rd = 20.0

NOISE = 2%
NOISE = 5%

00

03

1.97
1.56
00

00

5.23
8.84
4.21
42.0
4.42
4.07

Process I11
(Kp = 1, Z, =

(0, = 0.2)
[= 0.2
f = 1.0
[= 2.5

7.49
03

00

49.6
11.8
7.7

MB

limit
Gain
limit 1 1.56

2.74

00 3.14
00 15.3

4.66 39.6

00 3.86
00 6.55

* *

00 275.9

1 0 0 11.6
l o o 10.1

I$, = Process gain.
rp = Process time constant.
OVERSH = Overshoot.
0, = Undamped natural frequency.
zd = Deadtime.
5 = Damping factor.
* = Not calculated because tuned system was unstable.

4. coNcLusIoNs

Of the three STPI algorithms, the closed-loop cycling technique is the most
reliable and the easiest to use because it only requires the user to specify the setpoint
(when operated with the default parameters). It is also good from a cold start. Another
good feature of this algorithm is that it terminates and updates the PI parameters as
soon as the self-tuning is complete @e., when it has identified the period and amplitude
of the constant process oscillations). This algorithm seems to have been implemented
well, but the initial default relay amplitude frequently seemed to be too large for the
processes that were tested.

Although the algorithm automatically reduces the relay amplitude when the
specified initial amplitude is too large, when output limits are incurred it only reduces
the amplitude by a predetermined factor. Thus, if the initial amplitude is much too
large, several successive automatic amplitude reductions will be needed before the
process variable begins to stay near the setpoint. Some form of intelligent amplitude
reduction should be done analytically. One rather simple method w u f d be to
approximate the slope of the output response, compare it to the amount of time the
output stays out of range, and then calculate the relay amplitude reduction factor.

only one of the three that simply cannot be used in continuous self-tuning mode. The
self-tuning must be initiated by the user.

cause any process disturbance during self-tuning. When this algorithm is activated by the
user, it recalculates the PI controller parameters following any sufficiently large setpoint
change or disturbance. Note that it is also the only one that stays on continuously until
it is turned off by the user. This could be either an advantage or a disadvantage,
depending on one’s viewpoint (especially because it will retune following any sufficiently
large process disturbance). It is also the most time-efficient because it determines new
PI values after each setpoint change or disturbance without any further process
perturbation.

controller PI parameters and is therefore not suitabie for use from a cotd start. The
algorithm also limits the adjustment of the PI values (the maximum change allowed after
each adaptation) to &20%. It is the only one of the three algorithms that currently has
any parameter change limits. A serious disadvantage of this algorithm is that it does not
work when the process response is overdamped. The particular implementation of this
algorithm is rather simplistic. However, its usefulness is greatly enhanced by using the
closed-loop cycling method as a pretuning phase to obtain reasonably goad estimates for
the initial P and I values.

This algorithm could also be improved by adding some additional logic or
heuristics (similar to those implemented in the Foxboro EXACT self-tuner) to enable it
to work when the process is overdamped. Or, for overdamped processes, perhaps the
pattern recognition algorithm could increase the controller gain until the required
oscillatory response is obtained and then perform the self-tuning in the same fashion.
The model-based algorithm can be used from a cold start, although it requires more
values to be specified by the user than the other algorithm. Because the selection of an
appropriate sampling rate (ie-, ACCOL task rate) is extremely important to the proper

Another minor disadvantage of the closed-loop cycling algorithm is that it is the

The pattern recognition algorithm is the only one of the three that does not

The pattern recognition algorithm requires reasonably good initial values of the

55

56

operation of this algorithm, it should be modified to automatically approximate the
response time of the process (with a step response) and adjust the ACCOL task rate
accordingly. The STPI research report claims that this algorithm can also be used to
provide continuous tuning refinements (by the expert user). However, no continuous
parameter refinement tests were attempted with this algorithm, because of time
constraints.

One serious disadvantage of this algorithm is that it cannot properly tune
processes that have large amounts of deadtime (see additional explanation in Sect. 5.2.3).
A potential problem with this algorithm is that it employs the pole-zero cancellation
technique. This technique has the inherent disadvantage that if the process model is
incorrectly identified, or if the the process model dynamically changes over time, the
pole-zero cancellation may not work and the tuned system may then be unstable.

The mean level of the PRBS could also be monitored and automatically adjusted
during the tuning phase (as done in the closed-loop cycling algorithm) to keep the
process variable near the setpoint. If intelligent PRBS amplitude adjustment is added, it
should also be able to increase the amplitude if the initially specified value only causes
very small deviations from the setpoint. Deviations of at least 3 to 5% would most likely
result in better model estimation.

period of time (using the default values) even though it adequately approximated the
model after the first few cycles. The algorithm should be modified to terminate model
identification and update the PI parameters whenever the confidence factor (DONE)
reaches some acceptable value (perhaps 85%) rather than just continuing to update
these values for a specified number of cycles (the default number of cycles is 50).

be adjusted recursively as new estimates of the process model are obtained to obtain
even better models (and thus more precise tuning).

As suggested in the original STPI research report, these tests confirmed that
some additional logic should probably be added to check the confidence factor, DONE,
before updating the controller parameters. In their present implementation, the PI
values will be updated even if the algorithm practically fails. Note that although the
confidence factor does give some indication as to the reliability of the tuning parameters
for a particular STPI algorithm use, it should not be used to compare the performance
or robustness of one STPI algorithm to another.

It might also be desirable to allow the user to limit the range for the PI
parameters or specify the maximum percentage change allowed after each adaptation for
both the closed-loop cycling and model-based algorithms (the pattern recognition
algorithm already limits the change to 220%).

In summary, these tests demonstrated that some good single-loop adaptive
control techniques have been developed that can be used to adequately control many
processes. Although it is certain that single-loop self-tuning controllers will not be
enough to solve evety process control problem, it may be possible to meet increased
demands and achieve better process control results simply by using one of these single-
loop advanced control techniques. Because most industrial processes are still being
controlled with single-loop PID controllers, perhaps one of these techniques can be
implemented to obtain the desired efficiency improvements without costly redesign of
existing processes.

For slower processes, this algorithm’s self-tuning takes an unacceptably long

Although not as critical, the coefficient a in the digital bandpass filter could also

57

It should be noted that these tests actually evaluated the particular
implementation of these STPI algorithms and their interactions with the Bristol-Babcock
PID control algorithm. Different implementations of these same algorithms could
provide somewhat different results. Likewise, if the same implementations of these STPI
algorithms were used in conjunction with other control algorithms of a different form,
widely differing results may be obtained.

7. REFERENCES

AstrOm, K. J., and Hagglund, T. 1988. Automatic Tuning of PID Controllen, Instrument
Society of America, Research Triangle Park, N.C.

Astrdm, K J., and Wittenmark, B. 1989. Adaptive Control, Addison-Wesley, Reading,
Mass.

D'Souza, A. F. 1988. Design of Control System, Prentice-Hall, Englewood Cliffs, N.J.

Shinskey, F. G. 1991. "Evaluating Feedback Controllers Challenges Users and
Vendors," Control Eng., 75-78 (September).

Stephanopoulos, G. 1984. Chemical Process Control: An Introduction to Theory and
Practice, Prentice-Hall, Englewood Cliffs, N.J.

Ziegler, J. G., and Nichols, N. B. 1942. "Optimum Settings for Automatic Controllers,"
Trans. ASME, 759-65 (November).

58

Astrbm, K J., and Hggglund, T., "A New Auto-Tuning Design," IFAC Aduptive Control of
Chemical Processes 141-66 (1983).

Gerry, J. P., "Find Out How Good That Tuning Really Is," Control Eng. 69-71
(July 1987).

Gupta, M. M., Adaptive M e t M for Control System Design, IEEE Press, New York, 1986.

Hang, C. C., and Astrbm, IC J., "Practical Aspects of PID Auto-Tuners Based on Relay
Feedback," IFAC Adaptive Control of Chemical Processes 153-58 (1988).

Hang, C. C., and Sin, K. IC, "A Comparative Performance Study of PID Auto-Tuners,"
IEEE Control Syst. 41-47 (August 1991).

Kaya, A, and Scheib, T. J., "Tuning of PID Controls of Different Structures," Control
Eng. 62-65 (July 1987).

Kraus, T. W., "Self-Tuning Control Using an Expert System Approach," Meus. Control
172-75 (June 1985).

Kraus, T. W., and Myron, T. J., "Self-Tuning PID Controller Uses Pattern Recognition
Approach," Conrr~l Eng. 106-11 (June 1984).

McMillan, G. IC, Tuning and ControZ Loop Performance, Instrument Society of
America, Research Triangle Park, N.C., 1983.

Miller, J. A, et al. "A Comparison of Controller Tuning Techniques," Control Eng. 72-75
(December 1967).

Morris, H. M., "How Adaptive are Adaptive Process Controllers?" Control Eng. %lo0
(March 1987).

Price, V. A, "Automatic Tuning Simplifies Process Control," InTech 9-16 (September
1988).

Vermeer, P. J., Morris, A. J., and Shah, S. L, "Adaptive PID Control-A Pole Placement

Processes, 15964 (1988).
Algorithm with a Single Tuning Parameter," IFAC Aduptive Control of Chemical

Wade, H. L., "High-Capability SingIe-Station Controllers: A Survey," InTech 1&14
(September 1988).

Waxwick, K., Simplified Self-Tuning Algorithms, OUEL 1657/86, University of Oxford,
Oxford, England, 1986.

59

Appendix A

DEVELOPMENT OF ACCOL SELF-TUNING PI (SI'PI) CONTROL MODULE

DEVELOPMENT OF ACCOL SELF-TUNING

P I (S T P I) CONTROL MODULE

Authors

Mr. C . S . cox
Mr. W.J.B. Arden
Dr, I.G. French
Dr. I . F l e t c h e r

M r . A . R . Boucher

Concrol Systems C e n t r e ,
School of E l e c t . Eng. b Applied Physics,

Sunderland P o l y t e c h n i c ,
Sunderland, S R 1 3SD.

T e l : 091-515-2824 Fax: 091-515-2423

63

64

APPENDIX A1

Contents of Report

Part I - Development and Operation of STPI Module

Part TI - Summary of Field Trials

Part 111 - Closed Loop Cycling Algorithm Theory

Part IV - Pattern Recognition Algorithm Theory

Part V - Model Based Algorithm Theory

65

PART I

DEVELOPMENT AN0 OPERATION OF STPl MODULE

66

Part I . Contents

1 . Introduction ... 1

(a) Closed Loop Cycling Algorithm 4

(b) Pattern Recognition Algorithm 5

(c) Model Based Algorithm 6

2 . Configuring a Self-Tuning PI Controller within ACCOL ... 8

3 . Operation of STPI Module 10

4 . Auxiliary Signal Lists 12

Figures .. .6

67

1. INTRODUCTLON

The basis of the vast majority of today's commercial

controllers and PLC's is the microprocessor. The new families of

cheap powerful processors have produced environments suitable for

the development of both fixed-parameter controllersp often with

advanced features such as feedforward control and wind-up

protection, or, those possessing 'self-tuning' capabilities. The

idea behind self-tuning is to adjust the controller settings

automatically, based on the measured input/output behaviour of the

process under control. Fig. 1 presents t h e general self-tuning

structure favoured by most academic researchers. The idea of a

self-tuner h a s been with u s f o r some time, t h e s,olution to the

extra data-processing requirements h a s only been economically

feasible in recent years.

The rapid advancement of microprocessor technology has

re-stimulated the interest in digital control implementation. New

cont ro l laws have been postulated but industry still appears to

favour a digitisation of the w e l l known continuous time PID three

term controller. This dilemma has led to two contrasting

approaches to the use of this new computational power. The first

is to add tuning features to an otherwise standard PI(D)

regulator. This approach recognises that the majority of

regulators used in industry are still of the PID form and complex

processes may have hundreds of regulators. However, even after

careful instruction, instrument engineers and plant operators

o f t e n s t i l l have difficulty in installing and operating such

...... I...

68

regulators. A feedback control system is of little value if it is

improperly tuned. Several different methods have been proposed for

tuning PID regulators. The need in tuning a controller is to

determine the 'optimum' values of the controller gain Kc (o r the

proportional band PB), the reset time Ti (or the reset rate in

repeats per minute) and the derivative time Td. The adjustment of

these tuning parameters on feedback controllers is one of the

least understood yet extremely important aspects of automatic

control theory. Several methods for manually tuning these

algorithms are used in practice, ranging from 'trial-and-error' to

the more systematic use of empirical formu'lae such as those

proposed by Ziegler and Nichols (1943). However for some complex

processes, where the plant dynamics vary significantly in the

course of their operation, automatic retuning is the only real

answer in order to maintain a consistent final product. The second

philosophy is to provide a general purpose control law which is in

some sense optimal. By careful 'tailoring' o f these control laws,

acceptable performance may be achievable in those situations where

PI(D) may not function too well, e.g. processes with long time

delays. These tuners might involve several design parameters which

are used to prescribe the characteristics of the closed loop

control system rather than direct entry of the controller gains,

as is done with the standard PID law. Such general purpose

techniques include: (i) Pole-Placement (PP), (ii) Linear Quadratic

Gaussian (LQG), (iii) Generalised Minimum Variance (GMV), (iV)

Long Range Pred ic t ive Control (LPRC) and (v) Generalised

P r e d i c t i v e Control (GPC). Table 1 summarises the underlying

control laws of some of the better known industrial adaptive

69

GS

m
a .

8

controllers; the majority are based on the PI(D) strasegy.

AT

m .
m a

8

a
8

8 .
m
m
*

m
I .

~- ~~

Controller

Nova t une
Connoisseur
STR
DHC
IDCOM
Electromax V
Exact
TCS 6355
2071 Microtuner
UDC 500
Hicron P-200
CRL 452
Eurotherm 8 1 0
Microscan 1300
SLC 3700
PUS - 1 00
Maxline
5701
E5T C ESKN
V e r i T r i m
SRTT ECA4O
INTELLICON
F i r s t 1 oop

8

S

8

Manufacturer

m n

s .

S E A
Predictive Control
AccuRay Corp.
DMC Inc.
Set Point f n c .
Leeds & Northrup
Foxboro
Turnbull Control
Goulton West
Ho neywe 11
Process Systems
Control & Readout
Euro t h e m
Taylor
Bristol Babcock
ferranti
IRCON
Fe nwa 1
Omron Electronics
Westinghouse
Satt Controls
Hungarian Sc i . Acad .
First Control

Law

GAW
LQG
GMV
LPRC
LPRC
PID
PID
PID
PID
P ID
PID
PID
PfD
PID
PID
PID
PID
PID
PID
P I D
PID
P I D
PP

' 1 "
GS = Gain Scheduling
AT = Auto-Tuning

CT = Continuous Tuning
FF = Feed-Forward

Table 1 - Characteristics of Some Adaptive Controllers

This report explains the implementation of an STPI module,

within ACCOL, which provides an automatic facility for tuning

proportional-plus-integral (PI) controllers, and has been designed

f o r use with the standard PID3TERH module. The STPI module may be

used in either a 'one-shot' or continuous tuning mode. In t h e

'one-shot' mode, when tuning is enabled, the module will

perturbate the p l a n t f o r a period of time, after which PI

controller settings are determined. The module then returns

control to t h e PID3TERM and effectively becomes transparent until

70

it is once more enabled. In the continuous tuning mode, the

performance of the PID3TERM module is monitored, and the

controller settings are adjusted accordingly. It should be noted

that the STPI module will set the derivative gain of the PID3TERM

to zero. The reason for developing a self-tuning PI module, as

opposed to self-tuning PID, is that the final module is simpler to

implement and use, and is more robust within industrial

applications. In addition, because most processes exhibit

non-oscillatory, stable, open-loop behaviour, the active damping

provided by derivative action is not usually necessary for good

control. This, along with the inherent disadvantage of noise

amplification mean that derivative action is rarely employed in

process control applications.

The STPI module incorporates three different algorithms for

tuning PI controllers. These three algorithms have proved most

popular with other controller manufacturers. This means that the

ACCOL STPI module should be able to match the performance of most

of its leading competitors. In addition to this reason, the

algorithms have individual characteristics and in a particular

application one may prove more suitable than the others.

(a) Closed Loop Cycling Algorithm (Alg. # 0)

This 'one-shot' tuning algorithm forces the process variable

to oscillate around its set point value, as shown in Fig. 2 . The

process variable is forced to oscillate through the use of a relay

controller, as illustrated in Fig. 3. An integrator is also

included in order to ensure that the process variable oscillates

71

around the set point value, The integrator gives rise to the

characteristic triangular waveform produced by the controller

output during the tuning phase. The period of the oscillations is

determined by the dynamics of the process, but the user has the

power to constrain the amplitude of the oscillations by specifying

limits on the controller output and process variable. Thus the

technique is inherently safer than the traditionally used

Ziegler-Nichols ultimate method. The tuning phase is automatically

terminated when a number of 'good' oscillations have been

recorded. Upon termination, the period and amplitude of the

oscillations are measured, and used to design the PI controller

settings. When operated with default parameters, this technique

only requires the user to specify the set point, and is therefore

suitable for use from a 'cold start'.

(b) Pattern Recognition Algorithm (Alg. U l)

This algorithm provides continuous tuning of the controller

gains. The key idea here is that processes respond to disturbances

(or set point changes) with distinctive patterns whilst under PI

control. By characterising these patterns, it is possible to

formulate some rules for re-tuning the controller gains. Note that

this algorithm is similar in many ways to how a skilled instrument

engineer might re-tune a loop. Re-tuning takes place following the

effect of disturbance, as shown in Fig. 4 . During the disturbance,

t h e performance of the controller is monitored, as shown in

Fig. S . Once the process variable has reached its peak deviation

(E m a x) from t h e s e t point, t h e response time of the loopt TL, is

measured and subsequently used in the evaluation of the t w o

72

integrals: S1 and s2. Having obtained these values, the controller

gains may be updated, as described in Fig. 5 . Note that the

pattern recognition algorithm requires initial values f o r

proportional gain and integral gain, and is therefore not suitable

fo r use from a 'cold start'.

(c) Model Based Algorithm (A l g . 8 2)

The model based algorithm is primarily intended as a

'one-shot' tuner, although it may also be configured the technique

to operate in a continuous tuning mode. The important difference

between this algorithm and the previous two is that the task rate

of the control system must be carefully matched to the response

time of the process. For example, the flow of a fluid through a

pipe may respond within seconds to a change in valve position,

whereas the pH within a large reaction vessel may take several

minutes to respond to a change in acid dose. These two application

examples would require the use of two different task rates. A good

rule f o r use with the model based method, is to select a task rate

that is approximately l/lOth of the process rise time, which may

be determined from a step test, as shown in Fig. 6 .

During the tuning phase, a pseudo random binary sequence

(PRBS) is produced at the controller output, as shown in Fig. 7 .

The user must specify the mean level and the amplitude of the

PRBS: the mean level should be chosen in order to cause the

process variable to deviate at, or near, its set point value, and

the amplitude should be sufficiently large to cause significant

deviations, yet keep the process variable within acceptable

73

limits. While the PRBS is applied, the process output and the

controller output data are fed into a recursive estimation

algorithm, as illustrated in Fig. 1, which fits a mathematical

model to the data. At the end of the tuning phase, the model is

then used to design PI controller settings. The model based

algorithm may be used from a 'cold start', although it requires

more values to be specified by the user than the closed loop

cycling algorithm.

In the STPI module, the user has four methods available for

tuning. These are designated:

Method WO - Closed Loop Cycling followed by Pattern Recognition

Method fl - Closed Loop Cycling
Method # 2 - Pattern Recognition
Method t 3 - Model Based

Method 10 is the default method, as it is the most robust,

requires the minimum amount of setting up, aqd will effectively

provide continuous tuning from a 'cold staxt'. Method #1 is

provided f o r applications where periodic re-tuning is more

desirable than continuous tuning. Method X2 is provided to allow

pattern recognition to be switched on and off following initial

tuning. Method #3 may be used as an alternative to method 81, or

else configured by the expert user to provide an alternative

continuous tuning procedure.

74

2 . CONFIGURING A SELF-TUNING a CONTROLLER WITHIN fiCCO&

Fig. 8 shows the basic structure of a self-tuning PI

controller implemented within ACCOL. The detailed connections

required to configure the self-tuning PI controller are presented

in Fig. 9 . The f o u r major outputs of the STPI module are:

PROP2 - the designed value of proportional gain
INT2 - the designed value of integral gain
STATUS - a status word containing various flags
DONE - a confidence factor relating to the tuning

STATUS is a seven bit word which contains information related to

the tuning phase. Each bit represents a particular status

condition, and their meanings are defined as follows:

STATUS bit 0 - tuning in progress
(refers to all three algorithms)

STATUS bit 1 - pattern monitoring in progress
(refers only to pattern recognition algorithm)

STATUS bit 2 - relay amplitude reduced during tuning
(refers only to closed loop cycling algorithm)

STATUS b i t 3 - relay amplitude very small
(refers only to closed loop cycling algorithm)

STATUS bit 4 - termination of tuning after 2 1 cycles, due to limit

cycle not converging

(refers only to closed loop cycling algorithm)

75

STATUS b i t 5 - input or output limits incurred during tuning
(refers to all three algorithms)

STATUS b i t 6 - model gain negative, possibly due to incorrect
setting of the REVERSE flag

(refers to the model based algorithm only)

The status word may be logically ANDed with the appropriate masks

in order to determine the condition of individual bits. F o r

example if the STATUS word has the value 37, then this corresponds

to bits 0, 2 and 5 being set (i.e. 1 + 4 + 32 = 3 7) , which means

that the relay amplitude was reduced during tuning due to signal

l i m i t s being incurred. Note that bits 0 and 1 are continually

updated whereas the others are only set during tuning, and remain

fixed until tuning is re-initialised.

DONE takes a value between 0 and 100% and provides an

indication of the success of the tuning phase. Note that the three

algorithms will produce different values for DONE because of the

different ways that it is calculated. DONE should therefore not be

used to compare the performance of the algorithms (the quality of

control. is a much better comparison). In general however, values

of DONE which are less than 5 0 % imply low confidence in the

designed controller gains.

It is recommended that the results of the tuning are checked

using a CALCULATOR b l o c k before feeding them into t h e PID3TERM

module, as shown in Fig. 8 . For example, the following calculator

block could be used t o limit the range of the proportional gain:

76

PROP 1 =PROP2
: IF (PROP 2 < 1)
PROP 1 = 1

: ENDIF
:IF(PROP2>10)
PROP 1 = 1 0

: ENDIF

Alternatively, the following calculator would only update the

gains if the confidence factor exceeded a specified value:

:IF(DONE>SO)
PROPL=PROP2
INTl= INT2

: ENDIF

3 . OPERATION STPI MODULE

This section presents a 'check-list' f o r operating the

self-tuning PI module at its simplest level.

(1) Choose the self-tuning method using SELECT

SELECT = 0 => Closed Loop Cycling + Pattern Recognition

SELECT = 1 => Closed Loop Cycling

SELECT = 2 => Pattern Recognition

SELECT = 3 => Model Based

(2) Define whether the process is direct or reverse acting using

the f lag REVERSE. Note that ON implies reverse acting, i.e.

an increase in the controller output produces a decrease in

77

t h e process variable (default is OFF).

S p e c i f y t h e desired SETPOINT.

Set t h e required per fo rmance of t h e closed loop sys t em i n

terms of i t s p e r c e n t a g e overshoot t o a step change . Note

d e f a u l t v a l u e = 10%.

S e t t h e safety l i m i t s (if requi red) o n t h e c o n t r o l l e r o u t p u t :

OPMAX and OPMIN.

(O p t i o n a l) Set variables i n a u x i l i a r y s i g n a l l i s t , i f

r e q u i r e d . N o t e t h a t i f method 3 i s b e i n g u s e d from a ' c o l d

s t a r t ' , OPMEAN must be set i n a u x i l i a r y s i g n a l list ' B ' .

I n i t i a l i s e t h e t u n i n g p r o c e d u r e by t u r n i n g ENABLE on. Note

t h a t tuning is i n i t i a l i s e d by t h e OFF-ON t r a n s i t i o n of

ENABLE.

On c o m p l e t i o n of a ' one - sho t ' t u n i n g procedure, c o n t r o l is

r e t u r n e d to the PID3TERM module, and the STPI module becomes

t r a n s p a r e n t .

78

4 . AUXILIARY S I G N I U , LISTS

Whilst the default values f o r the three algorithms have been

chosen to work well in most applications, the expert user may want

to tailor the parameters of each algorithm to match the needs of a

particular process. This facility is provided, within the module,

by allowing access to additional information which is contained in

a series of auxiliary signal lists:

Auxiliary List ' A ' (f o r use with Methods 0, 1 and 2)

1. PVDEV
2. RELAY
3. INTEG
4. ACCEPT i 5. HYSTER

(1) PVDEV (RW) - maximum peak deviation of process variable from

set point during closed loop cycling. This may be used as an

additional safety feature. Default value = 100%.

(2) RELAY (RW) - amplitude of relay characteristic during closed
loop cycling. Note a good initial choice can reduce the

tuning time. Defaul t value = 2 % .

79

(3) INTEG (RW) - a flag which is set to indicate that the process

has a natural integrating action, which is sometimes the case

in l e v e l control problems. Setting this flag means that the

c l o s e d loop cycling algorithm will use a square wave (as

opposed to triangular) perturbation sequence and will design

a proportional controller. Default value = OFF.

(4) A C C E P T (RW) - tolerance between successive peaks which

constitutes 'acceptable' oscillation during closed loop

cycling. When successive peaks, P1 and P2, satisfy the

condition 100% x IP1 - P21 < P1 x ACCEPT, controller settings

are designed. Default value = 5 0 % .

(5) HYSTER (RW) - a noise protection facility which adds

hystersis to the relay characteristic. HYSTER should be set

to 1/2 of the observed peak-to-peak n o i s e . Default value =

0 . 2 % .

(6) PVM (RO) - current peak amplitude of the process variable
oscillations.

(7) PERIOD(R0) - current period of the oscillations.

(8) THRESH (RW) - a noise protection feature for the pattern

recognition algorithm. THRESH is a threshold value which the

measured error must exceed before the controller settings are

re-assessed. Default value = 5 % .

(Note:

Auxili

RW = Read/Wri te, RO

80

= Read O n l y)

ry Signal L i s t ' B ' f o r use with Xethod 3)

3 . TOTAL

7. ADAPTIVE

(1) OPMEAN (RW) - the mean value of the perturbation sequence

during tuning. When tuning is enabled OPMEAN is automatically

set to the last value of the PID3TERM output. OPMEAN may be

manually adjusted during the tuning phase in order to keep

the process variable at, or near, the set point.

(2) OPDEV (RW) - the amplitude of the perturbation sequence. The
default value is 5 % .

(3) TOTAL (RW) - t h e total number of samples in the tuning

period. Default value = 100.

(4) ALPHA (RW) - a first order digital filter coefficient

(O<ALPHA<l). Default value = 0 . 5 .

(5) LAMBDA (RW) - estimator f o r g e t t i n g f a c t o r (O.S<LAMBDA<l.O).

Default value = 0.99.

81

(6) P E R R (RO; - the current value of t h e prediction error.

(7) ADAPTIVE (RW) - flag to set continuous closed loop tuning.

(8) A l l B1, B2, 8 3 , B4, B5, C1 (RW) - Estimated coefficients of
t h e discrete time process model.

(9) D I A G 1, DIAGZ , DIAG3, DIAG4, DIACS, DXAG6, DIAG7 (RW) -
Covariance matrix diagonal elements.

82

Measurable Unmeasurable
Disturbances Disturbances

Controller
output

' Process
'7 Variable

CONTROL
DESIGN

ALGOR1 THM

RECURSIVE

E STI M AT0 R -

Figure 1 - General Self-Tuning Controller S t r u c t u r e

83

1.7s

1.5

-
PERIOD -

1.7s

1.5

Controller Output
4

1 -
PERIOD -

Controller Output
4

3.5 TUNING

0 I I I 4

100 150 2 00 0 50

Time

0' I I I J
100 150 2 00 0 50

Time

Figure 2 - Closed Loop Cyc l ing A l g o r i t h m

84

Relay Controller
output o u t p u t

Process
Variable

PROCESS

L 1

Figure 3 - Controller S t r u c t u r e for Closed Loop Cycling

85

2 ,

1 .75

7.5

1.25

1 .

0.75

0.5

0 .25

0

-
-

1st DJSTURBANCE 2nd OISTURSANCE -
L

Set Pomt

-

-
-
-

1 1 I

Controller Output
4

0 50 roo 150 2 00
Time

Figure 4 - Pattern Recognition A l g o r i t h m

86

Process Variable
1 . 3 , 1

1.2

- 25% Ernax
Point

0.9

Emax 0.8
TL

10 20 30 40 50 60 70 80 90

0.7 'E Time "

75% Emax
- 1

Figure 5 - Pattern Recognition Calculations

Re-tuning A 1 gor ithm :

PROP2 = PROP1 + (1-DONE).(Kl.(Sl+Rl) + K2.S2)

INT2 = INTl + (1-DONE).(K3.(Sl+Rl) + K4.SZ)

where

R1 is a pre-defined area,

R2 is a pre-defined level,

DONE is a confidence factor related to overshoot,

and K1, K2, K3, K4, a, 8 , a are constants.

87

RISE TIME

Process Var table
1.5 I

3

2.5

2 -

1.5

-

-
STEP CHANGE INTRODUCED / WITH CONTROLLER IN MANUAL

0 10 20 30 4 0 50

Time

Figure 6 - Step T e s t to Deternine S u i t a b l e Task Rate

f O t Xobel Based Algorithm (Task Rate = R i s e Ti rne+ lO)

88

2

1.75

1.5

1.25

1

0.75

0.5

0.25

0
100 150 200 0 5 0

Time

Time

Figure 7 - Model Based Algorithm

89

Figure 8 - Basic Structure of ACCOL Self-Tuning PI Controller

v)
r

i

.
4

(II
&J
a,
a
 c 0

-
4

c1
U

a,
c
c 0
U

1

0
,

L

91

PART I I

SUMMARY OF FIELD TRIALS

92

FIELD TRIALS SUMMARY

This section summarises the results of the field trials that

were undertaken to evaluate the performance of the self-tuning

algorithms on real industrial plant. Three sets of trials were

carried out. The first of these was on a pH control loop at a

water treatment plant belonging to the Sunderland and South

Shields Water Company (SSSSWC). The second set of trials were

carried out on various flow control loops at English China Clay

(E C C) . The third field trial involved a pressure loop at a British

Gas Pressure Control Station. In all three trials, the algorithms

performed well using their default settings despite the widely

differing properties o f the processes under test.

1 . Field Trial No.1 - pH Control Loop

Fig. 1 presents a schematic of the loop, which i s used to

adjust the pH of the treated water. The controller output is used

ta vary the speed of a lime pump which raises the pH to the

correct value. Fig. 2 illustrates the operation of the closed loop

cycling algorithm in action. It i s apparent that the pH signal is

rather noisy, and also that the process is subject to

disturbances. Despite these adverse conditions, tuning proceeded

in the normal way and produced good PI controller settings. Fig. 3

shows a longer time history of the tuning and it can be seen the

resulting control i s as good as, if not better than the existing

enhanced PI controller. Also presented in Fig. 3 is the time

history o f the model based algorithm, which was obtained on the

93

following day . Once again good control is achieved. It should be

noted that although the both tuning methods perturb the process,

the amplitude of the perturbations are not much greater than those

caused by the normal disturbances.

2 . Field Trial No.2 - Flow Control

A range of tests were carried out during four days of testing

at: the English China Clay works, all of which involved flow

control problems. Fig. 4 presents a general schematic of the type

of loop under control. Fig. 5 shows the typical results obtained

with closed loop cycling tuning and Fig. 6 illustrates those

obtained using model based tuning. Both methods worked well in all

tests. Note that a shorter tuning period could probably have been

used with the model based algorithm, and also the amplitude of the

perturbations could have been reduced, if required. Fig. 7

presents an interesting result obtained when applying closed loop

cycling to a loop which had a faulty control valve. The fac t that

the valve was faulty was not known beforehand, but was soon

diagnosed when the asymmetric oscillations w e r e observed on t h e

flow signal, Subsequent inspection revealed that the valve was

sticking in one direction, and required maintenance.

3 . Field Trial No.3 - Pressure Contro l Loop

Fig. 8 presents a schematic of the loop undet control. The

control objective is to maintain a desired pressure at a point

which could be several miles downstream of the control valve.

Fig. 9 presents the time history of t h e t u n i n g exercise. Closed

loop cycling was initiated with a lower safety limit of 30% on the

valve command signal in order to prevent excessively high

pressures developing. It can be seen that during the first two

cycles the valve command hits this lower limit and hence the relay

amplitude is reduced until acceptable oscillations are obtained.

In this test the tuning phase was deliberately forced to continue

(for safety reasons) while the operators went off to lunch, and on

return the cycling was disabled. A set point change was

subsequently requested and it is apparent that the control is

stable, although rather sluggish. This is most likely to have

resulted from the severely nonlinear valve characteristic. The

pattern recognition algorithm was then activated and another set

point change introduced. Following this change, the controller

gains were redesigned and the two set point changes at the end of

the test show that good control has been achieved (N.B. lower

safety limit has been moved to 2 5 %) . This example illustrates

nicely how the "piggy back" arrangement of the tuning algorithms

is used firstly to get reasonable settings which are subsequently

refined .

95

Flash
Mixer

Figure 1 - pH Control Loop

slr2sswc
I I I

I I
I

I
I
I I I

I
I

I

I

4- I hour -:
I I

Time -0

Figure 2 - Closed Loop Cycling Algorithm

%

Exisring Enhanced PI Regulator
:0 I I

Pi-l + ? - - = -

-i lhr t- Time - 9

Closed Loop Cycling S&SSi./C
70 I

I I

PH -4 I -A-f
9

I - TUNE- Time -
Model Based 5&55 wc

10 1 I

Time -
Figure 3 - Comparison of Tuning Algorithms

vaIve flow
power sensor

__c

clay day

slurry slurry

Figure 4 - Flow Control Loop at English China Clay

97

c'cc
80 96 I I I

I
I

I
I

I I

I I I I
I 1 I I

1 1 1

Valve
Power

1 I I I

I

I

I

I

I

I
I

I

I

I I

I I

I I
I I

I

I ; Flow
I

I

I I I I 40 O/o
b3Osec+ Time -

Figure 5 - Closed Loop Cycling Algorithm

ECC
75 O/O I 1 I I I

I I 1 t I

I I I l"t
1 I

I ' I
Power Valve ;-' I I I I - 1 I I I

I I I I I

I I I I I
I I I I I

I I I I I
I I I I I

35 O/*
I I I I I

t- 30sec-1 Time -
Figure 6 - Model Based Algorithm

98

LCCC (Faulty Valve)
65% 8 I 1 I

I I 1 I

I I I I I

I
I I I -
I I

I I

I

I I Valve ;
1 Power I I I
I I

I I

I I

I ,
1 I

I I

I I

I I

I I

I : f l o w I

I

I

I

I

I

I
1
1

I

I

I

I
I
I

I

I
I

I

I

I
I

I I I

I I
I I
1 I I I

I I I 1 I

I

I I

I

I I

I I

I I

I I

I I

I I

I
I I

1 1

I I
I I

I I

I 1
I 1

I I
I I

3 0 ° / o '
t- lmin 4 Time -9

Figure 7 - Closed Loop Cycling on Loop with Faulty Valve

valve pressur e
command sensor

_c

gas
*--

i
..

gzs

Figure 8 - British Gas Pressure Control Loop

I I

I I

I

I I I I I

Ilme - Tlme -

I
B Gas

I 1 1 - - - - . _ 8 G i s I
I 1 I

I I

I
1 I

Rccopdron I
I

I

I

End of I

..

I

I I Presswe

1- I

rwnp

I Valve CDrnmand I
120- 8O%I ,

I I

I - 10 mnutcs y
i t

I I

I

I

1
I

I

I

I

I I

I

I I I I I
rrm - . .

Tune -
Figure 9 - British Gas T e s t Record

101

PART I l l

CLOSED LOOP CYCLING ALGORITHM THEORY

102

CLOSED LOOP CYCLING AUTO-TUNER

1. Introduction

The majority of regulators used in industry are still of the

PID form. Complex processes may have hundreds of regulators. Even

after careful instruction instrument engineers and plant operators

often still have difficulty in installing and operating such

regulators. A feedback control system is of little value if it is

improperly tuned. Several different methods have been proposed for

tuning PID regulators. The need in tuning a controller is to

determine the 'optimum' values of the controller gain Kc (or the

proportional band PB), the reset time Ti (or the reset rate in

repeats per minute) and the derivative time Td. The adjustment of

these tuning parameters on feedback controllers is one of the

least understood yet extermely important aspects of automatic

control theory. Several methods for manually tuning these

algorithms are used in practice, ranging from 'trial-and-error' to

the more systematic use of empirical formulae such as those

proposed by Ziegler and Nichols (1943). However for some complex

processes, where the plant dynamics vary significantly in the

course of their operation, automatic retuning is the only real

answer in order to maintain a consistent final product. Astrom

(1 9 8 4) has proposed a simple robust estimation technique which

provides the basis for a number of new methods for automatic

tuning of P I D regulators which easily can be incorporated into the

new breed of microprocessor based controllers for single loop use.

103

This report develops the implementation (in ACC3L XI) of a similar

range of algorithms initialiy for use on the RDC 3350 unit. It

should be emphasised that the approach will not work for problems

where d more complicated regulator than the P I D structure is

required.

2 . Theoretical Principles Supporting the Autotuner Design

In 1943 Ziegler-Nichols presented their seminal paper on

controller tuning. In the interim period many other approaches

have been suggested but rarely have they affected the popularity

of this early simple strategy. The autotuner design to be

developed here is based around an elementary approach to automate

the Ziegler-Nichols rules as discussed by Astrom and Hagglund

(1984).

Techniques for tuning controllers may be classified as either

open-loop or closed-loop methods. The Ziegler-Nichols ultimate

method is a closed-loop technique which has been applied

successfully to both analogue and digital control situations. The

basic method requires the determination of the ultimate gain, Xu.

This is the value of gain (f o r a controller with only a

proportional mode of operation) which causes the closed-loop

controlled variable to cycle continuously with fixed amplitude.

This 'marginally stable' situation implies that the Nyquist curve

of the open-loop frequency response must pass through the critical

- l + j O point on the Argand diagram (see Fig. 1) . The period of the

oscillation, Pu, is called the ultimate period. In the original

Z i e g l e r - N i c h o l s scheme, Ku and Pu w e r e d e t e r m i n e d i n t h e f o l l o w i n g

way: t u n e out any reset or d e r i v a t i v e a c t i o n from t h e c o n t r o l l e r ,

l e a v i n g only t h e p r o p o r t i o n a l mode. Ma in ta in t h e c o n t r o l l e r on

a u t o m a t i c , i.e. leave t h e l o o p c l o s e d . With t h e g a i n of t h e

p r o p o r t i o n a l mode se t t o some l o w a r b i t r a r y v a l u e impose an u p s e t

o n t h e p r o c e s s (move t h e s e t p o i n t f o r a f e w seconds t h e n r e t u r n it

t o t h e o r i g i n a l v a l u e) and observe t h e r e s p o n s e . I f t h e o u t p u t

r e s p o n s e g r o w s , r educe t h e c o n t r o l l e r g a i n ; if t h e r e s p o n s e damps

o u t i n c r e a s e t h e c o n t r o l l e r g a i n . Con t inue i n t h i s w a y u n t i l

s u s t a i n e d o s c i l l a t i o n s of c o n s t a n t a m p l i t u d e a re e n c o u n t e r e d .

F i n a l l y , t h e c o n t r o l l e r parameters can t h e n b e o b t a i n e d by u s i n g

e m p i r i c a l formulae which rely o n Ku and Pu. The u l t i m a t e method

e m p i r i c a l r e s u l t s are p r e s e n t e d as t a b l e 1.

Some of t h e shor tcomings of t h e t e c h n i q u e are listed below:-

(i) t h e p r o c e s s t r a n s f e r f u n c t i o n must be a t least t h i r d o r d e r .

(ii) for a system w i t h l o n g time c o n s t a n t s t h e t e c h n i q u e is a

v e r y s l o w p r o c e s s .

(iii) it i s d i f f i c u l t t o au tomate t h e expe r imen t , and per fo rm it

i n such a way t h a t t h e ampl i tude of t h e o s c i l l a t i o n is k e p t

unde r c o n t r o l .

(i v) t h e magnitude of t h e o s c i l l a t i o n is dependent on t h e p l a n t

g a i n as w e l l as t h e c o n d i t i o n s suppor t ed by t h e p l a n t when-

t h e t e s t i s i n i t i a t e d , i . e . t h e ampl i tude of o s c i l l a t i o n is

n o t known b e f o r e t h e t e s t .

1 05

As a consequence of the above features, another method which

can provide automatic determination is proposed.

3 . Astrom and Hagglund Relay Method

This method is based on the observation that a system with a

phase lag of at l e a s t n radians at high frequencies must

oscillate with period tc under ideal relay control. One immediate

advantage gained by including the relay is that the possibility of

an unstab le response is avoided. Secondly, the amplitude of the

o s c i l l a t i o n may be controlled simply by varying the limits of the

relay.

The constant amplitude fixed frequency oscillation is callsed

a limit cycle. Limit cycles arise in a wide variety of practical

situations; consequently, considerable efforts have been expended

t o develop algorithms which can help the designer assess whether

or not a system will exhibit such behaviour. Limit cycles can be

stable ox unstable; only stable oscillations exist in practice.

For systems of higher order than t w o , the basis for limit

cycle studies is usually the frequency domain. Here, much of the

published work assumes a separable system where the l i n e a r part is

represented by its frequency response whilst the single non-linear

element (in this case the ideal relay) is characterised by a

quasilinear complex gain called a describing function. The

describing function is evaluated on the assumption that t h e input

to the non-linearity is a sinusoid of known amplitude.

The describing function is defined a s

B + jC
N(A) .= I___

A
... 3.1

where B and C are the Fourier coefficients of the fundamental

component present in the periodic non-linear output in response to

the sinusoidal input A . s i n e . E3 and C are given by

f(e) s i n e de
B = - I , 1 2R

n

and

. . . 3.2a

... 3.2b

f (e) is the true non-linear output in response to A . s i n 8. For the

ideal relay when

o < e s n f(0) = + Ym ... 3.3a
and R < % s 2 l l f(B) = - vm ... 3 . 3 b

assuming a symmetrical relay output.

Fram equations 3.1 to 3.3 it is easily shown that

4vm N(A) = - ... 3 . 4

The resulting autatunet strategy using the ideal relay controller

i s presented as Fig. 2 .

To illustrate how the c i r c u i t w o r k s consider the case when

KW; ... 3.5
2

G (j w) =
j w { (0; - + mu, 1

107

Fig. 3 shows how the system responses fo r two different intial

conditions; one a small (practically zero case) and the other a

large value. In b o t h cases we eventually converge onto the same

l i m i t cycles. To increase the amplitude of the limit cycle we

simply increase V m .

With reference to Figures 1 and 2 , it is easily shown that

Ziegler Nichols critical gain, Ku, is in fact the sane numeric

value as the describing function.

... 3.6 vm KU = -
lTA

It follows, since Vm is fixed, to automatically determine Ku

all that is required is to estimate A . In practice this is done

using software programmed to implement a ’peak detection’ strategy

on the system error signal. The ultimate frequency is also

calculated using the error signal and a ‘zero-crossing’ routine.

Once these are evaluated, PI or P I D settings can be determined

using the look-up table 1. An alternative approach ha8 been

postulated by Astrom whereby systems with prescribed phase margin

are obtained. The theory behind this approach is described in the

next section.

4 . Control with Specified Phase Margin

Consider nex t the block diagram of Fig. 4(a) where GoL(s) is

the open-loop transfer function; t h e open-loop frequency response

of this system is plotted as Fig. 4 (b) . The frequency “4, when the

open-loop gain is 1, i . e .

is called t h e gain cross-over frequency

defined as

$m = L G O L (j u d) f 180D

. . . 4 . 1

The phase margin $I is
0

... 4 . 2

where L G o L (j w d) is the angle corresponding t o the magnitude

condition of Equation 4.1.

Consider now Fig. 5 (a) where the system G (s) is under PI

c o n t r o l ; the open-loop transfer function is given by

... 4 . 3

and the corresponding phase shift is

L G o L (j w) = - g o o +. tan-' wTi + L G (j w) ... 4 . 4

If at frequency wd rad/s, the argument of G (j w) is -go', then it

is easily shown that

1
or Ti = __ tan #m ... 4 . 5

w
Further, from the definition of the phase margin, i.e. Equation 4 . 1

... 4 . 6

109

Cons ider t h e t r i ang 1 e

then

1

... 4 . 7

Equations 4.5 and 4.7 can be re-expressed in terms of t h e measured

parameters Pu and A . Firstly,

... 4 . 8

and secondly from F i g . 5(b) under limit cycle conditions

... 4 . 9

Hence from 4.6 to 4 . 9 the parameters Kc and Ti of t h e P I

controller are given by

and

Pu t a n Qla

21r
Ti =

4Vm Pu s i n #m
Kc =

2n2A

. . . 4 . 1 0 a

... 4.10b

110

The eventual scheme is presented in block diagram form as Fig. 6.

The autotuner operates as a relay controller in the tuning mode

(position 1) and then a s an ordinary PI regulator in the control

mode (position 2) . Once PU and A are determined as outlined in

Section 2. Kc and Ti can be computed €or any desired

an input parameter. A final point. It will have been noticed

that the relay controller of Fig. Sb contains an integrator not

present in the original structure (Fig. 2) . An extra benefit of

this arrangement is that it forces the limit cycle on the output

to be sustained about the setpoint value. In control engineering

terms the system, in the tuning mode, has Type 1 servomechanism

tracking performance. This helps ensure 'bumpless' transfer

ern , Qm is

between tuning and control modes.

5 . Autotuner Refinements

This section describes t w o refinemen ic method

described earlier; one is intended to make the algorithm more

user friendly while the second is included to improve its noise

rejection properties.

3 t th ba

The Phase Margin-Overshoot(O/S) Concept

The phase margin is a frequency response design parameter

introduced to describe the relative stability situation, i.e. just

how stable is d stable system? Closed-loop systems with large

phase margins have well damped step responses. Many control

111

system d e s i g n c r i t e r i a assume t h a t t h e sys tem c a n i n e f f e c t be

a d e q u a t e l y described by a second-order p r o c e s s . The behav iour of

second-order systems s t e p and s i n e wave inputs is w e l l unders tood

and p r o f u s e l y documented. The fo l lowing r e s u l t s have been

a b s t r a c t e d from t h e t e c h n i c a l l i t e r a t u r e .

(i) t h e maximum p e r c e n t a g e O/S of an i d e a l second-order

process to a s t e p func t ion i n p u t i s g i v e n by

[/I;;.] Maximum p e r c e n t a g e O/S = 100 e x p ... 5.1

(ii) t h e phase margin #a of an ideal second-order p r o c e s s

is given by

r 1

J [J [4C'+ 1]''2 -
2R 4. = tan-' ... 5 . 2

Note both equa t ions 5.1 and 5 . 2 depend only on the damping r a t i o

I t is a p p r e c i a t e d t h a t many process o p e r a t o r s may not have heard

of a phase margin. However, most should unde r s t and the concep t of

peak overshoot related t o step input behaviour . I t follows t h a t

by s p e c i f y i n g the maximum percentage overshoot one c a n e v a l u a t e

C . Once C is known u s i n g Eqn. 5 . 2 one can d e t e r m i n e t h e phase

margin. F i g . 7 d i s p l a y s p l o t s of bo th Eqns. 5.1 and 5 . 2 . From

Fig. 7(b) it can be seen t h a t over a wide range

... 5 . 3

112

Improvement of Noise Rejection Performance

tegy is that A problem with the simple ideal relay str "Y
noise superimposed on the useful signal can result in 'false'

relay switching which in turn invalidates the tuning procedure.

The noise rejection properties can be improved by simply adding

some hysteresis into the relay characteristic as shown in Fig. 8 .

If too much hysteresis is added a degradation of the ultimate

process will result. The general effect is an increase in the

amplitude of the signal appearing at the input to the relay with a

consequent lowering of Ku as compared with the ideal case.

Section 7 presents a number of illustrative examples to clarify

what may occur. Another feature is that Pu also tends to increase

further consolidating a slower more heavily'damped response than

may have been anticipated. The ACCOL implemented algorithm has a

default hysteresis band of * 22 quantum levels; however, the

operator can set the hysteresis to any desired level.

Tests to date have indicated that for signal to noise ratios

greater than 5 : l additional. 'analogue' filtering may be required.

In practice this is supplied via an optimal 'digital' filter which

is also addressable by the operator. The filter chosen is a

discrete equivalent of the simple analogue filter

1 ... 5 . 4 - - -
1 4. s/wo

fo The algorithm requests a value f o r expressed in Hz, i.e.

113

w h e r e

w = 2nfo
0

The choice of hysteresis width plus filter bandwidth (i f

required) is l e f t to the user, however, the following simple r u l e s

should help the selection process. With the filter inactive vary

the relay characteristics (always ensuring initially that D > E)

until an 'oscillatory trend' is obtained. Measure the frequency

of the oscillation then s e t fo equal to this value or

exceptionally equal to twice this value.

Before leaving t h i s s e c t i o n it should be emphasised that a

large number of problems WILL NOT require the above refinements.

We estimate perhaps less than 10% of the problems we have looked

at over the years. Nevertheless, w i t h commercial software we must

try and consider a l l possible contingencies.

114

0

Pu/1.2

Fig. 1

0

0

Controller

P ID

0.5 Ku

0.45 K,

0 . 6 K,

.ng w

Z-N Look-up T a b l e

Table I

115

F i g . 3a

F i g . 3b

116

Fig. 4

/-

w
inc re as i n g

unit c i r c l e

Fig. 5a

1
L .-.-.-.-.-. -.A

F i e . 5b

117

3

r

PI

Fig. 6

&

100

o/s 80

60

LO

20

0

2
4

Process

L -4

1

o . 2 .4 . s .6 .a 1.0
c

R -

Qm

Fig. 7

118

Oucput

t

(a) 9

output

*
Input

-D

Relav
L

(b) 2-Position Relay with Hysteresis

Fi2. 3 ___.._

119

PART JV

PATTERN RECOGNITION ALGORITFOYI THEORY

120

PATTERN RECOGNITION CONTROL

- 1. Introduction

The need for self tuning controllers arises as instrument

engineers and plant operators often have great difficulty in

installing and operating control systems. The ability of the self

tuner to model processes using some predefined testing sequence

and establish suitable controller parameters to meet some

pre-def ined performance criteria can produce considerable savings

in both time and expense during plant commissioning.

However, because processes are often time variant or

nonlinear in operation then no guarantee exists that the system

will perform to the required levels without the need f o r frequent

retuning. This, in itself can lead to several problems. Firstly,

when is re-tuning deemed necessary and secondly, will the

application of the input disturbance sequence cause the process

output to exceed plant limits and introduce further expense

through down time.

One solution to this particular problem is to re-assess the

present control scheme performance when the plant is subjected to

some form of disturbance. The exact method fo r changing the

controller parameters is normally based upon the experience and

expertise of the control engineer. However, because these

mechanisms, for PI regulators, are well understood several, methods

of automating this adaption procedure have been suggested 11-31.

12 1

Generally these types of technique can be termed 'Pattern

Recognition Controllers'.

- 2 , Pattern Recoanition Philosophy

The basic procedure followed by the pattern recognition

controllers is as follows:

(i) monitor t h e error signal for any disturbances that occur

over a specific amplitude, typically two times the process

noise threshold. When recognized, record the maximum

amplitude of the disturbance,

(ii) identify the necessary information regarding the response of

the present control scheme with respect to some predefined

performance criteria,

(iii) update the present control parameters, if necessary, using

some empirical formulae.

The major advantage of t h i s type of adaptive control scheme

over others is that it does not require a model of the system in

order to re-evaluate the controller parameters. Therefore any

problems that may arise with systems whose model dimensions vary

with time are avoided. Moreover, the implementation of the scheme

in software is relatively straightforward, its lack of complexity

leading to much faster sampling rates than might otherwise be

122

possible from other self tuning strategies.

Its one real disadvantage is its reliance upon some other

technique to provide the controllers starting parameters. Although

the coupling of the technique with one of the previously encoded

self tuners, acting as an initialization stage, will provide a

simple solution to this problem.

3. Pattern Recoqnition pI Adaptive C w

The operation o f the proposed adaptive control scheme occurs

in four distinct stages, represented graphically in F i g u r e 1,

based on a setpoint disturbance.

(i) Recognition of a new disturbance with d peak error (ERMAX)

larger than a predefined noise threshold (NOISE).

(ii) Xdentification of the recovery time o f the response (TI),

the time taken by the present system to go from 7 5 % of the

peak error (To) to 25% of the peak error (TI).

(iii) Definition of the pattern features for adaption, Figure 1.

Firstly, the area SI, representing the first peak o f

overshoot of the response with respect to the area R1 and

secondly, the area S 2 . This represents the decay rate of the

response with respect to the level R2.Both R1 and R2 are

evaluated f r o m the defined performance specifications, where

123

f o r i d e a l o p e r a t i o n S1 = Rl, S2 = 0.

Although t h e s e areas can readily be measured when t h e

process response i s oscillatory, this informat ion i s not

recoverab le when t h e response i s overdamped. The answer, in

each c a s e , is to compute t h e areas when they l i e w i t h i n t h e

time slots d e f i n e d below:

SI = (ERR) dt

s2 = (ERR - R2) dt

TI + (a + B) T l

where a, 13 and 7 are all c o n s t a n t s evaluated from a study of

the response of a t h i r d order system.

(i v) Updating of the controller parameters us ing t h e d e f i n e d

p a t t e r n features and t h e e m p i r i c a l r e l a t i o n s h i p s :

I KC -L Kc + (I-DONE) Kl(Sl-R1) + K2S2

where the v a r i a b l e s K1, K2, K3 and K4 are w e i g h t i n g

c o n s t a n t s and DONE is a confidence f a c t o r related to

overshoot .

124

I f r e q u i r e d t h e u p d a t i n g p r o c e d u r e c a n b e c o n s t r a i n e d u s i n g

a r e - t u n i n g f a c t o r . T h u s l i m i t i n g t h e maximum p e r c e n t a g e

c h a n g e t h a t c a n o c c u r a t each adaption s t e p .

125

a T L plL Y TL
1.2

1.1

1

0.9

0.8

TL
0.7 ' I 1 $ 1 I 1 I

10 20 30 4 0 50 60 70 80 90

Time

Figure 1 - Pattern Recognition Calculations

Re-tuning Algorithm:

PROP2 = PROP1 + (l-DONE).(KL.(Sl+Rl) + K2.S2)

INTZ = INTI + (l-DONE).(K3.(Sl+R1) + R4.S2)

where

R1 i s a pre-defined area,

R2 i s a pre-defined l e v e l ,

DONE is d confidence factor related to overshoot,

and K1, K2, K3, K4, a, 8 , T are constants.

127

PART V

MOOEL BASED ALGORITHM THEORY

MODEL BASED CONTROL

- 1 . Introduction

Proportional-Integral-Derivative (P I D) controllers are employed

extensively within the process Industries. In many application however, only

proportional and integral action are utilised because derivative action causes

the controller to respand too energetically t o any noise that 1s present on

the measured process variable. In addition, many processes exhibit

non-oscillatory open loop behaviour an therefore the active damping provided

by derivative action is rarely required. Finally, the specifications for

controller responses are often blouse and PI controllers are capable of

providing acceptable performance in a number of process applications.

Acceptable performance can only be obtained however if the PI controller

is properly tuned, which means that the amounts of proportional and integral

actian provided by the controller are correctly set. Before these two values

can be selected, information about the plant must be known, therefore a

mathematical description of the process is required. Once this description, or

'model' has been obtained, values of proportional and integral gain can be

evaluated such that some pre-specified design objective is achieved. When

these two operations are automatically performed, the resulting scheme is

popularly known as a self-tuning controller.

For the purposes of this report, a self tuning controller is defined as

one uhich uses an on-line estimator/design procedure for an initial tuning

period, after which the procedure is turned off and the controller effectively

operates in a fixed gain mode.

129

- 2. Model Estimation

2.1 Model Structure

The structure of the model is developed from the commonly encountered

process reaction curve that is a standard first order lag with time delay [l] ,

whose step response is displayed i n Fig. 2 and transfer function by Equ. 2.1:

K. e-"
CpCs) =

I + ST
where s is the Laplace operator,

K is the process gain;
T is the process time constant,

and 0 is the process time delay.

(2.1)

However, the self-tuning PI controller estimates a discrete time model of the

process dynamics. the main reasons for adopting the discrete time approach, as

opposed to a continuous time scheme, are that i t removes difflculties involved

in digitislng systems, and that it handles time delays naturally. Thus good

control will be -provided even when the sampling time (task rate) Is 'coarse'

with respect to the process time constant:

Using the structure described in Equ. 2.1. it digitised equivalent is of

the form:

(2 .2)

where z-' Is the backward shift operator (the value one sample previously) and

d the integer number of sampling times in the process time delay. Therefore

the numerator can be extended to accommodate any value of time delay. A direct

comparison between the continuous and dlscrete time systems is possible if the

parameters within Equ. 2 . 2 are defined by:

-f/T a = -e
1

I - (l -rnjT/T = K f I - e
bd+ 1

(2.3)

where T is the sampling time,
d is the integer part of BIT

and m is the fractional part of B/T

2.1.1 Effects of Sampling Time Selection

A good choice of sampling time will improve the efficiency of the on-line

model estimation algorithm, and will therefore result in a better controller

being designed. Ultimately, the choice of sampling time must reflect the

response time of the system. As a rule of thumb, approximately 10 sampling

intervals should span the rise time of the process. When this rule is

followed, the value of d In Equ. 2.2 typically lies in the range 0 to 5 .

Therefore, the fixed structure of Equ. 2 . 4 can be used to represent the

maJority of cases for which the self-tuning PI controller is designed.

(2 . 4 1

2.2 Recursive Least Squares Estimation

Having developed the necessary model structure for the PI self-tuner

(Equ. 2.41. a technique is required to estimate the model parameters. The

Recursive Least Squares (RLS) algorithm provides a general purpose statistical

tool [21 for estimating the parameters of any system that can be represented

131

by the summation:

or, alternatively,

It is recursive

estimates as each

transfer of Equ. 2

uhere k refers t o

i n vector notation as:

T y = e . ? (2.5bl

where eT is the parameter vector,
and 5 is the data vector.

in the sense that the algorithm updates its parameter

new observation,

4 is a subset of

bl b2

or sample, is recorded. The discrete time

Equ. 2 . 5 , uith:

b3 b4 bS

.. (2.61 ' -yk-l U k-1 U k-2 U k-3 U k-4 u k-S 1 '

the present sample value and k-n to the value n samples in

the past. Therefore, provision of the input and output data required to

complete the data vector defined above vi11 allow the RLS algorithm, detailed

in Appendix A. to estimate the discrete time model parameters.

In practice, the lnput/output data are pre-filtered by a digital

band-pass filter, given in E-. 2 . 7 , in order to remove d.c. offsets and high

frequency noise, thus making the estimator more robust.

(1 - a) r 1 - 2-1 1
-1

cpf(z-') =
1 - a 2

(2.71

132

Ideally the coefficient a. should be chosen to be equal to the system bandwidth

(- a in Equ. 2 . 4 1 , but the choice is not critical and a default value of a =

0 . 5 is employed.

1

- 3. Controller Desinq

3.1 Performance Specification

The specification for system performance is In terms of the maximum

percentage overshoot of the closed loop system's step response. This

specification is translated, using the well documented theory of the behaviour

of second order systems to the frequency domain concept of phase margin (#I)

using the relationships:

m

(i 1 Maximum X overshoot of an ideal second order process

input:

-(<Id 67)
maximum % overshoot = 100.e

(ii) Phase margin of an ideal second order system [31:

r 2n

(3.1)

1

to a step function

I I

When translated, the phase margin specification for a stable system will lie

in the range:

oo < # < 9u0 (3 . 3)

In general, the smaller the phase margin, the faster and more oscillatory the

closed loop system's behaviour. Larger phase margins result in less

oscillatory, more sluggish responses. A good default value for phase margin is

60'. vhich produces a cautious response with little overshoot. Fig. 4

illustrates the responses of PI controllers designed for different phase

margins.

3.2 Controller Design Algorithm

In order to establish the controller design algorithm for processes

described by the discrete time model of Equ. 2 . 4 . we must flrst consider the

discrete time structure of the ACCOL PI controller:

K i . T . z-'

-1

(3 . 4)

Selection of the controller's numerator to cancel the denominator of the

discrete time transfer function of Equ. 2 . 4 fixes the value o f Ki:

KL = (1 + a) / T (3.5)
1

This results in the compcnsted open loop transfer functlon:

To establish the value of Kc which will provide the required phase margin, the

frequency response of the compensated system must be computed. This is

achieved using the discrete time t o frequency domain mapping:

(3.7) - t - jwT
z = e

Under this transformation, the open loop phase shift can be evaluated a t any

frequency w , using the relationship:

134

5

(3 . 5) I s in wP z b , s i n iwT 1 - tan-' [1 1 1 5 L G O L (j w) = - tan-' 1 I -
cos UT 1 b ,cos i w T

I = 1

The anqular irequency, w at which the required phase margin occurs can be

simply evaluated. since at this frequnecy:

0'

coL(jw0) = -ISO' + gm (3 . 9)

The combinations of Equ's. 3.5 and 3.9 allows w to be computed using a
0

1 inear search.

135

APPENDIX A2

Kecursivc Least S q u a r e s (RLS) Parameter Est imat ion

T h e algorithm uses t h e follouing v e c t o r s :

1 Ysrameter vec tor :

"Diagonal" vector:

"Upper tr iangular" v e c t o r : !eee_E { 15 elements, initial values = 0 }

"Kalman gain" vector: 5 { 6 elements }

The c a l c u l a t i o n s performed a t e v e r y sanipling in terva l a r e :

(i) Form the data vector

(i i) Ca lcu la te the prediction error ,

0 = [-al, b 1 9 b2, bg, b4, b5 1 { i n i t . values = 0)

{ 6 elements, i n i t i a l ' values = lo6)

'k
- T ek - Xk * gk-1 - yk

(i i i) Update covariance matrix (U D method)

fj = x (t)

q j = l + v . f j

vJ = diag(1) . fj

d i a g (1) = diag(1) / Hj

K (1) = vd

Kp = 0

Ku = 0

FOR j=2 TO 6 STEP 1

f J = x (j)

jl = j-1
FOR i=l TO j l STEP 1

Kf = Kf + 1

f j = f . + x (i) . upper(KP)
J

ENDFOR

136

v = f . . diag(J)
j J

5 a s t = 5
+ v . P j "5 = %st

diag(2) = diag(j) . Hlast / Kj

K(j) = vj

Pj = -fj 1 Lilast

FOR i = l TO jl STEP 1

KU = Ru + 1

temp = uppe.r(KU) + K (i) . pj

K (i) = K (i) + upper(ku) . vj

upper(Ku) = temp

ENDFOR

ENDFOR

(iv) Update the parameter vector

137

APPENDIX A3

C o n t r o l l e r D e s i g n A l g o r i t h m

Discre te t ime p l a n t model (s a m p l i n g t i n e = T s e c o n d s) :

t b Z z q 2 + b32-3 + b42-4 t b5z -5
bl2 Gp(z-l) =

1 + alz -1

Discrete t i m e p r o p o r t i o n a l - p l u s - i n t e g r a l (P I) c o n t r o l l e r :

[1 + (K I T - 1) z - l J

-1 = Kc
1 - 2

By c h o o s i n g KI s u c h t h a t (KIT - 1) = al
the open loop t r a n s f e r f u n c t i o n becomes:

= > KI = (1 - + al)/ 'T

-' t b2z-' + b3z-3 + b4ze4 t b 5 ~ - 5

GOL(z-l) = KC 1 - 2 -1

BY r e p l a c i n g z-' by e - j W T , t h e phase of t h i s p l a n t c a n be computed a s :

5
b i s i n iwT

bicos iwT

LG, , (jw) = - t a n

i = l

For a c e r t a i n phase margin , $,,, t h e a n g u l a r f r e q u e n c y w

t!.G,,Cjw> = - n + 8,
is f o u n d f r o m : 0

wo is computed by u s i n g a l i n e a r s e a r c h i n the r a n g e 0 < w <

The f a c t t h a t t h e tan-' f u n c t i o n is n o t a v a i l a b l e can be r e s o l v e d b y

r e - u r i t i n g the e x p r e s s i o n as:

t a n (L G O L (j w)) = t a n (- n + gm)

and r e c a l l i n g t h a t

T

tan a! + t a n 6
1 - tan d t a n p t a n (#.t p) =

138

T h e r e f o r e t h e s e a r c h equation becomes:

- (A + B)
= tan $,n

1 - A . B

end B =
b i c o s iwT

sin UT

1 - COS UT
where A =

T h e s e a r c h algorithm is:

wT h ig h = lr, low = +r/100, uTinc = (HThigh - low >/ 1.0

FOR p a s s = 1 TO 2 STEP 1

w T = w T low, f l a g = 0 0
FOR UT = wTlou ” WThigh STEP wTinc

I F f(A,B,wT) < tan grn THEN f l a g = 1

I F flag = 0 THEN woT = UT

ENDFOR

H T h i g h = w 0 T t. wTinc, wTlow = woT, wTinc (“ T h i g h - UTlou > / 5

ENDFOR

O n c e woT has been d e t e r m i n e d , Kc may be eva lua ted u s i n g I G o , (j w) I I: 1,

5 5

CiTl b i c o s i w O T] + [icl b i s i n iwOT

2 [J J [: I - cos w o ~ I + c s i n w 0 T 1

=) KC

APPENDIX B
*TARGET 3330 VERS: 0084
*SECURITY-CODES 6 555555 444444 333333
*MEMORY

EXPANDED-XEX OK
RO-ARRAY-MX BASE
EQUATION-LOC EASE
RU-ARRAY-LDC BASE
AGAB-LOC BASE
STORAGE-ROWS 0
EVENTS 0
TEMPLATES 0

AUX-1 UNUSED
AUX-2 UNUSED
PORT-A SLAVE 9600
PORT-B PSWVE 9600
PORT-C UNUSED
PORT-D UNUSED
BUFFERS 15

*COMMUNICATIONS

*PROCESS-1/0
1 4 U
2 4AI
3 2AO
4 2AO
5 2A0

*TASK 1 RATE: 1.0 PRI: 31
*TASK 9 RATE: 0.0 PRIr 1
*TASK 10 RATE: 0.3 PRI: 1
*TASK 11 RATE: 0.3 PRI: 1
*TASK 12 RATE: 0.3 PRI: 1
*TASK 13 RATE: 0.3 PRI: 1
*TASK 14 RATE: 0.3 PRIr 1
*TASK 15 RATE: 0.3 PRI: 1
*TASK 16 RATE: 0.3 PRI: 1
* BASENAMES
SIGNALS

#ALARM. FORMAT. L R1 W4 MI CI 0 ON
IDIAC.OO1. LA R1 W4 MI CI Ae 0 ON
/DIAC. 002. A R1 W4 MI CI
IDIAG.003. A R1 W4 MI CI
IDIAL.OOO. A R1 W4 MI Cf
#DIAt.001. A R1 W4 MI CI
#DIAL. 002. A R1 W4 MI CI
IDIAL.003. A R1 W4 MI Cf
#E.. A R1 W4 MI CI
IERAXRAY. . A R 1 W4 MI CI
#ERRCT. 000. AA R1 W4 MI CI AE

IERRCT. 001. M R1 W4 MI CI AS

CEhCl'. 009. AA R1 W4 XI CI AE

IERRCT.010. AA R1 W4 MI CI AE

HALM : IERRCT . LIM .
HALM: #ERRCT.LIM.

HALM: #ERRCT.LIM.

HAW: #ERRCT.LIM.

W: IERRCT.LIM.

H A L M : IERRCT. LIM .
HALM: #ERRCT.LIM.

IERRCT.011. AA RI w4 n I CI AE

IERRCT.012. M RI w4 nr CI AE

#ERRCT.O13. AA R1 W4 MI CI A6

141

222222 111111

OFF
OPF TRUE C
0.0000000

0 . 0000000
0.0000000
0.0000000
0.0000000
2 .7182817
10.0000000
0.0000000 ERRORS

0.0000000 ERRORS

0.0000000 ERRORS

0.0000000 ERRORS

0.~00000 ERRORS

~.OOOOOOO ERRORS

60.0000000 SECS

A C

A C

A C

A C

A C

A C

A C
O.OOOOOO0 ERRORS

142

CERRCT.014.

#ERRCT.OlS.

#ERRCT.016.

#ERRCT . L IH .
#LINE.000.
CLINE.001.

ILINE.003.
tLINE.004.
#LINE.005.
#LINKE.O01.

#LINE. 002.

#LINKE.O02.

#LINKE.LIN.
#LINKF.OO~.

fLINKF. 002.

#LINKF.LIN.
#NDARRAY. .
#NODEADR..
#OCTIME . .
#OCTIME:.ERROR.
#OFF..
#ON. e
#PDM. 000.
#PDH. 001.
#PDX.OOZ.
#PDH. 003.
fPDX.004.
IPDX. 005.
CPDX. 006.
#PDM. 007.
tPDU.008.
#PI. *
tPOLLPER.000.
#POLLPER. 001.
#POLLPER.O02.
IPOLLPER.003.
tPOLLPER.004.
#POLLPER. 005 .
/PRI .001.
#PRI. 009.
#PRI .010.
#PRI .011.

#PRI .013.
#PRI .014.
#PRI .01S.
#PRI.O16.
fPWRUP. 000.
#RATE. 001.
/RATE 009.
#RATE.010.
#RATE. 01 1.
CRATE. 0 1 2 .

#PPI. 012.

AA R1 W4 MI CI AE

AA R1 W4 HI CI AE

AA R1 W4 XI CI AE

HALM: #ERRCT.LIH.

HALK: #ERRCT. LIK.

W: #ERRCT.LIH.
A R1 W4 MI CI

LA R1 W4 MI CI AE 0 ON
LA R1 W4 MI CI AE 0 ON
LA R1 W4 MI CI AE 0 ON
LA R1 W4 HI CI AE 0 ON
LA R1 W4 XI CI AE 0 ON
LA R1 W4 MI CI AE 0 ON
AA R1 W4 HI CI AE

hA R1 W4 MI CI AE

Wi #LINKZ. L I H .

W: #LINKE.LIN.
A R1 W4 MI CI

AA R1 W4 MI CI AE

AA Rl W4 HI CI AE
HALx: #LINXF.LIH.

HALN: #LINKF.LIH.
A R1 W4 HI CI
A R1 W4 MI CI
A R1 W4 HI CI
LA R1 W4 HI CI
LA R1 W4 MI CI
L R1 W4 HI CI
L R1 W4 HI CI
A Rl W4 HE CI
A R1 W4 ME CI
L R1 W4 UE CI
L R1 W4 MI CE
A R1 W4 MI CE
A Rl W4 HI CE
A R1 W4 MI CE
A R1 W4 HI CE
A R1 W4 HI CE
A R1 W4 HI CI
A Rl W4 MI CI
A R1 W4 HI CI
A Rl W4 HI CI
A R l W4 MI CI
A R1 W4 MI CI
A R1 W4 HI CI
A R1 W4 MI CI
A R1 W4 HI CI
A R1 W4 MI CI
A R1 W4 HI CI
A R1 W4 MI CI
A R1 W4 MI CI
A R1 W4 MI CI
A Rl W4 HI CI
A R1 W4 HI CI

A R1 W4 MI CI
A R1 W4 HI CI
A R1 W4 MI CI
A R1 W4 MI CI
A R1 W4 HI CI

LA ~i w4 nr CI

AE 0 ON
AE 0 ON

0 ON
1 ON

0 ON
0 ON

AE 0 ON

0.0000000 ERRORS

0.0000000 ERRORS

O.O~OOQO0 ERRORS

0.0~~0000 ERRORS

A C

A C

A C

OFF TRUE C
OFF TRUE C
OFF TRUE C
OFF TRUE C
OFF TRUE C
OFF TRUE C
0.0000000 ERRORS

A C

A C
0.0000~00 ERRORS

20.0000000 ERRORS
0 . 0 0 0 0 ~ 0 0 ERRORS

0.0000000 ERRORS

20.0000000 ERRORS

A C

A C

0.0000000
0.0000000

OFF TRUE C
OFF TRUE C
OFF
OFF

0.0000000
0.0000000

OFF
OFF
0. OOOOOQO
0 * 0000000
0.0000000
0.0000000
0.0000000
3.1415927
20.0000000 SECS
20.0000000 SECS
20.0000000 SECS
20.QOOOOOO SECS
20.0000000 SECS
20.0000000 SECS
31.0000000
1.0000000
1 .OOOOOQO
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000

1 * 0000000
0.0000000
0.2500000
0.2500000
0.2500000

OFF TRUE C

143

#RATE. 013.
#RATE. 014.
CRATE. 0 15.
#RATE.016.
#RCNT.001.

fRCNT.009.

RCNT . 0 11.
CRCNT. 012.

#RCNT.013.

CRCNT.014.

#RCNT.O15.

CRCNT.016.

#RCNT.LIM.
#RTTIME. 000
fRTTIHE.001.
#SPARE. 000.
/SPARE. 001.
#SPARE. 002 *
#SPARE. 003.
#SPARE. 004.
#SPARE. 005.
CTIME.000.
#TIHE. 001.
fTIMX.002.
#TIHE. 003.
#TIME. 004.
#TIME. 005.
#TIME. 006.
#TIME. 007.
A..
Al..
ACCEPT..
ADAPT. FLAG.
ADAPTIVE..
AIS..
ALAST..
U O . .
-1..
m 2 . .

B..
81..
82 . .
83..
B4..
85. .
Cl..
cm..
CIN.
CIN. PRIME.

ALPHA..

A R1 W 4 HI CI
A R1 W4 MI CI
A R1 W4 WI CI
A Rl W4 WI CI

M R1 W4 WI CI
WI #RCNT.LIM.

AA R1 W4 HI CI
W: #RCNT.LIM.

M Rl W4 MI CI
Hun: #RCNT.LIW.

AA R1 w4 nr CI
W: #RCNT.LIM.

M R1 W4 MI CI
HALH: #RCNT.LIM.

AA R1 W4 WI CI
W: #RCNT.LIM.

M R1 Vi4 MI CI
HAtnx #RCNT. LIM.

M R1 W4 MI CI
W: /RCNT.LIM.

M: #RCNT.LIU.
A R1 W4 WI CI
A Rl W4 HE CI

L R1 W4 HE CE
L R1 W4 WE CE
L R1 W4 ME CE
L R1 W4 ME CE
L R1 W 4 ME CE
L R1 W4 ME CE
A R1 W4 MI CI
A R1 W4 MI CI
A R1 W4 UI CI
A R1 W4 HI CI
A R1 W4 MX CI
A R1 W4 MI CI
A R1 W4 HI CI
A Rl W4 WI CI
A
A
A
L
L
A
A
L
L
L
A
A
A
A
A
A
A
A
A
A
A

M xi w4 HI CI

A RI wa nI CI

AE

AI3

AE

AB

AE

M

M

AE

RE

0 ON
0 ON
0 ON
0 OR
o w
0 ON

0 ON
0 ON

0 ON
0 ON
0 ON

0.2500000
0.2500000

0.2 500000
0.0000000 COUNTS

0.0000000 COUNTS

0.0000000 COUNTS

O.OOQOQQ0 COUNTS

0.0000000 COUNTS

0.0000000 COUNTS

0.0000000 COUNTS

0.000~0000 COUNTS

0.0000000 COUNTS

0.2500aoo

A C

A C

A C

A C

A C

A C

A C

A C

A C
20.000a000 COUNTS
o . ooooooo
0.0000000

OFF
OFF
OFF
OFF
OFF
OFF
0. OOOOOOQ
O.OOOQOO0 SECS
0.0000000
0.0000000
0.0000000
O.OOOOQO0 HOURS
0.0000000 MINS
0.0000000 SECS
0 . OOQOOOO
0.0000000

50.0000000 I
OFF
OFF

0 . OQOOOOO
0 . ooooooo

OFF
OFF
OFF

0.5000000

0. QOOOOOQ
0.0000000
0.0000000
0. OOOQOOO
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

0. ooooooo

COLD..
COUNT..
DATA.TIHER.TIHE
DESIGN..
DESIGN.FACTOE.KC

DESIGN.FACTOR.KS
DESSGN.X1.
DESIGN.lt2.

DESIGN.K4.
DIAGl..
DIAG2..
DIAG3..
DIAGQ..
DIAGS..
DIAG6..

DESIGN.FACTOR.KC

DESIGNaK3.

DIAG7. .
DISTURB. I

DONE. *
DONE.FACTOR.
EO..
El..
ENABLE..
ENABLE.NEW.
ENABLE.OLD.
EVAR..
FJ. -
FLAG . E W .

HYSTER..
FLAG.SNIT.

I..
IKAG..
INPUT..
INPUT-OLD.
INTl. -
INT2..
INTEC.
IPXAX..
IPMIN..
IPSPAN..
IPZERO..
J..
J1..
IC. .
KF..
Kp..

KP1. -
KP2. -
KO,.
LAMBDA..

LORI). INIT.
XhGN..
MAGN. DEN.
MAGN . NUX.
NOISE - -
NOISE .AMP.
NO1 SE - REQ
OPDEV..

Lns..

L
A
A
L
A
A
A
A
A
A
A
A
A
A
A
A
A
A
L
A
A
A
A
L
L
L
A
A
L
L
A
A
A
A
A
A
A
L
A
A
A
A
A
A
A
A
A
A
A
A
A
A
L
A
A
A
A
A
L
A

144

1 ON

0 ON

0 ON

0 ON
0 ON
0 ON

0 ON
0 ON

GLB

GLB

1 ON

0 ON

GLB
GLB
GLB 0 ON

OFF
1.0000000
0.0000000

0,0000000
0.0000000
0. DO00000
1.0000000
-0.6000000
1.0000000
-0.3000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000
0.0000000

0.0000000 %
0.0000000
0 .ooooooo
0 .ooooooo

OFF

0 . aoooooo

OFF

OFF
OFF
OFF

0 . OOOOOQO
0 * 0000000

OFF
OFF

0.2000000 I
0.0000000
0.0000000
0.0000000 #
0.0000000 #
1.0000000
0.0000000

OFF
100.0000000 0
0.0000000 %

100.0000000 I
0.0000000 %
0.0000000
0.0000000
0.0000000
0.0000000
1. OOOOOQO
2.0000000
1.0000000
0 s 0000000
0.9900000
0 . QOOQOOO

0. OOQOOOO
0 .ooooooo
0.0000000
0.0000000
0 QOOOOOO

5.0000000 I

OFF

OFF

145

O P W . .
OPMEAN . .
OPHIN..
OPSPAN..
OPZERO..
0UTPUT.SAMPLE.
OUTPUT1 . .
OUTPUT2.LIHIT.
OUTPUT2.OLD.
OVERSH..
0VERSH.CHECK.
OVERSH . KAX .
0VERSH.WIN.
PASS..
PERIOD. .
PEW.
PHI..
PJ..
PRBS-BITO.
PRBS. BIT1 .
PRBS.BIT3.
PRBS.BIT4.
PRBS. BITS.
PRBS. SXT6.
PRBS.BIT7.
PRBB.BIT8.
PRBS.BIT8.NEW
PROC. INIT.

PROC2.INIT.

OUTPUT2. .

PRBS. BIT2

PROCl.INIT.

PROP1 m

PROP2 4

P V W . .
PVDEV..
PVERROR.
PVERROR . HAX .
PVERROR.M.OLD
PVERROR . HI N .
PVERROR.HIN.OLD
Ql..
Q2. a

REAL..
REDUCE. ENABLE.
REDUCE. FACTOR.
RELAY..
RELAY. REDUCE.
RELAY. SIGN.

RESET. TIWER. DATA

RESET2 - .
REVERSE. .
RHS..
SELECT.
SETPOINT..
SIW..
s1n.e.
SIN.Cl.

RESET- -
RESET1 *

A
A
A
A
A
L
A
A
L
A
h
A
A
A
ri

A
A
A
A
L
L
L
L
L
L
L
L
L
L
L
L
L
A
A
A
A
A
A
A
A
A
A
A
A
L
A
A
L
A
L
L
L
L
L
A
A
A
A
A
A

0 ON

GLB
0 ON

1 ON
1 ON
1 ON
1 ON
1 ON
1 ON
1 ON
1 ON
1 ON
0 ON
0 ON
0 ON
0 ON

GLB

0 ON

O O N

0 ON
0 ON
0 ON
0 ON
0 ON

GLB

100.0000000 t
0.0000000 I
0.0000000 t

100.0000000 %
0.0000000 I

OF?
0.0000000 I
0.0000000 t

0.0000000 t
10.0000000 I
0.0000000 t
75.0000000 %
1.0000000 t
0 .0OOQQOO
0.0000000 SECS
0.0000000
0.0000000 DEG
0.0000000

OFF

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

1 .000O000
0.0000000
0.0000000 t

100.0000000 I
0.0000000 %
0.0000000 I
0.0000000 I
0.0000000 %
0.0000000 I
1O.QOOOOOQ
0. OOOOQOO
0.0000000

0.6666667
2.0000000 *
0 .0000000

OFF

OFF

OFF
OFF
OFF
OFF
OFF

0.0000000
0.0000000
40.0000000 8
1.0000000
0.0000000
10.0000000

146

SIM. C2.
STATUS..
STATUS.BIT0.
STATUS.BIT1.
STATUS.BIT2.
STATUS. BIT3.
STATUS.BIT4.
STATUS. BITS.
STATUS. BIT6.
STPI.YO.
STPI. Y1.
SYSINIT..
TANPHI. *
TAU. DEL
TAU.L.
TAU-P.

TAU. P2.
TEMP..
TESTPI. .
TESTPI.TIME.
THI..
THRESH. -
TIMER. IN.
TIMER. OUTPUT.
TIMER. PULSE.
TOTAL..
TRACKl. .
TRACK2 . .
TUNE. ALPHA.
TUNE.BETA.
TUNE.COUNT.
TUNE. COUNT. OL

TUNE. GAXMA.
TUNE. L O C K .
TUNE.R1.
TUNE. R2
TUNE.S1.
TUNE.S2.
TUNE.STAGE.1
TUNE.STAGE.2
TUNE.STAGE.3
TUNE.STAGE.4
TUNE. TO.
TUNE. T2.
TUNE.T3.
TUNE. T4.
TUNE. TS .
TUNE. TL.
TUNING..
u0. s
Ul..
u2..
u3..
u4..
us..
UPDATE. .
VD..
VJ..

TAU. PI

TUNE.De.

A
A
A
A
A
A
A
A
A
A
A
L
A
A
A
A
A
A
A
L
A
A
A
L

1 L
L
A
L
L
A
A
A
A
A
A
L
A
A
A
A
L
L
L
L
A
A
A
A
A
A
L
A
A
A
A
A
A
L
A
A

bD

0 ON

0 ON

0 ON
0 ON
0 ON

0 ON
0 ON

0 ON

0 ON
0 ON
0 ON
0 ON

0 ON

1 ON

90.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0. 0000000
0.0000000
0. 0000000

0.0000000
0.0000000
0.0000000
s .0000000
s.0000000
0. s000000
0.0000000

OFF
120.0000000
0. 0000000
5.0000000 b

OFF

OFF
OFF
OFF
100.0000000 COUNTS
OFF
OFF
1.0000000
2.0000000
0.0000000 COUNTS
0.0000000 COUNTS
2.0000000 %
6.0000000

0.0000000 b
0.0000000 t
0. 0000000
0.0000000

OFF

OFF
OFF
OFF
OFF
0.0000000 COUNTS
0.0000000 COUNTS
0.0000000 COUNTS
0.0000000 COUNTS

500.0000000 COUNTS
0.0000000 COUNTS

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

OFF
100.0000000
0. 0000000

OFF

147

vu.. A
w.. A
WT.. A
WT.0. A
WT.FWG. L 0 ON
WT.HICH. A
WT. INC. A
wT.Low. A
X l . . A
XlDOT. - A
x2.. A
x2DoT.. A
Y. . A GLB
Y.RES. A
Y.SPAlV. A
Y-TRK. L 0 ON
Y. ZERO. A
Y l . . A
YIDOT. I) A
Y2. . A
Y 2 . W . A
Y2.HIN. A
YZDOT.. A
YD.. A
YP.. A
YP.MAx. A
YP.HIN. A
YPDOT.. A
YVAR.. A
2. . A
Z . S P M . A
2 . ZERO. A
ZEROX. COUNT. A
ZEROX . TOTAL. A
ZETA.. A
ZETA.SIM. A
ZL.. A GLB
ZL.I#. A
ZLDOT.. A

*TASK 0
*TASK 1

10 c .
20 c * * * ***
30 C *** SELF TUNING PI CONTROLLER ***
40 C *** * * *
50 C *** 22ND MARCH 1990 ***
60 * C +** ***
7 0 c * i * * * t * * * * . * * * ~ t * * t * * * * t t . * * * ~ * * * .

80 C

9a * - c *** RESET DEFAULT VALUES BETWEEN STPISIN
100 * CALCULATOR

10 :IF(RESET)
12 TESTPI=dOFF
15 ENABLE=#OFF
20 STATUS.BITO=O.
30 STATUS.BITl=O.
40 STATUS.BIT2=0.
SO STATUS.BIT3=0.
60 STATUS.BIT4=0.
70 STATUS.BITS=O.

1000.0000000
2.0000000
0 . aoooooo
0 . oaaoaoo

OFF
0.0000000
0 ~ 0 0 0 0 0 0 0
0.0000000
0.0000000
0 * 0000000
0 . 0000000
0 . aoooooo
0. aoooooo
0.0000000

100.0000000 t
OFF
o.ooooaoo *
0 . ooooaoo
0 . oooooao
0 . oaoaooa

0 . ooooaoo

0. ooaoooo

100.0000000

0.0000000

0.0000000
100.0000000

0.0000000
0.a000000
0.0000000
0 . ooooaoo

1ao.ooooooo t

0 . oooaooo COUNTS

0 . aoooooo
o.5oa00oo
0. oooooao
0. oooaooo

0.0000000 *
0 * 0000000 COUNTS

o.oooa0oo

TESTS

80
90
100
110
11s
120
125
130
140
150
160
170
180
190
200
2 10
220
230
240
2 50
2 60
2 70
2 80
2 90
300
3 10
320
330
340
350
360
370
380
390
4 00
4 10
420
430

STATUS.BIT6rO.
PROPZ-0.
INT2=O.
DONE-0.
:CI:ZL=#OFF
ZL-0.
:CI:ZL=#ON
REVERSE=fOFF
OVERSH=10.
SETPOINT=40.
PROP1=1.
IHTl-1.
PVDEV= 100.
RELAY-2 D

INTEC=#ON
ACCEPT-SO.
HYSTERmO. 2
THRESHIS.
OPHEAN=l .
OPDEV-5.
TOTAL=100.
ALPfm=O * 5
LAHBDA=O. 99
Also.
Bl-0.
B2=0.
B3-0.
84-0.
BS=O.
c1=0.
DIAGlrO.
DIAG2-0.
DIAG3mO.
DIAC4=0.
DIACS=O.
DIAG6-0.
DIAG7-0.
RESET=#OFF

440 :ENDIF
110 c
112 C *** TEST PI VALUES (STEP RESPONSE & DISTURBANCE RESPONSE)
115 C
120 * TIHER

INPUT TESTPI. .
SETPOINT TESTP1.TIM.E.
RESET TESTPI..
OUTPUT-2 DISTURB. -
10 :IF(TESTPI)
20 SETPOINTs50.

40 rIF(D1STURB)
50 : CI : ZL=#OFF
60 ZL=lO.
70 : CI : ZL=#ON
80 :ENDIF

130 * CALCULATOR

30 -:ENDIP

140 * C
150 c SELECT &J,GORIT~ * * * * * t t t * t * * * * * t * 4 * 4 * * * * * * * * * * * * * * 4 * * * * * * * * * * *

160 * C
170 * C

149

180 CALCULATOR
10 rIF(SELECT-1)
20 ALCO=#ON
30 ALCl*#OFF
40 ALG24OFF
50 :ENDIF
60 :IF(SELECT==Z)
70 ALGO=#OFF
80 ALGl=#ON
90 ALG2-#OFF
100 :ENDIF
110 rIF(SELECT=-3)
120 AU;O=/OFF
130 AU;l=#OPF
140 ALCS=#ON
150 tENDI?
160 ENABLE.NEW=ENABLE
170 :IP(ENABLE.OLDC-ENABLE.NEW)
180 TUNINC=#OFF
190 TUNE. LOCK=#OFF
200 :ENDIF

190 c
200 * c

220 * c
230 C
240 ANIN

210 * C *** HEASURE THE PROCESS VARIABLE * * * * * * * * * * * * * * * * * * * 2 * * * * t * * * + t . t

DEVICE 1
INITIAL 2
INPUT 1 INPUT. .
ZERO 1 IPZERO..
SPAN 1 IPSPAN..

250 * CALCULATOR STPI.YO=ALP~*STPf.Y1+(1-RLPHA)*(INPUT-INPUT.O~D)
260 C
2 7 0 * c
280 * C *** UPDATE THE OUTPUT OF THE PID3TElZM MODULE **************e*****
290 C
300 C
310 * PID3TERH

INPUT INPUT..

PROPORTION PROP1 . .
INTEGRAL INTl..
RESET OUTPUT2. .
TRACK TRACK2 . .
OUTPUT OUTPUT1 . .

SETPOINT SETWINT 6

320 C
330 C

350 * C

370 * C
380 * IF (-TUNING)
390 CALCULATOR

340 * c *** UPDATE THE OUTPUT OF THE STPI n0nux.E * 4 * * * * 4 * * * * * * + * * * * * * * * * *

360 ** C --- UPDATE PROCEDURE WHEN NOT TUNING ------------------I---------

10 OUTPUTZ-OUTPUT1
20 TRACKP=TRACKl

400 ENDIP
410 C
420 * IF (TUNING)
430 C

440 C --- UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #O --------------
450 C
460 * IF (A L G O)
470 CALCULATOR

10 iIP(-REVERSE)
20 : IF (INTEG)
30 OUTPUT2=OUTPWT2+RELAY.SICN*RELAY*#RATE.001
40 :ENDIF
50 :IF(-INTEG)
60 OUTPUTZQOPHEAN+RELAY.SIGN*RELAY
70 :ENDIP
80 :ENDIF
90 :IF(REVERSE)

100 :IF(INTEG)
110 OUTPUT2=OUTPUTZ-RELAY.SICN*RELAY*#RATE.001
120 :ENDIP
130 :IF(-INTEC)
140 OUTPUTZ=OPNEAN-RELAY.SIGN*RELAY
150 :ENDIP
160 :ENDIF
170 TRACKZ=#ON

480 ENDIP
490 C
500 * c --- UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #i --------------
510 * c
520 * IF (ALc1)
530 * CALCULATOR

10 OUTPUTZ=OUTPUTl
20 TRACKZ=TRACKl

540 ENDIB
550 C
560 C --- UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #2 --------------
570 C
580 * IF (ALG2)
590 * CALCULATOR

10 :IF(-ADAPT.FLAG)
20 xIP(PRBS.BIT0)
30 OUTPUTZ=OPMElW+OPDEV
40 :ENDIP
50 :IF(-PRBS.BIT0)
60 OUTPUTZ=OPHEAN-OPDEV
70 :ENDIF
80 TRACKZ=#ON
90 :ENDIF
100 rIF(ADAPT.FLAG)
110 OUTPUTZ=OUTPUTl
120 TRACKZ=TRACKl
130 :ENDIP

600 ENDXB
610 ENDIF
620 * * C
630 C --- LXMXT OUTPUT AND CHECK FOR INPUT LIMITING -------------------
640 C
650 CALCULATOR

10 OUTPUTZ.LINXT=#OFF
20 :IF(OUTPUT2<OPMIN)
30 OUTPUTZ=OPMIN
40 OUTPUT?I.LIHIT=#ON
5 0 TRACKZ=/ON
60 :ENDIP

151

70 I IF (OUTPUT2 W P W
80 OUTPUT2=OPW
90 OUTPUT2.LIHIT=#ON
100 TRACKZ=#ON
110 #ENDIF
120 :IF(TUNING)
130 :IF(OUTPUT2.LIHITI (fNPUT<rIPHIN) I (INPUT>=IPW))
140 TUNE.STAGE.l=#OFF
150 TUNE.STAGE.2=#OF?
160 TUNE.STAGE.3=#QFF
170 TUNE.STAGE.4rlOFP
180 ZEROX.COUNT=O
190 STATUS.BIT5-32
200 xENDI?
210 :ENDIF

660 C
670 * C
680 C * * * OUTPUT THE NEW ACTUATOR COMMAND SIGNRL .
690 C
700 C
710 ANOUT

DEVICE
IHITIAL
OUTPUT 1 OUTPUT2. .
z Ern 1 OPZERO..
SPAN 1 OPSPAN. .

720 * C
730 C
740 * C *** TUNING INITIALISATION PROCEDURES ***********.*******+********
750 c
760 C
770 IF (-ENABLE.OLD&ENABLE.NEW)
780 CALCULATOR

10 TUNINC=fON
20 STATUS.BIT0-0
30 STATUS.BIT1mO
40 STATUS.BITZ=O
50 SThTUS.BIT3=0
60 STATUS.BIT4rO
70 STATUS.BITS=O
80 STATUS.BIT6-0

790 IF (SELECT-0)
800 CALCULATOR

10 AU;O=#OI(
20 AL.Gl=#OP?
30 ALG2=#0FF

810 * ENDI?
820 c
830 C --- TUNING INITIALISATION PROCEDURE FOR ALGORITHM #O ------------
040 C
850 * - IF (ALGO)
860 CALCULATOR

10 REDUCE.ENABLE=lOFF
20 TUNE.COUNT=O
30 ZEROX. COUNT=O
40 ZEROX.TOTAL=O

60 R E L A Y . SIGNS1
70 :ENDIF
80 :IF(SETPOINT-INPUT<O.O)

50 :IP((SETWINT-INPUT)>~O.O)

3
2

152

90 RELAY. SIGNS-1
100 :ENDIP
110 I IF{ -1NTEC)
120 OPHEAN=OUTPUT2
130 :ENDIF

870 ENDIP
880 c
090 C --- NO INITIALISATION REQUIRED FOR ALGORITHM #l -----------------
900 * c
910 c --- TUNING INITIALISATION PROCEDURE FOR ALGORITHM #2 ------------
920 C
930 IF (ALG2)
940 CALCULATOR

10 OPMEAN=OUTPUTZ
20 TUNE. COUNT=O
30 E010
40 EVAR=O
so Y V A R m o
60 W N E = O
7 0 ADAPT.FLAG=#OFP
80 DIAGl=lOOO
90 DIAG2=1000
100 DIAG3=1000
110 DIAG4=1000
120 DIAG5=1000
130 DIAG6~1000
140 DIAG7=1000

950 * ENDIP
960 ENDIP
970 * C
980 c

1000 c
1010 c
1020 IF (TUNING)
1030 CALCULATOR PVERROR=SETPOINT-INPUT

990 C TUNING PROCEDURES .

1040 C
1050 c --- TUNING PROCEDURE FOR
1060 * C
1070 IF (-0)
1080 * C u c u u r n R

10 TUNE.COUNT=TUNE.COUNT+I
20 :IF(REDUCE.ENABLE)
30 :fP((:ABS(PVERROR)>PVDEV
40 RELAY.REDUCE=#ON
50 ZEROX.COUNT=O
60 :ENDIF
70 :IP(RELAY.REDUCE&ZEROX.COUNT>O)
80 RELAY.REDUCE=#OFF
9 4 STATUS.BIT2=4
100 RELAY=REDUCE.FACTOR*RELAY
110 :IP(RELAY<HYSTER)
120 STATUS.BIT3=8
130 :ENDIF
140 :ENDIP
150 :ENDIP
160 :IF(RELAY.SICN<O&PVERROR>HYSTER)
170 REDUCE.ENABLE=#ON
100 ZEROX.COUNT=ZEROX.COUNT+l
190 ZEROX.TOTAL=ZEROX.TOTAL+1

153

200 TUNE.DB-:ABS(PVERROR.MAX.OLD*ACCEPT/l00.0)
210 DONE~50+50*(1-:ABS(PVERROR.HAX-PVERROR.WX.OLD)/TUNE.DB)
220 rIF(DONE<O)
230 DONE-0
240 :ENDIF

2 60 PVMP*(P\fERROR.MAX-PVERROR.WIN.OLD)/2.0
250 ~I~(~ABS(PVERROR-WAX-PVE~OR.HAX.OLD)~TUNE~DB&ZEROX.COUNT~3)

2 70 PERfOD~(TUNE~COUNT+TUNE~COtRfT~OLD)'#RATE~OOl
280 DESSG#=#ON
290 tIF(-INTEG)
300 OuTPUT2=0PnEAN
310 : ENDIF
320 :ENDIF
330 PYERROR. WAX. OLD-PVERROR. WAX
340 PVERROR.MAX=O.O
350 TVNE.COUNT.OLD=TUPIE.COUNT
360 TvHg.COUNT-0
370 R6LAY.SICN-1
380 :ENDIF
390 :IP(RE~Y.SIGN,06rPVERROR<-WYSTER)
400 REDUCE.ENABLE=#ON
410 ZEROX.COUNT=ZEROX.MUNT+l
420 ZEROX.TOTAL=ZEROX.TOTAL+1
430 TUNG.DE=:ABS(PVERROR.HIN.OtD*ACCEPT/100)

450 : IP(DONE<O)
4 60 DONE-0
470 :ENDS?
480 tIF(:AES(PVERROR.NIN-PVERROR.WIN.OLD)~TUNE.DB&ZEROX.COUNT>3)
490 PVAMP=(PVERROR.W.OLD-PVERROR.MIN)/2.0
500 PERIOD=(TUNE.COUNT+TUNE.COUNT.0LD)*#RATE.001
510 DESIGN=#ON
515 rIF(-INTEG)
S16 OUTPUT2=OPMEAN
517 : ENDI?
520 :ENDIF
530 P'VERROR.XlN.OLD=PVERROR.HIN
5 40
550 TUNE.COUNT.OLD-TUNE.COUNT
560 TUNE. COUNT=O
570 RELAY.SICN=-l.O
580 :ENDIP
590 :IP(ZEROX.TOTAL>21)
600 DESICN=#ON
610 STATUS.BIT4=16
620 : E N D I t
630 :IF(PVERROR>PWRROR.MAX)
640 PVERROR.lUK=PVERROR
650 :ENDIP
660~:IP(PVERROR<PVERROR.HIN)
670 P\FERROR.HIN=PVER.ROR
680 :ENDIF

440 DONE~50+50*(1-:ABS{PVERROR.XfW-PVERROR.HIN.OLD)/TUNE.DB)

PVERROR . Wf N==O . 0

1090 ENDIF
1100 c

1120 * c
1130 * IP (-1)
1140 CALCULATOR

1110 c --- TUNING PROCEDURE FOR a M R I T M #1

10 :l?(:ABS(PVERROR)>THRESHL-TUNE.LOCK)
20 TUNE.LOCK=#ON

154

30 TUNE.STAGE.l=#ON
40 PVERROR. MAX-0.0
50 SENDIF
60 :IF(TUNE.STACE.l)
70
80
90
100
110
120
130
140
150
160
170
380
190
200
210
220
230
240
2 5 0
260

tIF(rABS(PVERROR)>xABS(PVEERROR.HAX))
FLAG.ERHAX=#OFP
PVERROR. MAX-PVERROR

: ENDIF
:IF(:ABS(PVERROR)<tABS(PVERROR.HAX)&-FLAC.ERHAX)
FLAC.ERNAX=#ON
FLAG.INIT=#ON

: ENDIF
:IP(FLAG.INXT)
FLAG.INIT-#OFF
TUNE.STAGE.Z=#ON
TUNE.STAGE.3=#OPF
TUNE.STAGE.4=#OFF
STATUS.BITS=O
TUNE. COUNT-0
TUNE.Rl=OVERSH/150.0
TUNE.RZ=TUNE.Rl/C
TUNE.Sl*O.O
TUNE.SZ=O.O

: ENDIP
270 :ENDIF
280 :IF(TUNE.STAGE.2&:ABS(PVERROR)<0.9*:ABS(PVERROR.XAX))
290 TUNE.STAGE.Z=#OFP
300 TUNE.STAGE.3=#ON
310 TUNE.TO=TUNE.COUNT
320 :ENDIP
330 :IF(TUNE.STAGE.3&:ABS(PVERROR)<0.5*:ABS(PVERROR.W))
340 TUNE.STAGE.3-#OFF
350 TUNE. STAGE. 4=#0N

370
380 TUNE. TL= 1
390 :ENDIP
400 TUNE.TZ=TUNE.COUNT+TUNE.ALPHA*TUNE.TL
410 TUNE.T3=TUNE.TZ+TUNE.BETA*TUNE.TL
420 TUNE.TQ=TUNE.T3+TUNE.GAMHA*TUNE.TL
4 30
440 :ENDIF
450 :IF(TUNE.STAGE.4)
460 :IF(TUNE.COUNT>=TUNE.T2&TUNE.COUNT<TUNEeT3)
470 TUNE.S~=TUNE.S~+PVERROR/PVERROR.MAX/TUNE.BETA/TUNE.TL
480 :ENDIF
490 :IF(TUNE.COUNT>=TUNE.T36iTUNE.COUNT<TUNE.T4)
500 TUNE.S~PTUNE.S~+(PVERROR/PVERROR.MAX+TUNE.R~)/TUNE.GAMHA/TUNE.TL
510 :ENDIF
520- :IF(TUNE.COUNT>=TUNE.T4)
530 TUNE.STAGE.l=#OFF
540 TUNE.STACE.4=#OFF
550 DESICN=#ON
560 DONE.FACTOR~(:ABS(TUNE.Rl)-:ABS(TUNE.Sl+TUNE.Rl))/:ABS(TUNE.Rl)
5 70 rIF(TUNE.Rl==O)
580 DONE.FACTOR=O.S
590 : ENDIF
600 DONE=SO+SO*DONE.FACTOR
610 rIF(DONE<O)
620 DONE=O

360 TUNE.TL=TUNE.COUNT-TUNE-TO
: IF (TUNE. TL< 1)

TUNE. TS=TUNE . T4+TUNE. T4

155

630 : ENDIF
640 ;ENDIF
650 :ENDIF
660 :IF(TUNE.LOCK)
670 TUNC.COUNT-TUNE.COUNT+l

690 TUNE. LOCK=/OPF
700 SENDIF
710 :ENDXI .

680 ;IP(TU~.COUNT>T~.TSC:ABS(PVgRROR)<THRESH)

1150 ENDIF
1160 4 C

1180 4 C

1200 * CALCULATOR

1170 4 C TUNING PROCEDURB FOR ALGORITHM /2
1190 4 IP (ALG2)

10 :IF(-ADAPT-PLAC)
20 TUNE. COUNTtTUNE . COUNT+l
30 :ENDIF

1210 * IF (TUNB.COUNT>S)
1220 4 CALCULATOR

10 TEMP-1
20 :IF(IREVERSE)
30 TEMP=-1
40 :ENDIP
50 #ADATA l(l,l]=-STPI.Yl
60 #ADATA 2(l,l]=Al
70 #ADATA 3 (1 , 1 J =DIAG1
80 fADATA 1 [1,2] =Ul*TEHP
90 #ADATA 2[1,2]=Bl
100 CADATA 3(1,2
110 #ADATA lilt3
120 ~ADATA 2[1,3
130 #AJMTA 3(1,3
140 CADATA 1(1,4
150 #ADATA 2[1,4
160 #ADATA 3[1,4
170 #ADATA l[1,5
iao #ADATA 211, s

=DIAG2
=U2 *TEMP
=B2
=DIAG3
43'TEWP
=E3
=DIAG4
-U4*TEWP
=E4

190 #ADATA 3[1,s)=DIAGS
200 #ADATA 1[1,6]=US*TEHP

220 #ADATA 3[1,6]-DIAG6
230 CADATA 1[1,7]=El
240 #ADATA 2(1,7)=Cl
250 #&DATA 3(1,7]=DIAG7

210 #ADATA 2(1,6]~85

1230 CALCULATOR EO=-STPI.YO
1240 4 FOR l., 7., l., J..
1250
1260 4 ENDPOR
1270 4, CALCULATOR

10 PERRnEO
20 :fF(TUNE,COUNT212)
30 TEMP=TUNE.COUNT-12
40 EVARo(EVAR*(TEMP-l)/TEMP)+(EO*EO/TEMP)

60 DONE=lOO*(l-EVAR/YVAR)
70 rIP(DONEC0)
80 DONE=O
90 :ENDIP

CALCULATOR EO+EO+#ADATA 1[1,J]*#ADATA 2(1,J]

5 0 W~R=(WAR*(TEHP-~)/TEHP)+(STPI.YO*STPI.YO/TEHP)

100 :ENDIF

156

1280 CALCULATOR
10 FJ-#ADATA 1[1,1]
20 VJ=#ADATA 3 (1 , 1) *PJ
30 AJ-l+(VJ*FJ)
4 0 CADATA 3[1,1]-#ADATA 3[1,1]/AJ/W(BDA
50 CADATA S[l,l]=VJ

70 KU-0
60 w-a

1290 * FOR 2., 7., l., J..
1300 * CALCULATOR

10 PJ=#AJJATA l[l,J]
20 J1m.J-1

1310 * FOR I., J1e-t I., 1.-
1320 * CALCULATOR

10 W=KP+l
20 FJ-PJ+(#ADATA l[l,I]*#ADATA 4[1,KF])

1330 ENDFOR
1340 CALCULATOR

10 VJxFJ'CADATA 3[1,J]
20 ALAST=AJ
30 AJ=ALAST+(VJ*FJ)
40 #ADATA 3[1,J]=#ADATA 3[1,J]*ALAST/AJ/I..AMBDA
50 #ADATA S[l,J]=VJ
60 PJa-FJ/ALAST

1350 FOR l., Jl.., I., I..
1360 CALCULATOR

10 KU=KU+l
20 TEHP=#ADATA 4(1,KU]+(#ADATA 5[1,I]*PJ)
30 #ADATA 5[1,I]=#ADATA 5[1,I]*(#ADATA 4[1,KU]*VJ)
40 #ADATA Q[l,KU]=TEMP

1370 * ENDFOR
1380 * ENDFOR
1390 FOR l., 7., le, J..
1400 * CALCULATOR

1410 ENDFOR
1420 CALCULATOR

10 AI=#ADATA 2[1,1]
20 Bl=#ADATA 2[1,2)
30 BZ=#ADATA 2[1,3]
40 B3=#ADATA 2(1,4]
50 B44ADATA 2[1,5]
60 BS=#ADATA 2[1,6]
70 Cl==#ADATA 2[1,7)
80 DIAGl=#ADATA 3[1,1]
90 DIAGZ=#ADATA 3[lr2]
100 DIAG3=#ADATA 3[1,3]
110 DIAG4=#ADATA 3[1,4]
120 DIACS=#ADATA 3[1,5]
13OSDIAG6=#ADATA 3[1,6]
140 DIAC7=#ADATA 3[1,7]

10 #ADATA 2[1,J]=#ADATA Z[l,J]-(#ADATA 5[1,J]*EO/AJ)

1430 CALCULATOR
10 :IF(-ADAPT.FLAG)
20 :IP(TUNE.COUNT>-TOTAL)
30 OUTPUTZ=OPUEAN
40 DESIGN=#ON
50 :ENDIF
60 :ENDIF
70 :IP(ADAPT.FLAC)
80 DESIGN=#ON

157

90 rtNDII
1440 ENDI?
1450 ENDIF
1460 ENDII
1470 * C
1480 C

1500 C
lSl0 c
1520 CALCULATOR

1490 C **t SHIFT DATA .

10 UO~ALPHA*Ul+(1-ALPHA)*(OUTPUTZ-OUTPUTZ.OLD)
20 ENABLE.OLD=ENABLE.NEW
30 1NPUT.OLD-INPUT
40 OUTPUT2.OLD-OWTPUTZ
50 STPX.Yl-STPI.YO
60 US-U4
70 04-U3
80 U3=U2
90 U2-Ul
100 Ul=UO
110 El=EO
120 PRBS.BITB.WEW=PRBS.BIT1*PRBS.BIT6
130 PRBS.BITO=PRBS.EITl
140 PRBS.BITl=PRBS.BIT2
150 PRBS.BIT2=PRBS.EIT3
160 PRBS.BIT3xPRBS.BIT4
170 PRBS.BITQ=PRBS.BITS
180 PRBS.BIT5=PRBS.BIT6
190 PFiBS.BIT6=PRBS.BIT7
200 PRBS.BIT7*PRBS.BIT8
210 PRBS.BITB=PRBS.BITB.NEW

1530 C
1540 * C
1550 t c + * e CONSTRUCT STATUS WORD .
1560 C
1570 C
1580 CALCULATOR

10 STATUS.BXT0-O
20 sIF(TUN1NG)
30 STATUS. BITO-1
40 :ENDX?
50 STATUS.BIT1-0
60 :IF(TUNE.LOCK)
70 STATUS.BIT1-2
80 :ENDIF
100 STATUS~STATUS~BITO+STATUS~BLT1+STATUS~BIT2+STATUS~~IT3+STATUS~~IT4+@

STATUS.BITS+STATUS.BIT6
1590 C
1600 * C

1620 * * C
1630 C
1640 IF (DESIGN)
1650 C

1670 * C
1680 CALCULATOR

1610 C * * e DESIGN PROCEDURES * * * * * * * * * t * * * * * i + * * * * * t * + * * * * * * * t * * *

1660 C --- CHECK OVERSHOOT

10 OVERSH.CHECK=OVERSH
20 :IF(OVERSH>OVERSH.HAX)
30 OVERSH.CHECK=OVERSH.MAX

158

40 :ENDIF
50 :IF(OVERSH<OVERSH.HIN)
60 0VERSH.CHECK-0VERSH.MIN
70 :ENDIF
80 ZETA=:LOG(OVERSH.CHECK/~~~.~)*:LOC(OVERSH.CHECK/~O~.~)
90 ZETA-:SQR(ZETA/(ZETA+#PI*#PI))
100 PHI-ZETA*100.0
110 THI=PHI*#PI/180.0

1690 C

1710 c
1720 IF (ALGO)
1730 CALCULATOR

1700 * C --- DESIGN PROCEDURE FOR U G O R I T m # O

10 :IF(-REWRSE)
20 PROP2-2.O*RELAY*PERIOD*:SIN(THI)/(/PI*#PI*PVAMP)
25 :IF(-INTEG)
26 PROP2=OVERSH.CHECK/100.0*4.O*RELAY/#PI/PVAMP
27 :ENDIF
30 :ENDIF
40 :IF(REVERSE)
50 PROP2=-2.O*RELAY*PERIOD*:SIN(THI)/(~PI*#PI*PVAMP)
55 :IF(-INTEG)
56 PROP2~-OVERSH.CHECK/100.0*4.OfREIAY/#PI/PVAMP
57 :ENDIF
60 :ENDIF
70 INT2=120.0*#PI/(PERIOD*:T~(THI))
75 :IF(-INTEG)
77 INT2-0
78 :ENDIF
80 TUNE.T5=4*INT2/#RATE.001/60

1740 ENDIF
1750 C
1760 C ---
1770 C
1780 IF (ALGl)
1790 * CALCULATOR

DESIGN PROCEDURE FOR AtGORITM #I

10 DESIGN.FACTOR.KC~(1-DONE.FACTOR)*(DESIGN.Kl*(TUNE.Sl+TUNE.Rl)+DESIGN.K2@
*TUNE.SZ)

20 :IF(:ABS(DESIGN.FACTR.KC)>o.2)
30 DESIGN.FACTOR.KCPO.~~DESIGN.FACTOR.KC/:ABS(DESIGN.FACTOR.KC)
4 0 :ENDIF
50 PROPZ=PROPl*(l+DESIGN.FACTOR.KC)
60 DESIGN.FACTOR.KI~(l-DONE.FACTOR)*(DESIGN.K3*(TUNE.Sl+TUNE.R1)+DESIGN.K4@

7 0 rIF(:ABS(DESIGN.FACTOR.KI)>O.2)
80 DESIGN.FACTOR.KI=0.2*DESIGN.FACTOR.KI/:ABS(DESIGN.~ACTOR.K1)
90 :ENDIP

'TUNE. S2)

100 INT2-INTZ*(l+DESIGN.FACTOR.K1)
110 :IF(-INTEG)
120 INTZ-0
130*:ENDIP

1800 * ENDIF
1810 * c

1830 C

1840 IF (-2)
1850 CALCUWTOR TEMP=O
1860 * FOR l . , S . , l., J..
1870 * CALCULATOR TEMP=TEHP+#ADATA 2[1,1+J]
1880 ENDFOR

1820 * c --- DESIGN PROCEDURE FOR RLGORITW #2 --------------I------------

159

1890 * IF (TLWP<O)
1900 * CALCULATOR STATUS.BIT6r64
1910 ENDIF
1920 CALCULATOR

10 INT2=60*(l+fADATA 2[1,l))/#RATE.001
20 tIF(INT2<O)
30 INT2-0
40 :ENDIP
50 TANPHI=:TAN(PHI*fPI/180)
60 WT.HIGH=IPI
70 WT.LOW=#PI/lOO
80 WT.INC=(WT.HIGH-WT.LOW)/lO

1930 FOR 1.1 2.r 1.1 PASS..
1940 CALCULATOR

10 WT.o=wT.u)(J
20 WT. PLAC=#OPF

1950 * FOR WT-LOW., WT.HIGH., WT.INC., WT..
1960 CALCULATOR

10 A=:SXN(WT)/(l-:COS(W))
20 IMAG=#ADATA 2[1,2)*:SIN(WT)
30 REAL-IADATA 2(1,2]*:COS(WT)

1970 FOR 2.8 5.8 1.1 J..
1980 CALCULATOR

10 IMAG-IMAG+#ADATA 2(1,J+l]*:SIN(J*WT)
20 REAL=REAL+#ADATA 2[1,J+l]*:COS(J*WT)

1990 * ENDFOR
2000 CALCULATOR

20 LHSn-(A+B)/(l-A*B)
30 RHSzTANPHI
40 8 IF (LHS<RHS)
50 WT.FLAG=#ON
70 :ENDIF
80 sIF(-WT.PWIC)
90 wT.o=WT

10 B=IHAC/REAL

100 :ENDIF
2010 * ENDFOR
2020 CALCULATOR

10 WT.HIGH=WT.O+WT.INC
20 WT.Low=wT.o
30 WT.IHC~(WT.HIGH-WT.LOW)/lO

2030 * ENDFOR
2040 CALCULATOR

10 IMAC-:SIN(WT.O)
20 REALsl- : cos (WT. 0)
30 NAGN.DEN~:SQR(REAL*REAL+IHAG*IHAC)
40 IMAG=#ADATA 2[1,2]*:SIN(WT.O)
50 REAL=#ADATA 2[1,2)*:COS(Wr.O)

2050 FOR 2., 5 . , l., J..
2060 *- CALCULATOR

10 IHhC-fMAG+fADATA 2[1,J+l]*:SXN(J*WT.O)
20 REAL=REAL+#ADATA 2(1,J+l]*:COS(J*WT.O)

2070 ENDFOR
2080 CALCULATOR

10 HAGN.HOM=:SQR(REAL*REAL+XHAG*IHAC)
20 HAGN=MAGN.NUH/UAGH.DEN
30 PROPZ=l/llAGN
40 rI?(REVERSE)
50 PROP2x-PROP2
60 :ENDIF

2090 ENDIF
2100 c
2110 c --- UPDATE CONTROLLER GAINS ----------------
2120 c
2130 CALCULATOR

30 DESIGN-#OFF
20 rII(UPDATB)
30 PROPl=PROPZ
40 INT1-INT2
50 rENDI?
60 :IF(SELECT==O)
70 :IP(ALCO)
80 AI&O=#OFP
90 ALGl=#ON

100 :ENDIP
110 :ENDIP
120 rIP(SELECT=-1)
130 TUNINC=#OFF
140 :ENDIP
150 :IP(SELECT==3)
160 :IF(ADAPTIVE)
170 ADAPT. FLAG=#ON
180 :ENDIP
190 :IF(-ADAPT.FLAG)
200 TUNING=#OFP
210 :ENDIP
220 :ENDIP

2140 ENDIF
*TASK 9
10 C OUTPUT VALUES TO PC USING LOCGER MODULE
20 * TIMER

INPUT TIUER.PULSE.
SETPOINT s.0000000
RESET RESET.TIUER.DATA
TIXE DATA.TIMER.TIME
OUTPUT-1 TIUER.OUTPUT.1
OUTPUT-2 0UTPUT.SAMPLE.

30 IF (TIUER.OUTPUT.1)
40 * CALCULATOR
10 TIMER.PULSE=#OFF

50 * ENDIF
60 * IF (0UTPUT.SAUPLE)
70 LOGGER

PORT 2,0000000
UODE #OFF..
FORMAT 9.0000000
LIST 9.0000000

10 TIMER.PULSE=#ON
80 CALCULATOR

90 *, ENDIF
*TASK 10

1 IF (SIM==O.O)
2 * C PURE INTEGRATING PROCESS SIMULATION (SIMO)
5 . c

10 * C GET OUTPUT FROU THE SELF TUNING CONTROLLER
20 ANIN

DEVICE 1
INITIAL 1
INPUT 1 2..
ZERO 1 2 . ZERO.

161

s PAN 1 Z.SPAN.
25 C
30 * C *** BEGINNING OF PROCESS SIMULATION MDI:
40 CALCULATOR

SO * INTEGRATOR
10 YPDOT=KP*(Z+ZL)

INPUT YPDOT..
RESET SYSXNXT. -
ZERO 0.0000000
SPAN 1.0000000
OUTPUT YP..

52 * C BOUND THE PROCESS BETWEEN ITS UPPER AND LOWER LIMITS
55 * CALCULATOR

10 IIF(YP>YP.MbX)
20 YP=YP.uAx
30 :ENDIF
40 rIP(YWYP.HIN)
50 YP-XP.MIN
60 :ENDIF

60 C UPDATE ARRAY USED TO SIMULATE DEADTIME
80 CALCULATOR

10 zIF(COUNT<=200)
20 #ADATA 6[COUNT]-YP
30 COUNT=COUNT+l
40 SENDIF
50 rIF(COUNT>2OO)
60 COUNT=l
70 :ENDIF

95 C CALCULATE DELAYED INPUT
110 CALCULATOR

10 K~COUNT-(l/#RATE.OIO*TAU.DEL)-1
20 rIF[K<l)
30 K=K+200
40 :ENDIF
50 YD=#ADATA 6[K]
60 Y=YD+NOISE

112 C *** END OF PROCESS SIMULATION CODE
113 * C
115 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
120 ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y. .
ZERO 1 Y.ZER0.
SPAN 1 Y.SPAN.
TRACK 1 X.TRK.
RESET 1 Y.RES.

130 ENDIF
'TASK 11

5 *-IF (SIH==l.O)
10 * C FIRST ORDER PROCESS SIMULATION (SIH1)
20 c
25 C CODE TO RESET SYSTEX
30 CALCULATOR
10 rIF(SYSIN1T)
20 PROC. INIT=#ON
30 LOAD. INIT=#ON
40 :ENDIF

40 * C
50 C GET OUTPUT FROM THE SELF TUNING CONTROLLER

162

1
1

60 ANIN
DEVICE
INITIAL
INPUT 1 z . .
ZERO 1 2 .ZERO.
SPAN 1 Z.SPAN.

10 c
80 C *** BEGINNING OF PROCESS SIHULATION CODE
82 C
83 * C CALCULATE MAD DISTURBANCE
85 * CALCULATOR

10 rIP(TAU.L<O.S)
20 TAU.L=O.S
30 :ENDIF
40 ZLDOT=(ZL.IN-ZL)/TAU.L

INPUT ZLDOT..
RESET LOAD. INIT.
OUTPUT ZL..

87 * INTEGRATOR

88 C CALCULATE NEW PROCESS VALUE
90 * CALCULATOR
10 :IF(TAU.P<.5)
20 TAU.P-.5
30 :ENDIP
40 YPDOT=(KP*(Z+ZL)-YP)/TAU.P

INPUT YPDOT..
RESET PROC-INIT.

100 INTEGRATOR

ZERO 0.0000000
SPAN 1.0000000
OUTPUT YP..

110 * C UPDATE ARRAY USED TO SIHULATE DEADTIME
120 * CALCULATOR

10 :IP(COUNT<=200)
20 #ADATA 6[COUNT]=YP
30 COUNT=COUNT+l
40 :ENDIF
50 rIF(COUNT>ZOO)
60 COUNT-1
10 :ENDIF

130 * C CALCULATE DELAYED INPUT
14Q CALCULATOR

10 A*COUNT-(l/#RATE.011*TAU.DEL)-l
20 rIF(K<l)
30 K=K+200
40 :ENDIP
5 0 YD=#ADATA 6[K]
60 Y=YD+NOISE

150 C *** END OF PROCESS SIMULATION CODE
160 C
110 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
180 * ANOUT

DEVICE
INITIAL
OUTPUT 1 Y..
2 ERO 1 Y. ZERO.
SPAN 1 Y.SPAu.
TRACK 1 Y.TRK.
RESET 1 Y.RES.

190 ENDIF

3
1

163

*TASK 12
5 IF (SIW-2.0)
10 C SECOND ORDER PROCESS SIHULATION (SIH2)
20 * c
25 C CODE TO RESET SYSTEW
30 CALCULATOR
10 rIF(SYSIN1T)
20 PROCl. INIT=#ON
25 PROC2. INIT=#ON
30 MAD. INIT=#ON
40 :ENDIP

4 0 C
50 C GET OUTPUT F R W THE SELF TUNING CONTROLLER
60 ANIN
DEVICE 1
INITIAL 1
INPUT 1 z . .
ZERO 1 Z.ZERO.
SPAN 1 2. SPAN.

7 0 C
80 * C *** BEGINNING OF PROCESS SfHULATION CODE
82 C
83 C CALCULATE LOAD DISTURBANCE
85 * CALCULATOR
10 tIF(TAU.L<O.S)
20 TAU.L=O.S
30 :ENDI?
40 ZLDOTs(ZL.IN-ZL)/TAU.L

INPUT ZLDOT..
RESET LO-. I N I T .
OUTPUT Zt..

87 INTEGRATOR

88 4 C CALCULATE NEW PROCESS VALUE
90 CALCULATOR
10 tIP(TAU.Pl<.S)
20 TAU.Plr.5
30 :ENDIF
40 :IF(TAU.Pz<.S)
SO TAU.P2-.5
60 :ENDIF
70 XlDOT=X2
80 XZDOT~-(Xl/(TAU.P1*TAU.P2))-((TAU.Pl+TAU.P2)*XZ/(TAU.Pl+TAU.P2))+(KP*(~@

+ZL)/(TAV.Pl*TAU.P2))
100 * INTEGRATOR

INPUT XlDOT..
RESET PROCl.INIT.
ZERO 0.0000000
SPAN 1.0000000
OUTPUT X I . .

INPUT XZDOT..
RESET PROCZ.INIT*
ZERO 0.0000000
SPAN 1.0000000
OUTPUT x2..

105 4 - INTEGRATOR

110 C UPDATE ARIViY USED TO SIMULATE DEADTIME
120 * CALCULATOR

10 :IF(COUNT<-POO}
20 iADATA 6(COVNTI-X1
30 COUNT=COUNT+l

164

4 0 rENDI?
50 :IF(COUNT>2OO)
60 COUNT=l
70 rENDI?

130 C CALCULATE DELAYED INPUT
140 * CALCULATOR

10 K=COUNT-(l/IRATE.Ol2*TAU.DEL)-l
20 xIF(ltC1)
30 K=K+200
40 xENDIF
5 0 YD-#ADATA 6[K]
60 Y=YD+NOISE

150 C * * * END OF PROCESS SIMULATION CODE
160 * C
170 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
180 * ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y . .
ZERO 1 Y . ZERO.
s PAN 1 Y * SPAN.
TRACK 1 Y.TRK.
RESET 1 Y.RES.

190 ENDIP
*TASK 13

5 IF (SIM-3.0)
10 C BOILER PROCESS SIMULATION WITH INVERSE RESPONSE (SIM3)
20 c
30 C CODE TO RESET SYSTEM
40 CALCULATOR

10 :IF(SYSINIT)
20 PROCl.INIT=#ON
30 PROCZ.INIT=#ON
40 :ENDIP

50 c
60 C GET OUTPUT FROM THE SELF TUNING CONTROLLER
70 ANIN

DEVICE 1
INITIAL 1
INPUT 1 2..
ZERO 1 2. ZERO.
SPAN 1 2.SPA.N.

80 C
90 C *** BEGINNING OF PROCESS SIMULATION CODE
95 C CALCULATE LIQUID LEVEL WRT FEEDWATER
100 * CALCULATOR

110 * INTEGRATOR
10 Y2DOT=KPZ*(Z+ZL)

INPUT YZDOT..
RESET PROC2.INIT.

SPAN 1 * 0000000
OUTPUT Y 2 . .

ZERO 0.0000000

120 * C BOUND THE FEEDWATER PROCESS BETWEEN ITS UPPER AND LOWER LIMITS
330 CALCULATOR

10 rIF(Y2>YZ.MAX)
20 Y2-YZ.HAX
30 :ENDIF
40 tIF(YZ<YZ.MIN)
50 Y2-YZ.HIN

165

60 tBNDI?
135 * C CALCULATE LIQUID L E M L WRT HEAT SUPPLY
140 * CALCULATOR

10 :X?(TAU.Pl<.S)
20 TAU.Plm.5
30 :ENDIF
40 YlDoT~((KPl*(Z+ZL))-Yl)/TAU.P1

INPUT YlDoT.
RESET PROCl.IN1T.
ZERO 0 .) 0000000
SPAN 1. QOQOOOO
OUTPUT Yl..

150 INTECRXFOR

160 C CALCULATE OVERALL RESPONSE & UPDATE ARRAY USED To SIMULATE DEADTIME
170 * CALCULATOR

5 YP=YZ-YI
10 rIF(COUNTc-200)
20 fADATA G[COVNT]=YP
30 COUNT=COUNT+l
40 :ENDIF
50 iIF(COUNT>200)
60 COUNT-1
70 :ENDIF

180 C CALCULATE DELAYED INPUT
190 * CaCULATOR

10 X=COUNT-(1//RATE.013*TAU.DEL)-l
20 :IF(K<l)
30 K=K+ZOO
40 :ENDIF
50 YD=#ADATA 6(K]
60 Y=YD+NOISE

200 * C *** END OF PROCESS SIHUWLTION CODE
210 * c
220 * C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
230 * ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y. .
ZERO 1 Y. ZERO.
SPAN 1 Y.SPAN.
TRACK 1 Y.TRX.
RESET 1 Y.RES.

240 ENDIP
'TASK 14

5 IF (SIK-=4.0)
10 C PROCESS SIMULATION WITH INVERSE RESPONSE (SIN4)
20 ' c
30 ' C CODE TO RESET SYSTEM
40 * CALCULATOR
10- rIF(SYS1NIT)
20 PROCl.INIT=#ON
30 PROC2. INIT=#ON
40 rENDIF

50 c
60 * C GET OUTPUT FROM THE SELF TUNING CONTROLLER
7 0 * AHIN
DEVICE 1
INITIAL 1
INPUT 1 2..
ZERO 1 2. ZERO.

166

SPAN 1 Z.SPAN.
80 c
90 C *** BEGINNING OF PROCESS SIMULATION CODE
100 * C CALCULATE SLOWER PROCESS WITH DIRECT-ACTING RESPONSE
110 CALCULATOR

10 :IF(TAU.P1<.5)
20 TAU.Pl=.S
30 :ENDIF
40 YlDoT=((KPl*(Z+ZL))-Yl)/TAU.Pl

INPUT YlDOT..
RESET PROC1.INIT.
ZERO 0. OOOQQOO
SPAN 1.0000000
OUTPUT Y l . .

120 INTEGRATOR

130.. C CALCULATE FASTER PROCESS WITH INVERSE RESPONSE
140 CALCULATOR

10 :IP(TAU.P2<.5)
20 TAU.PZ1.5
30 :ENDIP
40 Y2DoT~((KP2f(Z+ZL))-YZ)/TAU.P2

INPUT Y2DOT..

ZERO 0. OOOQOQO
SPAN 1. OQOOOOO
OUTPUT Y2..

150 INTEGRATOR

RESET PROCZ.INIT*

160 C CALCULATE OVERALL RESPONSE & UPDATE ARRAY USED TO SIMULATE DEADTIME
170 CALCULATOR

5 YP-Yl-YS
10 :IP(COtJNTX=2OO)
20 CADATA S[COUNT]=YP
30 COUNT=COUNT+l
40 :ENDIP
50 :IP(COUNT>ZOO)
60 COUNT=l
IO :ENDIP

180 C CALCULATE DELAYED INPUT
190 CALCULATOR

10 K=COUNT-(l/#RATE.014+TAU.DEL)-l
20 :IF(K<l)
30 K-K+ZOO
40 :ENDIP
50 YDzCADATA 6[K]
60 Y=YD+NOISE

200 C *++ END OF PROCESS SIMULATION CODE
210 * c
220 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
230 ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y . .
ZERO 1 Y. ZERO.
SPAN 1 Y.SPAN.
TRACK 1 Y.TRK.
RESET 1 Y.RES.

240 * ENDIP
+TASK 15

5 * IF (SIX==5.0)
10 C SYSTEM WITH VARIABLE TIME CONSTANT AND DELAY (SIH5)

167

20 c
30 * C CODE TO RESET SYSTEn
40 CALCULATOR

10 tIF(SYSIN1T)
20 PROC. INIT=#ON
30 LOAD. INIT=#ON
40 rENDIF

50 c
60 C GET OUTPUT PROH THE SELF TUNING CONTROLLER
70 ANIN
DEVICZ 1
INITIAL 1
INPUT 1 2. .
ZERO 1 Z ZERO.
SPAN 1 Z.SPAN.

80 c
90 C *** BEGINNING OF PROCESS SIHVIJITION CODE
100 * CUICVLATOR

10 Q2=(Z+ZL)
20 C I N * ((S I W . C l t Q l) + (S I n . c 2 * Q 2)) / (q l + Q 2)

110 C UPDATE ARRAY USED TO SIMULATE DEADTIME
120 * CALCULATOR

10 :IF(COUNT<=200)
20 #ADATA 6[COUNT]=CIN
30 COONT=COUNT+l
40 :ENDIF
50 :IF(COUNT>2OO)
60 COUNT-1
70 :ENDIF

130 C CALCULATE DELAYED INPUT CONCENTRATION
140 * CALCWTATOR

5 TAU.DEL=VD/(Q1+92)
10 K~COUNT-(l/#RATE.olS*TAU.DEL)-l
20 rIF(K<l)
30 K=K+200
40 :ENDIF
50 CIN.PRIIIE=#ADATA 6 [K]

150 C CALCULATE N E W CONCENTRATION
160 * CALCULATOR

10 TAU.P==VM/(Ql+QZ)
2 0 CDOT=((KP*CIN.PRIME)-SIH.C)/TAU.P

INPUT CDOT..
RESET PROC. INIT.
ZERO 0.0000000
SPAN 1.0000000
OUTPUT S1H.C.

170 * INTEGRATOR

180 CALCULATOR Y=SIM.C+NOISE
190 C *** END OF PROCESS SIMULATION CODE
200 ? c
210 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
220 * ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y..
ZERO 1 Y. ZERO.
SPAN 1 Y.SPAN.
TRACK 1 YTTRK.
RESET 1 Y.RES.

240 ENDIF

*TASK 16
5 I? (SIX-6.0)
10 C SECOND ORDER PROCESS SIMULATION ALLOWING COMPLEX POLES (SIM6)
20 * c
25 * C CODE TO RESET SYSTEM
30 CALCULATOR

10 rIP(SYSIN1T)
20 PRoCl.INIT=#ON
25 PRoC2.INIT*#ON
30 MAD. INIT-#ON
40 rENDI?

40 * C
50 * C GET OUTPUT FROM THE SELF TUNING CONTROLLER
60 ANIN

DEVICE 1
INITIAL 1
INPUT 1 2. .
ZERO 1 Z. ZERO.
SPAN 1 Z.SPAN.

70 * C
80 * C * * * BEGINNING OF PROCESS SIMULATION CODE
82 * c
83 * C CALCULATE LOAD DISTURBANCE
85 f CALCULATOR

10 rIF(TAU.L<O.S)
20 TAU.L-0.5
30 :ENDIP
40 ZLDOT=(ZL.IN-ZL)/TAU.L

INPUT ZLDOT..
RESET LOAD. INIT.
OUTPUT ZL..

87 INTEGRATOR

88 C CALCULATE NEW PROCESS VALUE
90 CALCULATOR

10 XlDOT-X2
20 XZDOT~-((WN**2)*X1)-(2.*ZETA.SIM*WN*XZ)+(KP*(WN**2)*(Z+ZL))

100 INTEGRATOR
INPUT XlDOT..
RESET PROC1.INIT.
ZERO 0.0000000
SPAN 1.0000000
OUTPUT Xl..

INPUT X2DOT..
RESET PROC2.INIT.
ZERO 0.0000000
SPAN 1.0000000
OUTPUT x2..

105 * INTEGRATOR

110 C UPDATE ARRAY USED TO SIMULATE DEADTIKE
120 * CALCWTOR

los : IP(COUNT<=200)
20 #ADATA 6 [COUNT] -Xl
30 COUNT=COUNT+l
40 :ENDIF
50 :IF(COUNT>ZOO)
60 COUNT=l
70 :ENDIF

130 * C CALCULATE DELAYED INPUT
140 CRLCULATOR

10 K=CoUNT-(l/fRATE.Ol6*TAU.DEL)-l

169

20 rIF(Kc1)
30 lr;-?i+200
40 rENDIt
50 YD=#ADATA 6[K]
60 Y-YD+NOISZ

1 5 0 C *** END OF PROCESS SIWUUTION CODE
160 C
170 C OUTPUT PROCESS V U U E TO SELF TUNING CONTROLteR
180 MOOT

DEVICE 3
INITIAL 1
OUTPUT 1 Y..
ZERO 1 Y . ZERO.
s PAN 1 Y.SPAN.
TRACK 1 Y .TM.
RESET 1 Y.RES.

190 ENDXP
*LIST 1

10 ENABLE..
20 SELECT..
30 REVERSE..
40 OVERSW..
SO SETPOINT..
60 INPUT..
7 0 OPMAX..
80 OUTPUT2..
90 OPMIN..

100 PROPI..
110 I N T 2 . .
120 STATUS..
130 DONE..

*LIST 2
10 PMEV..
20 R E L A Y . .
30 INTEC..
40 ACCEPT..
50 HYSTER..
60 PVAMP..
7 0 PERIOD..
80 TURESH..

10 OPrnAN..
20 OPDEV..
30 TOTAL..
4 0 ACPIU..
5 0 LAUBDA..
60 PERR..
70 ADAPTIVE..

*LIST 4
10 A?..
20 D I A C l . .
3 0 E l . .
40 DIAG2..
50 8 2 . .
60 DIAG3..

80 DIAGQ..
90 B4..
100 DIAGS..
110 B5..

*LIST 7

70 83 . .

170

120 DIAC6..
130 Cl..
140 DIAC7..

*LIST 9
10 2..
15 ZL..
17 NOISE..
20 Y . .
30 #TIWE.007.

*A-ARRAY 1 RW (7 , 1)
*A-ARRAY 2 RW (7 , 1)
*A-ARRAY 3 RW (7, 1)
*A-ARRAY 4 RW (21, 1)
*A-ARRAY 5 RW (7, 1)
*A-ARRAY 6 RW (200, 1 1
*A-ARRhY 10 RW (15, 4)
*FORHAT 9
10 PS.2,1X,P5.2,1X,F5.2,1X,F5.2,lX812,/

APpendixc

MATLAB PERFORMANCE ANALYSIS AND PLOTIWG ROUTINES

APPENDIX C

% MOD1FY.M

% Before using this program, run an external QB program to strip header
% and timestamp info from the GENESIS testXXX.pm output file, using the
% !striphdr command.

% Ask user which test file data to use load the file to matrix testXXX

num=input(’Enter Test No. to modify : ’,’s’);
testnum=l)test*,num);
filename=[testnum,’.mod’];
eval([’load ’,filename])

% Transpose the testXXX matrix and convert it to a long vector

testx=evai([’test’,num])’;
testv=testx(:);

% Find out how many complete data records there are

k =fw(iength(testv)/5);

% Put data into the appropriate vectors

for j=O(k-1)
% th(j+l)=testv(j+8+1);
% tm(j + 1) = testvCj*8+2);
% ts(j+l)=testv(j*8+3);

ipo + 1) = testv(j*5 +2);
op0+l)=testv(j*5+3);
p(i + 1) = testv(j*S +4);
io+ 1) = testv(j*S +5);

sp(j+l)=testv(j*5+1);

end

% Create ’proc’ and ’cont’ arrays needed for plotting

Pr~P=rsp;ip;opl;
proc = procp’;
contp= Ip;i];
a n t =contp’;

173

174

% Display the data

datap = [ip;sp;op;p;i];
data=datap';

% DEl3ATAX.M

start=input('Enter First Sample Number €or Plotting: ','s');

last=input(' Enter Last Sample Number for Plotting: ','s');

datax=data(eval(start):eval(last),:);

175

% EVALCRXT.M

start1 =input('Enter Criteria Starting Sample Number: ','s');

last1 =input(' Enter Criteria Ending Sample Number: ','s');

datay=da ta(eval(start l):eval(last l),:);

n = fii(length(datay));

iae=0;
ise=o;
itae=Q

€or j=l:a
iae = iae + abs(datay(j,l) - datay(j,2));
ise = ise + (datayCj,l) - datay(j,2)) 2;
itae= itae+ j * abs(datay(j,l) - datay(j,2));

end

1 76

% LA3EL.M

% M A W routine to plot and label measurement vs.
% setpoint, controller output, and controller PI
% parameter plots (without performance criterion)
yo _-__-__.._----___-*_” __-_____--_____---__________

eval([’dele te ’,test nu m,’.met ‘1)

clg
plot(datax(:, 1:2))
title([’Measurement vs Setpoint (’,testnum,’)’])
xlabel(’Samp1e Number’)
ylabel(’Percent’)
% text(100,90,[’ WE = ’,num;?str(iae)])
% text(lO0,85,[’ ISE = ’,nurn2str(ise)J)
% text(100,80,[’ITAE = ’,numhtr(itae)])

eval([’meta ’’testnum])
pause
clg

plot(datax(:,3))
title([’Controller Output’])
xlabel(’Samp1e Number’)
ylabel(‘Percen t ’)

meta
pause
C k

plot (d atax(:,4:5))
title((’Chntro1Ier PI Parameters’])
xlabel(’Samp1e Number’)
ylabel(’Gain and RepeatsMinute’)

meta

177

% LABELCRLM

mal([’delete ’, testnum,’.rnet’f)

clg
plot (da tax(:, 1~2))
title([‘Measurement vs Setpoint (’,testnum,.)’])
xlabel(’Sarnp1e Number’)
ylabel(’Percen t ’)
text(.72,.85,[’ LAE’],’sc’)
text(.82,.85,[num2str(iae)],’sc’)

text(.72,.8,[’ ISE’],’sc’)
text(.82,.8,(num2str(ise)],’sc’)
text(.79,.8,[’=’],’sc’)
text(.72,.75,[’iT~E’],Hc’)
text(.82,.75,[num& tr(itae)],’sc’)

text(.79,.85,1‘= ’pc’)

text(.79,.75,[’=’],’sc’)

eval([’meta ’,testnumJ)
pause
clg

plot(datax(:J))
title((’Contro1ler Output’])
xlabel(’Samp1e Number’)
ylabel(‘Percent’)

plo t(da tax(:,4:5))
title([’Controller PI Parameters’])
xlabeI(’Samp1e Number’)
yIabel(’Gain and RepeatsMinute’)

meta

178

' STRIPHDR.BAS

' Microsoft QuickBASIC ver 4.0 program designed to:
' (1) input a GENESIS testXXX.pm data file,
' (2) strip the header and timestamp information, and
' (3) output the data to a testXXX.mod file

*
____-_----_------_c------------------------_---_---

' ____-_-__-____-_-_-------------__-_-------"--------

INPUT T e s t File to modify: ", FileNamelS
INPUT 'Name of Output file: *, FiIeNameB

OPEN FdeNamelS FOR INF'UT AS #1
OPEN FiJeNarneS FOR OUTPUT As #2
IF FdeNarnelS = " THEN END

CONST QUOTE = 34, COLON = 58

' Skip the header info
F O R I = l T O 7

NEXT
LINE INPUT #1, LineBufferS

' Keep modiFying as long as there are enough bytes left in
' the file.

DO UNTIL EOF(1)

Characters = INPuTs(1, #1)
CharVal = ASC(CharacterS)

SELECT CASE CharVal
CASE QUOTE

Characters = INPuTs(1, #I)
CharVal = ASC(CharacterS)
DO UNTIL CharVal = QUOTE

Characters = INPUTS(1, #1)
CharVal = ASC(CharacterS)

LOOP

PRINT #2, Characters;
CASE ELSE

END SELECT

LOOP

CLOSE #1

CLOSE #2

Appe*D

MATJ3CAD ROBUSTNESS ANALYSIS ROUTINES

APPENDIX D

This file is ueed to determine the robustnees of a control eyetem by
indicating the amount the plant gain and deadtime may be increased
before the oneet of instability. The algorithm simply finde the gain
factor K and deadtime that yield8 zero phaee margin. File Robust1.mcd

F i r g t , deacribe the known plant and controller in the s domain

2.147
K t - 1 1 i- 5 T := 20 K := .7103 K := -
P C i 6 0

Plant WO Deadtime Controller

K
P

r e a + 1
G (6) 8'

P

Phase

Maqnitude

9

M

G (6) := K
C C

[. + ;]

M a nitude Phaee

2 0 * log E" [w,]] IO
- 4 0 - 2 . r

0.001 w 10
n

A linear aearch i s ueed to find the frequency where
phaee=-llO degree8

Supply an initial guesa 0 := . 5
Then find the frequency w h e r e phaee margin i s zero

Given

0 . ~ 0 1 w 10
n

0 := Find(O)
2

0 = 0.116
z

181

182

Now compute t h e g a i n l i m i t t h a t c a u s e s zero phase margin

K := - 1

"E 1 1

K = 1 . 5 5 5
1

T h e d e a d t i m e l i m i t c a n aleo b e f o u n d . W e f i r e t f i n d t h e z e r o
db c r o s e i n g f r e q u e n c y

S u p p l y a queen o f z e r o db c r o s e i n g f r e q u e n c y

G i v e n

M(O) * 1

0 := Find(W)

W = 0 . 0 3 5
z

2

T h e d e a d t i m e l i m i t c a n t h e n be computed

T :=
1 0

2

0 1' .001

T = 4 1 . 9 9 4
1

183

Thie fi
indicat
before
factor

le is ueed to determine the robuetnosr of a control syetem by
ing the amount the plant gain and deadtime may be increased
the onset of inetability. The algorithm eimply finds the gain
K and deadtime that yields zero phase margin. Pile Robuet.mcd

First, describe the known plant and controller in the e domain

wn I - . 2 X := 2 . 5

Plant WO Deadtime

2
wn

G (e) t -
P 2 2

e + 2d)r.wn.s + wn

Phaee

Magnitude

2.214
K I = 3.093 x := -

C i 60

Controller

---I C (e) := K
C E

I (j . O) . G (J . O)
C

-60
0.001 w 10

n

Phaee

- 2 - R

Supply an initial gueae 0 := . 5
Then find the frequency where phase margin is zero

Given

0 := Find(W)
z

0.001 w 1 0
n

a
0 = 2 . 7 4 2 . 1 0
z

184

Now compute t h e g a i n l i m i t t h a t c a u s e 8 zero p h a s e m a r g i n

K :=
1

"K 1 1

17
K = 6 . 0 7 8 - 1 0
1

The d e a d t i m e limit c a n also b e f o u n d . We f i r e t f i n d t h e zero
d b c r o e e i n g f r e q u e n c y

S u p p l y a g u e e s o f zero d b c r o s s i n g f r e q u e n c y w := .001

G i v e n

x (o) - 1

0 :- P i n d (O)

0 = 0 . 1 2 7
z

L

The d e a d t i m e l i m i t c a n t h e n b e computed

T = 1 1 . 6 4 4

INTERNAL DISTRIBUTION

1. H. R. Brashear
2. C. L. Carnal
3. B. C. Duggins
4. B. G. Eads
5. D. N. Fry
6. 3. M. Googe
7. S. S. Gould
8. S. E. Groothuis
9. D. W. McDonald

10. D. K. Mee
11. D. R. Miller
12. R. E. Neal
13. T. E. Rowe

14. J. 0. Stiegler
15. P. C. Turner

16-20. P. A. Tapp
21. R. E. Uhrig
22. B. Chexal, Advisor
23. V. Radeka, Advisor
24. R. M. Taylor, Advisor

25-26. Central Research Library
27. Y-12 Technical Reference Section

28-29. Laboratory Records Dept.
30. Laboratory Records ORNL-RC
31. ORNL Patent Section
32. I&C Publications Office

33. Assistant Manager for Energy Research and Development, U.S. Department of
Energy, Oak Ridge Field Office, P.O. Box 2001, Oak Ridge, TN 37831-8600.

34-35. Office of Scientific and Technical Information, U.S. Department of Energy,
P.O. Box 62, Oak Ridge, TN 37831

36. C. S. Cox, Control Systems Centre, School of Electrical Engineering and Applied
Physics, Sunderland Poiytechnic, Sunderland, England, SRl 3SD

37. G. 3. Hill, Bristol-Babcock Ltd., Vale Industrial Estate, Stourport Road,
Kidderminster, DY11 7QP, Worchestershire, England

38. Jim Pettit, Bristol-Babcock, Inc,, 1100 Buckingham St., Watertown, CT 06795

185

