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REDUCING COMMUNICATION COSTS IN THE 

CONJUGATE GRADIENT ALGORITHM ON 

DISTRIBUTED MEMORY MULTIPROCESSORS 

E. F. D’Azevedo 

C. H. nomine 

Abstract 

The standard formulation of the conjugate gradient algorithm involves 

two inner product coniputatjons. The results of these two inner products 

are needed to update the search direction and  the computed solution. In 

a distributed memory parallel environment, the computation and subse- 

quent distribution of these two values requires two s q m v t e  communication 

and synchronization phases. In this paper, we prescnt a matlirmatically 

equivalent rearrangement of the standard algorithm that reduces the num- 

ber of communication phases. We give a second derivation of the modified 

conjugate gradient algorithm in terms of the natural relationship with the 

underlying Lanczos process. We also present empirical evidciicc of the 

stability of this modified algorithm. 





1. Introduction 

The conjugate gradient (CG) method is an effective iterative method for solving 

large sparse symmetric positive definite systems of linear equations. It is rolmst 

and, coupled with an effective preconditioner [ 191, is generally able to achieve 

rapid convergence to an accurate solution. 

One drawback of the standard formulation of the coujugate gradient algo- 

rithm on distributed memory parallel machines is that  it involves the computa- 

tion of two separate inner products of distributed vectors. Moreovcr, the first 

inner product must be completed before tlie data  are available for computing 

the second inner product. Hence, a distributed iiicmory iniplernentation of the 

standard conjugate gradient method has t w o  separate coniinunication phases for 

these two inner products. Since communication is quite expensiire on the current 

generation of distributed memory multiprocessors, it is tlcsirable to reduce the 

communicatiori overhead by coinhiniiig these two comniuiiicatiou phases into one. 

Saad [16,17] has shown one rearrangenlent of tlie computation that eliniiiiates 

a communication phase by computing / I r k  112 based on the relationship 

I I7-L- I I ; 

to be numerically unstable. Meurant [11] proposed using (1.1) as a predictor for 

I I ~ k + ~ l l  and reevaluate tlie actual norrn on the nest iteration with an extra inner 

product. Van Rosendale [20] has proposed without numerical results an 772-step 

conjugate gradient algoritlim to  increase parallelism. 

The conjugate gradient algorithm is known to be closely related to the Lanc- 

zos algorithm for tridiagonalizing a matrix [5]. Paige [12,13,14] has done detailed 

analysis to show some variants of the Lanczos algorithm are unstable. StiA<os [l  S] 

and Grern1,auiii [G,7] have considered tlie close conucctioii Isetween tlie 1,anczos 

and CG algorithm in the analysis of sta1,ility of CG computations under pcrtur- 

hations in  finite arithmetic. 

In $2, we present a rearrangenleiit of the conjugate gradient computation that 



eliminates one communication phase by computing hot11 inner products a t  once. 

We show a natural association between this rearrangement and the 1,anczos al- 

gorithm in $3. A discussion of how this rearrangement of the coiiiputatioii affects 

the stability properties of the conjugate gradient algorithm and sonic MATLAB nu- 

merical experiments on the effectiveness of the rearrangement are included in $4. 

2. The coiijugate gradient algorithm 

We begin by reviewing the standard conjugate gradient procedure [2,9] for solving 

thc linear system 

A x = b .  (2.1) 

For simplicity, we a,ssiime a zero initial guess, and residual vector r1 = b, with 

( x , y )  = x'y as the usual inner product. 

For k = 1 , 2 , .  . . 

(2.2) 

(2.3) 

Saad [16,17] and Meurant [ l l ]  have coilsidered eliminating the first inner 

product for 7 k  = ( ~ k ,  r k ) .  We propose eliminating the second conimunication 

phase by finding alternative expressions for C T ~  
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To further simplify (2.4), we rely on a,n intrinsic property of the CG procedure, 

the orthogonality of residual vectors (and equivalently the conjugacy of sea.rch 

directions [9, page 4201) 

(2.5) 

(Eijkhout [4] suggests performing an  extra inner product to explicitly evaluate 

(rk,  t 1 k - 1 )  for improved stability properties.) Thus from (2.3) 

(2.6) 

Therefore by (2.4), (2.6) and j?k = y k / Y k - l ,  

We propose the following rearrangement of the conjugate gradient procedure. 

First initialize o1 and V I ,  by performing one step of the standard algorithm 
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For k = 2 , 3 , .  . . 

Sk 

Compute y k  

P k  

P k  

v k  

g k  

o k  

xk+1 

r k + l  

(2.8) 

Note that the above procedure requires extra storagc for the vector SI; and extra 

work in updating the vector Vk; in contrast to Mewant’s rearrangement, only two 

inner products and one matrix vector multiply are performed. 

3. The Lanczos algorithm 

In this section we present a natural derivation of the modified CG rearrangement 

from the Lanczos process. The Lanczos process is a tridiagonalization procedure 

to find orthogonal Q and tridiagonal ’I’ such that 

, Q t Q =  I .  

We arrive a t  the Lanczos algorithm by equating columns in AQ = QT’, where 

q3’s are coluinns of Q, Q = [SI[. . . lqn],  
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Paige [12] presents the following stable arrangement of the La.nczos algorithm. 

Choose f l  to be nonzero, 

(3.3) 

In the same paper, Paige [12] shows that computing with the equivalent formula 

p j  = (q3+1,Aq,) for IlF311z leads to poor stability. 

It is well known IS, page 3701 that  the CC; algorithm is the Lanczos process 

where the normalized residual vectors form the Q matrix. From the CG procedure 

(2.2) we have 

P1 = Tlr ~j = rj + P j ~ j - 1  7 

or written in matrix form R k  = [ r l ( .  . . I r k ] ,  Pk = [l>ll.. . J p k ] ,  
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QkAQk is tridiagonal, 

By equating the entries in (3.6) and (3.1), we have 

Note (3.6) with i i j  = (q j ,Aqj )  gives (2.7) 

Golub and Van Loan [5, page 3421 present the application of the Lanczos 

process in solving linear equations, which is equivalent to the CG algorithm 

The solution Xk = Q k y k  can then be computed from (3.8) by the LDLt  factor- 

ization (3.6) of T k  
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With further simplifications, one can show a k  = [a l ,  . . . , a k I t  and this process can 

be rewritten in the more familiar form t k  = T k - 1  + ~ k p , ,  of the CG algorithm. 

We note that the above process requires computation of ,i?, = It  (FJ, ?,) and 

GJ = (F,, AFJ) / (f3, PI); as in the modified CG rearrangement (ZS),  both inner 

products can be computed together. Moreover, the use of the alternative formula 

/?, = ( q , + I ,  Aq,) for ( ( T , ( ( 2  leads to instability, as in the case of Saad's rearrange- 

ment (1.1). Hence, algorithm (3.3) with (3.9) is a CG-like algorithm that differs 

from (2.8) in the computing of r, from q J .  The formulae 

from (2.S) can be shown to be equivalent to the three-term recurrence relation 

(3.2) of the Lanczos algorithm. We have 

By (3 .6 )  and thc relationships qJ = = 7 x J / f i ,  (3.10) simplifics to (3.3). 

Thus in this light, the modified CG rcarrangement (2.8) is naturally associated 

with the Laiiczos process. 

4. Numerical experiments on stability 

The aim of the following experiments is to determine the stability and convergence 

properties of the modified conjugate gradient procedures. 

We performed a number of MATLAB experiments in solving Ax = b by the 

conjugate gradient procedure to study the convergencc behavior on different dis- 

tributions of eigenvalues of the preconditioned Inatris. Tn I?ijkliout's rearrange- 

ment, ( r k ,  t ~ k - ~ )  is computed by an extra inner product. Mciirant's rearrangement 
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is taken from [ l l ]  and the Lanczos rearrangement is adapted from [5, page 3421 

by evaluating the two inner products for h2 together as 6, = ( F 3 ,  A f j )  / ( F 2 ,  F2). 

Test 1 

The matrices considered have the eigenspectrum used by Stra.kos [lS] m d  Green- 

baum and Strakos [7] 

(4.1) 
i - 1  
n - 1  

A; = AI + -(An - XI)$+-', i = 2,. . . , n ,  p E ( 0 , l ) .  

We have i ised 12 = 100, X1 = 1E-3, r;. = X,/X1 = 1 E 5  and p = O . G ,  O.S,O.9,1.0 

in the experiments. For p = 1, we have a uiiiforml?. distributed spectrum, and 

p < 1 describes quantitatively the clustering at X1. 

Test 2 

The eigenspectrum has a gap, { 1,.  . . ,50,10051,. . . , l O l O O } .  

Test 3 

The eigenspectrum has double eigenvalues, { 1,1,2,3,. . . ? 50, SO}. 

Test 4 

The eigenspectrum consists of the roots of the Cliebyshev polynomial T,( x) 

shifted from [-1,1] to  the interval [a, b] 

T / 2  + ( i  - 1). ( b +  u )  
z -  ( b  - 3 a) cos ( 12 )+y , r = l  . . . . .  12. (4.2) 

I 

We have used 71 = 100, a = 1, b = 1E5. 

As done in EIagernaii and Young [SI, Greeiibaiim [6] and Stralcos [18], we 

operate on diagonal matrices. This procedure is equivalent to representing all 

vectors over the basis of eigenvectors of matrix A .  In all cases, a random' right 

uiiiform over  [ - 1, 13 
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Figure 4.1: Classical CG on Test 1. Dashed curve: p = 0.Ci; dotted CIII 'V~:  p = 0.8; 
dash-dot curve: p = 0.9; solid curve: p = 1. 

Iteration 

Figure 4.2: Modified C X  on Test 1. Dashed curve: p = 0.6; dotted curire: /) = 0.8; 
dash-dot curve: p = 0.9; solid curve: p = 1. 
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Iteration 

Figure 4.3: Eijkhout Rearrangement on Test 1. Dashed curve: p = 0.G; dotted 
curve: p = 0.8; dash-dot curve: p = 0.9; solid curve: p = 1. 

Iteration 

Figure G4.4: Meura.nt Rearrarlgernellt on Test 1. Dashed curve: p = 0.6; dotted 
curve: p = 0.S; dash-dot curve: p = 0.9; solid curve: p = 1. 
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Iteration 

Figure 4.,5: Laiiczos Rearrangement 011 Test 1. Ilnsl~ccl cur\’e: p = 0.6; doittd 
curve: p = 0.8; dash-dot curve: p = 0.9; solid curve: p = 1. 

Iteration 

Figure -2.6: Classical CG 0 1 1  Tests 2-4 .  Solid curve: ‘Ikst 2: dashcd cul-i~e: 7’est, 3 ;  
dotted curve Test 4. 
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Figure  4.7: Modified CG on Tests 2-4. Solid curve: 'rest 2: dashed curve: Test 3; 
dotted ciirve ?'est 4. 

Eijkhout Rearrangment, n=100 
103 - 

Iteration 

Figure d.S: Eijkhout Rearrangement on 'rests 2-4. Solid cur\.e: Test 2; dashcd 
curve: Test 3: dotted cu rve  Test 4. 
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Itemtion 

Figure 4.9: Meurant Rearrangement on Tests 2-4. Solid curve: ‘rest, 2; dashed 
curve: Test 3; dotted curve Test 4. 

Iteration 

Figure 4.10: Laxiczos Rearrangement on Tests 2-4. Solid curve: Test 2; dasl~cd 
ciirve: Test 3; dotted curve Test 4. 
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hand side and zero initial giiess are used. 

\?'e display the decrease of A-norm of the error at each iteration divided 1)). 

the A-norm of the initial error 

( 4 . 3  ) 

Figures 4.1-4.5, display the convergence results from Test 1. Note that for 

p = 0.8,O.g both the standard and modified CG procedures exhibit similar 

slow convergence behavior. Figures 4.6-4.10 display the convergence results on 

Tests 2-4. For Test 1 with p = 0.6, the standard CG algorithm shows the best 

convergmce properties. Eijkhout's rearrangement has slightly better stabilitj. 

properties than modified CG. The other results arc esseritiallj. the same. 

All  the results on 'Tests 2-4 again show similar convergence behaiior among 

the standard CG and the different rearrangements of' C'G. 

5. Parallel performance 

To gauge the effectiveness of the modified CG procedure, we performed a number 

of experiments i n  comparing the run-time i n  standard CG and modified CG. 

The test matrices are chosen from the Harwell-Boeing Test Collection [3]. The 

experiments arc performed on 16 nodes of the iPSC/SG0 h~.percube. Each matrix 

is first reordered by the bandwidth reducing Reverse Cuthill-McKee ordering [lo]. 

The matrix is then equally block partitioned by rows and distributed across the 

processors in ELLPACK format [15]. In all cases, a random right hand side arid 

zero initial guess are used, and convergence is assuiiied when 

The coiijugate gradient procedure is rarely used without soinc form of pre- 

coiiditioiiing to accelerate convergence. In the tests described below, we usc 

a block preconditioner derived as follows: Let A ,  he the diagonal lilock of the 
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Order 
2003 
1806 
3948 

11948 

Table 5.1: Description of test problems. 

Nonzeros Description 
11973 Fluid Flow Generalized Eigenvalues 
32630 
60832 
80519 R.E.Giiina Nuclear Power Station 

Root of Oiiini Coliseuni, Atlanta 
Module of an Offshore Platforrn 

Problem 
B C S STK 1 3 
BCSSTK14 
BCSSTK15 
BCSSTIil8 

standard CG 
Iterations Time 

1007 19.56 
232 2.72 
376 7.60 
697 34.55 

modified CG 
Iterations Time 

1007 lG.99 
232 2.35 
376 6.72 
697 n s o  

Table 5.2: Timing results. 

Problem 
BC S S TIC 13 
B C S S TK 14 
B C S S TI< 15 
B CS S TK 1 S 

matrix A contained in processor i, and write A, = L,  + n, + L: wliere L ,  is 

strictly lower triangular and D, is diagonal. ‘I’hen the preconditioning matrix A4 

is A4 = diag(M1, M 2 , .  . . , M P ) ,  where Adz = ( L ,  + D,)D;’(L, + 0,)‘. As sliown in 

Axelsson and Barker [1], this corresponds to each processor doing a single SSOIt 

step (with w = 1) on its diagonal block A,.  Tliis prccoiiditioner requires no adcled 

communication among the processors when implemented in  parallel. 

Table 5.1 is a brief description of the problems selected from the Narwell- 

Boeing Test Collection. Table 5.2 shows the numl>er of iterations and time (in 

seconds) required to solve the corresponding problems. In all cases, thc modified 

CG shows an iniprovement in the time required for solutiou, ranging from 5% 

to 13%. Moreover, the modified CG rearrangement shows 110 unstaLle behavior 

since it takes almost exactly the same number of iterations as standard U;. 
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6. Conclusion 

We have presented a rearrangement of the standard conjugate gradient procedure 

that eliminates one synchronization point by performing two inner products a t  

once. The rearrangement has a natural connection with the Lanczos process for 

solving linear equations. Although not a proof, MATLAB simulations indicate that 

the rearrangement is stable. Moreover, computational experiments using parallel 

versions of both the modified and standard conjugate gradient algorithms show 

that the modified version reduces the execution time by as much as 13% on an 

Intel iPSC/860 with 16 processors. 
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