
3 _... I , 3 4 4 5 6 0 3 6 7 3 2 3 7

.

Greg Hunt
Y. Y. Aamy

. _ _ _ -
I

. _ 1 ~~. . ~. . .

O R W - 1 1 9 7 3

Graphics Development of DCOR
Deterministic Combat Model of Oak Ridge'

Greg Hunt
Georgia Institute of Technology

Y. Y. Azmy
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory

DATE PUBLISHED - OCTOBER 1992

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under contract No. DE-AC05-840R21400

3 4456 0367123 9

r

TABLE OF CONTENT

Page

ACKNOWLEDGMENT .. v

ABSTRACT .. vii

I . INTRODUCTION .. 1

I1 . CONVERSION OF DCOR’S DISCRETE-VARIABLE SOLUTION TO A PIXEL M A P . 3

111 . IMPLEMENTATION INTO DCOR CODE 7

IV . DESCRIPTION OF DCOR’S GRAPHICS SUBROUTINES 8

V . EXPLANATION OF NEW INPUT ENTRIES 13

VI . CONCLUSION .. 15

REFERENCES .. 16

APPENDIX A . Obtaining NCSA Software (XImage and HDF Library) A-1

APPENDIX B . Format of the ASCII Bitmap Files B-1 B-1

APPENDIX C . Format of the ASCII Background File B-1

APPENDIX D . Performance Data .. D-1

APPENDIX E . Example Input Files for Demonstration Simulation E-1

APPENDIX F . Example Frames from Demonstration Simulation Run #1 F-1

...
ill

ACKNOWLEDGMENT

We would like to thank the Visualization Lab at Oak Ridge National Laboratory, in
particular Brian Wallace and Ross Toedte, for their help in producing the illustrations and
accompanying video tape and in obtaining the public domain software from NCSA. Also, we
would like to thank V. Protopopescu and R. T. Santoro for many enlighting discussions during
the course of this work

V

ABSTRACT

DCOR is a user-friendly computer implementation of a deterministic combat model
developed at ORNL To make the interpretation of the results more intuitive, a conversion
of the numerical solution to a graphic animation sequence of battle evolution is desirable.
DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This
research is aimed at developing robust methods for computing the position of the combative
units over the continuum (and also pkeled) battlefield, from DCOR’s discrete-variable
solution representing the density of each force type evaluated at gridpoints. Three main
problems have been identified and solutions have been devised and implemented in a new
visualization module of DCOR. First, there is the problem of distributing the total number
of objects, each representing a combative unit of each force type, among the gridpoints at
each time level of the animation. This problem is solved by distributing, for each force type,
the total number of combative units, one by one, to the gridpoint with the largest calculated
number of units. Second, there is the problem of distributing the number of units assigned
to each computational gridpoint over the battlefield area attributed to that point. This
problem is solved by distributing the units within that area by taking into account the
influence of surrounding gridpoints using linear interpolation. Finally, time interpolated
solutions must be generated to produce a sufficient number of frames to create a smooth
animation sequence. Currently, enough frames may be generated either by dircct
computation via the PDE solver or by using linear programming techniques to linearly
interpolate intermediate frames between calculated frames.

vii

I. INTRODUCIION

As an alternative to computationally expensive stochastic combat models, ORNL
developed a deterministic combat model based on a set of Partial Differential Equations
(PDEs).'-' This new model differs from earlier Lanchester-type deterministic models that are
based on Ordinary Differential Equations (ODE%) in that it explicitly includes the spatial
aspect of battle.6"

The Deterministic Combat model oE Oak Ridge (DCOR) code is an interactive,
menu-driven computer implementation of this model? As DCOR is based on a deterministic
model, a finite spatial mesh is superimposed on the battlefield, and DCOR's solutions are
restricted to the gridpoints of this mesh. Also, as the solution to the mathematical model is
composed of large numerical arrays, to diversify the "useability" of DCOR, a conversion from
this numerical solution to a graphical animation sequence is desirable. Therefore, a process
to convert the numerical solution of DCOR, the density of each force type at computational
mesh points (CMPs) and the total number of units in each force, into a graphical solution has
been developed, implemented, and tested. In this TM we use the termsforce type or weapon
system to denote a troopheapon combination characterized by a specific attrition capability,
resistence to enemy fire, mobility, maneuverability, ...; e.g., infantry, tanks, smart weapons, etc.
On the other hand we use the terms combative unit , or object to denote a military entity
formed of a single force type; on the fine-most scale each object represents an
individual soldier, tank, etc, but on coarser scale, may be used to represent a
platoon, company, battalion, and so on. Also, by battkjieki we mean an area of land,
including terrain features such as shores, mountains, forests, etc, sufficiently large to
contain the entire engagement and aspects of its aftermath, such as retreat and
persuit, that is desirable to model.

The animation sequence can be generated either in a series of ASCII files or in
a single file in the National Center for Supercomputing Applications's (NCSA's)
Hierarchical Data Format (HDF).'' The ASCII files are easily modified to allow
importing of the animation sequence into almost any graphics package with importing
and animation capabilities. The HDF file may be viewed using one of NCSA's public
domain software packages such as XImage, XDataSlice, or Datascope. These
packages and the HDF library with the functions used in DCOR's graphics
subroutines are available from NCSA (see Appendix A).

This document describes the development of this visualization process and its
implementation into a new visualization module of the computer code DCOR. In
Section 11, we develop the theoretical problems and solutions in converting DCOR's
numerical solution to an animation sequence. Section TI1 is concerned with the
implementation of the conversion process developed in Section I1 into the code.
Section IV describes in detail the graphics subroutines that have been added to
DCOR. Next, we provide descriptions and explanations of the new graphics
parameters in Section V. Then, we summarize our efforts and discuss future

1

developments for the visualization module of DCOR in Section VI. Appendix A
provides instructions for obtaining public domain software from NCSA. Appendices
B and C describe the format of the output ASCII files and the format of the
background bitmap ASCII file respectively. Finally, Appendix D provides some
comparison tables for the two demonstration simulations produced by DCOR so far.

2

IL OONVERSION OF DCORS DISCRETE-VARIABLE SOLUTION
TOAPDCELMAP

Since DCOR is based on a deterministic PDE model, the problem domain, ie.
the battlefield area, is divided into finite, local subdomains using a finite spatial mesh.
All input parameters and the computed solution are restricted to their corresponding
values evaluated at the gridpoints of this mesh.’ DCOR then uses a modified version
of the public domain PDE solver, PDETWO to solve for the time dependent density
of each of the modeled force types at the computational mesh gridpoints. First,
PDETWO converts the set of PDEs into a set of ODEs via the Method of Lines” by
approximating the spatial derivatives on the computational mesh using a finite-
difference scheme. PDETWO then uses the GEARB” method to solve the resulting
set of ODEs. Thus, the output of the PDE solver is the density of each weapon
system or force type, m, at each CMP, (ij), at each time step, t; we denote this
density by u,,(t). Previously, this solution was presented to the user as a static
sequence of contour plots. However, as an animation sequence depicting the
movement and interaction of the individual units of the different weapon systems is
easier to interpret, a conversion of the discrete-variable solution to such animation
sequence is highly desirable. An animation sequence consists of consecutive frames,
each representing a bitmap, shown in chronological order that must be displayed in
rapid succession, in order to produce a realistic visual effect of temporal evolution.

The graphical display of most of today’s computers is composed of an a x b
grid of small dots called pixels. A bitmap is an a x b integer array where each integer
in the array represents the corresponding pixel and the value of the integer
determines which color from an array of colors, called a palette, is displayed at that
pixel. Thus if we can represent DCOR’s numerical output at each time step in the
form of a bitmap, then we can display this bitmap on a computer screen as a single
static frame. By displaying consecutive bitmaps in rapid succession we obtain the
desired animation sequence. Since a single pixel is extremely small, and difficult to
see, it is necessary to represent each object as a n x n square of pixels. We define
an a/n x b/n transitional mesh in which each transitional mesh point (TMP)
represents a corresponding n x n square of pixels on the bitmap, so that an object
can be displayed only at a TMP. Since we are able to distinguish different forces by
using different integer values (corresponding to different colors) in the bitmap, the
process of generating a bitmap from the numerical solution for one force can be
repeated for each of the remaining forces and the resulting bitmaps superimposed
to produce a single frame. Hence, the objective of converting a numerical solution
on a computational mesh into a graphical solution can be viewed as converting a real-
valued numerical solution on a computational, possibly nonuniform, mesh to an
integer numerical solution on a uniform transitional mesh. This objective can then
be divided into three main problems: (i> distributing the total number of units among
the CMPs; (ii) distributing the total number of units at a CMP over the area

3

attributed to that point; and (iii) producing a sufficient number of frames of properly
interpolated output to create a smooth animation sequence.

(i) The PDE solver, produces the density of each combat force type, i.e.
number of combative units per unit area of the battlefield, at each CMP, which when
integrated over the entire area of the battlefield produces the total number of units
for this force type. Since fractions of units are not acceptable in the visual
interpretation of the results, we round each force type’s total number of units to the
nearest integer. In addition, from the x- and y-mesh inputs, we can calculate the
computational cell area attributed to each CMP. Then, by multiplying the local
density by the area, we obtain a real number value, that we denote unum+, for the
number of units allocated to each CMP. If we simply rounded each real number to
the nearest integer, the sum of the integers may or may not equal the total number
of units. Thus we examine each unurnq. If mum+ is equal to or greater than one, we
allocate a number of units equal to the integer portion of unum+ to the (i,j)-th CMP.
We then reduce both unurn+ and the total number of remaining units to be allocated
by this same amount. This process will distribute a number of units less than or
equal to the total number of units to the CMPs, and at its conclusion unum+ will be
less than one for all i andj. At this point we assign any remaining units to the CMPs
with the largest uizum+ fractional values.

After examining the output generated by this process, we found that in certain
instances, particularly when a force is split to maneuver around natural or man-made
obstacles on the battlefield, a unit may appear to fortuitously oscillate between distant
points on the mesh. This occurs because density changes at distant points produce
small fractional differences in unum+, making it larger at one point for a few time
steps, then smaller for a few time steps, etc. Therefore, we employ a linear
programming algorithm originally developed for the transportation problem to
suppress this visually distracting behavior. The transportation problem involves
routing units from several sources to several destinations in order to minimize the
total cost (distance) between the sources and the destination^.'^ In solving the
transportation problem, there is a method, called the Big M13 method, of assigning
an exceptionally high distance, hence cost, between a source and destination which
make an undesirable or impossible match. Thus, to employ this algorithm, we use
the CMPs and their allocated units from the previous frame as the sources, and for
the current frame we use the process described above to distribute units to the
CMPs, which then represent possible destinations. In choosing the possible
destinations, a few more than the total number of units are chosen to allow some
degrees of freedom for the algorithm, otherwise the solution would remain
unchanged. In addition, they are separated into two catagories:

1. integer destinations: destinations requesting a number of units eqaual to
the integer portion of uizum+;

2. fractional destinations: destinations corresponding to a unum+ value of less
than one.

4

As a requirement of the problem, the number of units provided by the sources
must equal the number of units requested by the destinations. If these are not equal,
a dummy source/destination must be introduced providinghequesting a number of
units equal to the deficit/s~rplus.'~ In determining the output, destinations receiving
units from a dummy source are not used. In order to represent the true solution as
much as possible, it is desired that integer destinations receive units before fractional
destinations. If a dummy source is needed, a match between a dummy source and
an integer destination is undesirable, therefore, we use an exceptionally large value
for the distance between integer destinations and the dummy source. Otherwise, a
value of zero is used for the distance between the dummy source and fractional
destinations. Also, we introduce an input for maximum distance a unit is allowed to
travel between frames. If the distance between a source and possible destination is
greater than the maximum distance allowed, an exceptionally large value is used for
the distance instead.

(ii) By design of the transitional mesh, each unit to be displayed must lie on
a TMP, so that each unit assigned to a given CMP must occupy a TMP located
within the area attributed to this CMP. Thus, the second problem constitutes the
distribution of the units allocated to each CMP in stage (i) over the TMPs in its
neighborhood. We accomplish this by interpolating the density function of each TMP
from the computed densities of the CMPs surrounding it, via an equation of the form:

u(x,y)= Rx + By + cy + D

where x and y are the coordinates of the TMP with respect to a locally defined
coordinate system; A, B, C, and D are coefficients calculated using the value of u at
the CMPs surrounding this TMP at the given time step. M e r calculating the density
at each TMP within the area of the CMP, we then distribute the units, already
assigned to this CMP, one by one, to the TMP with the largest density. Since each
TMP can contain only one unit, we set to zero the density at any TMP to which a
unit has been assigned, to preclude multi-unit assignment to the same TMP upon
subsequent comparison of TMP desnsities. If there are not enough TMPs within the
CMP to hold all the units, the user is notified and it is suggested that the user
increase the scale factor relating the computational mesh and the transitional mesh
(make the transitional mesh finer).

(iii) Upon monitoring the performance of the PDE solver on a few test
problems, we found that the determining factor of the amount of CPU time
consumed in solving a problem is the final time level, or time length of the simulated
battle and not the number of time steps at which the solution is generated. Hence,
generating the numerical solution for ten time steps is just as costly as generating the
numerical solution for one hundred time steps for the same final time level. If the
PDE solver is later upgraded, this may not be the case. Therefore, a method of
producing intermediate frames between two calculated frames has been developed.

5

If we can identify a unit’s position in two calculated frames, then we can generate
intermediate frames by using linear interpolation between its initial and final
positions in order to determine the positions of this unit in all intermediate frames.
To accomplish this task, we once again consider linear programming techniques. In
particular, we look at the assignment pr~blem’~, which is a special case of the
transportation problem. In this variant, the number of sources must equal the
number of destinations, and each source can provide only one unit and each
destination can accept only one unit. In this case, the sources are the positions of the
units on the transitional mesh in the earlier calculated frame and the destinations are
the positions of the units on the transitional mesh in the currently calculated frame.
The algorithm then matches the units in the two frames by minimizing the total cost
(distance); clearly in the present application we are not concerned with this
minimization, but the algorithm serves our purpose. Also, the total number of units
provided by the sources (in this case the total number of sources), and the total
number of units requested by the destinations (in this case the total number of
destinations), must be equal. However, since a source/destination can only
provide/request one unit, then additional dummy sources/destinations may have to be
added in to balance the pr0b1em.l~ In addition only the units which have a match in
both calculated frames will appear in the interpolated frames. Hence, units will not
be attrited, nor will new units be added in any intermediate frames. Once the
algorithm concludes the matching process the desired (user-specified) number of
intermediate frames are generated using linear interpolation between the two
calculated frames. To prevent two units from occupying the same TMP, if the
calculated position of a unit is already occupied, then another position along the line
segment connecting the unit’s positions in the two frames is chosen. Currently, there
is no discernable CPU time difference between interpolating frames and calculating
frames. However, in larger simulations a difference may become apparent. The
visual advantage of interpolation is the smoother animation it is capable of producing
due to a more evenly spaced movement rate between calculated frames. The
precision advantages of direct computation of frames include the timely display of
attrition and a more accurate depiction of maneuvering. The flexible implementaion
of the visualization module into DCOR allows the user to compromise these
conflicting advantages according to his own taste and specific application.

6

III. IMPLEMENTATION INTO DCOR CODE

The visualization graphics subroutines for DCOR have been developed and are
currently operating on ORNL’s Cray x/MP under the UNICOS operating system.’ In order
to preserve the portability of the DCOR code, the additional graphics subroutines have been
written in standard FORTRAN. However, the subroutine grafix uses the linear programming
subroutine, HWABF, from the Nag library to solve the transportation problem. This should
be easily modified to any other numerical software with a similar subroutine. Also, to
generate the animation sequence in HDF format, the subroutine raster uses functions from
NCSA’s public domain HDF library, Zibd’a. The C and FORTRAN source files needed
to compile this library are available from NCSA through anonymous ftp or regular
mail (see Appendix A).

The graphics subroutines are called after each time step if either the ASCII
or HDF format is selected. They currently use a separate set of integer-, real-, and
character-variable container arrays from the PDE solver subroutines. These arrays
are setup and managed by gsetup. If these arrays are too small to perform the
necessary calculations, gsetup notifies the user of the necessary sizes and terminates
execution.

The methods described in Section I1 have been implemented into the graphics
subroutines of the DCOR code. In particular, the initial distribution of the total
number of combative units amoung the CMPs, where the transportation algorithm
is not necessary, is performed in the subroutine initgra€ix. For the remaining time
steps, this allocation is performed within grafk Next, the unit allocation process for
each non-zero CMP to the associated TMPs is accomplished in distniute. Finally,
the generation of any intermediate frames through linear interpolation is handled in
the subroutine interpol.

In addition, a graphics modification menu has been added to the interactive
menu so that the parameters described in Section V may be modified interactively.

7

IV. DESCRIPTION OF DCORS GRAPHICS SUBROUTINES

This section explains the new graphics subroutines for DCOR. Each entry contains the
subroutine name in bold face, followed by its arguments in italics and their variable type. This
is followed by a brief description of the subroutine's function.

subroutine assct
INTEGER,

REAL T

(N, A, C, T, mmn, CH, LC, LR, RH, SLC, SLR, U)
N,A (maxn,mmn i-1), C(maxn), CH(maxn), LC(maxn),
LR(mmn), RH(maxn +l), SLC(mawn), SLR(maxn), U(maxn + I)

This is a modified version of assct, a subroutine to solve the square assignment problem. The
subroutine was obtained from the public domain NETLIB collection of subroutines. It has
been modified to run using a container array.

subroutine distriiute (u, x, y, mx, my, mfrc, mf; myf; maxn, dw,

INTEGER
dy, MA, source, mi isrce, nonzero, uf; nimage)

source (mfrc, 3 , m *my), mi(mfrc), krce(mfrc, 2,mnxn),
nonzero(2,mxf*myfl, nimage(mxf,myfl

mu, my, mfrc, "zx% myf; mCUM, Mmmfrc),

u (mfrc, m, my), X (W) , y(my), uf (1, mrf,myn, d, dy REAL
This subroutine distributies combating units over the transitional mesh points associated with
each CMP. The allocation is performed by calculating the density at each TMP contained
within the CMP and then distributing the total number of troops at the CMP individually to
the TMPs with the highest densities.
Note: Each TMP can only contain 1 unit per weapon type.

subroutine calc (uf, mf; myf, dw, dy, x0, yo, A, B, C, D, il,

INTEGER
REAL

i2, j l , j2)
mf, myf; il, i2, j l , j2
uf(l,mXf,myfl, h, dy, xo, yo, A, B, c, D

This subroutine calculates the interpolation equations for distriiute.

subroutine h d m a x (array, m, mfrc, mu, my, nonzero, nz, man,

INTEGER
mazy)
m, mfrc, m, my, nonzero(2,mYmy), nz, man, m q

REAL array(mfrc7 m, my)
This subroutine returns the coordinates of the largest value in an array where the coordinates
of the non-zero elements of the array are stored in another array.

8

subroutine gbal (n, u, x, y, mu, my, mbc, m m , utot, unum)
INTEGER n, mu, my, mfrc, mmn
REAL u(mfrc,m,my), x (m x) 2 y(my), utot(mfK)J

w2wn (mfrctmrtmr)
This subroutine calculates the balance table at every time step. It is essentially the same as
subroutine bal except that the balance at each CMP is stored for graphics purposes.

subroutine gratiX (x, y, mw, my, mfrc, dmax, MM, MB, MMM, utot,
unum, MA, source, nonzero, dest, KOST, Kl5, K7, K9, K6,
K8, K I l , K12)
mx, my, mpc, MM, MB, MMM, MA (mfrc),
source(mfrc,3,m*my), nomero(2,m *my), dest(4,MB),
KOST(MMM, MB), KIS(MM), H(MM), K9(MM), K6(MM),

INTEGER

K8(MM), Kl I (MM), K22(MM)
REAL x (m) , y(my)? dmax, utot(mfi4, unum(mfK,m,my)

This subroutine calculates the computational mesh graphics data for the initial frame. It first
sets up an array of the possible locations, then evaluates a cost matrix whose entries are
equated to the distance between each source and each possible destination. Then a dummy
source/destination is added in if necessary. The transportation algorithm H03ABF from the
NAG library is used to determine the desirable locations from the possible ones. Finally, any
duplicate destinations in the list are combined and the destinations become the new sources.

Notes: (a) The possible locations are chosen based on the number of units (unurn). Also,
a value of 1 represents a whole unit. Desirable locations are chosen first based
on the presence of whole units, and then from the locations with the largest

fractional number of units.
(b) For definitions of uppercase variables, see Nag library description for subroutine

subroutine gsetup (n, u, x, y, m, my, mfrc, name, bkgdfile,
form, scale, npix, dmax, numintp, colors, overwrite,
sho wmesh, bkgdflag)
n, m, my, mfrc, npiq numinp, colors(mfi.c,3),
overwrite, showmesh, bkgdflag

nume* 10, bkgdJie* 10, form * 10
This subroutine sets up a container array €or the graphics subroutines, checks to see if the
container arrays are large enough, and calk the necessary subroutines for the graphics.

INTEGER

REAL u(mfrc,~?my), X (m - 4 , y(my), scale,
CHARACTER

9

subroutine initbkgd (4 y, nu; my, w, myf, npk, bkgdfile,
bkgd, showmesh, palette, length, temp)

INTEGER mx, my, myj npix, showmesh, length, temp(1ength)

CHARACTER bkgdfile* 10, bkgd(npir*mf%pix*myf) * 1, palette(768)* 1
This subroutine initializes the background and background palette representing the
battlefield terrain features. It also sets up the computational mesh if selected.

REAL x(mu), Y (my)

subroutine initgrafix (nu; my, mfrc, utot, unum, MA, source,

INTEGER

REAL utot(mfrc), unum (mfrc,mx,my)

nonzero)
mx, my, mfrc, M A (mfrc), source (m jrc, 3, mx *my),
nonzero (2,mPmy)

This subroutine calculates the computational mesh graphics for the initial frame
based on the input force densities. It allocates on a one by one basis where each unit
is allocated to the CMP with the largest 'number of units' value, which is then
decreased by 1.

INTEGER

subroutine interpol (n, u, x, y, mx, my, mfrc, m x f j myf; d m q
colors, overwrite, maxn, dx, dy, numintp, form, name,
bkgdfile, npiX; MA, source, mi, krce, mi2, hrce2,
mi3, krce3, iium, u j workspace, bkgd, tidf, palette,
sliowmesli, A, C, tempC, CH, LC, LR, RH, SLC, SLR,
assctu)
n, mx, my, mfrc, m x f j myJ colors(mfrc,3), overwrite,
man , numintp, npk, MA (mfrc), source(mfrc,3,mx*my),
mi(mfrc), isrce(m frc, 2,man), mi2(mfrc),
isrce2(mfrc,2,maxn), mi3(mfrc), isrce3(mfrc,2,maxn),
num, workspace(3*mxf*myfi, showmesh, A(maxn,maxn),
C(mfrc,maxn), tempC(maxn), CH(maxn), LC(maxit),
LR(maxn), RH(man +l), SLC(maxn), SLR(maxn),
assctU(maxn +I)

REAL

CHARACTER form*lO, name*lO, bkgdfil*lO,
bkgd(i ipir*~*rzp~*myfi~ 1, Iidf(npk*~*iipixu*myf)* 1,
palette(%$)* 1

u(mfrc,mx,my), x (m) , y(my), dmQ-5 & dY,
uf(lJmrs,mYf)

This subroutine linearly interpolates frames between calculated frames. The
subroutine takes the list of transitional mesh sources, uses distribute to obtain a list
of destinations, and then uses the assignment algorithm (assct) to match members of
the two sets with one another. Once they are matched, it linearly interpolates
between the positions of matched pairs to obtain the locations for the desired number
of intermediate frames.

10

Note: All of the forces must be matched before any intermediate frames can be
generated.

11

subroutine modgraf (form, zbase, dcont, delx, dely, scale, npkY
name, overwrite, bkgd, bkgdfile, showmesh, dmax,
numintp, mfrcy colors)
npir, overwrite, bkgd, showmesh, numirip, m frc,
colors (mfrc,3)
zbase, dcont, de& dely, scale, dmax

INTEGER

REAL
CHARACTER fonn*lO, name*lO, bkgdfile*lO

This subroutine enables the interactive modification of the graphics data.

subroutine raster (n, nm, mfrc, mxfj myf, form, name, bkgdfi!ey
npiq colorsy overwrite, man, mi, isrce, bkgd, hdf,
palette, showmesh)

INTEGER n, nm, mfrc, w, myf, npix; colors(mfrc,3), overwrite, mmn,

CHARACTER form*lO, name*lO, bkgdfiIe*lO, bkgd(npix*mxf*npiu*myfl*l,
hdf(npix*mxf"npix*myn* 1, palette(768)*1

mi(mfrc), krce(mfrc,2,maxn), showmesh

This subroutine generates the raster images for the DCOR program. The image data
can be generated in either NCSA's HDF format or in ASCII format.

The calling tree for the visualization module subroutines described above is shown
below, for each time step starting by a call from the DCOR subroutine evolve.

evolve

fmdmax

distrihte
findmax
Calc

interpf
distribute

findmax
Calc

aSSCt

raster
raster

12

V. EXPLANATION OF NEW TN"T ENTRIES

This section explains the new graphics parameters for DCOR. Each entry contains
a short descriptive comment in italics. After each comment is the variable name, exactly as
used in the source code, printed in bold face, followed by the options, format, and a complete
description of its function.

Graphics format (none, ascii, hdfr or plot)
fom This is the format of the graphics output. None produces no graphics; ascii produces
a series of files (one file per frame) containing bitmap information in ASCII format; hdf
produces a file containing the entire animation sequence in HDF format; and plot produces
contour plots using DISSPLA as described in Ref. 9.

The remaining parameters are only required for the ASCII or HDF format options. While
they must still be included in the input
sequence, they will have no effect if none or plot is the selected graphics format.

scale factor between coane mesh and transitional mesh:
scale: This real parameter determines the size of the transitional mesh. It is determined as
follows:

mxf=int((mx-l)*scale) + 1
myf = int((my-1) *scale) + 1

Once set, this parameter should not be changed interactively during an HDF animation. If
it must be changed, then either the output file name should be changed or the overwrite
switch described below should be set to 1.

sue of objects TO be generated (in square pixels)
npk This integer parameter determines the size in pixels of the objects to be generated.
Currently, each unit is represented by a square that is int(npix*.8) x int(npix*.8) pixels in size.
If npix is greater than three, then this allows up to four forces to be overlapped on the same

TMP and still be seen by placing the units at different corners of the npix x npix square. This
is also the relationship between the fine mesh and the bitmap. The bitmap will be (npix*mxf)
x (npix*myf) pixels in size. Once set, this parameter should not be changed interactively
during an HDF animation. If it must be changed, then either the output filename should be
changed or the overwrite switch described below should be set to 1.

name of graphics file(s) to be created (up to 10 chars)
name: This is the root name, up to ten characters, of the generated output file. If form is
set to hdf, the graphics output file will be <name>.hdf, if ascii, <name>##.#.dat, where
is the number of the calculated frame and # is the number of the interpolated frame.

overwrite fi le if it exists? (O=no, I =yes)
overwrite: If hdf is selected and this integer parameter is set to I, then a new HDF
file is started, otherwise, each successive frame will be appended to the HDF file if
it exists.

13

dkplay computational mesh? (O=no, I =yes)
showmesh: This integer parameter turns on (1) and off (0) the display of the
computational mesh in the animation sequence.

name of file contuining background bitmap (up to 10 chars)
bkgdfile: This is the full name of the file containing the background in ASCII format
(see Appendix C). Use 'none' for a white background. If the background is changed
within an animation and a different palette is included, then either the output
filename should be changed or the overwrite switch should be set to 1.

maximum distance units permitted to travel between frames
dmax: This real parameter is the maximum distance to be used in the linear
programming algorithms.

number of frames to be intepolated
numintp: This integer parameter is the number of frames to be interpolated between
each pair of calculated frames.

RGB values .for each force
colors(1,l): -This is the
colors(l,2): This is the
colors(l,3): This is the

red content for the color of force 1.
green content for the color of force 1.
blue content for the color of force 1.

colors(mfrc,l): This is the red content for the color of force

colors(mfrc,2): This is the green content for the color of force

colors(mfrc,3): This is the blue content for the color of force

Each colors value is an integer value ranging from 0 to 255.

mfrc.

mfrc.

mfrc.

14

VI. CONCLUSION

W e have developed, implemented, and tested a procedure for generating a graphical
animation sequence from the numerical output of the PDE solver of the DCOR code. This
new processing of the data allows for quick and easy display and interpretation of the battle
modeling performed by the DCOR code, thus greatly enhancing DCOR’s value as a combat
analysis tool. Future developments and improvements for DCOR’s visualization module
might include development of faster linear programming algorithms, optional display of
attrited units, optional display of reference grids, and optional display of plots depicting
aggregate information, such as percentage of remaining forces, etc.

15

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12"

13.

V. Protopopescu, R. T. Santoro, J. Dockery, R. L. Cox and J. M. Barnes, "Combat
Modeling with Partial Differential Equations," ORNLEM-10636, Oak Ridge National
Laboratory, November 1987.

V. Protopopescu, R. T. Santoro and J. Dockery, "Combat Modeling with Partial
Differential Equations," Eur. J. Oper. Res. 38, 178 (1989).

P. RUSU, "Two-Dimensional Combat Modeling with Partial Differential Equations,"
ORNL/TM-10973, Oak Ridge National Laboratory, December 1988.

R. T. Santoro, P. Rusu and J. M. Barnes, "Mathematical Descriptions of Offensive
Combat Maneuvers," ORNL/TM-llOOO, Oak Ridge National Laboratory, January
1989.

V. Protopopescu, R. T. Santoro, R. Cox, P. Rusu and J. Dockery, "Combat Modeling
with Partial Differential Equations: The Bidimensional Case," ORNLEM-11343
(1989).

F. W. Lanchester, "Aircraft in Warfare, The Dawn of the Fourth Arm--No. V., The
Principle of Concentration," Engineeing 9q422 (1914).

J. G. Taylor, Lanchester Models of Warfare, Vols. 1 and 2, MAS, Operation Research
Society of America, Virginia (1983).

D. Willard, "Lanchester Attrition of Interpreting Forces," Naval Research Logistics 37,
31 (1990).

Y. Y. Azmy, "DCOR: A Deterministic Combat Model Code," ORNLKM-l169O, Oak
Ridge National Laboratory, April 1991.

NCSA HDF Calling Interfaces and Utilities
Urbana-Champaign, July 1990.

Version 3.1, University of Illinois at

J. M. Hyman, "The Method of Lines Solution of Partial Differential Equations,"
Courant Institute of Mathematical Sciences, Mathematics and Computing Laboratory
Report COO-3077-139 (1976).

A. C. Hindmarsh, "GEARB: Solution of Ordinary Differential Equations Having
Banded Jacobian," Lawrence Livermore Laboratory Report UCID-30059, Rev. 1
(1975).

F. S . Hillier and G. J. Lieberman,
Francisco, (1974).

Operations Research, Holden-Day, Inc., San

16

14. G. Carpaneto and P. Toth, "Algorithm 548 Solution of the Assignment Problern,"ACM
Transactions on Mathematical Software 6, 1 (1980).

17

.....

APPENDIX A
Obtaining NCSA Software

p a g e and HDF Limy)

NCSA public domain software can be obtained from NCSA thorough anonymous File
Transfer Protocol (J3") on the Internet.

To access NCSA's server, connect to a computer with Internet access and FT'P
capabilities. Then invoke FTP by typing the following:

ftp 141.142.20.50

You will be prompted for a user name. Enter 'anonymous'. Then, you will be
prompted for a password. Use your electronic address as your password. You should now
be logged in to the server. The command 'dir' will list all of the directories and files in your
current directory. There should be several README files in this directory. It is advisable
to read any README files before transferring any files. To obtain the README files, use
'mget README*'. You may be prompted for a 'y' or 'n' to indicate whether or not you wish
to download each file. These files should have descriptions of the software available and
explain in greater detail the process of downloading the software.

To obtain XImage, type 'cd XImage' to change to the XImage directory. There should
be a directory called 'bin' contain precompiled versions of XImage. To obtain a precompiled
version of XImage, type 'cd bin' to change to the bin directory and then 'dir' to see what files
are available. Next, use 'binary' to change the transfer mode to binary. Finally, type 'get
<filename>' to get the desired executable. If there is not a precompiled version of Xlmage
available, the source files are stored in a compressed format in the directory 'src'. Change
to the src directory, use 'dir' to get the entire filename, (The filename changes as the version
is updated.), set the transfer mode to binary, and transfer the file with 'get <filename>'.
Xlmage requires a workstation running a XWindows compatible windowing system.

To obtain the HDF library, change to the HDF directory with 'cd HDF'. Download
the README files located there and follow their instructions.

For more information regarding the use of FI'P and FTP commands, refer to the
manuals of your computer or ask your system administrator for help.

A- 1

APPENDIX B
Format of the ASCII bitmap files

This is the current format of the ASCII output bitmap files. It should be easily
modified to adjust to specifications of graphics packages with an importing feature.

nrows ncols
max min
1 2 3 ... nrows
1 2 3 ... ncols
nrows x ncols integer bitmap array

where

nrows = the number of rows in the bitmap array
ncols = the number of columns in the bitmap array
max = 255 = the maximum value in the bitmap array
min =
1 2 3 ... nrows = row titles
1 2 3 ... ncols = column titles

0 = the minimum value in the bitmap array

B- 1

Staggered Defense Scenario (Janus Comparison Case)
July 24, 1991

of Inter.
Frames

II Final time level of simulation: 15 II
Total # CPU Time Real Time CPU Time/

of Frames (sec.) (sec.) Frame Run #

1

2

3

4

5

FIND- INIT-
F MAX GRAFFIX BKGD

%.571 0.098 0.158 0.094

%.573 0.098 0.158 0.094

96.572 0.187 0.294 0.094

of Calc.
Frames

16

16

PDETWO RASTER

4.095 4.902

4.098 18.85 1

4.097 9.525

31

%.561

96.562

31

61

0.187 0.294 0.094 4.095 18.852

0.366 0.586 0.094 4.095 18.853

DIFFV

129750

129750

Total C1

O.OO0 0.469 0.432

0.888 0.470 0.432

O.OO0 0.470 0.432

FIND- INIT-
F MAX GRAFHX BKGD PDETWO RASTER

10120.5 2163 15 1 865 16

101205 2163 15 1 865 61

1.512 I 0.469 1 0.432

3

0.0o0 I 0.469 I 0.432

0 140995 129750 101205 4074 30 1 865

4

5

120 140995 129750 101205 4074 30 1 865 61

0 140995 129750 101205 7910 60 1 865 61

II Number of times subroutine is called II
Run #

1

2

R-2

APPENDIX C
Format of the ASCII Background File

This is the format of the ASCII input background file. The subroutine initbkgd can
easily be modified to accept other graphics formats.

i(nco1ors) R(nco1ors) G(nco1ors) B(nco1ors)
ncols x nrows integer array containing the background bitmap

where

ncols
nrows
ncolors = the number of colors (0-256)

i(1)
R(1) = the red content of color i(1)
G(1) = the green content of color i(1)
B(1) = the blue content of color i(1)

= the number of columns in the bitmap array
= the number of rows in the bitmap array

= the first color value (1-256)

i(nco1ors) = the last color value (1-256)
R(nco1ors) = the red content of color i(nco1ors)
G(nco1os-s) = the green content of color i(nco1ors)
B(nco1ors) = the blue content of color i(nco1ors)

The number of colors should be an integer value ranging from 0 to 256 and the color
values should be integers ranging from 1 to 256. The red, green, and blue elements
and the data elements of the array should be integer values ranging from 0 to 255.

c-1

APPENDTX D.
PERFORMANCE DATA
Demonstration Simulation

July Z-%,Iy91

of Calc.
Run # Frames

1 65

2 65

3 129

4 129

5 33

6 257

of Inter. Total # CPU Time Real Time CPU Time/
Frames of Frames (sec.) (sa.) Frame

111----1__1_-

0 65 418.34 2821.9 6.44

192 257 507.94 9452.3 1.98

0 129 447.55 2045.8 3.47

128 257 514.93 6490.0 2.00

224 257 503.37 3505.7 1 .%

0 257 508.1 1 7469.9 1.98

Number of times subroutine is called

INIT- 1
GRAFFIX I BKGD 1 PDETWO I RASTER

128 1996 129

D- 1

....

APPENDIX E
Example Input Files for Demonstration Simulation

Standard Input File
1 Use input file wari
1 1. Start a new time batch
20 Number of time steps
20
r Return to execution
1 2. Start a new time batch
2 Number of time steps
22 Final time level for this batch
P Modify diffusion & convection parameters
C Modify velocity components
b
n non-full representation of x-component
-.25 magnitude
12 13 9 9 mesh location
0. end x-component
n non-full representation of y-component
.25 magnitude
4 4 5 6 mesh location
0. end y-component
b
n non-full representation of x-component
-.25 magnitude
12 13 9 9 mesh location
0. end x-component
n non-full representation of y-component
.25 magnitude
4 4 5 6 mesh location
0. end y-component
a
a
r Return to execution
1 3. Start a new time batch
6 Number of time steps
28
a Modify attrition
n
0. 3. 8.
0. 3. 8.
-.(I0034 0. 2.
-.00034 0. 1.

Final time level for this batch

Modify both x- & y-components of force 1

Modify both x- & y-components of force 2

Do not modify force 3
Do not modify force 4

Final time level for this batch

Modify non-local attrition of force 1

E- 1

n
0. 3. 8.
0. 3. 8.
-.00019 0. 2.
-.00004 0. 1.
n
-.00055 0. 2.
-.00065 0. 3.
0. 3. 8.
0. 3. 8.
n
-.00055 0. 2.
-.00050 0. 3.
0. 3. 8.
0. 3. 8.
r
1 4.
4
32
a
n
0. 3. 8.
0. 3. 8.
-.00028 0. 2.
-.00028 0. 1.
I1

0. 3. 8.
0. 3. 8.
-.00014 0. 2.
-.00003 0. 1.
r
P

a
a
b
f
180*0.
f
180*0.
b
f
180*0.
f

C

Modify non-local attrition of force 2

Modify non-local attrition of force 3

Modify non-local attrition of force 4

Return to execution
Start a new time batch
Number of time steps
Final time level for this batch
Modify attrition

Modify non-local attrition of force 1

Modify non-local attrition of force 2

Return to menu

Modify velocity components (zero out force 3&4)
Modify diffusion & convection parameters

Do not modify force 1
Do not modify force 2
Modify both x- & y-components of force 3
full representation of x-component

full representation of y-component

Modify both x- & y-components of force 4
full representation of x-component

full representation of y-component

E-2

180*0.

P
C Modify velocity components
a
a
b
n non-full representation of x-component
-.25
3 4 11 11
-.25
5 6 10 10

6 7 9 9
-.25
7 1 0 8 8
0.

Modify diffusion & convection parameters

Do not modify force 1
Do not modify force 2
Modify both x- & y-components of force 3

-.25

n
.25
4 4 10 10
.25
5 6 9 9
.25
6 7 7 8
0.
b
n
-.25
3 4 11 11
-.25
5 6 10 10

6 7 9 9
-.25
7 1 0 8 8
0.

-.25

n
.25
4 4 10 10
.25
5 6 9 9
-25
6 7 7 8
0.
r

non-full representation of y-component

Modify both x- & y-components of force 4
non-full representation of x-component

non-full representation of y-component

Return to execution

E-3

1
4
36
P
C

X
n
-.25
7 1 1 9 9
0.

n
-.25
7 1 1 9 9
0.
a
a
r
1
28
64

X

5. Start a new time batch
Number of time steps
Final time level for this batch
Modify diffusion & convection parameters

Modify velocity components
Modify x-component of force 1

non-full representation of x-component

Modify x-component of force 2
non-full representation of x-component

Do not modify force 3
Do not modify force 4

Return to execution
6. Start a new time batch

Number of time steps
Final time level for this batch
Modify attrition

Modify non-local attrition of force 1
a
n
0. 3. 8.
0. 3. 8.
-.00023 0. 2.
-.00023 0. 1.
n
0. 3. 8.
0. 3. 8.
-.00012 0. 2.
-.00002 0. 1.

Modify non-local attrition of force 2

r
P

b

.25
4 4 7 7
.25
5 5 8 8

6 6 9 9

C

n

-.25

-.25

Return to menu

Modify velocity components
Modify diffusion & convection parameters

Modify both x- & y-components of force I
non-full representation of x-component

E - 4

5 5 10 10
-.25
4 4 11 11
0.
n
.25
5 5 7 7
.25
6 6 8 8
.25
5 5 9 9
.25
4 4 10 10
0.
b
n
.25
4 4 7 7
.25
5 5 8 8

6 6 9 9
-.25
5 5 10 10
-.25
4 4 11 11
0.
n
.25
5 5 7 7
.25
6 6 8 8
.25
5 5 9 9
.25
4 4 10 10
0.
a

-.25

a
r
0

non-full representation of y-component

Modify both x- & y-components of force 1
non-full representation of x-component

non-full representation of y-component

Do not modify force 3
Do not modify force 4

Return to execution
Terminate execution

E-5

Input File wari
numbers of x-, y-mesh points, and forces:

15 12 4
PDE solver parameters:

2 3 5
(DEMONSTRATION SIMULATION)$
uniform x-mesh
0. 7.0
uniform y-mesh
0. 5.5
distribution of forces among sides
1 1 2 2
initial force distribution
non-full force 1
112.0
9 9 3 3
112.0
10 10 4 4
0.
non-full force 2
28.0
9 9 3 3
28.0
10 10 4 4
0.
non-full force 3
160.0
11 12 11 11
0.
non-full force 4
80.0
11 12 11 11
0.
diffusion coefficient
4*l.e-7
convection velocity components
non-full x-component for force 1
-.25
5 5 4 4
-.25
6 9 3 3
.25
10 11 4 4

E-6

.25
12 12 5 5
0.
non-full x-component for force 2
-.25
5 5 4 4
-25
6 9 3 3
.25
10 11 4 4
.25
12 12 5 5
0.
non-full x-component for force 3
-.25
7 12 9 10
-.04
8 1 0 8 8
0.
non-full x-component for force 4
-.25
7 12 9 10
-.04
8 1 0 8 8
0.
non-full y-component for force 1
-25
4 4 4 4
2 5
5 5 3 3
.25
12 12 4 4
.25
13 13 5 8
0.
non-full y-component for force 2
.25
4 4 4 4
.25
5 5 3 3
.25
12 12 4 4
.25
13 13 5 8

E-7

0.
non-full y-component for force 3
-.25
11 12 11 11
-.25
6 10 9 10
-.25
6 7 8 8
0.
non-full y-component for force 4
-.25
11 12 11 11
-.25
6 10 9 10
-.25
6 7 8 8
0.
non-full external source for force 1
0.
non-full external source for force 2
0.
non-full external source for force 3
0.
non-full external source for force 4
0.
local linear interactions for force 1
4*0.
local linear interactions for force 2
4*0.
local linear interactions for force 3
4*0.
local linear interactions for force 4
4*0.
local quadratic interactions for force 1
16*0.
local quadratic interactions for force 2
16*0.
local quadratic interactions for force 3
16*0.
local quadratic interactions for force 4
16"O.
nonlocal interactions for force 1
0. 3. 8.
0. 3. 8.

E-8

0. .1 2.5
0. .1 1.

nonlocal interactions for force 2
0. 3. 8.
0. 3. 8.
0. .l 2.5
0. .1 1.

nonlocal interactions for force 3
0. .1 2.5
0. .1 3.5
0. 3. 8.
0. 3. 8.

nonlocal interactions for force 4
0. .1 2.5
0. .1 3.5
0. 3. 8.
0. 3. 8.

BCs for force 1 (top,right,bottom,left)
0. 1. 0.
0. 1. 0.
0. 1. 0.
0. 1. 0.
BCs for force 2 (top,right,bottom,left)
0. 1. 0.
0. 1. 0.
0. 1. 0.
0. 1. 0.
BCs for force 3 (top,right,bottom,left)
0. 1. 0.
0. 1. 0.
0. 1. 0.
0. 1. 0.
BCs for force 4 (top,right,bottom,left)
0. 1. 0.
0. 1. 0.
0. 1. 0.
0. 1. 0.
Graphics format (none, ascii, hdf, or plot)
hdf
contour parameters: base value, increment

-150. 151.
x- and y-axis increments
2. 2.
scale factor

E-9

8.
size of objects to be generated@ square pixels)
3
name of graphics file(s) to be created (up to 10 chars)
demo
overwrite file if it exists? (O=no, l=yes)
1
display computational mesh? (O=no, l=yes)
1
name of file containing background bitmap (up to 10 chars)
Desert.dat
maximum distance to be traveled between images
2.
number of frames to be interpolated
0
RGB values for each force
255 0 0

0 255 0
0 0 255

255 255 0

E-10

APPENDIX F
Example Frames from Demonstration Simulation Run #l

Figure F.1 -- Frame # 1: Initial frame of Demonstration Simulation.

Figure F.2 -- Frame #21: Red and Green forces maneuver around mountain.

Figure F.3 -- Frame #23: Red and Green forces move to attack position.

Figure F.4 -- Frame #29: Red and Green forces start attacking Blue and Yellow forces.
Attrition begins.

Figure F.5 -- Frame #33: Blue and Yellow forces begin to retreat.

Figure F.6 -- Frame #37: Red and Green forces begin pursuit.

Figure F.7 -- Frame #65: Blue and Yellow forces are almost annihilated. Red and Green
victory.

F-1

.

r

t

Lh

I
_

I

F

...

1

I I

I

ORNLKM-11973

INTERNAL DISTRIBUTION

1. B. R. Appleton
2-6. Y. Y. Azmy

7. R. M. Davis
8. W. Fulkerson
9. D. S. Hartley I11

10. D. T. Ingersoll
11. V. A Protopopescu

12-16. R. T. Santoro
17. R. J. Toedte
18. B. S. Wallace

19. R. C. Ward
20. EPMD Reports Office

21 -22. Laboratory Records
Department

23. Laboratory Records,

24. Document Reference
Section

25. Central Library
26. ORNL Patent Section

ORNL-RC

EXTERNAL DISTRIBUTION

27.

28.

29.

30.

31.

32-36.
37.
38.

39.

40.

41.

55.

56-65.

Prof. Roger W. Brockett, Harvard University, Pierce Hall, 29 Oxford Street,
Cambridge, MA 02138
J. J. Dorning, Depatment of Nuclear Engineering and Physics, Thornton
Hall, McCormick Road, Universityof Virginia, Charlottesdle, Virginia 22901
Bruce W. Fowler, U. S. Army Missile Command, A?TN: AMSMI-RD-AC,
Redstone Arsenal, Alabama 35898-5282
R. M. Haralick, Department of Electrical Engineering, University of
Washington, Seattle, Washington, 98195
R. L. Helmbold, Concepts Analysis Agency, 8120 Woodmont Avenue,
Bethesda, Maryland 20814
Greg Hunt, 6921 Richards Lane, Austell, Georgia 30001
Dr. James E. Leiss, Rt. 2, Box 142C, Broadway, VA
Dr. Donna Llewellyn, School of Industrial & Systems Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332
Neville Moray, Department of Mechanical and Industrial Engineering,
University of Illinois, 1206 West Green Street, Urbana, Illinois 61801
Prof. H. Donald Ratliff, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Room 325, Atlanta, Georgia 30332
Mary F. Wheeler, Department of Mathematical Sciences, Rice University,
P.O. Box 1892, Houston, Texas 77251
Office of Assistant Manager for Energy Research and Development,
Department of Energy, Oak Ridge Operations, P.O. Box 2001, Oak Ridge,
Tennessee 37831
Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge,
Tennessee 37830

