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ABSTRACT

A new program package, Symbolic Manipulator Laboratory (SML), for the
automatic generation of both kinematic and static manipulator models in symbolic form is
presented. Critical design parameters may be identified and optimized using symbolic
models as shown in the sample application presented for the Future Armor Rearm System
(FARS) arm.

The computer-aided development of the symbolic models yields equations with
reduced numerical complexity. Important considerations have been placed on the closed
form solutions simplification and on the user friendly operation.

The main emphasis of this research is the development of a methodology which is
implemented in a computer program capable of generating symbolic kinematic and static
forces models of manipulators. The fact that the models are obtained trigonometrically
reduced is among the most significant results of this work and the most difficult to
implement.

Mathematica (Wolfram 1988), a commercial program that allows symbolic
manipulation, is used to implement the program package. SML is written such that the user
can change any of the subroutines or create new ones easily. To assist the user, an on-line
help has been written to make of SML a user friendly package.

Some sample applications are presented. The design and optimization of the
5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the
kinematic and static models of two different 7-DOF manipulators are calculated
symbolically.

ix






2
manipulation of expressions and the trigonometric reductions can take advantage of the
geomeitrical configuration of the manipulator, and considerably reduce the complexity of
the output. By the auihor's experience, the symbolic expressions generated by SML
appear to be suitable for real time execution. Numerous examples confirmed the
expressions being close to minimmum executable time. As an illustration, a comparison
between the results for the Jacobian of the Jumbo drilling manipulator obtained with the
package of Ho and Sriwattanathamma (1989) and with SML showed a reduction of
calculation burden, in some expressions, of one and a half to eight times.

1.2 MOTIVATION AND OBJECTIVES

In currently available computer-aided modeling programs of manipulators, only
program tasks for a few well-stipulated outputs can be performed. In fact, most previous
programs gave only the Jacobian written with respect to the base coordinaie frame and the
four-by-four homogeneous transformation between the hand and base frames. Because
robotics is a fast-growing field, more tlexible modeling software is required. For
example, to apply force feedback control in ielerobotic operations, the Jacobian of the
manipulator, written with respect to the coordinate frame where the force/torque sensor is
situated, is nceessary.

Each year, a multitude of papers are published with new and better robotics
modeling and control algorithms. Furthermore, a program for computer-aided generation
of manipulator models should improve as robotics technology develops. The program
should offer not only specified and well-defined outputs but also accessibility to its
subroutines. Morcover, interested researchers should be able to use or change them for
specitic purposes.

The motivation of this research is to create a program package for the generation of
symbolic models of manipulators. The program package should be easy to use,
changeable, and extendable. These capabilities will guarantee the utility of the package for
both the expert and the novice. The expert will be able to avoid long, complicated
calculations; verify previous results; and create new algorithms. The novice will be able to
obtain solutions without being a robotics expert or fluent in Mathematica (Wolfram 1988).
The specific objectives of the program package presented in this work are detailed in
Sections 1.2.1 through 1.2.8.

1.2.1 Model Development

One objective is to develop a program package ihat can generate, with minimum
input, the kincmatic and static symbolic models of a gencral serial link manipulator and the
inverse kinematic model for any 6-DOF manipulator with the last three axes intersecting.

1.2.2 Easy-to-Read Input-Output

Another objective is to create simple and understandable output expressions from
standard input. The inputs are the parameters {rom the Denavit-Hartenberg (D-H) Table
(Asada and Slotine 1986; Craig 1986; Paul 1981) and, potentially, the mass parameters
table of the manipulator. To take advantage of the geometrical configuration of the
manipulator, these parameters can be numeric or symbolic. Finally, the user can choose
the output to be written in FORTRAN, C, or Text or can create another output form.



1. INTRODUCTION

The symbolic generation of equations has been used extensively by researchers to
evaluate control algorithms for robot manipulators. A symbolic expression has advantages
over a numerical algorithm in that it permits qualitative relationship and parameter
sensitivity algorithm improvement. From the design view point, symbolic models can be
studied to identify critical design parameters. Further, the reduced-order model can be
generated and studied. For real-time computing, the symbolic equations have the potential
of demanding less computer time. Only symbolic formulations can take full advantage of
all possible reductions that arise from the geometrical configuration of the manipulator.

Many algorithms have been presented to generate the kinematic and dynamic
equations of motion of a manipulator. Some try to automatically produce the equations in
symbolic form. It is well known that the development of the symbolic model of a
manipulator is an error-prone process. With the recent introduction of 14-degrees-of-
freedom (DOF) manipulators, the computation demands are ever increasing. Moreover,
automatic computer-aided programs to produce the models are beginning to be necessary
and even indispensable for researchers and people in industry.,

Currently, most symbolic program packages generate the dynamic models
symbolically. Few provide the kinematic model as output, but none provide the static
forces at arbitrary locations on the manipulator. The package presented in this work,
Symbolic Manipulator Laboratory (SML), can create the kinematic and static models of any
general serial link manipulator in symbolic form.

1.1 SYMBOLIC MANIPULATOR LABORATORY

In robot manipulator design, a symbolic manipulator modeling program must be
capable of generating complete manipulator models from minimal manipulator descriptions
entered by the user. In contrast with classical numerical programming, symbolic programs
can deal with algebraic expressions. An internal algebraic representation enables the
symbolic program to encode uniquely algebraic terms facilitating the implementation of
mathematical operations. To implement the computer-aided generation of manipulator
models presented in this report, Mathematica (Wolfram 1988), a high-level symbolic
package, was used.

Mathematica allows not only symbolic but also numeric manipulation of equations
and matrices. Numeric-symbolic handling of equations takes advantage of reductions due
to common terms and multiplication of algebraic terms by numbers. In classical numerical
methodologies, a quantity can be calculated along all the modeling process to be finally
multiplied, by a zero; or it can be multiplied by series of sines and cosines that could be
trigonometrically reduced if the quantity were taken as a common term. All this contributes
to a considerable waste of time in the real-time processing of the model. However, a
numeric-symbolic methodology accounts for these reductions before the model is
implemented in the numeric coprocessor, requiring less control time and improving the
behavior of the manipulator.

Another capability of Mathematica is that the user can create new routines with
either numeric or symbolic input-output, providing a useful environment for generating
numeric-symbolic models.

The program package presented in this work called SML takes advantage of the
potential that Mathematica offers. The trigonometric reduction routines play a central role
in this program and represent the main contribution of this report. The numeric-symbolic

1



1.2.3 Trigonometric Reductions

An efficient output is desired for a numerical program with a near-minimum
computational time constraint in the output model. To accomplish this goal, trigonometric
reductions subroutines have been implemented. They are based on two different kinds of
algorithms: pattern matching and exponential reductions.

1.2.4 Kinematics

Production of a complete kinematic model is needed, including: (1) spatial
transformations (1.c., homogeneous transformations, rotational matrices, and positional
vectors with respect to any manipulator coordinate frame); (2) direct kinematic equations
representing the homogeneous transformation and the posmonal vector; and (3) the Euler
angles between the hand and base frames.

1.2.5 Inverse Kinematics

Another objective is to formulate the inverse kinematics of a general 6-DOF
manipulator with the three last axes intersecting in a point. The algorithm is based on
Pieper's solution (Pieper 1968) as presented by Craig (1986, p. 112).

1.2.6 Jacobian

An important objective is to form the manipulator Jacobian matrix written with
respect to any coordinate frame. Two different algorithms are used for the calculations.
The first one, discussed by Asada and Slotine (1986, p. 58), is used in SML to calculate
the Jacobian written with respect to the base coordinate frame. The second algorithm is
based on the relation between the end-effector force and joint torque (force) which is
presented by Craig (1986, p. 152). The last one is implemented in SML to calculate the
Jacobian written with respect to the last coordinate frame. Further, a subroutine is written
to transform the Jacobian with respect to any frame. First, SML checks which coordinate
frame (the base or the last) is closer to the frame asked for, and it automatically calculates
the Jacobian by one of the two algorithms (whichever is faster). Then, SML transforms
the Jacobian written with respect to the specified coordinate frame and reduces it
trigonometrically.

1.2.7 Payload and Gravitational Compensation

It is desired to establish an algorithm to find the effect of payload and gravitational
forces on the manipulator. The static forces can be written for application against any
coordinate frame of the manipulator. An objective is to make it possible to study the effect
of external forces at different Jocations over all the manipulator joints. The gravitational
force can be specified in any direction (not only the classical "-Z" axis) so as to be useful in
space or mobile vehicle applications. This force can be applied in all or only some of the
links for the case of a simplified model.
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SML will provide to the user the reaction forces due to external static and
gravitational forces over cach joint presenting: (1) the three force components, (2) the three
torque components along the three Cartesian vectors that constitute each coordinate frame,
and (3) the reaction over the manipulator joints.

Outputs 1 and 2 will allow the researcher to know in advance the internal forces
produced inside the manipulator. These reactions provoke deflection and torsion of the
links of the manipulator and stress of its joints. Further, they can be used in the joint and
link stress design. Knowing in advance the value and direction of maximum deflections
and torsions on the manipulator, links can be reduced in weight and size. In this way, not
only the joints but also the links can be more accurately designed.

1.2.8 On-Line Help

The final objective is to develop an on-line help package that will aid the researcher
in Icarning how to use all the available subroutines. This help feature will be one of the
bases for future improvement of this package because the user will be able to extend the
help for specific subroutines.



2. BACKGROUND AND ORIGINAL CONTRIBUTIONS

Many algorithms for computer-aided generation of the motion equations of robot
manipulators have been presented. Different techniques to generate these equations have
been illustrated by several researchers (Asada and Slotine 1986; Craig 1986; Paul 1981).
The kinematic equations in them are based on the notation presented in a report by Denavit
and Hartenberg (1955), compactness of which offers the ability to create algorithms to
obtain automatically the analytical expressions {or the manipulator equations of motion.
Furthermore, numerous algorithms for computer-aided gencration of equations of motion
of manipulators in symbolic form have been studied. The most interesting methods
presented previously will be discussed in this chapter.

2.1 LITERATURE REVIEW

Symbolic computer packages for modeling manipulators are relatively easy to
implement in languages such as LISP (Malm 1984) or PROLOG (Zewari and Zuguel 1986;
Borland 1986). But it is better to use a more complete symbolic package like MACSYMA
(Symbolics 1985) or Mathematica (Woltram 1988). The latter is the package used to
implement SML. These software packages are easier to work with, so the rescarcher can
dedicate more time to the development of algorithms and output forms rather than to the
execution of the symbolic program. In addition, Mathematica offers 2- and 3-dimensional
graphic abilities that can be used to plot the manipulator, its performance or work space.

2.1.1 Dynamics Programming Review

Most of the computer automatic generation algorithms implemented previously were
written for only finding the dynamic models of manipulators. One of the first programs
was Dynamical Models of Industrial Robots (DYMIR) (Vecchio et al. 1980). For DYMIR,
the REDUCE symbolic language was used to implement the Lagrangian dynamic
formulation. Later, Cesareo, Nicolo, and Nicosia (1984) used DYMIR; and Matsuoka and
Citron (1985) and Tzes, Yurkovich, and Langer (1988) used MACSYMA to apply their
programs for modeling light, flexible manipulators.

Murray and Neuman (1984a) unveiled the computer program Algebraic Robot
Modeler (ARM). ARM generates symbolically the closed-form dynamic equations by four
different methodologies: Newton-Euler, Lagrange, and two different Lagrange-Christoffel
formulations. Neuman and Murray (1984; 1985; 1987) and Murray and Neuman (1984b)
also presented good efficiency comparisons between different dynamic modeling
tormulations.

Vukobratovic and Kircanski (1984; 1985; 1986), Kircanski and Vukobratovic
(1988), and Kircanski et al. (1988) contributed to the symbolic manipulator dynamics
modeling programs. For example, Vukobratovic and Kircanski (1984; 1985) introduced a
methodology that yields a numeric-symbolic model. Kircanski et al. (1988) presented a
program package for both kinematic and dynamic manipulator models. The package
produces the homogeneous transformation matrix between the hand and the base coordinate
frames, the Jacobian with respect to the hand and base frame of the manipulator, and its
dynamic model. The same authors developed the Symbolic Optimizer-Program (SYO), but
the output of their program was not completely reduced, because it used the symbolic
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expressions as if they were numerical, not taking full advantage of possible trigonometric
simplifications.

Some researchers such as Neuman and Murray (1985) and Aldon and Liegeois
(1984) have compared the computational requirements of manipulator dynamics
formulation for symbolic processing, and others have created their own symbolic
algorithms. For example, Cheng, Weng, and Chen (1988) presented their symbolic
derivation of dynamic equations of motion using the PIOGRAM symbolic method
(Piogram 1964; 1966). Gupta (1987) contributed with the Symbolic Polynomial
Technique. This technique was expanded upon by Townsend and Gupta (1989). This
method takes advantage of the latest techniques using parallel computing. Different central
processing units (CPUs) can calculate different parameters of the dynamic equations of
motion at the same time, reducing the total amount of time necessary to calculate the
complete model. It uses a combination of the symbolic and numerical approaches, as SML
doces, trcating the variables of the system as symbols but using the numerical values of the
constant parameters of the manipulator.

2.1.2 Kinematics Programming Review

There are not as many references for modeling programs of manipulators that
provide kinematic information as for the dynamic one. Only a few computer automatic
generation algorithms implemented previously have been written to find the kinematic
models of manipulators. Most of the algorithrs calculated only the homogencous
transformation between the base and the hand coordinate frames (Malm 1984) and the
Jacobian of the manipulator with respect to the base or the hand frames (Vukobratovic and
Kircanski 1986; 1987; Kircanski et al. 1988). Even though some rescarchers tried to solve
the problem of the trigonometric reductions, a good solution was not found, because the
models presented by the outputs of these programs were not completely trigonometrically
reduced.

Vukobratovic and Kircanski (1986; 1987) and Kircanski et al. (1988) contributed to
the study of kinematics modeling of manipulators. Vukobratovic and Kircanski (1986)
reported an interesting study about the minimum amount of computational time necessary to
compute the kinematic model. The Yacobian of the manipulator, written with respect to the
hand and basc frames, was calculated by using the elements of the homogeneous
transformation matrices. Moreover, some typical redundancy was reduced in the
calculation of the manipulator motion equations.

The best symbolically automated direct kinematic equation solver offered previously
was written by Ho and Sriwattanathamma (1989). In their package, Turbo Prolog
(Borland 1986) is used to implement a ruled-based program. The input that is entered into
the knowledge base of this rule-based program is composed by the D-H Table (Denavit and
Hartenberg 1955; Asada and Slotine 1986; Craig 1986; Paul 1981) of the parameters of the
manipulator, but it has to be specified whether a joint is revolute or prismatic. The outputs
of the program are (1) the direct kinematic equations, (2) the homogeneous transformation
between the hand and the base frame of the manipulator, and (3) the Jacobian written with
iespect to only the end-effector attached coordinate frame. Trigonometric reductions are
achicved by pattern matching. This solution has potential problems with long expressions
because of the large computational demand, and it has been proven not to work with all the
differcnt possible trigonometric combinations. In fact, the output of the rule-based
program package (Ho and Sriwattanathamma 1989) is not completely trigonometrically
reduced.
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Currently, few program packages are capable of generating the inverse kinematic
solution in symbolic form. In general, they can deal with only manipulators which have a
spherical wrist or that are reducible to this condition. Not all the cases have been proven to
be solved. One such package is SRAST (Herrera-Bendezu, Mu, and Cain 1988). The
SRAST program gives the solution for the direct and inverse kinematics, and it is
implemented in two levels: the C and the LISP levels. The processor generates the
symbolic equations at the C level and executes them at the LISP level. SRAST is
composed of two parts: SAST, which solves for the direct kinematic equations (Herrera-
Bendezu 1985); and INKAS, which gives the solutions, if they exist, of the inverse
kinematics (Mu 1987). Another package is based on research reported by Goldenberg,
Benhabib, and Fenton (1985).

In parallel to the development of INKAS, the Symbolic Kinematics Inversion
Program (SKIP) was developed at the Institute for Robotics and Computer Control
(Rieseler and Wahl 1990). Similar to INKAS, SKIP computes the closed-form solution
for a given kinematics by using a set of prototype equations with known a priori solutions.

Some publications exist in the area of symbolic programming of dynamic models
and only a few for kinematic modecls; the author was unable to find any references about
studies of external forces and gravitational effect on manipulator programming models.

2.2 ORIGINAL CONTRIBUTIONS

The original contributions of this research to the tield of computer-aided symbolic
modeling of robot manipulators are described in Sections 2.2.1 through 2.2.6.

2.2.1 Trigonometric Reductions

Trigonometric reductions play an important role in robotics modeling, but they have
not been solved completely in an automatic fashion. Ho and Sriwattanathamma (1989)
presented a symbolically automated solver that was able to reduce trigonometrically its
output. Their program package does not give the output completely trigonometrically
reduced. On the examples presented in their paper not only the Jacobian, but also the direct
kinematic equations for the Standford (Paul 1981), the Jumbo Drilling (Ho and
Sriwattanathamma 1989), and the Puma (Craig 1986) robots can be further reduced
trigonometrically.

This report presents an important study and solution for this problem because all the
possible trigonometric combinations in robotics are taken into account. Thus, the output is
reliable to be completely trigonometrically reduced. In SML, two methods to reduce
trigonometric expressions are presented.

1. A classical pattern matching is the first method, where expressions are compared
and reduced according to the some patterns. This is one of the fastest and most
efficient ways to diminish trigonometrically a short expression. The pattern
recognition algorithm is used to check all possible combinations inside the
expression. However, if an expression is long, the number of combinations is so
large that the reduction of an expression can take so much time that the outcome
would be worthless or too expensive.

2. Anexponential reduction method, based on changing trigonometric expressions to
their corresponding pseudo-exponential expressions, is developed on SML.

The second method has proved to work well with long, complicated expressions
that the classical method cannot deal with. Instead of checking for any possible
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combinaiion that matches one of the patterns, this method transforms every sine, cosine,
and tangent in its pseudo-exponential expression. The operations defined for the pseudo-
exponential expressions are faster than pattern matching for producing the desired
trigonometiic reduction, and they give expiessions, based on experience, that are close to
minimum time solution.

2.2.2 Homogeneous Transformations and Inverses

Most of the symbolic modeling programs presented until now (Ho and
Sriwattanathamma 1989; Kircanski et al. 1988) gave only the homogeneous
transformations between the base and the end-effector frames of the manipulator. In
contrasi, SML can give in symbolic form any transformation between coordinate frames
attached to any two links of the manipulator. Currently, this is the only package that also
gives the inverses of any of these transformations and is possible because of the
trigonometric reduction simplification subroutines. These inverses are uscful for
constructing the inverse kinematic models and sometimes for control algorithms.

2.2.3 Jacobian Written with Respect to Any Frame

To the knowledge of the author, the package presented in this work is the only one
that has the capability to find automatically in symbolic form the Jacobian written with
respect to any coordinate frame of the manipulator. The Jacobian can be significantly
simnplified (Dubey et al. 1988; 1989) and be more powerful when written with respect to a
different frame rather than to the base or to the end effector. Further, the Jacobian matrix
can be used to find the reaction of the joints due to an arbitrary end-point applied force.
This force can be defined with respect to any coordinate frame, where the sensor of the
manipulator is located [sec Craig (1986, p. 152) and Asada and Slotine (1986, p. 77)].

2.2.4 Payload and Gravitational Compensation

Most of the industrial manipulators in the market have simple Proportional-integral-
derivative (PID) controllers of the form

f=KpXg-X) + Kj | Xg-X)dt - Ky X, (2.1)

where X and X are the actual and the desired positions respectively, Ky, Kjand Ky are
constants and f is the force exerted on the manipulator joint. Corrections to robot controls
due 1o static torces and gravitational etfects are the most computational-efficient technique
that can be applicd with actual microcomputers (see Critchlow 1985, p. 197).

PID controls can do these corrections automatically without requiring all these
calculations; usually, just a couple of lines of code is enough. A PID control works well
only as long as the manipulator is moving in free space. When the manipulator touches the
environment and is still not in the desired position, the integral part of the control builds up
to a large force or torque to be applied to the joint actuator (i.e., integral windup effect).
This buildup makes the manipulator unstable and even dangerous because it can break itself
or the surface that it is touching. The integration effect 1s even more pronounced in
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telerobotic systems, where the master that directs the slave manipulator may be far from the
actual manipulator position. The difference in actual position (slave) and desired position
(master) causes the integral term in Equation (2.1) to increase in magnitude with time. The
result can be a large and potentially dangerous force/torque. Furthermore, it is important to
have the model of the reactions at any joint due to external forces and gravitational effect.
SML is the only known package capable of creating this model.

The external forces correction and the gravitational effect on the manipulator are
calculated directly from Newton-Euler formulation. In addition, the function gives the
internal forces/torques applied to each link. This information is useful for studying
compression, torsion, deflection, and stress of manipulator links and joints. SML could
help researchers to know in advance the location and the direction of these effects in static
conditions.

2.2.5 Input-Output

The input of most computer-aided modeling programs is the D-H Table (1955), and
joint description (i.c., revolute or prismatic). In this way, only one variable is possible for
cach row of the D-H Table This is not the case of the input for SML, where the symbolic
subroutines account for this directly from the D-H Table, making possible to be all the
parameters of a row variables.

Furthermore, it is also possible to have 2 revolute and 2 prismatic joints in just one
row of the D-H Table. This table has four parameters in a row for each joint: gj, aj, a;, and
d;. If a joint is revolute, then aj, ai, and dj are constants and g;j is the variable. Butifa
joint is prismatic then Qi 2 and aj are constants and d; isthe variable. To have a revolute-
prismatic (cylindrical) joint, the variables are g; and di. Becausc the input for SML can be
independently numeric or symbolic, the user can choose to give either a number or a
symbol to any of the constants or variables. Further, the user can choose the number of
DOFs of each joint.

For most of the subroutines of SML, the only necessary input is the D-H Table.
But for the functions that give the static and gravitational forces model, SML needs also
what is called the Mass Table by SML.. This table is composed of four parameters for each
link: (1) the first one is the link mass and (2) the next three parameters define the location
of the link center of mass with respect to the x-, y-, and z-axes of the coordinate frame
attached to that link.

The package offers different ways of displaying the output expressions. The
standard ones ar¢ (1) FORTRAN form; (2) C form; (3) Text form; and (4) Mathematica
internal form, which can be used as an input for future calls to other functions. The user
can choose the form or even create a new, preferred output form.

2.2.6 Interactive Mode Programming with an On-Line Help

SML is the only package that can be used in both interactive and batch modes. All
the packages presented till now worked only in batch mode. In this mode, the input and
options are entered into the program to obtain a specific output. When using a batch mode,
the input has to be entercd each time the program runs. Because SML presents so many
options, it was necessary to include the interactive mode. In this mode, each function of
the package can be called separately. Then, each output can be analyzed and used as input
for the following calls to functions.
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To facilitate the user's work, an on-line help was written based on Mathematica's
own help. It allows the user to know, at any moment in a session, how to use and call any
subroutine or what is the actual numeric-symbolic value for a variable, a vector, or a
matrix.

All these new contributions promise to make this package not only a better solution
for the problem of manipulator modeling but also a research tool useful for robotic control
algorithms.



3. SYMBOLIC SOLVER INTRODUCTION

A new program package, SML, for the automatic generation of both kinematic and
static manipulator models in symbolic form 1s presented. The computer-aided development
of these symbolic models yields equations with reduced numerical complexity. Important
considerations have been placed on the closed-form-solutions simplification and on the
user-friendly operation. The main emphasis of this research is the development of a
methodology, which is implemented in a computer program, capable of generating
symbolic kinematic and static forces models of manipulators.

The trigonometric reduction is an important result of this work and the most
difficult to implement. Previously, only pattern matching has been used. In addition to
pattern matching, another method, based in exponential functions, has been implemented in
SML.. This method drastically reduces the amount of time necessary to produce the model
and to perform its numerical computation.

3.1 INTRODUCTION TO MATHEMATICA AND TO SML

Mathematica (Wolfram 1988), a new program that allows symbolic manipulation, is
used to implement SML. Versions of Mathematica are available for the Apple Computer,
Inc., Macintosh Plus and larger computers, as well as the Macintosh SE/30 and the
Macintosh I, 1Ix, Ilcx, and 1lci; 386-based MS-DOS systems; Apollo DN 3000 and 4000
systems; Digital Equipment Corporation VAX VMS and ULTRIX, and DECstation;
Hewlett-Packard 9000/300 and 800 systems; International Business Machines AIX/RT
systems; MIPS systems; NeXT; Silicon Graphics IRIS systems; Sony NEWS systems;
and Sun 3,4 and 386i systems. Furthermore, SML can be used in any of these computers,
as long as Mathematica is loaded, with the same format and input-output. This ensures not
only compatibility but also the ability to be used in a personal computer (PC). In fact, all
the work presented in this report was performed on a Macintosh II PC.

SML, the package presented in this work, is written in a way that allows the user to
easily change any of the subroutines or to create new ones. Further, the subroutines can be
used independently or jointly, giving the user the ability to create work routines. To assist
the user, an on-line help has been written to make this package very user friendly.

SML can be used in an interactive mode or in a batch mode. In the interactive
mode, each function of the package can be called separately. Then, each output can be
analyzed and used as input for the following calls to functions. In the batch mode, a
program to call the functions can be easily written by the user. Furthermore, the user can
develop new routines and even create new functions that were not in the original package.
In this way, the capability of the program can be extended, thus improving the user’s
efficiency and accuracy.

The SML program package, presented in this paper, takes advantage of the potential
that Mathematica offers. The trigonometric reductions routines play a central role in this
program and represent the main contribution of this work. The numeric-symbolic
manipulation of expressions and the trigonometric reductions can take advantage of the
geometrical configuration of the manipulator, reducing enormously the complexity of the
output.

11



12

Each SML function is a tool that can be used separately and can call automatically
other functions necessary to accomplish its goal. There are three different groups of
implemented functions.

1. The first group is constituted by kinematic functions. They calculate everything
related to kinematics such as homogeneous transformations, direct kinematic
equations, Jacobian, and inverse kinematics for serial 6-DOF manipulators.

2. Static forces and gravitational effects functions constitute the second group. In this
group, algorithms are performed to find the reaction of the joints of the manipulator
to exiernal static forces like payloads and gravitation.

3. The third group is formed by miscellancous functions like trigonometric reductions,
output forms, and auxiliary functions.

SML consists of three different packages: SML-P.m, SML-C.m, and RedTrig.m.
As it was explained, Paul's notation (1981) is used by default, but Craig's notation (1986)
also can be used in SML. Because usually only one of them is used at a time, a package
has been writien for each notation. The three packages can be loaded and used at the same
time, even though they are not fully independent, because some functions are repeaied to
make them able to work separately. .

To load any of the packages, they have to be placed or copied first on the folder
(directory) "Robotics," which is to be created by the user inside the folder (directory)
"Packages"” of Mathematica. The next step is to load Mathematica on the computer and then
to load SML on Mathematica, typing any of the following:

Needs["Robotics SML-P™"] |,
Needs["Robotics"SML-C™"] , 3.1)
Needs["Robotics"RedTrig™"] .

The first package (SML-P.m) allows the user to use any of the functions described
in this report in Paul's notation {1981), and the second one (SML-C.m) does cxactly the
same but in Craig's notation (1986). Trigonometric reductions are already included in
SML-P.m and SML-C.m; but with the third package (RedTrig.m), only the trigonometric
reductions and output forms functions of SML are loaded.

All the functions presented in this work are the ones in Paul's notation (1981). To
use Craig's functions (1986), add a C to the name of any kinematic and static functions
(e.g. OperTransformC, PosC, DirectKinEqC, etc.). Trigonometric and output forms
functions arc common, so there is no need to add a C to their names.

3.2 USAGE OF THE SOLVER: NUMERIC OR SYMBOLIC INPUT-OUTPUT

Using the tools given by Mathematica, SML can handle numeric and/or symbolic,
input-output. Tables for the mass and geometric properties of the manipulator are entered
in the form of matrices. The clements of these matrices can be cither a number or a
symbol.

Numeric-symbolic handling of equations takes advantage of reductions due to
common terms and multiplication of algebraic terms by numbers. In classical numerical
metiodologies, a quantity can be calculated along all the modeling process to be multiphied,
at last, by a zero; or it can be multiplied by series of sines and cosines which could be
trigonometrically reduced if the quantity were taken as a common term. All this amounts to
a considerable waste of time in the real-time processing of the model. Contrarily, a
numeric-symbolic methodology takes these reductions into account before the model is
implemented in the numeric coprocessor, making the control work faster and improving the
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behavior of the manipulator. Symbolic manipulator models created by SML are diminished
close to their minimal expressions, resulting in close-to-minimal computer time demand.

3.2.1 Input: Denavit-Hartenberg and Mass Parameter Tables

The input of most of the computer-aided modeling programs is the D-H Table
(1955) and joint description; it is either revolute or prismatic. This is not the case for the
SML input, where the symbolic subroutines account for this directly from the D-H Table.

Using Paul's notation (1981), Figure 3.1 shows a pair of adjacent links and their
associated joints, coordinate frames, and parameters. The D-H Table in Paul's notation is
entered in SML as an n-by-4 matrix, where n 1s the number of coordinate frames associated
to links of the manipulator:

RobotDHTable = {{qy, a4, a;, d1},
{q21 'a2a az» dZ}a
: (3.2)

{qn, On, an, dn}}.

Figure 3.2 shows a pair of adjacent links and their associated joints, coordinate
frames, and parameters using Craig's notation (1986).

The D-H Table in Craig's notation (1986) is also entered in SML as an n-by-4
matrix:

RobotDHTable = {{ql, op , 1y, dy},
{q29 (ll K al ’ d2}a
. (3.3)

{ql‘la an-lv aﬂ-l’ dn”-

The principal difference between Paul's notation and Craig's notation is that in the
first case frame i is attached to the end of link i, but in the second case it is attached to the
beginning of the link. This creates a totally difterent nomenclature for the kinematics of the
manipulator, making a different package necessary for each notation.
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Joint i+1

Joint i

qi = angle from Xj.1 to Xj, about Z;_1
o = angle from Zj.1 to Z;j, about Xj
aj = length from Z;) to Zj, along Xj

dj = length from Xj.1 to Xj, along Z;.1

Figure 3.1. Link frames and parameters in Paul's notation.
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Joint i+1

di

-1

angle from Xj.1 to Xj, about Z;

angle from Z;.1 to Z;, about Xj1

2.1 = length from Z;.1 to Z;, along Xj.1
dj

= length from Xj.1 to Xj, along Z;

Figure 3.2. Link frames and parameters in Craig's notation.
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Because any parameter of the D-H Table can be a number or a symbol, it is also
possible to have 2- or 3-DCOF joints. The D-H Table has four parameters in a row for cach

joint: gj, o, a;, and dj. If a joint is revolute, then &, aj,and dj are constants and qj is the

variable. But if a joint is prismatic then q; = 0, a; and a; are constants, and d; is the
variable. To have a revolute-prismatic (cylindrical) joint, the variables are g; and d;.
Because the input for SML can be independently numeric or symbolic, the user can choose
to give either a number or a symbol to any of the constants or variables. Further, the user
can choose the number of DOF of each joint or study the effect of a parameter on the
behavior of the manipulator.

For most of the subroutines of SML, the only necessary input is the D-H Table.
But for the functions that give the static and gravitational forces model, SML needs also
what has been called the Mass Table. This table is composed of four parameters for each
link: the first one is the link mass, and the next three parameters define the location of the
link center of mass with respect to the X-, Y-, and Z-axes of the coordinate frame attached
to that link.

RobotMassTable:= {{m;, mx;, my, mz;},
{m,, mx;, my,, mz,},
: (3.4)

{myp, mxg, Myn, Mz} }.

The Mass Table should have the same rows as the D-H Table because each row
represents the mass and center of mass of a link where the coordinate frame is attached.
Thus, if a link has negligible mass or lengths, a row constituted by zeros should be added
at its position in the Mass Table. For example, a joint with two rotational DOFs can be
represenied by two coordinate frames the origins of which are coincident. In this case, the
first link represents a negligible mass link, and a row of zeros should be added to the Mass
Table at its position.

3.2.2 Output: FORTRAN, C, or Text for Papers or Research

SML has been implemented from the beginning with the goal of including easy-to-
use and multiple options in every function of the package. Different options on the output
form give the users more flexibility and accuracy in their work.

Mathematica has specitic rules for the form in which the input-output is presented to
the computer or user. Like other symbolic languages such as LISP or PROLOG, every call
to a function of Mathematica is made by typing its name followed by brackets, inside which
are the arguments separated by commas. Even though LISP and PROLOG use parcatheses
instead brackets, the structure is the same. All the built-in functions in Mathematica use
English words with the first letter of each one capitalized. For example, the following
function expands products and powers that appear in the numerator of expr:

ExpandNumerator[expr_] . (3.5)
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In modeling manipulators, trigonometric functions are always involved in the
equations. For SML to know that cosines, sines, or tangents are functions, the computer
needs to represent every trigonometric function in the following mode:

Cos[ql], Sin[t1+t2], Tan[q3], Cos[2 13], etc. , (3.6)

where qj or tj represent an angle in radians (and 2 t3 means 2+t3). This kind of
representation is necessary for the computer to be able to operate with these functions. In
this form, not only the equations are difficult to read as Text, but they are also incompatible
with other numerical languages like C or FORTRAN. Mathematica already provides some
basic functions to obtain more compatible kinds of forms, but the output is not the most
appropriate for manipulator symbolic modeling. SML presents more attractive outputs
through a series of Output Form functions. These new outputs can be just copied into a
FORTRAN or a C program to be used for the control of the manipulator.

When a specific symbolic model for a manipulator has been created with SML and
after the trigonometric reductions have been applied, a multitude of sines, cosines, and
even tangents will be obtained on the equations on the form presented in Equation (3.6).
These are not good enough to be implemented in a numerical algorithm in a computer or o
be included in a paper or report. The following notation has been used to reduce
trigonometric forms in most robotics publications:

Cos{ql] > Cl
Sin[ql+g2] -> Si2 , (3.7
Tan[q2] -> T2

This representation produces a more compact form to be read by the researcher and
makes it easier to understand the equations of the model. They are also better suited for
implementation in a numerical algorithm because no calculation repetition is made. For
example, the expression Cos[q1] is, more than probably, repeated along the manipulator
model. Being a trigonometric function, it consumes a lot of CPU time for calculation.
Thus, it is interesting to calculate its numerical value only once, call it C1, and use this
value throughout the model.

A function called RedAngle has been implemented in SML to reduce the form of
trigonometrical functions to the classical nomenclature. RedAngle has three arguments, the
second and third ones being optional:

RedAngle[expr_, var_:q, big_:0], (3.8)

where

e expr is the expression to be reduced, which includes any of the trigonomeltric
functions of the form of Equation (3.6¢). Expr can be a vector, a matrix, a
polynomial, or any kind of expression.

¢ var defines the angles inside the trigonometric functions used in SML. The
default for var is ¢ because most robotic applications publications use it, but any
name can be specified by the user as long as it is the same for all the angles
ingide the expression.

® big is an option to enable RedAngle to deal with subindexes for the angles
larger than nine. Big is zero by default, giving any value different from zero
enables larger subindexes.
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RedAngle can deal with any combination of addition and subtraction of angles
inside the trigonometric functions sine, cosine, and tangent. The function sine is reduced
to S, cosine to C, and tangent to T. The name q that defines the angles gi in SML
disappears. A pins sign is eliminated by default when big is at its default value 0, but it is
transformed 1nto P when big is different from 0. This enables users to work with
subindexes with more than one digit. A minus sign is always represented by an M.
Double, triple, or larger angles are translated using the following notation:

2ql->Dl; 3ql->T1; 4q1->Ql; 5ql >Fl;

(3.9)
6ql->Al; 7ql->Bl; 8ql->El; 9ql->NI1;.
As an example, Equation (3.10) shows the function RedAngle operating on
different expressions:
RedAngle[Cos[ql] Sin[ql+q2] + Tan{q2-q3+4 q4]] -> CI1 S12 + T2M3Q4
RedAngle[al Cos[t1]/ Sin[t1-2 2] 1] > al Cl/SIMD2 , (3.10)

RedAngle[Sin[q1+g23] + Tan[q2-4 g41], g, 1] > SI1P23 + T2MQ41

RedAngle can be used with any other function that Mathematica offers. An
interesting text-form output for robotics application is obtained by using RedAngle and
MatrixForm, a built-in function of Mathematica. The following homogencous

transformation A% between the first and the third coordinate frames of the Puma
manipulator was obtained with OperTransform, a function of SML defined in Chapter 4.

C23 -823 0 C2a2

MatrixForm[RedAngle[A13]] -> 0 0 1 d i1l
-§23 -C23 0 -(S2a2) (3.11)
0O 0 0 1

Once the trigonometric functions have been reduced to a more compact form, the
next important step is to translate the expression to a form compatible with C or
FORTRAN. One of the difficulties when translating to any of these languages is that to
enter a multidimensional vector, the subindexes have to be specitied to assign each value to
a different memory allocation. Both languages use different notations: (1) the first index
allocation for C is zero but for FORTRAN is one and (2) C uses a pair of brackets for each
index "List[0][2]," but FORTRAN nceds a list of the subindexes separated by cornmas
inside parentheses "List(1,3)."

A function called ListOutput has been created which prints its first argument
regardless of its dimensions. This function checks the kind of input that is entered; it is
either a vector, a matrix, or an expression; and it automatically calls the necessary function
that will print it out in the specified output form. ListOutput has four parameters, the last
threc being optional:

ListOutput{expr_, name_:"List", form_:Text, var_:q, big_:0], 3.12)
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where
* expr is the expression to be printed in the specified form. Expr can be either a
vector, a matrix, or an expression.
* npame is a string that gives the name that will be used for the listing. The default
for name is "List."

* form is the desired form in which the output will be printed. Its default is Text,
but the following options are available:

1. form = Text gives expression in Text form. This is probably the easier to
read, but it is not good enough to copy and paste to another program such
as in a word processor, when powers or divisions are present.
form = C gives the expression in C form.
form = RC prints the expression in C language, reducing the form of sines,
cosines, and tangents by using RedAngle.
form = F prints the expression in FORTRAN form.
form = RF gives the expression in FORTRAN, reducing the form of sines,
cosines, and tangents.

* varis the same argument as in RedAngle. This argument needs to be specified
only when asking for Reduced FORTRAN (RF), Reduced C (RC), or Text
forms and a different name that qj has been used for the angles in the
expression.

* big is the option that enables ListOutput to deal with subindexes for the angles
larger than nine. Big is zcro by default, giving any value different from zero
enables larger subindexes.

The forms defined as RC or RF are the most powerful that ListOutput provides.

They are not only easy to read, but they can also be copied and pasted to other programs
like word processors or program editors in text mode without any problem.

As an example of the output obtained with ListOutput, the following represents the

Jacobian of a two-link planar manipulator expressed in four different forms:

W W N

\

1. Mathematica and SML form:

Jacob -> {{- L1 Sin[q1] - L2 Sin[q1+q2], - L2 Sin[ql+q2]},

{ L1 Cos[ql] + L2 Cos[ql+q2], L2 Cos[ql+q2]}}. (3.13)
2. Text form obtained from ListOutput by default:
ListOutput{Jacob] -> List(1,1) = - (L.1 S1) - L2 S12
List2,)= L1Cl+L2CI2
List(1,2) = - (.2 S12) (3.14)
List(2,2)= L2Cl2.

3. Reduced C form:

ListQutput{Jacob,"Jac" ,RC] -> Jac[0][0] = - (L1*S1) - L2*812;
Jac[1]{0] = Ci*L1 +C12*L2; (3.15)
Jac[O][1] = - (L2*S12);
Jac[1][1]= CI12*L2;.
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4. Reduced FORTRAN form:

ListCutput[Jacob,"Jac",RF} -> Jac(1,1) = - (L1*S1) - L2*S12
Jac(2,1) = CI1*L1 + C12*L2 (3.16)
Jac(1,2) = - (L2*S12)
Jac(2,2) = CI2*L2.

It is important to note the difference when operating on powers and divisions. The
C language has the function "pow(x,y)" to calculate x to the power of y, but in FORTRAN
syntax "x**y" has to be specified. The output produced by ListOutput using any of the
FORTRAN or C options is perfectly compatible with any editor or word processor. This is
not the case when using the option Text, which is compatible with only certain editors like
Expressionist.
The following are examples of three different outputs obtained for

ListOutput [Cos[q1]/Cos[q2]*2, "Example", form option]. 3.17)
1. Text option: Example :(_:,{
822
2. RC option: Example = C1*pow(§82,-2) ;
3. RF option: Example = C1/82**2 .

Both functions, RedAngle and ListOutput, have on-line help. The user just needs
to type "?RedAngle” or "7ListOutput” to obtain an explanation about the function and its
paramcters. More kinds of outputs are built into Mathematica. Especially interesting for
robotics arc the functions MatrixForm and ColumnForm that Mathematica offers.



4. SYMBOLIC SOLVER TOOLS

The goal in this chapter is to develop a series of functions, in a computer package,
for use in modeling a general serial link robot manipulator. Each of these functions is a
tool that can be used separately and that can call automatically other tools necessary to
accomplish its goal. Three different groups of functions exist in SML:

1. The first group is constituted by kinematic functions. They calculate everything
related to kinematics such as homogeneous transformations, direct kinematic
equations, Jacobian, and inverse kinematics for serial 6-DOF manipulators.

2. Static forces and gravitational effect functions constitute the second group. In this
group, algorithms are performed to find the reaction of the joints of the manipulator
to external static forces like payloads and gravitation.

3. The third group is formed by miscellaneous functions like trigonometric reductions,
output forms, and auxiliary functions.

Even though the trigonometric reduction functions presented in Chapter 5 can be
applied to the output of any of the following functions, it has been found to be more
effective to include this kind of reductions inside some of the functions of SML.
Moreover, taking advantage of the geometrical configuration of the manipulator in each
function algorithm improves its speed.

4.1 KINEMATICS FUNCTIONS

Kinematics is the science of motion which treats motion without regard for the
forces that cause it. In this section, kinematic functions are developed to symbolically
compute the position and orientation of any coordinate frame of the manipulator with
respect to any desired coordinate frame. Also included are functions to calculate the
Jacobian of the manipulator with respect to an arbitrary coordinate frame, and the inverse
kinematics of a 6-DOF manipulator.

The input for each function is the D-H table, as stated in Chapter 3, except for the
function that calculates the effect of gravity because the mass parameters table is also
needed.

4.1.1 Homogeneous Transformations, Rotational Matrices, and Position
Vectors

A homogeneous transformation AR is a four-by-four matrix that describes the
position and orientation of a coordinate frame (B) with respect to another frame (A). Itis

composed of a three-by-three rotational unitary matrix RR and of a three-by-one position

vector PR relating both coordinate frames as shown in Equation (4.1).
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Homogeneous transformations can be multiplied as gencral four-by-four matrices.

Thus, having Ali and AS, then coordinate frame (C) can be written with respect to frame
(A) multiplying both matrices:

AG = AR A§ . (4.2)

As stated in Chapter 3, Paul's notation (1981) is, by default, the only one described
in this report, but Craig's notation (1986) can also be used in SML. Paul's homogencous
transformation matrix between two consecutive coordinate frames is given by

[ Cos(8;] - Sin[0;] Cos[oy]  Sin[6;] Sin[oy]  a, Cos[8] |

. Sin{0; Cos[8;] C ] - Cos[8i] Sin[oy - Sin[0;
AL - in[6;] os[u ] Cos[o;] os[0i] Sin[o;]  a; Sin[6i] 43)
0 Sln[(li] Cos[ai] di

0 0 0 1

- ~

where the parameters of the matrix are the same as those presented in Chapter 3, Figure
3.1, for the D-H Table using Paul's notation (1981).

Note that Equation (4.3) represents the homogencous transformation that gives the
position and orientation of a coordinate frame i written with respect to its preceding
coordinate frame i-1. If frame i-1 written with respect to frame 1 is needed, then the inverse

of A‘ll has to be calculated. A general relation between a homogeneous transformation and
its inverse is used in SML to save calculation time:

1
1
1
1
Ap = (AR = oo m———— (4.4)
]
1
]

The function OperTransform of SML gives the homogeneous transformation that
relates any two coordinate frames of the manipulator. Frames are called from O through N,
corresponding with their order in the given D-H Table. The 0 coordinate frame is the base
frame of the manipulator. If it were necessary to relate the manipulator to a fixed
coordinate frame other than the base, it could be done just adding more rows of fixed
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parameters at the beginning of the D-H Table. The function OperTransform is called with
three arguments:

OperTransform[DHTable_, RefFrame_, Frame_] , 4.5

where

* DHTable is the name given to the D-H Table of the manipulator, that should be
entered as shown in Equation (3.2); and

* the output of OperTransform is the homogeneous transformation that relates

Frame to RefFrame written with respect to RefFrame: Ameanfamc
OperTransform uses Equations (4.2) and (4.3) to calculate, symbolically, the
homogeneous transformation between Frame and RefFrame. If Frame is bigger than

RefFrame, then it calculates first Akgﬁrl{?‘“gg*l then ARCErame+2 a5 after that their

multiplication. The function continues n steps until RefFrame + n = Frame:

Frame . ARefFrame+1 RefFrame+2
ARctFrame - ARetFrzune 'ARetFrame+1 ARetFramf:+n1 (4.6)

If Frame is smaller than RefFrame, then the function first calculates ARSEame  ang

then its inverse ARS‘FE}’“mg'l, using Equation (4.4). OperTransform continues n steps until
the homogeneous transformation, is found, that relates Frame to RefFrame written with

respect to RefFrame:

RefFrame-1 RefFrame-2 Frame
ARchramc ARetFrame - ARefframe-1 *** ARetFrame-nt1 . 4.7)

OperTransform always gives complete trigonometrically reduced output. It has
been found that long and complex expressions are tremendously time-consuming when
reducing them trigonometrically. Itis better to reduce the expressions used along the
algorithm of the function rather than reduce the long final expression. Furthermore,
trigonometric reductions are performed each time an operation between matrices and
vectors is produced.

Each time two matrices are multiplied together, OperTransform reduces
trigonometrically their product. Each time an inverse is calculated, this function reduces the
product of the transpose of the rotational matrix with the position vector [see Equation
(4.4)]. It has been found that only five possible trigonometric combinations can appear
when multiplying two homogeneous transformations or calculating its inverse. Those are
the sine and cosine of the addition or subtraction of two angles and the addition of the
squares of cosine and sine. OperTransform reduces these expressions according to the five
following patterns:

a_. Sin[x_] Cos[y_] + a_. Cos[x_] Sin[y_]
a_. Sin|x_] Cos[y_] -a_. Cos{x_] Sin[y_]

a_. Cos[x_] Cosly_] - a_. Sin[x_] Sin[y_]

a_. Cos[x_] Cos[y_] + a_. Sin[x_] Sin[y_] a Cos[x - y}
a_. (Cos[x_ D2 + a_ (Sin[x_]? > a

)
A

a Sin[x +y]

> a Sin{x - y]
> a Cos[x +y] (4.8)

v
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The function OperTransform can keep in memory any of the homogeneous
transformations that it calculated during a Mathematica session. Any kinematic or dynamic
formulation is based on these matrices, so calculating them each time they are needed
would be a waste of time.

A function associated with OperTransform is OperTransformAux, which is called
with the same arguments as the first one. This function calculates any homogeneous
transformation, or its inverse, between two consecutive coordinate frames and keeps them
in memory. OperTransform makes calls automatically to this auxiliary function each time it
is needed, but it keeps in memory only the homogeneous transformation requested by the
user. In this way, all the simple transformations are saved in memory already
trigonometrically reduced and ready to be used by OperTransform, reducing enormously
the computational burden. As an example, the calculation of the inverse of the

homogeneous transformation AS of a 6-DOF manipulator (the KRAFT master) without
using the auxiliary function required 664 seconds on a Macintosh II computer, while only
53 seconds were necessary when using OperTransform Aux.

Two other functions of SML are directly related to OperTransform: (1) the function

Rot, that gives the three-by-three rotational unitary matrix Rgﬁ%‘gme which describes

Frame written with respect to RefFrame; and (2) the function Pos, the output of which

expresses the three-by-one position vector Pgrel}%lfame from the origin of RefFrame to the

origin of Frame, written with respect to RefFrame. Both are called with three arguments,
the same as those for OperTransform:

Rot[DHTable_, RefFrame_, Frame_]
Pos[DHTable_, RefFrame_, Frame_] .

(4.9)

These two functions call first OperTransform{DHTable, RefFrame, Frame], and
then they create their own outputs from the four-by-four matrix. Furthermore, the
expressions given by Rot and Pos are also completely trigonometrically reduced.

Note that with the Rot and Pos functions, different interesting combinations can be
found. As an example, the position vector from coordinate frame 2 to frame 6 of a
manipulator, defined by the D-H Table called RobotTable and written with respect to its
base frame is found by:

OPS = Rot[RobotTable, 0, 2] . Pos[RobotTable, 2, 6] . “4.10)
The position vector found after this multiplication is not necessarily completely
trigonometrically reduced. Further reduction can be obtained by using the functions
RedTrig or RedTrigExp, presented in Chapter 5, by
RedTrigExp[ OP§ ] (4.11)

because based on Oper'Transform, the functions Rot and Pos can also keep in memory any
of the matrices or vectors, respectively, that they calculated.



25
4.1.2 Direct Kinematics

The kinematic equations of a manipulator arm provide the functional relationship
between the end-effector position and orientation and the displacements of all the joints
involved in the open kinematic chain.

The kinematic equations are nothing more than the homogeneous transformation
relating the coordinate frame attached to the last link of the manipulator with the base
coordinate frame. Let us call g; the displacement of each joint as either an angle or a length.
If the manipulator has n joints, then applying Equation (4.2), the kinematic equations of
the manipulator become:

T = AkQ) Al(gy) --- A% ;(dn) . (4.12)

To find the operator T with SML, the user just needs to usc the function
OperTransform as shown in Equation (4.13),

T = OperTransform{DHTable, 0, n] . “4.13)

From the matrix T, can be deduced the position and orientation of frame "n" with
respect to the base frame . The position, in Cartesian coordinates, is given by its p031tion
vector: [PR]T =[Py, Py, P,]. The orientation is taken from its rotation matrix R} in the form
of angles rotated about the coordinated axes. Note that the nine elements of a rotation
matrix are not independent, because they are subject to orthogonality conditions and the
unitary vector length conditions. Because six conditions exist, only three parameters are
independent. These parameters are usually defined as three angles rotated about the
Cartesian axes, but scveral combinations are possible. The most common representations
are solved in SML and presented here.

Three different methods of describing the orientation of a coordinate frame that are
generally used in robotics are included in SML, so the user may choose one. The three
methods will be presented now (see also Asada and Slotine 1986; Craig 1986; Paul 1981).

1. Roll, pitch, and yaw angles about fixed axes
Start with the frame (B) coincident with a known reference frame (A). Rotate first

frame (B) about X4 by an angle yaw(y), then rotate about YA by an angle pitch(#),
and then rotate about ZA by an angle roll(o) (see Figure 4.1).

X'"s

Figure 4.1. Roll, pitch, and yaw (XYZ) angles rotated about fixed axes.



26

2. Z-Y-X Euler angles
Start with the frame coincident with a known frame (A). Rotate first frame (B)

about Zg by an angle roll(c), then rotate about the new Yg by an angle pitch(f3),
and then rotate about the new Xp by an angle yaw(y) (sce Figure 4.2).

\
1
1
|
XIIB X'B

Figure 4.2. ZYX Euler angles.

3. Z-Y-Z Euler angles
Start with the frame coincident with a known frame (A). Rotate first frame (B)

about Zp by an angle o, then rotate about the new Yg by an angle [3, and then rotate

about the new Zp by an angle v.
The reason so many different descriptions exist is that no one of them is perfect.
All descriptions work perfectly in a range for pitch (the second angle) of slightly less than

180°, but the real problem is that all have singular points. The orientation defined by roll,
pitch, and yaw angles about fixed axes and the orientation defined by the Z-Y-X Euler

angles have a singularity at pitch =1 90° . The orientation defined by the Z-Y-Z Euler

angles has a singularity at pitch =% 180° . When the end-effector orientation is closed to
one of the singularities, then the solution for the angles degenerates. This effect makes the
manipulator uncontrollable because the torques or forces applied can be incremented
enormously.

The function DirectKinEq of SML calculates automatically the orientation angles. It
gives not only the position but also three different types of orientations. DirectKinEq is
called with four arguments, the last three of which are optional:

DirectKinEq[DHTable_, BaseFrame_:0, LastFrame_:n, EulerOrder_:Z2YX], (4.14)

where
¢ DHTable is the name given to the D-H Table of the manipulator.

* BaseFrame is by default the 0 coordinate frame, but a different one can be
specified by the user.
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* LastFrame is by default the last coordinate frame of the DHTable.

¢ EulerOrder is the order of the Euler angles. Two orders can be used: (1) ZYX
is the default, where the function gives the ZYX Euler angles or the XYZ angles
about fixed axes (both solutions are the same) and (2) ZYZ to obtain the ZYZ
Euler angles.

Sometimes the user is interested in knowing the posmon and orientation of a link
other than the last one. For example, a 7-DOF manipulator may have a sensor on the base
of its spherical wrist (three rotational DOFs with their axes intersected). A new fifth
coordinate frame can be attached to the sensor that will relate its position to the fourth
frame, which belongs to the fourth link. The new frame should be added to the D-H Table
of the manipulator as a row of constant parameters in the fifth position of this table. To
find the position and orientation of the monitored forces and/or torques written with respect
to the base frame, the user just needs to call

DirectKinEq[NewDHTable, 0, 5] . (4.15)

If needed, the position vector can be found by calling Pos|[NewDHTable, (0, 5] and
the rotation matrix, instead the rotated angles, using Rot[NewDHTable, 0, 5].

4.1.3 Inverse Kinematics: Pieper's Solution

Although the inverse kinematics of a completely general 6-DOF robot manipulator
does not have a closed-form solution, certain important special cases can be solved. Pieper
(1968) studied 6-DOF manipulators with three consecutive rotational axes intersected.
Pieper's work applies not only to all rotational axes but also to other configurations that
include prismatic joints.

In this report, only the solution for the inverse klnemam:s of 6-DOF manipulators
with the last three rotational axes intersected is presented. More in-depth studies were
made on other program packages such as INKAS (Mu 1987) and SKIP (Rieseler and Wahl
1990), and the interested researcher should refer to them. With the solution presented in
this work, the basics for the solvability of a more general manipulator are given. Anyway,
most available 6-DOF manipulators have a spherical wrist: dnd can be solved with the
method presented here.

The function InverseKin of SML calculates automaucal]y, when it exists, the
inverse kinematics of a 6-DOF manipulator of which the last three axes intersect.
InverseKin is called with just one argument:

InverseKin{DHTable_]} , | (4.16)

where :
e DHTable is the name given to the D-H Table of the manipulator. Because the
robot manipulator is 6 DOF with a spherical wrist, its D-H Table will, in
general, be presented by Equation (4.17).
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qu all aly d] }7
q21 a2’ a2, d2 }9

RobotTable = {{
{
{ 93, @3, a5 d3},
{
{
{

dgr O4, 3y, dg ), @17

45 05, 0.0 },
dg» Og, 0,0 }}_

In a manipulator with a spherical wrist, g4, qs, and gg are the variables
corresponding to the last three revolute link joints. The first three joints may be either
revolute or prismatic and their variables either g; or dj respectively. If joint i is prismatic,
then qj is constant and d; is the variable; but if joint i is revolute, then g is the variable.

The function InverseKin assumes as a known input the homogeneous
transformation between the hand and base frames of the manipulator. Lets us call ’[8 for
this transformation written with respect to the base coordinate frame. The output oftered
by InverseKin is referred to the matrix presented in Equation (4.18).

Iy ox ay Py

| ny oy ay Py
T§ = 0 o, m, P (4.18)

0O 0 0 1

When the three last axes intersect, the origin of coordinate frames attached to links
4, 5, and 6 are located at the point of intersection. The position vector of this point written
with respect to the first coordinate frame is found by using the functions Pos and Rot of
SML.:

1Pg = Rot[RobotTable, 1, 0] . Pos[RobotTable, 0, 4] . 4.19)

For the general case table presented in Equation (4.17), the vector 1P€) gives the
exprcssion
P4, =al + C2 (a2 + C3 a3) + S2 (-(Ca2 S3 a3) + So2 d3);

P4y = Sal (-(S3 Sa2 a3) - d2 - Ca2 d3) +
Cal (S2 (a2 + C3 a3) + C2 (Ca2 S3 a3 - Sa2 d3)); (4.20)

P4, =Cal (S3 Sa2 a3 + d2 + Co2 d3) +
Sol (S2 (a2 + C3 a3) + C2 (Ca2 S3 a3 - Sa2 d3));

where Ci and Si and Cou and Sou are the cosine and sine of angles qi and ai respectively.

Also, the position vector IP?) shown in the above equation should be equal to

1} = RY (0P§-0PY) , 4.21)
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where 01’8 =[Py, Py, P,JT. Thus, the left-hand sides of Equation (4.20) can be substituted
with:

P4y = C1 Px* + Py* S1
P4y = Cal (C1 Py* - Px* S1) + Sal Pz*
P4, = Cal Pz* + Sal (-(C1 Py*) + Px* S1), 4.22)

where

Px* Px - d4 ax
Py* |=| Py-d4 ay (4.23)
Pz* Pz-d4 az

Equations (4.20) and (4.22) create a system of three equations in which the
unknowns are the variables corresponding to the first three joints of the manipulator. The
inverse kinematics problem has been changed from finding six unknowns to two problems
of finding three unknowns. '

To complete the solution, InverseKin needs to solve for angles q4, 45, and g6.

Computation can be based upon only the rotation matrix RTS of the specified goal '18
presented in Equation (4.18). Because the first three joint variables have already been

solved, the rotation matrix R% is also known. The tollowing matrix equation gives nine
equations that can be solved for the three angles g4, g5, and g6:

-1
RS = [RY] " RT§ = RY RIS . (4.24)

Substituting the left-hand side of Equation (4.24) with the rotational matrix of the
general serial link manipulator with spherical wrist presented in Equation (4.17) gives

R36(1,1) = C4 C5 C6 + 54 [-(C6 Cad S5) - S6 Sad]
R36(2,1) = C5 C6 §4 + C4 (C6 Cad S5 + §6 Sad)
R36(3,1) = -(Ca4d S6) + C6 S5 Sud

R36(1,2) = -(C5 Cod S4) - C4 S5
R36(2,2) =C4 C5 Co4 - S4 85 (4.25)
R36(3,2) =C5 Sa4

R36(1,3) = C4 C5 S6 + 84 [-(Cd S5 S6) + C6 Sud]
R36(2.3) =C5 S4 56 + C4 (Ca4 S5 S6 - C6 Sad)
R36(3,3) = C6 Cad + S5 S6 Sud

For many manipulators, Equation (4.24) can be solved for angles q4, 45, and g6
by using exactly the Z-Y-Z Euler angles presented in section 4.1.2 of this work. A more
complicated scheme has to be developed to solve for the first three joint variables by using
the system of equations created with Equations (4.20) and (4.22). This system of
equations is highly non linear, and for some cases, multiple solutions are found. For
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several cases, the equations are not solvable, because of linear dependency. This
dependency appears when the first three links of the manipulator are constrained to be in a
plane.

The third joint variable, either q3 (for revolute) or d3 (for prismatic), is solved
directly by the third (if al = 0) or second (if al # Q) equation of the system by pattern
matching. The rules of this pattern matching are shown in Equation (4.26).

a_.Cos[x_J+b_.Sin[x ]+d_.==c_-> x->Atan2[a,-b]-
Atan2[c-d,"+-"Sqrt[ar2+bA2-(c-d)*2]],

a_.Cos[x_]==b_ ->  x -> Atan2["+-"Sqrt[1-(b/a)*2],b/a],

a_. Sin{x_]==b_ ->  x -> Atan2{b/a,"+-"Sqrt[1-(b/a)"2]],

c_==2a_Cos[x_]+b_.Sinfx_]+d_. -> x->Atan2[a,-b] - (4.26)
Atan2{c-d,"+-"Sqrt[a*2+b"2-(c-d)*2]], ’

b_ ==a_. Cos[x_] -=>  x -> Atan2["+-"Sqri[1-(b/a)*2],b/a],

b_==a_. Sin[x_] ->  x-> Atan2[b/a,"+"Sqrt[1-(b/a)*2]],

AtanZ2[0,x_] -> 0 .

The other two equations of the system are then solved together by a similar
procedure.

4.1.4 Jacobian Written with Respect to An Arbitrary Frame

The Jacobian of a robot manipulator specifies a mapping from velocitics in joint
space to velocities in Cartesian space. It also maps payload (external) forces to joint
torques (see Asada and Slotine 1986, p. 81). End-point compliance analysis of
manipulators also depends on the Jacobian of the manipulator. Furthermore, having the
Jacobian of the manipulator in symbolic form and as reduced as possible will affect any
control algorithm or research performed on a robot manipulator.

As shown in the examples for the Laboratory Telerobotic Manipulator (Dubey et al.
1988), the Center for Engineering Systems Advanced Rescarch Manipulator (Dubey et al.
1989), and the Robotics Research Manipulators presented in Chapter 6, the Jacobian of the
manipulator written with respect to the third frame is used to obtain an efficient algorithm
for a 7-DOF redundant manipulator. Those are good examples of how the Jacobian can be
significantly simplified and powerfully written with respect to a different coordinate frame
rather than to the base or end effector.

Two different algorithms are used on SML to calculate the Jacobian of the
manipulator. The first , discussed by Asada and Slotine (1986, p. 58), is used in SML to
calculate the Jacobian written with respect to the base coordinate frame. In this algorithm,
the effect of each joint on the movement of the end effector is taken into account. The
differential movement of the end effector due to joint i produces the ith column of the
manipulator Jacobian. The dimension of the Jacobian is six by n; the first three rows are
associated with the linear velocity of the end effector, and the three last correspond to its
angular velocity. Furthermore, the Jacobian can be partitioned so that

7 =] 3 P : Jin

RE/SEERRVEE : JAn (4.27)
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where Ji i and J; are three-by-one column vectors of the Jacobian matrix associated with
the linear and angular velocities, respectively, of the end effector. These vectors are
calculated in SML as follows, depending on the type of joint.

1. For a prismatic joint,

114%)

where bj.1 is the unit vector pointing along the direction of the joint axes i, which is
calculated in SML using the functions OperTransform and Table. Being the last
one a built-in function of Mathematica (Wolfram 1988) to build up vectors,
matrices, and tensors.

bi.1 = Table{ OperTransform[DHTable, 0, i} [[j, 311, {j, 1, 3}]. (4.29)

To obtain the ith column of the Jacobian, SML just needs to join the vector Ji; to
the null vector JA; = {0, 0, 0} by

Join[Jy;, {0, 0, O}]. 4.30)

2. For a revolute joint,
JLi } b X1 e
by ’ 4.31)

Tai

where ri-1 ¢ is the position vector from the origin Oj.1 of the ith coordinate frame to
the end effector. This vector is calculated in SML by subtracting the ith frame
position vector from the end effector one:

fi-1e = 0P -0P; = Pos[DHTable, 0, MTerm] - Pos| DHTable, 0, i] , (4.32)

where MTerm is equal to the number of rows of the DHTable. All the bi.j and 1.1 ¢
vectors are calculated by using OperTransform; thus, all are completely

trigonometrically reduced already. The cross product b1 X1, ; . is calculated and

reduced trigonometrically by SML. Finally, Jjj and Ja;j are joined together to
obtain the ith column of the Jacobian by

Join[ Jii, Jail . (4.33)

SML recognizes automatically whether a joint is revolute or prismatic by checking
the first entry of the joint row on the D-H Table of the manipulator. If gj has a given
numerical value (i.e., 0, Pi/2, Pi/4,...) or any symbolic value (i.e., q, qv, X,...), then the
joint is prismatic; the joint is revolute in the opposite case.

The Jacobian is constructed by joining the columns created by either Equation
(4.28) or (4.31), depending on the type of joint. The Jacobian matrix obtained with this
method is written with respect to the base coordinate frame.
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The function JacobianP (JacobianC when using Craig's notation) calculates the
Jacobian of the manipulator. It is called with just two arguments:

JacobianP{DHTable_, RefFrame_:0] , (4.34)

where

» DHTable is the name given to the D-H Table of the manipulator, which should
be entered as shown in Equation (3.2).

» RefFrame is the coordinate frame with respect to which the Jacobian of the
manipulator is required to be written. The default coordinate frame for
RetFrame is the base frame.
Both JacobianP and JacobianC have an auxiliary function that transforms the
Jacobian of the manipulator. Premultiplying it by the matrix of Equation (4.35), the
Jacobian is changed from being writien with respect to frame B to be written with respect to

frame A.
2B
Al = _}(LH By (4.35)
0 RE

The auxiliary function JacobTranstorm can be used independently by the user
calling it with four arguments:

JacobTransform[DHTable_, NewFrame_, OldFrame_, OldJac_], (4.36)

where
»  DHTable is the name given to the D-H Table of the manipulator.

¢ NewkFrame is the new frame (A in the case for Equation 4.35) with respect to
which the Jacobian is desired to be written.

* OldFrame is the frame (B in the case for Equation 4.35) with respect to which

the Jacebian matrix OldJac (Byon Equation 4.35) is written.

Most often, the user will not even notice that JacobTransform is acting, because
JacobianP calls it antomatically when it is needed. The biggest obstacle in the use of
JacobTransform and the algorithm of Equation (4.35) upon which it is based, is that
expressions obtained can be rather complex. The complexity of trigonometric reductions
over these expressions depends on the D-H Table of the manipulator. The Jacobian is of

six-by-n dimension, means that 6xn elements are to be reduced for a general n-DOF
manipulator. The more parameters different from zero on the D-H Table, the more time
will be needed to reduce the model trigonometrically. Furthermore, trigonometric
reductions may need a great deal of time to be accomplished when using the function
JacobTransform. The principal reason because SML has two algorithras to calculate the
Jacobian matrix of the manipulator.

A second algorithm based on the Newton-Euler formulation for static forces (see
Craig 1986, p. 149; Asada and Slotine 1986, p. 73) is used in SML to calculate the
Jacobian written with respect to the end-eftector coordinate frame. To the knowledge of
the author, this algorithm has never been used before to create the symbolic or numeric
Jacobian matrix of a manipulator in any robotic modeling package. In the contrary, most
rescarches use this algorithm to calculate payload effects over the manipulator joints when
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the Jacobian is known. On the Newton-Euler algorithm external forces and torques are
applied at the end effector, and their effects are studied along all the links of the
manipulator. As shown in Figure 4.3, F; and Tj are the necessary force and torque to keep
the link in static equilibrium when it is under the effect of an external force Fe and torque
Te. Vectors Fj and Tj are obtained by simply using the Newton-Euler algorithm, that will
be presented in more detail in section 4.2 in this chapter.

i

Figure 4.3. Forces and torques applied to a link of a manipulator and the
projection onto the Z; axes.

The obtained torque Tj is projected onto the rotational joint axes, or the force Fj is
projected instead if the joint is prismatic. The projected force or torque Tj is the one that the
motor has to supply at the joint to keep the manipulator in static equilibrium. The force Fj
and torque T; will be applied later against the preceding link as if they were external so the
procedure continues uniil the base of the manipulator is reached.

The model of the forces or torques Ti at every joint of the manipulator is created
symbolically in function of the external forces (torques) applied at the end effector. The
external force vector Fe = {Fx, Fy, Fz} and the external torque vector Te = {Tx, Ty, Tz}
are joined together in a 6-dimensional vector N = {Fx, Fy, Fz, Tx, Ty, Tz}. Then, using
the algorithm presented in Craig (1986, p. 152) based on the relation between the end-
effector force N and joint torque (force),

T=FT EN | (4.37)

the transpose of the Jacobian matrix can be found written with respect to the Eth coordinate
frame. To find the Jacobian written with respect to the end-effector frame, SML first
makes N = {1,0,0,0,0,0}. The forces (torques) found at the joints constitute the first
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column of the transpose of the manipulator Jacobian matrix, which is the first row of the
Jacobian of the manipulator written with respect to the end-effector coordinate frame,

[ Fx ]
] I I §31 Ja Js1 Jer iy
T _| J1i2 T2 J2 a2 Js2 Jea F, v
: 3 N (4.38)
Tn Jin Jon J3n Jan JSn Tén Ny
L Nz

The same procedure is used for N = {0, 1, 0, 0, 0, 0} to find the second row of the
manipulator Jacobian, and so on until its six rows are obtained.

The vector of external forces N could be written with respect to any desired
coordinate frame of the manipulator {0 obtain as a result the Jacobian of the manipulator
written with respect to that coordinate frame. It was found in SML that it was more
complicated to deal with the equations in that way than by using the auxiliary function
JacobTransform.

The function JacobianP (or JacobianC) will check first as to whether, the base or
the end-effector coordinate frame is closer to the one requested by the user (RefFrame).
Then, it will calculate the Jacobian written with respect to the base or end effector,
whichever is closer. Finally, it will transform the Jacobian to the required frame by using
JacobTransfom.

Usually, the D-H Table of a manipulator has many parameters equal to zero at
higher rows on the table because most manipulators have a spherical wrist or at least some
of the last joint axes intercepted. This effect causes the rotational matrix of the
homogeneous transformations between the last frames to be simpler and less
trigonometrically complex than the ones between the initial coordinate frames.

Furihermore, the matrix that defines the Jacobian transformation from one coordinate frame
to another, shown in Equation (4.35), is usually more complex when transforming
between the initial coordinate frames than between the last ones. Furthermore, if the goal is
to obtain the Jacobian matrix with respect to a middlemost frame of the robot, it is
preferable to derive it with respect to the end-¢ffector coordinate frame and then transform it
to a lower frame, rather than to obtain it with respect to the base frame and transform it to
higher frames. This effect is taken into account by the function JacobianP, giving priority
to calculate the Jacobian matrix written with respect to the end effector rather than to the
base coordinate frame.

4.2 STATIC FORCES FUNCTIONS

As shown in Section 2.2.4, correction to the control of robot manipulators due to
external static forces and gravitational effects is the most computationally-efficient
technique that can be applied with actual microcomputers. Thercfore, it is important to
have the model of the reactions at any joint due to external forces and gravitational effect.
To the knowledge of the author, SML is the only package capable of creating this model.

SML provides the user with the reaction forces due to external static and
gravitational forces over each joint. That output presents: (1) the three force and the three
torque components along the three Cartesian vectors that constitute each coordinate frame
and (2) their reaction over the manipulator joints. The first output will allow the researcher
to know in advance the internal torces produced inside the manipulator. These reactions
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provoke deflection and torsion of the links of the manipulator and stress of its joints.
Further, they can be used in the joint and link stress design. Advanced knowledge of the
value and direction of maximum deflection and torsion on the manipulator, will allow links
to be reduced in weight and size. In this way, not only the joints but also the links can be
more accurately designed.

The correction of external forces and the gravitation effect on the manipulator are
calculated directly from the Newton-Euler formulation. The forces and moments acting on
link i are shown in Figure 4.4. The balance of linear forces and moments acting on the link
about the center O; are given by

fi1i- fijer+myg=0, i=1,..,n

. 4.39
Ni—l,i - Ni,i+1 - ri_l,i X fi—l,i + ri,Ci Xm g = 0, i=1,.,n ( )

The function StaticForces of SML calculates the effect of external forces and
gravitation over the links of the manipulator. Because the Newton-Euler iterative algorithm
can be used for both external and gravitational effects, only one function is necessary for
their calculation.
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fj.1; = force exerted by link i-1 acting upon link i
Nj.1 i = moment appliedto link i by link i-1
m; = mass of link link i
g = the 3x1 gravity aceleration vector
C;  =cenwroid of link i
ripi =31 position vector from O to O;
Tieg = 3%1 position vector from O; to G

Figure 4.4. Forces and torques acting on link i.
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The function StaticForces is called with the following parameters:

StaticForces| DHTable_, MassTable_:Zero, VGravity_:{0, 0, -G},
Fext_:{0, 0,0, 0, 0, 0}, FrameFext_:MTerm, (4.40)
FrameFextApplied_:MTerm, Force_:False, Torque_:False] ,

where
* DHTable is the name given to the D-H Table as in Equation (3.2).

e MassTable is a table composed of four parameters for each link: the first is the
link mass, and the next three parameters define the location of the link center of
mass with respect to the X-, Y-, and Z-axes of the coordinate frame attached to
that link. This table was presented in Equation (3.4), and its default is a four-
by-MTerm dimensional matrix composed by zeros.

*  VGravity is a three-by-one vector that represents the direction of the gravity
acceleration written with respect to the base coordinated frame. Its default is
given by {0, 0, -G}, which gives the classical direction along the -Z-axes and
the absolute value G in symbolic form.

* Fext is the external force (torque) applied to any coordinate frame
(FrameFextApplied) defined by the DHTable. It can be written with respect to
any frame (FrameFext). Its default value is {0, 0, 0, 0, 0, O} being applied at
and written with respect to the end-effector coordinate frame (MTerm).

* Force and Torque are options for the output of the function. They are set to
False by default, giving only in the output the etfect of VGravity and Fext on
the joints. If Force and/or Torque is set to any different value (i.e., True), then
all the internal forces and/or torques on the links will be included in the output.

On output, the function StaticForces types in text mode [see Equation (3.17)] the

list of forces and/or torques requested by the user and an explanation of the used
convention. StaticForces writes also in memory the following vectors:

Fs = force exerted by link i-1 acting upon link i
Ns = moment applied to link 1 by link 1-1 (4.41)

M = force/moment applied to jointi .

These vectors can be viewed or manipulated by the user after a call to the function
StaticForces. Any time the function is called, these vectors are overwritten. Therefore, the
vectors should be saved with a different name if the plan is to use them later.

4.2.1 Reaction of Joints to Any Force/Torque Vector Applied at Any
Coordinate Frame Attached to the Manipulator

A robot manipulator can support forces or torques in different points. The most
usual point of contact with the environment is the end effector, but the manipulator can
apply a general force at any of its points. The manipulator may have a contact point on one
link while supporting a payload with the end eftector as, for example, a human arm does
when writing on paper to improve its stiffness. Furthermore, it is important to be able to
create a model of the effect of difterent forces at distinct points of the manipulator and
written with respect to different coordinate frames of the manipulator. Any combination
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can be achieved by the function StaticForces when using it properly. In addition, by the
principle of superposition, the effect of different forces can be studied and added for the
same manipulator to obtain a model.

To facilitate the use of this package, an auxiliary function based on the StaticForces
function has been added. The function Forces is called with the following parameters:

Forces[DHTable_, Fext_:{0, 0, 0, 0, 0, 0}, FrameFext_:MTerm,
FrameFextApplied_:MTerm, Force_:False, Torque_:False] , (4.42)

where the parameters are the same as those for StaticForces in Equation (4.40).

FrameFext and FrameFextApplied should be frames represented by a row of the
DHTable. FrameFext is by default the last frame represented by the DHTable. This means
that the applied force Fext will be written with respect to the end-effector coordinate frame,
but any one in the DHTable can be used. If the manipulator has a sensor attached to a
coordinate frame that does not exactly correspond with any link frame, the user will add a
row of constant parameters to the DHTable at that position. As an example, to find the
effect on the joints of a general force {Fy, Fy, F » Tx, Ty, Tz} applied at the fifth frame and
written with respect to the third frame, the tunctlon Forcec will be called as follows:

Forces[DHTable, {Fx, Fy, Fy, Tx, Ty, Tz}, 3, 3] . (4.43)

4.2.2 Necessary Gravitational Compensation at Each Joint

Gravitational effects on the manipulator can be calculated also with the function
StaticForces, but an auxiliary function has been added to make SML user friendly. The
function Gravitation is called with the following parameters:

GravitationfDHTable_, MassTable_:Zero, VGravity_:{0, 0, -G},
Force_:False, Torque_:False] , (4.44)
where the parameters are the same as those for StaticForces in Equation (4.40).

4.3 TRIGONOMETRIC REDUCTIONS

An objective of SML is to create simple and understandable output expressions
from standard input. To take full advantage of symbolic manipulation of equations, the
input parameters can be numeric or symbolic, and so the output can be. Depending on the
manipulator D-H Table or in a particular model, a different output structure may be
preferred. The objective is to obtain output expressions that are easy to read and are
computationally-efficient when implemented in a microprocessor.

An important reduction of the complexity of the equation on rcbotics comes from
the trigonometric reductions. They play an important role in robotics modeling, but they
have not been solved completely. This report presents an important study and solution for
this problem. In SML, two methods to reduce trigonometric expressions are presented.

(1) A classical pattern matching, where expressions are compared and reduced
according to the following patterns.
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a_. Sin[x_] Cos[y_] +a_. Cos[x_] Sin[y_] -> a Sin[x + Y]
a_. Sin[x_] Cos[y_] - a_. Cos{x_] Sin[y_] -> a Sin[x - y]
a_. Cos[x_] Cos[y_] - a_. Sin[x_] Sin{y_] -> aCos[x + ¥] (4.45)

a_. Cos[x_] Cos[y_] +a_. Sin[x_] Sin[y_] -> a Cos[x -y]
a_. (Cos[x_ D2 +a_. Sin[x_ P2 > a.

This is one of the fastest and most efficient ways to diminish trigonometrically a
very short expression. The pattern recognition algorithm is used to check all possible
combinations inside the expression. However, if an expression is long, the number of
combinations is so large that the reduction of an expression can take so much time that the
outcome would be worthless or too expensive.

(2) An exponential reduction method, based on changing mgonomemc expressions
to their corresponding pseudo-exponential expressions, is given in Equations (4.46)
through (4.48).

Tan[x_] ->  Sin[x]/Cos[x] ,
Cos{x_] -> Ex[x]+ Ex[-x] , (4.46)
Sin[x_] -> -1Ex[x]+IEx[-x]

Some especial properties are defined for this pseudo-exponential function to reduce
trigonometrically the expression

Ex{x_] Ex[y_1 -> Ex[x+y)/2

Ex[x_]*n_ ->  Ex[n x}/(2*(n-1)) |
Ex[0] . 172 , (4.47)
I = V-1

The final step 18 to transform the expression from the pseudo-exponential to the
trigonometric functions by

Ex[x_] > Cos[x}/2 +1 Sin[x}/2. (4.48)

This method has proved to work well with long, complicated expressions that the
classical method cannot deal with. Instead of checking for any possible combination that
matches one of the patterns, this method transforms every sine, cosine, and tangent in its
pscudo-exponential expression by using Equation (4.46). The operations defined by
Equation (4.47) are faster than pattern matching for producing the desired trigonometric
reduction, and they give expressions, based on experience, that are close to minimum time
solution.

The classical pattern matching reduction method of Equation (4.45) works well
when the expression is short and uncomplicated. Itis performed in SML by the function
RedTrig, that is called as follows with just one parameter.
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RedTrig[ expr_] (4.49)

The exponential reduction method is best when used for long and messy
expressions, and it is called also with just one parameter.

RedTrigExp[ expr_] (4.50)

In both trigonometric reduction functions, expr can be any kind of expression to be
reduced. RedTrig and RedTrigExp can be applied to either a vector, a matrix, or any kind
of expression.

4.4 MISCELLANEOUS FUNCTIONS

Some miscellancous functions have been added to SML to make it user friendly or
to be used by some of the principal functions of the package. Output form functions were
discussed in detail in Section 3.2.2 and will be not presented again here. Some additional
functions such CrossProd are added to SML. CrossProd gives the cross product of two
vectors (V and U), which constitute the two arguments of the function:

CrossProd[V_, U _]. 4.51)

Another miscellaneous function is PosVector, which gives the position vector of
any four-by-four homogenous transformation (Matrix):

PosVector[Matrix_] . (4.52)

ROut is another function which performs first a trigonometric reduction on the
expression given by expr and then reduces its output with RedAngle:

ROutfexpr_, var_:q, big_:0], (4.53)

where var and big are the optional arguments presented for the function RedAngle on
Equation (3.8). Two other functions are RCForm and RFForm, which reduce first the
given expression and present the output in C or FORTRAN, respectively, compatible
forms.

RCForm{expr_, var_:q , big_:0]

(4.54)
RFForm[expr_, var_:q, big_:0] .

4.4.1 On-Line Help

SML can be used in both interactive and batch modes. When using an inieractive
mode, each function of the package can be called separately. Then, each output can be
analyzed and used as input for the following calls to functions. Because SML presents so
many oplions, it was necessary to include the interactive mode and an on-line help.

To facilitate the user's work, an on-linc help based on Mathematica's own help was
written. It allows the user to know, at any moment in a session, how to use and call any
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subroutine or the actual numeric-symbolic value for a variable, a vector, or a matrix. To
obtain information about a function, type "?FunctionName." As an example, to find how
to use OperTransform type "?OperTransform” and SML will give as output:

OperTransform[DHTable, RefFrame, Frame] gives the 4x4 Homogeneous
Transformation operator that relates Frame and RefFrame. (4.55)

Enter the Denavit-Hartenberg Table in Paul's Notation.

If a list of the functions included in SML is desired, the user types "?SML" and a
list will appear on the screen.

If the program is being used on a Macintosh or a Next machine, an extra help
feature is allowed by Mathematica (Wolfram 1988). To obtain a template of one of the
functions, the user types the name or a part of it, and highlights it (using the mouse or the
keyboard). Then, look in the Action menu for the option Prepare Input to use the feature
Make Template. If "Direct” is typed and highlighted, then using the feature Make Template
gives the following output, which prepares the function and its parameters:

DirectKinEq[DHTable, EulerOrder, BaseFrame, LastFrame). (4.56)



5. CONCLUSIONS AND RECOMMENDATIONS

The primary result of this study is the creation of an efficient symbolic modeling
package, called SML, for the kinematic analysis and control of robot manipulators. Using
the high-level symbolic computer language Mathematica (Wolfram 1988), SML is able to
create symboelic manipulater models from minimal manipulator descriptions entered by the
user.

In contrast with numerical methodologies, symbolic models can take full advantage
of reductions because of particular geometric manipulator configurations. Furthermore, the
obtained equations are computationally efficient, making the control that uses them to be
real-time efficient.

5.1 CONCLUSIONS

In currently available computer-aided modeling of manipulators, only a few well-
stipulated outputs can be obtained. Because robotics is a fast-growing field, more flexible
modeling software is required. SML is the only program package for symbolic modeling
of manipulators that can be used in an interactive mode and that has an on-line help. This
means that the cutput from a function can be studied and used as input for another function.
As an example, the Jacobian of 2 manipulator can be obtained with respect to different
frames to determine which one has a simpler form for its use as an input for a control
algorithm (Dubey, Euler, and Babcock 1988; Dubey et al. 1989).

Trigonometric reductions play an important role in robotic modeling because
expressions can be greatly diminished in complexity. The functions of SML present their
outputs completely trigonometrically reduced, To the knowledge of the author, the only
other package for symbolic modeling of manipulators that presented trigonometric
reductions was the one from Ho and Sriwattanathamma (1989). As reflected in their paper,
the outputs of their program are not completely trigonometrically reduced, but SML gives
ihe same outputs with reduced complexity.

Most of the symbolic modeling programs previously presented gave only some of
the homogeneous transformations between some frames of the manipulator. In contrast,
SML can give any transformation between any two frames of the robot. Currently, this is
the only package that also computes the inverses of these transformations. This is possible
because of the rigonometric reduction simplification subroutines. These inverses are
useful for constructing the inverse kinematic models and sometimes for control algorithms.

Some of the earlier packages gave the homogeneous transformation between the
hand and base frames, but only SML gives specifically the position vector and the
oricitation angles. These angles are presented in three different options for the user to
choose: (1) ZYX Euler angles (2) ZYZ Euler angles and (3) XYZ angles rotated about fixed
frames.

The Jacobian matrix is presented in SML written with respect to any frame. This is
a big advantage in comparison with other packages, and it is of great use in force and other
control algorithms, as shown in the example application appendixes for the FARS
manipulator, the Center for Engineering Systems Advanced Research manipulator
(CESARm), and the Laboratory Telerobotic Manipulator (LTM).

SML. is the only package known to be capable of creating the statics forces model in
general form. This model gives the six components of the force (torque) reaction vectors
acting at the joints when an external force (torque) is applied at an arbitrary coordinate
frame of the manipulator and taking also into account the gravity effect. The example
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applications for FARS and for the LTM in appendixes C-1 and C-3 show the gravitational
effect model. Using this model, gravitational compensation can be added to the control
algorithm improving its accuracy and the behavior of the robotic system.

An on-line help and an easy-to-use and easy-to-understand output is presented by
SML. Several output forms are given as a choice for the user, such as those that are
compatible with the FORTRAN and C language programs.

Some example applications of SML are presented in Appendix C of this report.
Two 7-DOF robots are studied to obtain their forward and inverse kinematics: CESARm,
and LTM. Finally, a full kinematic and static study in symbolic form is presented for
FARS manipulator. A design optimization for some lengths and angle constraints of the
FARS manipulator is performed using the symbolic models obtained from SML.

5.2 RECOMMENDATIONS

One of the fundamental objectives in developing SML was to create an open and
interactive package. The package was created such that the user can call any of the
functions to create new ones. This means that future research is continuously open. In
fact, some new functions currently being implemented in SML by the author are not
presented in this report.

The extension of the package to dynamic symbolic robot modeling is obvious, and
a function is already working that calculates the diagonal terms of the inertial matrix of a
serial manipulator. Symbolic dynamic models have the advantage over numeric models in
that no numerical error is introduced. In particular, when higher modes of flexible
manipulators models are studied, very ill conditioned matrices are found. Most advanced
and sophisticated control algorithms are required to be as close as possible to the exact
model. This demands the inclusion of higher modes and a greater numerical error. If we
are able to describe the transfer function in symbolic form (Lee 1990), then no numerical
error is included, thus improving the behavior of the control algorithm.

Another recommended field of expansion for SML is graphic simulation. The
kinematic model can be created with SML and then used to plot the configuration for
specific joint values or the work space for specific joint constraints. A good example of
plotting the work space as a three-dimensional solid model is presented on the example
application for the FARS manipulator. The functions that created the work space were
written to be used only with the FARS manipulator, but more sophisticated functions could
be created for more general cases.

An immediately achievable important task for future investigations is the creation of
a minimization function to reduce the expressions of the models to the minimum amount of
computational time. It should take into account all the equations of the model and,
penalizing with weights the different algebraic functions, collect common terms to try to
minimize the time necessary to compute the model.
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USER MANUAL

To load any of the packages of SML,, they have to be placed or copied first on the

_ folder (directory) "Robotics,” which is to be created by the user inside the folder (directory)
"Packages" of Mathematica. The next step is to load Mathematica on the computer and then
to load SML. on Mathematica, typing any of the following:

Needs["Robotics' SML-P*"] ,
Needs["Robotics SML-C"] , (A-1)
Needs["Robotics RedTrig "] .

The first package (SML-P.m) allows the user to use any of the functions described
in this report in Paul's notation (1981), and the second one (SML-C.m) does exactly the
same but in Craig's notation (1986). Trigonometric reductions are already included in
SML-P.m and SML-C.m; but with the third package (RedTrig.m), only the trigonometric
reductions and output form functions of SML are loaded.

A-1. INPUT TABLES

The D-H Table in Paul's notation (1981) is entered in SML as an n-by-4 matrix,
where n is the number of coordinate frames associated to links of the manipulator:

RobotDHTable = {{q;, @1, a;, di},
{QQ, .azy az: d2}9

{Qm alh ana dn}},

where:
g; = angle from Xj.1 to Xj, about Zj.1 ,

o = angle from Z;.1 to Zj, about Xj |

il

aj = length from Zi_1 to Zj, along Xj

dj

length from Xj.1 to X, along Z;.y .

The mass table is composed of four parameters for each link: the first one is the
link mass, and the next three parameters define the location of the link center of mass with
respect to the X-, Y-, and Z-axes of the coordinate frame attached to that link.

RobotMassTable:= {{m;, mx,, my,, mz;},
{m,, mx,, my;, mz,},

{t0n, mxp, myn, mzn}}.
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A-2. OUTPUT FORMS

The function RedAngle reduces the form of trigonometrical functions to the
classical nomenclature. RedAngle has three arguments, the second and third ones being
optional:

RedAngle[expr_,var_:q, big_:0], (A-4)

where

®  ¢xpr is the expression to be reduced, which includes any of the trigonometric
functions of the form of Equation (3.6). Expr can be a vector, a matrix, a
polynomial, or any kind of expression.

» var defines the angles inside the trigonometric functions used in SML. The
default for var is q because most robotic applications publications use it, but any
name can be specitied by the user as long as it is the same for all the angles
inside the expressioi.

* big is an option to enable RedAngle to deal with subindexes for the angles
larger than nine. Big is zero by default, giving any value different from zero
enables larger subindexes.

ListOutput prints the expression given as its first argument, regardless of its

dimensions, in an easy-to-read and compatible output form. ListOutput has four
parameters, the last three being optional:

ListOutput[expr_, name_:"List", form_:Text, var_:q, big_:0], (A-5)

where
s expr is the expression to be printed in the specified form. Expr can be either a
vector, a matrix, or an expression.

¢ name is a string that gives the name that will be used for the listing. The default
for name is "List."

*  form is the desired form in which the output will be printed. Its default is Text,
but the following options arc available:

1. form = Text gives expression in Text form. This is probably the easier to
read, but it is not good enough to copy and paste to another program such
as in a word processor, when powers or divisions are present.
form = C gives the expression in C form.
form = RC prints the expression in C language, reducing the form of sines,
cosines, and tangents by using RedAngle.
form = F prints the expression in FORTRAN form.
form = RF gives the expression in FORTRAN, reducing the form of sines,
cosines, and tangents.

* var is the same argument as in RedAngle. This argument needs to be specified
only when asking for Reduced FORTRAN (RF), Reduced C (RC), or Text
forms and a ditferent name that g has been used for the angles in the
expression.

* big is the same option as in RedAngle.

O I~ (ORI S ]
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A-3. FUNCTION TOOLS

OperTransform gives the homogeneous transformation that relates any two
coordinate frames of the manipulator.

OperTransform{DHTable_, RefFrame_, Frame_], (A-6)

where
* DHTable is the name given to the D-H Table of the manipulator, that should be
entered as shown in Equation (A-2); and
» the output of OperTranstorm is the homogeneous transformation that relates

Frame to RefFrame written with respect to RefFrame: AFrgf‘}fam
Two [unctions are directly associated to OperTransform: (1) Rot, that gives the
rotation matrix, and (2) Pos, that presents the position vector that relate any two coordinate
frames of the manipulator.

Rot[DHTable_, RetFrame_, Frame_]

(A-7)
Pos[DHTable_, RefFrame_, Frame_] .
The function DirectKinEq calculates automatically the position and three different
types of orientation angles. DirectKinEq is called with four arguments, the last three of
which are optional:

DirectKinEq{DHTable_, BaseFrame_:0, LastFrame_:n, EulerOrder_:Z2YX], (A-8)

where

* DHTable is the name given to the D-H Table of the manipulator.

* BaseFrame is by default the O coordinate frame, but a different one can be
specified by the user.

¢ LastFrame is by default the last coordinate frame of the DHTable.

* EulerOrder is the order of the Euler angles. Two orders can be used: (1) ZYX
is the default, where the function gives the ZYX Euler angles or the XYZ angles
about fixed axes (both solutions are the same) and (2) ZYZ to obtain the ZYZ
Euler angles.

InverseKin calculates automatically, when it exists, the inverse kinematics of a 6-

DOF manipulator of which the last three rotational joint axes intersect. InverseKin is called
with just one argument:

InverseKin[DHTable_] , (A-9)

where

* DHTable is the name given to the D-H Table of the manipulator.

The function JacobianP (JacobianC when using Craig's notation) calculates the
Jacobian of the manipulator. It is called with just two arguments:

JacobianP|[DHTable_, RefFrame_:0], (A-10)
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where
e DHTable is the name given to the D-H Table of the manipulator.

* RefFrame is the coordinate frame with respect to which the Jacobian of the
manipulator is required to be written. The default coordinate frame for
RefFrame is the base frame.
The auxiliary function JacobTransform transforms the Jacobian of the manipulator
from being written with respect to one coordinate frame to another. Itis called with four
arguments:

JacobTransform{IDDHTable_, NewFrame_, OldFrame_, OldJac_], (A-11)

where
*=  DHTable is the name given to the D-H Table of the manipulator.

¢ NewFrame is the new frame with respect to which the Jacobian is desired to be
written.
e QOldFrame is the frame with respect to which the Jacobian matrix (OldJac) is
written.
The function StaticForces calculates the effect of external forces and gravitation
over the links of the manipulator. It is called with the following parameters:

StaticForces| DHTable_, MassTable_:Zero, VGravity_:{0, 0, -G},
Fext_:{0, 0, 0, 0, 0, 0}, FrameFext_:MTerm, (A-12)
FrameFextApplied_:MTerm, Force_:False, Torque_:False] ,

where
¢ DHTable is the name given to the D-H Table as in Equation (A-2).

¢ MassTable should be entered as in Equation (A-3), and its default is a four-by-
MTerm dimensional matrix composed by zeros.

¢ VGravily is a three-by-one vector that represents the direction of the gravity
acceleration written with respect to the base coordinated frame. Its default is
given by {0, 0, -G}, which gives the classical direction along the -Z-axes and
the absolute value G in symbolic form.

¢ Fextis the external force (torque) applied to any coordinate frame
(FrameFextApplied) defined by the DHTable. It can be written with respect to
any frame (FrameFext). Its default value is {0, 0, 0, 0, 0, 0} being applied at
the end-effector coordinate frame (MTerm) and writtcn with respect to the same
frame.

»  Force and Torque are options for the output of the function. They are set to
False by default, giving only on output the effect of VGravity and Fext over the
joints. If Force and/or Torque is set to any different value (i.e., True), then all
the internal forces and/or torques on the links will be included on the output.
Two auxiliary functions facilitate the use of StaticForces: (1) Forces, that calculates
the effect of external forces, and (2) Gravitation, that calculates the effect of gravitation,
over the links of the manipulator.
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Forces[DHTable_, Fext_:{0, 0, 0, 0, 0, 0}, FrameFext_:MTerm,

FrameFextApplied_:MTerm, Force_:False, Torque_:False] ,
(A-13)
Gravitation[DHTable_, MassTable_:Zero, VGravity_:{0, 0, -G},

Force_:False, Torque_:False] .

A-4. TRIGONOMETRIC, MISCELLANEOUS, AND HELFP FUNCTIONS

Trigonometric reductions on an expression (expr) are obtained with the functions
RedTrig and RedTrigExp. Use the first one for very simple expressions, and the second
function for more complicated and messy ones. Both are called with just one argument,
which can be any kind of expression (ie., vector, matrix, or list).

RedTrig[ expr_],

(A-14)
RedTrigExp[ expr_] .

CrossProd gives the cross product of two vectors (V and U), which constitute the
two arguments of the function:

CrossProd[V_, U_] . (A-15)

PosVector, which gives the position vector of any four-by-four homogeneous
transformation (Matrix):

PosVector[Matrix_] . (A-106)

ROut is another function that performs first a trigonometric reduction on the
expression given by expr and then reduces its output with RedAngle:

ROut[expr_, var_:q, big_:0], (A-17)

where var and big are the optional arguments presented for the function RedAngle. Two
other functions are RCForm and RFForm, which reduce first the given expression and
present the output in C or FORTRAN, respectively, compatible forms.

RCForm[expr_, var_:q, big_:0]

(A-18)
RFForm[expr_, var_:q, big_:0] .

An on-line help has been included in SML. To obtain information about a function,
type "?FunctionName." If a list of the functions included in SML is desired, the user types
"ISML" and a list will appear on the screen.
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APPENDIX B-1

SML-P.m, SYMBOLIC MANIPULATOR LABORATORY
By Santiage March-lLeube, November 1991

M >> This file contains routines for robot manipulator modeling.
Several functions are included to calculate the kinematic and static
models of a manipulator. In addition, some trigonometric
reductions and output form functions developed for use in robotics
are incorporated. This file is called SML-P, in that it performs
modeis based on Paul's notation. To use Craig’'s notation, look for
the file called SML-L. A list of the functions in SML is presented
below with help on how to use them. <«

BaginPackage["Robotics ' SML-P "];
GENERAL HELP

SML: :usage = "Symbolic Manipulator Laboratory (SML) \n
was writen by Santiago March-Leuba at the Oak Ridge \n
Natlonal Laboratory to be used in symbolic modeling of \n
robot manipulators. Functions ending in C are to be used \n
with Craig’'s notatlon; otherwhise use Paul's notation. \n
List of Functions on SMi: \n

1.- Trigonometric Reductions and Output Forms \n

RedTrig, RedTrigExp, RedAngle, \n
ListOutput, RQut, RFForm, RCForm. \n
2.~ Kinematics Functions: \n
OperTransform, Rot, Pos, \n
DirectKinEg, InverseKin, JacobianP, \n
OperTransformC, RotC, PosC, \n
DirectKinEqC, InverseKinC, JacobianC. \n
3.~ Statlc Forces Functions: \n

StaticForces, Forces, Gravitation, \n
StaticForcesC, ForcesC, GravitationC. \n

4.~ Miscellaneous Functions: \n
CrossProd, PosVector. \n

Input Tables: \n

l.- Denavit~Hartenberg table (DHTable). \n

2.- Mass parameters table (MassTable).";
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DHTable: :usage = "DHTable is the input used in kinematic \n

and static forces functions. It is entered on the form: \n
a)when using Paul's notation: \n
DHTable = {{ql, alfl, al, dl}, \n
{q2, alf2, a2, d2}, \n
.\n
{gn, alfn, an, dn}}, \n
where: gi = angle from Xi-1 to Xi, about Zi-1, \n
alfi = angle from 2Zi-1 to 2i, about Xi, \n
ai = length from 2i-1 to 21, along Xi, \n
ai = length from Xi-1l to Xi, about 2i-1.\n \n
a)when using Craig's notation: \n
DHTable = {{ql, alf0, a0, d1l}, \n
{g2, alfl, al, d2}, \n
. . \n
{gn, alfn-1, an-1, dn}}, \n
where: qgi = angle from Xi-1 to Xi, about 2i, \n
alfi = angle from Zi-1 to Zi, about Xi-1, \n
ai = Jength from 2i-1 to 2i, along Xi-1,\n
di = length from Xi-1 to Xi, about 2i.";
MassTable::usage = "MassTable is the input necessary for \n
the functions Gravitation and StaticForces. It is entered \n
on the form: \n
MassTable = {{ml, mxl, myl, myl}, \n
{m2, mx2, mz2, mz2), \n
.A\n
{mn, mxn, myn, mzn}l}, \n
where: (1) mi is the mass of link 1i; and (2) mxi, myl, and\n
mzi are the locations of the centroid of link i along the \n
X-, ¥-, and Z-axes of the coordinate frame attached to \n

that link.";
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TRIGONOMETRIC REDUCTIONS

RedTrig::usage = "RedTrig[expr]
gives expr Trigonometricaly reduced using \n
classical pattern matching.”;

RedTrigExp: :usage = "RedTrigExp[expr]
gives expr Triqonometricaly reduced using \n

pseudo-exponential functions. After using RedTrigExp, any \n
of the four following functions can help to obtain a \n
simpler output: \n

ToMin[expr], ToMinClexpr], ToPaper[expr], ToMinCS[expr]. \n
They have been listed in order of time consumption and \n
sophistication. If the expression to deal with is long \n
and complicated, it is to the user advantage to use one after \n
the other, checking at any step to determine whether the \n

output is good enough.";
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OUTPUT FORMS

RadAngle: :usage = "RedAngle[expr, var, big]

gives the expression (expr), \n

regardless of its dimensions, reducing the form of tangents, \n

sines, and cosines: Tan(gl] -> T1, Sin(g2+gq3] ~> 823, \n

Cos[gl-g4} -> CIM4. By default, the angles are defined by gi;\n

to use a different one, specify it on var; \n
example: using ti makes var=t, \n

When blg > 0, sublindexes bigger than 9 are allowed.”;

ListOutput::usage = "ListOutput[List, name, form, var, big]
prints the given List, \n
regardless of its dimensions, as a multidimensional vector \n

with its subindexes. The printed name of the list is \n
given by name, ''List'' being its default. \n
Optional parameter form: \n
form = Text (by default}, gives the list on Text Form. \n
form = C, gives the list on C Form, \n
form = RC, gives the list on C Form, reducing the form of \n
tangents, sines, and cosines: Tan(gl] -> T1, \n
Sin{g2+g3] -> S23, Cos[gl~-g4] -> C1M4. By default, \n
the angles are defined by gi; to use a \n

different one, specify it on var; \n

example: using ti make var=t, \n

form = F, gives the list on FORTRAN Form. \n

form = RF, glves the list on FORTRAN Form reducing the form \n
of sines and cosires. \n
When big > 0, subindexes bigger than 9 are allowed.";

B FUNCTION -- RAunlliar --

CrossProd: :usage = "CrossProd{V_,U ]
gives the cross product of the two vectors V and U.";

PosVector::usage = "PosVector{Matrix_]
gives the posititon vector of the \n
4 x 4 homogeneous transformation Matrix.™";
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B FUNCTION -~ " OPERRTORS " -- (Paul's Notation) --

OperTransform: :usage = "OperTransform[DHTable, RefFrame, Frame]
gives the 4 x 4 homogeneous \n

transformation operator that relates Frame and RefFrame. \n
Enter the Denavit-Hartenberg table in Paul's notation." ;

B FUNCTION -- " ROTATIONAL MATRIH " --

Rot::usaga = " Rot [DHTable, RefFrame, Frame]

glves the rotational matrix that \n

relates Frame and RefFrame. Enter the Denavit-Hartenberg table\n
in Pauls's notation.” ;

W FUNCTION -- " POSITION UECTOR " -~

Pos::usage = " Pos[DHTable, RefFrame, Frame]

gives the position vector that \n

relates Frame and RefFrame. Enter the Denavit-Hartenberg \n
table in Paul's notation." ;

W FUNCTION -~ " PRUL'S TO CRAIG'S NOTATION "' --

PaulToCraig: :usage = " PaulToCraig[PDHTable]
transforms the Denavit-Hartenberg table \n
from Paul's To Craig's notation.™

M FUNCTION -~ " KINEMATIC EQUATIONS " -~

DirectKinEq: :usage = "\

DirectXinEq([DHTable, EulerOrder, BaseFrams, LastFrame]

gives \n

the kinematic equations :Px, Py, Pz, Roll, Pitch, Yaw. Enter \n

the D-H Table 1in Paul's notation. \n

The default for BaseFrame 1s '0' and for LastFrame is the \n
number of rows of the given D-H Table', \n
EulerOrder is the order of the Euler angles. Its default is \n
2YX where the function gives the ZYX Euler angles, or the XYZ \n
angles about fixed axes (both solutions are the same). \n

Use EulerOrder = 2YZ to get the ZYZ BEuler angles, \n

On output, the angles are Roll:with respect to X; Pitch:with \n
respect to Y; and Yaw:with respect to Z. \n
To use the defaults, call the function with only the first \n

parameter: DirectKinEg[DHTable]." ;
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B FUNCTION -- " INDERSE KINEMATICS " --

InverseRin::usaga = "InverseKin|[DHTable]

gives the inverse kinematics solution, when \n

it exist, of a 6-~DOF manipulator with the last three rotational \n
axes intersected. Enter the D-H Table in Paul's notation.” ;

B FUNCTION ~-- " JACOBIAN - PRUL'S " -~

JacobianP::usage = " JacobianP [DHTable, Ref¥Frame]
gives the Jacobian of the robot \n

written with respect to any specified reference frame: \n
{Cartesian Coordinates speeds} = Jacobian . {Joint speeds},\n
where: {Cart. Coord. speeds} = {dx/dt, dy/dt, dz/dt, wx, wy, wz}\n

written with respect to RefFrame. The default for RefFrame is \n
the baseframe. Enter the DHTable in Paul's notation.";

JacobTransform: :usage = "\
JacobTransform[DHTable, newFrame, 0ldFrame, oldJac]

transforms \n

the Jacobian of the robot (oldJac), written with respect to any\n
specified reference frame (oldFrame), to a different frame \n
(newFrame). Enter the DHTable of the robot in Paul's notation.";
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B FUNCTION -~ " STATIC AND GRAVITATIONAL FORCES " --

StaticForces::usage = "StaticForces[DHTable, MassTable, \
vgravity, Fext, FrameFext, FrameFextApplied, Force, Torqus]
gives the force(torque) that\n
is necessary to apply at each joint to keep the robot in static\n
conditions when under the effect of an external force Fext\n
and/or Gravity.\n
1)MassTable is composed of four parameters for each link. The\n
first one defines its mass and the next three define\n
the location of the center of mass.\n
2)Vgravity: 3 x 1 vector that represents the direction and value\n
of the gravity acceleration. By default, Vgravity=(0,0,-G}. \n
3)Fext: & x 1 vector that represents the external force(torque)\n
{Fx, Fy, Fz, Tx, Ty, Tz} aloag the three axes applied to \n
any coordinate frame (FrameFextApplied) and written with respect:®
to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0},\n
FrameFextApplied = FrameFext = LastFrame of the DHTable.\n
4)Force and Torque are by default false. Setting them to true\n
includes in the output all the internal reactions on the links.";

Forces::usage = "Forces[DHTable, Fext, \
Framefext, FrameFextApplied, Force, Torque]\n

gives the force(torque) that is necesary to apply at each \n
joint to keep the robot, given by DHTable, in static \n
conditions when under the effect of an external force Fext. \n

l)Fext: 6 x 1 vector that represents the external force(torque) \n
{Fx, Fy, Fz, Tx, Ty, Tz} along the three axes. BApplied to \n
any coordinate frame (FrameFextApplied) and written with respect
to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0}, \n
FrameFextApplied = FrameFext = LastFrame of the DHTable. \n

2)Force and Torque are by default false, If they are set to \n
a different value, then all the internal forces and torques \n
on the links are included in the output” ;

Gravitation::usage = "Gravitation[DHTable, MassTable, \

Vgravity, Force, Torguae)

gives the\n

force(torque) that is necesary to apply at each joint to keep\n

the robot, given by DHTable, in static conditions when under\n

the effect of Gravity.\n

l)MassTable is composed of four parameters for each link. The\n
first one defines its mass and the next three define\n
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the location of the center of mass.\n
2)Vgravity: 3 x 1 vector that represents the direction and value\n
of the gravity acceleration. By default, Vgravity={0,0,-G}. \n
3)Force and Torque are by default false. If they are set to \n
a different value, then all the internal forces and torques\n
on the links are included in the output" ;

EndPackage(]

Null
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APPENDIX B-2

SML-C.m, SYMBOLIC MANIPULATOR LABGRATORY
By Santiago March-lLeubs, November 1991

W >> This file contains routines for robot manipulator modeling.
Several functions are included to cailculate the kinematic and static
models of a manipulator. In addition, some trigonometric
reductions and output form functions developed for use in robotics
are incorporated. This file is called SML-C, in that it performs
models based on Craig's notation. To use Paul's notation, look for
the file called SML-P. A list of the functions in SML is presented
below with help on how to use them. <«

BeginPackage ["Robotics  SML-C "};
GENERAL HELP

SML::usage = "Symbolic Manipulator Laboratory (SML) \n

was writen by Santiago March-Leuba at the Oak Ridge \n
National Laboratory to be used in symbolic modeling of \n
robot manipulators. Functions ending in C are to be used \n

with Craig’s notation; otherwhise use Paul's notation. \n

List of Functions on SML: \n

1.- Trigonometric Reductions and Output Forms \n
RedTrig, RedTrigExp, RedAngle, \n
ListQutput, ROut, RFForm, RCForm. \n

2.~ Kinematics Functions: \n
OperTransform, Rot, Pos, \n
DirectKinEqg, InverseKin, JaccbianP, \n
OperTransformC, RotC, PosC, \n
DirectKinEqC, InverseKinC, JacobianC. \n

3.~ Static Forces Functions: \n

StaticForces, Forces, Gravitation, \n
StaticForcesC, ForcesC, GravitationC. \n

4.~ Miscellaneous Functions: \n
CrossProd, PosVector. \n

Input Tables: \n

1.- Denavit-Hartenberg table (DHTable). \n

2.~ Mass parameters table (MassTable).";
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DHTable: :usage = "DHTable is the input used in kinematic \n

and static forces functions, It is entered on the form: \n
a)when using Paul's notation: \n
DHTable = {{gl, alfl, al, dl}, \n
(g2, alf2, a2, d2}, \n
.\n
{gn, alfn, an, dn}}, \n
where: qi = angle from Xi-1 to X1, about Zi-1, \n
alfi = angle from Zi-1 to 2i, about Xi, \n
ai = length from 2i-1 to 2i, along Xi, \n
di = length from Xi-1 to Xi, about 2i-1.\n \n
a)when using Craig's notation: \n
DHTable = {{gl, alf0, a0, dl}, \n
{gq2, alfl, al, d2}, \n
. . .\n
{gn, alfn-1, an-1, dn}}, \n
where: ql = angle from Xi-1 to Xi, about Zi, \n
alfi = angle from 2i-1 to 21, about Xi-1, \n
ai = length from Zi-1 to zi, along Xi-1,\n
di = length from Xi-1 to Xi, about Zi.";
MassTable::usage = "MassTable is the input necessary for \n
the functions Gravitation and StaticForces. It is entered \n
on the form: \n
MassTable = {{ml, mx1l, myl, myl}, \n
{m2, mx2, mz2, mz2}, \n
A\n
{mn, mxn, myn, mzn}}, \n
where: (1) mi is the mass of link i; and (2) mxi, myi, and\n

mzl are the locations of the
X-, Y-,
that 1link.";

and Z-axes of the coordinate frame attached to

centroid of link 1 along the \n
\n
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TRIGONOMETRIC REDUCTIONS

RedTrig::usage = "RedTrig[expr]
gives expr Trigonometricaly reduced using \n
classical pattern matching.";

RedTrigExp::usage = "RedTrigExp{expr]
gives expr Trigonometricaly reduced using \n
pseudo~exponential functions. After using RedTrigExp, any
of the four following functions can help to obtain a
simpler output:

ToMin[expr], ToMinC{expr], ToPaper[expr), ToMinCS[expr].
They have been listed in order of time consumption and
sophistication. If the expression to deal with is long

and complicated, it is to the yser advantage to use one after

the other, checking at any step to determine whether the
output is good enough.";

\n
\n
\n
\n
\n
\n
\n
\n
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OUTPUT FORMS

RedAngla: :usage = "RedAngle[axpr, var, big]
gives the expression (expr), \n
regardless of its dimensions, reducing the form of tangents, \n

sines, and cosines: Tan[gl] -> T1, Sin(g2+g3] -> 823, \n
Cos{gql-g4] -> C1M4. By default, the angles are defined by gqi;\n
to use a different one, specify it on var; \n

example: using ti makes var=t. \n

When big > 0, subindexes bigger than 9 are allowed.";

ListOutput::usage = "ListOutput[List, name, form, var, big]
prints the given List, \n
regardless of its dimensions, as a multidimensional vector \n

with its subindexes. The printed name of the list is \n
given by name, ''List'' being its default. \n
Optional parameter form: \n
form = Text (by default), gives the list on Text Form. \n
form = C, gives the list on C Form. \n
form = RC, gives the list on C Form, reducing the form of \n
tangents, sines, and cosines: Tan(ql] -> T1, \n
Sin[g2+g3} -> 823, Cos(gl-g4] -> C1M4. By default, \n
the angles are defined by qi; to use a \n

different one, specify it on var; \n

example: using ti make var=t, \n

form = F, gives the list on FORTRAN Form. \n

]

form RF, gives the list on FORTRAN Form reducing the form \n
of sines and cosines. \n
When big > 0, subindexes bigger than 9 are allowed.”;

B FUNCTION -- Rusxillar --

CrossProd::usage = "CrossProd(V_,U_]
gives the cross product of the two vectors V and U.";

PosVector::usage = "PosVector[Matrix ]
gives the posititon vector of the \n
4 x 4 homogeneous transformation Matrix.";

B FUNCTION -- " OPERATORS " -- (Craig's notation) --

OperTransformC::usage = "OperTransformC[DHTable, RefFrame, Frame)
gives the 4 x 4 homogeneous transformation operator that \n
relates Frame and RefFrame. \n

Enter the Denavit-Hartenberg table in Craig's notation.” ;
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B FUNCTION -- " ROTARTIONARL MATRIH " --

RotC::usage = " RotC[DHTable, RefFrame, Frame]

gives the rotation matrix that \n

relates Frame and RefFrame, Enter the Denavit-Hartenberg table\n
in Craig's notation." ;

B FUNCTION -- " POSITION DECTOR " --

PosC::usage = " PosC[DHTalle, RefFrame, Frame]

gives the Position Vector that \n

relates Frame and RefFrame. Enter the Denavit-Hartenberg \n
table in Crailg's notation.”

B FUNCTION -~ " PRUL'S TO CRAIG'S NOTATION " -~

PaulToCraig::usage = " PaulToCraig[PDHTable]
transforms the Denavit-Hartenberg: Table \n
from Paul's To Craig's notation.”

M FUNCTION -- " KINEMATIC EQUATIONS " --

DirectKinEqC: :usage = "\
DirectKinEqQC(DHTable, EulerOrder, BasaFrame, LastFrame]

gives \n
the kinematic equations :Px, Py, Pz, Roll, Pitch, Yaw. Enter \n
the D~H Table in Craig's notation. \n
The default for BaseFrame is '0' and for LastFrame is the \n
number of rows of the given D-H Table'. \n
EulerOrder is the order of the Euler angles. Its default is \n
ZYX where the function gives the ZYX Euler angles, or the XYZ \n
angles about fixed axes (both sclutions are the same). \n
Use EulerOrder = ZYZ to get the 2YZ Euler angles. \n
On output, the angles are Roll:with respect to X; Pitch:with \n
respect to Y; and Yaw:with respect to Z. \n
To use the defaults, call the function with only the first \n

parameter: DirectKinEqC[DHTable]." ;
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M FUNCTION -- " INDERSE KINEMATICS " --

InverseKinC: :usage = "InverseKinlC[DHTable]

gives the inverse kinematics solution, when \n

it exist, of a 6-DOF manipulator with the last three rotational \n
axes intersected. Enter the D-H Table in Craig's notation.”

B FUNCTION -- " JRCOBIAN " --

JacobianC: :usage = " JacobianC[DHTable, RefFrame]

gives the Jacobian of the robot \n

written with respect to any specified reference frame: \n
{Cartesian Coordinates speeds} = Jacobian . {Joint speeds},\n

where: {Cart. Coord. speeds} = (dx/dt, dy/dt, dz/dt, wx, wy, wz}\n

written with respect to RefFrame, The default for RefFrame is \n

the number of rows of the given DHTable, \n

given in Craig's notation.™;

JacobTransformC: :usage = "\
JacobTransformC[DHTable, nawFrame, oldFrame, oldJac]

transforms \n

the Jacobian of the robot (oldJac), written with respect to any\n
specified reference frame (oldFrame), to a different frame \n
(newFrame). Enter the DHTable of the robot in Craig's notation.";
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W FUNCTION -- " STATIC AND GRAUITATIONAL FORCES " --

StaticForcesC::usage = "StaticForcesC[DHTable, MassTable, \
Vgravity, Fext, FrameFext, FrameFextApplied, Force, Torque]
gives the force(torque) that\n
is necessary to apply at each joint to keep the robot in static\n
conditions when under the effect of an external force Fext\n
and/or Gravity.\n
1)MassTable is composed of four parameters for each link. The\n
first one defines its mass and the next three define\n
the location of the center of mass.\n
2)Vgravity: 3 x 1 vector that represents the direction and valueln
of the gravity acceleration. By default, Vgravity={0,0,-G}. \n
3)Fext: 6 x 1 vector that represents the external force(torque)\n
{Fx, Fy, Fz, Tx, Ty, Tz} along the three axes applied to \n
any coordinate frame (FrameFextApplied) and written with respect®
to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0},\n
FrameFextApplied = FrameFext = LastFrame of the DHTable.\n
4)Force and Torque are by default false, Setting them to trueln
includes in the output all the internal reactions on the links.";

ForcesC::usage = "ForcesC[DHTable, Fext, \
FrameFext, FrameFextApplied, Force, Torquel\n

gives the force(torque) that 1is necesary to apply at each \n
joint to keep the robot, given by DHTable, in static \n
conditions when under the effect of an external force Fext. \n

l)Fext: & x 1 vector that represents the external force(torque) \n
{Fx, Fy, Fz, Tx, Ty, Tz} along the three axes. Applied to \n
any coordinate frame (FrameFextApplied) and written with respect
to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0}, \n
FrameFextApplied = FrameFext = LastFrame of the DHTable. \n

2)Force and Torque are by default false. 1If they are set to \n
a different value, then all the internal forces and torgques \n
on the links are included in the output"

GravitationC::usage = "GravitationC[DHTable, MassTable, \
Vgravity, Force, Torque]
gives the\n
force (torque) that is necesary to apply at each joint to keep\n
the robot, given by DHTable, in statlc conditions when under\n
the effect of Gravity.\n
l)MassTable is composed of four parameters for each link, The\n
first one defines 1ts mass and the next three define\n
the location of the center of mass.\n
2)Vgravity: 3 x 1 vector that represents the direction and valueln
of the gravity acceleration, By default, Vgravity={0,0,-G}. \n
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3)Force and Torque are by default false, If they are set to \n
a different value, then all the internal forces and torgues\n
on the links are included in the output"

EndPackage(];

Null
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APPENDIX B-3

RedTrig.m, SYMBOLIC MANIPULATOR LABORATORY
By Santiago March-lLeuba, November 1991

M >> This file contains routines for trigonometric reductions and
output forms developed to be useful in robotics.
If SML~-C or SML-P are to be loaded, this file is not needed,
because all its functions are included in the other two
packages. «

BeginPackage["Robotics  RedTrig' "}
GENERAL HELP

SML: :usage = "Symbolic Manipulator Laboratory (SML) \n

was writen by Santiago March-Leuba at the Oak Ridge \n
National Laboratory to be used in symbolic modeling of \n
robot manipulators. Functions ending in C are to be used \n

with Crailg's notation; otherwhise use Paul's notation. \n

List of Functions on SML: \n

l1.- Trigonometric Reductions and Output Forms \n
RedTrig, RedTrigExp, RedAngle, \n
ListOutput, ROut, RFForm, RCForm. \n

2.- Kinematics Functions: \n
OperTransform, Rot, Pos, \n
DirectKinEq, InverseKin, JacobianP, \n
OperTransformC, RotC, PosC, \n
DirectKinEqQC, InverseKinC, JacoblanC. \n

3.~ Static Forces Functions: \n

StaticForces, Forces, Gravitation, \n
StaticForcesC, ForcesC, GravitationC. \n

4.~ Miscellaneous Functions: \n
CrossProd, PosVector, \n

Input Tables: \n

1.- Denavit-Hartenberg table (DHTable). \n

2.- Mass parameters table (MassTable).";
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TRIGONGMETRIC REDUCTIONS

RedTrig: :usage = "RedTriglexpr)
gives expr Trigonometricaly reduced using \n
classical pattern matching.";

RedTrigExp: :usage = "RedTrigExp[expr]

gives expr Trigonometricaly reduced using \n
pseudo-exponential functions. After using RedTrigExp, any
of the four following functions can help to obtain a
simpler output:

ToMin (expr}, ToMinC[expr], ToPaper (expr])}, ToMinCS[expr].
They have been listed in order of time consumption and
sophistication., If the expression to deal with is long
and complicated, it is to the user advantage to use one after
the other, checking at any step to determine whether the
output 1is good enough.”;

\n
\n
\n
\n
\n
\n
\n
\n
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BUTPUT FORMS

RedAngle: :usage = "RedAngle[expr, var, big]
gives the expression (expr), \n
regardless of its dimensions, reducing the form of tangents, \n

sines, and cosines: Tan[ql] ~-> T1l, Sin[q2+q3] -> 8§23, \n
Cos[gl-g4) -> CIiM4. By default, the angles are defined by gqi;\n
to use a different one, specify it on var; \n

example: using ti makes var=t. \n

wWhen big > 0, subindexes bigger than 9 are allowed.";

ListOutput::usage > "ListOutput[List, name, form, var, big}
prints the given List, \n
regardless of its dimensions, as a multidimensional vector \n

with its subindexes. The printed name of the list is \n
given by name, ''List’'' being its default. \n
Optional parameter form: \n
form = Text(by default), gives the list on Text Form. \n
form = C, gives the list on C Form, \n
form = RC, gives the list on C Form, reducing the form of \n
tangents, sines, and cosines: Tan{ql] -> TI1, \n
Sin[qg2+g3) -> $23, <Cos[gl~g4] -> CI1M4, By default, \n
the angles are defined by gqi; to use a \n
different one, specify it on var; \n
example: using ti make var=t, \n
form = F, gives the list on FORTRAN Form. \n

form = RF, gives the list on FORTRAN Form reducing the form \n
of sines and cosines. \n
When big > 0, subindexes bigger than 9 are allowed.";

B FUNCTIDON -- Runlliar --

CrossProd::usage = "CrossProd[V_,U ]
gives the cross product of the two vectors V and U.™;

PosVector::usage = "FPosVector[Matrix ]
gives the posititon vector of the \n
4 x 4 homogeneous transformation Matrix.";
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APPENDIX C

FUTURE ARMOR REARM SYSTEM MANIPULATOR: KINEMATICS,
WORK SPACE, STATIC FORCES MODEL, AND DESIGN

This example application presents a complete study of the kinematics of the Future
Armor Rearm System (FARS) Manipulator (Kress et al. 1991). The design of some of
FARS lengths and angular constraints with the goal of optimization of the work space is
also presented here. The manipulator coordinate system is shown in Figure C-1, from
which the D-H Table in Craig's notation (Craig 1986) is obtained. Itis a 5 degree-of-
freedom (DOF) manipulator, of which the first four joints are rotational, and the fifth is
prismatic.

The goal of the FARS vehicle, is to automatically reload the Army's new M1A1
Block III tank as shown in Figure C-2. The automated shell-handling hardware is
composed of four major systems: the articulated boom and docking port used for
connecting with the tank, the carousel used for storage and selection of shells, the lift table,
and the boom conveyor used for transfer of shells along the boom into the M1A1 tank.
The articulated boom plus the extra rotational DOF of the carousel constitute the FARS
manipulator, the kinematics and work space of which are presented in this example
application for the Symbolic Manipulator Laboratory (SML).

The shells are to be transfered through the interior of the manipulator. Angular joint
constraints cannot be large, because the shells are long and cannot turn in a small angle.
This size limitation creates a very constrained robot with a reduced work space. An
optimization design of lengths and angular constraints is presented here to maximize the

work space of the FARS manipulator.
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The following pages with the example are printed directly from SML, thus
presenting the same format as on the computer monitor. Note that bold characters here are
either input for SML. and Mathematica (Wolfram 1988) or text comments, and the plain

nonbold represents output obtained from SML or Mathematica.

Z0=21

Figure C-1. FARS manipulator coordinate system definition.



FARS SYSTEM
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M1 TANK

AMMUNITION CAROUSEL

Figure C-2. FARS vehicle reloading an M1Al tank.
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B FARS Manipulator D-H Table in Craig's notation and Mass
Table.

FarsTable := {(q), o, 0, 01},
{q2, Pi/2, al, 0 ),
(g3, 0, a2, 0},
(q""Pi/L 0, 01,
{ 0, P4/2, 0, d5}});

FarsMass := {(ml, xml, yml, zml},
{m2, xm2, ym2, zm2},
{o, o, 0, 0},
{mé, xmé, ymd, zmdb},
{m3, xm8, ymS, zm5})

B Homogeneous transformation between second and fifth
frames in two different output forms.

OperTransformC[FarsTable, 2,5]
{{Cos{q3] Cos(q4), -Sin(gq3), Cos(g3] Sin[g4),

a2 + d5 Cos(q3) Sin(q4])}),
{Cos(g4] Sin(g3), Cos(q3), Sin(g3] Sin{q4]),
d5 Sin(g3] Sin[q4l), (-Sin{gd], 0, Cos([g4}, d5 Cos(gdl},

{0, 0, O, 1}}
MatrixForm{ RedAngle[%]]

C3 C4 -S3 C3 sS4 a2 + C3 s4 ds
C4 83 Cc3 53 54 S$3 84 dS
-54 0 C4 Cc4 ds

0 0 0 1
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B Direct Kinematic equations.
DirectKinEqC{TarsTable)

/** KINEMATIC EQUATIONS **/
/*Position: Px, Py, Pz */
/*Orientation: */
Roll: respect to X;
pitch: respect to ¥;
Yaw: respect to 2; */
/* - Roll, Pitch, Yaw about the fixed axes X Y Z .Or
/* ZYX Euler angles
Px = C1l al + Cl1 C2 a2 + C4 S1 d5 + Cl C23 sS4 dS:
Py = S1 al + C2 S1 a2 - C1 C4 d5 + C23 S1 sS4 d5;
Pz = S2 a2 + S23 sS4 d5;
Roll = Atan2({C23, S23 54);
Pitch = Atan2({-(C4 S23),
2 2 2
sqrt(S23 S4 4+ (C1 C23 C4 - S1 s4) )):
Yaw = Atan2{C23 C4 S1 + Cl1 5S4, Cl C23 C4 - S1 s4};

M Obtain the Jacobian written with respect to the fifth
frame,

¥J5 = RedAngle{ JacobianC[FarsTable,5] ]
{{S4 al + C2 S4 a2 + C23 d5, C4 s3 a2, 0, d5, 0},

{-(C4 S23 d5), C3 a2 + S4 d5, S4 ds, 0, 0},
{~(C4 al) - C2 C4 a2, S3 84 a2, 0, 0, 1},
{c4 s23, -s4, -s4, 0, 0}, (c23, o0, 0, 1, O},

{S23 s4, C4, C4, 0, 0}}
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® Obtain the Jacobian written with respect to the base

frame,

FJ0 = JacobianC{FarsTable,0];
ListOutput( Collection{FrJo, {qi,q2}], "FJ0"}

FJO(1,1)
FJO(2,1)
FJO(3,1)
FJjo{4,1)
FJO(5,1)
FJO(6,1)

FJo(1,2)
FJ0(2,2)
FJO(3,2)
FJO(4,2)
FJO(S, 2)
FJo(6,2)

FJO(1,3)
FJo(2,3)
FJO(3,3)
FJo (4, 3)
FJO(5,3)
FJO(6, 3)

FJo(1, &)
FJo(2,4)
FJO(3,4)
FJ0(4,4)
FJO (5, 4)
FJ0 (6, 4)

FJO(1,95)
FJ0(2,5)
F30(3,3)
F.JO (4, 9)
FJO (S, 5)
FJO(6,5)

Cl C4 d5 + S1 (-al - C2 a2 - C23 S84 d9%)
C4 S1 dS + Cl1 (al + C2 a2 + C23 54 d5)
0

0
V]
1

Cl (-(S2 a2) - S23 sS4 dj9)
$1 (-(S2 a2) - S23 54 dj)
C2 a2 + C23 s4 d5

s1

~C1l

0

~(Cl §23 S4 d5)
~(S1 $23 sS4 dS)
C23 84 dS

S1

~-Cl

0

Cl C23 C4 d5 ~ S1 sS4 dS
C23 C4 S1 d5 + Cl1l 84 d§
C4 S23 dS

~{C1l S23)

-{S1 523)

Cc23

C4 S1 + Cl1 C23 sS4
-(Cl C4) + C23 S1 s4

= $523 S4

0
0
0
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W Static forces model: force/torque that each joint has
to support to keep the manipulator in static
equilibrium under the effect of an external general

force (rx,ry,rs,Mx,My,Nx) applied at the
end-effector.

rrars = ForcesC[FarsTable, (Fx,Fy,Fz, Mx My, Mz)]

"/*% STATIC AND GRAVITATIONAL FORCES COMPENSATION **/"

"/* Fs(i] = Force exerted on link i by link i-1 */*

"/* Ns[i] = Torque exerted on link i by link i-1 */*

"/* M(4] = Necesary Force/Torque in Motor i x/»

M{1l) = -(-((C4*Fz - Fx*S4)*al) +

S2*(-(S3*(My + Fx*d5)) +

C3*(M2*S4 + C4*(Mx - Fy*dS))) +

C2*(~((C4*Fz ~ Fx*S4)*a2) + C3*(My + Fx*d5) +

S3*(Mz*Sq4 + C4*(Mx - Fy+*dS)))):

-(C4*Mz + (C3*Fy + S3*(C4*Fx + Fz*S4))*a2 -~
S4*(Mx - Fy+*d$));

M(3] -(C4*Mz - S4*(Mx - Fyxd$)):

M{4)] = ~(My + Fx*d$);

M(5] = -Fz;

M([2]
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B Optimization Design.

O An coptimization design of lengths and angular constraints
is presented In the next example for which the goal Is to
meximize the work space of the FARS manipulater,

B First step was to obtain the inverse kinematics.

0O The known input Is the position vector and the orientation
of the last link (see Figure C-1) of the manipulator. Let us
define TOS as the homaogeneous transformation between the
first and the fifth frame. The unknown parameters are
called U In the following:

T0% = {{ U, O, ax, Px},
{ U, U, ay, Py},
{ U, U, az, Ps},
{0, 0, O, 1}};

O The equations to solve for the inverse kinematics were
obtained from SML as follows:

AlD = OperTransformC(FarsTable, 1, 0}

A53 = OperTransformC(FarsTabla, 5, 3},

Al3 OpsrTransformC(FarsTable, 1, 3],

Xi3 PosVectoxr[ Al0 . T0S5 . AS3 ] .

P13 = PosVector(| Al13 ] .

Do{ Print{ RedAnglae{K13{[i]]]), " = ", RedAngle[Pi3([[i]]]
1, {1,1,3))

Cl Px + Py S1 - (Cl ax + S1 ay) dS5 = al + C2 a2
Cl Py - Px S1 - (-(S1 ax) + Cl ay) d5 = O
Pz -~ az d5 = S2 a2

L]

0 There are only three unknowns in the above equations: ql,
q2, and dS5, Adding the square of the three equations and
reducing them (rigonometrically, a fourth order
polynomial in dS5 is obtained that can be solved with the
help of Mathematica. Then, ql and q2 can be solved from
the same equations,
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0O Once ql, q2, and dS are known, it can be solved for q4, g5,
and g6 by:

Al0 = OpexTransformC{FarsTable, 1, 0];

AlS = OperTransformC{FarsTable, 1, 5):

K15 = Table{ (A0 . TOS5)({{4i,3]), (i,1,3} 1}

P15 = Table{ A1S [[4i,3}], (4,1,.3)) ;

Do{ Print{ RedAngle(K1S({[4i]]), " = *, RedAngle{P15{[i]}]
‘ l ’ ("'113,]

Cl ax + S1 ay = C23 54
-(S1 ax) + Cl ay = -¢4
az = S23 54

M A function was created that solves for the inverse
kinematics of FARS manipulator.

FarsInvKin::usage = " FarsIavKin gives the Inverse
Kinematic Solution for FARS Manipulator. This
Function has seaven parameters, being the last three
of them optional.

FarsInvKin{Px , Py_, Pz_, Ang¥ , AnglZ ,
al_:1.98120, a2_:2.02564, Prt_:0]";

O FarsInvKin calculates the joint angles (ql, q2, q3, and g4),
and the joint distance d§ necessary to reach, with the last
link of FARS, a position and orientation given by Px, Py, Pz,
AngY¥, and AngZ. The solution is a function of the lengths
al and a2 of the manipulator, which allow us to plot the
joint solutions as functions of a2, when al s fixed at 6.5
feet (1.98120 meters). The more conflicting joint
constraints are for q3, q4, and d5. Thus, only these are
ploted here.



InvKin(a2 ] := InvKin({al] =
FearsInvKin(5.03, 0, 0, 10, 10, 1.8812, a2)
Plot3[a2_] := Invkin(a2][[3]]):
Plot4([a2_ ] := InvKin([a2][[4]] - 90:
Plot5(a2 | := InvEin(a2][[5)];

Plot{ (Plot3[a2], Plot4({a2], PlotS{a22] 10, 5.1, 15.2},
(a2, 1.6, 2.4},
Ticks->{Range({l.6,2.4,.1},Range{8,24,2]},
AxasLabel -> (" Length a2"," "}]

20+

i 10 x d5 max

144 \ a3
10xdS
104:\\ 10 x d5 min

. . . S ~ Length a2
1.6 1.7 1.8 1.9 2.1 2.2 2.3~2.4

~-Graphics-~

0 The figure above shows angles q3 and q4 (q4-90) in
degrees, and length d§5 (10 x d5) in meters as functions of
the second link length a2, in meters. Only because SML
allows symbolic modeling we could obtain this plot. These
plots were obtained for different configurations of the
robot. The following conditions for a good design of FARS
manipulator were obtained by analyzing a series of plots
like the one above:

» Use the !argest posible value of a2. It shoul be at least
1.98 meters.

- Joint 3 is to have the largest possible range of motion to
allow a large value of ql.

» Choose dS to be as small as possible.

» Extend the reach along the x axis to the largest possible
value making Px at least 5.3 meters.
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B Work Space study.

O Different soubroutines were created to study the effect of
variation of lengths on the work space of the manipulator. The
next figure shows the relation between the position (Py) and
orientation (AngY) and the last link length (d5).

FARS at: Px=5.5, Py=0, Pz=0, AngY=AngZ=0

-SurfaceGraphics-
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O Finally, = three dimensiona! solid plot of the work space is
obtained as shown below. This was obtained using the symbolic
inverse kinematics solution.

B FARS 3D WORK SPACE FOR AngY and AngZ EQUAL TO ¢
DEGREES.

Constraints:
* 31 = 6.5 faet
a2 = 6.6458 faet
-90 < Al < 90 degreses
=15 < A2 < 32 degrses
-24 < A3 < 24 degreas
{30 - 24) < A4 < (90 + 24) degrees
3<dsh < 5 faet

B % X » X% »

:;:,:;:,.-4 ARt
sy
Psai

&wﬂ'
it

£
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OTHER SAMPLE APPLICATIONS






APPENDIX D-1

CENTER FOR ENGINEERING SYSTEMS ADVANCED RESEARCH
MANIPULATOR FORWARD AND INVERSE KINEMATICS

This example application presents the implementation of the forward kinematics and
an algorithm for the inverse kinematics of the Center for Engineering Systems Advanced
Research manipulator (CESARm) of Oak Ridge National Laboratory based on a paper
presented by Dubey, Euler, and Babcock (1988).

The CESARm manipulator coordinate system is shown in Figure D-1, from which
the D-H Table in Paul's notation (Paul 1981) is obtained. Figure D-2 shows the CESARm
(slave) and the KRAFT (master) used together in a teleroperated robotic system at Oak
Ridge National Laboratory.

CESARm is a 7-DOF manipulator. Because of its redundant configuration, special
algorithms such as the one developed by Dubey, Euler, and Babcock (1988) are necessary
to control it. Following the algorithm described in their paper and using SML,
computational efficient closed-form solutions are obtained for the joint rates as a function of
the Cartesian velocities of the end effector. The following pages with the example are
printed directly from SML, thus presenting the same format as on the computer monitor.
Note that bold characters here are either input for SML or text comments, and the nonbold

text represents output obtained from SML.
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Figure D-1. CESARm coordinate system definition.
Source: Dubey, Euler, and Babcock 1988.
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Figure D-2. Teleoperated system: CESARm and the KRAFT master (ORNL-Photo 5224-89).
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B CESARM Robot D-H Table in Paul's

CesarmTable := {{ql, Pi/2,
{qzl —Pilzl
{q3, Pi/2,
(g4, o,
{q%, -Pi/2,
{qg6, Pi/2,
{q7, o,

B Direct Kinematic Equations u

DirectXipEgq{CesarmTable, ZYZ]

/** KINEMATIC EQUATIONS *=*/
/*Position: Px, Py, Pz */
/*Qrientation: */

Roll: respect to X;
Pitch: respect to Y:
Yaw: respect to Z; */
/* ~ ZYZ Euler angles
Px = S1 (d2 + C3 C6 d7 - 53
Cl (C2 C6 83 d7 + C2 C3
s2
Py = C1 (-d2 - C3 C6 d7 + S3
S1 (C2 C6 S3 d7 + Cc2 C3
$2
Pz = C2 (S4 a4 - d3 + S45 S6
S2 (C6 S3 d7 + C3 (a3 +
Roll = Atan2([C2 (C45 C7 - C
S2 (-(C3 C7 sS4
C2 (-(Cs6 C7 sS4
S2 (C7 (-(C3 C
Pitch = Atan2(Sqrt {Power (C2
S2 (C7 (C3 C45
Power {C2 (C45
S2 (-(C3 C7 sS4
C2 S45 S6 + S2
Yaw = Atan2{Cl (-(C3 C6) +
S1 (~-(S2 545 s
S1 (C3 C6 ~ C4
Cl (-(S2 545 s

notation.
0, 0},
0, d2 1},
lsl 'd3 }l
24, 0},
0, 0},
0, o},
0, d7})

sing the ZYZ Euler angles

(a3 + C4
(a3 + C4§
(-(S4 a4)
(a3 + C4
(a3 + C4
(- (5S4 a4)
arn +

C4 a4 + C45 s6 d7));
6 S45 S7) +

a4 + C45 S6 d7)) +
ag + C45 S6 d7) +
+ d3 - 545 S6 d7) ) ;
a4 + C45 S6 d7)) -
a4 + C45 S6 d7) +
+ d3 ~ 545 $6 d7));

5) + (-(C3 C45 C&) + S3 $6)
S) - C45 S7) +
45 C6) + S3 86) + C3 845 SN ],
(C6 C7 S45 + C45 87) +

C6 - S3 S6) - C3 S45 s7), 2]
C7 - C6 845 s7) +
S) + (-(C3 C45 C6) + S3 S6)
(C6 S3 + C3 C45 s6));

C45 S3 s6) +
6) + C2 (C6 83 + C3 C45 s6)),
5 83 s6) +
6) + C2 (C6 S3 + C3 C45 S63) ]

s7),

+

s,

211,



B Obtain the Jacobian from the wrist written with respect to the
third frame. Making d7 = 0, the Jacobian from the wrist
instead from the end-effector will be obtained.

CesarnTabla :=» CasarmTable /. &7 -> 0;

J3 = RedTrig{JacobianP{CesarmTable,3]];
ListOutput {Collect (J3, (Cos(q3],Sin(q3]}], "Jacd"]

Jac3{1,1) = C2 C3 dZ + 53 (-(S2 sS4 a4) + S2 d3)

Jac3(2,1) = S3 (S2 a3 + C4 S2 a4) - S2 dz2

Jac3(3,1) = -(C2 a3) - C2 C4 a4 + C2 33 d2 + C3 (S2 S4 a4 - s2 dI
Jac3(4,1) = C3 S2

Jac3(5,1) = C2

Jac3(6,1) = S2 S3

Jac3(1,2) = C3 (-(S4 a4) + d3)
Jac3(2,2) = C3 (a3 + C4 ad)
Jac3(3,2) = S3 (-(S4 a4) + d3)
Jac3(4,2) = -33

Jac3(5,2) = 0

Jac3(6,2) = C3

Jac3(l,3) =0

Jac3(2,3) = 0

Jac3(3,3) = ~a3 ~ C4 a4

Jac3(4,3) =0

Jac3(5,3) =1

Jac3(6,3) = 0 .

Jac3(1,4) = -(S4 a4
Jac3(2,4) = C4 a4
Jac3(3,4) = 0
Jac3(4,4) = 0
Jac3(5,4) = 0
Jac3(6,4) = 1

o

Jac3{1,5) =
Jac3(2,5) = 0
Jac3(3,5) =
Jac3 (4, 5)

Jac3d(5,%) =
Jac3(€,5) =

O OO

Jac3(1l,6) =
Jac3(2,6) =

O O



Jac3(3,6)
Jac3(4,6)
Jac3(5,6)
Jac3(6,6)

Jaci(i,7)
Jac3(2,7)
Jac3(3,7)
Jac3(4,7)
Jac3(5, 7
Jac3(6,7)

-545
C4s3

O OO

C45 Sé
545 s¢

100
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B Contruct a not singular jacobian J* from any six
independent columns of the Jacobian. Dropping the second
column the following Jacobian is obtained.

Jetar = Table{ {(J3{[4,1]],33((3,3]],33((3, 411,
J3(13,511,93013,611, 93003, 711}, (3.1,6}1;

RedAngle {Jstar]

{{=(S2 S3 S4 a4) + C2 C3 d2 + 82 S3 d3, 0, ~-(54 a4y, 0, 0, 0},
{S2 83 a3 + C4 S2 S3 a4 - 52 d2, 0, C4 a4, 0, O, 0};
{-(C2 a3) - C2 C4 a4 + C3 32 S4 a4 + C2 S3 d2 - C3 s2 43,
-a3 - C4 a4, 0, 0, 0O, O}, (C3 82, 0O, O, 0O, -545, C45 S6},

{(c2, 1, 0, 0, C45, 3545 sS6}, (S2 83, 0, 1, 1, O, C61}
M Following the algorithm, the Jacobian can be decomposed in

two matrices using the first three and last three rows,

Jistar = Table| Jstaxr([i,3)] ,{4,1,3} ,{3.1,3}):
J2star = Tabl.[ Jat‘x[[iojjl 1(i,‘v6) l{jllls)];

B  The solution for the first three joint rates can be obtained
from: Jlstar (01, 63, 94} = {x1, x2, x3}.
Furthermore, the solution using Mathematica is found by:
{91, 63, 64} = Inoverse[Jistar] (x1, x2, x3}.

ListOutput [Jlstar]

List{l,1) = -(S2 53 S4 a4) + C2 C3 d2 + S2 S3 d3

List(2,1) = S2 S3 a3 + C4 S2 52 a4 - 382 d2

List(3,1) = ~(C2 a3) - C2 C4 a4 + C3 S2 54 a4 +
C2 83 d2 - C3 52 43

List(l,2) = 0

List(2,2) = 0O

List(3,2) = -ald - C4 a4

List(l,3) = -(54 a4)

List(2,3) = C4 a4

List(3,3) = 0
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Jistar?T = Jistar . {tl,t3,té);
ListOCutput {JistazT, "x"}

x(l) = (~(S2 83 S4 a4) + C2 C3 d2 + S2 S3 d3) tl - S4 a4 ¢4
x(2) = (52 S3 a3 + C4 32 S3 a4 - S2 d2) tl + C4 24 t4
x(3) = (~-(C2 a3) -~ C2 C4§ a4 + C3 S2 S4 a4 + C2 83 d2 -

C3 82 d3) t1l + (-a3 ~ C4 a4q) t3

Scll = Solve((Jistar?T{[l]] == x1, JlstaxT[[2]) == x2}, (tl.té}};
S0l2 = Solvel JlstaxT{[3])] == x3, {(t311;

ttl = RedAngle[Together(tl //. Soll [[11] ]}
Cd x1 + S4 x2

o~ o o~ G - o - I A A A W . o o T S . ATH ATy VR R " W A W Mt o -

S2 S3 S4 a3 + C2 C3 C4 d2 - S2 S4 d2 + C4 S82 S3 d3
tt4 = RedAngle(Together{td¢ //. 3011 [(1]1] 1]}
(-(S2 S3 a3 x1) - C4 S2 S3 a4 x1 + S2 d2 x1 - S2 S3 S4 a4 x2 +

C2 C3 d2 x2 + 82 83 d3 x2) /

(S2 S3 S4 a3 a4 + C2 C3 C4 a4 d2 - S2 S4 a4 d2 + C4 S2 S3 a4 4dd)
tt3 = RedAngle( t3 //. So0l2 {[1])] )

(-(C2 a3 tl) ~ C2 C4 a4 t1 +# C3 S2 S4 a4 tl + C2 s3 d2 ¢l ~

C3 S2 d3 tl - x3) / (a3 + C4 a4)
T Reducing terms
Den = Denominator(ttl]; "Dem" == Dan
Den == 52 $3 S4 a3 + C2 C3 C4 d2 - S2 S4 d2 + C4 52 $3 d3
tl == Numerator(ttl] Simplify([Den/Denominatox(ttl] ] /"Dea"

C4 x1 + S4 x2

ttd = Numerator(ttd] Simplify[Den/Denominatox{tt4] ] /"Den"
t4 == Collect[Numasrator(tt4}, {xl,x2}) / Dencminator{ttd]

td == ((-(52 S3 a3) - C4 S2 S3 a4 + 82 d2) x1 +

(-~(S2 S3 S4 a4) + C2 C3 d2 + S2 S3 d3) x2) / (Den ad)
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t3 == Collect{Numerator(tt3],{tl,x3}] / Denominator{tt3]

£3 ==

c3

((-(C2 al)

S2 d3)

tl -~ x3)

/

- €2 C4 a4 + C3 S2 54 a4 + C2 83 d2 -

(a3 + C4 a4)

B The solution for the last three joint rates can be obtained

from

the following.
J2star (01, 63, 64} + J3star {05, 86, 907)=

{x4, x5, x6},

{61, 83, 64} = Inverse{Jlstar] {x1, x2, x3}.
ListOutput {J2star])
List(l,1) = C3 S52
List(2,1) = C2
List(3,1) = S2 S3
List(1,2) = O
List(2,2) = 1
List(3,2) = O
List(1,3) = O
List(2,3) = 0
List(3,3) =1
List(l.i) = 0
List(qu) = 0
List(3,4) = 1
List{1,5) = ~-S545
List(2,5) = C45
List(3,5) = 0
List(1,6) = C45 S6
List(2,6) = S45 S6
List(3,6) = C6
J2stazrT = J2star . (tl1,t3,t4,t5,t6,t7);
ListOutput {J2star?T, "x"] ’
x{l) = C3 S2 tl - 545 t6& + C45 S6 t7
x(2) = C2 tl + t3 + C45 t6 + S45 S6 t7
Xx(3) = S2 S3 tl + t4d + t5 + C6 t7
S0l3 = Solve{{J2starT((1]] == x4, J2staxrT{[2]]) == x5},
Sol4d = Sclve| J2starT{[3]] == x6, {t5}]);

ttS = RedAnglae[Togather(t5 //. Sold [[1]] )]

{t6,£7}]);
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-{82 $3 tl) - t4 - C6 t7 + x6

tts

= RedAngle [Together [RedTrig(ts //. Sol3 [[1)] 1]]

-{(C2 C45 tl) + C3 'S2 S45 tl - C4S t3 - S45 x4 + C45 x5

te7

= RedAngle(Together {RadTrigt? //. Sol3 ([1]] 11]

-{C3 C45 82 tl) - C2 845 tl - S45 t£3 + C45 x4 + S45 x5

O Reducing terms wusing Mathematica

ts
tS
té
t6
€7

t?

tts

~(S2 S3 tl) - td4 ~ C6 7 + x§6

Collect{tt6, {C45,545)]

S45 (C2 S2 tl - x4) + C4S5 (-(C2 tl) - t3 + x5)
Collect [Numerator{tt7], {C45,545)) / Denominstor{tt7]
C4S (-(C3 S2 tl) + x4) + S45 (-(C2 t£l) - t3 + x5)
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B FINAL SOLUTION

Den == 52 S3 S4 a3 + C2 C3 C4 d2 - 52 S4 d2 + C4 S2 83 d3

tl

t3

t4

ts
té

t7

C4 x1 + S4 x2

wm ((=(C2 23) - C2 C4 a4 + C3 S2 5S4 a4 + C2 53 d2 -

C3 82 d3) tl - x3) / (a3 + C4 ad)
== ((-(S2 S3 a3} - C4 S2 $3 a4 + 52 d2) x1 +

(-(S2 S3 S4 a4) + C2 C3 d2 + S2 S$3 d3) x2) / (Den a4)

== -(S2 S3 tl) -~ t4 - C6 7 + x6
== S45 (C3 S2 tl1 - x4) + C45 (-(C2 tl) - £3 + x5)
C45 (-(C3 52 tl) + x4} + S45 (-(C2 tl) - t3 + x5)



APPENDIX D-2

LABORATORY TELEROBOTIC MANIPULATOR (LTM) FORWARD AND
INVERSE KINEMATICS AND GRAVITATIONAL COMPENSATION

This example application presents the implementation of an algorithm for the
inverse kinematics of the Laboratory Telerobotic Manipulator (LTM) of Oak Ridge National
Laboratory based on the paper presented by Dubey et al. (1989). The direct kinematic
equations and the gravitation compensation model are also obtained by using SML.

The LTM coordinate system is shown in Figure D-3, from which the D-H Table in
Paul's notation (Paul 1981) is obtained.

LTM is a 7-DOF manipulator; thus, it needs special algorithms such as the one
developed by Dubey et al. (1989) to be controlled. Following the algorithm described in
their paper and using SML, computational-efficient closed-form solutions are obtained for
the joint rates as a function of the Cartesian velocities of the end effector. The following
pages with the example are printed directly from SML, thus presenting the same format as
on the computer monitor. Note that bold characters here are either input for SML or text

comments, and the nonbold text represents output obtained from SML.

106
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Figure D-3. LTM coordinate system definition.

Source: Dubey et al. 1989,
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C2 (C3C4C5C6 -C6 83 85 - C3 S4 S6))) +
§7 (S1 (C3 CS - C4 S3 S5) +
Cl (S2 S4 S5 +# C2 (C5 S3 + C3 C4 $5))), 2111:
Yaw = Atan2([C? (Cl (C4 C5 C6 83 + C3 C6 S5 ~ S3 S4 S6) +
S1 (S2 (C5 C6 S4 + C4 S6) +
C2 (C3 C4 CS C6 - C6 S3 85 - C3 S4 S6))) +
S7 (C1l (-(C3 C5) + C4 S3 S5) +
S1 (S2 S4 S5 + C2 (C5 S3 + C3 C4 S5))),
C7 (S1 (-(C4 CS C6 S3) - C3 C6 S5 + S3 S4 S6) +
Cl (S2 (CS C6 S4 + C4 S6) +
C2 (C3C4 C5C6 -~ C6 S3 85 - C3 S4 S6))) +
87 (S1 (C3 C5 - C4 83 S5) +
Cl (S2 S4 S5 + C2 (C5 S3 + C3 C4 85))));

B Obtain the Jacobian from the wrist written with respect to the
third frame. Making d7 = 0, we will obtain the Jacobian from
the wrist instead from the end-effector.

LTMTable := LTMTable /. d7 -> 0;

J3 = RedTrig[JacobianP {LTMTable,3]];
ListOutput {Collect [J3, (Cos(q3),8in(q3]}], "Jac3"]

Jac3d(1l,1) = S3 (CZ a2 + S2 S4 a4)
Jac3(2,1) = -(C4 S2 53 a4)
Jac3(3,1) = -(C2 C4 a4) + C3 (~(C2 a2) - S2 $4 a4)
Jac3(4,1) = -(C3 S2)
Jac3(5,1) = C2

Jac3(6,1) = -(52 §3)
Jac3(1,2) = C3 sS4 a4
Jac3(2,2) = ~a2 - C3 C4 a4
Jac3(3,2) = S3 5S4 a4
Jac3(4,2) = 83

Jac3(5,2) = 0

Jac3(6,2) = ~C3

Jac3(1,3) =0

Jac3(2,3) =90

Jac3(3,3) = ~(C4 a4)
Jac3(4,3) = 0

Jac3(5,3) = 1

Jac3(6,3) = 0

Jac3(1,4) = -(S4 ad)
Jac3(2,4) = C4 a¢
Jac3(3,4) = 0
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BLTM Robot D-H Table in Paul's notation.

LTYTable := ({gqi, -Pi/2, O, 01},
(12: " PL/2, m2, 0},
{q3, Pi/2, 0o, o},
(g4, -PLi/2, a4, o},
{qS, P’-/zy 0, 0 ’I
{q6, Ppi/2, 0, 01},
(q7. o , 0, d7}}

® Direct Kinematic Equations.
DirectKinEq{LTMTablas]

/** KINEMATIC EQUATIONS ==/
/*Position: Px, Py, Pz */
/*Orientation: */
Roll: respect to X;
Pitch: respect to Y,
Yaw: respect to Z; */
/% - Roll, Pitch, Yaw about the fixed axes X Y 2 .Or
/* - ZY¥X Euler angles

-(C4 S1 S3 a4) + C1 (C2 a2 + C2 C3 C4 a4 + S2 5S4 a4y +
(S1 (-{C3 S5 S6) + S3 (-(C6 S4) - C4 C5 S6)) +
Cl (-{(C2 83 85 §6) + C2 C3 (C6 S4 + C4 C5 S6) +
S2 (-(C4 C6) + CS S4 s6))) d7:;
Py = Cl1 C4 S3 a4 + S1 (S2 S4 a4 + C2 (a2 + C3 Cd a4)) +
(Cl (C3 S5 S6 + S3 (C6 S4 + C4 CS s6)) +
$1 (~(C2 S3 S5 S6) + C2 C3 (C6 S4 + C4 CS S6) +
S2 (-(C4 Cb6) + CS 54 S6))) d7;
Pz = C2 S4 a4 + S2 (-a2 - C3 C4 aq) +
(C2 (-(C4 C6) + CS S4 S6) +
S2 (S3 S5 86 + C3 (-(C6 S4) - C4 C5 S6))) d7:

Px

Roll =Atan2([C7 (C2 S4 85 + $2 (-{C5 S3) -~ C3 C4 S5)) +
S7 (C2 (-{CS C6 S4) - C4 S6) +
$2 (-(C6 S3 S5) + C3 (C4 C5 C6 - S4 S6))),
C2 (-(C4 CE) + CS 54 S6) ~+
S2 (S3 S5 S6 + C3 (-(C6 S4) - C4 C5 S61)1];
Pitch = Atan2(C7 (C2 (-(CS5 C6 S$4) - C4 S6) +
S2 (C6 (C3 C4 CS5 - $3 85) ~ C3 S84 S6)) +
$7 (-(C2 S4 85) + 82 (CS S3 + C3 C4 S5)),
Sqrt [Power [(C2 (-(Cq4 C6) + C5 S4 S6) +
S2 (S3 S5 S6 + C3 (-(C6 S4) - C4 CS5 §6))),2])
power {C7 (Sl (-(C4 C5 C6 S3) - C3 C6 S5 + 53 S84 S6)
Cl (S2 (CS C6 34 + C4 sS6) +
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Jac34, 4 0
Jac3(5,4) 0
Jac3(6,4) 1
Jac3(1,5) 0
Jac3i(z,5) 0
Jac3(3,5) 0
Jac3(4,5) -S4
Jacd (5, 5) C4
Jac3(6,5) 0
Jac3(1,6) 0
Jac3(2, 6) 0
Jacd (3,6) 0
Jac3(4,96) C4 S5
Jac3(5,6) sS4 85
Jac3 (6, 6) Cs
Jac3(1,7) 0
Jac3(2,7) 0
Jac3(3,7) 0

Jac3(4,7) = C6 S4 + C4 C3 S6
Jac3(5,7) = -(C4 C8) + C5 54 86
Jac3(6,7) = ~-(S5 $6)

® The end-effector velocity is transformed to being in base
coordinates to be written with respect to the wrist coordinate
frame by premultiplying the velocity vector with the following
rotation matrix,

MatrixForm(RadAngle [Rot (LTMTable,. 3,0]]]

C1 ¢c2 C3 - 81 83 C2 C3 S1 + C1 83 -(C3 s2})
Cl S2 S1 s2 c2
C3 81 + C1 Cc2 83 -(C1 C3) + C2 S1 S3 ~-(82 s53)
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B Contruct a not singular jacobian J* from =any six
independent columns of the Jacobian. Dropping the second
column the following Jacobian is obtained

Jstar = Table{ (J3({3,2}1,03([3,3]1),93((3.4]1]),
n([jlsllIaat[jlslllﬁtljl7]l)l (jrlr‘}!:’

RedAngle [Jstar]
{{C3 54 a4, 0, -(54 a9), 0, 0, 0},
{(-a2 - C3 C4 a4, O, C4 a4, 0, 0, O},
{83 S4 a4, -(C4 a4), 0, 0, 0O, 0O},
{s3, 0, 0, -S4, C4 S5, C6 S4 + C4 CS s6},
{0, 1, 0, C4, S4 S5, -(C4 C6) + C5 sS4 S6)},

(’Cap OI 1' 0, CS, ‘(55 SG)))

B Following the algorithm, the Jacobian can be decomposed in
two matrices using the first three and last three rows.

Jistar = Table{ Jstar((i,3}] ,{i,1.3} ,{(3,1,3});
J2star = Table{ Jstar{[i,3])) ,{i,4,6} ,(3,1,3})]1;
J3star = Table{ Jstax({i,3]] ,{4,4,6} ,(3j,4,6)});
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B The solution for the first three joint rates can be obtained
from: Jlstar (02, 63, 64} = ({x1, x2, x3}
Furthermore, the solution using Mathematica is obtained by:
{82, 83, 64} = Inverse{Jistar] (x1, x2, x3).

IistOutput (Jistax]

List(1,1) = C3 S4 a4
List(2,1) = ~a2 - C3 C4 a4
List (3,1) = S3 S4 a4

List(2,2) = O
List(3,2) = -(C4 ad4)

List(1,3) = ~(54 a4)
List(2,3) = C4 a4
List(3,3) = 0

JigtarT = Jistaer . (t2,t3,t4});
ListOutput (Jlstar?, "x"]

x(1l) = C3 S4 a4 t2 - 54 a4 t4
x(2) = (~a2 - C3 C4 a4) t2 + C4 a4 t4d
x(3) = S3 S4 a4 t2 - C4 a4 t3

Soll
So0l12

Solve{{JlstarT((1]] == x1, JlstarT{[2]] == x2}, (t2,te}).;
Solve({ JlstarT(([3]] == x3, {33}:

i

tt2 = RedAngle[Together(t2 //. Soll [{1]] 1]
-(C4 x1) - S4 xZ

ttd4 = Radhngle(Together([t4 //. Soll [{1]] ]]

~(a2 x1) - C3 C4 a4 x1 - C3 S4 a4 =2

Sq4 a2 a4
tt3 = RedAnglel t3 //. Sol2 [[1]] ]
S3 54 a4 t2 - x3

O Reducing terms
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t2 == tt2

-(C4 x1) - 54 x2
t2 mm romemwccccnmm -

t4 wm Collect {Numeratoxr{ttd], (x1,x2}] / Denominator(ttd]

(~a2 - C3 C4 a4) x1 - C3 54 a4 x2
£d BW com e e r oo - —-——

t3 == ¢t

£33 wmM crrrr e ——

B The solution for the last three joint rates can be obtained
from:

J2star {61, 63, 04} + J3star (9§, 06, 67}= (x4, x5, x6},
Furthermore, the solution using Mathematica is obtained by:
{61, 03, 64} = Inverse(Jlstar] {x1, x2, x3},
{68, 66, 67} = Inverse(J3star] ({x4, xS, x6} - J2star {x1, x2, x3}).

Deter = RedAngle({RedTrig(Det (J3star]])
S6

inv = RedTrig{Inverse{J3star] Det{J3star]]:
MatrixForm{RedAngla[inv}])

C4 C5 C6b - S4 S6 CS C6 S4 + C4 S6 ~-(C6 55)
C4 S5 S6 54 S5 sé CS s8¢

C4 C5 CS S84 -S5

Jsol = {x4,x5,x6) - J2star . (t2,t3,6td);
RedAngle{Jsol]

{-(S3 t2) + x4, -=3 + x5, C3 t2 - t4 + x6}
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8 SOLUTION
-{C4 x1) - 54 x2
tz L T R LR R )
S4 82
83 S4 a4 vz - x3
t3 TRIBER o v e o o E e 0 e o
C4 a4

{tS, t6, t7) == 1/56 inv Jsol

inv(l,1) = C4 CS5 C6 ~ 54 S6
invi{2,1) = C4 35 S&
inv(3,1) = C4 C5

invi(l,2) = C5 C6 S4 + C4 Sb6
invi(2,2) = S4 85 S6
inv(3,2) = C5 84

inv(1l,3) = -(C6 S5)
inv(2,3) = CS S6
inv(3,3) = -35

Jsol (1)
Jsol(2)
Jsol(3)

-(S3 t2) + x4
-3 + x5
C3 t2 - t4 + x6

[
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BLTM gravitational compensation model

O The mass table is needed to obtain the effect of the gravitation over
the joints of the LTM. Note that even though links 1, 3, and 7 have no
mass, rows of zeros are added at their positions.

LTMMass = ({ O, o, 0, 01,
(m2, xm2, ym2, m2},
{o, o, o, 01,
{md4, xmé, ymd, zmd},
{0, o, 0, 0},
{m6, xmé6, ymé, zm6},
{o, o, 0, 01}}

OA simple command is enough to find the gravitational compensation
model:

LTMGrav = Gravitation{LTMTable, LTMMass];

0 Using the Function ListOutput and collecting terms, the model |is
obtained in FORTRAN compatible form:

M(1l) = ~(~(S2*(C3*(CA*(~(C5*G*SE6*mE*xmb*
(C5%(C1*C3 - C2*S1*S3) -~
S5%(51%S2*S4 + C4+(C2*C3*S1 + C1*S3)))) +
G*S5*m6*xmb*
(CE*(C4*S1*S2 - S4*(C2*C3*S1 + C1*83)) -
SH6E%(S5*(C1*C3 -~ C2*81*S3) +
CS*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))n)) -
S4* (G*md*xm4 *(C1*C3 - C2*51*S3) +
CE*G*mb&*xmb*
(CS5* (C1*C3 - C2%*81=S3) -
S5*(S1*S2%S4 + C4*(C2*C3*S1 + Cl*S3))) -
aq* (- (C5*G*mé6*
(C5*(C1%C3 - C2*81*s3) -
S5* (S1*52*S4 + C4*(C2*C3+S81 + C1*S3)))) -
S5% (-~ (G*S6*m6*
(C6*{C4*S1*S2 ~ S4*(C2+C3*S1 + C1*83)) -
SE6* (S5*(C1*C3 ~ C2*S1*S3) +
CS*(S1%*S2*S4 + C4*(C2*C3*S1 + C1*S3))))) +
Ce*G*mé*
(S6*(C4*S1*S2 - 34+(C2*C3*S1l + C1*S3)) +
CE*(S5*(C1*C3 - (C2*S1*S3) +
CH*(S1*S2*54 +

C4*(C2*C3*S1 + C1*S31))1))))) +

S3*(G*m4*xm4g~*
(C4%51*S2 - S4*(C2*C3*S1 + C1*S3)) +
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G*S5*SE*mb*xmb*
(CS*(C1*C3 ~ C2*S1*S3) -
S5¢(S1%52+%S4 + C4*(C2+*C3*S1 + C1*83))) +
CS*GrmEoxmb* .
(CH* (C4*S1%S2 - S4*(C2*C3*S1 + Cl*83)) -
SE6*(S5%(C1*C3 - C2%*51*S3) +
CS5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) +
a4*({C6*G*mb6*
(CE* (C4*S1*S2 - S4*(C2*CI*S1 + C1*S3)) -~
S6%(SS*(CL*C3 - C2*S1*S3) +
CS*(S1%82*S4 + C4*(C2*C3*S1 + C1*S3)))) +
G*S6améE*
(SB* (C4*S51%82 ~ S4*(C2*C3*S1 + C1*S3)) +
CH*(S5*(CL*CI - C2*S1*S3) +
CS*(S1%S2*S4 +
C4*(C2*C3*81 + C1#%*S3)))))))) -
C2* (- (C1*G*m2*xm2) ~
S4* (-~ (C5*G*S6*mE&*xmb6*
(C5%(C1*C3 - C2%*81*83) -
S5* (S1%82*S4 + C4*(C2*C3*S1 + C1*83)))) +
G*SS5*m6*xmb6*
(CE* (C4*S1*S2 ~ S4*(C2*C3*S1 + C1*S83)) -
SE* (SS*(CL*C3 - C2*S1*S3) +
CS*(S1*S2%S4 + C4*(C2*C3*S1 + C1*S3))))) ~
az2*(S3*
(-(S4*
(G*m4 = (C4*S1+S2 ~ S4*(C2*C3I*S1 + C1*S3)) +
CO*G*mé*
{CE* (C§*S1*S2 -~ S4*(C2*C3*S1 + C1*83)) -
SE*(SS*(CL*C3 ~ C2*S1+S3) +
C5* (S1%S2*S4 + C4*(C2*C3*S1 + Cl1l*S3})))) +
G*S6*mb*
(S6* (C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +
CB* (SS* (C1*C3 - C2*S1*S3) +
C5*(S1#*52*54 +
C4*(C2*C3*S1 + C1*S3)))))) +
C4*(G*m4=(S1*S2+84 +
C4*(C2*C3*381 + C1*S3)) -
G*SS5*mo*
(CS*(CL*C3 - C2%S1*S3) -~
S5%(S1%S2*%S4 + C4*(C2*C3*S1 + C1*S3))) +
CS* (- (G*S6*mH*
(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -
S6*(S5*(C1*C3 - C2*S1%S83) +
CS*(S1*52*%S4 + C4*(C2*C3*S1 + C1*S3))))) +
Ce*G*mb*
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(S6%(C4*S1*S2 ~ S4*(C2*CI*S1 + C1*S3)) +
CE6*(S54(C1*C3 - C2%81*S3) +
CS*(S1*82*S4 +

C4*(C2*C3*S1 + C1l*83))))))) ~-
CI* (- (G*m4*(CL*C3 -~ C2*S1*S3)) -
C5*G*mb*
(C5%(C1*C3 ~ C2*S1*S83) -
S5*(S1*52*S4 + C4*(C2*C3*S1 + C1*S3))) -
S5% (- (G*S6*m6*
(CE*(C4*S1*S2 ~ S4*(C2*C3*S1 + Cl1l*S3)) -
S6*{S5*(C1l*C3 ~ C2%S1*S3) +
C5*(S1*S2*S4 + C4*(C2%C3I*S1 + C1*83))))) +
Ce*G*mb*
(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*83)) +
C6* (S5*(C1*C3 - C2*51*S3) +
C5%(S1*S2*84 +

C4*(C2*C3*S1 + C1*S3)1)))))) -
C4* (G*m4*xmd* (C1*C3 -~ C2*51*S3) +
C6*G*mExxm6*
(C5*(C1*C3 - C2*51*s53) -~
S5*(S1*S2%S4 + C4*(C2*C3*S1 + C1*S3))) -
aq4* (~{CS*G*mé6*
(CS*(C1*C3 - C2%*S1%*S53) -
S5*(S51*52*S4 + C4*(C2*C3*S1 + C1*S83)))) -
S5% (- (G*S6*mE*
(CE*X(C4*S1*S2 ~ S4*(C2*C3*S1 + Ci*S83)) -
S6*(S5*(C1*C3 - C2*81*S3) +
CS5*(S1*52+*84 + C4*(C2*C3*S1 + C1*S3))))) +
CH*Grmb*
(S6* (C4*S1*S2 =~ S4*=(C2*C3*S1 + C1*83)) +
CE*(S5*(C1*C3 - C2%*81*S3) +
CS*(S1*52*354 +

C4*(C2*C3*S1 + C1*S3HN) Ny,

M(2) = ~(-(G*S1*S2*m2*xm2) +
S3* (C4*x (- (C5*G*S6*mE*xmE*

(CS*(C1*C3 ~ C2*81*S53) -
S5*%(S1*S2*S4 + C4*(C2*C3*S1 + C1*S83)))) +
G*SS*mér*xmeE*
(CE*(C4*S1+S2 - S4*(C2*C3*S1 + C1*S3)) -~
S6* (S5+(C1*C3 ~ (C2*S1*83) +
C5*(S1*S2%*S4 + C4*(C2*C3*S1 + C1#*S83))))) -
84*(G*m4*xmqg* (C1*C3 - C2*S1*S3) +
CHAG*mErxmb *
{CS*(C1*C3 - C2*81*83) -~
S5*(S1*52*S4 + C4*{C2*C3*S1 + C1*S83))) -
a4* (- (C5*G*m6*
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(C5%(C1*C3 - C2%51*S3) -
SS*(S1%S2#%84 + C4*(C2*C3*S1 + C1*S3)))) =~
SS% (- (G*S6*mb*
(CE*(C4*S1*82 - S4*(C2*C3*S1 + C1*S3)) =~
SE* (S5*(C1*C3 ~ C2%81*83) +
CS* (S1%52%84 + C4*(C2*C3*S1 + C1*83))))) +
Ce*G*mb*
(S6* (C4*S1*S2 - S4*{C2*C3*S1 + C1*83)) +
CE% (SS*(C1*C3 - C2%S1%S83) +
C5*(S1%S2%84 +
C4* (C2*C3*S1 + C1*S3)N)))M)) -
a2* {C4* (G*m4* (C4*S1#S2 ~ S54*(C2*C3*S81 + C1*83)) +
Ce*G*mb*
(CE% (C4*SL1*S2 - S4*(C2*C3*S1 + C1l*s83)) -~
S6*(SS5*(C1*C3 ~ C2*S1%*83) +
C5* (81*S2*%84 + C4*{(C2*C3*S1 + C1l*S3)))) +
G*S6*mé6*
(SE*(C4*S1%S2 - S4*(C2*C3*31 + Cl*S3)) +
CE6%(S5%(C1*C3 - C2*S1*S3) +
C5* (S1*S2*S4d + C4*(C2=C3*S1 + C1*sS3))))) +
S4*(G*m4* (S1%S2*S4 +
C4*(C2*C3*S1 + C1*83)) -~
G*S5*m6*
(CS*(C1*C3 -~ C2*S1*S3) -
SS* (S1*S2*S4 + C4*(C2*C3*S1 + CLl*S3)})) +
CS* (- (G*S6*mb*
(CB* (C4*S1*S2 ~ S4*(C2*C3*S1 + C1*S3)) -
SE% (S5*(C1*C3 ~ C2*S1*S3) +
£5%(S51%S2%84 + C4*(C2*C3+*S1 + C1*S3))))) +
CE*G*mé*
(56*(C4*S1282 ~ S4*(CZ*C3*S1 + C1l*S3)) +
C6*(SS*(C1l*C3 - C2%*S1*83) +
CS*(S1*S2*S4 +
C4* (C2*C3#%81 + C1*S3)r1)1y)) -
CI*(G*m4*xm4* (C4*S1*S2 - S4*(C2*C3*S1 + Cl*S3)) +
G*S5*SEemE*xmb*
(CS5*(C1*C3 -~ C2*S1*S3) -~
SS*(S1%S2+%S4 + C4*(C2*C3*S1 + C1*S3)}) +
CS*G*mb6*xmb*
(C6E* (C4%S1*S2 ~ S4*(C2%*C3*S1 + C1*83)) -
SE* (S5*(C1*C3 ~ C2*S1*S3) +
CS*(S1*S2%S4 + C4*(C2*C3#S1 + C1*S3)))) +
ag4*(Ce*G*mb*
(C6*(C4*S1%82 - S4*(C2*C3*S1 + C1l*S3)) -
SE*(S5*(C1*C3 - C2+%S81*S3) +
CS*(S1*S2*S4 + Cq*(C2*C3*S1 + Cl*S)))) +
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G*S6*méb*
(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S83)) +
CH*(S5*(C1*C3 - C2*S1*S3) +
C5*(81*52*54 +
C4*(C2*C3*S51 + C1*83)))))));
M(3) = -(S4*(~(C5*G*S6*mb6*xmb*
(CS*(C1*C3 - C2*S1*83) -
S5*(S1*52*S4 + C4*(C2*C3*S1 + C1*83)))) +
G*S5*m6*xmb*
(C6* (C4*S1*82 - S4*(C2*C3*S1 + C1*S3)) -
S6*(S5*(C1*C3 - C2*51*S3) +
C5*(S1*S2*S4 + C4*(C2*C3*351 + C1*53))))) +
Cq4* (G*md*xmd* (C1*C3 - C2*81*83) +
CE*G*m6*xmE*
(CS*(C1*C3 ~ C2*81*S3) -
S5%(S1*S2%S54 + CTY*(C2*C3*S1 + C1*33))) =~
aq4* (- (C5*G*mé*
(CS5*(C1*C3 - C2*S1*S3) -~
S5*(S1*S2*S4 + Cq*(C2*C3=*S1 + Cl1*83)))) -~
S5* (- (G*S6*mé*
(C6*(C4*51%52 - S4*(C2*C3*31 + C1*S3)) -
SE6*(S5*(C1*C3 - C2*81*S3) +
C5*(S1*S2#454 + C4*(C2*C3*sS1 + C1l*S83))))) +
C6*G*m6*
(S6* (C4*81*82 - S4*(C2*C3+S1 + C1*S83)) +
CE*(S5*(C1*C3 - C2*51+*83) +
C5*(S1*52*54 +
C4*(C2*C3*31 + C1*S3)) 1)),
M(4) = - (G*m4*xm4=(Cqa*S1*S2 - S4%(C2*C3*S1 + C1*S3)) + e
G*S5*SE*m6*xm6 *
(CS*(C1*C3 - C2*S1*S3) -
S5*(S1*S2*54 + C4*(C2*C3*S1 + C1*S3))) +
C5*G*m6*xmb*
(CE* (C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) =~
S6%(S5*(C1*C3 - C2*S1%S3) +
CS*(51*52*54 + C4*(C2*C3*S1 + C1*83)))) +
24*(CE*G*mb*
(C6*(C4*S1*S2 - 54*(C2*C3*S1 + C1*83)) -
S6* (S5*(C1*C3 - C2*S1*S3) +
CS*(S1*#S2%54 + C4*(C2*C3*S1 + C1*S3)))) +
G*S6*m6*
(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +
CB%(S5*(C1*C3 - C2%S1*S3) +
CS5*(51*S2+84 + C4*(C2*C3+*S1 + C1*83)))))):

M(5) = -(CO6*G*mb*xm6* (CS* (C1*C3 - C2*S1*S3) -
S5%(S1*8S2*S4 + C4*(C2*C3*S1 + C1*S3Y3)),
M(6) = ~(G*m6*xm6* (C6*(C4*S1*S2 ~ S4*(C2*C3*S1 + C1*S3)) -

S6% (S5*(C1*C3 ~ C2%*51*S3) +
C5*%(S1*S2+*S4 + C4*(C2*C3*S1 + C1*S3)))));

M(T) 0;
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