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AB STRACT 

This report proposes a method for resolving the kinematic redundancy of a serial 
link manipulator moving in a three-dimensional workspace. The underspecified 
problem of solving for the joint velocities based on the classical kinematic velocity 
model is transformed into a well-specified problem. This is accomplished by 
augmenting the original model with additional equations which relate a new vector 
variable quantifying the redundant degrees of freedom { DOF) to the joint velocities. 
The resulting augmented system yields a well specified solution for the joint 
velocities. Methods for selecting the redundant DOF quantifying variable and the 
transformation matrix relating it to the joint velocities axe presented so as to obtain 
a minimum Euclidean norm solution for the joint velocities. The approach is also 
applied to the problem of resolving the kinematic redundancy at the acceleration 
level. Upon resolving the kinematic redundancy, a rigid body dynamical model 
governing the gross motion of the manipulator is derived. A control architecture is 
suggested, which according to the model, decouples the Cartesian space DOF and 
the redundant DOF. 

V 





1. INTRODUCTION 

The historical trend of minimality in design is manifested in the majority of 
present day robotic manipulators including their control systems 111. It is argued 
in [l] that this historical trend has impeded, to some extent, the development of 
new theory and new computational and analytical tools needed for the design of 
future robotic systems. Two of the attributes proposed in (11 for the design and 
control of future robots are the enlargement of the input and state spaces of the 
manipulator such that it has a larger number of degrees of freedom (DOF) than the 
minimum required. The additional DOF enable several tasks to be accomplished 
simultaneously during motion of the manipulator. The concept of relegation of 
control which involves assigning specific tasks to subsets of the control inputs to a 
manipulator system with enlarged state and input spaces is proposed as a particular 
type of generalized, nonlinear decoupling control in [l]. The control philosophy 
framework [l] is presented in a conceptual, qualitative manner. 

A kinematically redundant manipulator [2,3,4,5,6] is a classical example of an 
actuated mechanical system possessing enlarged input and state spaces. This 
report formalizes analytically and mathematically the input relegation control 
philosophy [l] to the decoupling of the nonredundant and redundant DOF during 
gross motion of a kinematically redundant manipulator. The approach to resolving 
the kinematic redundancy as well as deriving a rigid body dynamical model and a 
control architecture for the manipulator are based on a general method for modeling 
and controlling constrained mechanical systems [7,8,9]. 

In the previous work [7,8,9], the motion of the dynamical system studied was 
restricted by a set of k bilateral constraint equations imposed on n generalized 
velocities which describe the configuration of the system, where E < n. Thus the 
problem of solving the constraint equations to obtain generalized velocities which 
satisfy the constraints is underspecified and there are infinitely many solutions. 
(n  - IC) new scalar variables (termed pseudovelocities in [7,9]) consisting of linear 
combinations of the generalized velocities were introduced? which, together with the 
original constraints, yielded a well specified solution for the generalized velocities. 

The Jacobian matrix which transforms the joint velocities to obtain the 
Cartesian velocities of a point, link, or end effector located on a kinematically 
redundant manipulator is rectangular with fewer rows than columns. Thus the 
problem of solving the kinematic velocity transformation equations for the joint 
velocities is underspecified and there are infinitely many solutions. Interestingly? 
the problems of resolving the redundancy of a manipulator and of determining 
generalized velocities which satisfy the constraint equations in a constrained 
mechanical system appear to be intimately related. It will be investigated here if 
the approach in [7,8,9] can be extended to the problem of modeling a kinematically 
redundant manipulator. 

A general procedure for resolving the 
kinematic redundancy is first presented. Several techniques for applying the 
procedure are discussed. A rigid body dynamical model is derived which consists 
of separate equations of motion for the nonredundant and redundant DOF. Finally, 
a decoupled control architecture is developed based on the separated form of the 
model. 

The report is organized as follows. 
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2. PROBLEM STATEMENT 
AND SYSTEM DESCRIPTION 

The problem is to resolve the kinematic redundancy of a serial-link manipulator 
moving in a three-dimensional workspace. The manipulator has a stationary base 
and contains N single DOF joints. Upon resolving the kinematic redundancy, a rigid 
body dynamical model and a control architecture are developed. The kinematical 
and dynamical models of the redundant manipulator are assumed to be known. The 
configuration of the system is shown in Fig. 1. 

2.1 SYSTEM VARIABLES AND COORDINATE FRAMES 
The joint positions of the manipulator are the generalized coordinates describing 

the configuration of the system. The system variables include the generalized 
coordinates, velocities, accelerations, and the generalized input forces (;.e., the joint 
torques) applied to the joint actuators. 

As shown in Fig. 1, the coordinate frame ( X k ,  Yk, Zk) is assigned to the lcth link 
of the manipulator, where k = 0, 1, . . . , N .  The origin of the moving ( X N ,  YN, ZN) 
coordinate system is located at the centerpoint of the end effector. The ( X o ,  Yo, 
20) coordinate frame is the stationary base reference system. 

2.2 KINEMATIC MANIPULATOR MODEL 

velocities of a point, link, or end effector to the joint velocities is given by: 
The kinematic model for a serial-link manipulator which relates the Cartesian 

k = J ( q ) i .  (1) 

The joint positions of the manipulator defined by the vector q = [ q l ,  42,. . . , q ~ ] '  
are the generalized coordinates, where superscript T denotes a transposition. The 
Cartesian velocities of a point, link, or end effector on the manipulator are defined 
by the ( M  x 1) vector 2. It is assumed that M < N .  For the case where the 
Cartesian translational and rotational velocities of one of the rigid links (e.g., the 
k = N t h  link is the rigid body end effector) are to be controlled, M = 6 and 
i = [(v:)~, ( w : ) ~ ] ' .  The (3 x 1) vector vt is the translational velocity of the kth 
link at the point coinciding with the origin of the ( X k ,  Yk, 2,) coordinate system. 
The (3 x 1) vector is the angular velocity of the kth link. vk and w i  are expressed 
in the base coordinates. For the case where only the Cartesian translational velocity 
of a point on the manipulator is to be controlled, then M = 3 and j. = vk. In 
Eq. (l), J ( q )  is the ( M  x N )  manipulator Jacobian matrix. J ( q )  is assumed to 
possess full rank M .  

The corresponding kinematic manipulator model at the acceleration level is 
obtained by differentiating Eq. (1) in: 

x = J q  + J q .  (2) 
The ( M  x N )  matrix J = (aJ/aq)cj in Eq. (2) is a function of ( q ,  4). 
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PROBLEM STATEMENT AND SYSTEM DESCRIPTION 5 

2.3 DYNAMIC MANIPULATOR MODEL 

Lagrange's formulation by: 
The dynamical model in the joint space for the manipulator is given in 

7- = D(4)  4 + C(Q ? 4) + G(d  * (3) 
The generalized input forces (i.e., the joint torques) are denoted by the vector 

7 = [TI,  72, . . . , TN]'. The ( N  x N )  symmetric, positive definite, inertia matrix is 
D(q),  and the Coriolis and centripetal forces are described by the ( N  x 1) vector 
C(q, i) .  The gravity forces acting on the manipulator are described by the ( N  x 1) 
vector G(q). 

The problem of resolving the kinematic redundancy based on the kinematic 
model given by Eq. (1) is discussed next. 





3. RESOLUTION OF KINEMATIC REDUNDANCY 

The problem is to solve Eq. (1) for the generalized velocities given the 
Cartesian velocities i and the generalized coordinates. The solution to the inverse 
kinematics is underspecified because the number of unknown generalized velocities 
( N )  exceeds the number of equations ( M )  in the kinematic model. Equation (1) 
has infinitely many solutions for 4. 

Motivated by the previous work [7,8,9], a new vector variable 
e = [ e l ,  €2, .  . . , ~ N - M ] ~  is introduced to resolve the kinematic redundancy. The 
number of scalar elements contained in E is equal to the number of redundant DOF 
contained in the system, namely ( N  - M). It is defined by: 

€ = B(q)d . (4) 
The ( ( N  - M )  x N )  matrix B(q) in Eq. (4) is selected so that the composite 

( N  x N )  matrix ( J T ( q ) ,  BT(q))T is nonsingular. It is convenient to partition the 
inverse of (P((r), ~ ~ ( q ) ) ~  into two matrices: 

where II(q)  is a ( N  x M )  matrix and C(g) a ( N  x ( N  - M ) )  matrix. Equation (5) 
implies that JII = I M ~ M ,  J C  = O ( M ~ ( N - M ) ) ,  B?J = O ( ( N - M ) ~ M ) ,  
B C = I ( ( N - M ) ~ ( N - M ) )  and (11 J + C B ) = I N ~ N .  (Here Irxr  denotes an (T x r )  
identity matrix and O r , ,  an ( r  x s )  matrix of zeros). The choice of matrix B(q)  
and vector t by the designer is somewhat arbitrary. Several examples are provided 
later in this section. 

Differentiating Eq. (4) establishes a relation between i and 4: 

i = € ? q + B q  . (6 )  

The ( ( N  - M )  x N )  matrix B = (aB/dq)q in Eq. ( 6 )  is a function of ( q ,  4). 
Equations (1) and (4) can be solved for 4, and Eqs. (2) and ( 6 )  for g: 

(7) q = n ; : + C €  , 

g = rI2 + E i  - ( n j  + CB) (IIi + E€)  

in which Eq. ( 5 )  has been invoked. In Eqs. (7) and (8), Q and q have been expressed 
as functions of the variables {x, e, q }  and {i, 2, e, d, q } ,  respectively. Substituting 
the right hand side of Eq. (7) into the kinematic velocity model (Eq. 1) reveals 
that the expression ( J  C E )  identically vanishes regardless of the value of E ,  since 
(JC) = O ( M ~ ( N - M ) ) .  Likewise, substituting the right hand side of Eq. (7) into 
Eq. (4) reveals that the expression (Bn i )  identically vanishes regardless of the 
value of S ,  since (BII) = O ( ( N - M ) ~ M ) .  Therefore the physical motion of the point, 
link, or end effector being controlled in Cartesian space { $1 is independent of vector 
E .  

7 



8 RESOLUTION O F  KINEMATIC REDUNDANCY 

The preceding general development demonstrates that it is possible to produce 
equations of the form of Eqs. (7) and (8) by introducing additional Eqs. (4) and (6) 
which quantify thc behavior of the redundant DOF. However? it does not present a 
criteria for selecting E .  Moreover, the development does not indicate an operational 
procedure for determining matrix B(q) .  This matrix is not unique, and several 
methods for constructing it as well as a method for determining t are discussed 
next. 

3.1 SELECTION OF E AND E 

The achievement or fulfillment of additional tasks or goals other than controlling 
the motion of a point or link on the manipulator (;.e., i) to track a reference 
trajectory will be relegated to the ( N  - Ad) redundant DOF. The specific additional 
task or goal is pertinent to the selection of E and E .  To illustrate the quantification of 
the redundant DOF, analytical expressions for E and i are developed in this section 
which lead to minimum Euclidean norm solutions for the generalized velocities and 
accelerations, respectively. Starting with redundancy resolution at the velocity level, 

is selected to minimize 11q1I2 using Eq. (7): 

11qlI' = ( r l i  + (Hi + E € )  . (9) 
Taking the partial derivative of Eq. (9) with respect to E and equating the result to 
zero give: 

Since C has full rank ( N  - Ad), then matrix ( E T  E) is positive definite, symmetric, 
and therefore nonsingular. Thus Eq. (10) can be solved for E :  

(c'q-l c T n i  . 
It is important to note that matrices rl and C are unknown quantit,ies whereas x 
is known on the right-hand side of Eq. (11). To determine E using Eq. (ll), the 
designer first chooses a matrix B(q)  which immediately leads to the determination 
of [ l l ( q ) , E ( q ) ]  by Eq. ( 5 ) .  Sufficient information is now available to calculate E .  

Substituting the right-hand side of Eq. (11) into Eq. (7) and grouping terms give: 

Equation (12) provides a minimum Euclidean norm solution for the generalized 
velocities as a function of the variables { q ,  i}. It is straightforward to verify that 
Eqs. (11) and (12) satisfy Eqs. (1) and (4). The generalized accelerations, if desired, 
are obtained by first solving for E by differentiating Eq, (11). 4 may be determined 
by differentiating Eq. (12) or by applying Eq. (8). The generalized coordinates are 
obtained by numerical integration. 

In summary, given any B(q)  such that ( J T ( q ) ,  BT(q))T is nonsingular, a value 
for E can be determined using Eq. (11) which yields the minimum norm solution for 
4. It should be mentioned that it is invalid to substitute J ( q ) q  for i on the right- 
hand side of Eq. (11) in the preceding optimization procedure because q is unknown. 
There would be insufficient information available to solve for E .  Moreover, this would 
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incorrectly imply that B = -(C*Z)-ICTIIJ based on the definition of E in Eq. (4). 
Indeed, this expression for B does not satisfy the matrix relations given in Eq. (5). 

For redundancy resolution at the acceleration level, the redundant DOF 
quantified by i are determined to minimize llijllz using Eq. (8): 

Taking the partial derivative of Eq. (13) with respect to 0 ,  equating the result to 
zero, and rearranging yield a solution for 6:  

(14) 
i = - ( C T C )  -l c T [nj:-(rIj+CB)(ni+c€)] . 

In Eq. (14), the quantities {II, E} me unknown. To determine i using Eq. (14), 
the designer chooses matrix B which immediately yields [ I I (q ) ,  C(q)J by Eq. (5 ) .  
The time derivatives of { J ,  B )  are then obtained. Given an initial value for E (at 
the starting time) or using its last known value (e.g., from the previous sampling 
period), sufficient information is now available to compute G. 

Substituting the right-hand side of Eq. (14) into Eq. (8),  rearranging terms, and 
simplifying give: 

(15) q = ( I N x N  - c ( P c )  -l c T ) n ( 5  - j ( n i  + ce,) . 

Equation (15) provides a minimum norm solution for the generalized accelerations 
as a function of the variables { q, E ,  i, 2 }. It is straightforward to verify that 
Eqs. (14) and (15) satisfy Eqs. (2) and (6) .  The solution for e is obtained by 
numerically integrating Eq. (14). The generalized coordinates and velocities are 
obtained by numerically integrating Eq. (15). 

3.2 SELECTION OF' B SUCH THAT E IS A SUBSET OF 4 
In our first approach, we choose B to relegate the control of the redundant DOF 

to ( N  - M )  of the N joints. In this case B is a constant matrix consisting of ones 
and zeros. The approach is illustrated by examples. 

Ezample I: The problem is to control the Cartesian translational and rotational 
motions of the end effector of the CESARm research manipulator [6,10,11,12] 
operating in a three-dimensional workspace, as shown in Fig. 2. In this configuration 
CESARm has a sin le degree of redundancy with N = 7, M = 6, and 
i = [(vi)', (ZU;)~]~.  Suppose we relegate the control of the redundant DOF 
to the third (upper arm roll) joint, i.e., E = 4 3 ,  The choice is reasonable and logical. 
Indeed, it is the inclusion of that joint which makes CESARm redundant. B is 
defined as: 
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- 1 0 0 0 0 0 -  
0 1 0 0 0 0  
0 0 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 0 0 1 0  

- 0  0 0 0 0 1- 

B=[O,O, 1 , 0 , 0 , 0 , 0 ]  . (16) 

' - 1 0 0 0 0 0 -  
0 1 0 0 0 0  
0 0 0 0 0 0  

J O O l O O O  
0 0 0 1 0 0  
0 0 0 0 1 0  

. , 0 0 0 0 0 1 ,  

Given the (6 x 7) Jacobian matrix J ( q )  defined in Eq. (1) and the choice of 
vector B in Eq. (16), the (7 x 7) composite matrix ( J * ( q ) ,  BT)' can be inverted 
symbolically using the method of inverse by partitioning [13]: 

-1 0 0 0 0 0 -  
0 1 0 0 0 0  
0 0 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 0 0 1 0  

- 0  0 0 0 0 1- 

c =  

-1 0 0 0 0 0' 
0 1 0 0 0 0  
0 0 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 0 0 1 0  

- 0  0 0 0 0 1- 

n= 

/ 

1 7 x 7  - 

\ 

J 

-1 

' J  BT 

where II is a (7 x 6) matrix, C is a (7 x 1) vector and, here again, Irxr denotes 
an ( T  x T )  identity matrix. Upon calculating I I (q )  and C(q), E and q are obtained 
usings Eqs. (11) and (12), respectively, when it is desired to minimize llql12. 

Ezample 2: The problem is to control the Cartesian translational motion of 
the end effector of the CESARm research manipulator at its centerpoint. In this 
configuration CESARm is a spatial mechanism with four degrees of redundancy 
( N  = 7, M = 3 , i  = TI,'). A practical application of such a configuration is having 
the end effector trace a circle where its orientation is of no consequence. We choose 

E = [ 4 3 ,  45, 4 6 ,  q 7 ] T ,  thus: 

0 0 0 0 0 1 0  * (19) 1 0 0 1 0 0 0 0  
0 0 0 0 1 0 0  

0 0 0 0 0 0 1  

B =  [ 
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Fig. 
researcb 
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1 0 0 -  
0 1 0  
0 0 0  
0 0 1  
0 0 0  
0 0 0  
0 0 0, 

Given the (3  x 7) matrix J ( q )  defined in Eq. (1) and matrix B defined by 
Eq. (19), the (7 x 7) matrix ( J " ( q ) ,  BT)T can be inverted symbolically [13]: 

1 0 0  

0 0 0  
0 0 0  
0 0 0  

n= 

Ij 

1 0 0  
0 1 0  
0 0 0  
0 0 1  
0 0 0  
0 0 0  
0 0 0  

1 0 0  
0 1 0  
0 0 0  
0 0 1  
0 0 0  
0 0 0  
0 0 0  

J 

J 

where II and C are (7 x 3) and (7 x 4) matrices, respectively. 

The principal benefit of choosing B in this way is that the inversion of the 
( N  x N )  matrix ( J * ( q ) ,  BT)T is reduced to inverting the ( M  x M )  matrix consisting 
of M columns of the Jacobian J .  Moreover, by choosing B as a constant matrix, 
the problem of deriving an analytical expression for B is avoided. 

Interestingly, the particular cjP and homogeneous 4 h  solutions to Eq. (1) 
proposed in [6] are just special cases of the components {n5} and { C E }  of 
the general solution for 4 proposed in Eq. (7). Indeed, by selecting B as a 
constant matrix such that E is a subset of 4, the results of [6] have been obtained 
here as shown in Example 1 for manipulators with one degree of redundancy. 
For the case of multiple degrees of redundancy, a procedure is suggested in [6] 
which is equivalent to transforming the ( N  - M )  linearly independent columns 
of the orthogonal complement C so they become mutually orthogonal using the 
Gram-Schmidt procedure [14]. Such techniques are numerically intensive and may 
produce computed vectors that are far from orthogonal [14]. The case of picking B 
such that E is a subset of the generalized velocities as presented here is motivated in 
part by its simplicity. The columns of C obtained by the method are only linearly 
independent, The benefits of orthogonalizing the columns of C as suggested in [6] 
are not clearly demonstrated. Besides, this would require recalculating B to ensure 
that Eq. ( 5 )  is satisfied in the method presented here. Thus the minimum Euclidean 
norm solution for 4 given in Eq. (12) differs from that in [6] when N - M > 1. 
The problem of resolving the kinematic redundancy at the acceleration level is not 
addressed in [6]. 
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3.3 CHOOSING B ORTHOGONAL TO THE ROWS OF J 

This approach to selecting B(q) is inspired in part by the recent work on the 
modeling and force control of the constrained nonholonomic motion of a platform 
with multiple, steerable wheels [15]. The partitioned inverse in Eq. ( 5 )  only requires 
that J and B be full rank matrices, and further that the rows of B be linearly 
independent of the rows of J .  Here a method is suggested for choosing B(q)  to be 
orthogonal to the rows of J ( q ) .  It is assumed that the serial-link manipulator has a 
single redundant DOF(N = M + l), e.g., the CESARm research manipulator in its 
most general configuration with A4 = 6 and N = 7 [6,10,11,12]. Thus e is a scalar 
and B(q)  is an N-dimensional row vector. 

Expanding along the last row of ( J T ( q ) ,  BT(q))T using the Laplace 
expansion [13], the determinant of ( J * ( q ) ,  BT(q))* is: 

det = B ( q ) A  

where det [ ] denotes the determinant of [ 1. In Eq. (22), 
A [= (AN,,  AN^, . . . , is the vector of cofactors, where A N i  is the cofactor 

of the ith element of the Nth row of ( J T ( q ) ,  BT(q))T.  Vector A is a function of 
the generalized coordinates, but not of the elements of B. 

The general class of ( N  x 1) orthogonal complements C of J is defined as the 
last column of { ( ~ ~ ( q ) ,  BT(q))T}-': 

where a specific C is obtained by the designer's choice of B. 
We select BT to maximize the determinant of [ J T ( g ) ,  BT(q>lT subject to the 

constraint of normalizing the Euclidean norm of BT to a constant value, i.e., 
llBT112 = p,  where the positive scalar p is a normalization factor selected by the 
designer. We introduce the Lagrangian L: 

L ( B T ,  A) = ATBT + A ( B  BT - p )  (24) 

in which Eq. (22) has been invoked. Taking the partial derivative of 11: with respect 
to the vector BT and scalar A, respectively, and equating the results to zero provide 
the necessary optimality conditions: 
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Equation (25) can be solved for BT: 

T 1 
B = - - - A  

2x (27) 

Eliminating {B, BT} from Eq. (26) using the right-hand side of Eq. (27) and 
rearranging terms give: 

which yields a solution for A: 

where the negative sign in the general solution for X has 
been selected to maximize det[J*(q), BT(q)lT. Indeed, it is easy to see that 
d2 L/d  BT2 (= 2 X IN ,N)  is negative seniidefinite when X is defined by Eq. (29). 

Backsubstituting Eq. (29) into Eq. (27) and transposing yield the solution for 
B: 

Substituting the right-hand side of Eq. (30) into Eq. (22) reveals that: 

A relationship between B and C can be obtained from Eqs. (23) and (31): 

c1 
Since J C  = 0 ~ ~ 1 ,  then B is orthogonal to the rows of J .  Furthermore, 

postmultiplying the matrix identity Il J + C B  = IN,N by J T  gives: 

n J J T  = J T  . (33) 

Since J has full rank M ,  then matrix (J J T )  is symmetric, positive definite, and 
therefore nonsingular. Thus Eq. (33) can be solved for the right inverse II of J :  

r I = J T ( J J )  T -l . 
(34) 
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It is immediately evident that the columns of IT are orthogonal to the columns of 
E: 

The general solution for q given in Eq. (7) becomes: 

When the redundant DOF are relegated to achieve a minimum Euclidean norm 
solution for 4, we substitute Eq. (35) into Eq. (11) to yield E = 0. Thus Eq. (36) 
simplifies to = JT(J J')-' i which is the classic Moore Penrose pseudoinverse 
solution for the generalized velocities [2,3]. Furthermore, the minimum Euclidean 
norm solution for the generalized accelerations given by Eq. (15) simplifies to: 

Example 3: The problem is to control the Cartesian translational motion of the 
centerpoint of the wrist of the CESARm research manipulator as shown in Fig. 2. In 
this configuration CESARm has a single redundant DOF with M = 3, N = 4, and 
j: = v:. The matrix ( J T ,  BT)T can be expanded to reveal its component elements: 

1 -  1 1 2  j13 j 1 4  

3 3 1  332  j 3 3  j 3 4  

b12 b13 b1.t 

3 2 1  322  j 2 3  j 2 4  [;I = [ (38) 

Expanding dong the fourth row of matrix ( J T ,  BT)T defined in Eq. (38), the vector 
of cofactors A ( = [ A 4 1 ,  A 4 2 ,  A 4 3 ,  A44]*) is given by: 

7 j 1 2  ( j 2 3 j 3 4  - j 2 p j 3 3 )  + j 1 3  ( j 2 2 j 3 4  - j 2 4 j 3 2  ) - j14  ( j 2 2 j 3 3  - j23932 ) 

-311 (.32?.?34 - 324332 ) + j 1 2  ( . j21 j34  - .32&31 - 314 ( 3 2 1 j 3 2  - 322331 ) 
31: ( 3 2 3 J 3 4  - j 2 4 3 3 3  + j 1 3  ( j 2 4 . k  - 321334 ) + j1.4 ( j 2 1 j 3 3  - j 2 3 3 3 1  ) 

Ai ( 3 2 2 j 3 3  - j23332 ) + j 1 2  (323331 - 3 2 1 j 3 3  ) + j13 ( j 2 1 h  - j 2 2 j 3 1 )  

(39) 
The Jacobian matrix for this particular configuration of CESARm is defined in 

Appendix A. Substituting for j i m  in Eq. (39) using the appropriate equation from 
Appendix A yields the solution for the cofactors A 4 i  (i = 1,2,3,4)  as a function 
of the lower four joint angles of CESARm: 
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where c; = cos(qi), si = sin(qi)  and where (a3, a4, dz, d3) are constant 
Denavi t-Hartenberg link length parameters defined in Appendix A. 

In [4], the orthogonal complement was selected to be C = A for M even and 
C = - A  for M odd when N - M = 1. Although not discussed, this implies 
that det [ J T ,  BT] It is not clear why the sign of the determinant is 
dependent on M being even or odd. The approach presented here selects B so as 
to maximize det[JT, BTIT subject to the constraint ( (BT( (2  = p ,  in addition to 

satisfying BJT = O l x ~ .  In Appendix I3 symbolic expressions for det [ J T ,  B T ]  
and C are derived as functions of B for the case N - M = 2. They are the 
two-redundant-DOF counterparts to Eqs. (22) and (23). Additionally, a method 

for choosing B to set det [ J T ,  BT] 

T = fl. 

T 

T 
to a desired reference value is discussed. 

3.4 SELECTING B BY APPLICATION OF T H E  ZERO- 
EIGENVALUE MATRIX THEOREM 
An approach to selecting B(q)  is now suggested which is an application of the 

zero-eigenvalue matrix theorem [14,16,17,18]. Here we only assume that ( N  > M ) .  
With this approach, B(q) will again be chosen to be orthogonal to the rows of J ( q ) .  

Let us first consider the properties of the ( N  x N )  matrix (JT J). It is proven 
in Appendix C by analytical techniques that ( J T  J )  is a singular matrix and that 
its rank is equal to M .  Furthermore, it is shown that ( N  - M )  of the eigenvalues of 
(JT J) are identically zero. Let the ( N  x 1) vector x(i = 1, 2, . . . , N - M )  denote 
the ith eigenvector of ( J T  J) corresponding to the ith zero eigenvalue. Then CY Y;, 
where a is any nonzero scalar, is also an eigenvector of (JT J )  associated with the 
i th zero eigenvalue. This indeterminancy can be removed by further requiring that 
11 Y ,  ] I 2  = 1. It is straightforward to verify that: 
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Premultiplying Eq. (44) by I IT  yields: 

in which Eq. (5) has been invoked. Equation (45) reveals an obvious choice for 
matrix B whose rows are orthogonal to those of J :  

Given matrix B as defined in Eq. (46), suppose matrix C is chosen as: 

where for computational reasons it should be mentioned that the main diagonal 
elements of (BB*) are all ones. It is easy to see that J C  = O ( M ~ ( N - M ) )  and 
lIT C = O ( M ~ ( N - M ) ) ,  where matrix II is defined by Eq. (34). 

When picking vector E to minimize llq1I2 as shown in Eqs. (9) and (ll), it is easy 
to see that E = O ( N - M ) ~ ~  and Q = J T ( J  J T ) - ' i  when B is defined by Q. (46). The 
minimum Euclidean norm solution for the generalized accelerations can be obtained 
by substituting the above results into Eq. (15). Since analytical methods for 
obtaining B such that J BT = O ( M ? ( N - M ) )  have been developed in the preceding 
section for N - M = 1, the zero-eigenvalue matrix method is particularly useful 
for the case of N - M 2 2. It is a numerical approach that requires determining 
the eigenvectors Y ,  using various computational iterative algorithms [18,19]. 

3.5 THE VECTOR CROSS PRODUCT METHOD FOR PLANAR 
MANIPULATORS 
In this section a method is proposed for determining a full rank orthogonal 

complement of the Jacobian matrix for the inverse kinematics of a serial-link planar 
manipulator with revolute joints. The planar manipulator shown in Fig. 3 contains 
N revolute joints, where N > 2. Only the translational motion of the end effector 
is to be specified and controlled. Therefore, the planar system contains ( N  - 2) 

denote the Cartesian translational position and velocity of the end effector in the 
base coordinate system. p r  is related to the joint positions as follows: 

redundant DOF. Let the (2 x 1) vectors p r  ( = [PE, p,, N T  ] ) and v r  ( = [v,",, voy N T  J ) 
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where li  is the constant length of link i and c ( - )  = cos(.), s(.) = sin(.). 

Fig. 3. Planar revolute redundant manipulator. 

Differentiating Eq. (48) provides a relation between the joint velocities and the 
Cartesian translational velocities of the end effector: 

where q = [ q1, ~ 2 ,  . . . , 4~ I*. In Eq. (49), the (2 X N )  Jacobian matrix J ( q )  is 
defined by: 

where its elements are defined by: 
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The problem is to determine the ( N  x ( N  - 2)) orthogonal complement C of 
the matrix J such that J C  = 0 ( 2 x ( ~ - 2 ) ) .  We propose the “vector cross product 
method” to obtain C. The ( I C  -2)th column of C is determined by taking the vector 
cross product of two (3 x 1) vectors { q k ,  v2k 1 whose components consist of subsets 
of the rows of the Jacobian. v1k and v2k are defined by: 

where E = 3, 4 ,..., N .  

vector notation [13]: 
The cross product between v1k and 02k may be expressed in a matrix-column 

where (3 x 1) vector v,ltk is the resultant of the cross product. 
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Let ( N  x 1) vector C ( k - 2 )  denote the ( I ;  - 2)th column of C ( I ;  = 3, 4, . . . , N ) .  
It is defined by: 

By invoking the definition of ?&&k in Eq. (59), it is seen that J C ( k - 2 )  = 0 2 x 1 .  

J is given by: 
Ezample 4: Suppose N = 5 .  The orthogonal complement of the (2 x 5 )  Jacobian 

in which Eqs. (59) and (60) have been applied. Matrix C can be expressed as a 
function of the five joint angles ( q 1 ,  q 2 ,  . . . , q5 } by applying Eqs. (51)-(56) with 
N = 5. 

Given C = [ C 1 ,  Cz, . . . , C ( N - ~ )  3 ,  suppose we choose the ( ( N  -2) x N )  matrix 
B(q)  such that: 

Then it is easy to verify that J B T  = 0 ( 2 x ( N - 2 ) )  and that ll is defined by 
Eq. (34). 

In [4], a set of equations of the form of Eq. (4) was introduced with the restriction 
that = O ( ( N - - M ) ~ ~ ) .  Equations (1) and (4) were combined and solved for q. The 

square matrix ( JT, BT )T was referred to as the extended Jacobian. Matrix B was 
obtained by taking the Lie derivative of a scalar objective function to be optimized 
in the independent directions of the null space of J to yield J BT = O ( M ~ ( N - M ) ) .  
The problem of determining the null space of the Jacobian, that is, the orthogonal 
complement E, is not addressed for the case of N - M > 1 in [4]. In the approach 
used here, the components of E can be nonzero. The general development leading to 
Eqs. (7) and (8) only requires that the rows of B be linearly independent of the rows 
of J .  As a special case it is shown that B can be selected to be orthogonal to the 
rows of J, which results in e = O ( ( N - - M ) ~ ~ )  when minimizing the Euclidean norm 
11 4 l12. In Section 3.2 it has been shown that matrices II and C can be determined 
analytically thus avoiding the numerical inversion of ( J T ,  BT ) for calculating 
their values, which was not addressed in [4]. 

The general solution for q given by Eq. (8) obtained when resolving the 
kinematic redundancy at the acceleration level is useful in the development of 

T 
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a dynamical model and control architecture for the gross motion of a redundant 
manipulator. This is discussed next. 





4. RIGID BODY DYNAMICAL MODEL 
AND CONTROL ARCHITECTURE 

A dynamical model for the entire system is formed by first combining the joint 
space dynamical model of the manipulator with the inverse kinematic solutions 
derived in the previous section. The model is then transformed to separate i t  into 
two distinct sets of equations of motion. Additionally, a control architecture of the 
input relegation decoupling type 111 is suggested based on the model. 

To determine a rigid body model, the generalized velocities and accelerations 
are eliminated from the joint space dynamical model in Eq. (3) using Eqs. (7) and 
(8): 

Premultiplying Eq. (63) by the ( N  x N )  nonsingular matrix [D-' [JT, BT]]  
and utilizing the matrix relations in Eq. ( 5 )  separates the model into two sets of 
equations: 

i = B D - ' { r - C - G }  + B (nx + Ze} . (65) 

The M second order differential equations of motion governing the motion of the 
point, link, or end effector being controlled in Cartesian space are given by Eq. (64) 
as functions of the variables {&, 2, E, q ,  7). On the other hand, Eq. (65) is comprised 
of ( N  - M )  second order differential equations of motion which govern the behavior 
of the redundant DOF in terms of the variables {i, E ,  i, g ,  7). 

The problem now considered is to determine a control input r to Eqs. (64) and 
(65) so that the Cartesian variables {?, 2)  and the redundant DOF variables {e, i} 
will be controlled independently. The proposed controller consists of the sum of 
the outputs of a ( N  x 1) primary controller (9) that is designed for cancellation of 
nonlinear terms in the model and a ( N  x 1) secondary controller (7') that performs 
closed-loop servoing. The composite control ( r )  is specified as T = r p  + 7'. The 
primary and secondary controllers are defined by: 

r s  = D pr:a,t + ~ r : ~ ~ ~ ~  1 (67) 

where the superscript denotes that the quantity is estimated as a function of 
the desired (reference) feedforward trajectory (q'"f, Fef, k r e f )  and/or the feedback 
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variables ( q ,  E ,  i). In Eq. (67), rZart and rreedyn are ( M  x 1) and ( ( N  - M )  x 1) 
vectors, respectively, representing new control input variables to be determined. 

Substituting the composite controller T = r p  + r5 defined by Eqs. (66) and 
(67) into Eqs. (64) and (65), under the assumption that the following relations hold: 

leads to the closed-loop system: 

x =  i 

i =  rredun 

in which Eq. (5) has been used. Suppose r,9,rl and 7,Sedun are selected by the 
designer to control {k, .} and {E, i} to track reference or commanded trajectories, 
respectively. Since Eqs. (69) and (70) reveal that the (nonredundant) Cartesian- and 
redundant-controlled DOF have been completely decoupled, then and r:edun 
are noninteracting controllers. The structure of the proposed composite controller 
reveals that all N actuated manipulator joints contribute simultaneously to the 
control of the Cartesian- and the redundant-DOF during motion of the manipulator. 



5.  CONCLUSION AND FUTURE WORK 

The conceptual input relegation control philosophy [l] has been applied to the 
problem of resolving the kinematic redundancy of a serial-link manipulator as well 
as to dynamically modeling and controlling such a system. A new vector variable E 

quantifying the redundant DOF was introduced and defined as linear combinations 
of the generalized velocities. The equations defining vector E together with 
the kinematic velocity model yielded a well-specified solution for the generalized 
velocities. The general procedure was also used to resolve the redundancy at the 
acceleration level. A criteria for choosing E and several approaches for selecting 
the B(q)  matrix were presented. In the first approach, B was picked to be a 
constant matrix such that E is a subzet of the generalized velocities. This resulted 
in determining the inverse of the composite matrix ( J T ( q ) ,  BT)* analytically thus 
avoiding a numerical inversion. Furthermore, analytical and numerical methods for 
determining B(q)  such that it is orthogonal to the rows of the Jacobian matrix 
J ( q )  were suggested, some of which applied to manipulators with multiple degrees 
of redundancy. The advantages of this were demonstrated through relegating the 
redundant DOF to produce minimum Euclidean norm solutions for the generalized 
velocities and accelerations, respectively. Additionally, a rigid body dynamical 
model consisting of two distinct sets of equations of motion was derived. One set is 
the Cartesian space equations of motion governing the behavior of the nonredundant 
DOF. The other set governs the redundant DOF. A control archtecture was 
suggested, which according to the separated form of the model, decouples the 
Cartesian- and redundant-DOF. 

The research in this report has uncovered and identified a wealth of open 
research issues that warrant future attention. Vectors {e, G} were selected to 
minimize the Euclidean norm of the generalized velocities and accelerations, 
respectively. Clearly other criteria and analytical methods for selecting { E ,  g} need 
to be developed. The analytical methods for choosing B(q) to be orthogonal to 
the rows of the Jacobian matrix in Section 3.3 need to be extended to allow for 
an arbitrary number of degrees of redundancy, The vector cross product method 
in Section 3.5 for deriving the orthogonal complement of the Jacobian allows 
for multiple degrees of redundancy. Unfortunately, the method is restricted to 
Jacobians having only two rows. Further research is needed to generalize this 
approach. 

It has been shown in this report that the problems of resolving the kinematic 
redundancy of a serial link manipulator and of dynamically modeling a constrained 
mechanical system [7,8,9] are intimately related. In view of this, another suggested 
future work area is to investigate the uses of the redundant DOF during hard 
contact motion of a serial-link redundant manipulator. Additionally, it is felt 
to be very worthwhile to combine the results presented here with those on 
modeling the constrained motion of a nonholonomic omnidirectional wheeled mobile 
platform [15,20] to study the problems of kinematic redundancy and rigid body 
constraints in a combined mobility/manipulation system. 
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APPENDIX A 
THE JACOBIAN MATRIX FOR THE 
CESARm RESEARCH MANIPULATOR 

In this appendix the (3 x4)  Jacobian matrix which transforms the joint velocities 
of the lower four joints of the CESARm research manipulator [6,10,11,12] to obtain 
the Cartesian translational velocities of the centerpoint of the wrist is specified. Let 
j l m  denote the element located at the intersection of the Ith row and mth column 
of J ( q ) .  Let ci = cos(qi) and sj  = sin(q;), i = 1,2,3,4. The elements are defined 
by: 

29 
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where [u3, u4, d2, d3] are constant Denavit-Hartenberg link length parameters which 
are illustrated in Fig. 2 and whose values are: 

[ u s ,  u4, d2, d3 ]  = [0.029, 0.508, 0.356, 0.635]( m )  . (A. 13) 



APPENDIX B 
EXTENSION TO MANIPULATORS 
WITH TWO REDUNDANT DOF 

- lA$-l ( -l)N+l 

2AS-1 ( -1 ) N + 2  

( -1 ) N + N  - 

The problem is to extend the analytical method for selecting B to specify 
a desired, reference value for the determinant of ( J T ,  BT)T  for manipulators 
containing two degrees of redundancy ( N  - M = 2). Let the (2 x N )  matrix 
B = (BT,B,T)T,whereB; = [b , l , b , z ,  ..., b i r J ] , i = 1 , 2 .  

Expanding along the last row of ( J T ( q ) ,  BT(q))T using the Laplace 
expansion [13], the determinant of ( J T ( q ) ,  BT(q))* is: 

where, here again, det[] denotes the determinant of [ 1. In Eq. (B. l )7  
A ( = [ANI,  AN^, . . . is the vector of cofactors, where A N i  is the cofactor 
of the ith element of the Nth row of ( J T ( q ) ,  BT(q))T. Vector A is a function 
of the generalized coordinates and the elements of B1. The scalar cofactor 
A ~ i ( i  = 1, 2, . . . , N )  is defined by: 

 AN^ = ( -l)N+'B 1 'AN-1 ' P - 2 )  

where i A ~ - l  is a ( N  x 1) vector defined by: 

i AN-1 = [iAN-l,l,  iAN-l,2,..- 9 i AN-1,i-17°? i AN-l,i, a AN-l,i+l, - .  - 7 i AN-l ,N-l]  T 

(B.3)  
where i A ~ - l , k 7 ( k  = 1, 2,  . . . , N - 1) is the cofactor of the kth element of the 
( N  - 1)th row of the ( ( N  - 1) x ( N  - 1)) matrix contained within cofactor A N * .  
The ith element of 'A~J-I is zero. 

Using the quantities defined above, the determinant of ( J * ( q ) ,  BT(g))T can be 
expressed in a concise notation: 
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whose main diagonal elements are all zero, 0 is a function of the generalized 
coordinates and it will be shown by examples that it is a skew-symmetric matrix, 
i.e., - o = oT. 

The general class of ( N  x 2) orthogonal complements C of J is defined as the 
last two columns of { ( J T ( q ) ,  BT(q))T}- l :  

where a specific C is obtained by the designer's choice of B1 and Bz. 
Suppose we select B2 as: 

If we select B1 as: 

where B2 is defined in Eq. (B.7) and where det*[JT(q), BT(q)IT is a constant, 
desired value of det[JT(q), BT(q)IT selected by the designer, e.g., select 
det*[JT(q), BT(q)IT # 0 to make ( J T ( q ) ,  BT(q))T an invertible matrix. Then 
substituting Eqs. (B.7) and (B.8) into Eq. (B.4) yields: 

Given this choice of B1 and B2, the determinant of [ J T ( q ) ,  BT(q)IT is non-negative 
and can only be zero when vector lAp.r-1 = O ( N ~ ~ ) .  Should all the components 
of   AN-^ be identically zero, B2 may be selected as - *A;-! ( -1 )"-* for any 
i ( = 2, 3, . . . , N ) for which at least one of the components of 'A$-1 (other than 
the ith component) is nonzero. B1 would then be selected as: 

An alternate analytical approach to picking B so as to specify a desired reference 
value of det[ J T ,  BTIT is now discussed. It is assumed that the row vector Bz has 
been selected to be linearly independent of the rows of J. Suppose B r  is selected 
as : 

T B, = OT BT det* [ i] = 0 B,T det* [ i] (B.ll) 
B2 O2 BT B* 0 OT B,T 



Appendix  3 33 

where the skew-symmetry of 0 has been exploited. O2 is a symmetric matrix whose 
main diagonal elements are negative. Thus, the denominator of the right-hand side 
of Eq. (B.ll)  is a quadratic form [14]. Substituting Eq. (B. l l )  into Eq. (B.4) yields 
the solution for the determinant given by Eq. (B.9). Since J C  = 0 ~ ~ 2 ,  it is easy 
to see that J B T  = 0 ~ ~ 1 .  

The former method for determining matrix B is now illustrated through two 
examples. 

Esample B1. Consider the problem of the determining matrix B far the case of 
controlling a serial-link planar redundant manipulator with N = 4 revolute joints. 
The configuration of the system is shown in Fig. 3. Only the Cartesian translational 
motion of the end effector is specified and controlled. Thus M = 2 and the system 
has 2 redundant DOF. The composite matrix ( J T ,  BT)' can be expanded to reveal 
its component elements: 

i l l  i 1 2  J13 i 1 4  
321 322 323 224  

h l  b12 b13 b14 

b21 b22 b23 b24 

(B.12) 

Applying Eq. (B.l) with N = 4, the vector of cofactors A(= fA41, A42, A43, A44IT) 

is defined by: 

where I . I denotes the determinant of { - }. 
Applying the definition of the ZAlv-1 given by Eq. (B.3), we have: 

(B.13) 

(B.14) 

(B .  15) 

(B.16) 
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(B.17) 

Substituting Eqs. (B.14)-(B.17) into the right-hand side of Eq. (B.5) with N = 4 
gives the solution for 0: 

Equation (B.18) reveals that 0 is skew-symmetric. B2 is given by: 

in which Eq. (B.7) has been invoked with N = 4. Given 0 and B2 as defined by 

Eqs. (B.18) and (B.19), the quantities B1, det [ J T ,  BTIT, and C are obtained by 
using Eqs. (B.8), (B.4), and (B.6), respectively. 

Example Bt.  Consider the problem of determining matrix B for the case of 
controlling a serial-link planar redundant manipulator with N = 5 revolute joints. 
Both the Cartesian translational and rotational motions of the end effector are 
specified and controlled. Thus M = 3 and the system has 2 redundant DOF. The 
composite matrix ( J T ,  B T ) T  can be expanded to reveal its component elements: 

The (5 x 1) vectors 'A4(2 = 1, 2, . . . , 5 )  are obtained by applying Eq. (B.3) 
with N = 5 :  



'A4 = 

2A4 = 

0 
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0 

(B.21) 

(B.22) 
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3A4 = 

4A4 = 

0 

, 

(B.23) 

(B.24) 
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5A4 = ( B  .25) 

Substituting Eqs. (B.21)-(B.25) into the right-hand side of Eq. (B.5) with 
N = 5 ,  it is easy to see that 0 is skew-symmetric. B2 is given by: 

(B.26) 

in which Eq. (B.7) has been invoked. Vector B1 can be determined from Eq. (B.8). 





APPENDIX C 
DETERMINING SINGULARITY 
AND RANK OF MATRIX ( J T  J )  

In this appendix it will be proven by analytical techniques that matrix (JT J )  
has less that full rank and thus is singular. The matrix relations given by Eq. (5) 
will be used in evaluating the rank of ( JT J ) .  Additionally, the following matrix 
property will be used. Two (n  x n)  real matrices X and Y are given. Matrix 
X is assumed to possess full rank n and thus is nonsingular. Then the following 
mathematical relation applies [13]: 

rank( l / )  =  rank(^^) =  rank(^^) = ran/c(XTY) =  rank(^^^) . (c.1) 
The rank of ( J T  J )  may now be determined. By the property of Eq. (C.l), the 

following relation holds: 

The rank of the ( N  x IV) matrix within the braces on the right-hand side of Eq. (C.2) 
is now analyzed by first carrying out the multiplications: 

{ [ n T J T J J T ,  I I T J T J B T ] }  
rank (JT  J )  = rank (C.3) 

C ~ J ~ J J ~ ,  V J T J B ~  

The right-hand side of Eq. (C.3) is simplified by invoking the matrix relations in 
Ek& (5: 

rank(  JT  J )  

Equation (C.4) 
([H , ElT JT 3 [JT  , 

J J~ J BT 
= rank{ [ 

O(( N - M )  x M )  O( ( N -  M )  x ( N - M ) )  

reveals that the last ( N  - MI rows of matrix 
BT]) contain all zeros. Thus' matrix ([h , 'ElT JT J [ J T  , B T ] )  

is singular. Furthermore, the runk([II,  ZIT J T  J [ J T ,  BT]) = M .  It should be 
mentioned that the upper M rows on the right-hand side of Eq. (C.4) form the 
matrix (J [ J T ,  BT]), which has rank M because the rank of J (= M )  is unchanged 
by postmultiplying it by the ( N  x N )  nonsingular matrix [ J T ,  BT] [13]. 

Since matrix ([II , XIT JT J [JT , BT]) is singular, then matrix ( J T  J )  is also 
singular with runk(JT J )  = M because the ranks of these two matrices are the 
same as shown in Eq. ((2.2). It should be mentioned that matrices ( J  JT) and 
(JT J )  have the same eigenvalues, except that (J* J )  has ( N  - M )  extra zero 
valued eigenvalues [14], which is readily confirmed by Eq. ((3.4). 
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