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ABSTRACT

A brief overview of adaptive control methods relating to the design of self-tuning
proportional-integral-derivative (PID) controllers is given. The methods discussed
include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control
systems. Several process identification and parameter adjustment methods are discussed.
Characteristics of the two most common types of self-tuning controllers implemented by
industry (i.e., pattern recognition and process identification) are summarized. The
substance of the work is a comparison of three self-tuning proportional-plus-integral
(STPI) control algorithms developed to work in conjunction with the Bristol-Babcock
PID control module. The STPI control algorithms are based on closed-loop cycling
theory, pattern recognition theory, and model-based theory. A brief theory of operation
of these three STPI control algorithms is given. Details of the process simulations
developed to test the STPI algorithms are given, including an integrating process, a first-
order system, a sccond-order system, a system with initial inverse response, and a system
with variable time constant and delay. The STPI algorithms’ performance with regard to
both setpoint changes and load disturbances is evaluated, and their robustness is
compared. The dynamic effects of process deadtime and noise are also considered.
Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are
drawn from the performance comparisons, and a few recommendations are made.






1. INTRODUCTION

It used to be a difficult and time-consuming task to tune process controllers, but
in the past few years several manufacturers have begun to incorporate self-tuning
controller algorithms to automatically tune their proportional-integral-derivative (PID)
controller parameters. This work describes the research, process simulation
development, and tests for comparison of three self-tuning controller algorithms that
were implemented by rescarchers at Sunderland Polytechnic, Sunderland, England, to
work in conjunction with the Bristol-Babcock PID control module. These self-tuning PI
control algorithms are based on closed-loop cycling theory, pattern recognition theory,
and model-based theory. Bristol-Babcock, Inc., extended the opportunity to evaluate
these self-tuning control algorithms prior to their commercial implementation.

1.1 OBJECTIVES

The objectives of this work are to

1. investigate the operation of the three self-tuning control algorithms developed
for the Bristol-Babcock, Inc., controller;

2. develop process simulations needed to test these algorithms; and

3. test the performance and robustness of the three self-tuning algorithms prior to
their commercial implementation.

12 BRIEF OVERVIEW OF RELATED ADAPTIVE CONTROL METHODS

Self-tuning control is just one of several related adaptive control methods. Most
single-loop controllers in use today are designed to control a constant-gain linear
feedback loop at a fixed operating point as shown in Fig. 1.1. However, it may be
necessary or desirable to use adaptive controller tuning methods for one or more of the
following reasons.

1. Most processes are really nonlinear.

2. Process parameters may change dynamically.

3. The process may have varying disturbance inputs.

4. Adaptive tuning techniques can improve performance.
5. Self-tuning improves engineering efficiency.

Several related adaptive tuning methods have developed from modern control
theory, including gain scheduling, self-tuning, auto-tuning, and model-reference adaptive

1
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1.1. Conventional feedback controller structure.

control (Astrdm and Wittenmark 1989). A brief introduction to each of these methods
is given below.

A gain-scheduling system monitors a process variable and adjusts the controller
parameters according to a predetermined gain schedule as shown in Fig. 1.2. There is
some debate as to whether this technique should really be classified as adaptive control,
because there is really no feedback path that interactively "fine tunes” the controller
parameter values. This technique is used mainly to control processes for which the
dynamics are well understood (e.g., aircraft control).

Self-tuning controllers (STCs) continuously adjust their controller parameters by
using process identification and parameter by estimation techniques as shown in Fig. 1.3.
Some manufacturers’ implementations also add a small disturbance input to the control
signal to assist with the process identification. Auto-tuning controllers (ATCs) are
essentially the same as the STCs except that ATCs calculate new PID parameters only at
start-up and on demand whereas STCs can continuously adjust their PID parameters.

Model-reference adaptive systems use a reference model to adjust the controller
parameters to obtain the desired performance as shown in Fig. 1.4. First, an ideal model
is constructed to define the desired process behavior characteristics. Then, the
measurement is compared to the model output and the controller parameters are
adjusted as necessary to make the process behave like the model.

Self-tuning systems and model-reference systems are closely related. Both
systems have two feedback loops; the inner loops are ordinary feedback loops and the
inner loop parameters are set by the outer loop. Also, the controller adjustments for
both types of systems are based on both input and output sampling. Although much
research has been done for each of these adaptive control techniques, most of the
industrial adaptive controllers that have been developed use the self-tuning control
technique.

Other adaptive control techniques (e.g., linear quadratic gaussian, generalized
minimum variance, and various predictive control techniques) have been industrially
implemented, but these are considered to beyond the scope of this work.

1.3 ORGANIZATION

A literature survey was done to determine which adaptive control methods were
most commonly being used. A brief introduction to the methods that relate to the
design of currently available self-tuning PID controllers is given above. The methods
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discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive
control systems.

Chapter 2 provides additional background information specifically relating to self-
tuning controllers. The two most essential parts of the self-tuning controller are
examined—the process identification technique and the parameter adjustment method.
The process identification techniques discussed include transient-response analysis,
frequency-response analysis, and parameter estimation methods. The PID controller
parameter adjustment techniques presented are the Ziegler-Nichols and the pole-
placement methods. Then, the characteristics of the two most common types of self-
tuning controllers that have been implemented by industry (i.e., pattern recognition and
process identification) are summarized. ‘

A brief theory of operation for the three self-tuning proportional-plus-integral
(PI) control algorithms developed by researchers at Sunderland Polytechnic, Sunderland,
England, for use with the PID control module of Bristol-Babcock, Inc. (BBI) is given in
Chapter 3 (full details are given in the original research report included in Appendix A).
Bristol-Babcock graciously agreed to allow an independent evaluation of these algorithms
prior to their commercial implementation. These algorithms are based on closed-loop
cycling theory, pattern recognition theory, and model-based theory.

Various process simulations were developed to test each controller’s performance
and to determine the types of processes for which each of the controller algorithms
might best be suited. The processes that were simulated include an integrating process,
a first-order system, a second-order system, a system with initial inverse response, and a
system with variable time constant and delay. The details of the process simulation
design and the controller tests are given in Chapter 4.
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In Chapter 5, the STPI algorithms’ performance with regard to both setpoint
changes and load disturbances is evaluated, and their robustness is compared. The
effects of process deadtime and noise are also considered.

Finally, the limitations of each of the self-tuning controller algorithms is discussed
in Chapter 6. Some conclusions are drawn from the performance comparisons, and
several recommendations are made.



2. FURTHER SELF-TUNING CONTROL BACKGROUND

The two most essential parts of the self-tuning controller are the process (or
system) identification technique and the parameter adjustment method (Fig. 1.3). These
two important elements will be examined in greater detail in the following sections.

2.1 PROCESS IDENTIFICATION TECHNIQUES

Most commercially available self-tuning controllers use one of the following
process identification techniques—transient-response analysis, frequency-response analysis,
or parameter estimation methods.

2.1.1 Transient-Response Analysis

Transient-analysis techniques can identify simple (first- or second-order systems
with or without deadtime) processes from an open-loop step-input response plot when
the following conditions are satisfied.

1. The system is initially in steady state when the test begins.
2. The system is approximately linear (in the test range).
3. Measurement errors are negligible (i.e., the system is relatively noise free).

Although most processes are nonlinear and complex, most can also be
approximated as a first-order process with time delay as given by

I Chi 2.1
G(s) e (2.1)

The process gain K time constant T and deadtime L can easily be determined
from the step-response reaction curve of a first-order process (Fig. 2.1).

Oscillatory (i.e., second-order) systems can also be identified by using transient-
response analysis techniques (Fig. 2.2). Once the period of oscillation T, and damping d
are obtained, they are used to calculate the natural frequency &, and relative damping
factor ¢ to identify a second-order system of the form

2
G(s) = Ko, (2:2)

s+ 2os + 0l

where a 2
¢ =1+ @nflogd?] and o, = —% |
TV -



G,(t)

t
S e ot ointmaret
L T
L = Delay

T = Time constraint

2.1. Typical step response of a first-order process.
Source: K. J. Astrdm and Tore Hagglund, Automatic Tuning
of PID Controllers, Fig. 3.2B, p. 32, reprinted with permission
from the Instrument Society of America, Raleigh,
North Carolina, 1988.

Transient-response process identification techniques are implemented in closed-
loop self-tuning controllers in a variety of forms. Some STCs superimpose step (or
pulse) disturbances on the reference signal. Some units only retune the controller
parameters after setpoint changes or relatively large load disturbances. The desired
system performance characteristics be may also be requested in many different ways (e.g.,
desired damping, overshoot, time constant). Many units also include heuristics and
additional logic to handle systems of increased complexity.
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k = Gain

a = Magnitude of first peak
Tp = Period of oscillation

d = Damping

3

2.2. Typical step response of a second-order process. Source: K. J. Astrém
and Tore Hiagglund, Automatic Tuning of PID Controllers, Fig. 3.4, p. 34,
reprinted with permission from the Instrument Society of America, Raleigh,
North Carolina, 1988.

2.1.2 Frequency-Response Analysis

Frequency-response analysis techniques can also be used to identify simple
processes as well as some processes that have more complex forms. Many frequency-
response analysis techniques exist. The Ziegler-Nichols frequency-response method is
probably the most well known. However, the relay feedback method is really the most
practical.

For a sinusoidal input, a stable linear system will produce a sinusoidal output
after a brief transient response (Fig. 2.3). This means that the relationship between the
input and output of a process can be described by two numbers:

1. the quotient of the output and input amplitudes o and

2. the phase shift between the input and output signals ¢.



Pracans ouipst

-
o

Controd sigart

2.3. Typical sinusoidal output response to a sinusoidal
input. Source: K. J. AstrOm and Tore Higglund, Automatic
Tuning of PID Controllers, Fig. 3.5, p. 38, reprinted with
permission from the Instrument Society of America, Raleigh,
North Carolina, 1988.

However, the system response with this method can be determined at only one
point from each sinusoidal input. To completely describe the transfer function of the
process, a and ¢ must be known at all frequencies

Gliw) = a(w)e™™ (23)

where
a(w) = |Giw)| ,
p(w) = argG(iw)] .

Fortunately, techniques have been developed that require the knowledge of the
system response at only one frequency. The Ziegler-Nichols frequency-response
technique is one experimental method of identifying the process. This can be done with
the following steps.

1. Set the controller integral and derivative terms to zero.
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2. Adjust the gain until uniform oscillations are obtained (Fig. 2.4). This gain is
called the ultimate gain.

3. Calculate the critical system frequency at the ultimate gain.

Several design methods could then be used if this technique could be automated.
However, implementation problems prevent the Ziegler-Nichols frequency-response
method from being a practical design for implementation in an industrial self-tuning
controller. The primary reason this technique is difficult to safely automate is that
operating some processes at or near their point of instability may be harmful to the
equipment or dangerous to personnel.

The relay feedback method (Astr6m and Hégglund 1988) is a practical design
technique for identifying a process (Fig. 2.5). It uses a relay to automatically generate a
sinusoidal output until the appropriate oscillations are obtained (Fig. 2.6). The ultimate
period and ultimate gain are easily calculated from the critical frequency, and then the
PID parameters can be determined.

This technique can be easily automated, and only one parameter must be
specified—the initial relay amplitude. However, the most widely used process
identification method is the parameter estimation technique.

2.1.3 Parameter Estimation Techniques

Parameter estimation techniques involve sampling the controller’s input and
output and constructing a mathematical model of the process. The most common
parameter estimation technique is recursive in nature. The controller input/output (I/O)
is sampled, and process model parameters are computed recursively by using matrix
manipulation techniques to fit a predetermined low-order process model.

There are some distinct advantages to using the parameter estimation technique
to identify the process. The process model output is continuously refined, and the
controller can continuously update the PID parameters. However, the parameter
estimation technique also has some disadvantages. The mathematics involved are more
complex, and more prior information must be specified by the user (e.g., sampling
period, initial model parameters). Thus, most products that use this technique have a
pretuning phase (based on one of the transient or frequency analysis techniques) to
obtain the additional required information.

22 PID PARAMETER ADJUSTMENT TECHNIQUES

Once the process identification is complete, the self-tuning controller uses some
technique to determine how to adjust the PID parameters. The most widely used PID
parameter adjustment methods are the Ziegler-Nichols method and the pole-placement
methods. Each of these methods will now be examined in further detail.
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2.4. Varicd output response plots for the same process with different
controller gains. Source: K. J. Astrdm and Tore Hagglund, Aufomatic Tuning
of PID Controllers, Fig. 3.7, p. 39, reprinted with permission from the
Instrument Society of America, Raleigh, North Carolina, 1988.

—»{ PID

Process }——vy——— Y

ref t

2.5. Relay feedback controller structure. Source: K. J. Astrdm and Tore Higglund,
Automatic Tuning of PID Controllers, Fig. 5.2, p. 109, reprinted with permission from the
Instrument Society of America, Raleigh, North Carolina, 1988,
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2.6. Sinusoidal output response generated by a relay feedback controller.
Source: X. J. Astrdm and Tore Hagglund, Automatic Tuning of PID Controllers,
Fig. 3.10, p. 41, reprinted with permission from the Instrument Society of
America, Raleigh, North Carolina, 1988.

22.1 Ziegler-Nichols Methods

The two classical tuning methods that were presented by Ziegler and Nichols
(1942) are still widely used—the Z-N step-response method and the Z-N frequency-
response method. The Z-N step-response method is based on an analysis of the open-
loop step response of the system (Fig. 2.7). Once the gain and apparent deadtime have
been determined, the recommended PID parameters and an estimate of the dominant
dynamics of the closed-loop system can be determined from Table 2.1.

The Z-N frequency response method uses the ultimate gain and uvltimate period
to calculate PID parameters and dominant system dynamics (Table 2.2). The location of
the dominant system pole has a great effect on the system performance (Figure 2.8).
The Z-N methods are based on the idea that the system dynamics can be changed by
moving one point on the Nyquist curve (Fig. 2.9).

However, much uncertainty exists with the Z-N frequency design method. It is
not possible to determine the location of all the dominant poles of the system from only
one point on the Nyquist plot. Several other techniques could be used if two or more
points on the Nyquist curve were known. However, most of these uncertainties vanish if
the pole-placement design method can be used.
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L

a = Gain factor
Apparent deadtime

—
1

2.7. Typical open-loop step-response plot. Source: K. J. Astrém and
Tore Higglund, Automatic Tuning of PID Controllers, Fig. 4.1, p. 53,
reprinted with permission from the Instrument Society of America,
Raleigh, North Carolina, 1988. ‘

222 Pole-Placement Method

For this technique, the process is approximated by a model of first or second
order. Then, the PID parameters are calculated on the basis of the desired closed-loop
pole-placement (Astr6m and Hiagglund 1988). The effectiveness of the pole-placement
method hinges on the ability to approximate the process accurately enough with a low-
(i-e., first- or second-) order model.

2221 First-order approximation

If the process can be described by a first-order model of the following form

k
G, = ? , 2.4
P 1 +Tis @4
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Table 2.1. Controller parameters and dominant dynamics obtained by
the Ziegler-Nichols open-loop step-response method

Controller “ Controller parameters
type

Dominant
pole

P
PI
PID

Table 2.2 Controller parameters and dominant dynamics obtained by
the Ziegler-Nichols closed-loop frequency-response method

Controller Controller parameters Dominant
pole
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2.9. Changing system dynamics by moving one point on the Nyquist curve. Source:
K. J. Astrdm and Tore Higglund, Automatic Tuning of PID Controllers, Fig. 4.4, p. 57,
reprinted with permission from Instrument Society of America, Raleigh, North Carolina,

1988,

then the process can be controlled by a controller of the form

GR=K[1+ 1]. (2:5)

T‘ s

The closed-loop system can then be described as

G, - 2% (2.6)
1+ G,G,
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and the closed-loop pole can be obtained from the characteristic equation

1 +G,Gp=0. 2.7)

Substitution then shows that the characteristic equation is

2as(Ll BB o (2.8)
Tl Tl TlI'i

which can be compared to the characteristic equation described by the desired relative
damping and frequency

s+ 2ws + 02 =0, (29

Because the coefficients of Egs. (2.8) and (2.9) should be equal, we have

k
ot = K

.1,
(2.10)
1+k
2{w = o~
Tl
Thus, the proportional-integral (PI) parameters can be determined as
K- 2{eT, -1
k
? 2.11)
T, - 2T, -1 .
w?T,
2222 Second-order approximation
If the process can be described by a second-order model of the form
k (2.12)

G = )
Pl + )1 + Tp)

then the process can be controlled by a PID controller of the form
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KU+ T+ TTH

(2.13)
R Ts
Then, if the desired response is described by the characteristic equation
(s + aw)s® + 2os + w)=0, (2.14)

similar techniques can be used to show that the PID parameters can be calculated as

T,T,0*(1 + 2{a) - 1

kP

2 -
r - hihed + 2w -1 2.15)
T,T,e0

_ I'T,o(a +20) - T, - T,
W T + 2¢a) -1

23 TWO MOST COMMON INDUSTRIALLY IMPLEMENTED DESIGNS

In summary, the two most common industrially implemented self-tuning
controllers are based on one of two basic techniques—pattern recognition or process
identification. The characteristics for each type are listed in the following sections.

23.1 Pattern Recognition Method

Self-tuning controllers that use the pattern recognition method

1. monitor the controller’s input and output;

2. identify the process by using transient- or frequency-response analysis;
3. compare the actual response to the desired response characteristics;
4. calculate new parameters by using Ziegler-Nichols methods;

5. automatically update PID values whenever possible; and

6. require only relatively simple mathematics techniques.
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232 Process Identification Method

Self-tuning controllers that use the process identification method

1. continuously monitor the controller’s inputs and outputs;

2. identify the process by using parameter estimation techniques;

3. construct a mathematical model of the process;

4. calculate new PID parameters regularly by using the pole-placement methods;
S. automatically update PID parameters whenever necessary; and

6. require somewhat more complex mathematics techniques.



3. THEORY OF OPERATION OF THE BBI STPI ALGORITHMS

The remainder of this work focuses on the testing and comparison of the three
self-tuning proportional-plus-integral (STPI) control algorithms. These STPI algorithms
were implemented by researchers at Sunderland Polytechnic, Sunderland, England, for
use with Bristol-Babcock’s standard PID3TERM control module. The algorithms are
based on closed-loop cycling theory, pattern recognition theory, and model-based theory
(a copy of the original research report is included in Appendix A). An abbreviated
theory of operation is given in the following sections.

3.1 CLOSED-LOOP CYCLING ALGORITHM THEORY

This algorithm is a one-shot tuning method based on the Astrdm and Hagglund
Relay Feedback Mcthod (Astrdm and Wittenmark 1989). A relay controller and an
integrator used as shown in Fig. 3.1 generates a periodic triangular perturbation output,
and the process variable is forced to oscillate around its setpoint value as shown in
Fig. 3.2. The period of the oscillations is determined by the dynamics of the process, but
the user can constrain the amplitude of the oscillations by specifying the initial relay
amplitude characteristic, maximum and minimum controller output limits, and the
maximum allowable deviation of the process variable from setpoint. The tuning phase is
automatically terminated when a number of good oscillations have been recorded.

+ E
! 1/"" Process =d
A t

A

3.1. Bristol-Babcock, Inc., relay feedback controller structure. Souwrce: Reprinted with
permission from C. S. Cox et al, Development of ACCOL Self-Tuning PI (STPI) Control
Module, Pt. 111, Fig. 6, Sunderland Polytechnic, Sunderland, U.K., 1990.

20
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3.2. Output response generated by the closed-loop cycling
algorithm. Source: Reprinted with permission from C. S. Cox et al.,,
Development of ACCOL Self-Tuning PI (STPI) Control Module,
Pt. 1, Fig. 2, Sunderland Polytechnic, Sunderland, UK., 1990.
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Upon termination, the period and amplitude of the oscillations are measured and used to
calculate new PI controller settings. If the tuning phase does not obtain good results
after the specified maximum number of cycles, then it will also terminate with no
recalculation of the PI parameters. This technique is explained in further detail in the
following paragraphs.

After activating the closed-loop cycling self-tuning procedure, the process should
obtain constant-amplitude fixed-frequency oscillations within a few cycles. The algorithm:
is designed to automatically reduce the relay amplitude if the specified initial amplitude
is too large. However, if the initial amplitude is obviously much too large, the user may
want to manually adjust the amplitude during the tuning phase to keep the process
variable near the setpoint.

Once constant oscillations have been obtained, the Ziegler-Nichols critical gain
K, for the process is easily calculated. The ultimate frequency P, is also calculated by
using the error signal and a zero-crossing routine. Once these parameters are evaluated,
PI settings could easily be calculated (for quarter-amplitude damping) as shown in
Table 3.1. However, Astrdm’s proposed alternative approach, which allows calculation
of PI settings of any desired phase margin, is implemented in this algorithm.

Table 3.1. Ziegler-Nichols ultimate frequency-response controller parameters

Controller Controller Parameters “
Type K, T, T, |
P 05K, - —
PI 0.45 K, P12 .
PID 0.6 K, P2 P8

The developers recognized that every user may not understand the concept of
phase margin. So, to make this concept more user friendly, they only require the user to
specify the maximum desired percentage overshoot, which is then used to approximate
the desired phase margin. Although this method does not allow the user to specify an
overdamped response, from Figs. 3.3 and 3.4 it can be seen that this technique can be
used over a wide range of overshoot values to approximate the desired phase margin.
The resulting PI values can then be calculated by

4V P sin(,)
2724

~ P tan(d,)
¢ 2n '

(3.1)

Two optional enhancements may be needed if the process variable is somewhat
noisy—relay hysteresis and digital filtering. The designers realized that noise
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33. Percent overshoot vs damping ratio for the step
response of a second-order system. Source: Reprinted with
permission from C. S. Cox et al., Development of ACCOL Self-
Tuning PI (STPI) Control Module, Pt. 111, Fig. 7(a), Sunderland
Polytechnic, Sunderland, UK., 1990.

superimposed on the process variable signal could result in false relay switching and
invalidate the closed-loop cycling tuning procedure. Some hysteresis can easily be added
to the relay to improve its noise rejection. Choosing the correct bandwidth for the
digital filter is a more cumbersome problem. See the report in Appendix A,
Development of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 111, pp. 14849, for
more details regarding these enhancements.

3.2 PATTERN RECOGNITION ALGORITHM THEORY

This algorithm provides continuous self-tuning of the PI controller parameters.
When the pattern recognition self-tuning procedure is active, the PI controller
parameters will be recalculated following any sufficiently large disturbance or setpoint
change. New PI parameters are calculated in four distinct steps (Fig. 3.5).

1. The controller’s error signal is continuously monitored for any disturbances that
occur over a specified threshold value. When this threshold is exceeded, the
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3.4. Phase margin vs damping ratio of a second-order
system. Source: Reprinted with permission from C. S. Cox
et al, Development of ACCOL Self-Tuning PI (STPI)
Control Module, Pt. 111, Fig.7(b), Sunderland Polytechnic,
Sunderland, U.X., 1990.

algorithm monitors the process variable to detect its peak deviation from
setpoint, E_, .

Then the recovery time of the loop response T is determined. T is calculated
to be equal to the elapsed time it takes the system to go from 90% to 50% of
the peak deviation from setpoint on return from the peak deviation.

T, is then used in the evaluation of two integrals: S, and S,. T, is the time when
the system has reached 50% of the peak on return from the initial peak deviation
(i.e., when T is just determined).

S, is the area under the curve from time T,(1 + @) to T}(1 + a + ).
S, is the area under the curve from time 7,(1 + e + ) to T\ (1 + @ + B + y).

Having obtained the value of these integrals, the new PI controller parameters
can be calculated and updated as
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3.5. Annotated output response describing the operation of the pattern
recognition algorithm. Source: Reprinted with permission from C. S. Cox
et al., Development of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 1,
Fig. 5, Sunderland Polytechnic, Sunderland, U.K., 1990.

K, = K, + (1 - DONBYK,(S, + R) + K,S))

K, = K, + (1 - DONBYK,(S, + R) + K,5)]

(3-2)

S, = Area under the curve from time 7,(1 + a) to Ty(1 + a + ).

S, = Area under the curve from time T,(1 + a + B to T\ (1 + a + 8 + y).
R, = Level related to desired overshoot (R, = OVERSH/900).

R, = Area related to the actual overshoot (R, = yR,).

DONE = Confidence factor related to actual overshoot,

K,, K,, K;, and K, = Constants.

3.3 MODEL-BASED ALGORITHM THEORY

The model-based algorithm is primarily intended for use as a one-shot tuner,

although it may also be configured to operate in a continuous tuning mode (by the
expert user). A very important difference between this algorithm and the previous two is
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that the task rate must be carefully matched to the response time of the process. The
developers suggest that a good rule for use with this model-based method is to select a
task rate that is approximately one-tenth of the process rise time, which may be
determined from a step test (Fig. 3.6).

During the tuning phase, a pseudorandom binary sequence (PRBS) is produced
at the controller output, as shown in Fig. 3.7. The user must specify the initial mean
level, OPMEAN, and the amplitude, OPDEYV, of the PRBS: the mean level should be
chosen to cause the process variable to deviate at or near its setpoint value, and the
amplitude should be sufficiently large to cause significant deviations yet keep the process
variable within acceptable limits. The mean level of the PRBS may need to be manually
adjusted during the tuning phase to keep the process variable near the setpoint.

While the PRBS is applied, the process output and the controller output data are
fed into a recursive least-squares-estimation algorithm that calculates the mathematical
model parameters. The model is a first-order lag with time delay:

Ke ~T8
G (s) = : (33)
o) 1 +7Ts

Although the digitized equivalent of this equation could theoretically have any
number of terms in the numerator to accommodate any amount of delay time, the
developers fixed the numerator terms to five. Thus, the digitized model equation is

-1 - - -
Gy - bt bal b v baT v b (34)

-1
1 + az

The process output and controller output are prefiltered by a digital band-pass
filter to remove dc offsets and high-frequency noise and to make the estimation
algorithm more robust.

At the end of the self-tuning phase, the identified model is used to calculate new
PI controller settings. The discrete form of the ACCOL PI controller is given by

Gc(z-l) = KC 1

1+ KT - 1) "] 3.5)
1~z '

K; is calculated such that the zero of the controller will cancel the pole of the
system model in Eq. (3.4). Because the sample rate T is known, K; is easily calculated as
follows:

K -429 (3.6)
T
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3.6. Open-loop step response to determine a suitable task rate for the
model-based algorithm. Source: Reprinted with permission from C. S. Cox
et al., Development of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 1,

Fig. 6, Sunderland Polytechnic, Sunderland, U.K., 1990.
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3.7. Output response generated by the model-based algorithm
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Now the task is to calculate the K, that will provide the required phase margin
for the closed-loop compensated system. As with the closed-loop cycling algorithm, the
user has simply defined the desired system performance by specifying the maximum
desired percentage overshoot, which is then used to approximate the desired phase
margin. However, the mathematics involved is slightly more complicated than before.
With the pole-zero cancellation obtained by determining K, the remaining compensated
open loop transfer function is given by

bz + bz + bz « bz + bz (3.7)

GOL(Z ~l) = KC -1

1-2z

To determine the required K, the frequency response of the compensated system
must be computed. This can be done using the discrete time to frequency domain

mapping
7zl = evoT (3.8)

By using this substitution, the open-loop phase shift can be calculated at any
frequency o, by using the relationship

5
[ sinoT 1 ;I:b'smm (3.9)
TEGor(fw)] = ~tan [1—;;7} T ‘
‘ Y beosioT
i=]

The angular frequency w, at which the required phase margin occurs can be
calculated as

atg[GOL(jmo)] =-n + ¢, . (3.10)

The particular angular frequency w, which yields the desired phase margin is then
computed from Egs. (3.9) and (3.10) by using a linear search algorithm in the range

O<w< % . Once o, has been determined, K, can be calculated from

<

i=1 iel
JI1 - coswyT)* + [sinw, TP

s ¥
[E bim“’o{ * [Z b,siniw(,]j) (3.11)
=1.

|G| = K,




4. PROCESS SIMULATIONS

To facilitate the self-tuning control algorithm tests, various process simulations
were developed. Because the self-tuning algorithms were developed for Bristol-
Babcock’s distributed process controller model DPC 3330, it was the obvious process
simulator of choice because the controller could execute both the self-tuning algorithms
and the process models simultaneously. The self-tuning control algorithms and the
simulation programs were written in ACCOL II, a language developed by Bristol-
Babcock specifically for use with their distributed process controllers.

The processes that were simulated include an integrating process, a first-order
system, a second-order system, a system with initial inverse response, and a system with
variable time constant and delay. The process simulations are connected via software to
the STPI module as shown in Fig. 4.1. More details of the test setup are given in
Chapter 5. The simulation programs and the STPI module code have been integrated
into a single ACCOL program (Appendix B).

In physical processes, whenever the input to the system changes, there is
frequently some time interval during which no effect can be measured or observed on
the output. Thus, each of the simulations includes a delay, or deadtime, term to model
the effect of this delay time.

There are usually also some known process dynamics that cannot be accounted
for in a simple mathematical model (e.g., variance in properties of the inlet process
materials, uncontrolled process environmental variables). These dynamics can be
classified as disturbance inputs. In fact, any input that is not a result of an adjustment by
the operator or the control system may be called a disturbance input. To account for
some of these uncontrolled process dynamics and to measure their effects, each process
includes load disturbances that can be added to the process inputs.

Although any unknown process dynamic could be classified as noise, one
common source of noise is associated with measuring the process output. Thus, the
process simulations include the capability of adding a noise signal to the process output
to simulate measurement noise. This was done by using the noise generator in the
GENESIS software package that is being used to monitor the process and controller
output. Each process is described in more detail in the following sections.

4.1 INTEGRATING PROCESS

Processes with integrating action are common, especially in the chemical industry
(e.g., tanks storing liquids, vessels storing gases, inventory systems storing raw materials).
A purely capacitive, or integrating, process will behave as if there were an integrator
between its input and output. Its output will grow (or shrink) linearly with time as
shown in Fig. 4.2 (depending on whether material is being added or removed). The
value of K, (i.e., the process gain) is related to the rate of increase or decrease. The
larger the value of K, the steeper the slope (i.e., the larger the increase) will be.

30
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4.1. Block diagram of the connections between the self-tuning proportional-integral
controller and the process simulations.
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4.2. Unbounded output response of
a pure integrating process.  Source:
George Stephanopoulas, Chemical Process
Control: An Introduction to Theory and
Practice, Fig. 10.3, p. 179, reprinted with
permission from Prentice-Hall, Englewood
Cliffs, New Jersey, 1984.

The simulated integrating process (with deadtime) is described by

G(s) = Ke ™ . (4.1)
s

The code to implement this process is in Task 10 of the ACCOL program in
Appendix B. In practice, the process output will probably encounter some upper and
lower limits (e.g., a tank has a finite capacity). So, the simulation of the integrating
process has both upper and lower bounds.
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42 FIRST-ORDER SYSTEM

A first-order system is so-named because the time-domain transfer function of
the process can be described by a first-order differential equation. The first-order
process simulation (with deadtime) is described by

6o - X (4.2)
TSt 1

Unlike the integrating process, when its input is changed, the first-order lag
process automatically seeks a new equilibrium or steady state. The time constant 7, of a
process is a measure of the time necessary for the process to adjust to a change in its
input (Stephanopoulos 1984). The value of K, corresponds to the ultimate or final value
of the output. For a step change in input, the output response would be exponential as
given by

YO = AK(1 - ™) . (43)

Figure 4.3 shows how the process output changes with respect to time in
response to a step change in the input. The output will reach 63.2% of its final value
when the elapsed time is equal to one time constant. After four time constants, the
output will have essentially reached its final value. The code to implement this process
is in Task 11 of the ACCOL program in Appendix B.

43 SECOND-ORDER SYSTEM

A second-order system is a process that can be described by a second-order
differential equation. The familiar Laplace transformation for a second-order system is
given by

2
Ky (4.4)

GGs) =

52+ 2os + w2

where

K, = system gain,
», = undamped natural frequency,
¢ = damping factor.
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43. Output response of a first-order process for a step
Source: George Stephanopoulas, Chemical Process

input.
Control: An Introduction to Theory and Practice, Fig. 10.4, p. 180,
reprinted with permission from Prentice-Hall, Englewood Cliffs,

New Jersey, 1984.
(4.5)

Thus, the characteristic equation is given by
s?+2fos+wl=0,
(46)

Sp 8y = Lo, + 0 - 1.

and its roots are

The form of the output response depends on the roots s, and s,, which describe
the location of the two poles in the s-plane (D’Souza 1988). Three cases are easily

distinguished:
Case 1: overdamped response,
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Case 2: critically damped response, and

Case 3: underdamped response.

Case 1: Overdamped response

When { > 1, two distinct real poles exist (i.e., two system time constants can be
defined) as shown in Fig. 4.4, and the roots can be expressed as

s, = Yty = (o, + 0y -1
s = -Yvy, = {o, -0y -1.

4.7
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4.4. Output response of an overdamped second-order system for a step input.
Source: A. Frank D’Souza, Design of Control Systems, Fig. 4.8, p. 139, reprinted
with permission from Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

Case 2: Critically damped response
When ¢ = 1, two real, equal poles exist (i.e., a single repeated root) as shown in

Fig. 4.5, and the multiple root can be expressed as

5, =85 = -1/1; =~ . (48)



4.5. Output response of a critically damped second-order system for a
step input. Source: A. Frank D’Souza, Design of Control Systems, Fig. 4.9,
p- 140, reprinted with permission from Prentice-Hall, Englewood Cliffs,
New Jersey, 1988. '

Case 3: Underdamped response

When { < 1, two complex conjugate poles exist as shown in Fig. 4.6, and the
roots can be expressed as

5p 8 = ~{w, £ jo1-C%. 4.9

yith )

w"e tl f\/
- ' T t,+ T
0 o

|
!
—Iwn
t
s AR 0<s <t

t

4.6. Output response of an underdamped second-order system for a step input.
Source: A. Frank D’Souza, Design of Control Systems, Fig. 4.10, p. 141, reprinted with
permission from Prentice-Hall, Englewood Cliffs, New Jersey, 1988.
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Figure 4.7 shows the output response plots for various values of {. It can be
seen from the graph that for values of { > 1, the response becomes more sluggish as the
damping factor is increased. When { = 1, the response is similar to the first-order
response, except that its initial response is somewhat more sluggish. For values of
{ < 1, the initial response is faster, but the system tends to oscillate around the final
value. This oscillatory behavior becomes more pronounced as the damping factor is
decreased. The code to implement this process is in Task 16 of the ACCOL program in
Appendix B.

Most industrial processes can be adequately approximated by one of the three
systems described above. However, to more thoroughly test the capabilities of the STPI
controller, two more processes of interest were developed—a system with initial inverse
response and a system with variable time constant and delay.

44 SYSTEM WITH INITIAL INVERSE RESPONSE

The dynamic response of a boiler level-control system is quite different from
those systems described thus far. If the flow rate of the cold feedwater to a boiler
system is increased by a step amount, the total volume of the boiling water, and
consequently the liquid level, will decrease for a short period of time before it starts to
increase due to the initial cooling effect caused by adding the cold water. Thus, the
system will initially have an inverse response to the desired behavior.

A system of this type can be mathematically described by the difference equation
of two opposing first-order systems, yielding an overall response equal to

K & | (4.10)
s+ 1 1,5 + 1

G(s) =[

This system will have an initial inverse response when both of the following
conditions are satisfied.

1. Process 1 is able to reach a higher steady-state value than Process 2 (i.e.,
K, > K,) and
2. Process 2 is able to initially dominate the overall response of the system (i.e.,

Kyr, > Ki/r,).

Figure 4.8 shows the overall response of the system. The code to implement this
process is in Task 14 of the ACCOL program in Appendix B.
4.5 SYSTEM WITH VARIABLE TIME CONSTANT AND DELAY

For the processes that have been described thus far, it has been assumed that the

system parameters (e.g., gain, time constant) for physical processes always remain
constant. However, this is not always the case, especially for chemical processes.
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4.7. Step response plots of a second-order system for various
values of the damping factor. Source: George Stephanopoulas,
Chemical Process Control: An Introduction to Theory and Practice,
Fig. 11.1, p. 189, reprinted with permission from Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.
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4.8 Initial inverse response resulting from two
opposing first-order systems to a step input. Source:
George Stephanopoulas, Chemical Process Control:
An Introduction to Theory and Practice, Fig. 12.5,
p. 219, reprinted with permission from Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

For example, consider the problem of controlling the chemical concentration of a
continuously flowing output stream from a mixing tank (Fig. 4.9). The tank has two inlet
streams, each of which has a distinctly different concentration of the desired chemical. A
mass rate balance at the feed end of the pipe is given by

(09,0 = €1,(1) + c,9,(0) - (4.11)

If only the flow rate of g, can be controlled, then assuming the flow rate of g, to
be constant at a particular instant in time, then

e, (@ = G * &%0 (4.12)

where

4,0 =g, +q)1) -
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4.9. Continuous concentration control of a chemical mixing process.

To solve the problem, one can also assume that at a given instant in time, the
volume in the mixing tank is constant. For a constant volume in the mixing tank, the
process transfer function from the feed end of the pipe to the mixing tank outlet is given
by

Tigtg = et - 1) - ) (4.13)

where

() = Vs and T = —=
PG a0
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The Laplace transform of Eq. (4.13) is given by
o) e (4.14)

c,5) 1 +Ts

Thus, the process transfer function is

- c,n(s)e'“ (4.15)
6 =175
where
g + C2q2(t)
g = 0t %0 (4.16)
“u(® q, + 4,

The code to implement this process is in Task 15 of the ACCOL program in
Appendix B.



5. TESTING AND COMPARISON OF THE BBI STPI ALGORITHMS

Each of the three STPI algorithms (i.e., closed-loop cycling, pattern recognition,
and model based) was tested with each of the process simulations to determine the types
of processes for which the STPI controllers might best be suited. A summary of the
simulated processes is given in Table 5.1. By varying their parameters, these five
processes represent a wide range of the industrial processes that would typically be
encountered in industry. More details of the process simulations are provided in
Chapter 3.

It is acknowledged that the practical implementation of most processes results in
systems of higher order, especially when the dynamic effects of the sensors and control
elements are considered. However, most industrial processes can be approximated by
either a first- or second-order system with deadtime. Another reason for using low-order
systems is that the fundamental concepts can be tested and understood more clearly
without the additional mathematical complexity. For these reasons, most of the
simulation testing concentrated on the first- and second-order systems (processes II
and IIT).

5.1 DESCRIPTION OF TESTS

The process simulations are connected via software to the STPI module as shown
in Fig. 4.1. The test procedure generally consisted of the following seven steps.

1. Select the desired process simulation and enter the appropriate process
parameters (including percent noise and process deadtime, if desired).

2. Select the STPI algorithm to test (changing its defaults only if necessary).
3. Set initial P, 1, and setpoint values and allow the process to stabilize.

4. Enable self-tuning on the STPI controller (PI values are automatically
updated when self-tuning is complete).

5. Turn off self-tuning and allow the system to stabilize.

6. Test controller setpoint response with new PI values by changing setpoint
from 40 to 50%.

7. Test load step response by adding 10% load disturbance (to the process
input).

More details regarding these tests are given in the next section. A RESET

feature was added to simplify the setup procedure (steps 1, 2, and 3), and the test
procedures (steps 6 and 7) were automated to ensure repeatability.
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Table 5.1. Transfer functions of the simulated processes

Simulated processes H
h Process Transfer function* I!
W
I -
K, £
s
I s
er
TSt 1
I , -
K o,e K4
s+ 2es + o)
v
L.
s+ 1 T+ 1
V*
c, (e ™
1 +7Ts

*NOTE: A simplified linear approximation of a
nonlinear process where
K, = Process gain,
7,4 T, = Deadtime,
T, 7, 7,, T, = Time constants,
®, = Undamped natural frequency,
¢ = Damping factor,
¢y, €y, €, = Concentration of input streams,
91, 9, = Flow rates of input streams.
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5.2 PERFORMANCE EVALUATIONS

First, the desired process simulation was selected (process I, II, III, IV, or V),
and the appropriate process parameters were entered (including percent noise and
process deadtime, if desired). Then, the STPI algorithm to test was selected (changing
its defaults only if necessary). Each of the three STPI algorithms is somewhat different
in design, and each has several special features that may optionally be set by the user.
Thus, it would be a difficult task to exhaustively compare the performance of the
algorithms while varying all of their optional features. Therefore, the default settings
were used for all parameters except where otherwise stated. For more details about the
special features, see the report in Appendix A

The Bristol-Babcock PID3TERM module uses a noninteracting PID control
algorithm of the form

OUTPUT = K, [E(t) + K,[E0d® + KDd‘;t(‘) . (5.1)

For the STPI controller tests, the controller gain was initially set to unity (i.e.,

P = 1.0), the integral, or reset, was initially set to one repeat per minute (i.e., I = 1.0),
and the derivative was not used (i.e., D = 0). All the process measurements and
controller outputs were scaled from 0 to 100%, and the initial setpoint was generally set
equal to 40%.

After allowing the system to stabilize with these initial tuning values, the STPI
controller self-tuning was enabled. Self-tuning is performed without user intervention
(as described in Chapter 4), and the PI values are automatically updated when self-
tuning is complete. Tables 5.2 through 5.7 show the calculated PI tuning parameters for
each of the five processes. :

By comparing the calculated PI parameters in Tables 5.2 through 5.7, it seems
that the results for both the closed-loop cycling method and the model-based method are
generally comparable, although the model-based method generally seems to design
slightly more conservative values. The values determined by the pattern recognition
method are frequently widely different from the other two methods.

Upon further inspection, it was determined that the pattern recognition method
was frequently unable to design useful controller parameters for the tests because it
encountered +20% maximum percentage change limits which are imposed on it (i.e., it
can change the PI parameters from those initially specified by the user up to a maximum
of only 20% for each adaptation). The change limits are presumably imposed by the
designers in an attempt to prevent it from designing erroneous results. However, these
limits are a major hindrance to this algorithm when attempts are made to use it from a
cold start.

5.2.1 Process Incompatibilities

If the process is naturally integrating, the user can set the INTEG flag in the
ACCOL program before activating either the closed-loop cycling or model-based self-
tuning algorithms to indicate that the process is naturally integrating (the INTEG flag



Table 5.2. Calculated proportional-integral (PI) parameters for the integrating process

Controller parameters for Process I
Process PI1 CLC PR MB
parameters parameters
} {
K, =02 Gain (K) 1.740 1.200 0.5514
t, = 0.0 Integ (K 6.264 1.200 19.52
CF 70.51% 0.0% 58.84%
K, = Gain (K)) 0.5583 0.8320 0.3396
T, = Integ (K)) 9.019 0.8333 30.66
CF 56.53% 21.27% 60.62%

CF = Confidence factor.
K. = Controller gain.

K; = Controller integral.
K, = Process gain.

7, = Process time constant.

Table 5.3. Calculated proportional-integral (PT) parameters for the first-order process

Controller parameters for Process 11 I

Process parameters PI CLC PR MB
parameters

=10 Gain (K,) 1.556 1.200 2.506
7, = 5.0 Integ (K;) 11.27 1.200 11.96
= 0.0 CF 94.72% 0.0% 99.95%
OVERSH = 10%
K, =10 Gain (K,) 1.548 1.0 0.5672
= 5.0 Integ (K)) 2.038 1.0 10.90
73 = 0.0 CF 51.35% 0.0% 99.85%
OVERSH = 0%

CF = Confidence factor.

K. = Controller gain.

K, = Controller integral.
= Process gain.

74 = Deadtime.

7, = Process time constant.

OVERSH = Overshoot.
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Table 5.4. Calculated proportional-integral parameters (PI) for the second-order process

(», =02)
Controller parameters for Process Il (®, = 0.2)
Process PI CLC PR MB
parameters parameters
| K, =10 Gain (K,) 0.2855 0.9434 0.1486
7, = 0.0 Integ (K;) 7.046 1.200 2.469
¢ =02 CF 70.38% 0.0% 97.48%
K, =10 Gain (K,) 1173 1.200 1.178
7, = 0.0 Integ (K;) 4.698 1.200 5.663
=10 CF 68.90% 0.0% 99.40%
K, = 1.0 Gain (K,) 3.523 1.200 3.093
7, = 0.0 Integ (K)) 4.698 1.200 2214
£=25 CF 50.55% 0.0% 99.94%

CF = Confidence factor.
K. = Controller gain.
K; = Controller integral.

K, = Process gain.
14 = Deadtime.
{ = Damping factor.

Table 5.5. Calculated proportional-integral parameters (PI) for the second-order process
(&, = 0.04)

Controller parameters for Process 11l (&, = 0.04)

Process P1 CLC PR MB
parameters parameters
Kp = 1.0 Gain (K)) 0.3830 0.8929 3.583
74 = 0.0 Integ (K)) 1.427 0.9356 0.4287
=02 CF 60.14% 71.43% 98.14%*
KP = 1.0 Gain (K,) 1.640 1.200 0.5741
7y = 0.0 Integ (K)) 1.303 1.200 2.143
=10 CF 82.24% 0.0% 87.87%
Kv = 1.0 Gain (K)) 3.939 1.200 20.98
7, = 0.0 Integ (Kp) 1.181 1.199 1.106
{=25 CF 64.11% 17.22% 25.63%*

CF = Confidence factor.
K. = Controller gain.

K, = Controller integral.
K, = Process gain.

13 = Deadtime.
{ = Damping factor.
* = Calcualted value is unstable.



Table 5.6. Calculated proportional-integral parameters (PI) for the system with initial
inverse response

Controller parameters for Process IV

Process
parameters

K, = 2.0

7, = 5.0
K, =10
7, =05

PI
parameters

Gain (K,)
Integ (K))

CF

CLC

0.8423
5.500
78.32%

PR

0.9450
0.9677
80.69%

MB

11.43
99.95%

CF = Confidence factor.
K, = Process 1 gain.
K, = Process 2 gain.
K. = Controller gain.

K; = Controller integral.

7, = Process 1 time constant.
7, = Process 2 time constant.

Table 5.7. Calculated proportional-integral (PI) parameters for the system with variable

time constant and delay

Controller parameters for Process V

Process Pl CLC PR MB
parameters parameters
P — ]
]

K, = 0.55 Gain (K)) 9.270 1.200 2.738

¢ = 10% Integ (K)) 3.089 1.200 1.356

¢, = 0% CF 79.84% 0.0% 98.77%

q, = 100

vV, = 100

vV, = 1000

C, = Input stream 1 concentration.
C, = Input stream 2 concentration.

CF = Confidence factor.
K, = Controller gain.
K; = Controller integral.

K, = Process gain.
q; = Flow rate of stream 1.

V, = Fluid volume in pipe.
V,, = Fluid volume in mixing tank.
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has no effect on the pattern recognition algorithm). In the case of the closed-loop
cycling algorithm, the controller will use a square-wave perturbation output (instead of
the sawtooth waveform). In either case, a proportional-only controller should be
designed. However, some problems were experienced when attempting to use the STPI
algorithms’ INTEG feature to design a proportional-only controller (i.e., the feature did
not seem to work reliably). Therefore, the INTEG feature was not used, and PI
controllers were designed to control the integrating process as well as for all other
processes. ‘

Another limitation of the STPI controller algorithms, at least in their present
implementation, is that they are not suitable for controlling fast processes. However, the
one-second update will probably pose no problem for most industrial processes where
the Bristol-Babcock controller is generally used. One would also expect the STPI
algorithms to execute somewhat faster once they are commercially implemented (in
microcode in PROMs) than they do when written in ACCOL.

5.22 Tuned System Performance

Several simple performance specifications can be used to evaluate characteristic
features of the closed-loop system response (e.g., overshoot, rise time, settling time,
decay ratio). However, several performance criterion also can be used to simultaneously
minimize multiple requirements. The most popular criteria used to evaluate the overall
quality of the tuned system response are

1. integral of the square error (ISE), where

ISE = fo “eXndt ; (5-2)

2. integral of the absolute value of the error (IAE), where

UE = ["le® | dt; (53)

3. integral of the time-weighted absolute error (ITAE), where

ITAE = fo": | e(t) | dt . (54

The determination of which criterion is best to use depends upon which
characteristics of a particular process are the most important to control.

The ISE criterion strongly penalizes large errors because the errors are squared
and thus contribute more to the value of the integral (however, small errors of less than
one would actually be downplayed). The IAE criterion penalizes small errors the same
as large errors. The ITAE criterion severely penalizes errors that persist for a long time.
The IAE criterion seems to have the most practical significance because it gives a more



48

accurate indication of the actual error (e.g., the area under the curve that can be directly
related to operating costs). For this reason, the IAE criterion was used to evaluate the
STPI algorithms’ performance.

A controller that is tuned to provide optimum setpoint response (to step changes
in the setpoint) will not necessarily provide good load-step response. So, the controllers’
responses to both setpoint changes and load-step response were tested. During these
response tests, the controller’s output and the process measurement variable were
sampled simultaneously at one-second intervals. The STPI algorithms’ performance was
then evaluated by analyzing the tuned system IAE response data with MATLAB. The
results of the response tests are in Table 5.8.

From Table 5.8, it can be seen that the pattern recognition outperformed the
other two algorithms only once (for Process III, with &, = 0.04 and { = 0.2). Upon
close observation of the data in Tables 5.2 through 5.7, it is obvious that this algorithm
yields unreliable tuning results when used from a cold start. With this information, it is
safe to say that this algorithm should probably not be used from a cold start, but only for
continuous tuning refinements.

The rest of the test results show that the closed-loop cycling algorithm
outperformed the model-based algorithm in 10 of the 15 other test cases. Although the
model-based algorithm generally yielded results comparable to those designed by the
closed-loop cycling method, it failed to design a controller with stable PI parameters for
three of the tested processes. Thus, it appears from these tests that the closed-loop
cycling algorithm will generally yield the best results.

5.23 Deadtime Effects

Various amounts of process deadtime were added to the first-order process to
examine the effects of deadtime on the STPI algorithms. The results of these tests are
shown in Table 5.9. The data in Tables 5.8 and 5.9 indicate that the closed-loop cycling
algorithm is more likely to design better PI parameters for processes with deadtime. The
pattern recognition method was unable to design useful controller parameters for these
tests because it always encountered the +20% maximum change limits.

Note that the model-based algorithm actually computes unstable PI parameters
for the test with 20 seconds of deadtime. This is an inherent limitation of the
implementation of this algorithm. Specifically, because the developers fixed the number
of numerator terms to five, only the deadtime information contained in the previous four
time samples is available to model the deadtime. Thus, processes with a large amount of
deadtime (relative to the process time constant) cannot be accurately modeled by the
algorithm.

524 Noise Effects

Measurement noise was added to the first-order process output to observe the
STPI algorithms’ sensitivity to measurement noise. The results of these tests are shown
in Table 5.10. Examination of these data along with the performance results obtained



Table 5.8. Tuned system integral of the absolute value of the error (IAE) response to
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both setpoint and load changes

IAE Response for setpoint/(load) changes

Process and
parameters* __ MB
Process 1
(ta = 0)
Ky =10 29.7 (122.3) 26.2 (707.8) 58.9 (108.9)
Kp = 0.2 47.7 (57.4) 76.8 (388.6) 122.5 (131.5)
Process 11
Kp =1, 7, =35) |
OVERSH = 10% 310 (36.5) 285.4 (235.8) 9.9 (21.1)
OVERSH = 0% 161.7 (178.3) 400.5 (324.9) 86.8 (98.6)
1, = 5.0 118.8 (113.3) 287.0 (252.9) 277.0 (271.9)
7y = 200 415.1 (416.1) UNSTABLE UNSTABLE
NOISE = 2% 20.0 (32.7) 285.4 (235.8) 13.5 (25.7)
“ NOISE = 5% 25.9 (24.6) 285.4 (235.8) 48.5 (49.3)
Process 111
Ke=17,=0) |
(©, =0.2)
=02 285.1 (398.9) 391.7 (351.7) 754.9 (415.3)
{=10 92.0 (110.5) 295.4 (244.8) 68.8 (92.8)
(=25 70.2 (38.5) 315.6 (260.8) 62.1 (86.8)
(0, = 0.04) ,
=02 857.3 (867.1) 687.1 (883.7) UNSTABLE
{=10 288.5 (233.8) 351.9 (299.6) 482.3 (446.0)
t=25 337.5 (132.5) 660.5 (522.8) UNSTABLE
Process IV
K, =20
7, =50 135.8 (172.3) 359.6 (328.3) 114.6 (150.9)
K, =10 ‘
7, = 0.5
ﬂ Process V
K, =055
¢; = 10%
c, = 90% 78.0 (17.1) 550.1 (40.4) 3409 (56.0)
q; = 10.0
V, = 100
V., = 1000

*See definitions on the next page.
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Definitions for Table 5.8:

C, = Input stream 1 concentration.
C, = Input stream 2 concentration.
K; = Process 1 gain.
K, = Process 2 gain.
= Process gain.
OVERSH = Overshoot.
q; = Flow rate of stream 1.
V, = Fluid volume in pipe.
V,, = Fluid volume in mixing tank.
®, = Undamped natural frequency.
7, = Process 1 time constant.
7, = Process 2 time constant.
74 = Deadtime.
7, = Process time constant.
¢ = Damping factor.

Table 5.9. Calculated proportional-integral (PI) parameters for the first-order process
with deadtime

Controller parameters for Process II (with deadtime)

Process PI CLC PR MB
parameters parameters
4
| K, =10 Gain (K,) 1.556 1.200 2.506
7, = 5.0 Integ (K;) 11.27 1.200 11.96
74, =00 CF 94.72% 0.0% 99.95%
K, =10 Gain (K,) 1.035 1.200 0.4445
7, = 5.0 Integ (Ky) 5.184 1.200 4.583
73, = 3.0 CF 80.15% 0.0% 92.14%
K, =10 Gain (K,) 0.7103 1.200 3.126
7, = 5.0 Integ (K,) 2.147 1.200 27.23
T4 = 20.0 CF 79.28% 18.22%* 13.56%*

CF = Confidence factor.

K, = Controller gain.
K; = Controller integral.
= Process gain.
7, = Deadtime.
7, = Process time constant.
* = Calculated value is unstable.
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Table 5.10. Calculated proportional-integral (PI) parameters for the first-order process

with noise
E Controller parameters for Process II (with noise)
| Process PI CLC PR MB
parameters parameters
K, =10 Gain (K,) 1.556 1.200
T, = 5.0 Integ (K,) 11.27 1.200 11.96
7, =00 CF 94.72% 0.0% 99.95%
NOISE = 0%
K, =10 Gain (K,) 1.924 1200 1.822
7, =50 Integ (K;) 10.02 1.200 14.76
| 74 = 0.0 CF 51.22% 0.0% 96.87%
1 NOISE = 2%
K, =10 Gain (K,) 1.612 1.200 0.4356
7, = 5.0 Integ (K,) 16.11 1.200 31.286
7, =00 CF 57.03% 0.0% 31.06%
NOISE = 5%
P
CF = Confidence factor. K, = Process gain.
K, = Controller gain. 7, = Deadtime.
K, = Controller integral. 7, = Process time constant.

for these tests in Table 3.8, indicates that for small amounts of noise the performance of
the model-based algorithm is best, but for larger amounts of noise the closed-loop cycling
algorithm seems to yield better results. The pattern recognition method was once again
unable to design useful controller parameters for these tests because it always
encountered the £20% maximum change limits.

53 ROBUSTNESS COMPARISONS

The two primary parameters that greatly affect the value of the PI tuning
constants are the process gain and deadtime. PI controllers can accommodate any
decrease in process gain or deadtime without destabilizing the loop, although the output
response will become more sluggish. However, the amount by which either of these two
process parameters can be increased is much more important. The amount by which
process (or controller) gain or deadtime can be increased before reaching the stability
limit of the process is a measure of the robustness of the system (using the specified
tuning constants).
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In fact, system performance and robustness are inversely related (Shinskey 1991).
Performance can generally be improved by increasing the gain (P) and integral () until

the desired system performance is obtained. However, robustness can usually be
improved by detuning the controller, aithough performance will be decreased. Thus, to
determine which STPI controller algorithm is really best for a particular process, it is
necessary to examine both the performance and robustness of the tuned systems
simultaneously, considering which of these characteristics is most important to control for
that particular process.

The robustness of the tuned system was determined by using MathCAD with the
following method. Given a plant [G,(s)], and controller [G,(s)], find the maximum
amount the gain could be increased (i.e., the gain limit K}), and the maximum amount of
deadtime that could be added (i.e., the deadtime limit T}) before the closed-loop system
reaches the stability limit.

The gain limit K] can be determined by computing where the magnitude of the
open-loop system is equal to 1.0:

| KG,(jw)G o) | =1. (55)

To solve this equation for K|, one must know the zero crossing frequency @,.
This is, of course, described as the point where the phase is equal to -z rad/s:

arglK,G (0 )G Gw)] = ~n . (5:6)

Because Eq. 5.6 is independent of K (i.e., K| does not affect the open-loop
phase), this equation can be solved using a linear search algorithm to obtain w,, then the
gain limit can be calculated by solving Eq. 5.5 for K;:

K, = “*"—‘—L"—"— . (57
|Gp(’ wz) Gc(] w z)|

Similarly, the deadtime limit 7; can be determined by

|Kle(iwz)G,(iwz)e 'I°‘T'| =1 (5-8)

such that
axg{Gp(im,)Gc(iwz)e K ""T'] = -7 . (59
Because Eq. 5.8 is independent of T, it can be solved by using a linear search

algorithm to obtain w,. Then, noting that

arg[Gp(icoz)G,(iw,)e -/u,r,] = argfG,(j0 )G ()] - ©.T;, (5.10)



53

the deadtime limit can be calculated by solving Eq. 5.9 for T, as

r.%* wgfG, (0 )G G)] 511)

@,

Although the above method calculates the gain limit and the deadtime limit
independently, both the gain and deadtime could be increased simultaneously (by lesser
amounts) to drive the closed-loop system to the stability limit. The MathCAD routines
used to calculate these limits for both the first- and second-order systems are given in
Appendix D. Table 5.11 shows the results of the robustness calculations. Because the
pattern recognition method rarely yielded reliable results from a cold start, the
robustness calculations compared the results from only the closed-loop cycling and the
model-based tuning methods.

The tuned system is generally considered to be robust if the system remains
stable when the gain (or deadtime) is increased by a factor of 2. Although no process
deadtime was specified except for two of the second-order process tests, these
calculations still give an overall indication of the robustness of the STPI algorithms.
Comparison of the data in Table 5.11 indicates that the two algorithms are nearly equally
robust, with one or the other having the edge for a particular process. Of the 11 tests,
the closed-loop cycling values were more robust for six of the processes, while the
model-based technique yielded better results for 5 processes. The gain limit is, of
course, infinite for the integrating process and for first-order processes with no deadtime
(because a —180° phase shift would be approached for only extremely high values of
gain). It was considered to be infinite for other processes if the gain could be increased
by an extremely large amount before the system became unstable.

5.4 PI PARAMETER ADJUSTMENT EFFICIENCY

The pattern recognition algorithm is the most time-efficient because it
determines new PI values after each setpoint change or disturbance without any further
process perturbation. However, this algorithm frequently failed to identify reliable PI
values (when used from a cold start). In their present implementations, the closed-loop
cycling algorithm is more efficient than the model-based algorithm. This is because the
closed-loop cycling algorithm automatically terminates after the process oscillations have
stabilized to update the PI values, whereas the model-based algorithm just calculates new
PI values after a specified number of cycles.
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Table 5.11 Tuned system robustness with respect to

gain and deadtime increases
Gain/(deadtime) stability limits
Process
parameters
| —
Process 1
(ta = 0)
K, =10 © 228 % 1.56
Kp =02 o 3.56 o 2.74
Process 11
(Kp=1,7,=5)
OVERSH = 10% © 523 % 3.14
OVERSH = 0% 0 8.84 o0 153
7, = 5.0 1.97 421 4.66 39.6
7, = 20.0 1.56 420 * *
NOISE = 2% % 4.42 ® 3.86
NOISE = 5% 0 4.07 o0 6.55
Process 111
Kp=171=0)
(0, = 02)
=02 7.49 49.6 E 2759
=10 0 11.8 ® 10.1
=125 % 7.7 o 11.6

K, = Process gain.

z, = Process time constant.

OVERSH = Overshoot.

©, = Undamped natural frequency.

74 = Deadtime.

¢ = Damping factor.

* = Not calculated because tuned system was unstable.



6. CONCLUSIONS

Of the three STPI algorithms, the closed-loop cycling technique is the most
reliable and the easicst to use because it only requires the user to specify the setpoint
(when operated with the default parameters). It is also good from a cold start. Another
good feature of this algorithm is that it terminates and updates the PI parameters as
soon as the self-tuning is complete (i.e., when it has identified the period and amplitude
of the constant process oscillations). This algorithm seems to have been implemented
well, but the initial default relay amplitude frequently seemed to be too large for the
processes that were tested.

Although the algorithm automatically reduces the relay amplitude when the
specified initial amplitude is too large, when output limits are incurred it only reduces
the amplitude by a predetermined factor. Thus, if the initial amplitude is much too
large, several successive automatic amplitude reductions will be needed before the
process variable begins to stay near the setpoint. Some form of intelligent amplitude
reduction should be done analytically. One rather simple method would be to
approximate the slope of the output response, compare it to the amount of time the
output stays out of range, and then calculate the relay amplitude reduction factor.

Another minor disadvantage of the closed-loop cycling algorithm is that it is the
only one of the three that simply cannot be used in continuous self-tuning mode. The
self-tuning must be initiated by the user.

The pattern recognition algorithm is the only one of the three that does not
cause any process disturbance during self-tuning. When this algorithm is activated by the
user, it recalculates the PI controller parameters following any sufficiently large setpoint
change or disturbance. Note that it is also the only one that stays on continuously until
it is turned off by the user. This could be either an advantage or a disadvantage,
depending on one’s viewpoint (especially because it will retune following any sufficiently
large process disturbance). It is also the most time-efficient because it determines new
PI values after each setpoint change or disturbance without any further process
perturbation. :

The pattern recognition algorithm requires reasonably good initial values of the
controller PI parameters and is therefore not suitable for use from a cold start. The
algorithm also limits the adjustment of the PI values (the maximum change allowed after
each adaptation) to £20%. It is the only one of the three algorithms that currently has
any parameter change limits. A serious disadvantage of this algorithm is that it does not
work when the process response is overdamped. The particular implementation of this
algorithm is rather simplistic. However, its usefulness is greatly enhanced by using the
closed-loop cycling method as a pretuning phase to obtain reasonably good estimates for
the initial P and [/ values.

This algorithm could also be improved by adding some additional logic or
heuristics (similar to those implemented in the Foxboro EXACT self-tuner) to enable it
to work when the process is overdamped. Or, for overdamped processes, perhaps the
pattern recognition algorithm could increase the controller gain until the required
oscillatory response is obtained and then perform the self-tuning in the same fashion.
The model-based algorithm can be used from a cold start, although it requires more
values to be specified by the user than the other algorithms. Because the selection of an
appropriate sampling rate (i.c., ACCOL task rate) is extremely important to the proper
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operation of this algorithm, it should be modified to automatically approximate the
response time of the process (with a step response) and adjust the ACCOL task rate
accordingly. The STPI research report claims that this algorithm can also be used to
provide continuous tuning refinements (by the expert user). However, no continuous
parameter refinement tests were attempted with this algorithm, because of time
constraints.

One serious disadvantage of this algorithm is that it cannot properly tune
processes that have large amounts of deadtime (see additional explanation in Sect. 5.2.3).
A potential problem with this algorithm is that it employs the pole-zero cancellation
technique. This technique has the inherent disadvantage that if the process model is
incorrectly identified, or if the the process model dynamically changes over time, the
pole-zero cancellation may not work and the tuned system may then be unstable.

The mean level of the PRBS could also be monitored and automatically adjusted
during the tuning phase (as done in the closed-loop cycling algorithm) to keep the
process variable near the setpoint. If intelligent PRBS amplitude adjustment is added, it
should also be able to increase the amplitude if the initially specified value only causes
very small deviations from the setpoint. Deviations of at least 3 to 5% would most likely
result in better model estimation.

For slower processes, this algorithm’s self-tuning takes an unacceptably long
period of time (using the default values) even though it adequately approximated the
model after the first few cycles. The algorithm should be modified to terminate model
identification and update the PI parameters whenever the confidence factor (DONE)
reaches some acceptable value (perhaps 85%) rather than just continuing to update
these values for a specified number of cycles (the default number of cycles is 50).

Although not as critical, the coefficient « in the digital bandpass filter could also
be adjusted recursively as new estimates of the process model are obtained to obtain
even better models (and thus more precise tuning).

As suggested in the original STPI research report, these tests confirmed that
some additional logic should probably be added to check the confidence factor, DONE,
before updating the controller parameters. In their present implementation, the PI
values will be updated even if the algorithm practically fails. Note that although the
confidence factor does give some indication as to the reliability of the tuning parameters
for a particular STPI algorithm use, it should not be used to compare the performance
or robustness of one STPI algorithm to another.

It might also be desirable to allow the user to limit the range for the PI
parameters or specify the maximum percentage change allowed after each adaptation for
both the closed-loop cycling and model-based algorithms (the pattern recognition
algorithm already limits the change to +20%).

In summary, these tests demonstrated that some good single-loop adaptive
control techniques have been developed that can be used to adequately control many
processes. Although it is certain that single-loop self-tuning controllers will not be
enough to solve every process control problem, it may be possible to meet increased
demands and achieve better process control results simply by using one of these single-
loop advanced control techniques. Because most industrial processes are still being
controlled with single-loop PID controllers, perhaps one of these techniques can be
implemented to obtain the desired efficiency improvements without costly redesign of
existing processes.
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It should be noted that these tests actually evaluated the particular
implementation of these STPI algorithms and their interactions with the Bristol-Babcock
PID control algorithm. Different implementations of these same algorithms could
provide somewhat different results. Likewise, if the same implementations of these STPI
algorithms were used in conjunction with other control algorithms of a different form,
widely differing results may be obtained.



7. REFERENCES
Astrom, K. J., and Higglund, T. 1988. Automatic Tuning of PID Controllers, Instrument
Society of America, Research Triangle Park, N.C.

Astrom, K. J., and Wittenmark, B. 1989. Adaptive Control, Addison-Wesley, Reading,
Mass.

D’Souza, A. F. 1988. Design of Control Systems, Prentice-Hall, Englewood Cliffs, N.J.

Shinskey, F. G. 1991. "Evaluating Feedback Controllers Challenges Users and
Vendors," Control Eng., 75-78 (September).

Stephanopoulos, G. 1984, Chemical Process Control: An Introduction to Theory and
Practice, Prentice-Hall, Englewood Cliffs, N.J.

Ziegler, J. G., and Nichols, N. B. 1942. "Optimum Settings for Automatic Controllers,"
Trans. ASME, 759-65 (November).

58



8. BIBLIOGRAPHY
Astrdm, K. J., and Higglund, T., "A New Auto-Tuning Design," IFAC Adaptive Control of
Chemical Processes 141-46 (1988).

Gerry, J. P., "Find Out How Good That Tuning Really Is,” Control Eng. 69-71
(July 1987).

Gupta, M. M., Adaptive Methods for Control System Design, IEEE Press, New York, 1986.

Hang, C. C,, and Astrom, K. J., "Practical Aspects of PID Auto-Tuners Based on Relay
Feedback,” IFAC Adaptive Control of Chemical Processes 15358 (1988).

Hang, C. C,, and Sin, K. K,, "A Comparative Performance Study of PID Auto-Tuners,"
IEEE Control Syst. 41-47 (August 1991).

Kaya, A., and Scheib, T. J., "Tuning of PID Controls of Different Structures," Control
Eng. 62-65 (July 1987).

Kraus, T. W., "Self-Tuning Control Using an Expert System Approach," Meas. Control
172-75 (June 1985).

Kraus, T. W., and Myron, T. J., “Self-Tuning PID Controller Uses Pattern Recognition
Approach,” Control Eng. 106~11 (June 1984).

McMillan, G. K., Tuning and Control Loop Performance, Instrument Society of
America, Research Triangle Park, N.C., 1983.

Miller, J. A, et al. "A Comparison of Controller Tuning Techniques,” Control Eng. 72-75
(December 1967).

Morris, H. M., "How Adaptive are Adaptive Process Controllers?" Control Eng. 96100
(March 1987).

Price, V. A., "Automatic Tuning Simplifies Process Control,” InTech 9-16 (September
1988).

Vermeer, P. J., Morris, A. J., and Shah, S. L., "Adaptive PID Control-A Pole Placement
Algorithm with a Single Tuning Parameter," IFAC Adaptive Control of Chemical
Processes, 159-64 (1988).

Wade, H. L., "High-Capability Single-Station Controllers: A Survey," InTech 106-14
(September 1988).

Warwick, K., Simplified Self-Tuning Algorithms, OUEL 1657/86, University of Oxford,
Oxford, England, 1986.

59






Appendix A
DEVELOPMENT OF ACCOL SELF-TUNING PI (STPI) CONTROL MODULE






DEVELOPMENT OF ACCOL SELF-TUNING

PI (STPI) CONTROL MODULE

Authors

Mr., C.S. Cox
Mr. W.J.B. Arden
Dr. 1I.G. French
Dr., I. Fletcher
Mr. A.R. Boucher

Control Systems Centre,
School of Elect. Eng. & Applied Physics,
Sunderland Polytechnic,
Sunderland, SR1 35D.

Tel: 091-515-2824 Fax: 091-515-2423

63



64

APPENDIX A1

Contents of Report

Part I - Development and Operation of STPI Module

Part II - Summary of Field Trials

Part III - Closed Loop Cycling Algorithm Theory

Part IV - Pattern Recognition Algorithm Theory

Part V -~ Model Based Algorithm Theory



PART |

DEVELOPMENT AND OPERATION OF STPI MODULE



Part I - Contents
INtroduCEion it evesnseoascsoocsaanassssssoonssans S |
(a) Closed Loop Cycling Algorithm ............... veee. 4
(b) Pattern Recognition Algorithm .........c.cveeneeee 5
(c) Model Based Algorithm ......... e e P
Configuring a Self-Tuning PI Controller within ACCOL ... 8
Operation of STPI Module ...........coivvienecnns ceseaen 10

Auxiliary Signal LiStS ...veeeivenearcanssscansssensess 12

Figures ....... e P €



67

1. INTRODUCTION

The basis of the vast majority of today’s commercial
controllers and PLC’s is the microprocessor. The new families of
cheap powerful processors have produced environments suitable for
the development of both fixed-parameter controllers, often with
advanced features such as feedforward control and wind-up
protection, or, those possessing ’'self-tuning’ capabilities. The
idea behind self-tuning is to adjust the controller settings
automatically, based on the measured input/output behaviour of the
process under control. Fig. 1 presents the general self-tuning
structure favoured by most academic researchers. The idea of a
self-tuner has been with us for some time, the solution to the

extra data-processing requirements has only been economically

feasible in recent years.

The rapid advancement of microprocessor technology has
re-stimulated the interest in digital control implementaﬁion. New
control laws have been postulated but industry still appears to
favour a digitisation of the well known continuous time PID three
term controller. This dilemma has ‘led to two contrasting
approaches to the use of this new computational power. The first
is to add tuning features to an otherwise standard PI(D)
regulator. This approach recognises that the majority of
regulators used in industry are still of the PID form and complex
processes may have hundreds of regulators. However, even after
careful instruction, instrument engineers and plant operators

often still have difficulty in installing and operating such
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regqulators. A feedback control system is of little value if it is
improperly tuned. Several different methods have been proposed for
tuning PID regulators. The need in tuning a controller is to
determine the ‘optimum’ values of the controller gain Xc (or the
proportional band PB), the reset time Ti (or the reset rate in
repeats per minute) and the derivative time Td. The adjustment of
these tuning parameters on feedback controllers is one of the
least understood yet extremely important aspects of automatic
control theory. Several methods for manually tuning these
algorithms are used in practice, ranging from ‘trial-and-error’ to
the more systematic use of empirical formulae such as those
proposed by Ziegler and Nichols (1%43). However for some complex
processes, where the plant dynamics vary significantly in the
course of their operation, automatic retuning is the only real
answer in order to maintain a consistent final product. The second
philosophy is to provide a general purpose control law which is in
some sense optimal. By careful ‘tailoring’ of these control laws,
acceptable performance may be achievable in those situations where
PI(D) may not function too well, e.g. processes with long time
delays. These tuners might involve several design parameters which
are used to prescribe the characteristics of the closed loop
control system rather than direct entry of the controller gains,
as is done with the standard PID law. Such general purpose
techniques include: (i) Pole-Placement (PP), (ii) Linear Quadratic
Gaussian (LQG), (iii) Generalised Minimum Variance (GMV), (iv)
Long Range Predictive Control (LPRC) and (v) Generalised
Predictive Control (GPC). Table 1 summarises the wunderlying

control laws of some of the better known industrial adaptive
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PI{D) strategy.

Controller Manufacturer Law GS |AT |CT |FF
Novatune ASEA GMV ] | ] .
Connoisseur Predictive Control LQG . . u -
STR AccuRay Corp. GMV . s
DMC DMC Inc. LPRC . ]
IDCOM Set Point Inc. LPRC ™ ] ]
Electromax V Leeds & Northrup PID . ]
Exact Foxboro PID s ] "
TCS 6355 Turnbull Control PID - .
2071 Microtuner Goulton West PID » ]

Upc 500 Honeywell PID .

Micron P-200 Process Systems PID .

CRL 452 Control & Readout PID ]
Eurotherm 810 Eurotherm ' PID n
Microscan 1300 Taylor PID .

SLC 3700 Bristol Babcock PI1D n

‘PMS~100 Ferranti PID n "

Maxline IRCON PID "

5701 Fenwal PID ™

EST & ESKN Omron Electronics PID »
VeriTrim Westinghouse PID s .
SATT ECA40 Satt Controls PID - »
INTELLICON Hungarian Sci. Acad.| PID . ]
Firstloop First Control PP = L =

GS = Gain Scheduling
AT = Auto-Tuning
CT = Continuous Tuning
FF = Feed-Forward

Table 1 - Characteristics of Some Adaptive Controllers

This report explains the implementation of an STPI module,
within ACCOL, which provides an automatic facility for tuning
proportional-plus-integral (PI) controllers, and has been designed

use with the standard PID3TERM module. The STPI module may be

for

used in either a ’‘one-shot’ or continuous tuning mode. In the
‘one~shot’ mode, when tuning 1is enabled, the module will
perturbate the plant for a period of time, after which PI
controller settings are determined. The module then returns

control to the PID3TERM and effectively becomes transparent until
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it 1is once more enabled. In the continuous tuning mode, the
performance of the PID3TERM module is monitored, and the
controller settings are‘adjusted accordingly. It should be noted
that the STPI module will set the derivative gain of the PID3TERM
to zero. The reason for developing a self-tuning PI module, as
opposed to self-tuning PID, is that the final module is simpler to
implement and wuse, and is more robust within industrial
applications. In addition, because most processes exhibit
non-oscillatory, stable, open-loop behaviour, the active damping
provided by derivative action is not usually necessary for good
control. This, along with the inherent disadvantage of noise
amplification mean that derivative action is rarely employed in

process control applications.

The STPI module incorporates three different algorithms for
tuning PI controllers. These three algorithms have proved most
popular with other controller manufacturers. This means that the
ACCOL STPI module should be able to match the performance of most
of its leading competitors. In addition to this reason, the
algorithms have individual characteristics and in a particular

application one may prove more suitable than the others.

(a) Closed Loop Cycling Algorithm (Alg. #0)

This ‘one-shot’ tuning algorithm forces the process variable
to oscillate around its set point value, as shown in Fig. 2. The
process variable is forced to oscillate through the use of a relay
controller, as illustrated in Fig. 3. An integrator is also

included in order to ensure that the process variable oscillates
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around the set point value. The integrator gives rise to the
characteristic triangular waveform produced by the controller
output during the tuning phase. The period of the oscillations is
determined by the dynamics of the process, but the user has the
power to constrain the amplitude of the oscillations by specifying
limits on the controller output and process variable. Thus the
technique is inherently safer than the traditionally used
Ziegler~Nichols ultimate method. The tuning phase is automatically
terminated when a number of ’good’ oscillations have been
recorded. Upon termination, the period and amplitude of the
oscillations are measured, and used to design the PI controller
settings. When operated with default parameters, this technique
only requires the user to specify the set point, and is therefore

suitable for use from a ’‘cold start’.

(b) Pattern Recognition Algorithm (Alg. #1)

This algorithm provides continuous tuning of the controllexr
gains. The key idea here is that processes respond to disturbances
{or set point changes) with distinctive patterns whilst under PI
control. By characterising these patterns, it is possible to
formulate some rules for re~tuning the controller gains. Note that
this algorithm is similar in many ways to how a skilled instrument
engineer might re-tune a loop. Re-tuning takes place following the
effect of disturbance, as shown in Fig. 4. During the disturbance,
the performance of the controller is monitored, as shown in
Fig. 5. Once the process variable has reached its peak deviation
(Emax) from the set point, the response time of the loop, TL, is

measured and subsequently wused in the evaluation of the two
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integrals: S1 and S2. Having obtained these values, the controller
gains may be updated, as described in Fig. 5. Note that the
pattern recognition algorithm requires initial values for
proportional gain and integral gain, and is therefore not suitable

for use from a ’'cold start’.

(c) Model Based Algorithm (Alg. #2)

The model based algorithm is primarily intended as a
‘one-shot’ tuner, although it may also be configured the technique
to operate in a continuous tuning mode. The important difference
between this algorithm and the previous two is that the task rate
of the control system must be carefully matched to the response
time of the process. For example, the flow of a fluid through a
pipe may respond within seconds to a change in valve position,
whereas the pH within a large reaction vessel may take several
minutes to respond to a change in acid dose. These two application
examples would require the use of two different task rates. A good
rule for use with the model based method, is to select a task rate
that is approximately 1/10th of the process rise time, which may

be determined from a step test, as shown in Fig. 6.

During the tuning phase, a pseudo random binary sequence
(PRBS) is produced at the controller output, as shown in Fig. 7.
The user must specify the mean level and the amplitude of the
PRBS: the mean level should be chosen in order to cause the
process variable to deviate at, or near, its set point value, and
the amplitude should be sufficiently large to cause significant

deviations, yet Xeep the process variable within acceptable
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limits. While the PRBS is applied, the process output and the
controller output data .are fed into a recursive estimation
algorithm, as illustrated in Fig. 1, which fits a mathematical
model to the data. At the end of the tuning phase, the model is
then used to. design PI controller settings. The model based
algorithm may be used from a ‘cold start’, although it requires
more values to be specified by the user than the closed loop

cycling algorithm.

In the STPI module, the user has four methods available for

tuning. These are designated:

Method #0 - Closed Loop Cycling followed by Pattern Recognition
Method #1 ~ Closed Loop Cycling

Method #2 Pattern Recognition

Method #3 Model Based

Method #0 is the default method, as it is the most robust,
requires the minimum amount of setting up, and will effectively
provide continuous tuning from a ’‘cold start’. Method #1 is
provided for applications where periodic re-tuning is more
desirable than continuous tuning. Method #2 is provided to allow
pattern recognition to be switched on and off following initial
tuning. Method #3 may be used as an alternative to method #1, or
else configured by the expert user to provide an alternative

continuous tuning procedure.
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2. CONFIGURING A SELF-TUNING PI CONTROLLER WITHIN ACCOL
Fig. 8 shows the basic structure of a self-tuning PI
controller implemented within ACCOL. The detailed connections

required to configure the self-tuning PI controller are presented

in Fig. 9. The four major outputs of the STPI module are:

PROP2

)

the designed value of proportional gain
INT2 ~ the designed value of integral gain
STATUS - a status word containing various flags

DONE - a confidence factor relating to the tuning

STATUS is a seven bit word which contains information related to
the tuning phase. Each bit represents a particular status

condition, and their meanings are defined as follows:

STATUS bit 0 - tuning in progress

(refers to all three algorithms)
STATUS bit 1 - pattern monitoring in progress

(refers only to pattern recognition algorithm)
STATUS bit 2 - relay amplitude reduced during tuning

(refers only to closed loop cycling algorithm)
STATUS bit 3 - relay amplitude very small

(refers only to closed loop cycling algorithm)
STATUS bit 4 - termination of tuning after 21 cycles, due to limit

cycle not converging

(refers only to closed loop cycling algorithm)
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STATUS bit 5 - input or output limits incurred during tuning
(refers to all three algorithms)

STATUS bit 6 - model gain negative, possibly due to incorrect
setting of the REVERSE flag

(refers to the model based algorithm only)

The status word may be logically ANDed with the apprcopriate masks
in order to determine the condition of individual bits. For
example if the STATUS word has the value 37, then this corresponds
to bits 0, 2 and 5 being set (i.e. 1 + 4 + 32 = 37), which means
that the relay amplitude was reduced during tuning due to signal
limits being incurred. Note that bits 0 and 1 are continually
updated whereas the others are only set during tuning, and remain

fixed until tuning is re-initialised.

DONE takes a value between 0 and 100% and provides an
indication of the success of the tuning phase. Note that the three
algorithms will produce different values for DONE beéause of the
different ways that it is calculated. DONE should therefore not be
used to compare the performance of the algorithms (the quality of
control is a much better comparison). In general however, values
of DONE which are less than 50% imply low confidence in the

designed controller gains.

It is recommended that the results of the tuning are checked
using a CALCULATOR block before feeding them into the PID3TERM
module, as shown in Fig. 8. For example, the following calculator

block could be used to limit the range of the proportional gain:
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PROP1=PROP2

:IF (PROP2<1)
PROP1=1

:ENDIF

: IF(PROP2>10)
PROP1=10

:ENDIF

Alternatively, the following calculator would only update the

gains if the confidence factor exceeded a specified value:

: IF (DONE>50)
PROP1=PROP2
INT1=INT2

:ENDIF

3. QPERATION QOF STPI MODULE

This section presents a ‘check-list’ for operating the

self-tuning PI module at its simplest level.

(1)

(2)

Choose the self-tuning method using SELECT

SELECT 0 => Closed Loop Cycling + Pattern Recognition

]

1 => Closed Loop Cycling

SELECT
SELECT = 2 => Pattern Recognition

SELECT 3 => Model Based

Define whether the process is direct or reverse acting using
the flag REVERSE. Note that ON implies reverse acting, i.e.

an increase in the controller output produces a decrease in



(3)

(4)

(3)

(6)

(7)

(8)
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the process variable (default is OFF).

Specify the desired SETPOINT.

Set the required performance of the closed loop system in
terms of its percentage overshoot to a step change. Note

default value = 10%.

Set the safety limits (if required) on the controller output:

OPMAX and OPMIN.

{Optional) Set variables in auxiliary signal 1list, if
required. Note that if method 3 is being used from a ‘cold

start’, OPMEAN must be set in auxiliary signal list 'B’.

Initialise the tuning procedure by turning ENABLE on. Note

that tuning 1is initialised by the OFF-ON transition of

ENABLE.

On completion of a ‘one-shot’ tuning procedure, control is
returned to the PID3TERM module, and the STPI module becomes

transparent.
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AUXILTIARY SIGNAIL LISTS

Whilst the default values for the three algorithms have been

chosen to work well in most applications, the expert user may want

to tailor the parameters of each algorithm to match the needs of a

particular process. This facility is provided, within the module,

by allowing access to additional information which is contained in

a series of auxiliary signal lists:

Auxiliary List ‘A’ (for use with Methods 0, 1 and 2)

(1)

(2)

PVDEV
RELAY
INTEG
ACCEPT
HYSTER
PVAMP
PERIOD
THRESH

QO [~ O |0 [ (W [N |
o feo o e o fe |

PVDEV (RW) -~ maximum peak deviation of process variable from
set point during closed loop cycling. This may be used as an

additional safety feature. Default value = 100%.

RELAY (RW) -~ amplitude of relay characteristic during closed
loop cycling. Note a good initial choice can reduce the

tuning time. Default value = 2%.



(3)

(4)

(3)

(6)

(7)

(8)
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INTEG (RW) - a flag which is set to indicate that the process
has a natural integrating action, which is sometimes the case
in level control problems. Setting this flag means that the
closed loop cycling algorithm will use a square wave (as
opposed to triangular) perturbation sequence and will design

a proportional controller. Default value = QFF.

ACCEPT (RW) =~ tolerance between successive peaks which
constitutes ‘acceptable’ oscillation during closed 1loop
cycling. When successive peaks, Pl and P2, satisfy the
condition 100% x |P1 - P2| < Pl x ACCEPT, controller settings

are designed. Default value = 50%.

HYS TER (RW) - a noise protection facility which adds
hystersis to the relay characteristic. HYSTER should be set
to 1/2 of the observed peak-to-peak noise. Default value =

0.2%,

PVAMP (RO) -~ current peak amplitude of the process variable

oscillations.
PERIOD(RO) - current period of the oscillations.

THRESH (RW) - a noise protection feature for the pattern
recognition algorithm. THRESH is a threshold value which the
measured error must exceed before the controller settings are

re-assessed. Default value = 5%.
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(Note: RW = Read/Write, RO = Read Only )

Auxiliary Signal List ‘B’ (for use with Method 3)

(1)

(2)

(3)

(4)

(5)

1. OPMEAN 8a. Al 9a. DIAGI
2. OPDEV 8b. Bl 9b. DIAG2
3. TOTAL 8c. B2 9c. DIAG3
4. ALPHA 8d. B3 9d. DIAGY4
5. LAMBDA Be. B4 de. DIAGS
6. PERR 8f. BS 9f. DIAG6
7. ADAPTIVE 8g. Cl1 9g. DIAG7?
OPMEAN (RW) - the mean value of the perturbation seguence

during tuning. When tuning is enabled OPMEAN is automatically
set to the last value of the PID3TERM output. OPMEAN may be
manually adjusted during the tuning phase in order to keep

the process variable at, or near, the set point.

OPDEV (RW) - the amplitude of the perturbation sequence. The

default value is 5%.

TOTAL (RW) - the total number of samples in the tuning

period. Default value = 100.

ALPHA (RW) - a first order digital filter coefficient

(O<ALPHA<1l). Default value = 0.5.

LAMBDA (RW) - estimator forgetting factor (0.9<LAMBDA<1.0).

Default value = 0.99.
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(6) PERR (RO, - the current value of the prediction error.

(7) ADAPTIVE (RW) ~ flag to set continuous closed loop tuning.

(8) Al, Bl, B2, B3, B4, B5, Cl (RW) - Estimated coefficients of

the discrete time process model.

(9) DIAG1l, DIAG2, DIAG3, DIAG4, DIAGS5, DIAG6, DIAG? (RW) -

Covariance matrix diagonal elements.
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Figure 1 - General Self-Tuning Controller Structure
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Re-tuning Algorithm:

PROP2 = PROP1 + (1-DONE).( K1.(S1+Rl) + K2.S2 )

INT2 = INT1 + (1-DONE).( K3.(S1+Rl) + K4.S52 )
where
Rl is a pre-defined area,
R2 is a pre-defined level,

DONE is a confidence factor related to overshoot,

and K1, K2, K3, K4, a, B, 7 are constants.
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PART 1l

SUMMARY OF FIELD TRIALS



FIELD TRIALS SUMMARY

This section summarises the results of the field trials that
were undertaken to evaluate the performance of the self-tuning
algorithms on real industrial plant. Three sets of trials were
carried out. The first of these was on a pH control loop at a
water treatment plant belonging to the Sunderland and South
Shields Watexr Company (S&SSWC). The second set of trials were
carried out on various flow control loops at English China Clay
(ECC). The third field trial involved a pressure loop at a British
Gas Pressure Control Station. In all three trials, the algorithms
performed well using their default settings despite the widely

differing properties of the processes under test.

1. Field Trial No.l - pH Control Loop

Fig. 1 presents a schematic of the loop, which is used to
adjust the pH of the treated water. The controller output is used
to vary the speed of a lime pump which raises the pH to the
correct value. Fig. 2 illustrates the operation of the closed loop
cycling algorithm in action. It is apparent that the pH signal is
rather noisy, and also that the process is subject to
disturbances. Despite these adverse conditions, tuning proceeded
in the normal way and produced good PI controller settings. Fig. 3
shows a longer time history of the tuning and it can be seen the
resulting control is as good as, if not better than the existing
enhanced PI controller. Also presented in Fig. 3 is the time

history of the model based algorithm, which was obtained on the
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following day. Once again good control is achieved. It should be
noted that although the both tuning methods perturb the process,
the amplitude of the perturbations are not much greater than those

caused by the normal disturbances.
2. Field Trial No.2 - Flow Control

A range of tests were carried out during four days of testing
at the English China Clay works, all of which involved flow
control problems. Fig. 4 presents a general schematic of the type
of loop under control. Fig. 5 shows the typical results obtained
with closed loop cycling tuning and Fig. 6 illustrates those
obtained using model based tuning. Both methods worked well in all
tests. Note that a shorter tuning period could probably have been
used with the model based algorithm, and also the amplitude of the
perturbations could have been reduced, if required. Fig. 7
presents an interesting result obtained when applying closed loop
cycling to a loop which had a faulty control valve. The fact that
the valve was faulty was not known beforehand, but was soon
diagnosed when the asymmetric oscillations were observed on the
flow signal. Subsequent inspection revealed that the valve was

sticking in one direction, and required maintenance.
3. Field Trial No.3 - Pressure Control Loop
Fig. 8 presents a schematic of the loop under control. The

control objective is to maintain a desired pressure at a point

which could be several miles downstream of the control valve.
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Fig. 9 presents the time history of the tuning exercise. Closed
loop cycling was initiated with a lower safety limit of 30% on the
valve command signal in order to prevent excessively high
pressures developing. It can be seen that during the first two
cycles the valve command hits this lower limit and hence the relay
amplitude is reduced until acceptable oscillations are obtained.
In this test the tuning phase was deliberately forced to continue
(for safety reasons) while the operators went off to lunch, and on
return the cycling was disabled. A set point change was
subsequently requested and it is apparent that the control is
stable, although rather sluggish. This is most likely to have
resulted from the severely nonlinear valve characteristic. The
pattern recognition algorithm was then activated and another set
point change introduced. Following this change, the controller
gains were redesigned and the two set point changes at the end of
the test show that good control has been achieved (N.B. lower
safety limit has been moved to 25%). This example illustrates
nicely how the "piggy back" arrangement of the tuning algorithms

is used firstly to get reasonable settings which are subseguently

refined.
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CLOSED LOOP CYCLING AUTO-TUNER

1. Introduction

The majority of regulators used in industry are still of the
PID form. Complex processes may have hundreds of regulators. Even
after careful instruction instrument engineers and plant operators
oftén still have difficulty in installing and operating such
regulators. A feedback control system is of little value if it is
improperly tuned. Several different methods have been proposed for
tuning PID regulators. The need in tuning a controller is to
determine the ’‘optimum’ values of the controller gain Kc (or the
proportional band PB), the reset time Ti (or the reset rate in
repeats per minute) and the derivative time Td. The adjustment of
these tuning parameters on feedback controllers is one of the
least understood yet extermely important aspects of automatic
control theory. Several methods for manually tuning these
algorithms are used in practice, ranging from ‘trial-and-error’ to
the more systematic use of empirical formulae such as those
proposed by Ziegler and Nichols (1943). However for some complex
processes, where the plant dynamics vary significantly in the
course of their operation, automatic retuning is the only real
answer in order to maintain a consistent final product. Astrom
(1984) has proposed a simple robust estimation technique which
provides the basis for a number of new methods for automatic
tuning of PID regulators which easily can be incorporated into the

new breed of microprocessor based controllers for single loop use.
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This report develops the implementation (in ACCOL II) of a similar
range of algorithms initialiy for use on the RDC 3350 unit. It
should be emphasised that the approach will not work for problems
where a more complicated regulator than the PID structure is

required.
2. Theoretical Principles Supporting the Autotuner Design

In 1943 2Ziegler-Nichols presented their seminal paper on
controller tuning. In the interim period many other approaches
have been suggested but rarely have they affected the popularity
of this early simple strategy. The autotuner design to be
developed here is based around an elementary approach to automate

the Ziegler-Nichols rules as discussed by Astrom and Hagglund

(1984).

Techniques for tuning controllers may be classified as either
open-loop or closed-loop methods. The 2iegler-Nichols ultimate
method is a closed-loop technique which has been applied
successfully to both analogue and digital control situations. The
basic method requires the determination of the ultimate gain, Xu.
This is the value of gain (for a controller with only a
proportional mode of operation) which causes the closed-loop
controlled variable to cycle continuously with fixed amplitude.
This ‘marginally stable’ situation implies that the Nyquist curve
of the open-loop frequency response must pass through the critical
-1+ j0 point on the Argand diagram (see Fig. 1). The period of the

oscillation, Pu, is called the ultimate period. 1In the original
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Ziegler-Nichols scheme, Ku and Pu were determined in the following
way: tune out any reset or derivative action from the controller,
leaving only the proportional mode. Maintain the controller on
automatic, i.e. leave the loop closed. With the gain of the
proportional mode set to some low arbitrary value impose an upset
on the process (move the setpoint for a few seconds then return it
to the original value) and observe the response. If the output
response grows, reduce the controller gain; if the response damps
out increase the controller gain. Continue in this way until
sustained oscillations of constant amplitude are encountered.
Finally, the controller parameters can then be obtained by using
empirical formulae which rely on Ku and Pu. The ultimate method
empirical results are presented as table 1.

Some of the shortcomings of the technique are listed below:-

(i) the process transfer function must be at least third order.

(ii) for a system with long time constants the technique is a

very slow process.

(iii) it is difficult to automate the experiment, and perform it
in such a way that the amplitude of the oscillation is kept

under control.

(iv) the magnitude of the oscillation is dependent on the plant
gain as well as the conditions supported by the plant when_
the test is initiated, i.e. the amplitude of oscillation is

not known before the test.



105
As a consequence of the above features, another method which

can provide automatic determination is proposed.
3. Astrom and Hagglund Relay Method

This method is based on the observation that a system with a
phase lag of at least n radians at high frequencies must
oscillate with period tc under ideal relay control. One immediate
advantage gained by including the relay is that the possibility of
an unstable response is avoided. Secondly, the amplitude of the
oscillation may be controlled simply by varying the limits of the
relay.

The constant amplitude fixed frequency oscillation is callsed
a limit cycle. Limit cycles arise in a wide variety of practical
situations; consequently, considerable efforts have been expended
to develop algorithms which can help the designer assess whether
or not a system will exhibit such behaviour. Limit cycles can be

stable or unstable; only stable oscillations exist in practice.

For systems of higher order than two, the basis for limit
cycle studies is usually the frequency domain. Here, much of the
published work assumes a separable system where the linear part is
represented by its frequency response whilst the single non-linear
element (in this case the ideal relay) is characterised by a
quasilinear complex gain called a describing function. The
describing function is evaluated on the assumption that the input

to the non-linearity is a sinusoid of known amplitude.
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The describing function is defined as

B + jC

N(a) =
A

where B and C are the Fourier coefficients of the fundamental
component present in the periodic non-linear output in response to
the sinusoidal input A.sin 6. B and C are given by

2n

B= 1 I £(6) sin @ de ... 3.2a
n
0
and
1 21
c= % J £(8) cos & do ... 3.2b
TJo

f(6) is the true non-linear output in response to A.sin 8. For the
ideal relay when

0 <8 =nm f(e) =+ V .. 3.3a
... 3.3b

]
1
<

and n<8 s 2 £(8)

assuming a symmetrical relay output.
From equations 3.1 to 3.3 it is easily shown that

4v
N(a) = —2 ... 3.4
nA

The resulting autotuner strategy using the ideal relay controller

is presented as Fig. 2.

To illustrate how the circuit works consider the case when

Kw;
G(jw) = ... 3.5
J . 2 2 .
jw { (wy — w7) + j2Quu, }
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Fig. 3 shows how the system responses for two different intial
conditions; one a small (practically zero case) and the other a
large value. 1In both cases we eventually converge onto the same
limit cycles. To increase the amplitude of the 1limit cycle we

simply increase Ve

With reference to Figures 1 and 2, it is easily shown that
Zieglexr Nichols critical gain, Ku, is in fact the same numeric
value as the describing function.

v .
Ky = 0 ... 3.6
nA

It follows, since Vh is fixed, to automatically determine Ku
all that is required is to estimate A. In practice this is done
using software programmed to implement a ’peak detection’ strategy
on the system error signal. The ultimate frequency is also
calculated using the error signal and a ’zero-crossing’ routine.
Once these are evaluated, PI or PID settings can be determined
using the loock-up table 1. An alternative approach has been
postulated by Astrom whereby systems with prescribed phase margin

are obtained. The theory behind this approach is described in the

next section.
4. Control with Specified Phase Margin

Consider next the block diagram of Fig. 4(a) where G, (s) is
the open-~loop transfer function; the open-loop frequency response
of this system is plotted as Fig. 4(b). The frequency @, when the

open~loop gain is 1, i.e.
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| 6, (jw,) | =1 S 4.1

is called the gain cross-over frequency. The phase margin ¢ is
[
defined as
¢n = £ Gmfjwd) + 180 ce. 4.2
where v« Gmfjwd) is the angle corresponding to the magnitude

condition of Equation 4.1.

Consider now Fig. 5(a) where the system G(s) is under PI

control; the open-loop transfer function is given by

1
Ql(s) = Kc { 1 + — } G(s) .. 4.3

sTi

and the corresponding phase shift is
4G°L(jw)=—90° + tan™! wTi + < G(jw) ... 4.4
If at frequency W, rad/s, the argument of G(jw) is -90°, then it

is easily shown that

tan™! (0Ti) = ¢_

1
or Ti = —— tan ¢n cee 4.5
w

Further, from the definition of the phase margin, i.e. Equation 4.1

Kc V/l + w: Ti®

| Gjw,) | = 1 ce. 4.6

w Ti
d
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Consider the triangle

¢II
(
1
then
sin ¢
Kc = — 8 ce. 4.7
| G(jw,) |

Equations 4.5 and 4.7 can be re-expressed in terms of the measured

parameters Pu and 4. Firstly,

S
d Pu

and secondly from Fig. 5(b) under limit cycle conditions

4Va 1 R - -
[‘ﬁ'}“ﬁ; Glje,) = -1
oo 4.9
TtAb)d
Gljw,)| =
I d 4V

Hence from 4.6 to 4.9 the parameters Kc and Ti of the PI

controller are given by

Pu tan ¢
Ti = —=2 ... 4.10a

2n

and

4Vae Pu sin ¢
Kc = 2 ... 4.10b

2rfa
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The eventual scheme is presented in block diagram form as Fig. 6.
The autotuner operates as a relay controller in the tuning mode
(position 1) and then as an ordinary PI regulator in the control
mode (position 2). Once Pu and A are determined as outlined in
Section 2. Kc and Ti can be computed for any desired ¢n ’ ¢m is

an input parameter. A final point. It will have been noticed
that the relay controller of Fig. 5b contains an integrator not
present in the original structure (Fig. 2). An extra benefit of
this arrangement is that it forces the limit cycle on the output
to be sustained about the setpoint value. In control engineering
terms the system, in the tuning mode, has Type 1 servomechanism
tracking performance. This helps ensure 'bumpless’ transfer

between tuning and control modes.

5. Autotuner Refinements

This section describes two refinements to the basic method
described earlier; one is intended to make the algorithnm more
user friendly while the second is included to improve its noise

rejection properties.

The Phase Margin-QOvershoot(0/5) Concept

The phase margin is a frequency response design parameter
introduced to describe the relative stability situation, i.e. just
how stable is a stable system? Closed-loop systems with large

phase margins have well damped step responses. Many control
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system design criteria assume that the system can in effect be
adequately described by a second-order process. The behaviour of
second-order systems step and sine wave inputs is well understood
and profusely documented. The following results have been

abstracted from the technical literature.

(i) the maximum percentage 0/S of an ideal second-order

process to a step function input is given by

Maximum percentage 0/S = 100 exp [ /r~:§E~? ] ees 5.1
1-¢

(ii) the phase margin ¢, of an ideal second-order process

is given by

5'2

= tan™ 2n \ cee
¢, an [ V/[4C‘+ 1]“7 - 22 ]

Note both equations 5.1 and 5.2 depend only on the damping ratio

It is appreciated that many process operators may not have heard
of a phase margin. However, most should understand the concept of
peak overshoot related to step input behaviour. It follows that
by specifying the maximum percentage overshoot one can evaluate
{ . Once { is known using Egn. 5.2 one can determine the phase
margin. Fig. 7 displays plots of both Egns. S$.1 and 5.2. From

Fig. 7(b) it can be seen that over a wide range

¢, = 100 ¢ ... 5.3
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Improvement of Noise Rejection Performance

A problem with the simple ideal relay strategy is that any
noise superimposed on the useful signal can result in ‘false’
relay switching which in turn invalidates the tuning procedure.
The noise rejection properties can be improved by simply adding
some hysteresis into the relay characteristic as shown in Fig. 8.
If too much hysteresis is added a degradation of the ultimate
prdcess will result. The general effect is an increase in the
amplitude of the signal appearing at the input to the relay with a
consequent lowering of Ku as compared with the ideal case.
Section 7 presents a number of illustrative examples to clarify
what may occur. Another feature is that Pu also tends to increase
further consolidating a slower more heavily' damped response than
may have been anticipated. The ACCOL implemented algorithm has a
default hysteresis band of ° $2 quantum levels; however, the

operator can set the hysteresis to any desired level.

Tests to date have indicated that for signal to noise ratios
greater than S:1 additional 'analogue’ filtering may be reguired.
In practice this is supplied via an optimal ’‘digital’ filter which
is also addressable by the operator. The filter chosen is a

discrete equivalent of the simple analogue filter

14 1

1 1l + s/w
-]

The algorithm requests a value for expressed in Hz, i.e. fo
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where

w, o= 2nfo

The choice of hysteresis width plus filter bandwidth (if
required) is left to the user, however, the following simple rules
should help the selection process. With the filter inactive vary
the relay characteristics (always ensuring initially that D > E)
until an ‘'oscillatory trend’ is obtained. Measure the frequency
of the oscillation then set fo equal to this value or

exceptionally equal to twice this value.

Before leaving this section it should be emphasised that a
large number of problems WILL NOT require the above refinements.
We estimate perhaps less than 10% of the problems we have looked

at over the years. Nevertheless, with commercial software we must

try and consider all possible contingencies.
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PATTERN RECOGNITION CONTROL

1. Introduction

The need for self tuning controllers arises as instrument
engineers and plant operators often have great difficulty in
installing and operating control systems. The ability of the self
tuner to model processes using some predefined testing sequence
and establish suitable controller parameters to meet some
pre-defined performance criteria can produce considerable savings

in both time and expense during plant commissioning.

However, because processes are often time variant or
nonlinear in operation then no guarantee exists that the system
will perform to the required levels without the need for frequent
retuning. This, in itself can lead to several problems. Firstly,
when is re-tuning deemed necessary and secondly, will the
application of the input disturbance sequence cause the process

output to exceed plant 1limits and introduce further expense

through down time.

One solution to this particular problem is to re-assess the
present control scheme performance when the plant is subjected to
some form of disturbance. The exact method for changing the
controller parameters is normally based upon the experience and
expertise of the control engineer. However, because these
mechanisms, for PI regulators, are well understood several methods

of automating this adaption procedure have been suggested (1-3].
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Generally these types of technique can be termed 'Pattern

Recognition Controllers’.

2. Pattern Recognition Philosophy

The basic procedure followed by the pattern recognition

controllers is as follows:

(1) monitor the error signal for any disturbances that occur
over a specific amplitude, typically two times the process
noise threshold. When recognized, record the maximum

amplitude of the disturbance,

(ii) identify the necessary information regarding the response of
the present control scheme with respect to some predefined

performance criteria,

(iii) update the present control parameters, if necessary, using

some empirical formulae.

The major advantage of this type of adaptive control scheme
over others is that it does not require a model of the system in
order to re-evaluate the controller parameters. Therefore any
problems that may arise with systems whose model dimensions vary
with time are avoided. Moreover, the implementation of the scheme
in software is relatively straightforward, its lack of complexity

leading to much faster sampling rates than might otherwise be
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possible from other self tuning strategies.

Its one real disadvantage is its reliance upon some other

technigque to provide the controllers starting parameters. Although

the coupling of the technique with one of the previously encoded

self tuners, acting as an initialization stage, will provide a

simple solution to this problem.

3. Pattern Recognition PI Adaptive Controller

The operation of the proposed adaptive control scheme occurs

in four distinct stages, represented graphically in Figure 1,

based on a setpoint disturbance.

(1)

(ii)

(1ii)

Recognition of a new disturbance with a peak error (ERMAX)

larger than a predefined noise threshold (NOISE).

Identification of the recovery time of the response (T;),
the time taken by the present system to go from 75% of the

peak error (Tg) to 25% of the peak error (Tl).

Definition of the pattern features for adaption, Figure 1.
Firstly, the area S1, representing the first peak of
overshoot of the response with respect to the area Rl and
secondly, the area S$2. This represents the decay rate of the
response with respect to the level R2.Both R1 and R2 are

evaluated from the defined performance specifications, where
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for ideal operation S1 = R1, S2 = 0.

Although these areas can readily be measured when the
process response is oscillatory, this information is not
recoverable when the response is overdamped. The answer, in
each case, is to compute the areas when they lie within the
time slots defined below:

T, + (a+B)T,
s1 = J (ERR) dt

T, + o

Tl + (d+3+7)T1
s2 = (ERR - R2) dt

T, + (a+B)T1

1

where a, B8 and y are all constants evaluated from a study of

the response of a third order system.

(iv) Updating of the controller parameters using the defined

pattern features and the empirical relationships:

Kc = Kc + (1-DONE) [ K,(S1-R1) + K S2 ]

Ki = Ki + (1-DONE) [ K3(S1-R1) + K,S2 ]

where the variables Kl' K2, K3 and K4 are weighting

constants and DONE 1is a confidence factor related to

overshoot.
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If required the updating procedure can be constrained using
a re-tuning factor. Thus limiting the maximum percentage

change that can occur at each adaption step.
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Figure 1 - Pattern Recognition Calculations

PROP2
INT2

Re-tuning Algorithm:

PROP1 + (1-DONE).( K1.(S1+Rl) + K2.S2 )

INT1 + (1-DONE).( K3.(S1+R1) + K4.S2 )

where

Rl is a pre-defined area,

R2 is a pre-defined level,

DONE is a confidence factor related to overshoot,

and X1, X2, K3, R4, a, 8, v are constants.
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MODEL BASED CONTROL

1. Introduction

Proportiocnal~-Integral-Derivative (PID) controllers are employed
extensively within the process industries. In many application however, only
proportional and integral action are utilised because derivative action causes
the controller to respond too energetically to any noise that ls present on
the measured process varlable. In addition, many processes exhibit
non-oscillatory open loop behaviour an therefore the active damping provided
by derivative action is rarely required. Finally, the specificatlions for
controller responses are often blouse and PI controllers are capable of

providing acceptable performance in a number of process applications.

Acceptable performance can only be obtained however if the PI controller
is properly tuned, which means that the amounts of proportional and integral
action provided by the controller are correctly set. Before these two values
can be selected, Iinformation about the plant must be known, therefore a
mathematical description of the process is required. Once this description, or
'model’ has been obtained, values of proportional and integral gain can be
evaluated such that some pre-specified design objective {s achieved. When
these two operations are automatically performed, the resulting scheme is

popularly known as a self-tuning controller

For the purposes of this report, a self tuning controller is defined as
one which uses an on-line estimator/design procedure for an initial tuning
period, after which the procedure is turned off and the controller effectively

operates in a fixed gain mede.
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2. Model Estimation

2.1 Model Structure

The structure of the model is developed from the commonly encountered
process reaction curve that i{s a standard first order lag with time delay (1],
whose step response 1s displayed in Fig. 2 and transfer function by Equ. 2.1:

K.e“s9

Gp(s) = e (2.1}
1+ st
where s is the Laplace operator,
K 1s the process gain;
T is the process time constant,
and 6 1s the process time delay.

However, the self-tuning PI controller estimates a discrete time model of the
process dynamics. the main reasons for adopting the discrete time approach, as
opposed to a continuous time scheme, are that 1t removes diffliculties involved
in digitising systems, and that it handles time delays naturally. Thus good
control will be provided even when the sampling time (task rate) is 'coarse’

with respect to the process time constant:

Using the structure described in Equ. 2.1, it digitised equivalent is of

the form:

-(d+1) ~{d+2)
-1 d'lz * bd+2z
Gp(z ") = o (2.2)
1+ alz

where z ' is the backward shift operator {the value one sample previously) and

a the integer number of sampling times In the process time delay. Therefore
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the numerator can be extended to accommodate any value of time delay. A direct
comparison between the continuous and dlscrete time systems ls possible if the

parameters within Equ. 2.2 are defined by:

-T/T
31 = -e
b, =K(1- e (1-m)T/T (2.3)
bd.z =K { e-(l-m)T/t _ e-T/r j

where T is the sampling time,
d is the Integer part of a/7
and m 1s the fractional part of 8,7

2.1.1 Effects of Sampling Time Selection

A good choice of sampling time will improve the efficiency of the on-line
model estimation algorithm, and will therefore result in a better controller
being designed. Ultimately, the choice of sampling time must reflect the
response time of the system. As a rule of thumb, approximately 10 sampling
intervals should span the rise time of the process. When thls rule |is
followed, the value of 4 Iin Equ. 2.2 typically lies in the range 0 to 5.
Therefore, the fixed structure of Equ. 2.4 can be used to represent the

ma jority of cases for whlch the self-tuning PI controller is designed.

bzt+bz%+bz+bz' b2®

Gp(z'l) = 1 2 3 - 4 s (2.4)
1 + axz

2.2 Recursive least Squares Estimation

Having developed the necessary model structure for the Pl self-tuner
(Equ. 2.4), a technique 1is required to estimate the model parameters. The
Recursive Least Squares (RLS) algorithm provides a general purpose statistlcal

tool [2]) for estimating the parameters of any system that can be represented
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by the summation:

~1s

y = 8 x (2.4a)

or, alternatively, in vector notation as:

y = gr.x (2.5b)

vwhere QT is the parameter vector,
and x Is the data vector.
It is recursive in the sense that the algorithm updates its parameter
estimates as each new observatlion, or sample, 1s recorded. The discrete time

transfer of Equ. 2.4 is a subset of Equ. 2.5, with:

T
g = [ a b, b, b, b b ]
(2.6)
v o= 17
X = Yeer Yr Y2 Yz Y Hes

where k refers to the present sample value and x-n to the value a samples in
the past. Therefore, provision of the input and output data required to
complete the data vector defined above will allow the RLS algorithm, detalled

in Appendix A, to estimate the discrete time model parameters.

In practice, the Iinput/output data are pre-filtered by a digital
band-pass filter, given in Equ. 2.7, in order to remove d.c. offsets and high

frequency nolse, thus making the estimator more robust.

. (1 -a) [ 1-21)
Cpf(z ") = 3 (2.7)
1 - az
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I[deally the coefflcient a should be chosen to be equal to the system bandwidth
(-al in Equ. 2.4), but the choice is not critical and a default value of a =

0.5 is employed.

3. Controller Design

3.1 Performance Specification

The specification for system performance is in terms of the maximum
percentage overshoot of the closed loop system's step response. This
specification is translated, using the well documented theory of the behaviour
of second order systems to the frequency domain concept of phase margin (¢m)

using the relationships:

(1) Maximum % overshoot of an ldeal second order process to a step function

input:
vV 1 -2 ) (3.1)

maximum 7% overshoot = 100.e

(11) Phase margin of an ldeal second order system [3):

n

-1
/v/4c‘+1 - 2¢?

When translated, the phase margin specification for a stable system will lle

¢, = tan o (3.2)

in the range:

0° < s < 90° (3.3)
In general, the smaller the phase margin, the faster and more oscillatory the
closed loop system's behaviour. [Larger phase margins result in less

oscillatory, more sluggish responses. A good default value for phase margin is
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60°, which produces a cautious response with little overshoot. Fig. 4

illustrates the responses of PI controllers designed for different phase

margins.

3.2 Controller Design Algorithm
In order to establish the controller design algorithm for processes
described by the dlscrete time model of Equ. 2.4, we must first consider the

discrete time structure of the ACCOL PI controller:

[ Ki.T.z !
Ke | 1 + o

]

Ge(z™t)

i (3.4)
C 1 o+ (Ki.T - 1)z} ]

= K¢
-1

L 1 -2z
Selection of the controller’s numerator to cancel the denominator of the
discrete time transfer function of Equ. 2.4 fixes the value of Ki:

Ki=(1+ 31)/T {(3.5)

This results in the compensted open loop transfer function:

bzt 2;-2z'2 + bz 3 b‘z_‘ b2

-1y 1 3 s
G%L(z ) = Ke (3.6)

To establish the value of K¢ which will provide the required phase margin, the
frequency response of the compensated system must be computed. This is

achleved using the discrete time to frequency domain mapping:

2t = e T (3.7)

Under this transformation, the open loop phase shift can be evaluated at any

frequency w, using the relatlionship:
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5
sin wl )3 b sin il
<G (jo) = - tan"! - tan™ ‘;1 (3.8)
1 - cos wf )3 b‘cos iwT

1=t
The angular frequency, w

at which the required phase margin occurs can be

simply evaluated, since at this frequnecy:

< GOL(on) = -180 + ¢m (3.9)
The combinations of Equ’s.

3.8 and 3.9 allows wo

to be computed using a
linear search.
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APPENDIX A2

Recursive Least Squares (RLS) Parameter Estimation

The algorithm uses the following vectors:

X x * x % * T
Y op-10 Yogiyr Woglgr Uipige U4 Uy g )

r
Parameter vector: @ = [ "81.-b1. b2' b3, b,, b5 ] T { init. values = 0 }
. 6 )

"Upper triangular” vector: upper { 15 elements, initial values = 0 )

Data vector: x, =
“Diagonal” vector: diag { B elements, initial values = 10

"Kalman gain" vector: K { 6 elements )}
The calculations performed at every sampling interval are:
(i) Form the data vector

(ii) Calculate the prediction error, ®

. ¥ 0
€ T X - Oy — Yy

(iii) Update covariance matrix (UD method)

o]
0

x(L)

<
1]

3 diag(l) . f
o, =1+ v, f

J g
diag(l) = diag(l) / dj
K(1) = vs
Kf =0
K =20

u

FOR j=2 TO 6 STEP 1
x(J)

H]

£
31 = j-1
FOR i=1 TO j1 STEP 1

g - Kf + 1

K
fj fj + x(i) . upper(Kf)
ENDFOR
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vy @ fj . diag(Jj)

ulast = OS

os = dlast + vj . fj

diag(j) = diag{(J> .least / Qﬁ
K(3) = )
Py = “f5 / Kypse
FOR i=1 TO j1 STEP 1

K, = K, + 1
temp = uppar(Ku) + K(i) . p
R(i) = R(i) + upper(Ku) .V
upper(Ku) = temp
ENDFOR
ENDFOR

(iv) Update the parameter vector

O =@y ~ K - 7
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APPENDIX A3

Controller Design Algorithm

Discrete time plant model (sampling time = T seconds):

bz_]‘+bz—z+b2_3-9-&::2—4+bz-5
-1, _ "1 2 3 4 S
Gptz ™) = 1
1 + a2z
1
Discrete time proportional-plus-integral (PI) controller:
» - KITz‘l]
GaCz™ ") = K 1 4 s
C (o4 ] 1 -2 1
r 1 - 27y KITz_l]
= K
C i 1 - z-l
~ -1
1+ (KIT - 1) z ]
= K -
¢ L 1 -2 1
By choosing KI such that (KIT - 1) = 8, => KI = (1-+ al)/'r
the open loop transfer function becomes: '
bzl + bz 2 4 bz e b,z e bozd
=1, 1 2 3 4 )
Gor(z ) = K¢ -1
’ . : 1 -z
JwT

By replacing z_l by e~ , the phase of this plant can be computed as:
5

» sin «T » i§1 bis1n iwT

LG‘OL(j") = - tan ["'—_“"""‘“] - tan o

- 3 5
1 cos uT Z b.cos iwT
i=1 *

For a certain phase margin, dm’ the angular frequency ¥g is found from:

LGy W) = -7+ &,
Yy is computed by using a linear search in the range 0 < w ¢ ’Tr

The fact that the t;an_1 function is not available can be resolved by
re-writing the expression sas:

tan ( LGOL(jw) ) = tan ( - 1+ ¢m )

tan o + tan §

and recalling that tan (ol + p) =
1 - tan o tan B
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Therefore the search equation becomes:

- (A+B)
—————————— = tan ﬂm
1 - A.B
5
sin wT 2. bysin iuT
where A = [-——-—-————-—-——] and B = 1;1
1 - cos wT > b.cos iwT
i=1 !
The search algorithm is:
"Thigh =m ”Tlow = n/100, wTinc = (wThigh - “Tlow)/lo
FOR pass = 1 TO 2 STEP 1
on = "Tlow’ flag = O
FOR wT = “Tlow TO wThigh STEP "Tinc

IF £(A,B,wT) < tan ¢; THEN flag = 1
IF flag = 0 THEN w T = wT

0
ENDFOR
“Thigh = "or * "Tiner "Tiow 7 ¥olv #1508 T oy = Wy, W/8
ENDEOR

Once wo'I‘ has been determined, K. may be evaluated using , GOL(jw) ‘ =1,

S S
. 2 s 2
\/—[11§-1 bicos lonJ + [ i§1 bis:m IWOT]

2 .
\/& 1 - cos wyT 1%+ ([ sinwgl ] 2

=> K
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THE INTEGRATED STPI MODULE/PROCESS SIMULATION ACCOL PROGRAM






APPENDIX B

*TARGET 3330 VERS: 0084
*SECURITY-CODES 6 555555 444444
*MEMORY
EXPANDED_MEM 0K
RO_ARRAY_LOC BASE
EQUATION_LOC BASE
RW_ARRAY_LDC BASE
AGAB_LOC BASE
STORAGE_ROWS 0
EVENTS 0
TEMPLATES 0
*COMMUNICATIONS
AUX_1  UNUSED
AUX_2  UNUSED
PORT_A SLAVE 9600
PORT_B PSLAVE 9600
PORT_C UNUSED
PORT_D UNUSED
BUFFERS 15
*PROCESS~-I/0
1 4Anr
2 4a1
3 2a0
4 220
S 2RO
*TASK 1 RATE: 1.0 PRI: 31
*TASK 9 RATE: 0.0 PRI: 1
*TASK 10 RATE: 0.3 PRI: 1
*TASK 11 RATE: 0.3 PRI: 1
*TASK 12 RATE: 0.3 PRI: 1
*TASK 13 RATE: 0.3 PRI: 1
*TASK 14 RATE: 0.3 PRI: 1
*TASK 15 RATE: 0.3 PRI: 1
*TASK 16 RATE: 0.3 PRI: 1
*BASENAMES
*SIGNALS
#ALARM. FORMAT. L Rl W4 MI CI
#DIAG.001. LA Rl W4 MI CI
#DIAG.002. A Rl W4 MI CI
#DIAG.003. A Rl W4 MI CI
#DIAL.00D0. A Rl W4 MI C1I
#DIAL.001. A Rl W4 MI CI
#DIAL.002. A R1 Wi MI CI
#DIAL.003. A Rl W4 MI CI
#E.. A Rl W4 MI CI
#ERARRAY. . A Rl W4 MI CI
#ERRCT.000. AA R1 W4 MI CI
HALM:  #ERRCT.LIM.
#ERRCT.001. AA Rl W4 MI CI
HALM:  #ERRCT.LINM.
#ERRCT. 0095. AA R1 W4 MI CI
HALM:  #ERRCT.LIM.
#ERRCT.010. AA R1 W4 MI CI
HALM: #ERRCT.LINM.
#ERRCT.O011. AR R1 W4 MI CI
HALM:  #ERRCT.LIM.
#ERRCT.012. AA Rl W4 MI CI
HALM:  #ERRCT.LIM.
#ERRCT.013. AA Rl W4 MI CI
HALM:  #ERRCT.LIM.

333333

E B R B B OB B

0 ON
AE O ON
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222222 111111
OFF
OFF TRUE C

0.0000000

60.0000000 SECS

0.0000000

0.0000000

0.0000000

0.0000000

2.7182817

10.0000000

0.0000000 ERRORS
A C

0.0000000 ERRORS
A C

0.0000000 ERRORS
A C

0.0000000 ERRORS
A C

0.0000000 ERRORS
A C

0.0000000 ERRORS
A C

0.0000000 ERRORS
A C



#ERRCT.014.
#ERRCT.01S.
#ERRCT.016.

FERRCT.LIH.
#LINE.000.
#LINE.QO1.
#LINE.CO2.
#LINE.003,
#LINE.004.
#LINE.0OS.
#LINKE.OO1.

FALINKE.002.

FLINKE.LIM.
#LINKF.001.

#LINKF.002.

FLINKF.LIM.
#NDARRAY. .
#NODEADR. .
#OCTIME. .

fOCTIME.ERROR.

#OFF..
#ON. .
#PDM.000.
#PDM.001.
#PDM. 002,
#PDM. 003,
#PDM.004.
#PDM.00S.
#PDM. 006.
#PDM.007.
#PDM. 008,
#PI..

E“Ewgﬁgigiiigir

:

4

M:

Rl W4 MI CI

#ERRCT.LIM.
Rl W4 MI CI

#ERRCT.LINM.
Rl W4 MI CI

FERRCT.LIM.
Rl W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W¢ MI CI
Rl W4 MI CI

#LINKE.LIM.
Rl W4 MI CI

#LINKE.LIM.
Rl W4 MI CI
Rl W4 MI CI

FLINKF.LIM.
Rl W4 MI CI

FLINKF.LINM.
Rl W4 MI CI
Rl w4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W4 CcI
Rl w4 o) ¢
Rl W4 CI
Rl W4 cI
Rl w4 CE
Rl W4 CE
R1 w4 CE
Rl w4 CE
R1 W4 CE
Rl w4 CE
Rl W4 CI

MI
ME
ME
ME
MI
MI
MI
MI
MI

MI
MI

#POLLPER. 000.
#POLLPER.QO1.
#POLLPER. 002,
#POLLPER. 003,
#POLLPER.004.
#POLLPER. 005.
#PRI.O01.
#PRI.009.
#PR1.010.
#PRI.011.
#PRI.012.
#PRI.O13,
#PRI.O014.
#PRI.015.
#PRI.O16.
#PWRUP.Q00.
FRATE.001.
#RATE.009.
#RATE.010.
F#RATE.O11.
#RATE.012.

- - - 4 g PRI ; ; » >

Rl
Rl
R1
R1
R1
Rl
Rl
Rl
R1
R1
R1
R1
R1
Rl
Rl
R1
Rl
Rl
R1
R1
R1

w4
w4
w4
wa
w4
wé
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4

MI
MI
MI
MI
M1
MI
MI
MI
MI
M1
MI
MI
MI
MI
MI
MI
MI
MI
MI
MI
MI

Cl
CI
CI
C1
cI
CI
CI
CI
CI
CcI
Ccl
CI
CcIr
CcI
cI
CI
CI
o3 ¢
CI
CI
CcI

&

4

B O REEREER

&

&

& &

OO0 O0OO0OO0OO0O

142

ON
ON
ON
ON
ON
ON

ON
ON
ON
ON

ON
ON

AE O ON

A

A

0.0000000

C
0.0000000

c
0.0000000

c
0.0000000
OFF TRUE
OFF TRUE
OFF TRUE
OFF TRUE
OFF TRUE
OFF TRUE
0.0000000

C
0.0000000

c
20.0000000
0.0000000

c
0.0000000

c
20.0000000
0.0000000
0.0000000
OFF TRUE
OFF TRUE

OFF

OFF
0.0000000
0.0000000

OFF

OFF
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
3.1415927
20.0000000
20.0000000
20.0000000
20.0000000
20.0000000
20.0000000
31.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
OFF TRUE
1.0000000
0.0000000
0.2500000
0.2500000
0.2500000

ERRORS

ERRORS

ERRORS

ERRORS

aooaon0o

ERRORS

ERRORS

ERRORS
ERRORS

ERRORS

ERRORS

SECS
SECS
SECS
SECS
SECS
SECS



#RATE.O13.
#RATE.O14.
#RATE.O015.
#RATE.O16.
#RCNT.001.

#RCNT. 009.
#RCNT. 010,
#RCNT.O11.
#RCNT. 012,
#RCNT. 013,
#RCNT.014.,
#RCNT.015.
#RCNT.O16.

#RCNT.LINM.
#RTTIME. 000,
FRTTIME. 001,
#SPARE.000.
#SPARE.001.
#SPARE.002.
#SPARE.003.
#SPARE.004.
#SPARE.005.
#TIME.000.
#TIME.001.
#TIME.002.
#TIME.003.
#TIME, 004,
#TIME.00S.
#TIME.006.
#TIME.OD7.
A..

Al..
ACCEPT..
ADAPT.FLAG.
ADAPTIVE..
AgJ..
ALAST..
ALGO, .
ALGL..
ALG2..
ALPHA..

B..

Bl..

B2..

B3..

B4..

BS..

cl..

CDOT..
CIN..
CIN.PRIME.

FEEEEEEE G

O R N R T R R T L L R R R A A i A N A A A A

Rl W4 MI CI
R1 W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
Rl W4 MI CI
FRONT . LINM.
R1 W4 MI CI
#RCNT.LINM.
Rl Wd4 MI CI
#RCNT.LINM.
R1 W4 MI CI
#RCNT.LINM.
Rl W4 MI CI
#RCNT.LINM.
Rl W4 MI CI
#FRCNT.LIM.
R1 W4 MI CI
#FRCNT.LINM.,
R1 W4 MI CI
#RCNT.LINM.
Rl W4 MI CI
#RCNT.LIM.
R1 W4 MI CI
R1 W4 ME CI
R1 W4 MI CI
R1 W4 ME CE
Rl W4 ME CE
Rl W4 ME CE
Rl W4 ME CE
R]1 W4 ME CE
Rl W4 ME CE
Rl Wé4 MI CI
Rl W4 MI CI
R1 W4 MI CI
Rl W4 MI CI
R1 W4 MI CX
Rl W4 MI CI
Rl W4 MI CI
R1 W4 MI CI

BB B B B B B OB B
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COO0COo0O0O0

[=J=lg o]

ON
ON
ON
ON

ON

ON
ON

ON
ON
ON

A

0.2500000
0.2500000
0.2500000
0.2500000
0.0000000
c
0.0000000
c
0.0000000
c
0.0000000
c
0.0000000
c
0.0000000
c
0.0000000
c
0.0000000
c
0.0000000
c
20.0000000
0.0000000
0.0000000
OFF
OFF
OFF
OFF
OFF
OFF
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
50.0000000
OFF
OFF
0.0000000
0.0000000
OFF
OFF
OFF
0.5000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
6.0000000
0.0000000
0.0000000

COUNTS

COUNTS

COUNTS

COUNTS

COUNTS

COUNTS

COUNTS

COUNTS

COUNTS

COUNTS

SECS

HOURS
MINS
SECS



COLD..
COUNT..

DATA.TIMER.TIME

DESIGN. .

DESIGN.FACTOE.KC
DESIGN.FACTOR.KC
DESIGN.FACTOR.KI

DESIGN.K1.
DESIGN.K2.
DESIGN.K3.
DESIGN.K4.
DIAG1..
DIAG2..
DIAG3..
DIAGY..
DIAGS..
DIAGE. .
DIAGT..
DISTURB. .
DONE. .

DONE . FACTOR.

EO..

El..
ENABLE. .
ENABLE.NEW.
ENABLE.OLD.
EVAR..
PJ..

FLAG .ERMAX.
FLAG.INIT.
HYSTER. .
I..

IMAG. .
INPUT. .
INPUT.OLD.
INT1..
INT2..
INTEG. .
IPMAX. .
IPMIN..
IPSPAN..
1PZERO. .
J..

Ji..

X..

KF..

KP..

KP1..
KP2..

KU, .
LAMBDA. .
LHS..
LOAD. INIT.
MAGN. .
MAGN.DEN.
MAGN . NUM.
NOISE..
NOISE.AMP.
NOISE.REQ.
OPDEV. .

N N I EE R EE R EE B A A i L Al PEHOHPPIIOPII YYD

GLB

GLB

GLB
GLB

0 ON

o oo
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ON

ON

ON
ON
ON

ON
ON

ON

ON

GLB 0 ON

OFF
1.0000000
0.0000000

OFF
0.0000000
0.0000000
0.0000000
1.0000000

-0.6000000
1.0000000
-0.3000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

OFF
0.0000000
0.0000000
0.0000000
0.0000000

OFF

OFF

OFF
0.0000000
0.0000000

OFF

OFF
0.2000000
0.0000000
0.0000000
0.0000000
0.0000000
1.0000000
0.0000000

OFF

100.0000000
0.0000000

100.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
1.0000000
2.0000000
1.0000000
0.0000000
0.9900000
0.0000000

OFF
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

OFF
5.0000000

» & P #F

%



OPMAX. .
OPMEAN. .
OPMIN. .
OPSPAN, .
OPZERO. .
OUTPUT . SAMPLE.
OUTPUT1..
OUTPUT2. .
OUTPUT2.LIMIT.
OUTPUT2.0OLD.
OVERSH. .
OVERSH.CHECK.
OVERSH.MAX.
OVERSH.MIN.
PASS. .
PERIOD..
PERR. .

PHI..

PJ..
PRBS.BITO.
PRBS.BITI.
PRBS.BIT2.
PRBS.BIT3.
PRBS.BIT4.
PRBS.BITS.
PRBS.BIT6.
PRBS.BIT?.
PRBS.BITS.
PRBS.BITS8.NEW
PROC. INIT.
PROC1. INIT.
PROC2. INIT.
PROP1..
PROP2..
PVAMP. .
PVDEV, .
PVERROR. .
PVERROR.MAX.
PVERROR. MAX.OLD
PVERROR. MIN.
PVERROR.MIN.OLD
Q1..

02..

REAL..
REDUCE . ENABLE.
REDUCE . FACTOR.
RELAY. .
RELAY . REDUCE.
RELAY.SIGN.
RE§ET..
RESET.TIMER.DATA
RESET1..
RESET2..
REVERSE. .
RHS. .

SELECT..
SETPOINT..
SINM..

SIM.C.

SIM.C1.

LA A A Al S A A B B B N B R N N N N N R R N N N R R EEEE

GLB

GLB
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O O O O bbb bbb b pb pd b pos

=

oO00oo

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

ON

ON
ON
ON
ON
ON

100.0000000
0.0000000
0.0000000

100.0000000
0.0000000

OFF
0.0000000
0.0000000

OFF
0.0000000

10.0000000
0.0000000
75.0000000
1.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
1.0000000
0.0000000
0.0000000

100.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

10.0000000
0.0000000
©.0000000

OFF
0.6666667
2.0000000

OFF
0.0000000

OFF

OFF

OFF

OFF

OFF
0.0000000
0.0000000

40.0000000
1.0000000
0.0000000

10.0000000

- L AN N N B ]

-

>« #F er e

SECS

DEG

L B B ]



SIM.C2.
STATUS. .
STATUS.BITO.
STATUS.BITI.
STATUS.BIT2.
STATUS.BIT3.
STATUS.BITY.
STATUS.BITS.
STATUS.BITS.
STPI.YO.
STPI.Y1.
SYSINIT..
TANPHI..
TAU.DEL.
TAU.L.
TAU.P.
TAU.P1l.
TAU.P2.
TEMP..
TESTPI..
TESTPI.TIME.
THI..
THRESH. .
TIMER. IN.
TIMER.OUTPUT.1
TIMER.PULSE.
TOTAL. .
TRACK1..
TRACKZ..
TUNE .ALPHA.
TUNE.BETA.
TUNE.COUNT.
TUNE .COUNT.OLD
TUNE.DB.
TUNE .GAMMA.
TUNE.LOCK.
TUNE.R1.
TUNE.R2.
TUNE.S1.
TUNE.S2.
TUNE.STAGE. 1
TUNE.STAGE.2
TUNE.STAGE.]
TUNE.STAGE. 4
TUNE.TO.
TUNE.T2.
TUNE.T3.
TUNE.T4.
TUNE.TS.
TUNE.TL.
TUNING. .
uo..

Ul..

uz2..

v3..

vd..

US..
UPDATE. .
vD..

vJ..

PR OPIPIPIPYPIOPRYRIPIIPIPOOOORIIIOPIIIIIEOIPEDODIIEIIPIIPIIIPOORIIIIIPIIIIY
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(o =]

[« 2]

OO0 00

ON

ON

ON
ON
ON

ON
ON

ON

ON
ON
ON
ON

ON

ON

$0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
OFF
0.0000000
0.0000000
0.0000000
5.0000000
5.0000000
0.5000000
0.0000000
OFF
120.0000000
0.0000000
§.0000000
OFF
OFF
OFF
100.0000000
OFF
OFF
1.0000000
2.0000000
0.0000000
0.0000000
2.0000000
6.0000000
OFF
0.0000000
0.0000000
0.0000000
0.0000000
OFF
OFF
OFF
OFF
0.0000000
0.0000000
0.0000000
0.0000000
500.0000000
0.0000000
OFF
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
OFF
100.0000000
0.0000000

COUNTS

COUNTS
COUNTS
$

COUNTS
COUNTS
COUNTS
COUNTS
COUNTS
COUNTS



147

vM.. A 1000.0000000
WN. . A 2.0000000
WT.. A 0.0000000
WT.O. A 0.0000000
WT.FLAG. L 0 ON OFF
WT.HIGH. A 0.0000000
WT.INC. A 0.0000000
WT.LOW. A 0.0000000
X1.. A 0.0000000
X1DOT. . A 0.0000000
X2.. A 0.0000000
X2DOT. . A 0.0000000
Y., a GLB 0.0000000
Y.RES. A 0.0000000
Y.SPAN. A 100.0000000
Y.TRK. L 0 ON OFF
Y.ZERO. A 0.0000000
Yl.. a 0.0000000
Y1DOT.. A 0.0000000
Y2.. A 0.0000000
Y2.MAX. A 100.0000000
¥2.MIN. A 0.0000000
Y2DOT. . A 0.0000000
¥D.. A 0.0000000
YP.. A 0.0000000
YP.MRX. A 100, 0000000
YP.MIN. A 0.0000000
YPDOT. . A 0.0000000
YVAR.. A 0.0000000
z.. A 0.0000000
Z.SPAN. A 100.0000000
7.ZERO. A 0.0000000
ZEROX.COUNT. A 0.0000000
ZEROX.TOTAL. A 0.0000000
ZETA.. a 0.0000000
ZETA.SIM. A 0.5000000
2L.. A cLB 0.0000000
2%L.IN. A 0.0000000
ZLDOT. . A 0.0000000
*TASK 0
*TASK 1
10 « c L2222 28RS 2822323222233 33232328 ]
20 [ ] c [ 2 X b 2 2 3
30 @ C wxa SELF TUNING PI CONTROLLER "ew
40 [ ] c b & 2 ] LR 2
50 @ ¢ *we 22ND MARCH 1990 2
60 * c L& 8] *hkR
70 [ 3 c RERARRRRAARKE R AR ARANARARARRARRN AN AR RRAARNARAR
80 « ¢
90 % C *** RESET DEFAULT VALUES BETWEEN STPISIM TESTS
100 * CALCULATOR
10 :IF(RESET)
12  TESTPI=#OFF
15  ENABLE<#OFF
20  STATUS.BITO=0.
30 STATUS.BIT1=0.
40  STATUS.BIT2=0.
50 STATUS.BIT3=0.
60 STATUS.BIT4=0.
70  STATUS.BIT5=0.

L]
L
COUNTS
COUNTS
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80 STATUS.BIT6=0.
90 PROP2=0.

100 INT2=0,

110 DONE=0.

115 1CI: ZL=#OFF
120 ZL=0.

125 1CI: ZL=#ON
130 REVERSE=#0OFF
140 OVERSH=10.
150 SETPOINT=40.
160 PROP1=1.

170 INT1=1.

180 PVDEV=100.
190 RELAY~2.

200 INTEG=#ON
210 ACCEPT=50.
220 HYSTER=0.2
230 THRESH=5.
240 OPMEAN=1.
250 OPDEV=S,

260 TOTAL=100.
270 ALPHA=0.5
280 LAMBDA=0.99

290 Al=0.
300 Bl=0.
310 B2=0.
320 B3=0,
330 B4=0.
340 BS=0,
350 C1=0.

360 DIAG1=0.
370 DIAG2=0.
380 DIAG3=0.
390 DIAG4=0.
400 DIAGS=0.
410 DIAG6=0.
420 DIAG7=0.
430 RESET=#0FF
440 :ENDIF

110 o C

112 & C *+» TEST PI VALUES (STEP RESPONSE & DISTURBANCE RESPONSE)

115 o C

120 *= TIMER
INPUT TESTPI..
SETPOINT TESTPI.TIME.
RESET TESTPI..
OUTPUT_2 DISTURB..

130 * CALCULATOR
10 :IF(TESTPI)
20 SETPOINT=50.
30 :ENDIF
40 :IF(DISTURB)
50  :CI:ZL=#OFF
60  ZL=10.
70  :CI:ZL=#ON
80 :ENDIF
140 *
150 =
160 *
170 *

#ed SELECT ALGORITHM A A At dk h ke ke kAR Rk AR A A AR R AR AN AR R AR AR AR AR A A AN

aOnOnon
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1
1
1
1
1
1
1
1
1
1
2
190
200
210
220
230
240

250
260
270
280
290
300
310

320
330
340
380
360
370
380
390

400
410
420
430

10
20
30
40
50
60
70
80
80
00
10
20
30
40
S0
60
70
80
10]
00

[ ]
*
L]
*
L]

DEVICE
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CALCULATOR

$IF (SELECT==1)
ALGO=#0N
ALG1=#OFF
ALG2=#OFF

tENDIF

$IF (SELECT==2)
ALGO=#OFF
ALG1=#0ON
ALG2=#0OFF

:ENDIF

$IF (SELECT==3)
ALGO=#OFF
ALG1=FOFF
ALG2=#0ON

$ENDIF

ENABLE . NEW=ENABLE

:IF (ENABLE.OLD&~ENABLE. NEW)
TUNING=#OFF
TUNE . LOCK=#OFF

sENDIF

c

c

C *** MEASURE THE PROCESS VARIBBLE AR A A A A AR AR RN KRR A AR AR AN R AR AR AR IR

c
c
ANIN

oy

INITIAL 2
INPUT 1 INPUT..

ZERO 1 IPZERO..

SPAN 1 IPSPAN. .

CALCULATOR STPI.YO=ALPHA*STPI.Y1+(1~ALPHA)* (INPUT~INPUT.OLD)

® o & % 9

-

c
c

C **x UPDATE THE OUTPUT OF THE PID3ITERM MODULE *A**aRaktkhkudawhrisn

C
C
PID3TERM

INPUT INPUT..
SETPOINT SETPOINT..
PROPORTION PROP1..
INTEGRAL INT1..
RESET OUTPUT2..
TRACK TRACK2. .
ouUTPUT OUTPUTI..

c

®C

" I TN

¢ *» 3 80O

C *x* UPDATE THE OUTPUT OF THE STPI HODULE
C

C —--- UPDATE PROCEDURE WHEN NOT TUNING ~=~—~

c

IF (~TUNING)
CALCULATOR

OUTPUT2=OUTPUT1

TRACK2=TRACK1

ENDIF

c

IF (TUNING)

c

REKXNRRARERAANRRR AR A AR R &
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440 ¢ C --— UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #0 ——=rmw=-—em—mee
450 ¢ ¢

460 * IF (ALGO)

470 ¢ CALCULATOR

1
1
1
b
1
1
1
1
480
490
500
510
520
$30

540
5§50
S60
570
580
590

1
1
1
1
600
610
620
630
640
650

10 1 IF(~REVERSE)
20  :IF{INTEG)

30 OUTPUT2=OUTPUT2+RELAY . SIGN*RELAY *#RATE . 001
40  :ENDIF

S0  :IF(~INTEG)

60 OUTPUT2=OPMEAN+RELAY . SIGN*RELAY

70  :ENDIF

80 :ENDIF

90 :IF(REVERSE)

00  :1IF(INTEG)

10 OUTPUT2=0UTPUT2-RELAY . SIGN*RELAY*#RATE.001
20  :ENDIF

30  :IF(~INTEG)

40 OUTPUT2=OPMEAN-RELAY . SIGN*RELAY

S0  :ENDIF

60 :ENDIF

70 TRACK2=#ON

¢  ENDIF

» * » @
[¢ Iy IE¢]

IF (ALGl)

* CALCULATOR
10 OUTPUT2=0UTPUT1
20 TRACK2=TRACK1l

~—= UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #]1 ~----o=mecwec—-

¢  ENDIF

s C

¢ C —-~ UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #2 ==w-—m-—me-we—=
s C

* IF (ALG2)

* CALCULATOR

10 :IF(~ADAPT.FLAG)
20  :IF(PRBS.BITO)

kle) OUTPUT2=OPMEAN+OPDEV
40 sENDIF

50 :IF(~PRBS.BITO)

60 OUTPUT2=0PMEAN~-OPDEV

70  $ENDIF
80  TRACK2=#ON
90 :ENDIF
00 :IF(ADAPT.FLAG)
10  OUTPUT2=OUTPUT1
20  TRACK2=TRACK1
30 :ENDIF
»  ENDIF
* ENDIF
* C
® C --- LIMIT OUTPUT AND CHECK FOR INPUT LIMITING
s C
® CALCULATOR
10 OUTPUT2.LIMIT=FOFF
20 :IF(OUTPUT2<OPMIN)
30  OUTPUT2=OPMIN
40  OUTPUT2.LIMIT=#ON
50  TRACK2=#0ON
60 :ENDIF



151

70 1IF(OUTPUT2>OPMAX)

80  OUTPUT2=OPMAX

90  OUTPUT2.LIMIT=#0N
100  TRACK2=#ON

110 :ENDIP

120 :IF(TUNING)
130 :IF(OUTPUT2.LIMIT|(INPUT<=IPMIN)|(INPUT>=IPMAX))
140 TUNE.STAGE. 1=#0FF

150 TUNE.STAGE . 2=#0FF
160 TUNE.STAGE . 3=#0OFF
170 TUNE. STAGE , 4=#0FF
180 LEROX . COUNT=0
190 STATUS.BITS=32
200  :ENDIF
210 :ENDIF
660 ® C
670 * €
680 [ ] c (L & 2] OUTPUT THE NEW ACTUATOR COMMAND SIGNM‘ KRR ARKARN N AERERAR R AR
690 ® ¢
700 * €
710 © ANOUT
DEVICE 3
INITIAL 2
OUTPUT 1 OUTPUT2. .
ZERO 1 OPZERO. .
SPAN 1 OPSPAN. .
720 * ¢
730 * ¢
740 * C *»x TUNING INITIALISATION PROCEDURES W h AR AAX AR AARRRANXR AR A kb kk k&
750 * C
760 * ¢

770 ® IF (~ENABLE.OLD&ENABLE.NEW)
780 ®  CALCULATOR
10 TUNING=#ON
20 STATUS.BITO=0
30 STATUS.BIT1=0
40 STATUS.BIT2=0
50 STATUS.BIT3=0
60 STATUS.BIT4=0
70 STATUS.BIT5=0
80 STATUS.BIT6E=0
790 ¢  IF (SELECT==0)
800 » CALCULATOR
10 ALGO=#ON
20 ALG1=#OFF
30 ALG2=#OFF
810 *  ENDIF

820 e C

B30 ® C ~~- TUNING INITIALISATION PROCEDURE FOR ALGORITHM #0 ~—cececmmana
840 e ¢

850 *° IF (ALGO)

860 o CALCULATOR

10 REDUCE.ENABLE=#OFF

20 TUNE.COUNT=0

30 ZEROX.COUNT=0

40 ZEROX.TOTAL=0

50 :1F((SETPOINT-INPUT)>=0.0)
60 RELAY.SIGN=1

70 :ENDIF

80 :IF(SETPOINT~INPUT<0.0)
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90  RELAY.SIGN=-1
100 :ENDIF

110 :IF{~INTEG)

120  OPMEAN=OUTPUT2

130 :ENDIF
870 ¢  ENDIF

880 ¢ C

890 ¢ C ~--= NO INITIALISATION REQUIRED FOR ALGORITHM #l ~r-=-ecoroecaannm~
900 * C

910 ®¢ C ~~- TUNING INITIALISATION PROCEDURE FOR ALGORITHM #2 ~w-we—mcca-e=n
920 ¢ €

930 ¢ IF (ALG2)

940 ¢ CALCULATOR

10 OPMEAN=QUTPUT2
20 TUNE.COUNT=O
30 EQ=0

40 EVAR=0

SO YVAR=Q

60 DONE=0

70 ADAPT.FLAG=#OFF
80 DIAG1=1000

90 DIAG2=1000

100 DIAG3=1000

110 DIAG4=1000

120 DIAGS=1000

130 DIAG6=1000

140 DIAG7=1000

950 ENDIF

960 ENDIF

970 C

980 o

990 C **% TUNING PROCEDURES AWK KA RS AR R AN R A A AR AN R R A RN K R AR A AR R AN RN R AR RN RN &
1000 c

*
]
*
[ ]
[ ]
[ ]
1010 ¢ C
1020 ¢ IF (TUNING)
1030 ¢  CALCULATOR PVERROR=SETPOINT~INPUT
1040 ® C
1050 ® C --~- TUNING PROCEDURE FOR ALGORITHM #0 —-- e e
1060 * C
1070 »  IF (ALGO)
1080 * CALCULATOR
10 TUNE.COUNT=TUNE.COUNT+1
20 :IF(REDUCE.ENABLE)
30  :IF({(:ABS(PVERROR)>PVDEV]OUTPUT2.LIMIT)&~RELAY.REDUCE)
40 RELAY . REDUCE =#0N
50 ZEROX . COUNT=0
60  :ENDIF
70  :IF(RELAY.REDUCE&ZEROX.COUNT>0)

80 RELAY . REDUCE=#0OFF

%0 STATUS.BIT2=4

100 RELAY=REDUCE . FACTOR*RELAY
110 : IF (RELAY<HYSTER)

120 STATUS.BIT3=8

130 :ENDIF

140  :ENDIF

150 :ENDIF

160 :IF(RELAY.SIGN<O&PVERROR>HYSTER)
170 REDUCE . ENABLE=#ON

180 ZEROX.COUNT=ZEROX.COUNT+1

190 ZEROX.TOTAL=ZEROX. TOTAL+1
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200  TUNE.DB=:ABS{PVERROR.MAX.OLD*ACCEPT/100.0)

210  DONE=50+50*(1-:ABS (PVERROR.MAX~PVERROR.MAX.OLD) /TUNE.DB)

220  :1IF({DONE<O)

230 DONE=0

240  :ENDIF

250  :IF(:ABS({PVERROR.MAX~PVERROR.MAX.OLD)<TUNE.DB&ZEROX.COUNT>3)

260 PYVAMP= { PVERROR . MAX-PVERROR.MIN.OLD) /2.0

270 PERIOD=(TUNE . COUNT+TUNE.COUNT.OLD) «#RATE. 001
280 DESIGN=fON

290 tIF(~INTEG)

300 OUTPUT2=OPMEAN

310 <ENDIF

320  :ENDIF

330 PVERROR.MAX.OLD=PVERROR.MAX

340 PVERROR.MAX=0.0

350  TUNE.COUNT.OLD=TUNE.COUNT

360 TUNE.COUNT=0

370 RELAY.SIGN=1

380 :ENDIF

390 :IF(RELAY.SIGN>O&PVERROR<-HYSTER)

400  REDUCE.ENABLE=#ON

410  ZEROX.COUNT=ZEROX.COUNT+1

420  ZEROX.TOTAL=ZEROX.TOTAL+1

430  TUNE.DS=:ABS (PVERROR.MIN.OLD*ACCEPT/100)

440  DONE=50+50%(1~:ABS{PVERROR.MIN-PVERROR.MIN.OLD)/TUNE.DB)
450  :IF(DONE<O)

460 DONE=0

470  :ENDIP

480  :IF(:ABS(PVERROR.MIN-PVERROR.MIN.OLD)<TUNE.DB&ZEROX.COUNT>3)

450 PVAMP= (PVERROR.MAX.OLD~PVERROR.MIN) /2.0

500 PERIOD=({TUNE.COUNT+TUNE.COUNT.OLD) *#RATE. 001
510 DESIGN=#ON

515 1 IF{~INTEG)

516 OUTPUT2=OPMEAN

517 tENDIF

520  :ENDIF
530 PVERROR.MIN.OLD=PVERROR.MIN
540  PVERROR.MIN=0.0

550  TUNE.COUNT.OLD=TUNE.COUNT
560  TUNE.COUNT~0

570 RELAY.SIGN=~1.0

580 :ENDIF

590 :IF(ZEROX.TOTAL>21)

600  DESIGN=#ON

610 STATUS.BIT4x=16

620 :ENDIF

630 :IF(PVERROR>PVERROR.MAX)
640  PVERROR.MAX=PVERROR

650 :ENDIF

660 :1F (PVERROR<PVERROR.MIN)
670  PVERROR.MIN=PVERROR

680 :tENDIF
1090 ®  ENDIF
1100 * C
1110 ® C -—= TUNING PROCEDURE FOR ALGORITHM #1 —mememomcmmmom oo cmcm
1120 * ¢
1130 » IF (ALGl)
1140 * CALCULATOR

10 :IF(:ABS(PVERROR)>THRESH&~TUNE.LOCK)
20 TUNE . LOCK=#ON
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30 TUNE.STAGE.1=FON

40  PVERROR.MAX=0.0

50 :ENDIF

60 :IF(TUNE.STAGE.1)

70 :IF{31ABS(PVERROR)>:ABS(PVERROR.MAX))
80 FLAG . ERMAX=#OFF

90 PVERROR . MAX=PVERROR

100  :ENDIF

110  :IF(:ABS(PVERROR)<:ABS(PVERROR.MAX)&~FLAG.ERMAX)
120 FLAG.ERMAX=#0N

130 FLAG.INIT=#ON

140  1ENDIF

150  :1F(FLAG.INIT)

160 FLAG. INIT=#OFF
170 TUNE.STAGE . 2=#ON
180 TUNE.STAGE . 3=#OFF
190 TUNE.STAGE. 4=#OFF
200 STATUS .BITS=0

210 TUNE . COUNT=0

220 TUNE.R1=OVERSH/150.0
230 TUNE.R2=TUNE.R1/6
240 TUNE.S1=0,0

250 TUNE.$2=0.0

260  :ENDIF

270 :ENDIF

280 :IF(TUNE.STAGE.2&:ABS(PVERROR)<0.9*:ABS (PVERROR.MAX))
290  TUNE.STAGE.2=#OFF

300 TUNE.STAGE.3=#ON

310  TUNE.TO=TUNE.COUNT

320 :ENDIF

330 :IF(TUNE.STAGE.3&:ABS (PVERROR)<0.5%:ABS (PVERROR. MAX))

340 TUNE.STAGE.3=§OFF

350 TUNE.STAGE.4=#ON

360 TUNE.TL=TUNE.COUNT-TUNE.TO

370  :IF{TUNE.TL<1)

380 TUNE.TL=1

390 :ENDIF

400 TUNE.T2=TUNE.COUNT+TUNE.ALPHA*TUNE.TL

410  TUNE.T3=TUNE.T2+TUNE.BETA*TUNE.TL

420  TUNE.T4=TUNE.T3+TUNE.GAMMA*TUNE.TL

430 TUNE.T5=TUNE.T4+TUNE.T4

440 :ENDIF

450 :IF(TUNE.STAGE.4)

460  :IF(TUNE.COUNT>=TUNE.T2&TUNE.COUNT<TUNE.T3)

470 TUNE.S1=TUNE.S1+PVERROR/PVERROR. MAX/TUNE . BETA/TUNE. TL
480  :ENDIF

450  :IF(TUNE.COUNT>=TUNE.T3&TUNE.COUNT<TUNE.T4)

500 TUNE.S2=TUNE. S2+(PVERROR/PVERROR . MAX+TUNE . R2 ) /TUNE . GAMMA /TUNE . TL
510 :ENDIF

520 :IF(TUNE.COUNT>=TUNE.T4)

530 TUNE.STAGE. 1=#OFF

540 TUNE. STAGE . 4=#OFF

550 DESIGN=#0ON

560 DONE.FACTOR=( : ABS (TUNE.R1)~:ABS (TUNE.S1+TUNE.R1))/:ABS (TUNE.R1)
570 s+ IF (TUNE.R1==0)

580 DONE.FACTOR=0.5

590 +ENDIF

600 DONE=50+50*DONE . FACTOR

610 3 IF (DONE<0}

620 DONE=Q
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630 tENDIF
640 1ENDIF
650 :ENDIF

660 :IF(TUNE.LOCK)
670  TUNE.COUNT=TUNE.COUNT+1
680  :IF(TUNE.COUNT>TUNE.TS&:ABS (PVERROR)<THRESH)

690 TUNE . LOCK=#OFF
700  $ENDIF
710 :ENDIF
1150 e ENDI¥
1160 * ¢
1170 *# € ~~= TUNING PROCEDURE FOR ALGORITHM #2 =—mmwesmsaso oo e o cm m e emm
1180 * C
1190 *  IF (ALG2)
1200 * CALCULATOR

10 :IF(~ADAPT.FLAG)

20  TUNE.COUNT=TUNE.COUNT+1
30 :ENDIF
1210 * IF (TUNE.COUNT>S)
1220 » CALCULATOR

10 TEMP=1

20 :IF(REVERSE)

30  TEMP=-1

40 :ENDIF

50 #FADATA 1{1,1)=-STPI.Y1

60 #ADATA 2{1,1]=Al

70 #ADATA 3{1,1)}=DIAG1

80 #ADATA 1[1,2]=UL*TEMP

90 #ADATA 2[1,2]=B1

100 #ADATA 3{1,2}=DIAG2

110 #ADATA 1[1,3]=U2+TEMP

120 #ADATA 2[1,3)=B2

130 #ADATA 3({1,3]=DIAG3

140 #ADATA 1{1,4)=U3*TEMP

150 #ADATA 2{1,4)=B3

160 #ADATA 3{1,4)=DIAG4

170 #ADATA 1{1,5)=U4*TEMP

180 #ADATA 2{1,5]=B4

190 #ADATA 3(1,5)}=DIAGS

200 #ADATA 1(1,6]=US*TEMP

210 #FADATA 2({3,6)=BS

220 #ADATA 3{1,6]=DIAGE

230 #ADATA 1(1,7)=El1

240 #ADATA 2(1,7]=Cl

250 #ADATA 3({1,7)=DIAG?

1230 CALCULATOR EQ=-STPI.YD
1240 FOR 1., 7., 1., J..
1250 o CALCULATOR EO=EO+#ADATA 1{1,J])*#ADATA 2{1,J]
1260 = ENDFOR
1270 * CALCULATOR

10 PERR=EQ

20 :IF(TUNE.COUNT>12)

30  TEMP=TUNE.COUNT-12

40  EVAR=(EVAR* (TEMP-1)/TEMP)+(EO*E0Q/TEMP)

SO YVAR=(YVAR*{TEMP-1)/TEMP)+(STPI.YO*STPI.Y0/TEMP)
60 DONE=100*{1-EVAR/YVAR)

70  :+IF(DONE<0)

80 DONE=0

90  :ENDIF

100 :ENDIF
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CALCULATOR
FJ=#ADATA 1{1,1)
VI=FADATA 3{1,1)*FJ
AJ=1+(VJI*FJ)
#ADATA 3(1,1)=#ADATA 3(1,1)/AJ/LAMBDA
#ADATA S({1,1]=VJ
KF=0
KU=0
FOR 2., 7., 1., J..
CALCULATOR
FJ=FADATA 1(1,J]
J1=J~1
FOR 1., J1.., 1., I..
CALCULATOR
KF=KF+1
FJ=FJ+ (#ADATA 1{1,I]*F#RDATA 4[1,KF))
ENDFOR
CALCULATOR
VI=FJI*#ADATA 3([1,J)
ALAST=AJ
AJ=ALAST+(VJ*FJ)
#ADATA 3([1,J)=#ADATA 3[1,J)*ALAST/AJ/LAMBDA
#ADATA 5(1,J)=VJ
PJ=-FJ/ALAST
FOR 1., Jl.., 1., I..
CALCULATOR
KU=KU+1
TEMP=#ADATA 4(1,KU)+(#ADATA 5(1,1}*PJ)
#ADATA 5(1,1)=#ADATA 5(1,I)+(#ADATA 4(1,KU]*VJ)
#ADATA 4[1,KU)=TEMP
ENDFOR
ENDFOR
FOR 1., 7., 1., J..
CALCULATOR
#ADATA 2(1,J)=#ADATA 2([1,J]~(#ARDATA S({1,J)*EOQ/AJ)
ENDFOR
CALCULATOR
Al1=FADATA 2(1,1]
B1=#ADATA 2{1,2)
B2=#ADATA 2(1,3)
B3=#ADATA 2{1,4)
B4=#RADATA 2[1,5)
BS=#ADATA 2[1,6]
C1=#ADATA 2(1,7)
DIAG1=#ADATA 3[1,1)
DIAG2=#ADATA 3(1,2])
DIAG3=#ADATA 3(1,3])
DIAG4=#ADATA 3(1,4)
DIAGS=#ADATA 3[1,5]
DIAG6=#ADATA 3(1,6)
DIAG7=#ADATA 3(1,7]
CALCULATOR
: IF (~ADAPT.FLAG)
: IF (TUNE.COUNT>=TOTAL)
OUTPUT2=0OPMEAN
DESIGN=#ON
tENDIF
:ENDIF
+ IF (ADAPT.FLAG)
DESIGN=#ON
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1450
1460
1470
1480
1490
1500
1510
1520

1
1
1
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90 :ENDIPF
° ENDIF
L ENDI1Y¥
* ENDIF

*hd SHIFT DATA Ao d st A A A A R A R R R A A R A A N R T AR AN KA AR R RN R A AR RN RNk

o0 0 0o %
ahaon

® CALCULATOR
10 UO=ALPHA*Ul+(1-ALPHA)*(OUTPUT2~QUTPUT2.0LD)
20 ENABLE.OLD=ENABLE.NEW
30 INPUT.OLD=INPUT
40 OUTPUT2.O0LD=QUTPUT2
50 STPY.Y1=STPI.YO
60 US=U4
70 U4=D3
80 U3=y2
80 U2=yUl
00 Ul=Uu0
10 E1=EQ
20 PRES.BIT8.NEW=PRBS5.BIT1-PRBS.BIT6

2
1530
1540
1550
1560
1570
1580

1

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680

130 PRBS.BITO=PRBS.BIT1
140 PRBS.BIT1=PRBS.BIT2
150 PRBS.BIT2=PRBS.BIT3
160 PRBS.BIT3=PRBS.BIT4
170 PRBS.BITA=PRBS.BITS
180 PRBS.BITS=PRBS.BIT6
190 PRBS.BIT6=PRBS.BIT?
200 PRBS.BIT7=PRBS.BITS
10 PRBS.BIT8=PRBS.BIT8.NEW
*C
* C
* C *oe CONSTRUCT STATUS WORD A&t At d w h A R XA AR kR A ARk R AR KA R R AR R ARk A RN
*C
L ~
®* CALCULATOR
10 STATUS.BITO=0
20 IF(TUNING)
30 STATUS.BITO=]
40 sENDIF
50 STATUS.BIT1=0
60 :1F(TUNE.LOCK)
70 STATUS.BIT1=2
80 :ENDIF
00 STATUS=STATUS.BITO+STATUS.BIT1+STATUS.BIT2+STATUS.BIT3+STATUS.BIT4+Q
STATUS.BITS+STATUS.BIT6

*%% DESIGN PROCEDURES * A A XA K AR A R AN A AN R A A AN AR AR R KRRk A NN KA KR AR R AR kN

v

anoHaOaOOOn0

F (DESIGN)

=== CHECK OVERSHOOT == im e o e e et e

* 9 % 9 0 » 0 * B

bd CALCULATOR

10 OVERSH.CHECK=OVERSH

20 : IF(OVERSH>OVERSH.MAX)

30 OVERSH.CHECK=OVERSH.MAX
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40 :ENDIF

50 :IF(OVERSH<OVERSH.MIN)

60 OVERSH.CHECK=OVERSH.MIN

70 3ENDIF

80 ZETA=:LOG(OVERSH.CHECK/100.0)*:LOG(OVERSH.CHECK/100.0)
90 ZETA=:SQR(ZETA/(ZETA+#PI*#PI))

100 PHI=ZETA*100.0

110 THI=PHI*#PI/180.0

1690 = C

1700 * C ~-- DESIGN PROCEDURE FOR ALGORITHM #0 ~-=-cwemee—mewrmc e me o ca—
1710 * C

1720 IF (ALGO)

1730 CALCULATOR

10 :IF(~REVERSE)
20 PROP2=2.0%RELAY*PERIOD*:SIN(THI)/(#PI*#PI*PVAMP)
25  :IF(~INTEG)

26 PROP2=OVERSH.CHECK/100.0*4 .0O*RELAY /#PI /PVAMP
27 :ENDIF
30 :ENDIF

40 :1IF (REVERSE)
S0  PROP2=-2.0*RELAY*PERIOD*:SIN(THI)/(#PI*#PI*PVAMP)
§5  :IF(~INTEG)

56 PROP2=-OVERSH.CHECK/100.0%4.0*RELAY /#PI/PVAMP
57 :ENDIF
60 :ENDIF

70 INT2=120.0*#PI/(PERIOD*:TAN(THI))

75 :IF{~INTEG)

77 INT2=0

78 :ENDIF

80 TUNE.T5=4*INT2/#RATE.001/60
1740 ENDIF
1750
1760
1770
1780
1790

c

C ~-— DESIGN PROCEDURE FOR ALGORITHM #]l —~-~-crmrccer e c e e

C

IF (ALG1)

CALCULATOR

10 DESIGN.FACTOR.KC={1-DONE.FACTOR)*(DESIGN.K1*(TUNE.S1+TUNE.R1)+DESIGN.K2@
*TUNE.S2)

20 :IF(:ABS(DESIGN.FACTOR.KC)>0.2)

30 DESIGN.FACTOR.KC=0.2*DESIGN.FACTOR.KC/:ABS (DESIGK.FACTOR.XC)

40 :ENDIF

50 PROP2=PROP1*(1+DESIGN.FACTOR,KC)

60 DESIGN.FACTOR.KI=(1~DONE.FACTOR)*{DESIGN.K3*(TUNE.S1+TUNE.R1)+DESIGN.K4@
*TUNE.S2)

70 :IF(:ABS(DESIGN.FACTOR.KI)>O.2)

80 DESIGN.FACTOR.KI=0.2*DESIGN.FACTOR.KI/:ABS(DESIGN.FACTOR.KI)

90 :ENDIF

100 INT2=INT1*(1+DESIGN.FACTOR.KI)

110 :IF({~INTEG)

120 INT2=0

130 :ENDIF
1800 =  ENDIF
1810 » ¢©
1820 * C ~-- DESIGN PROCEDURE FOR ALGORITHM #2 ——wwmm-—momme e
1830 » ¢
1840 ®© IF (ALG2)
1850 e CALCULATOR TEMP=0
1860 = FOR 1., 5., 1., J..
1870 = CALCULATOR TEMP=TEMP+#ADATA 2[1,1+J)
1880 ENDFOR
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1890 IF (TEMP<O)
1500 = CALCULATOR STATUS.BIT6=64
1910 ENDIF

1920 ¢ CALCULATOR

10 INT2=60+(1+#ADATA 2[1,1))/#RATE.001
20 :1IF(INT2<0)
30  INT2=0
40 :ENDIF
50 TANPHI=:TAN(PHI*#PI/180)
60 WT.HIGH=#PI
70 WT.LOW=#PI/100
80 WT.INC=(WT.HIGH-WT.LOW)/10
1930 FOR 1., 2., 1., PASS..
1940 CALCULATOR
10 WT.O=WT.LOW
20 WT.PLAG=#OFF
1950 = FOR WT.LOW., WI.HIGH., WT.INC., WT..
1960 CALCULATOR
10 A=:SIN(WT)/(1-:COS(WT))
20 IMAG=F#ADATA 2[1,2)*:5IN(WT)
30 REAL=#ADATA 2{1,2]}*:COS(WT)
1970 ¢ FOR 2., S., 1., J..
1980 CALCULATOR
10 IMAG=IMAG+#ADATA 2{1,J+1]*:SIN(J*WT)
20 REAL=REAL+#ADATA 2[1,J+1]%:COS (J*WT)
1990 * ENDFOR
2000 * CALCULATOR
10 B=IMAG/REAL
20 LHS=-({A+B)/(1-A*B)
30 RHS=TANPHI
40 3 IF (LHS<RHS)
50  WT.FLAG=#ON
70 :ENDIF
B0 3IF(~WT.FLAG)
90  WT.O0=WT
100 :ENDIF
2010 * ENDFOR
2020 o CALCULATOR
10 WT.RIGH=WT.0+WT.INC
20 WT.LOW=WT.O
30 WT.INC={WT.HIGH-WT.LOW)/10
2030 * ENDFOR
2040 » CALCULATOR
10 IMAG=:SIN(WT.0)
20 REAL=1~:COS{WT.0)
30 MAGN.DEN=:SQR (REAL*REAL+IMAG* IMAG)
40 IMAG=#ADATA 2(1,2]%:SIN(WT.O)
50 REAL=FADATA 2{1,2}*:COS(WT.0)
2050 » FOR 2., 5., 1., J..
2060 * CALCULATOR
10 IMAG=IMAG+#ADATA 2{1,J+1]*:SIN(J*WT.0)
20 REAL=REAL+#ADATA 2{1,J+1)*:COS (J*WT.0)
2070 * ENDFOR
2080 » CALCULATOR
10 MAGN.NUM=:SQR(REAL*REAL+IMAG* IMAG)
20 MAGN=MAGN.NUM/MAGN.DEN
30 PROP2=1/MAGN
40 :IF(REVERSE)
50 PROP2=~PROP2
60 :ENDIF
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2090 ¢ ENDIF

2100 ¢« C

2110 ¢ C -—- UPDATE CONTROLLER GAINS ~r--ro——-—mo e e e e e e
2120 ¢« C

2130 ¢  CALCULATOR

10 DESIGN=#OFF
20 :IF(UPDATE)

30  PROP1=PROP2
40  INT1=INT2

50 1ENDIF

60 :IF(SELECT==0)
70  :IF(ALGD)

80 ALGO=#OFF
S0 ALG1=#ON
100 tENDIF

110 :ENDIF

120 :IF(SELECT==1)

130 TUNING=£OFF

140 :ENDIF

150 :IF(SELECT==3)

160  :IF (ADAPTIVE)
170 ADAPT.FLAG=#0ON
180 :ENDIF

190  :IF(~ADAPT.FLAG)

200 TUNING=#0OFF
210 sENDIF
220 :ENDIF
2140 * ENDIF
*TASK 9
10 ® ¢ OUTPUT VALUES TO PC USING LOGGER MODULE
20 * TIMER
INPUT TIMER.PULSE.
SETPOINT 5.0000000
RESET RESET.TIMER.DATA
TIME DATA.TIMER.TIME
OUTPUT_1 TIMER.OUTPUT.1
OUTPUT_Z OUTPUT.SAMPLE.

30 ® IF (TIMER.OUTPUT.1)
40 *  CALCULATOR

10 TIMER.PULSE=#OFF
50 * ENDIF
60 * IF (OUTPUT.SAMPLE)
70 * LOGGER

PORT 2.0000000
MODE #OFF. .

FORMAT 9.0000000
LIST 9.0000000

80 ®» CALCULATOR
10 TIMER.PULSE=#ON

90 * ENDIF

*TASK 10

1 ® IF (SIM==0.0)

2 * C PURE INTEGRATING PROCESS SIMULATION (SIMO)
5 *+C

*

10 * C GET OUTPUT FROM THE SELF TUNING CONTROLLER
20 ® ANIN

DEVICE 1

INITIAL 1

INPUT 1 z..

ZERO 1 Z.ZERO.
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SPAN 1 Z.SPAN,
25 e« C
30 » ¢ e*+ PBEGINNING OF PROCESS SIMULATION CODE
40 CALCULATOR
10 YPDOT=KP*(Z+ZL)
50 » INTEGRATOR

INPUT YPDOT..

RESET SYSINIT..

ZERO 0.0000000
SPAN 1.0000000
OUTPUT YP..

52 *» ¢ BOUND THE PROCESS BETWEEN ITS UPPER AND LOWER LIMITS
55 *  CALCULATOR

10 1IF(YP>YP.MAX)

20  YP+YP.MAX

30 :ENDIF

40 :IF{YP<YP.MIN)

S0  YP=YP.MIN

60 :ENDIF
60 ® ¢ UPDATE ARRAY USED TO SIMULATE DEADTIME
80 ®  CALCULATOR

10 :1IF{COUNT<=200)

20  #ADATA 6[COUNT)=YP

30  COUNT=COUNT+1

40 :ENDIF

50 :IF(COUNT>200)

60  COUNT=1

70 :ENDIF
95 ® ¢ CALCULATE DELAYED INPUT
110 ®  CALCULATOR

10 K=COUNT-{1/#RATE.O010*TAU.DEL)-1

20 :IF{K<1)

30 K=K+200

40 :ENDIF

50 YD=#ADATA 6(K]

60 Y=YD+NOISE
112 ®« ¢ *%x* END OF PROCESS SIMULATION CODE
113 * ¢
115 ® ¢ OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
120 ®*  ANOUT

DEVICE 3
INITIAL 1
ouUTPUT 1 Y..
ZERO 1 Y.ZERO.
SPAN 1 Y.SPAN.
TRACK 1 Y.TRK.
RESET 1 Y.RES.
130 * ENDIF
*TASK 11

5 ¢« IF (SIM==1.0)
10 * ¢ FIRST ORDER PROCESS SIMULATION (SIM1)
200 C
25 ® C CODE TO RESET SYSTEM
30 ®*  CALCULATOR

10 :IF(SYSINIT)

20  PROC.INIT=#ON

30  LOAD.INIT=#ON

40 :ENDIF
40 « C
50 ®* ¢ GET OUTPUT FROM THE SELF TUNING CONTROLLER



162

60 ¢ ANIN
DEVICE 1
INITIAL 1
INPUT 1 z..
ZERO 1 Z.2ERO,
SPAN 1 Z.SPAN.
70 ¢ C
80 e C «+* BEGINNING OF PROCESS SIMULATION CODE
82 ¢ C
83 * C CALCULATE LOAD DISTURBANCE

85 *=  CALCULATOR
10 :IF(TAU.L<0.S5)
20 TAU.L=0.S
30 :ENDIF
40 ZLDOT=(2L.IN-ZL)/TAU.L
87 *  INTEGRATOR

INPUT ZLDOT. .
RESET LOAD.INIT.
OUTPUT 2L..

88 ¢ C CALCULATE NEW PROCESS VALUE
90 *  CALCULATOR

10 :IF(TAU.P<.5)

20  TAU.P=.5

30 :ENDIF

40 YPDOT=(KP*(Z+ZL)~YP)/TAU.P
100 ¢  INTEGRATOR

INPUT YPDOT. .

RESET PROC.INIT.

ZERO 0.0000000
SPAN 1.0000000
OUTPUT YP..

110 = C UPDATE ARRAY USED TO SIMULATE DEADTIME
120 *  CALCULATOR

10 :IF(COUNT<=200)

20  #ADATA 6[COUNT)=YP

30  COUNT=COUNT+1

40 :ENDIF

50 1IF(COUNT>200)

60  COUNT=1

70 :ENDIF
130 * C CALCULATE DELAYED INPUT
140 ®  CALCULATOR

10 K=COUNT-{1/#RATE.O11*TAU.DEL)-1

20 :1IF(K<1)

30  K=K+200

40 :ENDIF

50 YD=#ADATA 6(K]

60 Y=YD+NOISE
150 ® C *** END OF PROCESS SIMULATION CODE
160 » C
170 ¥ C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
180 *  ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y..

ZERO 1 Y.ZERO.

SPAN 1 Y.SPAN.

TRACK 1 Y.TRK.

RESET 1 Y.RES.

190 ®» ENDIF
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*TASK 12
5 ¢ IF (SIM==2.0)
10 © ¢ SECOND ORDER PROCESS SIMULATION (SIM2)
20 ¢ C
25 ¢ C CODE TO RESET SYSTEX

30 ©  CALCULATOR
10 1IF(SYSINIT)
20  PROC1.INIT=#ON
25  PROC2.INIT=#ON
30  LOAD.INIT=#ON
40 :ENDIF
40 e c
50 ¢ ¢ GET OUTPUT FROM THE SELF TUNING CONTROLLER
60 ®  ANIN
DEVICE 1
INITIAL 1
INPUT 1 £..
ZERO 1 2.ZERO,
SPAN 1 Z.SPAN.
70 ¢ ¢
80 * ¢ s** BEGINNING OF PROCESS SIMULATION CODE
g2 e ¢
83 * C CALCULATE LOAD DISTURBANCE
85 *  CALCULATOR
10 :IF(TAU.L<0.5)
20 TAU.L=0.5
30 :ENDIF
40 ZLDOT=(2ZL.IN-ZL)/TAU.L
87 ®  INTEGRATOR

INPUT ZLDOT. .
RESET LOAD. INIT.
OUTPUT ZL..

88 * ¢ CALCULATE NEW PROCESS VALUE
90 ® CALCULATOR

10 :IF(TAU.Pl<.5)

20 TAU.Pl=.S

30 :ENDIF

40 :IF(TAU.P2<.S)

50 TAU.P2=.5

60 :ENDIF

70 X1DOT=X2

80 X2DOT=-(X1/(TAU.P1*TAU.P2))~-((TAU.P1+4TAU.P2)*X2/(TAU.P1+TAU.P2))+(KP* (2@

+ZL)/ (TAU.P1*TAU.P2))

100 *  INTEGRATOR

INPUT X1DOT. .
RESET PROC1.INIT.
ZERO 0.0000000
SPAN 1.0000000
OUTPUT X1..

105 *_  INTEGRATOR
INPUT X2DOT. .
RESET PROC2.INIT.
ZERO 0.0000000
SPAN 1.0000000
OUTPUT x2..

110 ® C UPDATE ARRAY USED TO SIMULATE DEADTIME
120 *  CALCULATOR

10 :IF(COUNT<=200)

20  #ADATA 6[COUNT]=X1

30 COUNT=COUNT+1
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40 :ENDIF
50 $IF{COUNT>200)
60  COUNT=1
70 :ENDIP
130 ¢ C CALCULATE DELAYED INPUT
140 *  CALCULATOR
10 X=COUNT-(1/#RATE.O12*TAU.DEL)~1
20 :IF(X<1)
30  K=K+200
40 :ENDIF
SO YD=#ADATA 6(K)
60 Y=YD+NOISE
150 @ C #**+ END OF PROCESS SIMULATION CODE
160 * C
170 * ¢ OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
180 *  ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y..
ZERO 1 Y.ZERO.
SPAN 1 Y.SPAN,
TRACK 1 Y.TRK.
RESET 1 Y.RES.
190 ® ENDIF
*TASK 13
5 ¢ IF (SIM==3.0)
10 ¢ C BOILER PROCESS SIMULATION WITH INVERSE RESPONSE (SIM3)
20eC
30 * C CODE TO RESET SYSTEM

40 * CALCULATOR
10 :IF(SYSINIT)
20  PROC1.INIT=#ON
30  PROC2.INIT=#ON
40 :ENDIF
50 ¢ C
60 ® C GET OUTPUT FROM THE SELF TUNING CONTROLLER
70 ¢ ANIN
DEVICE 1
INITIAL 1
INPUT z..
ZERO 2.2ERO.
SPAN 1 Z.SPAN.
80 o C
90 ® C *»» BEGINNING OF PROCESS SIMULATION CODE
95 ¢ C CALCULATE LIQUID LEVEL WRT FEEDWATER
100 *  CALCULATOR
10 Y2DOT=KP2*(2+2L)
110 *  INTEGRATOR

[

INPUT Y2DOT..
RESET PROC2.INIT.

ZERO 0.0000000
SPAN 1.0000000
OUTPUT Y2..

120 * ¢ BOUND THE FEEDWATER PROCESS BETWEEN ITS UPPER AND LOWER LIMITS
130 »  CALCULATOR

10 sIF(Y2>Y2.MAX)

20  Y2=Y2.MAX

30 :ENDIF

40 :IF(Y2<Y2.MIN)

S0  Y2=Y2.MIN
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60 :1ENDIF
135 * € CALCULATE LIQUID LEVEL WRT HEAT SUPPLY
140 « CALCULATOR

10 sIF(TAU.P1<.5)

20 TAU.P1=.5

30 :ENDIPF

40 Y1DOT=((KPl¢(Z+IL))-Y1)/TAU.P1
150 e INTEGRATOR

INPUT Y1DOT..

RESET PROC1.INIT.

ZERO 0.0000000
SPAN 1.0000000
OuUTPUT Yl..

160 ¢ C CALCULATE OVERALL RESPONSE & UPDATE ARRAY USED TO SIMULATE DEADTIME
170 = CALCULATOR

5 YP=Y2~Y1

10 @ IF(COUNT<=200)

20 FADATA 6[COUNT)=YP

30 COUNT=COUNT+1

40 :ENDIF

50 31 IF(COUNT>200)

60 COUNT=1

70 :ENDIF
180 ® C CALCULATE DELAYED INPUT
190 = CALCULATOR

10 K=COUNT-(1/#RATE.013*TAU.DEL})~-1

20 :IF(K<1)

30 K=K+200

40 :ENDIP

50 YD=#ADATA 6(K]

60 Y=YD+NOISE
200 * ¢ ¢** END OF PROCESS SIMULATION CODE
210 * C
220 * € OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
230 AROUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y..
ZERO 1 Y.Z2ERO.
SPAN 1 Y.SPAN.
TRACK 1 Y.TRK.
RESET 1 Y.RES.
240 » ENDIF
*TASK 14

5 ® IF (SIM==4.0)
10 » C PROCESS SIMULATION WITH INVERSE RESPONSE (SIM4)
20 * C
30 * C CODE TO RESET SYSTEM
40 = CALCULATOR

10 :IF(SYSINIT)

20 PROC1.,INIT=#ON

30 PROC2. INIT=#ON

40 :1ENDIF
50 » C
60 * C .GET OUTPUT FROM THE SELF TUNING CONTROLLER
70 « ANIN

DEVICE 1
INITIAL 1
INPUT 1 z..

ZERO 1 2.ZERO.
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SPAN 1 Z.SPAN.
80 ¢ C
90 ® ¢ wxs BEGINNING OF PROCESS SIMULATION CODE
100 * ¢ CALCULATE SLOWER PROCESS WITH DIRECT-ACTING RESPONSE
110 » CALCULATOR
10 sIF({TAU.Pl<.5)
20 TAU.P1=.§
30 :ENDIF
40 Y1DOT=(({KP1l*(Z+ZL))-Y1l)/TAU.P1l
120 INTEGRATOR

INPUT Y1DOT..

RESET PROC1. INIT.

ZERO 0.0000000
SPAN 1.0000000
OUTPUT ¥l..

130 % C CALCULATE FASTER PROCESS WITH INVERSE RESPONSE
140 ®  CALCULATOR

10 :IF(TAU.P2<.5)

20  TAU.P2=.5

30 :ENDIF

40 Y2DOT=((KP2*(2Z+2ZL))-Y2)/TAU.P2
150 ®  INTEGRATOR

INPUT Y2DOT. .

RESET PROC2Z.INIT.

ZERO 0.0000000
SPAN 1.0000000
OUTPUT Y2..

160 ® ¢ CALCULATE OVERALL RESPONSE & UPDATE ARRAY USED TO SIMULATE DEADTIME
170 *  CALCULATOR

5 YP=Y1l-Y2

10 :IF (COUNT<=200)

20  #ADATA 6[COUNT)=YP

30 COUNT=COUNT+1

40 :ENDIF

50 :1F(COUNT>200)

60  COUNT=1

70 :ENDIF
180 ® ¢ CALCULATE DELAYED INPUT
190 *  CALCULATOR

10 K=COUNT-(1/#RATE.014*TAU.DEL)-1

20 :IF(E<1)
30  K=K+200
40 :ENDIP

50 YD=#ADATA 6{K]
60 Y=YD+NOISE
200 » ¢ »** END OF PROCESS SIMULATION CODE
210 » C
220 ®* C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
230 * ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y..
ZERO 1 Y.ZERO.
SPAN 1 Y.SPAN.
TRACK 1 Y.TRK.
RESET 1 Y.RES.
240 * ENDIF
*TASK 15

§ % IF (SIM==5.0)
10 * ¢ SYSTEM WITH VARIABLE TIME CONSTANT AND DELAY (SIMS)
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20 ¢
30 * C CODE TO RESET SYSTEM

40

10
20
30
40

CALCULATOR
tIF(SYSINIT)

PROC. INIT=#ON

LOAD. INIT=#£ON
1tENDIF

50 ¢ C
60 © C GET OUTPUT FROM THE SELF TUNING CONTROLLER
70 * ANIN

DEVICE 1
INITIAL b
INPUT 1 zZ..
2ERO 1 Z.ZERO.
SPAN 1 Z.SPAN.

80 » C

90 ® ¢ #%+ BEGINNING OF PROCESS SIMULATION CODE
100 *  CALCULATOR

10 Q2=(2Z+2L)

20 CIN=((SIM.C1*Q1)+(SIM.C2%Q2)}/(Q1+Q2)
110 ® ¢ UPDATE ARRAY USED TO SIMULATE DEADTIME
120 *  CALCULATOR

10 :IF(COUNT<=200)

20  #ADATA 6([COUNT)=CIN

30  COUNT=COUNT+1

40 :ENDIF

50 :IF(COUNT>200)

60  COUNT=1

70 :ENDIF
130 ® ¢ CALCULATE DELAYED INPUT CONCENTRATION
140 *  CALCULATOR

5 TAU.DEL=VD/ (Q1+Q2)

10 X=COUNT~-(1/#RATE.CG15*TAU.DEL)~-1

20 1IF(K<1)

30 K=K+200

40 :ENDIF

S0 CIN.PRIME=#ADATA 6[K)

150 ® C CALCULATE NEW CONCENTRATION
160 *  CALCULATOR

10 TAU.P=VM/(Q1+Q2)

20 CDOT=( (KP*CIN.PRIME)~SIM.C)/TAU.P
170 ¢«  INTEGRATOR

INPUT CDOT. .

RESET PROC. INIT.

ZERO 0.0000000
SPAN 1.0000000
OUTPUT SIM.C.

180 CALCULATOR Y=SIM.C+NOISE

190 » ¢ **x  END OF PROCESS SIMULATION CODE

200 = C

210 ® ¢ OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
220 * ANOUT

DEVICE 3
INITIAL 1
OUTPUT 1 Y..

ZERQ 1 Y.ZERO.

SPAN 1 Y.SPAN.

TRACK 1 Y.TRK.

RESET 1 Y.RES.

240 * ENDIF
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*TASK 16
S ¢ IF (SIN==6.0)
10 ¢ C SECOND ORDER PROCESS SIMULATION ALLOWING COMPLEX POLES (SIM6)
20 * ¢
25 *+ C CODE TO RESET SYSTEM
30 *  CALCULATOR

10 :IF(SYSINIT)

20 PROC1.INIT=#ON

25 PROC2.INIT=#ON

30 LOAD . INIT=#ON

40 :ENDIPF
40 = C
§0 * C GET OUTPUT FROM THE SELF TUNING CONTROLLER
60 * ANIN

DEVICE 1
INITIAL 1
INPUT 1 z..
ZERO 1 Z.ZERO.
SPAN 1 Z.SPAN.
70 * C
80 * C ##«% BEGINNING OF PROCESS SIMULATION CODE
82 * C
83 * C CALCULATE LOAD DISTURBANCE

85 *  CALCULATOR
10 :IF(TAU.L<0.5)
20  TAU.L=0.S
30 :ENDIF
40 2ZLDOT=(2L.IN-ZL)/TAU.L
87 ®©  INTEGRATOR

INPUT ZLDOT. .
RESET LOAD. INIT.
OUTPUT ZL..

88 ® C CALCULATE NEW PROCESS VALUE
90 ®  CALCULATOR

10 X1DOT=X2

20 X2DOT=~-( (WN**2)*X1)~(2.*ZETA.SIM*WN*X2)+(KP* (WN**2)*(2+2L))
100 *  INTEGRATOR

INPUT X1DOT. .
RESET PROC1.INIT.
ZERO 0.0000000
SPAN 1.0000000
OUTPUT Xl1..

105 = INTEGRATOR
INPUT X2DOT. .
RESET PROC2.INIT.
ZERC 0.0000000
SPAN 1.0000000
OUTPUT X2..

110 ® C UPDATE ARRAY USED TO SIMULATE DEADTIME
120 =  CALCULATOR
10" : IF(COUNT<=200)
20 #ADATA 6[COUNT)=X1
30 COUNT=COUNT+1
40 :ENDIF
S0 :IF(COUNT>200)
60  COUNT=1
70 :ENDIF
130 * C CALCULATE DELAYED INPUT
140 ® CALCULATOR
10 K=COUNT-{1/#RATE.O016*TAU.DEL)~-1
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20 IF(K<1)
30 K=K+200
40 :ENDIP
50 YD=#ADATA 6(K])
60 Y=YD+NOISE
150 ¢ C w** END OF PROCESS SIMULATION CODE
160 ¢« C
170 ¢« C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER
180 ¢ ANOUT
DEVICE 3
INITIAL 1
OUTPUT Y..
ZERO Y.Z2ERO,
SPAN Y.SPAN,
TRACK Y.TRK.
RESET Y.RES.
190 ¢ ENDIF
*LIST 1
10 ENABLE..
20 SELECT..
30 REVERSE..
40 OVERSH..
S0 SETPOINT..
60 INPUT..
70 OPMAX.,
80 ouTPUT2..
90 OPMIN..
100 PROP2..
110 INT2..
120 STATUS..
130 DONE..
*LIST 2
10 PVDEV..
20 RELAY..
30 INTEG..
40 ACCEPT..
50 HYSTER..
60 PVAMP. .
70 PERIOD,.
80 THRESH,.
*LIST 3
10 OPMEAN..
20 OPDEV..
30 TOTAL..
40 ALPHA..
50 LAMBDA..
60 PERR..
70 ADAPTIVE,.
*LIST 4
10 Al..
20 DIAGl..
30 Bl..
40 DIAG2..
50 B2..
60 DIAG3..
70 B3..
80 DIAGS..
90 B4..
100 DIAGS..
110 BS..

e s e g



120 DIAGE..

130 ci..
140 DIAG7..
*LIST 9

10 z..

15 IL..

17 NOISE..

20 Y..

30 #TIME.O007.
*A-ARRAY 1 RW
*A-ARRAY 2 RW
*A-ARRAY 3 RW
*A-ARRAY 4 RW
*A-ARRAY S RW
*A-ARRAY 6 RW
*A-ARRAY 10 RW
*FORMAT 9

« 7.
« 7.
« 7.
(21,
« 7.
(200,
( 15,

D e b e b

170

10 ¥5.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,12,/
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MATLAB PERFORMANCE ANALYSIS AND PLOTTING ROUTINES






APPENDIX C

% MODIFY.M

%
% Before using this program, run an external QB program to strip header

% and timestamp info from the GENESIS testXXX.prn output file, using the
% !striphdr command.

% Then execute the following commands in MATLAB.
%

% Ask user which test file data to use load the file to matrix testXXX

num=input("Enter Test No. to modify : *,’s);
testnum=["test’,num};
filename=[testnum,’.mod’};

eval([load ’ filename])

% Transpose the testXXX matrix and convert it to a long vector

testx=eval(["test’,num})’;
testv=testx(:);

% Find out how many complete data records there are
k=fix(length(testv)/5);
% Put data into the appropriate vectors

for j=0:(k-1)

% th(j+1)=testv(j*8+1);

% tm(j+1)=testv(j*8+2);

% ts(j+1)=testv(j*8+3),
sp(j+1)=testv(j*5+1);
ip(j+1)=testv(j*5+2),
op(j+1)=testv(j*5+3);
p(i+ 1) =testv(j*S+4);
i(j+1)=testv(j*S+5);

end

% Create ’proc’ and 'cont’ arrays needed for plotting

procp={sp;ip;op];
proc=procp’;
contp=([p;i};
cont=contp’;
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% Display the data

datap=[ip;sp;op;pi}s
data=datap’;

% DEFDATAXM

% .-
% MATLAB routine to define what data will be used for
% plotting (or as input to the evaluation criteria

%

start =input("Enter First Sample Number for Plotting: ’,’s");
last=input(’ Enter Last Sample Number for Plotting: *,’s’);

datax=data(eval(start):eval(last),:);
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% EVALCRIT.M

%
% MATLAB routine to evaluate the performance of the tuned
% control systems using the IAE, ISE, and ITAE peformance
% criterion

%

start] =input(’Enter Criteria Starting Sample Number: *,’s’);
last1=input(’ Enter Criteria Ending Sample Number: *,’s");
datay=data(eval(start1):eval(last1),:);

n=fix(length(datay));

iae=0;
ise=0;
itae=0;

for j=1:n
iae = iae + abs(datay(j,1) - datay(j,2));
ise = ise + (datay(j,1) - datay(j,2)) ™ 2;
itac= itac+ j * abs(datay(j,1) - datay(j,2));
end
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% LABELM

% ————

% MATLAB routine to plot and label measurement vs.
% setpoint, controller output, and controller PI

% parameter plots (without performance criterion)

%

eval(['delete ’testnum,’.met’])

clg

plot(datax(:,1:2))

title(['Measurement vs Setpoint (’,testnum,’)’])
xlabel("Sample Number’)

ylabel(’Percent’)

% text(100,90,(' IAE = ’,num2str(iac)})

% text(100,85,[' ISE = ’,num2str(ise)))

% text(100,80,'ITAE = ’,num2str(itae)])

eval(['meta ’,testnum])
pause

clg

plot(datax(:,3))
title([’Controller Output’])
xlabel("Sample Number’)
ylabel("Percent’)

meta
pause

clg
axis

plot(datax(:,4:5))

title([’Controller PI Parameters’])
xlabel("Sample Number’)
ylabel(’Gain and Repeats/Minute’)

meta
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% LABELCRIM

%
% MATLAB routine to plot and label measurement vs.
% setpoint, controller output, and controller PI

% parameter plots (with performance values)

%

eval({'delete ’testnum,’.met’})

clg

plot(datax(:,1:2))
title(["Measurement vs Setpoint (,testnum,’)’])
xlabel("Sample Number')
ylabel("Percent’)

text(.72,.85,[" IAE’),’sc’)
text(.82,.85,[num2str(iae)],’sc’)
text(.79,.85,['="],’sc")
text(.72,.8,[’ ISE’},’sc’)
text(.82,.8,[num2str(ise)},’sc’)
text(.79,.8,(’="],’sc”)
text(.72,.75,'TTAE’},’sc’)
text(.82,.75,[num2str(itae)],’sc’)
text(.79,.75,['="},'sc")

eval(['meta ’,testnum])
pause
clg

plot(datax(:,3))
title(["Controller Output’])
xlabel("Sample Number’)
ylabel("Percent’)

meta
pause
clg

plot(datax(:,4:5))
title(['Controller PI Parameters’])
xlabel("Sample Number’)
ylabel(’Gain and Repeats/Minute’)

meta
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' STRIPHDR.BAS

' Microsoft QuickBASIC ver 4.0 program designed to:
' (1) input a GENESIS testXXX.prn data file,

" (2) strip the header and timestamp information, and
’ (3) output the data to a testXXX.mod file

INPUT "Test File to modify: %, FileName1$
INPUT "Name of Output file: *, FileName2$

OPEN FileName1$ FOR INPUT AS #1
OPEN FileName2§ FOR OUTPUT AS #2
IF FileName1$ = " THEN END

CONST QUOTE = 34, COLON = 58

’ Skip the header info

FORI=1TO7
LINE INPUT #1, LineBuffer$
NEXT

* Keep modifying as long as there are enough bytes left in
* the file.

DO UNTIL EOF(1)

Character§ = INPUTS(1, #1)
CharVal = ASC(Character$)

SELECT CASE CharVal
CASE QUOTE
Character§ = INPUTS(1, #1)
CharVal = ASC(Character$§)
DO UNTIL CharVal = QUOTE
Character$ = INPUTS(1, #1)
CharVal = ASC(Character$)
LOOP
CASE ELSE
PRINT #2, Character§;
END SELECT

LOOP
CLOSE #1

CLOSE #2
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APPENDIX D

This file ie used to determine the robustness of a control system by
indicating the amount the plant gain and deadtime may be increased

before the onset of instability. The algorithm simply finds the gain
factor K and deadtime that yields zero phaese margin. File Robustl.mcd

First, deacribe the known plant and controller in the s domain

2.147
K t= 1 T t= § T 1= 20 KX s= ,7103 ¢ 1=
P c i 60
Plant WO Deadtime Controller
K K
P i
G (B) = ¢ (s} =%k -l1 + —
P '8 + 1 ] ] B
Phase (W) := arg|G (J -wW)] + arglG (j ‘W)| -~ W T
P c
Magnitude M(W) := |6 (J WG (j ‘W
P c
Magnitude Phane
10 0

st NN

-40 -2'n
0.001 w 10 0.001 w 10
n n

A linear search is used to find the frequency where
phase=-180 degrees

Supply an initial guess W= .5

Then find the frequency where phase margin is zero
Given

¢(w) = ~-n

W t= Find{W)
z

W = 0.116
z
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Now compute the gain limit that causes zero phase margin
1
K HES

K = 1.555

The deadtime limit can also be found. We first find the zero
db crossing frequency

Supply a guess of zero db crossing frequency W := ,001
Given
M(Ww) = 1
w 1= Find(W)
z
w = 0,035

z
The deadtime limit can then be computed
7w + ¢|W
z
1 w
2

T = 41.994
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This file is used to determine the robustness of a control syetem by
indicating the amount the plant gain and deadtime may be increased
before the onset of instability. The algorithm simply finds the gain
factor K and deadtime that yields zero phase margin. File Robust.mcd

First, describe the known plant and controller in the s domain

2.214
wn = .2 A= 2.5 K := 3.093 K =
c i 60
Plant WO Deadtime Controller
K
2 i
wn G (8) := K -1 4+ —
G (s) 3= c c s
P 2 2
8 + 2 wn's + wn
Phase ¢(W) := arg{Gc (3 )| + arglc (3§ -w)
P c
Magnitude M{w) := 16 {(j W G (3§ -w
P c
Magnitude Phase
30 o}
20 - log|M|w .0 ¢lw },~n,0
n n
-60 -2'n
0.001 w 10 0.001 w 10
n n
Supply an initial guess W= ,§
Then find the frequency where phase margin is zero
Given
Pp(W) = -n

w := Find(w)
z

w = 2.742-10
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Now compute the gain limit that causes zero phase margin
1
K tm
1 MW
z
17
K = 6.078-10
1

The deadtime limit can also be found.

We first find the zero
db crossing frequency

Supply a guess of zero db crossing frequency

W := ,001
Given

M(W) =~ 1

w 1= Find (W)
z

w = 0.127
z

The deadtime limit can then be computed

T + ¢lW
z
T 1=

1 W
z

T = 11.644
1
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