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ABSTRACT

A brief overview of adaptive control methods relating to the design of self-tuning
proportional-integral-derivative (PID) controllers is given. The methods discussed
include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control
systems. Several process identification and parameter adjustment methods are discussed.
Characteristics of the two most common types of self-tuning controllers implemented by
industry (i.e., pattern recognition and process identification) are summarized. The
substance of the work is a comparison of three self-tuning proportional-plus-integral
(STPI) control algorithms developed to work in conjunction with the Bristol-Babcock
PID control module. The STPI control algorithms are based on closed-loop cycling
theory, pattern recognition theory, and model-based theory. A brief theory of operation
of these three STPI control algorithms is given. Details of the process simulations
developed to test the STPI algorithms are given, including an integrating process, a first-
order system, a sccond-order system, a system with initial inverse response, and a system
with variable time constant and delay. The STPI algorithms’ performance with regard to
both setpoint changes and load disturbances is evaluated, and their robustness is
compared. The dynamic effects of process deadtime and noise are also considered.
Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are
drawn from the performance comparisons, and a few recommendations are made.






1. INTRODUCTION

It used to be a difficult and time-consuming task to tune process controllers, but
in the past few years several manufacturers have begun to incorporate self-tuning
controller algorithms to automatically tune their proportional-integral-derivative (PID)
controller parameters. This work describes the research, process simulation
development, and tests for comparison of three self-tuning controller algorithms that
were implemented by rescarchers at Sunderland Polytechnic, Sunderland, England, to
work in conjunction with the Bristol-Babcock PID control module. These self-tuning PI
control algorithms are based on closed-loop cycling theory, pattern recognition theory,
and model-based theory. Bristol-Babcock, Inc., extended the opportunity to evaluate
these self-tuning control algorithms prior to their commercial implementation.

1.1 OBJECTIVES

The objectives of this work are to

1. investigate the operation of the three self-tuning control algorithms developed
for the Bristol-Babcock, Inc., controller;

2. develop process simulations needed to test these algorithms; and

3. test the performance and robustness of the three self-tuning algorithms prior to
their commercial implementation.

12 BRIEF OVERVIEW OF RELATED ADAPTIVE CONTROL METHODS

Self-tuning control is just one of several related adaptive control methods. Most
single-loop controllers in use today are designed to control a constant-gain linear
feedback loop at a fixed operating point as shown in Fig. 1.1. However, it may be
necessary or desirable to use adaptive controller tuning methods for one or more of the
following reasons.

1. Most processes are really nonlinear.

2. Process parameters may change dynamically.

3. The process may have varying disturbance inputs.

4. Adaptive tuning techniques can improve performance.
5. Self-tuning improves engineering efficiency.

Several related adaptive tuning methods have developed from modern control
theory, including gain scheduling, self-tuning, auto-tuning, and model-reference adaptive

1
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1.1. Conventional feedback controller structure.

control (Astrdm and Wittenmark 1989). A brief introduction to each of these methods
is given below.

A gain-scheduling system monitors a process variable and adjusts the controller
parameters according to a predetermined gain schedule as shown in Fig. 1.2. There is
some debate as to whether this technique should really be classified as adaptive control,
because there is really no feedback path that interactively "fine tunes” the controller
parameter values. This technique is used mainly to control processes for which the
dynamics are well understood (e.g., aircraft control).

Self-tuning controllers (STCs) continuously adjust their controller parameters by
using process identification and parameter by estimation techniques as shown in Fig. 1.3.
Some manufacturers’ implementations also add a small disturbance input to the control
signal to assist with the process identification. Auto-tuning controllers (ATCs) are
essentially the same as the STCs except that ATCs calculate new PID parameters only at
start-up and on demand whereas STCs can continuously adjust their PID parameters.

Model-reference adaptive systems use a reference model to adjust the controller
parameters to obtain the desired performance as shown in Fig. 1.4. First, an ideal model
is constructed to define the desired process behavior characteristics. Then, the
measurement is compared to the model output and the controller parameters are
adjusted as necessary to make the process behave like the model.

Self-tuning systems and model-reference systems are closely related. Both
systems have two feedback loops; the inner loops are ordinary feedback loops and the
inner loop parameters are set by the outer loop. Also, the controller adjustments for
both types of systems are based on both input and output sampling. Although much
research has been done for each of these adaptive control techniques, most of the
industrial adaptive controllers that have been developed use the self-tuning control
technique.

Other adaptive control techniques (e.g., linear quadratic gaussian, generalized
minimum variance, and various predictive control techniques) have been industrially
implemented, but these are considered to beyond the scope of this work.

1.3 ORGANIZATION

A literature survey was done to determine which adaptive control methods were
most commonly being used. A brief introduction to the methods that relate to the
design of currently available self-tuning PID controllers is given above. The methods
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discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive
control systems.

Chapter 2 provides additional background information specifically relating to self-
tuning controllers. The two most essential parts of the self-tuning controller are
examined—the process identification technique and the parameter adjustment method.
The process identification techniques discussed include transient-response analysis,
frequency-response analysis, and parameter estimation methods. The PID controller
parameter adjustment techniques presented are the Ziegler-Nichols and the pole-
placement methods. Then, the characteristics of the two most common types of self-
tuning controllers that have been implemented by industry (i.e., pattern recognition and
process identification) are summarized. ‘

A brief theory of operation for the three self-tuning proportional-plus-integral
(PI) control algorithms developed by researchers at Sunderland Polytechnic, Sunderland,
England, for use with the PID control module of Bristol-Babcock, Inc. (BBI) is given in
Chapter 3 (full details are given in the original research report included in Appendix A).
Bristol-Babcock graciously agreed to allow an independent evaluation of these algorithms
prior to their commercial implementation. These algorithms are based on closed-loop
cycling theory, pattern recognition theory, and model-based theory.

Various process simulations were developed to test each controller’s performance
and to determine the types of processes for which each of the controller algorithms
might best be suited. The processes that were simulated include an integrating process,
a first-order system, a second-order system, a system with initial inverse response, and a
system with variable time constant and delay. The details of the process simulation
design and the controller tests are given in Chapter 4.



5

In Chapter 5, the STPI algorithms’ performance with regard to both setpoint
changes and load disturbances is evaluated, and their robustness is compared. The
effects of process deadtime and noise are also considered.

Finally, the limitations of each of the self-tuning controller algorithms is discussed
in Chapter 6. Some conclusions are drawn from the performance comparisons, and
several recommendations are made.



2. FURTHER SELF-TUNING CONTROL BACKGROUND

The two most essential parts of the self-tuning controller are the process (or
system) identification technique and the parameter adjustment method (Fig. 1.3). These
two important elements will be examined in greater detail in the following sections.

2.1 PROCESS IDENTIFICATION TECHNIQUES

Most commercially available self-tuning controllers use one of the following
process identification techniques—transient-response analysis, frequency-response analysis,
or parameter estimation methods.

2.1.1 Transient-Response Analysis

Transient-analysis techniques can identify simple (first- or second-order systems
with or without deadtime) processes from an open-loop step-input response plot when
the following conditions are satisfied.

1. The system is initially in steady state when the test begins.
2. The system is approximately linear (in the test range).
3. Measurement errors are negligible (i.e., the system is relatively noise free).

Although most processes are nonlinear and complex, most can also be
approximated as a first-order process with time delay as given by

I Chi 2.1
G(s) e (2.1)

The process gain K time constant T and deadtime L can easily be determined
from the step-response reaction curve of a first-order process (Fig. 2.1).

Oscillatory (i.e., second-order) systems can also be identified by using transient-
response analysis techniques (Fig. 2.2). Once the period of oscillation T, and damping d
are obtained, they are used to calculate the natural frequency &, and relative damping
factor ¢ to identify a second-order system of the form

2
G(s) = Ko, (2:2)

s+ 2os + 0l

where a 2
¢ =1+ @nflogd?] and o, = —% |
TV -



G,(t)

t
S e ot ointmaret
L T
L = Delay

T = Time constraint

2.1. Typical step response of a first-order process.
Source: K. J. Astrdm and Tore Hagglund, Automatic Tuning
of PID Controllers, Fig. 3.2B, p. 32, reprinted with permission
from the Instrument Society of America, Raleigh,
North Carolina, 1988.

Transient-response process identification techniques are implemented in closed-
loop self-tuning controllers in a variety of forms. Some STCs superimpose step (or
pulse) disturbances on the reference signal. Some units only retune the controller
parameters after setpoint changes or relatively large load disturbances. The desired
system performance characteristics be may also be requested in many different ways (e.g.,
desired damping, overshoot, time constant). Many units also include heuristics and
additional logic to handle systems of increased complexity.
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k = Gain

a = Magnitude of first peak
Tp = Period of oscillation

d = Damping

3

2.2. Typical step response of a second-order process. Source: K. J. Astrém
and Tore Hiagglund, Automatic Tuning of PID Controllers, Fig. 3.4, p. 34,
reprinted with permission from the Instrument Society of America, Raleigh,
North Carolina, 1988.

2.1.2 Frequency-Response Analysis

Frequency-response analysis techniques can also be used to identify simple
processes as well as some processes that have more complex forms. Many frequency-
response analysis techniques exist. The Ziegler-Nichols frequency-response method is
probably the most well known. However, the relay feedback method is really the most
practical.

For a sinusoidal input, a stable linear system will produce a sinusoidal output
after a brief transient response (Fig. 2.3). This means that the relationship between the
input and output of a process can be described by two numbers:

1. the quotient of the output and input amplitudes o and

2. the phase shift between the input and output signals ¢.



Pracans ouipst

-
o

Controd sigart

2.3. Typical sinusoidal output response to a sinusoidal
input. Source: K. J. AstrOm and Tore Higglund, Automatic
Tuning of PID Controllers, Fig. 3.5, p. 38, reprinted with
permission from the Instrument Society of America, Raleigh,
North Carolina, 1988.

However, the system response with this method can be determined at only one
point from each sinusoidal input. To completely describe the transfer function of the
process, a and ¢ must be known at all frequencies

Gliw) = a(w)e™™ (23)

where
a(w) = |Giw)| ,
p(w) = argG(iw)] .

Fortunately, techniques have been developed that require the knowledge of the
system response at only one frequency. The Ziegler-Nichols frequency-response
technique is one experimental method of identifying the process. This can be done with
the following steps.

1. Set the controller integral and derivative terms to zero.
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2. Adjust the gain until uniform oscillations are obtained (Fig. 2.4). This gain is
called the ultimate gain.

3. Calculate the critical system frequency at the ultimate gain.

Several design methods could then be used if this technique could be automated.
However, implementation problems prevent the Ziegler-Nichols frequency-response
method from being a practical design for implementation in an industrial self-tuning
controller. The primary reason this technique is difficult to safely automate is that
operating some processes at or near their point of instability may be harmful to the
equipment or dangerous to personnel.

The relay feedback method (Astr6m and Hégglund 1988) is a practical design
technique for identifying a process (Fig. 2.5). It uses a relay to automatically generate a
sinusoidal output until the appropriate oscillations are obtained (Fig. 2.6). The ultimate
period and ultimate gain are easily calculated from the critical frequency, and then the
PID parameters can be determined.

This technique can be easily automated, and only one parameter must be
specified—the initial relay amplitude. However, the most widely used process
identification method is the parameter estimation technique.

2.1.3 Parameter Estimation Techniques

Parameter estimation techniques involve sampling the controller’s input and
output and constructing a mathematical model of the process. The most common
parameter estimation technique is recursive in nature. The controller input/output (I/O)
is sampled, and process model parameters are computed recursively by using matrix
manipulation techniques to fit a predetermined low-order process model.

There are some distinct advantages to using the parameter estimation technique
to identify the process. The process model output is continuously refined, and the
controller can continuously update the PID parameters. However, the parameter
estimation technique also has some disadvantages. The mathematics involved are more
complex, and more prior information must be specified by the user (e.g., sampling
period, initial model parameters). Thus, most products that use this technique have a
pretuning phase (based on one of the transient or frequency analysis techniques) to
obtain the additional required information.

22 PID PARAMETER ADJUSTMENT TECHNIQUES

Once the process identification is complete, the self-tuning controller uses some
technique to determine how to adjust the PID parameters. The most widely used PID
parameter adjustment methods are the Ziegler-Nichols method and the pole-placement
methods. Each of these methods will now be examined in further detail.
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2.4. Varicd output response plots for the same process with different
controller gains. Source: K. J. Astrdm and Tore Hagglund, Aufomatic Tuning
of PID Controllers, Fig. 3.7, p. 39, reprinted with permission from the
Instrument Society of America, Raleigh, North Carolina, 1988.

—»{ PID

Process }——vy——— Y

ref t

2.5. Relay feedback controller structure. Source: K. J. Astrdm and Tore Higglund,
Automatic Tuning of PID Controllers, Fig. 5.2, p. 109, reprinted with permission from the
Instrument Society of America, Raleigh, North Carolina, 1988,
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2.6. Sinusoidal output response generated by a relay feedback controller.
Source: X. J. Astrdm and Tore Hagglund, Automatic Tuning of PID Controllers,
Fig. 3.10, p. 41, reprinted with permission from the Instrument Society of
America, Raleigh, North Carolina, 1988.

22.1 Ziegler-Nichols Methods

The two classical tuning methods that were presented by Ziegler and Nichols
(1942) are still widely used—the Z-N step-response method and the Z-N frequency-
response method. The Z-N step-response method is based on an analysis of the open-
loop step response of the system (Fig. 2.7). Once the gain and apparent deadtime have
been determined, the recommended PID parameters and an estimate of the dominant
dynamics of the closed-loop system can be determined from Table 2.1.

The Z-N frequency response method uses the ultimate gain and uvltimate period
to calculate PID parameters and dominant system dynamics (Table 2.2). The location of
the dominant system pole has a great effect on the system performance (Figure 2.8).
The Z-N methods are based on the idea that the system dynamics can be changed by
moving one point on the Nyquist curve (Fig. 2.9).

However, much uncertainty exists with the Z-N frequency design method. It is
not possible to determine the location of all the dominant poles of the system from only
one point on the Nyquist plot. Several other techniques could be used if two or more
points on the Nyquist curve were known. However, most of these uncertainties vanish if
the pole-placement design method can be used.
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L

a = Gain factor
Apparent deadtime

—
1

2.7. Typical open-loop step-response plot. Source: K. J. Astrém and
Tore Higglund, Automatic Tuning of PID Controllers, Fig. 4.1, p. 53,
reprinted with permission from the Instrument Society of America,
Raleigh, North Carolina, 1988. ‘

222 Pole-Placement Method

For this technique, the process is approximated by a model of first or second
order. Then, the PID parameters are calculated on the basis of the desired closed-loop
pole-placement (Astr6m and Hiagglund 1988). The effectiveness of the pole-placement
method hinges on the ability to approximate the process accurately enough with a low-
(i-e., first- or second-) order model.

2221 First-order approximation

If the process can be described by a first-order model of the following form

k
G, = ? , 2.4
P 1 +Tis @4
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Table 2.1. Controller parameters and dominant dynamics obtained by
the Ziegler-Nichols open-loop step-response method

Controller “ Controller parameters
type

Dominant
pole

P
PI
PID

Table 2.2 Controller parameters and dominant dynamics obtained by
the Ziegler-Nichols closed-loop frequency-response method

Controller Controller parameters Dominant
pole
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2.9. Changing system dynamics by moving one point on the Nyquist curve. Source:
K. J. Astrdm and Tore Higglund, Automatic Tuning of PID Controllers, Fig. 4.4, p. 57,
reprinted with permission from Instrument Society of America, Raleigh, North Carolina,

1988,

then the process can be controlled by a controller of the form

GR=K[1+ 1]. (2:5)

T‘ s

The closed-loop system can then be described as

G, - 2% (2.6)
1+ G,G,
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and the closed-loop pole can be obtained from the characteristic equation

1 +G,Gp=0. 2.7)

Substitution then shows that the characteristic equation is

2as(Ll BB o (2.8)
Tl Tl TlI'i

which can be compared to the characteristic equation described by the desired relative
damping and frequency

s+ 2ws + 02 =0, (29

Because the coefficients of Egs. (2.8) and (2.9) should be equal, we have

k
ot = K

.1,
(2.10)
1+k
2{w = o~
Tl
Thus, the proportional-integral (PI) parameters can be determined as
K- 2{eT, -1
k
? 2.11)
T, - 2T, -1 .
w?T,
2222 Second-order approximation
If the process can be described by a second-order model of the form
k (2.12)

G = )
Pl + )1 + Tp)

then the process can be controlled by a PID controller of the form
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KU+ T+ TTH

(2.13)
R Ts
Then, if the desired response is described by the characteristic equation
(s + aw)s® + 2os + w)=0, (2.14)

similar techniques can be used to show that the PID parameters can be calculated as

T,T,0*(1 + 2{a) - 1

kP

2 -
r - hihed + 2w -1 2.15)
T,T,e0

_ I'T,o(a +20) - T, - T,
W T + 2¢a) -1

23 TWO MOST COMMON INDUSTRIALLY IMPLEMENTED DESIGNS

In summary, the two most common industrially implemented self-tuning
controllers are based on one of two basic techniques—pattern recognition or process
identification. The characteristics for each type are listed in the following sections.

23.1 Pattern Recognition Method

Self-tuning controllers that use the pattern recognition method

1. monitor the controller’s input and output;

2. identify the process by using transient- or frequency-response analysis;
3. compare the actual response to the desired response characteristics;
4. calculate new parameters by using Ziegler-Nichols methods;

5. automatically update PID values whenever possible; and

6. require only relatively simple mathematics techniques.
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232 Process Identification Method

Self-tuning controllers that use the process identification method

1. continuously monitor the controller’s inputs and outputs;

2. identify the process by using parameter estimation techniques;

3. construct a mathematical model of the process;

4. calculate new PID parameters regularly by using the pole-placement methods;
S. automatically update PID parameters whenever necessary; and

6. require somewhat more complex mathematics techniques.



3. THEORY OF OPERATION OF THE BBI STPI ALGORITHMS

The remainder of this work focuses on the testing and comparison of the three
self-tuning proportional-plus-integral (STPI) control algorithms. These STPI algorithms
were implemented by researchers at Sunderland Polytechnic, Sunderland, England, for
use with Bristol-Babcock’s standard PID3TERM control module. The algorithms are
based on closed-loop cycling theory, pattern recognition theory, and model-based theory
(a copy of the original research report is included in Appendix A). An abbreviated
theory of operation is given in the following sections.

3.1 CLOSED-LOOP CYCLING ALGORITHM THEORY

This algorithm is a one-shot tuning method based on the Astrdm and Hagglund
Relay Feedback Mcthod (Astrdm and Wittenmark 1989). A relay controller and an
integrator used as shown in Fig. 3.1 generates a periodic triangular perturbation output,
and the process variable is forced to oscillate around its setpoint value as shown in
Fig. 3.2. The period of the oscillations is determined by the dynamics of the process, but
the user can constrain the amplitude of the oscillations by specifying the initial relay
amplitude characteristic, maximum and minimum controller output limits, and the
maximum allowable deviation of the process variable from setpoint. The tuning phase is
automatically terminated when a number of good oscillations have been recorded.

+ E
! 1/"" Process =d
A t

A

3.1. Bristol-Babcock, Inc., relay feedback controller structure. Souwrce: Reprinted with
permission from C. S. Cox et al, Development of ACCOL Self-Tuning PI (STPI) Control
Module, Pt. 111, Fig. 6, Sunderland Polytechnic, Sunderland, U.K., 1990.

20
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3.2. Output response generated by the closed-loop cycling
algorithm. Source: Reprinted with permission from C. S. Cox et al.,,
Development of ACCOL Self-Tuning PI (STPI) Control Module,
Pt. 1, Fig. 2, Sunderland Polytechnic, Sunderland, UK., 1990.
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Upon termination, the period and amplitude of the oscillations are measured and used to
calculate new PI controller settings. If the tuning phase does not obtain good results
after the specified maximum number of cycles, then it will also terminate with no
recalculation of the PI parameters. This technique is explained in further detail in the
following paragraphs.

After activating the closed-loop cycling self-tuning procedure, the process should
obtain constant-amplitude fixed-frequency oscillations within a few cycles. The algorithm:
is designed to automatically reduce the relay amplitude if the specified initial amplitude
is too large. However, if the initial amplitude is obviously much too large, the user may
want to manually adjust the amplitude during the tuning phase to keep the process
variable near the setpoint.

Once constant oscillations have been obtained, the Ziegler-Nichols critical gain
K, for the process is easily calculated. The ultimate frequency P, is also calculated by
using the error signal and a zero-crossing routine. Once these parameters are evaluated,
PI settings could easily be calculated (for quarter-amplitude damping) as shown in
Table 3.1. However, Astrdm’s proposed alternative approach, which allows calculation
of PI settings of any desired phase margin, is implemented in this algorithm.

Table 3.1. Ziegler-Nichols ultimate frequency-response controller parameters

Controller Controller Parameters “
Type K, T, T, |
P 05K, - —
PI 0.45 K, P12 .
PID 0.6 K, P2 P8

The developers recognized that every user may not understand the concept of
phase margin. So, to make this concept more user friendly, they only require the user to
specify the maximum desired percentage overshoot, which is then used to approximate
the desired phase margin. Although this method does not allow the user to specify an
overdamped response, from Figs. 3.3 and 3.4 it can be seen that this technique can be
used over a wide range of overshoot values to approximate the desired phase margin.
The resulting PI values can then be calculated by

4V P sin(,)
2724

~ P tan(d,)
¢ 2n '

(3.1)

Two optional enhancements may be needed if the process variable is somewhat
noisy—relay hysteresis and digital filtering. The designers realized that noise
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33. Percent overshoot vs damping ratio for the step
response of a second-order system. Source: Reprinted with
permission from C. S. Cox et al., Development of ACCOL Self-
Tuning PI (STPI) Control Module, Pt. 111, Fig. 7(a), Sunderland
Polytechnic, Sunderland, UK., 1990.

superimposed on the process variable signal could result in false relay switching and
invalidate the closed-loop cycling tuning procedure. Some hysteresis can easily be added
to the relay to improve its noise rejection. Choosing the correct bandwidth for the
digital filter is a more cumbersome problem. See the report in Appendix A,
Development of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 111, pp. 14849, for
more details regarding these enhancements.

3.2 PATTERN RECOGNITION ALGORITHM THEORY

This algorithm provides continuous self-tuning of the PI controller parameters.
When the pattern recognition self-tuning procedure is active, the PI controller
parameters will be recalculated following any sufficiently large disturbance or setpoint
change. New PI parameters are calculated in four distinct steps (Fig. 3.5).

1. The controller’s error signal is continuously monitored for any disturbances that
occur over a specified threshold value. When this threshold is exceeded, the



24

100

80

60

40

20

3.4. Phase margin vs damping ratio of a second-order
system. Source: Reprinted with permission from C. S. Cox
et al, Development of ACCOL Self-Tuning PI (STPI)
Control Module, Pt. 111, Fig.7(b), Sunderland Polytechnic,
Sunderland, U.X., 1990.

algorithm monitors the process variable to detect its peak deviation from
setpoint, E_, .

Then the recovery time of the loop response T is determined. T is calculated
to be equal to the elapsed time it takes the system to go from 90% to 50% of
the peak deviation from setpoint on return from the peak deviation.

T, is then used in the evaluation of two integrals: S, and S,. T, is the time when
the system has reached 50% of the peak on return from the initial peak deviation
(i.e., when T is just determined).

S, is the area under the curve from time T,(1 + @) to T}(1 + a + ).
S, is the area under the curve from time 7,(1 + e + ) to T\ (1 + @ + B + y).

Having obtained the value of these integrals, the new PI controller parameters
can be calculated and updated as



where

Process Variable

1
{ aTl  pgTL 7 TL
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TL TL = Loop response time
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3.5. Annotated output response describing the operation of the pattern
recognition algorithm. Source: Reprinted with permission from C. S. Cox
et al., Development of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 1,
Fig. 5, Sunderland Polytechnic, Sunderland, U.K., 1990.

K, = K, + (1 - DONBYK,(S, + R) + K,S))

K, = K, + (1 - DONBYK,(S, + R) + K,5)]

(3-2)

S, = Area under the curve from time 7,(1 + a) to Ty(1 + a + ).

S, = Area under the curve from time T,(1 + a + B to T\ (1 + a + 8 + y).
R, = Level related to desired overshoot (R, = OVERSH/900).

R, = Area related to the actual overshoot (R, = yR,).

DONE = Confidence factor related to actual overshoot,

K,, K,, K;, and K, = Constants.

3.3 MODEL-BASED ALGORITHM THEORY

The model-based algorithm is primarily intended for use as a one-shot tuner,

although it may also be configured to operate in a continuous tuning mode (by the
expert user). A very important difference between this algorithm and the previous two is
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that the task rate must be carefully matched to the response time of the process. The
developers suggest that a good rule for use with this model-based method is to select a
task rate that is approximately one-tenth of the process rise time, which may be
determined from a step test (Fig. 3.6).

During the tuning phase, a pseudorandom binary sequence (PRBS) is produced
at the controller output, as shown in Fig. 3.7. The user must specify the initial mean
level, OPMEAN, and the amplitude, OPDEYV, of the PRBS: the mean level should be
chosen to cause the process variable to deviate at or near its setpoint value, and the
amplitude should be sufficiently large to cause significant deviations yet keep the process
variable within acceptable limits. The mean level of the PRBS may need to be manually
adjusted during the tuning phase to keep the process variable near the setpoint.

While the PRBS is applied, the process output and the controller output data are
fed into a recursive least-squares-estimation algorithm that calculates the mathematical
model parameters. The model is a first-order lag with time delay:

Ke ~T8
G (s) = : (33)
o) 1 +7Ts

Although the digitized equivalent of this equation could theoretically have any
number of terms in the numerator to accommodate any amount of delay time, the
developers fixed the numerator terms to five. Thus, the digitized model equation is

-1 - - -
Gy - bt bal b v baT v b (34)

-1
1 + az

The process output and controller output are prefiltered by a digital band-pass
filter to remove dc offsets and high-frequency noise and to make the estimation
algorithm more robust.

At the end of the self-tuning phase, the identified model is used to calculate new
PI controller settings. The discrete form of the ACCOL PI controller is given by

Gc(z-l) = KC 1

1+ KT - 1) "] 3.5)
1~z '

K; is calculated such that the zero of the controller will cancel the pole of the
system model in Eq. (3.4). Because the sample rate T is known, K; is easily calculated as
follows:

K -429 (3.6)
T
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3.6. Open-loop step response to determine a suitable task rate for the
model-based algorithm. Source: Reprinted with permission from C. S. Cox
et al., Development of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 1,

Fig. 6, Sunderland Polytechnic, Sunderland, U.K., 1990.
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3.7. Output response generated by the model-based algorithm
pscudorandom binary sequence. Source: Reprinted with permission from
C.S. Cox et al,, Development of ACCOL Self-Tuning PI (STPI) Control
Module, Pt. 1, Fig. 7, Sunderland Polytechnic, Sunderland, U.K., 1990.
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Now the task is to calculate the K, that will provide the required phase margin
for the closed-loop compensated system. As with the closed-loop cycling algorithm, the
user has simply defined the desired system performance by specifying the maximum
desired percentage overshoot, which is then used to approximate the desired phase
margin. However, the mathematics involved is slightly more complicated than before.
With the pole-zero cancellation obtained by determining K, the remaining compensated
open loop transfer function is given by

bz + bz + bz « bz + bz (3.7)

GOL(Z ~l) = KC -1

1-2z

To determine the required K, the frequency response of the compensated system
must be computed. This can be done using the discrete time to frequency domain

mapping
7zl = evoT (3.8)

By using this substitution, the open-loop phase shift can be calculated at any
frequency o, by using the relationship

5
[ sinoT 1 ;I:b'smm (3.9)
TEGor(fw)] = ~tan [1—;;7} T ‘
‘ Y beosioT
i=]

The angular frequency w, at which the required phase margin occurs can be
calculated as

atg[GOL(jmo)] =-n + ¢, . (3.10)

The particular angular frequency w, which yields the desired phase margin is then
computed from Egs. (3.9) and (3.10) by using a linear search algorithm in the range

O<w< % . Once o, has been determined, K, can be calculated from

<

i=1 iel
JI1 - coswyT)* + [sinw, TP

s ¥
[E bim“’o{ * [Z b,siniw(,]j) (3.11)
=1.

|G| = K,




4. PROCESS SIMULATIONS

To facilitate the self-tuning control algorithm tests, various process simulations
were developed. Because the self-tuning algorithms were developed for Bristol-
Babcock’s distributed process controller model DPC 3330, it was the obvious process
simulator of choice because the controller could execute both the self-tuning algorithms
and the process models simultaneously. The self-tuning control algorithms and the
simulation programs were written in ACCOL II, a language developed by Bristol-
Babcock specifically for use with their distributed process controllers.

The processes that were simulated include an integrating process, a first-order
system, a second-order system, a system with initial inverse response, and a system with
variable time constant and delay. The process simulations are connected via software to
the STPI module as shown in Fig. 4.1. More details of the test setup are given in
Chapter 5. The simulation programs and the STPI module code have been integrated
into a single ACCOL program (Appendix B).

In physical processes, whenever the input to the system changes, there is
frequently some time interval during which no effect can be measured or observed on
the output. Thus, each of the simulations includes a delay, or deadtime, term to model
the effect of this delay time.

There are usually also some known process dynamics that cannot be accounted
for in a simple mathematical model (e.g., variance in properties of the inlet process
materials, uncontrolled process environmental variables). These dynamics can be
classified as disturbance inputs. In fact, any input that is not a result of an adjustment by
the operator or the control system may be called a disturbance input. To account for
some of these uncontrolled process dynamics and to measure their effects, each process
includes load disturbances that can be added to the process inputs.

Although any unknown process dynamic could be classified as noise, one
common source of noise is associated with measuring the process output. Thus, the
process simulations include the capability of adding a noise signal to the process output
to simulate measurement noise. This was done by using the noise generator in the
GENESIS software package that is being used to monitor the process and controller
output. Each process is described in more detail in the following sections.

4.1 INTEGRATING PROCESS

Processes with integrating action are common, especially in the chemical industry
(e.g., tanks storing liquids, vessels storing gases, inventory systems storing raw materials).
A purely capacitive, or integrating, process will behave as if there were an integrator
between its input and output. Its output will grow (or shrink) linearly with time as
shown in Fig. 4.2 (depending on whether material is being added or removed). The
value of K, (i.e., the process gain) is related to the rate of increase or decrease. The
larger the value of K, the steeper the slope (i.e., the larger the increase) will be.

30
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4.1. Block diagram of the connections between the self-tuning proportional-integral
controller and the process simulations.
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4.2. Unbounded output response of
a pure integrating process.  Source:
George Stephanopoulas, Chemical Process
Control: An Introduction to Theory and
Practice, Fig. 10.3, p. 179, reprinted with
permission from Prentice-Hall, Englewood
Cliffs, New Jersey, 1984.

The simulated integrating process (with deadtime) is described by

G(s) = Ke ™ . (4.1)
s

The code to implement this process is in Task 10 of the ACCOL program in
Appendix B. In practice, the process output will probably encounter some upper and
lower limits (e.g., a tank has a finite capacity). So, the simulation of the integrating
process has both upper and lower bounds.
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42 FIRST-ORDER SYSTEM

A first-order system is so-named because the time-domain transfer function of
the process can be described by a first-order differential equation. The first-order
process simulation (with d