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REDUCING COMMUNICATION COSTS IN THE
CONJUGATE GRADIENT ALGORITHM ON
DISTRIBUTED MEMORY MULTIPROCESSORS

E. F. D’Azevedo
C. H. Romine

Abstract

The standard formulation of the conjugate gradient algorithm involves
two inner product computations. The results of these two inner products
are needed to update the search direction and the computed solution. In
a distributed memory parallel environment, the computation and subse-
quent distribution of these two values requires two separate communication
and synchronization phases. In this paper, we present a mathematically
equivalent rearrangement of the standard algorithm that reduces the num-
ber of communication phases. We give a second derivation of the modified
conjugate gradient algorithm in terms of the natural relationship with the
underlying Lanczos process. We also present empirical evidence of the

stability of this modified algorithm.
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1. Introduction

The conjugate gradient (CG) method is an effective iterative method for solving
large sparse symumetric positive definite systems of linear equations. It is robust
and, coupled with an effective preconditioner [19}, is generally able to achieve
rapid convergence to an accurate solution.

One drawback of the standard formulation of the conjugate gradient algo-
rithm on distributed memory parallel machines is that it involves the computa-
tion of two separate inner products of distributed vectors. Moreover, the first
inner product must be completed before the data are available for computing
the second inner product. Hence, a distributed memory implementation of the
standard conjugate gradient method has two separate communication phases for
these two inner products. Since communication is quite expensive on the current
generation of distributed memory multiprocessors, it is desirable to reduce the
communication overhead by combining these two communication phases into one.

Saad [16,17] has shown one rearrangement of the computation that eliminates

a communication phase by computing ||r«||2 based on the relationship
I7ee1llz = ol Apells — ll7ell3 (1.1)

to be numerically unstable. Meurant [11] proposed using (1.1) as a predictor for
ll7x+1]| and reevaluate the actual norm on the next iteration with an extra inner
product. Van Rosendale [20] has proposed without numerical results an m-step
conjugate gradient algorithm to increase parallelism.

The conjugate gradient algorithm is known to be closely related to the Lanc-
zos algorithm for tridiagonalizing a matrix [5]. Paige [12,13,14] has done detailed
analysis to show some variants of the Lanczos algorithm are unstable. Strakos [18§]
and Greenbaum [6,7] have considered the close connection between the Lanczos
and CG algorithm in the analysis of stability of CG computations under pertur-
bations in finite arithmetic.

In §2, we present a rearrangement of the conjugate gradient computation that



eliminates one communication phase by computing both inner products at once.
We show a natural association between this rearrangement and the Lanczos al-
gorithm in §3. A discussion of how this rearrangement of the computation affects
the stability properties of the conjugate gradient algorithm and some MATLAB nu-

merical experiments on the effectiveness of the rearrangement are included in §4.

2. The conjugate gradient algorithm

We begin by reviewing the standard conjugate gradient procedure [2,9] for solving
the linear system

Az =b. (2.1)

For simplicity, we assume a zero initial guess, and residual vector r; = b, with

(z,y) = 2'y as the usual inner product.

Fork=1,2,...

o= |k %)
Be = /- (Bi=0)
P = T+ Bpear (pr=r1) (2.2)
vy = Apk
ok = |{pk,vs)
ar = /oK

Thy1 = Tp+ Qppi

Tyl = Tk — RV . (2.3)

Saad [16,17] and Meurant [11] have considered eliminating the first inner
product for v, = (ry,7). We propose eliminating the second communication

phase by finding alternative expressions for oy



o = (Pr,vk) = (P, Apk)
= (rr + Bepr_1, Ari + Bivi_q)
= (rg, Arg) + Be (re,ve1) +
Br {pr—1, Arx) + B (Pr-1,vk-1)
ok = (rks Are) + 2084 (ri, vio1) |+ Biok-1 - (2.4)

To further simplify (2.4), we rely on an intrinsic property of the CG procedure,
the orthogonality of residual vectors (and equivalently the conjugacy of search

directions [9, page 420])

(rerer) _ (P Apirn) _ (2.5)

(Tky Tx) (i, Apic)

(Eijkhout [4] suggests performing an extra inner product to explicitly evaluate

(rk,vk_1) for improved stability properties.) Thus from (2.3)

Tk = Thkel — Qg1Vg-1
(ri,7i) = (P, Tho1) — a1 (T, ve_1)
Y = 0 —apaf{re,vi1) |- (2.6)

Therefore by (2.4), (2.6) and Br = y&/7%1,

or = (rk, Ari) + 28c(—=1 /1) + Bior_y

o
-1
N’

or = bk~ Biok.1, where & = (ry, Ary) . (2.

We propose the following rearrangement of the conjugate gradient procedure.

First initialize oy and vy, by performing one step of the standard algorithm

n =58 m= <T1,7‘1) , pL=r1, v = Ap

oy = (plavl>, 552:(71/01)191



For £k =2,3,...
S

Compute ~;
Br

Pk

Vk

Ok

Qar

Ti1

Tk41

= AT‘k

and é; =

= |{Tks7k)

<7'k-. Sk>

= Y/ Vr-1

= T+ Brpra
= 8k + Brvka
= & — ﬂ:ak—l
= /o

= Tp+ appi

= Tk — QLU .

('U;C = Apk)

Note that the above procedure requires extra storage for the vector s, and extra

work in updating the vector vy; in contrast to Meurant’s rearrangement, only two

inner products and one matrix vector multiply are performed.

3. The Lanczos algorithm

In this section we present a natural derivation of the modified CG rearrangement

from the Lanczos process. The Lanczos process is a tridiagonalization procedure

to find orthogonal @ and tridiagonal T" such that

QAQ =T =

QQ=1. (3.1)

We arrive at the Lanczos algorithm by equating columns in AQ = QT', where

g;’s are columns of @, ) =

Ag;

[1] - - Ig),

8141 T &4 + 5,441



Bigi+1 = uj — &;q;,

(g;,Aq;) = &,
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(‘Ij+1, A‘b‘) =

where u; = Ag; — B, 1q;11 (3.2)
B; .

Paige [12] presents the following stable arrangement of the Lanczos algorithm.

Choose 7; to be nonzero,

Bl = i”f’lnz,
Forj=1,2,...
@;
Fi+1
Bj+1
q5+1
Uj+1

@ = #1/By,

= E|Fnall
= fj+l/Bj+1

= Agp -7 .

Uy = Aql

(3.3)

In the same paper, Paige [12] shows that computing with the equivalent formula

B; = {41, Ag;) for ||7;]|2 leads to poor stability.

It is well known [5, page 370] that the CG algorithm is the Lanczos process

where the normalized residual vectors form the @2 matrix. From the CG procedure

(2.2) we have

=1, pi=rit B,
or written in matrix form Ry = [r]...|rk], P = [p1]... P&,
[ 1
Ri =PI, Ip= — 1
] -8k 1

Then @y = RyAf! is orthogonal, where Ay = diag(||r(|l2, . -
g

(3.4)

" llTkHZ), and Ty =



QLAQ 1s tridiagonal,

QuAQr = (Red]) A(RADY) = AT RLARAL
= A (ALy) A(PLL )AI (A,\lLl,)(PkAPk)(A;‘Lk)t
= (A7 LD (AP ) =T
(Dy = diag(01,...,0), 0j = (p;; Ap;))

(3.5)

By equating the entries in (3.6) and (3.1), we have
o; + ,812'01‘—1 1 B;

EOE I il R SR i B B = SIS ML (3.6)
J s Q; a]‘_]’ J \/’7]'_\/7]'-&—1 a;

Note (3.6) with &; = (q;, Ag;) gives (2.7)

(i Ary) _ & _ 05+ B0
{risi) % Y
(rj,Arj) = 6;=0;+ Bioj1 . (3.7)

a; = (g;,Aq) =

Golub and Van Loan [5, page 342] present the application of the Lanczos

process in solving linear equations, which is equivalent to the CG algorithm

QLAQryx = Qib, Qryr = T
Toye = bk, b= Q%b (3.8)

The solution zx = Qyx can then be computed from (3.8) by the LDL! factor-
ization (3.6) of T}

ze = QT Qub = QWT by

Qk[(A; L) D (a7 Lk)t]_lbk

(PLLATY) [ARLg DR L7 A by, (3.9)
= Pag, where LiDgar = Agby .

i

I}
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With further simplifications, one can show a;, = [a, ..., a;]' and this process can
be rewritten in the more familiar form z; = xx_1 + aip; of the CG algorithm.
We note that the above process requires computation of [;’J- = = (7;,7;) and
&; = (F;, A7) [ (7}, 7;); as in the modified CG rearrangement (2.8), both inner
products can be computed together. Moreover, the use of the alternative formula
5’]- = {(¢;+1, Ag;) for ||7;]|2 leads to instability, as in the case of Saad’s rearrange-
ment (1.1). Hence, algorithm (3.3) with (3.9) is a CG-like algorithm that differs

from (2.8) in the computing of r; from ¢;. The formulae
pi =7; + Bipi-1, Tip1 =T — 0 Ap;

from (2.8) can be shown to be equivalent to the three-term recurrence relation

(3.2) of the Lanczos algorithm. We have

rigr = 15— A(r; + Bipia) =1 — ajAr; — (08 /aj ) (rjo1 — ;)
= (1+a;Bi/aja)r;—ajAr; — (Bija;/a; )iy
= Gja;1; — a;jArj — (Bjoj/ajq) i

Ar; = (=Bi/aja)rir+&5r — (/)i (3.10)

By (3.6) and the relationships ¢; = #;/3; = i/ /75 (3.10) simplifies to (3.2).
Thus in this light, the modified CG rearrangement (2.8) is naturally associated

with the Lanczos process.

4. Numerical experiments on stability

The aim of the following experiments is to determine the stability and convergence
properties of the modified conjugate gradient procedures.

We performed a number of MATLAB experiments in solving Az = b by the
conjugate gradient procedure to study the convergence behavior on different dis-
tributions of eigenvalues of the preconditioned matrix. In Eijkhout’s rearrange-

ment, (ry, vk_1) is computed by an extra inner product. Meurant’s rearrangement
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is taken from [11] and the Lanczos rearrangement is adapted from [5, page 342]
by evaluating the two inner products for &; together as &; = (7, A7;) / (7;, 7).
Test 1

The matrices considered have the eigenspectrum used by Strakos [18] and Green-

baum and Strakos [7)

1—1
n—1

Ai= M+ (An = Ap)p" 7, i=2,...,n, p€(0,1). (4.1)

We have used n = 100, A; = 1E-3, x = A,,/A; = 1E5 and p = 0.6,0.8,0.9,1.0
in the experiments. For p = 1, we have a uniformly distributed spectrum, and

p < 1 describes quantitatively the clustering at A;.

Test 2

The eigenspectrum has a gap, {1,...,50,10051,...,10100}.

Test 3

The eigenspectrum has double eigenvalues, {1,1,2,2,...,50,50}.

Test 4

The eigenspectrum consists of the roots of the Chebyshev polynomial T,(x)

shifted from [—1,1] to the interval [a, b]

A= (b—a) cos (ﬂ'/2+(i_ I)W) + (b+a)‘ r=1,...,n. (4.2)

2 n

e

We have used n = 100, a = 1, b = 1E5.
As done in Hageman and Young (8], Greenbaum {6] and Strakos [18], we
operate on diagonal matrices. This procedure is equivalent to representing all

vectors over the basis of eigenvectors of matrix A. In all cases, a random! right

Luniform over [—1,1]
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Standard CG, n=100, kappa=100000
103 T T . r . T r r r

100 - 3
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Figure 4.1: Classical CG on Test 1. Dashed curve: p = 0.6; dotted curve: p = 0.8;
dash-dot curve: p = 0.9; solid curve: p = 1.

Modified CG, n=100, kappa=100000
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Figure 4.2: Modified CG on Test 1. Dashed curve: p = 0.6; dotted curve: p = 0.8;
dash-dot curve: p = 0.9; solid curve: p =1
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Eijkhout Rearrangement, n=100, kappa=100000

103 : . . : : . : . .
100 |- ) E
T ]
B ]
& C ]
j23) N o]
106 Y E
109 & 3
10-12 ) " n ' S " N "
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.3: Eijkhout Rearrangement on Test 1. Dashed curve: p = 0.6; dotted
curve: p = 0.8; dash-dot curve: p = 0.9; solid curve: p = 1.

Mecurant Rearrangement, n=100, kappa=100000

103 . . . . . . ; .
£ E
100 | E
103 & 3
5 - ;
sl L i ]
106 | 4
107 ¢ ' 3
10-12 L A L . n N . \ " N
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.4: Meurant Rearrangement on Test 1. Dashed curve: p = 0.6; dotted
curve: p = 0.8; dash-dot curve: p = 0.9; solid curve: p = 1.
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Lanczos Rearrangement, n=100, kappa=100000

11T

100

T T YTy

11 130411

Lidtiy
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10-3 E N s e g

5 F ]

E r B
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-6 B
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- x"\_I g

10-% E ‘\\ E
10-12 A I 4 L i 1 "\ 5, 1 1

0 20 40 60 80 100 120 140 160 180 200
Iteration

Figure 4.5: Lanczos Rearrangement on Test 1. Dashed curve: p = 0.6; dotted

curve: p = 0.8; dash-dot curve: p = 0.9; solid curve: p = 1.

standard CG, n=100

103 ¢ T y : : — : T —r :
100 o E
102 € E
5 E ]
& C N
=3 i J
104 & } 4
107 & i J

lo.nt 1 1 i 1 4 L L
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.6: Classical CG on Tests 2-4. Solid curve: Test 2: dashed curve: Test 3

dotted curve Test 4.
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modified CG, n=100

103 E v — : T T r T - y 5
100 &y .
103 ¢ 3
s f :
I ]
106 E §
109 = E
;E 3
]0.12 } N A 1 1 n i
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.7: Modified CG on Tests 2-4. Solid curve: Test 2; dashed curve: Test 3;
dotted curve Test 4.

Eijkhout Rearrangment, n=100

103 ¢ . : : : : ' : —_—
100 b 3
103 3
s f E
£ C | ]
e L N 4
106 E
107 & 3
10.12: 1 . i a I S L R
0 20 40 60 80 100 120 140 160 180 200

lteration

Figure 4.8: Eijkhout Rearrangement on Tests 2-4. Solid curve: Test 2; dashed
curve: Test 3; dotted curve Test 4.
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Meurant Rearrangement, n=100
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Figure 4.9: Meurant Rearrangement on Tests 2-4. Solid curve: Test 2: dashed
curve: Test 3; dotted curve Test 4.

Lanczos Based Rearrangment, n=100
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Figure 4.10: Lanczos Rearrangement on Tests 2-4. Solid curve: Test 2; dashed
curve: Test 3; dotted curve Test 4.
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hand side and zero initial guess are used.
We display the decrease of A-norm of the error at each iteration divided by

the A-norm of the initial error

(& — zp, A& — x))?

, &= A7th. 4.3
(.7: — T, A(:f: — .’)50))1/2 ( )

Figures 4.1-4.5, display the convergence results from Test 1. Note that for
p = 0.8,0.9 both the standard and modified CG procedures exhibit similar
slow convergence behavior. Figures 4.6-4.10 display the convergence results on
Tests 2-4. For Test 1 with p = 0.6, the standard CG algorithm shows the best
convergence properties. Eijkhout’s rearrangement has slightly better stability
properties than modified CG. The other results are essentially the same.

All the results on Tests 2-4 again show similar convergence behavior among

the standard CG and the different rearrangements of CG.

5. Parallel performance

To gauge the effectiveness of the modified CG procedure, we performed a number
of experiments in comparing the run-time in standard CG and modified CG.
The test matrices are chosen from the Harwell-Boeing Test Collection [3]. The
experiments are performed on 16 nodes of the iPSC/860 hypercube. Each matrix
is first reordered by the bandwidth reducing Reverse Cuthill-McKee ordering [10].
The matrix is then equally block partitioned by rows and distributed across the
processors in ELLPACK format [15]. In all cases, a random right hand side and

zero initial guess are used, and convergence is assumed when
I7kflz < 107%(iroll2. (5.1)

The conjugate gradient procedure is rarely used without some form of pre-
conditioning to accelerate convergence. In the tests described below, we usec

a block preconditioner derived as follows: Let A; be the diagonal block of the
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Table 5.1: Description of test problems.

Problem { Order | Nonzeros | Description
BCSSTK13 | 2003 11973 | Fluid Flow Generalized Eigenvalues
BCSSTK14 | 1806 32630 | Root of Omni Coliseumn, Atlanta
BCSSTK15 | 3948 60882 | Module of an Offshore Platform
BCSSTK18 | 11948 80519 | R.E.Ginna Nuclear Power Station

Table 5.2: Timing results.

standard CG modified CG
Problem | Iterations | Time || Iterations | Timne
BCSSTKI13 1007 | 19.56 1007 | 16.99
BCSSTK14 232 | 2.72 232 | 2.35
BCSSTK15 376 | 7.60 376 | 6.72
BCSSTK18 697 | 34.55 697 | 32.80
matrix A contained in processor i, and write A; = L; + D; + L! where L; is

strictly lower triangular and D; is diagonal. Then the preconditioning matrix M
is M = diag(M, M,,..., M,), where M; = (L; + D;)D7*(L; + D;)!. As shown in
Axelsson and Barker (1], this corresponds to each processor doing a single SSOR
step (with w = 1) on its diagonal block A;. This preconditioner requires no added
communication among the processors when implemented in parallel.

Table 5.1 is a brief description of the problems selected from the Harwell-
Boeing Test Collection. Table 5.2 shows the number of iterations and time (in
seconds) required to solve the corresponding problems. In all cases, the modified
CG shows an improvement in the time required for solution, ranging from 5%
to 13%. Moreover, the modified CG rearrangement shows no unstable behavior

since it takes almost exactly the same number of iterations as standard CQG.
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6. Conclusion

We have presented a rearrangement of the standard conjugate gradient procedure

that eliminates one synchronization point by performing two inner products at

once. The rearrangement has a natural connection with the Lanczos process for

solving linear equations. Although not a proof, MATLAB simulations indicate that

the rearrangement is stable. Moreover, computational experiments using parallel

versions of both the modified and standard conjugate gradient algorithms show

that the modified version reduces the execution time by as much as 13% on an

Intel iPSC/860 with 16 processors.
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