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ABSTRACT 

DCOR is a user-friendly computer implementation of a deterministic combat model 
developed at ORNL To make the interpretation of the results more intuitive, a conversion 
of the numerical solution to a graphic animation sequence of battle evolution is desirable. 
DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This 
research is aimed at developing robust methods for computing the position of the combative 
units over the continuum (and also pkeled) battlefield, from DCOR’s discrete-variable 
solution representing the density of each force type evaluated at gridpoints. Three main 
problems have been identified and solutions have been devised and implemented in a new 
visualization module of DCOR. First, there is the problem of distributing the total number 
of objects, each representing a combative unit of each force type, among the gridpoints at 
each time level of the animation. This problem is solved by distributing, for each force type, 
the total number of combative units, one by one, to the gridpoint with the largest calculated 
number of units. Second, there is the problem of distributing the number of units assigned 
to each computational gridpoint over the battlefield area attributed to that point. This 
problem is solved by distributing the units within that area by taking into account the 
influence of surrounding gridpoints using linear interpolation. Finally, time interpolated 
solutions must be generated to produce a sufficient number of frames to create a smooth 
animation sequence. Currently, enough frames may be generated either by dircct 
computation via the PDE solver or by using linear programming techniques to linearly 
interpolate intermediate frames between calculated frames. 
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I. INTRODUCIION 

As an alternative to computationally expensive stochastic combat models, ORNL 
developed a deterministic combat model based on a set of Partial Differential Equations 
(PDEs).'-' This new model differs from earlier Lanchester-type deterministic models that are 
based on Ordinary Differential Equations (ODE%) in that it explicitly includes the spatial 
aspect of battle.6" 

The Deterministic Combat model oE Oak Ridge (DCOR) code is an interactive, 
menu-driven computer implementation of this model? As DCOR is based on a deterministic 
model, a finite spatial mesh is superimposed on the battlefield, and DCOR's solutions are 
restricted to the gridpoints of this mesh. Also, as the solution to the mathematical model is 
composed of large numerical arrays, to diversify the "useability" of DCOR, a conversion from 
this numerical solution to a graphical animation sequence is desirable. Therefore, a process 
to convert the numerical solution of DCOR, the density of each force type at computational 
mesh points (CMPs) and the total number of units in each force, into a graphical solution has 
been developed, implemented, and tested. In this TM we use the termsforce type or weapon 
system to denote a troopheapon combination characterized by a specific attrition capability, 
resistence to enemy fire, mobility, maneuverability, ...; e.g., infantry, tanks, smart weapons, etc. 
On the other hand we use the terms combative unit , or object to denote a military entity 
formed of a single force type; on the fine-most scale each object represents an 
individual soldier, tank, etc, but on coarser scale, may be used to represent a 
platoon, company, battalion, and so on. Also, by battkjieki we mean an area of land, 
including terrain features such as shores, mountains, forests, etc, sufficiently large to 
contain the entire engagement and aspects of its aftermath, such as retreat and 
persuit, that is desirable to model. 

The animation sequence can be generated either in a series of ASCII files or in 
a single file in the National Center for Supercomputing Applications's (NCSA's) 
Hierarchical Data Format (HDF).'' The ASCII files are easily modified to allow 
importing of the animation sequence into almost any graphics package with importing 
and animation capabilities. The HDF file may be viewed using one of NCSA's public 
domain software packages such as XImage, XDataSlice, or Datascope. These 
packages and the HDF library with the functions used in DCOR's graphics 
subroutines are available from NCSA (see Appendix A). 

This document describes the development of this visualization process and its 
implementation into a new visualization module of the computer code DCOR. In 
Section 11, we develop the theoretical problems and solutions in converting DCOR's 
numerical solution to an animation sequence. Section TI1 is concerned with the 
implementation of the conversion process developed in Section I1 into the code. 
Section IV describes in detail the graphics subroutines that have been added to 
DCOR. Next, we provide descriptions and explanations of the new graphics 
parameters in Section V. Then, we summarize our efforts and discuss future 
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developments for the visualization module of DCOR in Section VI. Appendix A 
provides instructions for obtaining public domain software from NCSA. Appendices 
B and C describe the format of the output ASCII files and the format of the 
background bitmap ASCII file respectively. Finally, Appendix D provides some 
comparison tables for the two demonstration simulations produced by DCOR so far. 
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IL OONVERSION OF DCORS DISCRETE-VARIABLE SOLUTION 
TOAPDCELMAP 

Since DCOR is based on a deterministic PDE model, the problem domain, ie. 
the battlefield area, is divided into finite, local subdomains using a finite spatial mesh. 
All input parameters and the computed solution are restricted to their corresponding 
values evaluated at the gridpoints of this mesh.’ DCOR then uses a modified version 
of the public domain PDE solver, PDETWO to solve for the time dependent density 
of each of the modeled force types at the computational mesh gridpoints. First, 
PDETWO converts the set of PDEs into a set of ODEs via the Method of Lines” by 
approximating the spatial derivatives on the computational mesh using a finite- 
difference scheme. PDETWO then uses the GEARB” method to solve the resulting 
set of ODEs. Thus, the output of the PDE solver is the density of each weapon 
system or force type, m, at each CMP, (ij), at each time step, t; we denote this 
density by u,,(t). Previously, this solution was presented to the user as a static 
sequence of contour plots. However, as an animation sequence depicting the 
movement and interaction of the individual units of the different weapon systems is 
easier to interpret, a conversion of the discrete-variable solution to such animation 
sequence is highly desirable. An animation sequence consists of consecutive frames, 
each representing a bitmap, shown in chronological order that must be displayed in 
rapid succession, in order to produce a realistic visual effect of temporal evolution. 

The graphical display of most of today’s computers is composed of an a x b 
grid of small dots called pixels. A bitmap is an a x b integer array where each integer 
in the array represents the corresponding pixel and the value of the integer 
determines which color from an array of colors, called a palette, is displayed at that 
pixel. Thus if we can represent DCOR’s numerical output at each time step in the 
form of a bitmap, then we can display this bitmap on a computer screen as a single 
static frame. By displaying consecutive bitmaps in rapid succession we obtain the 
desired animation sequence. Since a single pixel is extremely small, and difficult to 
see, it is necessary to represent each object as a n x n square of pixels. We define 
an a/n x b/n transitional mesh in which each transitional mesh point (TMP) 
represents a corresponding n x n square of pixels on the bitmap, so that an object 
can be displayed only at a TMP. Since we are able to distinguish different forces by 
using different integer values (corresponding to different colors) in the bitmap, the 
process of generating a bitmap from the numerical solution for one force can be 
repeated for each of the remaining forces and the resulting bitmaps superimposed 
to produce a single frame. Hence, the objective of converting a numerical solution 
on a computational mesh into a graphical solution can be viewed as converting a real- 
valued numerical solution on a computational, possibly nonuniform, mesh to an 
integer numerical solution on a uniform transitional mesh. This objective can then 
be divided into three main problems: (i> distributing the total number of units among 
the CMPs; (ii) distributing the total number of units at a CMP over the area 
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attributed to that point; and (iii) producing a sufficient number of frames of properly 
interpolated output to create a smooth animation sequence. 

(i) The PDE solver, produces the density of each combat force type, i.e. 
number of combative units per unit area of the battlefield, at each CMP, which when 
integrated over the entire area of the battlefield produces the total number of units 
for this force type. Since fractions of units are not acceptable in the visual 
interpretation of the results, we round each force type’s total number of units to the 
nearest integer. In addition, from the x- and y-mesh inputs, we can calculate the 
computational cell area attributed to each CMP. Then, by multiplying the local 
density by the area, we obtain a real number value, that we denote unum+, for the 
number of units allocated to each CMP. If we simply rounded each real number to 
the nearest integer, the sum of the integers may or may not equal the total number 
of units. Thus we examine each unurnq. If mum+ is equal to or greater than one, we 
allocate a number of units equal to the integer portion of unum+ to the (i,j)-th CMP. 
We then reduce both unurn+ and the total number of remaining units to be allocated 
by this same amount. This process will distribute a number of units less than or 
equal to the total number of units to the CMPs, and at its conclusion unum+ will be 
less than one for all i andj. At this point we assign any remaining units to the CMPs 
with the largest uizum+ fractional values. 

After examining the output generated by this process, we found that in certain 
instances, particularly when a force is split to maneuver around natural or man-made 
obstacles on the battlefield, a unit may appear to fortuitously oscillate between distant 
points on the mesh. This occurs because density changes at distant points produce 
small fractional differences in unum+, making it larger at one point for a few time 
steps, then smaller for a few time steps, etc. Therefore, we employ a linear 
programming algorithm originally developed for the transportation problem to 
suppress this visually distracting behavior. The transportation problem involves 
routing units from several sources to several destinations in order to minimize the 
total cost (distance) between the sources and the  destination^.'^ In solving the 
transportation problem, there is a method, called the Big M13 method, of assigning 
an exceptionally high distance, hence cost, between a source and destination which 
make an undesirable or impossible match. Thus, to employ this algorithm, we use 
the CMPs and their allocated units from the previous frame as the sources, and for 
the current frame we use the process described above to distribute units to the 
CMPs, which then represent possible destinations. In choosing the possible 
destinations, a few more than the total number of units are chosen to allow some 
degrees of freedom for the algorithm, otherwise the solution would remain 
unchanged. In addition, they are separated into two catagories: 

1. integer destinations: destinations requesting a number of units eqaual to 
the integer portion of uizum+; 

2. fractional destinations: destinations corresponding to a unum+ value of less 
than one. 
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As a requirement of the problem, the number of units provided by the sources 
must equal the number of units requested by the destinations. If these are not equal, 
a dummy source/destination must be introduced providinghequesting a number of 
units equal to the deficit/s~rplus.'~ In determining the output, destinations receiving 
units from a dummy source are not used. In order to represent the true solution as 
much as possible, it is desired that integer destinations receive units before fractional 
destinations. If a dummy source is needed, a match between a dummy source and 
an integer destination is undesirable, therefore, we use an exceptionally large value 
for the distance between integer destinations and the dummy source. Otherwise, a 
value of zero is used for the distance between the dummy source and fractional 
destinations. Also, we introduce an input for maximum distance a unit is allowed to 
travel between frames. If the distance between a source and possible destination is 
greater than the maximum distance allowed, an exceptionally large value is used for 
the distance instead. 

(ii) By design of the transitional mesh, each unit to be displayed must lie on 
a TMP, so that each unit assigned to a given CMP must occupy a TMP located 
within the area attributed to this CMP. Thus, the second problem constitutes the 
distribution of the units allocated to each CMP in stage (i) over the TMPs in its 
neighborhood. We accomplish this by interpolating the density function of each TMP 
from the computed densities of the CMPs surrounding it, via an equation of the form: 

u(x,y)= Rx + By + cy + D 

where x and y are the coordinates of the TMP with respect to a locally defined 
coordinate system; A, B, C, and D are coefficients calculated using the value of u at 
the CMPs surrounding this TMP at the given time step. M e r  calculating the density 
at each TMP within the area of the CMP, we then distribute the units, already 
assigned to this CMP, one by one, to the TMP with the largest density. Since each 
TMP can contain only one unit, we set to zero the density at any TMP to which a 
unit has been assigned, to preclude multi-unit assignment to the same TMP upon 
subsequent comparison of TMP desnsities. If there are not enough TMPs within the 
CMP to hold all the units, the user is notified and it is suggested that the user 
increase the scale factor relating the computational mesh and the transitional mesh 
(make the transitional mesh finer). 

(iii) Upon monitoring the performance of the PDE solver on a few test 
problems, we found that the determining factor of the amount of CPU time 
consumed in solving a problem is the final time level, or time length of the simulated 
battle and not the number of time steps at which the solution is generated. Hence, 
generating the numerical solution for ten time steps is just as costly as generating the 
numerical solution for one hundred time steps for the same final time level. If the 
PDE solver is later upgraded, this may not be the case. Therefore, a method of 
producing intermediate frames between two calculated frames has been developed. 
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If we can identify a unit’s position in two calculated frames, then we can generate 
intermediate frames by using linear interpolation between its initial and final 
positions in order to determine the positions of this unit in all intermediate frames. 
To accomplish this task, we once again consider linear programming techniques. In 
particular, we look at the assignment pr~blem’~,  which is a special case of the 
transportation problem. In this variant, the number of sources must equal the 
number of destinations, and each source can provide only one unit and each 
destination can accept only one unit. In this case, the sources are the positions of the 
units on the transitional mesh in the earlier calculated frame and the destinations are 
the positions of the units on the transitional mesh in the currently calculated frame. 
The algorithm then matches the units in the two frames by minimizing the total cost 
(distance); clearly in the present application we are not concerned with this 
minimization, but the algorithm serves our purpose. Also, the total number of units 
provided by the sources (in this case the total number of sources), and the total 
number of units requested by the destinations (in this case the total number of 
destinations), must be equal. However, since a source/destination can only 
provide/request one unit, then additional dummy sources/destinations may have to be 
added in to balance the pr0b1em.l~ In addition only the units which have a match in 
both calculated frames will appear in the interpolated frames. Hence, units will not 
be attrited, nor will new units be added in any intermediate frames. Once the 
algorithm concludes the matching process the desired (user-specified) number of 
intermediate frames are generated using linear interpolation between the two 
calculated frames. To prevent two units from occupying the same TMP, if the 
calculated position of a unit is already occupied, then another position along the line 
segment connecting the unit’s positions in the two frames is chosen. Currently, there 
is no discernable CPU time difference between interpolating frames and calculating 
frames. However, in larger simulations a difference may become apparent. The 
visual advantage of interpolation is the smoother animation it is capable of producing 
due to a more evenly spaced movement rate between calculated frames. The 
precision advantages of direct computation of frames include the timely display of 
attrition and a more accurate depiction of maneuvering. The flexible implementaion 
of the visualization module into DCOR allows the user to compromise these 
conflicting advantages according to his own taste and specific application. 
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III. IMPLEMENTATION INTO DCOR CODE 

The visualization graphics subroutines for DCOR have been developed and are 
currently operating on ORNL’s Cray x/MP under the UNICOS operating system.’ In order 
to preserve the portability of the DCOR code, the additional graphics subroutines have been 
written in standard FORTRAN. However, the subroutine grafix uses the linear programming 
subroutine, HWABF, from the Nag library to solve the transportation problem. This should 
be easily modified to any other numerical software with a similar subroutine. Also, to 
generate the animation sequence in HDF format, the subroutine raster uses functions from 
NCSA’s public domain HDF library, Zibd’a. The C and FORTRAN source files needed 
to compile this library are available from NCSA through anonymous ftp or regular 
mail (see Appendix A). 

The graphics subroutines are called after each time step if either the ASCII 
or HDF format is selected. They currently use a separate set of integer-, real-, and 
character-variable container arrays from the PDE solver subroutines. These arrays 
are setup and managed by gsetup. If these arrays are too small to perform the 
necessary calculations, gsetup notifies the user of the necessary sizes and terminates 
execution. 

The methods described in Section I1 have been implemented into the graphics 
subroutines of the DCOR code. In particular, the initial distribution of the total 
number of combative units amoung the CMPs, where the transportation algorithm 
is not necessary, is performed in the subroutine initgra€ix. For the remaining time 
steps, this allocation is performed within grafk Next, the unit allocation process for 
each non-zero CMP to the associated TMPs is accomplished in distniute. Finally, 
the generation of any intermediate frames through linear interpolation is handled in 
the subroutine interpol. 

In addition, a graphics modification menu has been added to the interactive 
menu so that the parameters described in Section V may be modified interactively. 
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IV. DESCRIPTION OF DCORS GRAPHICS SUBROUTINES 

This section explains the new graphics subroutines for DCOR. Each entry contains the 
subroutine name in bold face, followed by its arguments in italics and their variable type. This 
is followed by a brief description of the subroutine's function. 

subroutine assct 
INTEGER, 

REAL T 

(N, A, C, T, mmn, CH, LC, LR, RH, SLC, SLR, U) 
N,A (maxn,mmn i-1), C(maxn), CH(maxn), LC(maxn), 
LR(mmn), RH(maxn +l), SLC(mawn), SLR(maxn), U(maxn + I )  

This is a modified version of assct, a subroutine to solve the square assignment problem. The 
subroutine was obtained from the public domain NETLIB collection of subroutines. It has 
been modified to run using a container array. 

subroutine distriiute (u, x, y, mx, my, mfrc, mf; myf; maxn, dw, 

INTEGER 
dy, MA, source, mi isrce, nonzero, uf; nimage) 

source (mfrc, 3 , m  *my), mi(mfrc), krce(mfrc, 2,mnxn), 
nonzero(2,mxf*myfl, nimage(mxf,myfl 

mu, my, mfrc, "zx% myf; mCUM, Mmmfrc), 

u (mfrc, m, my), X ( W ) ,  y(my), uf (1, mrf,myn, d, dy REAL 
This subroutine distributies combating units over the transitional mesh points associated with 
each CMP. The allocation is performed by calculating the density at each TMP contained 
within the CMP and then distributing the total number of troops at the CMP individually to 
the TMPs with the highest densities. 
Note: Each TMP can only contain 1 unit per weapon type. 

subroutine calc (uf, mf; myf, dw, dy, x0, yo, A, B, C, D, il, 

INTEGER 
REAL 

i2, j l ,  j2) 
mf, myf; il, i2, j l ,  j2 
uf(l,mXf,myfl, h, dy, xo, yo, A, B, c, D 

This subroutine calculates the interpolation equations for distriiute. 

subroutine h d m a x  (array, m, mfrc, mu, my, nonzero, nz, man, 

INTEGER 
mazy) 
m, mfrc, m, my, nonzero(2,mYmy), nz, man, m q  

REAL array(mfrc7 m, my) 
This subroutine returns the coordinates of the largest value in an array where the coordinates 
of the non-zero elements of the array are stored in another array. 
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subroutine gbal (n, u, x, y, mu, my, mbc, m m ,  utot, unum) 
INTEGER n, mu, my, mfrc, mmn 
REAL u(mfrc,m,my), x ( m x ) 2  y(my), utot(mfK)J 

w2wn (mfrctmrtmr) 
This subroutine calculates the balance table at every time step. It is essentially the same as 
subroutine bal except that the balance at each CMP is stored for graphics purposes. 

subroutine gratiX (x, y, mw, my, mfrc, dmax, MM, MB, MMM, utot, 
unum, MA, source, nonzero, dest, KOST, Kl5, K7, K9, K6, 
K8, K I l ,  K12) 
mx, my, mpc, MM, MB, MMM, MA (mfrc), 
source(mfrc,3,m*my), nomero(2,m *my), dest(4,MB), 
KOST(MMM, MB), KIS(MM), H(MM),  K9(MM), K6(MM), 

INTEGER 

K8(MM), Kl  I (MM), K22(MM) 
REAL x ( m ) ,  y(my)? dmax, utot(mfi4, unum(mfK,m,my) 

This subroutine calculates the computational mesh graphics data for the initial frame. It first 
sets up an array of the possible locations, then evaluates a cost matrix whose entries are 
equated to the distance between each source and each possible destination. Then a dummy 
source/destination is added in if necessary. The transportation algorithm H03ABF from the 
NAG library is used to determine the desirable locations from the possible ones. Finally, any 
duplicate destinations in the list are combined and the destinations become the new sources. 

Notes: (a) The possible locations are chosen based on the number of units (unurn). Also, 
a value of 1 represents a whole unit. Desirable locations are chosen first based 
on the presence of whole units, and then from the locations with the largest 

fractional number of units. 
(b) For definitions of uppercase variables, see Nag library description for subroutine 

subroutine gsetup (n, u, x, y, m, my, mfrc, name, bkgdfile, 
form, scale, npix, dmax, numintp, colors, overwrite, 
sho wmesh, bkgdflag) 
n, m, my, mfrc, npiq numinp, colors(mfi.c,3), 
overwrite, showmesh, bkgdflag 

nume* 10, bkgdJie* 10, form * 10 
This subroutine sets up a container array €or the graphics subroutines, checks to see if the 
container arrays are large enough, and calk the necessary subroutines for the graphics. 

INTEGER 

REAL u(mfrc,~?my), X ( m - 4 ,  y(my), scale, 
CHARACTER 
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subroutine initbkgd (4 y, nu; my, w, myf, npk, bkgdfile, 
bkgd, showmesh, palette, length, temp) 

INTEGER mx, my, myj npix, showmesh, length, temp(1ength) 

CHARACTER bkgdfile* 10, bkgd(npir*mf%pix*myf) * 1, palette(768)* 1 
This subroutine initializes the background and background palette representing the 
battlefield terrain features. It also sets up the computational mesh if selected. 

REAL x(mu), Y (my) 

subroutine initgrafix (nu; my, mfrc, utot, unum, MA, source, 

INTEGER 

REAL utot(mfrc), unum (mfrc,mx,my) 

nonzero) 
mx, my, mfrc, M A  (mfrc), source (m jrc, 3, mx *my), 
nonzero (2,mPmy) 

This subroutine calculates the computational mesh graphics for the initial frame 
based on the input force densities. It allocates on a one by one basis where each unit 
is allocated to the CMP with the largest 'number of units' value, which is then 
decreased by 1. 

INTEGER 

subroutine interpol (n, u, x, y, mx, my, mfrc, m x f j  myf; d m q  
colors, overwrite, maxn, dx, dy, numintp, form, name, 
bkgdfile, npiX; MA, source, mi, krce, mi2, hrce2, 
mi3, krce3, iium, u j  workspace, bkgd, tidf, palette, 
sliowmesli, A, C, tempC, CH, LC, LR, RH, SLC, SLR, 
assctu) 
n, mx, my, mfrc, m x f j  myJ colors(mfrc,3), overwrite, 
man ,  numintp, npk, MA (mfrc), source(mfrc,3,mx*my), 
mi(mfrc), isrce(m frc, 2,man), mi2(mfrc), 
isrce2(mfrc,2,maxn), mi3(mfrc), isrce3(mfrc,2,maxn), 
num, workspace(3*mxf*myfi, showmesh, A(maxn,maxn), 
C(mfrc,maxn), tempC(maxn), CH(maxn), LC(maxit), 
LR(maxn), RH(man +l), SLC(maxn), SLR(maxn), 
assctU(maxn +I) 

REAL 

CHARACTER form*lO, name*lO, bkgdfil*lO, 
bkgd(i ipir*~*rzp~*myfi~ 1, Iidf(npk*~*iipixu*myf)* 1, 
palette(%$)* 1 

u(mfrc,mx,my), x ( m ) ,  y(my), dmQ-5 & dY, 
uf(lJmrs,mYf) 

This subroutine linearly interpolates frames between calculated frames. The 
subroutine takes the list of transitional mesh sources, uses distribute to obtain a list 
of destinations, and then uses the assignment algorithm (assct) to match members of 
the two sets with one another. Once they are matched, it linearly interpolates 
between the positions of matched pairs to obtain the locations for the desired number 
of intermediate frames. 
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Note: All of the forces must be matched before any intermediate frames can be 
generated. 

11 



subroutine modgraf (form, zbase, dcont, delx, dely, scale, npkY 
name, overwrite, bkgd, bkgdfile, showmesh, dmax, 
numintp, mfrcy colors) 
npir, overwrite, bkgd, showmesh, numirip, m frc, 
colors (mfrc,3) 
zbase, dcont, de& dely, scale, dmax 

INTEGER 

REAL 
CHARACTER fonn*lO, name*lO, bkgdfile*lO 

This subroutine enables the interactive modification of the graphics data. 

subroutine raster (n, nm, mfrc, mxfj myf, form, name, bkgdfi!ey 
npiq colorsy overwrite, man, mi, isrce, bkgd, hdf, 
palette, showmesh) 

INTEGER n, nm, mfrc, w, myf, npix; colors(mfrc,3), overwrite, mmn, 

CHARACTER form*lO, name*lO, bkgdfiIe*lO, bkgd(npix*mxf*npiu*myfl*l, 
hdf(npix*mxf"npix*myn* 1, palette(768)*1 

mi(mfrc), krce(mfrc,2,maxn), showmesh 

This subroutine generates the raster images for the DCOR program. The image data 
can be generated in either NCSA's HDF format or in ASCII format. 

The calling tree for the visualization module subroutines described above is shown 
below, for each time step starting by a call from the DCOR subroutine evolve. 

evolve 

fmdmax 

distrihte 
findmax 
Calc 

interpf 
distribute 

findmax 
Calc 

aSSCt 

raster 
raster 
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V. EXPLANATION OF NEW TN"T ENTRIES 

This section explains the new graphics parameters for DCOR. Each entry contains 
a short descriptive comment in italics. After each comment is the variable name, exactly as 
used in the source code, printed in bold face, followed by the options, format, and a complete 
description of its function. 

Graphics format (none, ascii, hdfr or plot) 
fom This is the format of the graphics output. None produces no graphics; ascii produces 
a series of files (one file per frame) containing bitmap information in ASCII format; hdf 
produces a file containing the entire animation sequence in HDF format; and plot produces 
contour plots using DISSPLA as described in Ref. 9. 

The remaining parameters are only required for the ASCII or HDF format options. While 
they must still be included in the input 
sequence, they will have no effect if none or plot is the selected graphics format. 

scale factor between coane mesh and transitional mesh: 
scale: This real parameter determines the size of the transitional mesh. It is determined as 
follows: 

mxf=int((mx-l)*scale) + 1 
myf = int((my-1) *scale) + 1 

Once set, this parameter should not be changed interactively during an HDF animation. If 
it must be changed, then either the output file name should be changed or  the overwrite 
switch described below should be set to 1. 

sue of objects TO be generated (in square pixels) 
npk This integer parameter determines the size in pixels of the objects to be generated. 
Currently, each unit is represented by a square that is int(npix*.8) x int(npix*.8) pixels in size. 
If npix is greater than three, then this allows up to four forces to be overlapped on the same 

TMP and still be seen by placing the units at different corners of the npix x npix square. This 
is also the relationship between the fine mesh and the bitmap. The bitmap will be (npix*mxf) 
x (npix*myf) pixels in size. Once set, this parameter should not be changed interactively 
during an HDF animation. If it must be changed, then either the output filename should be 
changed or the overwrite switch described below should be set to 1. 

name of graphics file(s) to  be created (up to 10 chars) 
name: This is the root name, up to ten characters, of the generated output file. If form is 
set to hdf, the graphics output file will be <name>.hdf, if ascii, <name>##.#.dat, where 
## is the number of the calculated frame and # is the number of the interpolated frame. 

overwrite fi le if it exists? (O=no, I =yes) 
overwrite: If hdf is selected and this integer parameter is set to I, then a new HDF 
file is started, otherwise, each successive frame will be appended to the HDF file if 
it exists. 

13 



dkplay computational mesh? (O=no, I =yes) 
showmesh: This integer parameter turns on (1) and off (0) the display of the 
computational mesh in the animation sequence. 

name of file contuining background bitmap (up to 10 chars) 
bkgdfile: This is the full name of the file containing the background in ASCII format 
(see Appendix C). Use 'none' for a white background. If the background is changed 
within an animation and a different palette is included, then either the output 
filename should be changed or the overwrite switch should be set to 1. 

maximum distance units permitted to travel between frames 
dmax: This real parameter is the maximum distance to be used in the linear 
programming algorithms. 

number of frames to be intepolated 
numintp: This integer parameter is the number of frames to be interpolated between 
each pair of calculated frames. 

RGB values .for each force 
colors(1,l): -This is the 
colors(l,2): This is the 
colors(l,3): This is the 

red content for the color of force 1. 
green content for the color of force 1. 
blue content for the color of force 1. 

colors(mfrc,l): This is the red content for the color of force 

colors(mfrc,2): This is the green content for the color of force 

colors(mfrc,3): This is the blue content for the color of force 

Each colors value is an integer value ranging from 0 to 255. 

mfrc. 

mfrc. 

mfrc. 
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VI. CONCLUSION 

W e  have developed, implemented, and tested a procedure for generating a graphical 
animation sequence from the numerical output of the PDE solver of the DCOR code. This 
new processing of the data allows for quick and easy display and interpretation of the battle 
modeling performed by the DCOR code, thus greatly enhancing DCOR’s value as a combat 
analysis tool. Future developments and improvements for DCOR’s visualization module 
might include development of faster linear programming algorithms, optional display of 
attrited units, optional display of reference grids, and optional display of plots depicting 
aggregate information, such as percentage of remaining forces, etc. 
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APPENDIX A 
Obtaining NCSA Software 

p a g e  and HDF Limy) 

NCSA public domain software can be obtained from NCSA thorough anonymous File 
Transfer Protocol (J3") on the Internet. 

To access NCSA's server, connect to a computer with Internet access and FT'P 
capabilities. Then invoke FTP by typing the following: 

ftp 141.142.20.50 

You will be prompted for a user name. Enter 'anonymous'. Then, you will be 
prompted for a password. Use your electronic address as your password. You should now 
be logged in to the server. The command 'dir' will list all of the directories and files in your 
current directory. There should be several README files in this directory. It is advisable 
to read any README files before transferring any files. To obtain the README files, use 
'mget README*'. You may be prompted for a 'y' or 'n' to indicate whether or not you wish 
to download each file. These files should have descriptions of the software available and 
explain in greater detail the process of downloading the software. 

To obtain XImage, type 'cd XImage' to change to the XImage directory. There should 
be a directory called 'bin' contain precompiled versions of XImage. To obtain a precompiled 
version of XImage, type 'cd bin' to change to the bin directory and then 'dir' to see what files 
are available. Next, use 'binary' to change the transfer mode to binary. Finally, type 'get 
<filename>' to get the desired executable. If there is not a precompiled version of Xlmage 
available, the source files are stored in a compressed format in the directory 'src'. Change 
to the src directory, use 'dir' to get the entire filename, (The filename changes as the version 
is updated.), set the transfer mode to binary, and transfer the file with 'get <filename>'. 
Xlmage requires a workstation running a XWindows compatible windowing system. 

To obtain the HDF library, change to the HDF directory with 'cd HDF'. Download 
the README files located there and follow their instructions. 

For more information regarding the use of FI'P and FTP commands, refer to the 
manuals of your computer or ask your system administrator for help. 

A- 1 





APPENDIX B 
Format of the ASCII bitmap files 

This is the current format of the ASCII output bitmap files. It should be easily 
modified to adjust to specifications of graphics packages with an importing feature. 

nrows ncols 
max min 
1 2 3 ... nrows 
1 2 3 ... ncols 
nrows x ncols integer bitmap array 

where 

nrows = the number of rows in the bitmap array 
ncols = the number of columns in the bitmap array 
max = 255 = the maximum value in the bitmap array 
min = 
1 2 3 ... nrows = row titles 
1 2 3 ... ncols = column titles 

0 = the minimum value in the bitmap array 
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Staggered Defense Scenario (Janus Comparison Case) 
July 24, 1991 

# of Inter. 
Frames 

II Final time level of simulation: 15 II 
Total # CPU Time Real Time CPU Time/ 

of Frames (sec.) (sec.) Frame Run # 

1 

2 

3 

4 

5 

FIND- INIT- 
F MAX GRAFFIX BKGD 

%.571 0.098 0.158 0.094 

%.573 0.098 0.158 0.094 

96.572 0.187 0.294 0.094 

# of Calc. 
Frames 

16 

16 

PDETWO RASTER 

4.095 4.902 

4.098 18.85 1 

4.097 9.525 

31 

%.561 

96.562 

31 

61 

0.187 0.294 0.094 4.095 18.852 

0.366 0.586 0.094 4.095 18.853 

DIFFV 

129750 

129750 

Total C1 

O.OO0 0.469 0.432 

0.888 0.470 0.432 

O.OO0 0.470 0.432 

FIND- INIT- 
F MAX GRAFHX BKGD PDETWO RASTER 

10120.5 2163 15 1 865 16 

101205 2163 15 1 865 61 

1.512 I 0.469 1 0.432 

3 

0.0o0 I 0.469 I 0.432 

0 140995 129750 101205 4074 30 1 865 

4 

5 

120 140995 129750 101205 4074 30 1 865 61 

0 140995 129750 101205 7910 60 1 865 61 

II Number of times subroutine is called II 
Run # 

1 

2 
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APPENDIX C 
Format of the ASCII Background File 

This is the format of the ASCII input background file. The subroutine initbkgd can 
easily be modified to accept other graphics formats. 

i(nco1ors) R(nco1ors) G(nco1ors) B(nco1ors) 
ncols x nrows integer array containing the background bitmap 

where 

ncols 
nrows 
ncolors = the number of colors (0-256) 

i(1) 
R(1) = the red content of color i(1) 
G(1) = the green content of color i(1) 
B(1) = the blue content of color i(1) 

= the number of columns in the bitmap array 
= the number of rows in the bitmap array 

= the first color value (1-256) 

i(nco1ors) = the last color value (1-256) 
R(nco1ors) = the red content of color i(nco1ors) 
G(nco1os-s) = the green content of color i(nco1ors) 
B(nco1ors) = the blue content of color i(nco1ors) 

The number of colors should be an integer value ranging from 0 to 256 and the color 
values should be integers ranging from 1 to 256. The red, green, and blue elements 
and the data elements of the array should be integer values ranging from 0 to 255. 
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APPENDTX D. 
PERFORMANCE DATA 
Demonstration Simulation 

July Z-%,Iy91 

# of Calc. 
Run # Frames 

1 65 

2 65 

3 129 

4 129 

5 33 

6 257 

# of Inter. Total # CPU Time Real Time CPU Time/ 
Frames of Frames (sec.) (sa.) Frame 

111----1__1_- 

0 65 418.34 2821.9 6.44 

192 257 507.94 9452.3 1.98 

0 129 447.55 2045.8 3.47 

128 257 514.93 6490.0 2.00 

224 257 503.37 3505.7 1 .% 

0 257 508.1 1 7469.9 1.98 

Number of times subroutine is called 

INIT- 1 
GRAFFIX I BKGD 1 PDETWO I RASTER 

128 1996 129 
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APPENDIX E 
Example Input Files for Demonstration Simulation 

Standard Input File 
1 Use input file wari 
1 1. Start a new time batch 
20 Number of time steps 
20 
r Return to execution 
1 2. Start a new time batch 
2 Number of time steps 
22 Final time level for this batch 
P Modify diffusion & convection parameters 
C Modify velocity components 
b 
n non-full representation of x-component 
-.25 magnitude 
12 13 9 9 mesh location 
0. end x-component 
n non-full representation of y-component 
.25 magnitude 
4 4 5 6  mesh location 
0. end y-component 
b 
n non-full representation of x-component 
-.25 magnitude 
12 13 9 9 mesh location 
0. end x-component 
n non-full representation of y-component 
.25 magnitude 
4 4 5 6  mesh location 
0. end y-component 
a 
a 
r Return to execution 
1 3. Start a new time batch 
6 Number of time steps 
28 
a Modify attrition 
n 
0. 3. 8. 
0. 3. 8. 
-.(I0034 0. 2. 
-.00034 0. 1. 

Final time level for this batch 

Modify both x- & y-components of force 1 

Modify both x- & y-components of force 2 

Do not modify force 3 
Do not modify force 4 

Final time level for this batch 

Modify non-local attrition of force 1 
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n 
0. 3. 8. 
0. 3. 8. 
-.00019 0. 2. 
-.00004 0. 1. 
n 
-.00055 0. 2. 
-.00065 0. 3. 
0. 3. 8. 
0. 3. 8. 
n 
-.00055 0. 2. 
-.00050 0. 3. 
0. 3. 8. 
0. 3. 8. 
r 
1 4. 
4 
32 
a 
n 
0. 3. 8. 
0. 3. 8. 
-.00028 0. 2. 
-.00028 0. 1. 
I1 

0. 3. 8. 
0. 3. 8. 
-.00014 0. 2. 
-.00003 0. 1. 
r 
P 

a 
a 
b 
f 
180*0. 
f 
180*0. 
b 
f 
180*0. 
f 

C 

Modify non-local attrition of force 2 

Modify non-local attrition of force 3 

Modify non-local attrition of force 4 

Return to execution 
Start a new time batch 
Number of time steps 
Final time level for this batch 
Modify attrition 

Modify non-local attrition of force 1 

Modify non-local attrition of force 2 

Return to menu 

Modify velocity components (zero out force 3&4) 
Modify diffusion & convection parameters 

Do not modify force 1 
Do not modify force 2 
Modify both x- & y-components of force 3 
full representation of x-component 

full representation of y-component 

Modify both x- & y-components of force 4 
full representation of x-component 

full representation of y-component 
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180*0. 

P 
C Modify velocity components 
a 
a 
b 
n non-full representation of x-component 
-.25 
3 4 11 11 
-.25 
5 6 10 10 

6 7 9 9  
-.25 
7 1 0 8 8  
0. 

Modify diffusion & convection parameters 

Do not modify force 1 
Do not modify force 2 
Modify both x- & y-components of force 3 

-.25 

n 
.25 
4 4 10 10 
.25 
5 6 9 9  
.25 
6 7 7 8  
0. 
b 
n 
-.25 
3 4 11 11 
-.25 
5 6 10 10 

6 7 9 9  
-.25 
7 1 0 8 8  
0. 

-.25 

n 
.25 
4 4 10 10 
.25 
5 6 9 9  
-25 
6 7 7 8  
0. 
r 

non-full representation of y-component 

Modify both x- & y-components of force 4 
non-full representation of x-component 

non-full representation of y-component 

Return to execution 
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1 
4 
36 
P 
C 

X 
n 
-.25 
7 1 1 9 9  
0. 

n 
-.25 
7 1 1 9 9  
0. 
a 
a 
r 
1 
28 
64 

X 

5. Start a new time batch 
Number of time steps 
Final time level for this batch 
Modify diffusion & convection parameters 

Modify velocity components 
Modify x-component of force 1 

non-full representation of x-component 

Modify x-component of force 2 
non-full representation of x-component 

Do not modify force 3 
Do not modify force 4 

Return to execution 
6. Start a new time batch 

Number of time steps 
Final time level for this batch 
Modify attrition 

Modify non-local attrition of force 1 
a 
n 
0. 3. 8. 
0. 3. 8. 
-.00023 0. 2. 
-.00023 0. 1. 
n 
0. 3. 8. 
0. 3. 8. 
-.00012 0. 2. 
-.00002 0. 1. 

Modify non-local attrition of force 2 

r 
P 

b 

.25 
4 4 7 7  
.25 
5 5 8 8  

6 6 9 9  

C 

n 

-.25 

-.25 

Return to menu 

Modify velocity components 
Modify diffusion & convection parameters 

Modify both x- & y-components of force I 
non-full representation of x-component 
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5 5 10 10 
-.25 
4 4 11 11 
0. 
n 
.25 
5 5 7 7  
.25 
6 6 8 8  
.25 
5 5 9 9  
.25 
4 4 10 10 
0. 
b 
n 
.25 
4 4 7 7  
.25 
5 5 8 8  

6 6 9 9  
-.25 
5 5 10 10 
-.25 
4 4 11 11 
0. 
n 
.25 
5 5 7 7  
.25 
6 6 8 8  
.25 
5 5 9 9  
.25 
4 4 10 10 
0. 
a 

-.25 

a 
r 
0 

non-full representation of y-component 

Modify both x- & y-components of force 1 
non-full representation of x-component 

non-full representation of y-component 

Do not modify force 3 
Do not modify force 4 

Return to execution 
Terminate execution 
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Input File wari 
numbers of x-, y-mesh points, and forces: 

15 12 4 
PDE solver parameters: 

2 3 5  
(DEMONSTRATION SIMULATION)$ 
uniform x-mesh 
0. 7.0 
uniform y-mesh 
0. 5.5 
distribution of forces among sides 
1 1 2 2  
initial force distribution 
non-full force 1 
112.0 
9 9 3 3  
112.0 
10 10 4 4 
0. 
non-full force 2 
28.0 
9 9 3 3  
28.0 
10 10 4 4 
0. 
non-full force 3 
160.0 
11 12 11 11 
0. 
non-full force 4 
80.0 
11 12 11 11 
0. 
diffusion coefficient 
4*l.e-7 
convection velocity components 
non-full x-component for force 1 
-.25 
5 5 4 4  
-.25 
6 9 3 3  
.25 
10 11 4 4 
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.25 
12 12 5 5 
0. 
non-full x-component for force 2 
-.25 
5 5 4 4  
-25  
6 9 3 3  
.25 
10 11 4 4 
.25 
12 12 5 5 
0. 
non-full x-component for force 3 
-.25 
7 12 9 10 
-.04 
8 1 0 8 8  
0. 
non-full x-component for force 4 
-.25 
7 12 9 10 
-.04 
8 1 0 8 8  
0. 
non-full y-component for force 1 
-25 
4 4 4 4  
2 5  
5 5 3 3  
.25 
12 12 4 4 
.25 
13 13 5 8 
0. 
non-full y-component for force 2 
.25 
4 4 4 4  
.25 
5 5 3 3  
.25 
12 12 4 4 
.25 
13 13 5 8 
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0. 
non-full y-component for force 3 
-.25 
11 12 11 11 
-.25 
6 10 9 10 
-.25 
6 7 8 8  
0. 
non-full y-component for force 4 
-.25 
11 12 11 11 
-.25 
6 10 9 10 
-.25 
6 7 8 8  
0. 
non-full external source for force 1 
0. 
non-full external source for force 2 
0. 
non-full external source for force 3 
0. 
non-full external source for force 4 
0. 
local linear interactions for force 1 
4*0. 
local linear interactions for force 2 
4*0. 
local linear interactions for force 3 
4*0. 
local linear interactions for force 4 
4*0. 
local quadratic interactions for force 1 
16*0. 
local quadratic interactions for force 2 
16*0. 
local quadratic interactions for force 3 
16*0. 
local quadratic interactions for force 4 
16"O. 
nonlocal interactions for force 1 
0. 3. 8. 
0. 3. 8. 
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0. .1 2.5 
0. .1 1. 

nonlocal interactions for force 2 
0. 3. 8. 
0. 3. 8. 
0. .l 2.5 
0. .1 1. 

nonlocal interactions for force 3 
0. .1 2.5 
0. .1 3.5 
0. 3. 8. 
0. 3. 8. 

nonlocal interactions for force 4 
0. .1 2.5 
0. .1 3.5 
0. 3. 8. 
0. 3. 8. 

BCs for force 1 (top,right,bottom,left) 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
BCs for force 2 (top,right,bottom,left) 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
BCs for force 3 (top,right,bottom,left) 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
BCs for force 4 (top,right,bottom,left) 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
0. 1. 0. 
Graphics format (none, ascii, hdf, or plot) 
hdf 
contour parameters: base value, increment 

-150. 151. 
x- and y-axis increments 
2. 2. 
scale factor 
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8. 
size of objects to be generated@ square pixels) 
3 
name of graphics file(s) to be created (up to 10 chars) 
demo 
overwrite file if it exists? (O=no, l=yes) 
1 
display computational mesh? (O=no, l=yes) 
1 
name of file containing background bitmap (up to 10 chars) 
Desert.dat 
maximum distance to be traveled between images 
2. 
number of frames to be interpolated 
0 
RGB values for each force 
255 0 0 

0 255 0 
0 0 255 

255 255 0 
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APPENDIX F 
Example Frames from Demonstration Simulation Run #l 

Figure F.1 -- Frame # 1: Initial frame of Demonstration Simulation. 

Figure F.2 -- Frame #21: Red and Green forces maneuver around mountain. 

Figure F.3 -- Frame #23: Red and Green forces move to attack position. 

Figure F.4 -- Frame #29: Red and Green forces start attacking Blue and Yellow forces. 
Attrition begins. 

Figure F.5 -- Frame #33: Blue and Yellow forces begin to retreat. 

Figure F.6 -- Frame #37: Red and Green forces begin pursuit. 

Figure F.7 -- Frame #65: Blue and Yellow forces are almost annihilated. Red and Green 
victory. 
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