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PREDICTING STRUCTURE IN 
NONSYMMETRIC SPARSE MATRIX FACTORIZATIONS 

John R. Gilbert 
Esmond G. Ng 

Abstract 

Many computations on sparse matrices have a phase that predicts the nonzero 
structure of the output, followed by a phase that actually performs the numerical 
computation. We study structure prediction for computations that involve nonsym- 
metric row and column permutations and nonsymmetric or non-square matrices. Our 
tools are bipartite graphs, matchings, and alternating paths. 

Our main new result concerns LU factorization with partial pivoting. We show 
that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) 
then an upper bound due to George and Ng on the nonzero structure of L + U is 
as tight as possible. To show this, we prove a crucial result about alternating paths 
in strong Hall graphs. The alternating-paths theorem seems to be of independent 
interest: it can also be used to prove related results about structure prediction for QR 
factorization that are due to  Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, 
Pothen, and van den Driessche. 

Keywords: Gaussian elimination, partial pivoting, orthogonal factorization, match- 
ings in bipartite graphs, strong Hall property, structure prediction, sparse matrix 
factorization. 
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1. Introduction 

Many sparse matrix algorithms predict the nonzero structure of the output of a computa- 
tion before performing the computation itself. Knowledge of the output structure can be 
used to  allocate memory, set up data structures, schedule parallel tasks, and save time by 
avoiding operations on zeros. Usually the output structure is predicted by doing some sort 
of symbolic computation on the nonzero structure of the input; the actual input values 
are ignored until the numerical computation begins, 

This paper discusses structure prediction for orthogonal factorization and for Gaussian 
elimination with partial pivoting. These algorithms permute the rows and columns of an 
input matrix nonsymmetrically: starting with a linear system (or least-squares system) 
of the form Ax = 6, they instead solve a system (P 'APc)( (Pc)Tz)  = (P'b). Here P' 
and P" are permutation matrices; F reorders the rows of A (the equations), often for 
numerical stability or for efficiency, and P" reorders the columns of A (the variables), 
often for sparsity. We are most interested in the case where P" has already been chosen 
on grounds of sparsity. 

Our main tools are bipartite graphs, matchings, and alternating paths. A matching 
corresponds to a choice of nonzero diagonal elements. Paths in graphs are important in 
many sparse matrix settings; the notion of alternating paths links matchings, connectivity, 
and irreducibility. In this paper we highlight a particular sort of irreducibility called the 
strong Hall property: this generalizes the notion of strong connectivity (or irreducibility 
under symmetric permutations) to nonsymmetric permutations and nonsquare matrices. 
It turns out that accurate structure prediction is easier for strong Hall matrices than for 
general matrices. Fortunately, a non-strongHall linear system is often most efficiently 
solved by decomposing it into a sequence of strong Hall systems. 

The next section gives definitions and background results, beginning with a definition 
of exactly what we mean by structure prediction. Section 3 discusses QR factorization. 
Most of this section reviews earlier work, placing it in a framework that can be used t o  

study LU factorization as well. Section 3 also contains a new tight symbolic result on 
columnwise orthogonal factorization. Section 4 applies the framework from Section 3 t o  

LU factorization. It contains the main results of the paper, which are tight upper and 
lower bounds on where fill can occur during LU factorization with partial pivoting. Both 
Sections 3 and 4 conclude with remarks and open problems; Section 5 makes some final 
remarks. 

2. Preliminaries 

We begin this section by defining various kinds of structure prediction. We then discuss 
several graph-theoretic models of sparse matrix structure. We define so-called "strong Hall 
bipartite graphs," which model a useful class of fundamental matrices. We prove a crucial 
result (Theorem 4) about matchings and alternating paths in strong Hall graphs, which 
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is the basis for the main results in the rest of the paper. Finally, we briefly review work 
on structure prediction for symmetric and nonsymmetric Gaussian elimination without 
pivoting. 

2.1. Symbolic a n d  exact  s t ruc tu re  prediction 

Suppose f is a function from matrices to  matrices, and T is an algorithm that computes 

f ( A )  by applying elementary transformations (or elementary matrices) to A. The trans- 
formations of interest to us are Gauss transforms (elimination steps), Givens rotations, 
Householder reflections, and row and column swaps. (See Golub and Van Loan [18] for 
detailed descriptions of various elementary matrix transformations.) We will discuss two 
kinds of structure prediction, which we call symbolic and exact. 

Symbolic structure prediction models the effect of algorithm 3 by modeling the effect 
of each elementary transformation on the nonzero structure of a matrix. Each elementary 
transformation is defined to produce zeros in certain positions: a Gauss transform or 

a Householder reflection annihilates part of a column, a Givens rotation annihilates a 

single element, and a swap interchanges the zeros in two rows or columns. In symbolic 

structure prediction we assume that no zeros are ever produced outside those well-defined 
positions, whether because of numerical coincidence or structural singularity. This “no- 
cancellation” assumption generally guarantees that we compute an upper bound on the 
possible nonzero structure of f (A) .  (At least, it does so if algorithm F never makes choices 
based on numerical comparison to  zero.) 

Symbolic structure prediction can sometimes produce too generous an answer for rea- 
sons that have nothing to  do with numerical values. For example, consider an algo- 
rithm that solves a nonsymmetric linear system Az = b by forming the normal equations 
ATAx = ATb and factoring the matrix ATA. If A has the structure 

then the symbolic approach will predict (correctly) that ATA is full, and then (incorrectly) 
that the factor of this full matrix is a full triangular matrix. 

Even though the no-cancellation assumption may not be strictly correct, there are 
situations in which symbolic structure prediction is the most useful kind. For example, an 
algorithm may produce intermediate fill, or elements that are nonzero at  some point in the 
computation but zero in the final result. (Using the normal equations on the triangular 
matrix above is an example.) A symbolic prediction can be used to identify all possible 
intermediate fill locations, and thus to set up a static data structure in which to  carry 
out the entire algorithm. Also, even if an element can be proved to  be zero in exact 
arithmetic, it may not be computed as zero in floating-point arithmetic; we may wish to 
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use symbolic structure prediction to  avoid having to decide when such an element should 
really be considered to be zero. 

Exact structure prediction, on the other hand, predicts the nonzero structure of f (A)  
from that of A without regard to the algorithm that computes f (A) .  For each input 
structure S, it yields the set of output positions that are nonzero for some choice of input 
A having structure S. Thus the output of an exact structure prediction is 

U{structure(f(A)) : structure(A) = S}. 

In all the interesting cases that we know, this is equal to  

U{structure(/(A)) : structure(A) c s). 

An exact structure prediction for the normal equations algorithm on the triangular input 
above is that the output has the same structure as the input. 

If T is the exactly predicted structure o f f  on input structure S ,  then for each nonzero 
position (i, j )  of T there is some A (depending on i, j ,  and S) for which [ f ( A ) ] i j  is nonzero. 
(We use [ j (  A)];j  to denote the (i, j )  element of f( A ) . )  This is what we call a one-at-a-time 
result: it promises that every position in the predicted structure can be made nonzero, 
but not necessarily all for the same input A.  A stronger result is an calk-at-once result, 
saying that there is some single A depending only on 5’ for which f ( A )  has the structure 
T .  Some functions f admit all-at-once exact structure predictions and some do not. For 
example, we will see that if f ( A )  is the upper triangular factor in &R factorization of a 

strong Hall matrix, then there is an all-at-once exact prediction; but if f (A)  is the upper 
triangular factor in LU factorization with partial pivoting of a strong Hall matrix, then 
the tightest possible exact prediction is only one-at-a-time. 

Exact structure prediction depends only on the input structure, so numerical coinci- 
dence can still produce unexpected zeros. For example, the exact structure prediction of 
the upper triangular factor of 

is that it is full, though in fact its (2,3) element is zero (for the particular choice of 
numerical values). 

A symbolic upper bound on structure is an exact upper bound, but not vice versa. In 
each of Sections 3 and 4, we prove that an exact lower bound is equal to  a symbolic upper 
bound; it follows that the bound is tight both symbolically and exactly. 
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2.2. Graphs of matrices: Definitions 

We assume the reader is familiar with basic graph-theoretic terminology; Harary [20] is a 
good general reference. We write GI C Gz to mean that graph GI is a subgraph of graph 

Suppose A is a matrix with m rows and n columns. We write [A],., for the element in 
the ( T , c )  position of A.  

We will use three graphs to describe the nonzero structure of A .  The bipartite graph 
of A ,  which we write W ( A ) ,  has rn “row vertices” and n “column vertices.” The row and 
column vertices are drawn from two different copies of the positive integers, which we 
distinguish by using primes on row vertex names. Thus the row vertices are l’, 2’, . . . , 
m‘, and the column vertices are 1, 2, . . . , n. -When a variable names a vertex, we will use 
a prime for a row vertex; thus for example i is a column vertex, and i’ is the row vertex 
with the same number. The graph B ( A )  has an edge (r’, c )  for each nonzero element [A] , ,  
of A .  Figure 1 is an example. 

X 

X i X 

X 

X X 1 
Figure 1: A matrix A and its bipartite graph H ( A ) .  

If m = n then A is square, and we also say that H ( A )  is square. In this case the 
directed gmph of A is the directed graph G ( A )  whose n vertices are the integers 1, . . . , n, 
and whose edges are {(T, c )  : T # c and [AIrc # 0). This graph does not include self-loops, 
so we cannot tell from G(A)  whether or not the diagonal elements of A are zero. Figure 2 
is an example. 

If rn = n and in addition A is symmetric, then the edges of G(A)  occur in symmetric 
pairs. An undirected graph with n vertices and one undirected edge for each symmetric 
pair of off-diagonal nonzeros is often used to represent the structure of a symmetric matrix. 
We will write this undirected graph as G ( A ) ,  and we will not distinguish between it and 
the directed graph of A .  Figure 3 is an example. 

The column intersection graph of an arbitrary m x n matrix A is the undirected 
graph Gn(A) whose vertices are the integers 1, . . ., n, and whose edges are { ( i , j )  : 
3~ with [A],; # 0 and [A],j # 0). Thus the vertices of Gn(A) are the columns of A ,  
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Figure 2: A nonsymmetric matrix A and its directed graph G(A). 

Figure 3: A symmetric matrix A and its undirected graph G ( A ) .  

and an edge joins two vertices whose columns share a nonzero row in A .  Unless there is 
numerical cancellation, Gn(A) is equal to  G(ATA); in all cases Gn(A) 2 G(ATA). Figure 4 
is an example. 

Figure 4: A matrix A ,  its column intersection graph Gn(A), and its filled column inter- 
section graph G;f( A ) .  

Table 1 summarizes this notation, as well as some that is defined in later sections. 
We allow both graphs and matrices as arguments to  Gn and so on; thus for example if 
H = H ( A )  then Gn(H) means the same as Gn(A). 

If z is a vertex of graph G (bipartite, directed, or undirected), we write A d j c ( x )  for 
the set of vertices g such that (z,y) is an edge of G. A walk is a sequence of edges P = 
( ( z o , q ) ,  (21, Q), . . ., ( zp- l ,  z p ) ) .  We can also describe this walk by listing its vertices, 
( ~ 0 ~ 2 1 , .  . . , x p ) .  The length of the walk is p .  We count the empty sequence as a walk of 
length 0. A path is a wdk in which all the vertices are distinct. We use P[zi : ;zjJ to denote 
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Table 1: Graphs associated with the matrix A .  

bipartite graph of arbitrary matrix 
directed graph of square matrix 
undirected graph of square symmetric matrix 
column intersection graph of arbitrary matrix 
filled graph (directed or undirected) of square matrix 
filled graph of column intersection graph of arbitrary matrix 
row merge graph (bipartite) of arbitrary matrix 
row merge graph (directed) of square matrix 

H ( A )  
G ( A )  
G ( A )  

Gn(A) 
G+(A)  
G:(A) 
H x ( A )  
Gx ( A )  

the portion of path P from z; to zj.' If P is a path from 2 to y,  and Q is a path from y 
to z ,  and y is the only vertex on both P and Q, then PQ is a path from x t o  t. 

The intermediate vertices of a path P are all its vertices except its endpoints. If z is 

a vertex of G and 5' is a set of vertices of G, we write Reachc(z ,  S )  t o  denote the set of 
vertices y such that G contains a path from z t o  y with intermediate vertices from S. In 
this case we also say that y is reachable from x through S .  For a bipartite graph H ,  we 
write ReachCoZH(x, S) to mean the column vertices in RenchH(z, S). 

The following trivial lemma relates paths in a bipartite graph and in its column inter- 
section graph, 

Lemma 1. Let H be a bipartite graph, and let Gn(H) be its column intersection graph. 
For any subset C of the columns o f  H ,  and for any two column vertices 2 and y of H ,  
there is a path in H from x to  y whose intermediate column vertices all lie in C if and 
only if y E Reachc,(H)(z, C). 

Proof: Immediate. 0 

2.3. Bipartite matching: Definitions 

We briefly summarize some terminology on matchings in bipartite graphs. Lovasz and 
Plummer [24] is a good general reference on matching; some of our terminology is from 
Coleman, Edenbrandt, and Gilbert [5]. Brualdi and Ryser [3, Chapter 41 is a good reference 
on decompositions of bipartite graphs. 

Let H be a bipartite graph with m rows and n columns. A matching on If is a set M 
of edges, no two of which have a common endpoint. A vertex is covered or matched by M 
if it is an endpoint of an edge of M .  Clearly, no matching can have more than min(m, n)  
edges. A matching is called column-complete if it has n edges, and row-complete if it has 
m edges; if m = n a matching with n edges is also called perfect. Not every bipartite 
graph has a column-complete or row-complete matching. 

'When the graph G is hipartite or undirected, P[z,  : z,] = ((z, ,z,+l) ,  . . .  , ( z J - ~ , z j ) )  if i 5 j, and 
P[z,  : zIJ = ((z,,z,-l), . . . , (z,+I, z,)) if : 2 3.  
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If M is a matching on H ,  an alternating path (with respect to M )  is a path on which 
every second edge is an element of M ;  an ‘alternating walk is a walk on which every second 
edge is an element of M .  Alternating paths and walks come in two flavors: an r-alternating 
path is one that follows matching edges from columns to  rows and non-matching edges 

from rows to columns; a c-alternating path is one that follows matching edges from rows 
to columns. The reverse of an r-alternating path or walk is a c-alternating path or walk. 
Suppose the last vertex of one alternating walk is the first vertex of another. If the 
alternating walks are of the same flavor, their concatenation is an alternating walk of that 
flavor; if the walks itre of opposite flavors, their concatenation is not an alternating walk. 

Suppose that P is an alternating path (of either flavor) from an unmatched vertex v to 
a different vertex w. If the last vertex w on P is unmatched, or the last edge on P belongs 
to  M ,  then the set of edges M = M @ P = ( M  U P )  - ( M  n P )  is another matching; 
we say that M is obtained from M by aItemating along path P .  If w is matched in M ,  
then v is matched and w is unmatched in M, and 1x1 = IMI. If w is unmatched in M ,  
then both v and w are matched in M, and = IMI + 1. In the latter case we also call 
P an augmenting path (with respect to  M). A classical result of matching theory is that 
a maximum-size matching can be constructed by greedily finding augmenting paths and 
alternating along them. 

A perfect matching in the bipartite graph H = H ( A )  of a square matrix can be thought 
of as a way to find a row permutation P for A so that the permuted matrix P A  has nonzero 
diagonal. Then alternating paths in H correspond to directed paths in G(PA) .  

Lemma 2. Suppose A has a nonzero diagonal. The directed graph G( A) has  a path from 
vertex r to vertex c if and only i f  the bipartite graph H ( A )  has a path from row r‘ t o  
column c that is r-alternating with respect to  the matching of diagonal edges (i’, i). 
Proof: Immediate. 0 

2.4. Hall and strong Hall bipartite graphs 

A bipartite graph with m rows and n columns has the Hall p ~ ~ p r t y  if every set of k column 
vertices is adjacent to  a t  least k row vertices, for all 0 5 k 5 n. Clearly a Hall graph must 
have m 2 n. If a graph is not Hall, it cannot have a column-complete matching, because 
a set of columns that  is adjacent only to  a smaller set of rows cannot all be matched. The 
converse is a classical fact about bipartite matching. 

Theorem 1 (Hall’s Theorem). A bipartite graph has a column-complete matching jf 
and only if it has the Hall property. 0 

Corollary 1. If a matrix A has full column rank, then H ( A )  is Hall. Conversely, if H is 
Hall then almost all matrices A with A = H ( A )  have full column rank. 

Proof: If H ( A )  is not Hall, then it has a set of columns with nonzeros in a smaller 
number of rows; those columns must be linearly dependent. For the converse, let M be 
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a column-complete matching on I1 and let R be tlie set of rows that are matched by M .  
Consider any matrix A with H ( A )  = H .  The submatrix of A consisting of rows R and all 
columns is square. Its determinant is a polynomial in the nonzero values of A .  We claim 
that this polynomial is not identically zero: if the entries corresponding to  edges of M have 

the value one and all other entries are zero, the submatrix is a permuted identity matrix 
and the determinant is fl. The set of zeros of a k-variable polynomial has measure zero 
in Rk, unless the polynomial is identically zero. Thus the set of ways to fill in the values 
of A t o  make this submatrix singular has measure zero. If the submatrix is nonsingular, 
then all the columns of A are linearly independent and A has full column rank. 0 

A bipartite graph with m rows and n columns has the strong Hall property if every 
set of k column vertices is adjacent to at  least k + 1 row vertices, for all 1 5 k < n.* It is 
easy to see that the strong Hall property implies the Hall property. 

If the Hall property is a linear independence condition, the strong Hall property is 
an irreducibility condition: any matrix that is not strong Hall can be permuted to a 
block upper triangular form called the Dulmnge-Mendelsohn decomposition [3,24,29], in 
which each diagonal block is strong HaL3 Linear equation systems and least-squares 
problems whose matrices are not strong Hall can be solved by performing first a Dulmage- 
Mendelsohn decomposition, and then a block backsubstitution that solves a system with 
each strong Hall diagonal block. Strong Hall matrices are therefore of particular interest 
in sparse Gaussian elimination and least squares problems. 

Brualdi and Shader [4] and Coleman, Edenbrandt , and Gilbert [5] discuss properties 
of strong Hall matrices. In the following result, an independent set is a set of vertices no 

two of which are adjacent; an independent set in a bipartite graph corresponds to the rows 
and columns of a zero submatrix. 

Theorem 2 (Brualdi and Shader [4]). A bipartite graph having rn rows and n 5 m 
columns is Hall i f  and only if it has no independent set of more than m vertices, and strong 
Hall if and only if it h a s  no independent set of at least m vertices that includes at least 
one vertex from each part. 0 

A square strong Hall matrix is often called fully indeeomposable, meaning that there 
is no way to permute its rows and columns into a block triangular form with more than 
one block (31. This gives the following (standard) result. 

Theorem 3. Let H = H ( A )  be a square strong Hall graph. Then for all row and column 
permutations P' and P", the directed graph G(P'APC) is strongly connected. 0 

2This definition is from Coleman et al. [5]. Another definition that is sometimes used replaces the 
bounds on k by 1 5 k < m; the only difference is that an m by n matrix with m > n and m - n zero rows 
that is strong Hall by our definition is not strong Hall by the other definition. All the results in Section 3 
and Section 4 hold no matter which definition is used. 

3This assumes m 2 n. More generally, for any m and n, an m x n matrix can be permuted to a block 
upper triangular form in which each diagonal block is strong Hall or has a strong Hall transpose. 
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We conclude this subsection by proving a theorem (Theorem 4) about strong Hall 
matrices that is useful in several structure prediction results. The theorem first appeared 
in a technical report by Gilbert [15]; other proofs have been given by Hare, Johnson, 
Olesky, and van den Driessche [21] and Brualdi and Shader [4]. First we need two technical 
lemmas. 

Lemma 3.  Let H be a strong Hall graph and let (r',  c )  be an edge of H .  Then there is 
a column-complete matching that includes (r', c ) ,  and unless (r',  c)  is the only edge of H 
there is a column-complete matching that excludes ( T ' ,  c ) .  

Proof: First, let be A without vertices rf and c and their incident edges. We show 
that fiT is HaU. Every nonempty set C of columns of ?-f is a nonempty proper subset of 

columns of H ,  and hence is adjacent to  at least IC\ + 1 rows of H .  This includes at least 
IC[ rows of x. Therefore 7f is Hall and has a column-complete matching. That matching 
plus edge {T' ,  c }  is a column-complete matching on 11. 

Now assume that H has more than one edge, and let 3 be H without the single 
edge ( T ' , c ) .  We show that 8 is Hall. Any nonempty proper subset C of columns is 
adjacent to at  least IC] + 1 rows in H ,  hence to at least IC1 rows in 2. The same 
argument works if C is the set of all columns and H has at least IC1 + 1 nonzero rows. 

If C is the set of all columns and H has exactly IC1 nonzero rows R,  we argue as 
follows: If T' were adjacent only to  c in H ,  then C - c would be adjacent in H only to 
the IC - c1 rows R - T': contradicting the fact that H is strong Hall. Thus C must be 
adjacent in i to all I C ~  rows. 

has a column- 
complete matching, which is a column-complete matching on H that excludes (T', c). 0 

Whether or not H is square, then, we conclude that is Hall. Thus 

Lemma 4. B H is strong Hall and has more nonzero rows than columns, and M is any 
column-complete matching on H ,  then from every row or column vertex 'to of H there is 
a c-alternating path to some unmatched row vertex T' (which depends on w and M ) .  
Proof: This is a standard result on Dulmage-Mendelsohn decomposition; we include 
a proof here only to be self-contained. If w is an unmatched row there is nothing to  
prove. Otherwise, let C be the set of columns reachable by c-alternating paths from w. 
Then C is nonempty. Let R be the set of row vertices adjacent t o  vertices of C. Since 
H is strong Hall and has more nonzero rows than columns, ( B (  is larger than ICl. Thus 
there is some vertex T' in R that is not matched to  a vertex in C. Suppose T' is adjacent 
to  e E C. The c-alternating path from w to c can be extended by edge ( c ,  r') to r'. Now if 
T' were matched, it would be matched to a vertex zi not in C ;  but then there would be a 
c-alternating path from w to zi, contrary to the definition of C. Therefore r' is the desired 
unmatched row vertex. 0 

Finally we prove the main result about alternating paths in strong Hall graphs. 

'If C is a set of vertices and c is a vertex, we use C - c to denote the set C - { c } .  
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Theorem 4 (Alternating-Paths Theorem). Let H be a strong Hall graph with at 
least two rows, let v be a column vertex of 11, and let w be any row or column vertex of H 
such that a path exists from v to w. Then H has a column-complete matching relative 
to which there exists a c-alternating path from v to w (or, equivalently, a n  r-alternating 
path irom w to v). 

Proof: Since some of the vertices in this proof can be either row or column vertices, we 
will not use primed variables; an unprimed variable may denote either a row or a column 

vertex. 
If H is square, or if H has only as many nonzero rows as columns, then the theorem 

follows from Theorem 3 and Lemma 2. 
Suppose that H has more nonzero rows than columns. If v = w there is nothing to  

prove. Otherwise, by hypothesis there is at  least one path from 2, to w. By Lemma 3 there 
is a column-complete matching that omits the first edge on that path. (Note that this 
edge is not the only edge of H since N has more nonzeros than columns.) If P is a path 
from v t o  w and M is a column-complete matching that omits the first edge on P ,  let u 

(dependent on P and M) be the last vertex on P such that P[v : u] is alternating. Then 
P [ v  : u] is c-alternating. Among all such paths and column-complete matchings, choose P 
and M such that the length of P[u : w] is minimum. 

If u = w the theorem holds. We shall assume u # w and derive a contradiction. Let t 
be the next vertex after u on P.  Both the last edge of P[v:  u] and the first edge of P [ u : w ]  
(which is (u, t ) )  must be non-M edges, or else P[v  : t ]  would be alternating. 

Because P[v : u] is c-alternating and begins and ends with non-matching edges, u is a 

row vertex and hence t is a column vertex. Let s be the vertex matched to  t in M ,  which 
may or may not be on P ,  

Lemma 4 implies that there is an unmatched row vertex T and a c-alternating path 

from u to T (possibly u = T ) .  Now t is on path E if and only if s is. There are two cases. 

Figure 5: Case 1 of Theorem 4. The dashed edges are the matching M .  P is the horizontal 
path from v to w. The light dotted line shows path from u to T .  Path F[v  : u]7?[u : z] 
is c-alternating with respect to M .  

Case 1. Both t and s are on E.  In this case P[v  : u ] z [ u  : t ]  is a c-alternating walk 

from v to t. Therefore there is a c-alternating path R from 2r t o  t .  Let z be the last vertex 
on P that is also on R (so z is on P[t : tu]), Then = R [ v  : z]P[5 : .tu] is a path from v 
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to  w. But this is a contradiction: 7 is c-alternating from v at least to  z, and p [z  : w] is 
shorter than P[u : w]. This contradicts the choice of ’P. Figure 5 illustrates this case. 

....- *------ --...-. ---.-- .... c b.- I..... +-.@. .... Y 

Figure 6: Case 2 of Theorem 4. The most complicated version is shown. The dashed 
edges are the matching M .  P is the horizontal path from w t o  w. The light dotted line 
shows path R from s to r. Path P[v : 5]R[2 : y] is c-alternating with respect to  M &i R. A 
simpler version, not shown, is if R does not intersect P after u. Then 5 = u, y = t ,  and 
P[v : u](u,  t)  is c-alternating with respect t o  M @ R. 

Case 2. Neither t nor s is on E. In this case R = ( s , t ) ( t , u )  is a c-alternating 
path from s t o  r. Since T is an unmatched row and s is matched to  t ,  M = M @ R is a 
column-complete matching. Path R is c-alternating with respect to M. 

Let 2 be the first vertex on P that is also on R (so z is on P [ v :  u]) ,  and let y be the 

last vertex on P that is also on R (so y is on P[t : w]). Then = F [ v  : z ]R[z  : y]P[y : w] 
is a path from v t o  w. The path P[v : z] is c-alternating with respect to  both M and M, 
because M and M agree on P[v : z]. Depending on whether z precedes or follows y on R, 
the path R[z  : 311 is c-alternating either with respect to M or with respect to M ,  because 
M and M disagree on 72. Therefore  TI : y] = P[v : s]R[z  : y] is c-alternating either with 
respect to  M or to M .  Figure 6 illustrates this case. 

But this is a contradiction: With respect t o  one of the column-complete matchings 
M and M ,  we have shown that 7 is a path from v to w that is c-alternating from v 
a t  least as far as y, and F [ y  : w] is shorter than P[G : w]. This contradicts the choice of 
P and M ,  and finishes the proof of Theorem 4. 0 

- 

2.5. Gaussian elimination without pivoting 

Here we briefly review a graph-theoretic model of LU factorization without TOW or column 
interchanges. The undirected version of this model is due to  Parter 1271 and was developed 
extensively by Rose [30]; the directed version was developed by Rose and Tarjan [31]. 
George and Liu [ll] is a good source €or the undirected model. Gilbert [14] surveys these 
and related results. 

If G = G ( A )  is a directed or undirected graph, we define the deficiency of a vertex v 
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of G as the set of edges 

{(r, C) : 2, E A ~ ~ G ( T ) ,  c E A d j ~ ( v ) ,  and c $! A d j ~ ( r ) } .  

The deficiency of TI corresponds t o  the fill that occurs in A when the (71, v) element is used 
as a pivot in Gaussian elimination. Therefore we can define a sequence of elimination 

gruphs Go, GI, . . ., G,, where Go = G(A)  and G; is obtained from Gi-1 by adding the 
deficiency of vertex i (in Gi-1) and deleting vertex i and its incident edges. Then G; is 

the graph of the ( n  - i) x ( n  - i) Schur complement that remains after eliminating the 
first i vertices of A. This is in the symbolic sense-that is, it ignores possible numeric 
cancellation. We define the filled graph of A, which we write G+(A) ,  as the n-vertex graph 
containing all the edges of all the Gi’s. Thus we have the following result. 

Theorem 5. Suppose the square matrix A can be factored as A = LU without row or 
column interchanges. Then G ( L  + U )  S G+(A) with equality unless there is cancellation 
in the factorization. In other words, the filled graph contains edges for all the nonzeros of 
L and U. 0 

If A is symmetric and G(A)  is the undirected graph, then G+(A) is undirected. (Re- 
member that we do not distinguish between an undirected graph and a directed graph with 
symmetric pairs of edges.) Historically, filled graphs were studied first in the undirected 
case, specifically for the Cholesky factorization of symmetric positive definite matrices. 
The theory of undirected filled graphs, which are the same as chordal graphs, is quite 
rich [19,30]. 

We can characterize the structure of G+(A) in terms of paths in the graph of A ,  without 
actually computing all the elimination graphs. In the following theorem, the paths can be 
interpreted as directed paths for nonsymmetric matrices and either directed or undirected 
paths for symmetric matrices. 

Lemma 5 (Rose, Tarjan, and Lueker [31,32]). Let G be a directed or undirected 
graph whose vertices are the integers 1 through n, and let G+ be its filled graph. Then 
(x? y) is an edge of G+ if and only if there is a path in G from x to y whose intermediate 
vertices are all smaller than min(z, y).  0 

Paths from x to y whose intermediate vertices are all smaller than min(z, y) are some- 
times referred to as f i l l  paths. 

A graph that is often useful in nonsymmetric structure prediction is the filled column 
intersection graph of an arbitrary m x n matrix A. This graph, which we write GA(A), is 
just G+(Gn(A)); it is the n-vertex undirected filled graph of the column intersection graph 
of A. Figure 4 is an example. The graph GA(A) is related to the normal equations; its 
structure is the symbolic result of forming ATA and then computing the Cholesky factor 
of that matrix. Section 3 discusses the conditions under which this symbolic structure 
prediction is exact. 
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2.6. Lemmas  on exact s t r u c t u r e  in Gaussian elimination 

In this final subsection we prove some easy lemmas that take into account the values of the 
nonzeros in the matrix. These results will be the building blocks for the exact structure 
predictions in the rest of the paper. 

L e m m a  6. Suppose A is square and nonsingular, and has a triangular factorization A = 
LU without pivoting. Let r be a row index and c a column index of A ,  and let li be the 
submatrix of A consisting of rows 1 through min(r,c) - 1 and r ,  and columns 1 through 
min(r, c )  - 1 and c. Then [ L  + VI,, is zero if and only if K is singular. 

Proof: Let s = min(r,c). Factor K = L K U K .  Then [UK],, = [U],, if T i. c,  and 
[Uh'lSs = [L], ,[U], ,  if T > c, so [ U J & ~  is zero if and only if [ L  + U] , ,  is zero. The 

determinant of UK is the same as that of X, and the first s - 1 diagonal elements of UK 
are the same as those of U ,  so [ U K ] , ~  = 0 if and only if li is singular. 17 

L e m m a  7. Suppose A is square and nonsingular, and has a triangular factorization A = 
LU without pivoting. Suppose also that all the diagonal elements of A except possibly 
the last one are nonzero, and that every square Hall submatrix of A is nonsingular. Then 
G(L + U) = G+(A); that is, every nonzero predicted by the filled graph of A is actually 
nonzero in the factorization. 

Proof: Suppose (r, c) is an edge of G+(A).  Then there is a fill path P from r to c whose 
intermediate vertices are less than s = min(r, c). 

Let K be the submatrix of A mentioned in Lemma 6, consisting of rows 1 through s - 
1 and r, and columns 1 through s - 1 and c. For convenience, call the last row and column 
in K number T and c respectively instead of number s. Then path P corresponds to a 
path in H ( K )  from row vertex T' to  column vertex c, which is r-alternating with respect 

to  the matching M of edges (i', i). 
Now M is one edge short of being a perfect matching on K, because column c and row 

T' are not matched. However P is an augmenting path with respect to  M ,  and therefore 
M @ P is a perfect matching on K .  Since A' has a perfect matching, it is Hall; thus its 
determinant is nonzero by hypothesis, and [ L  + U], ,  is nonzero by Lemma 6. 0 

The hypothesis that A has nonzero diagonal in Lemma 7 is crucial. Brayton, Gus- 
tavson, and Willoughby (21 gave the following counterexample in the case when this hy- 

pothesis is not included. Let 

x x  

A = ( :  X x x X ) .  

Then the (4,3) entry in G+(A)  is nonzero, but [L]4,3 = 0 regardless of the nonzero values 
of A. 
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Lemma 8. Suppose bipartite graph EI has a perfect matching M .  Let A be a matrix 
with H ( A )  = H ,  such that [AIrc > n for (T’,c) E M and 0 < [AITC < 1 for ( T ’ , c )  # M .  If 
A is factored by Gaussian elimination with partial pivoting, then the edges of M will be 
the pivots. 

Proof: When the rows of matrix A are permuted so that the edges of M are the diagonal 
elements, the values chosen make the permuted matrix strongly diagonally dominant. 0 

3. Orthogonal factorization 

Let A be a matrix with m rows and n 5 rn columns, with full column rank n. In this 
section we consider the orthogonal factorization A = QR, where Q is an rn x m orthogonal 
matrix (that is, QTQ = I ) ,  and R is an rn x 71 upper triangular matrix with nonnegative 

diagonal entries. (All the nonzeros of R are in the n x n upper triangle, so we will think 
of R as being n x n.) This factorization is unique. It arises in least squares and other 
optimization problems [18,22]. 

To compute the QR factorization, A is transformed into R by multiplying it on the 
left by a sequence of orthogonal transformations that annihilate nonzeros below the main 
diagonal. In most applications, Q is not computed explicitly: either the orthogonal trans- 
formations are applied to  a right-hand side at the same time as to A ,  or else a description 
of the sequence is saved to be applied later. 

At least two structure prediction problems are of interest here. First, what is the 
nonzero structure of A at each step of annihilation? Second, what is the nonzero structure 
of R? The answer to the first question depends on the algorithm we use to  compute the 
factorization; the answer to the second does not. 

In Section 3.1 below, we review work of George, Liu, and Ng on intermediate fill 
during column QR factorization. We then give a new tight symbolic result on column QR 
factorization. In Section 3.2, we survey several authors’ work on predicting the structure 
of R; in Section 3.3, we re-prove a result of Coleman, Edenbrandt, and Gilbert in a 

framework that relates it to the new results on LU factorization in Section 4. Finally, in 

Section 3.4, we briefly survey some related work. 

3.1. Nonzero structure of A during annihilation 

In this section we develop a symbolic model of the column Givens and Householder algo- 
rithms for reducing A to upper triangular form. Our goal is a tight symbolic result, that 
is, an accurate description of the nonzero structure of A during the algorithm, under the 
assumption that no cancellation occurs. 

The standard algorithms to compute R from A multiply A on the left by a sequence 
either of Householder reflections or of Givens rotations [18]. Multiplication by a House- 
holder reflection reflects a vector with respect t o  a specified hyperplane; a Householder 
reflection can be chosen to  annihilate all but one of the entries of the vector. Multiplica- 
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tion by a Givens rotation rotates a vector through a specified angle in the plane of two 
specified coordinate axes; a Givens rotation can be chosen to  annihilate any single entry 
of the vector. We consider three algorithms to  compute R from A in the sparse setting: 
row Givens, column Givens, and column Householder. 

The sparse row Givens algorithm is due to George and Heath [8]. They first predict 
the nonzero structure of R, and set up a static data structure to hold R .  Then they 
annihilate nonzeros from one row of A at a time, processing each row until either it becomes 
completely zero, or its structure fits into an empty row of the static data structure. This 

approach is attractive because only the data structure for R and the storage for the rows 
of A are needed in the annihilation process. Thus the only structure prediction necessary 
is for R,  as described in Sections 3.2 and 3.3. 

The column Givens and column Householder algorithms both annihilate the subdiag- 
onal elements of one column of A at  a time. We will analyze them from the symbolic 
point of view, that is, assuming that zeros are produced only by intentional annihilation 
and not by numerical cancellation or coincidence. Define the sequence Ao, A I ,  . . . , A,, 
where A0 = A and A; is the ( m  - i) x ( n  - i) submatrix remaining to  be processed at the 
end of step i of the annihilation. For convenience, the columns of the ( m  - i) x ( n  - i) 
matrix A; are labeled from i to  n, and the rows of A; are labeled from i to  m. The ma- 
trix Ai is obtained from Ai-1 by annihilating the nonzeros below the diagonal in column i 
of Ai-1. The Givens algorithm uses one rotation for each subdiagonal nonzero in column i 
of Ai-1; the Householder algorithm uses one reflection to  annihilate the entire column. 
The structural effects are closely related, so we combine their descriptions. 

Consider Givens rotations first. Suppose [Ai,& is nonzero, k > i, and assume that 
any nonzero i < j < k, has been annihilated. Then [Ai-&i will be annihilated 

by a Givens rotation, which is constructed using [A;-1Iii and [Ai-1lki. This rotation 
replaces rows IC and i by linear combinations of their old values; symbolically, except for 
the (k, i )  element, it replaces both their nonzero structures with the union of their nonzero 
structures. Thus the structure of row C of A; is the union of the structures of those rows j 
of Ai-1 for which i 5 j 5 k and [A;,lIji # 0. Moreover, a t  the end of step i, the structure 
of row i of A; is the union of the structures of those rows j of Ai-l for which i 5 j 5 rn 
and tAi-11~; f. 0. 

Now consider (the row-oriented version of) Householder reflections. The Householder 
reflection that annihilates the subdiagonal nonzeros of column 5 of Ai-1 replaces all the 
rows containing those nonzeros with linear combinations of their old values. Symbolically, 
every row with a nonzero in column i of A;-1 has the same structure in A;, namely the 
union of their original structures in A;-1. 

In terms of structures, the fundamental difference between Givens rotations and House- 
holder reflections is the number of rows participating in one reduction operation. In one 
Householder reduction, all rows that have a nonzero in column i ofA;-1 participate in a 
reduction step, whereas in a Givens reduction, only a subset of those rows are involved. 

We now describe a bipartite graph model that George, Liu, and Ng [12] developed to  
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and sufficient condition for a zero element of A to become nonzero at some stage of the 

annihilation process, in the symbolic sense. The proof of the result is an easy induction, 
and is omitted. 

Theorem 8. For T ' ,  c > i, c E Adjlji(r') if and only if there is a fill path joining T' and c 
in Ho.  a 

Consider the path (4', 2, l', 3) in Ho in Figure 7. Since it does not satisfy condition (2), 
the (4,3) element of A will remain zero throughout the computation, which is indeed the 
case for either Givens or Householder. Also consider the example in Figure 8. Although 

the path (5',2?1', 1,4',3) does not satisfy the condition in Theorem 7, it does satisfy 
condition (2) above. Hence,. the (5,3) element of A will become nonzero at  some point 
during the computation, assuming exact numerical cancellation does not occiir. 

Unfortunately, unlike the case of sparse Gaussian elimination without pivoting, there 
does not appear to be a simple and non-recursive way to express the fill property. 

Finally, we define a graph whose structure captures all of the H ;  for the case of House- 
holder reflections. The (bipartite) row merge graph of a matrix A whose diagonal i s  
nonzero, which we write H " ( A ) ,  is the union of H ;  (by the Householder interpretation) 
for 1 <_ i <_ n. Thus H " ( A )  has m row vertices and n column vertices, and is constructed 
by the following process. Begin with the bipartite graph H ( A ) ,  which includes all edges 
of the form (i',i) because A has nonzero diagonal. For each k from 1 to n, add an edge 
from each row T' 2 k adjacent t o  column k t o  each column c 2 k adjacent to a.ny such 
row. (In other words, take those rows at or below row k with nonzeros in column k, and 
merge the parts of their nonzero structures at or to the right of column k.) 

We also define a directed version of the row merge graph. The bipartite row merge 
graph N " ( A )  is a bipartite graph with rn rows, n 5 rn columns, and a column-complete 
matching of edges ( i ' , i ) .  The (directed) row merge graph, which we write G " ( A ) ,  is the 
n-vertex directed graph whose adjacency matrix has the structure of the first n rows of 
H " ( A ) .  

Theorems 6, 7, and 8 can be translated into statements about H " ( A ) .  We will need 
one of these later. 

Corollary 2. If A is a n  rn x rz matrix with nonzero diagonal, m 2 n, and (T',c) is an 
edge of the row merge graph H " ( A ) ,  then there is a path in H ( A )  from row vertex T' to 
column vertex c whose intermediate column vertices are all numbered less than min(r', c). 

Proof: Immediate from Theorem 6 or Theorem 8. 0 

3.2. Upper bounds on nonzero s t r u c t u r e  of R 

If A has full column rank and factorization A = QR, it follows from the column House- 
holder algorithm (and the uniqueness of the factorization) that G(R) s G " ( A ) .  In this 

section we state and prove a bound on the structure of R that seems weaker than this 
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one; then we show that if A is strong Hall then the weaker bound is tight, and hence in 
that case the two bounds are the same. 

Mathematically, since A has full column rank, if A = Q R  then ATA = RTQTQR = 
RTR. Thus (the upper triangular part of) R is equal to the Cholesky factor of the 
normal-equations matrix ATA (which is symmetric and positive definite). George and 
Heath [8] used this fact in their implementation of sparse orthogonal factorization by 
Givens rotations. They predict the structure of A*A t o  be the column intersection graph 
Gn(A) ,  which has a nonzero in position (z , j )  whenever columns i and j of A have a 

common nonzero row; then they predict the structure of R to be GA(A), the symbolic 
Cholesky factor of that structure. 

We will derive this prediction as a corollary of a relationship between row merge graphs 
and column intersection graphs. We prove this relationship for all of G “ ( A )  even though 
the structure of R concerns only the “upper triangle” of G x ( A ) ;  we will need the more 
general version in Section 4. A similar result for square matrices can be found in George 
and Ng 191. 

Theorem 9. If A is an m x n matrix with m 2 n and nonzero diagonal elements, then 
G ” ( A )  E GA(A). 

Proof: Suppose ( T ,  c} is an edge of G “ ( A ) .  Then (r’ ,  c )  is an edge of H “ ( A )  with 
r‘ ,< n. Let i = min(r, c )  - 1. Then by Corollary 2 there is a path from T’ to  c in H ( A )  
whose column vertices are all numbered at most i. Since A has nonzero diagonal, ( T ’ , T )  

is an edge of H ( A ) .  Thus H ( A )  contains a path between column vertices T and c, whose 

intermediate column vertices are all smaller than min(r, c). Therefore (by Lemma l), 
the column intersection graph Gn(A) contains a path between vertices T and c, whose 
intermediate vertices are all smaller than min(r, c ) .  Thus (by Lemma 5), ( T ,  c )  is an edge 
ofGA(A). 0 

Corollary 3 (George, Heath, Liu, and Ng [8,10,13]). If A = QR is the orthogonal 
factorization ofa matrix with full column rank and nonzero diagonal, then G ( R )  E GA(A). 
0 

Corollary 3 says that the structure GA(A) of the Cholesky factor of ATA is an upper 
bound on the structure of R. This upper bound may be an overestimate for reasons that 
have nothing to do with the numerical values of the nonzeros of A .  An example is the 
upper triangular matrix in Section 2.1. 

3.3. Lower bounds on nonzero structure of R 

Coleman, Edenbrandt, and Gilbert [5] showed that G&(A) does not overpredict G(R)  if 
the matrix A is strong Hall. We give a proof that is related to theirs, but (unlike them) 
we use the alternating-paths theorem explicitly, to highlight the similarity between this 
result and Theorem 13 on LU factorization. 
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The hypotheses of Theorem 10 do not include a nonzero diagonal. This is because 
both G(R)  and GA(H) are independent of the row ordering of H ,  and since H is strong 
Hall its rows can be permuted t o  make the diagonal nonzero. 

Theorem 10 (Coleman, Edenbrandt, and Gilbert [5]). Let H be a bipartite graph 
with the strong Hail property. Then there is a matrix A with full column rank and with 
H ( A )  = II, such that the orthogonal factorization A = QR satisfies G(R)  = GA(H). 

Proof: First we show that any single edge of GA(H) can be made nonzero by an 
appropriate choice of A; then we show that there is one choice of A that makes all those 
positions nonzero at once. We shall think of the entries of A that correspond to  edges of H 
as variables; a “choice of values for A” means an assignment to  those variables. Figure 9 
illustrates the proof. 

1’ 1 

1’ 2 

3” 3 - r  

E 

1 2 5  y; 1 l )  
3 1  

Figure 9: Example for Theorem 10. Graph H is shown in Figure 1. Its column intersection 
graph and filled column intersection graph are shown in Figure 4. This figure shows the 
construction that makes entry nonzero. At left, graph is the subgraph of H 
induced by column vertices 1 through T = 3 and c = 5, and all the row vertices. The 
dashed edges are a column-complete matching M with respect to which there is a c- 
alternating path Q = (5 ,5 ’ ,2 ,  l’, 1,3’,3) from c to  T .  At center, A is chosen to have ones 
in positions M and Q and zeros elsewhere. At right, K is the submatrix of ATA consisting 
of rows and columns 1 through T - 1 = 2, as well as row T = 3 and column c = 5. Matrix 
li is a permutation of a triangular matrix with nonzero diagonal and hence cannot be 
singular. 

Choose T and c with T < c 5 n. Take an arbitrary m x n matrix A with factorization 
QR, such that the first T columns of A are linearly independent. Now let K be the 
submatrix of ATA consisting of columns 1 through T - 1 and c, and rows 1 through T .  

Lemma 6 applies to  ATA (because ATA is positive definite), and says that K is singular 
if and only if [R],,, the entry in the ( T , c )  position of R, is zero. Thus [R],, is zero if and 
only if a certain polynomial p, ,  in the nonzero entries of A (namely the determinant of 
li) is zero. 



- 21 - 

We now show that if A is a matrix with H ( A )  = Ei and ( T , c )  is an edge of GA(H), 
then the polynomial p,, is not identically zero. (Piote that p,, has a variable for each 
edge of H . )  Let be the subgraph of N induced by all the row vertices and the column 
vertices 1, 2, . . ., r ,  and c. Lemma 5 says that there is a path P from c to T in the 
undirected graph G,-,(H) whose intermediate vertices are all smaller than T .  Thus P is 
also a path in Gn(z). By Lemma 1, there is a path in T’? from column vertex c to  column 
vertex T .  

Now is strong Hall because H is. Therefore the alternating-paths theorem (Theo- 
rem 4) applies, and says that there is a column-complete matching M for 3 and a path Q 
from c to T that is c-alternating with respect to  h4. 

Choose the d u e s  of those nonzeros of A corresponding to edges of M U Q t o  be 1, and 
choose the values of the other “nonzeros” to  be 0. Let us examine the T x P submatrix I< 
of ATA defined above. (For simplicity, we will call the last column of Ii’ number c rather 
than number T ;  the last row of A’ is number T . )  We claim that the bipartite graph H ( I < )  
has exactly one perfect matching (or, equivalently, that K can be permuted to  a triangular 
matrix with nonzero diagonal). To prove this, we match rows of Ii‘ greedily to  columns 
of K. Take a column j of I<. If j is a vertex that is not on path Q, then the only nonzero 
in column j of Ii is [KI3j, and we match column j to row j‘. If j is on Q, i’ is the vertex 
following j on Q, and k is the vertex following i’ on &, then [ K ] k j  is nonzero and we match 
column j to  row k’. (The last vertex on G? is column P, which is not a column of IC.) This 
is a perfect matching on H ( K ) .  Its uniqueness follows by induction on the length of Q, 
the induction step being the fact that column c of K has only one nonzero (because row c’ 

is not a row of K j. 
This proves the claim that H ( K )  has exactly one perfect matching. Thus the deter- 

minant of K is just the product of the nonzero values corresponding to elements of that 
matching, and is itself nonzero. This shows that the polynomial p,,  is nonzero for at least 
one point, that is, for a t  least one choice of values for A .  

Now the set of zeros of a I;-variable polynomial has measure zero in Rk, unless the 
polynomial is identically zero. Thus not only do values for the nonzero entries of A exist 
that make prc and hence [R],, nonzero, but almost all choices of values (in the measure- 
theoretic sense) work. Therefore, almost all choices of values for A make every [R], ,  
nonzero simultaneously. Furthermore, almost all of those choices include no zero values; 
that is, for almost all such choices, H (  A )  = H as desired. Finally, we observe that we can 
choose A to  have full rank n: for some n x n submatrix of A there is a choice of values that 
gives nonzero determinant (namely, ones for the elements of a column-complete matching 
of H and zeros elsewhere), and hence almost all choices of values make that submatrix 
nonsingular. 0 

Corollary 4. I f  H is strong Iiall and has nonzero diagonal, then the upper triangular 
parts of G x ( H )  and GA(H) are equal. 

Proof: By Theorem 9 and its corollary we have G(R)  C G ” ( A )  E GA(H) for any 
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A Z= Q R  with H ( A )  = If. If we choose A as in Theorem 10, the first and third graphs are 
equal, and hence the second and third are also equal. 0 

Corollary 5. If H is strong Hall and has nonzero diagonal, then there is a matrix A with 
full column rank and with H ( A )  = H ,  such that the orthogonal factorization A = Q R  
satisfies G(R)  = G”(H) .  0 

3.4. Remarks on orthogonal factorization 

Theorem 10 gives a tight prediction of the structure of R in QR factorization, in the 
exact sense, provided that A is strong Hall. Recently, Hare, Johnson, Olesky, and van den 
Driessche [21] extended this result significantly by giving a tight exact characterization 
of the structures of both Q and R, under the weaker assumption that A is Hall-that 
is, that A is structurally of full column rank. The Hare et al. characterization uses a 

notion called “Hall sets,” which concerns strong Hall submatrices of A and is related to 
the Duimage-Mendelsohn decomposition of H ( A ) .  Hare et al. proved that their structure 
prediction was one-at-a-time exact; Pothen [28] then showed that in fact it is all-at-once 
exact. Both Hare et al. and Pothen used versions of the alternating-paths theorem in their 
work. 

Theorem 8 gives a tight prediction of the structure of A at each step of column Q R  
factorization, in the symbolic sense. This prediction is not tight in the exact sense; see 
Coleman et al. [5] for an example. It is an open problem to give a tight exact structure 
prediction for each A; in column factorization. The techniques of Hare et al. [21] are 

probably relevant here. 
Recently, Ng and Peyton [26] investigated the structure of the so-called matrix of 

Householder vectors. This is a representation of Q in which the vector that generates the 
i-th Householder reflection is stored in place of the i-th column of Q. Ng and Peyton gave 
a tight exact prediction of the structure of this matrix in the case that A is either strong 
Hall or has its columns permuted according to  a Dulmage-Mendelsohn decomposition. 

Givens rotations can be used to introduce zeros in other orders than row by row or 

column by column; examples are reductions of symmetric sparse matrices t o  tridiagonal 
form [33] and the Jacobi algorithm for finding eigenvalues [18]. Little work exists on 
structure prediction for such problems. For example, it would be interesting to  prove 
upper and lower bounds on the work required to tridiagonalize a symmetric matrix A by 
Givens rotations, in terms of the structure G ( A ) .  

4. LU factorization with partial pivoting 

Let A be a nonsingular n x n matrix. The triangular factorization A = LU does not always 
exist, and is not always numerically stable when it does exist [18, Chapter 31. Thus some 
form of row or column interchanges are needed in Gaussian elimination; at each step, a 
nonzero must be brought into the pivotal position before elimination. 
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In the dense setting, the pivot is usually chosen as the element of largest magnitude 
in the current column (partial pivoting) or in the entire uneliminated matrix (complete 
pivoting). In the sparse setting, there are several strategies for choosing pivots to  combine 
stability and sparsity. Some variations of complete pivoting choose a pivot at each step 

to minimize operation count from among candidates that are not too far from maximum 
magnitude [6]. Another approach is to  preorder the matrix columns purely to  preserve 
sparsity, and then use partial pivoting to  reorder the rows for stability [13,16]. 

This section parallels Section 3 in outline. In Section 4.1, we review a graph model 
of Gaussian elimination with row and column interchanges, and we prove some results 
on the structure of the matrix during elimination. These results are symbolic; that is, 
they assume that zeros are introduced only by explicit elimination, not by cancellation. 
In Section 4.2 we give upper bounds on the structure of the factors L and U obtained by 
Gaussian elimination with row interchanges. In Section 4.3, we give an exact lower bound 
on L and U. This result is tight-that is, best possible-and is the main new result of 
this paper. We conclude the section with remarks and open problems. 

We write LU factorization with row and column interchanges as follows. 

Here Pi' is an n x n elementary permutation matrix corresponding to  the row interchange 
at step i, Pi" is an n x n elementary permutation matrix corresponding to  the column 
interchange at  step i, L; is an n x n elementary lower triangular matrix whose i-th column 

contains the multipliers a t  step i, and U is an n x YZ upper triangular matrix. Since 
each elementary permutation matrix (c or P;") is its own inverse, we can write the final 
factorization as 

A = P; L1 Pi L2 . * PA-1 Ln-1 UP,C-l* . P,"P,C. (1) 

We define L as the n x n matrix whose i-th column is the i-th column of L;,  so that 
L - I  = C j ( t ;  -1). Note a subtle point about L: we can also think of Gaussian elimination 
as computing a factorization P'AP" = LOU, but this Lo is not the same as L .  The two 
matrices are both unit lower triangular, and they contain the same nonzero values, but 
in different positions; Lo has its rows in the order described by the entire row pivoting 
permutation, while L has the rows of its i-th column in the order described by only the 
first i interchanges. The matrix L is essentially a data structure for storing Lo;  either can 
be used in solving systems of equations. The structure prediction results in Sections 4.2 
and 4.3 below will be about L ,  not Lo. 

Note also that our notation is slightly different than in the previous section: now A; 
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is always n x n, not ( n  - i) x ( n  - i). 

4.1. Nonzero s t r u c t u r e  of A during elimination 

In this subsection we develop a symbolic model of Gaussian elimination with row and/or 
column interchanges. The model is based on that of Golumbic I191 and Gilbert [17]. 
Theorem 11 is new. 

Let Ho = H ( A )  be the bipartite graph of A = Ao. Assume [Ao],, is nonzero and is 

chosen as pivot a t  step 1. Define the deficiency of the edge ( T ’ , c )  of No to  be the set of 
edges 

{ (i’,j) : c f A d j ~ , ( i ’ ) , j  f A ~ ~ H , ( T ’ ) ,  and j 4 A d j ~ , ( i ’ ) }  . 
We obtain the bipartite graph H1 of the ( n  - 1) x ( n  - 1) submatrix that remains after 

eliminating ( T ’ , c )  as follows: delete from HO vertices T’ and c and all edges incident on 

them, then add the edges in the deficiency of (T’ ,c ) .  The edges in the deficiency of ( T ’ , c )  

correspond to  the zero elements oi A0 that become nonzero when [&I,,, is eliminated. 
(Note that the labelling of the vertices of H I  refers to the labelling in the original matrix 
Ao.) Thus, given a sequence of pivot elements ( T ; ,  c l ) ,  ( r i ,  cz), - -, ( ~ k - ~ ,  c n - l )  (some of 
which may be fill edges), we can follow the recipe above to construct a sequence of bipartite 
graphs Ho, H I ,  - - e ,  Hn, where H ;  describes the structure of the ( n  - i )  x ( n  - i )  Schur 
complement remaining after step i. 

It is possible to prove bipartite versions of several of the results from Section 2.5. We 
will use the following lemma in the exact lower bound proof later in this section. 

Lemma 10. Let A be a square matrix, and let M be aperfect rnatchingon II(A). Let Ho, 
. . . , H,, be the sequence of bipartite elimination graphs described above, when elimination 
is carried out by pivoting on the edges of M.  If (T’ ,  c )  is a non-matching edge of H i ,  then 

there is a path from T’ to  c in H ( A )  that is r-alternating with respect to M ,  and whose 

intermediate vertices are all endpoints of edges of M eliminated at  or before step i. 
Proof: We induce on the smallest i such that ( T ’ ,  c) is an edge of Hi. If i = 0 then ( T ’ ,  c )  
itself is the path. Otherwise, ( T ’ , c )  is in the deficiency of the matching edge ( T ; , C ; )  in 
Hi-1 ,  so edges (T ’ ,  c i )  and (T: ,  c )  are non-matching edges of Hi-1 Applying the induction 
hypothesis to  those edges, we get r-alternating paths P from T‘ to  c; and Q from r: to c in 
H ( A ) .  Then P ( q ,  F : ) Q  is an r-alternating walk from T‘ to c in H(A)  whose intermediate 
vertices are a l l  eliminated at or before step i. Thus there exists an r-alternating path with 
the same property. 0 

One interesting fact about symbolic bipartite elimination, which is new and is stated 
below as a theorem, is that it preserves the Hall and strong Hall properties. 

Theorem 11. Let Ho be a bipartitegraph and let ( T ’ ,  c )  be an edge ofHo. Let H1 be the 

bipartite graph resulting from the elimination of edge (r’, c ) .  If Ho has the Wail property, 

then H1 also has the Hall property. If 110 has the strong Hall property, then H I  also has 
the strong Hall property. 
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Proof: Recall Theorem 2, which says that an M x n bipartite graph is Hall if and only 
if it has no independent set of more than m vertices, and strong Hall if and only if it has 
no independent set of exactly m vertices that includes at least one vertex from each part. 

Let R1 and C1 be the row and column vertices in a largest independent set in N1. 
It is not possible that both T' E ACaj,(Cl) and c E A d j ~ , ( R 1 ) ,  for that would imply an 
edge between R1 and C1 in 111. Therefore either Rl U C1 U {I-'} or R1 U C1 U {c} is an 
independent set in Ho. If Ho is Hall, that set has size at most m, and hence R1 U C1 has 
size at  most m - 1, so H I  is also Hall. The strong Hall case follows the same argument, 
considering only independent sets that include both rows and columns. 0 

4.2. Upper bounds on L and U with partial pivoting 

For the remainder of this section, we restrict our attention to  the case in which only row 
interchanges are performed during Gaussian elimination, so the column ordering is fixed 
initially. This subsection proves symbolic upper bounds on the structures of L and U ,  
making no assumptions on the row pivoting strategy. For the case where A is strong Hall 
and rows are ordered by partial pivoting, the next subsection proves matching exact lower 
bounds. Therefore the symbolic upper bound is in fact a tight exact bound in this case. 
As we will see, the tight exact bound is a one-at-a-time result; there is no tight all-at-once 
bound on L and U in general. 

In the rest of this section we require A to have a nonzero diagonal. The rows of any 
nonsingular square matrix can be permuted to put nonzeros on the diagonal (by Theorem 1 
and Corollary 1). In fact, only the bounds on L below depend on a nonzero diagonal; the 
bounds on U hold for arbitrary nonsingular A.  

Since the row interchanges P;' depend on the numerical values, it is in general impos- 
sible to determine where fill will occur in L and U from the structure of A. George and 
Ng [13] suggested a way to  get an upper bound on possible fill locations. At step i of 
Gaussian elimination with row interchanges, call the rows that have nonzeros in column i 
below the diagonal candidate pivot rows. George and Ng observed that fill can only occur 
in candidate pivot rows, and only in columns that are nonzero in some candidate pivot 
row. Thus the structure that results from the elimination step is bounded by replacing 
each candidate pivot row by the union of all the candidate pivot rows (to the right of 
column i). We need the fact that the diagonal of A is nonzero to  argue that this models 
the effect of row interchanges correctly: row i is itself a Candidate pivot row at step i, 
and therefore interchanging row i with another candidate pivot row does not affect the 
structure of the bound. 

This procedure for bounding the structures of L and U is precisely the construction 
of the row merge graph from Section 3. Therefore we have the following theorem. (Note 

that G " ( A )  = H " ( A )  since A is square.) 

Theorem 12 (George and Ng [13]). Let A be a nonsingular square matrix with non- 
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zero diagonal. Suppose A is factored by Gaussian elimination with row interchanges as 

and L is the union of the L; as described above. Then 

G ( L  + U )  C G”(A), 

that is, the structures of L and U are subsets of the lower and upper triangles of the row 

merge graph of A .  0 

Corollary 6. Let A be a nonsingular square matrix with nonzero diagonal, factored by 
Gaussian elimination with row interchanges as in Theorem 12. Then 

that is, the structures of L and U are subsets of the lower and upper triangles of the 
(symmetric) filled column intersection graph of A .  0 

George, Liu, and Ng [10,13] gave an algorithm for Gaussian elimination with partial 
pivoting that uses G”(A) to  build a data structure to  hold the factors of A as elimination 
progresses. The structure may be overgenerous in the sense that it stores some zeros, but 
it has the advantage that it is static; the structure does not change as pivoting choices 
are made. George, Liu, and Ng’s numerical experiments indicated that (with a judicious 
choice of a column reordering for sparsity) the total storage and execution time required 
to  compute the LU decomposition using the static data structure were quite competitive 
with other approaches. 

4.3. Lower bounds on L and U with partial pivoting 

In this section we show that Theorem 12 is tight in the exact sense for strong Hall A.  
In other words, if a given input structure is strong Hall, then for every edge of the row 
merge graph there is a way to fill in the values so that the corresponding position of L or 
U is nonzero. This implies that George and Ng’s static data structure [13] is the tightest 
possible for Gaussian elimination with partial pivoting. This is a one-at-a-time result; as 
we will see, no all-at-once result is possible. 

The case T < c of Theorem 13 (that is, the proof for U )  first appeared in a technical 
report by Gilbert [15]; the case r > c (for L )  has not appeared before. (Gilbert actually 
related U to G&(A) rather than G ” ( A ) ,  but the U parts of those graphs are the same for 
strong Hall A by Corollary 4.) 

Theorem 13. Let H be the structure of a square strong Hall matrix with nonzero diag- 
onal. Let ( r , ~ )  be an  edge of the row merge graph G “ ( N ) .  There exists a nonsingular 
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Figure 10: Example for Theorem 13. On the left is a matrix A. On the right is the bound 
on the structures of L and U .  In the case T < c, Figure 11 shows how to make [VI,, 
nonzero. In the case T > c, Figure 12 shows how to make [L]54 nonzero. 

matrix A (depending on T and c )  with H ( A )  = H,  such that if A is factored by Gaus- 
sian elimination with partial pivoting into L and U as described in Theorem 12, then 

Proof: The cases T < c (that is, V )  and T > c (that is, L )  are similar. Row interchanges 
make the L case a little more complicated; thus we prove the two cases separately. 

Case T < c (structure of U ) .  Figures 10 and 11 illustrate this case. According 
to  Corollary 2, there is a path P in H from row vertex T' to  column vertex c whose 
intermediate column vertices are all a t  most T .  

be the subgraph of H induced by all the row vertices and the column vertices 
1 through T and c. Now is strong Hall because H is. Therefore the alternating-paths 
theorem (Theorem 4) applies, and says that there is a column-complete matching M for 
H and a path Q from c t o  T that is c-alternating with respect to  M. 

Choose the values of those nonzeros of A corresponding to edges of M to be larger 
than n, and the values of the other nonzeros of A to  be between 0 and 1. Further, choose 
the values so as to  make every square submatrix of A that is Hall, including A itself, 
nonsingular. (Such a choice is possible by an argument like that in Theorem 10: the 
determinant of a Hall submatrix is a polynomial in its nonzero values, not identically zero 
because the Hall property implies a perfect matching. Therefore the set of values that 
make any Hall submatrix singular has measure zero, and can be avoided.) 

Now we prove that this choice of values makes [U] , ,  nonzero. In the first T steps 
of elimination of A ,  the pivot elements are nonzeros corresponding to  edges of M .  Let 
P be the permutation matrix that describes the first T row interchanges (that is, P = 
PrPr-l ...PI in Theorem 12). Let A, be the ( T  + 1) x ( T  t 1) principal submatrix of P A  
that includes the first r columns and column c, and the corresponding rows. Thus the 
columns of A, are those numbered 1 through T and c in H ;  the first T rows of A, are 

[' + VI,, # 0. 

Let 

- 
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Figure 11: Example for Case 1 of Theorem 13, showing the construction that makes [U],, 
nonzero in the structure from Figure 10. At top left, the graph is the subgraph of 11 
induced by column vertices 1 through T = 3 and c = 5 ,  and all the row vertices. The dashed 
edges are a column-complete matching M with respect to which there is a c-alternating 
path Q = (5 ,5 ' ,2 ,  l', l,3',3) from c to T .  At top right, A is chosen to  have large values in 
positions M and small values elsewhere. At bottom left, A,  is the submatrix of P A  with 
columns 1 through T and c and the rows in the corresponding positions after 3 pivot steps. 
The element [VI,, is in position * of the factor of A,. At bottom right, the directed graph 
G(A,)  has a path (3, I, 2,5); therefore (3,5) fills in. In the original A ,  the first pivot step 
does no row swap and fills position (3', 2); the second pivot step swaps rows 2' and 5' and 
fills position (Y, 5 ) .  
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Figure 12: Example for Case 2 of Theorem 13, showing the construction that makes [L]54 
nonzero in the structure from Figure 10. At top left, the graph is the subgraph of H 
induced by column vertices 1 through c = 4, and all the row vertices. Then d = 2 is the 
first column vertex on some path from T' to c. The dashed edges are a column-complete 
matching M with respect to  which there is a c-alternating path Q = (4,4', 3,3', 1, l', 2) 
from c t o  d. At top right, A is chosen to  have large values in positions M and small values 
elsewhere. At bottom left, A, is the submatrix of P A  with columns 1 through c and T 
and the rows in the corresponding positions after 4 pivot steps. The element [ L ] 5 4  is in 
position * of the factor of A,. The fifth and last row of A, is 5' )  the fifth row of A, because 
5' was not involved in a pivoting swap during the first 4 steps; therefore s' = T' = 5' 
and the argument about an alternating path from T' to  s' is not needed in this example. 
At bottom right, the directed graph G(A,)  has a path (5 ,2 ,1 ,4) ;  therefore (.5,4) fills in. 
In the original A, the first pivot step fills position (1',4), and the second pivot step fills 
position (V, 4). 
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those matched to columns 1 through T of H by M ;  and it does not matter which row of 
N the last row of A ,  is. We will consider the rows and columns of the bipartite graph 
H ( A , )  t o  have the same numbers that they did in H ;  thus the column vertex numbers are 
1 through T and c, and the row numbers may be anything. In the directed graph G(A,), 
we will also number the vertices 1 through T and c, but bear in mind that the row of A, 
corresponding to  a vertex .u was not necessarily row v’ in H .  

Now the first r diagonal elements of A ,  are nonzero, and dominant. Let L,  and U, 
be the triangular factors of A ,  without pivoting, A, = L,U,. Then the element [U],, 
mentioned in the statement of the theorem is in fact [U,],,, the element in the last column 
and next-to-last row of U,. We proceed to show that [U,],, # 0. 

All square Hall submatrices of A,  are nonsingular; thus, by Lemma 7, G+(A,) is 
exactly the structure of [ L ,  + U,]. Therefore [U],, is nonzero if and only if G ( A , )  contains 
a directed path from vertex T to vertex c ,  through vertices numbered less than T .  

Recall the path Q, which is a path in f7 from c to T that is c-alternating with respect 

t o  M .  The matching M consists of exactly the edges on the diagonal of A ,  (except for 
the one in the last column, which cannot be an edge of Q because Q is c-alternating). 
Therefore Q corresponds t o  a directed path from T t o  c in G(A,). Every vertex of G(A,) 
except r and c is numbered less than T ,  so this is the desired directed fill path and the 
proof of this case is complete. 

Note that the proof never explicitly identified the row of H that ended up in position 
( T , c )  of U ;  it is the row matched to column T by M ,  and is the second last vertex on the 
path &. 

Case T > c (structure of L ) .  Figures 10 and 12 illustrate this case. The proof for 
this case is much like that for U, but it needs to do some extra work to identify the row of 

N that ends up in position ( T ,  c )  of L ,  because that row has not yet been matched (pivoted 
on) when L,, is computed. 

Again by Corollary 2, there is a path P in If from row vertex T’ to column vertex c 

whose intermediate column vertices are all at  most c. Let d be the first column vertex on 
P (this is the vertex after T’ on P ;  possibly d = c ) .  

be the subgraph of H induced by all the row vertices and the column vertices 
1 through c. (This has one less column than in the proof for U . )  Then F [ d :  c] is a 
path (possibly of length 0) in from column vertex d to  column vertex c in f7. Again, 
therefore, there is a column-complete matching M for and a path Q from c to d that 
is c-alternating with respect to M .  

Again we choose A so that edges of M have values larger than n, other edges have 
values between 0 and 1, and every square Hall submatrix of A is nonsingular. 

The first c steps of elimination of A pivot on nonzeros corresponding to  edges of M .  
Let P be the permutation matrix that describes the first c row interchanges (that is, 
P = P,P,-1 ...P1 in Theorem 12). Let A ,  be the (c + 1) x (c + 1) principal submatrix 
of P A  that includes the first c columns and column T ,  and the rows in corresponding 
positions of PA.  Thus the columns of A ,  are those numbered 1 through c and T in H ;  the 

Let 
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first c rows of A, are those matched to  columns 1 through c of N by M .  The last row of 
A, is some row number s’ in 31 that is not matched by M .  (Row s‘ may or may not be 
matched to  column T in the final factorization of A. )  

Again, we give the rows and columns of the bipartite graph H ( A , )  the same numbers 
they had in H ;  the column vertex numbers are 1 through c and T ,  and the row numbers 
may be anything (but the last row is s’). In the directed graph G ( A , ) ,  we will also number 
the vertices 1 through c and r ;  again, bear in mind that the row of A, corresponding to  
a vertex v was not necessmily row v‘ in H ,  and in particular the row corresponding to 
vertex T of G(A,) is row s‘ of H .  

Now the first c diagonal elements of A, are nonzero, and dominant. Let L,  and U, be 
the triangular factors of A, without pivoting, A, = L,U,. The element [L] , ,  mentioned in 
the statement of the theorem is in fact [L,],,, the element in the last row and next-to-last 

column of Lc. 
As before, we show that [LC],., # 0 by exhibiting a directed path from vertex r to  

vertex c of G(A,) ,  based on a c-alternating path in A. However there is not necessarily an 
edge between column vertex T and row vertex s’ in H ;  thus we must find a c-alternating 
path that ends at st, not r. The details of how to do that will complete the proof. 

We now trace the pivoting process to  discover where row s’ came from. If row r‘ of 
H was not used as one of the first c pivots, then it has not moved and s‘ = r’. If row T I  

was used as a pivot, suppose it was in column c1 _< c, and that the row interchanged with 
r1 at step c1 was row T; .  (Recall that all row and column numbers are vertex numbers 
of H.) Again, either 9-i = s’ or else T: was later used as a pivot in some column e2 > c1, 

when it was interchanged with some row T;. Continuing inductively, we eventually arrive 
a t  a row r i  which is equal to s’, which was not used as a pivot in the first c steps. 

The sequence of nonzeros we followed while tracing the pivoting process was 

- 
Each (c;, r:) is an edge of one of the bipartite elimination graphs x o ,  El, . . . , H ,  cor- 
responding to the first c steps of symbolic Gaussian elimination of z. Therefore, by 
Lemma 10, there is a c-alternating path in w from c; to T: for each i. Furthermore each 
(ri-l ,c;)  is an edge of M ,  and is thus a one-edge c-alternating path from to  c;. Con- 
catenating these paths yields a c-alternating walk W (which may repeat vertices or edges) 
from r’ to  s’ in P. 

Now if edge (d, r’) is not an edge of M, then !2 followed by (d, r f )  followed by W is a 
c-alternating walk from column c to row st.  Alternatively, if ( c l ,  r’) is an edge of M ,  then 
d = c1, and Q followed by W[cl:s’] is a c-alternating walk from column c to  row s’. Either 
way, we have a walk in from c to  s‘ that is c-alternating with respect to M .  This walk 
corresponds to a directed walk from vertex T to vertex c of G(A,) .  Thus there is a directed 
path from vertex r t o  vertex c of G(A,) .  The intermediate vertices on this path are less 
than both T and c, because T and c are the last two vertices of G(A,) .  Therefore ( T , c )  
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is an edge of G+(Ac). Since all square Hall submatrices of A,  are nonsingular, therefore, 

[L,],, is nonzero. Thus [LIrc is nonzero and the proof is complete. 0 

4.4. Remarks on LU factorization with pivoting 

Theorem 13 showed that G”(A)  is a tight exact bound on the structure of the factors L 
and U ,  assuming that the structure of A is not only strong Hall, but also has its rows 
permuted so that the diagonal is nonzero. We can get a tight exact bound on U without 
assuming a nonzero diagonal. The following result does not depend on row ordering. 

Corollary 7. Let H be a square bipartite graph with the strong Hall property. Let ( T ,  c) 
be an edge of the filled column intersection graph G;(H). Then there is a nonsingular 
matrix A (depending on T and c )  with H ( A )  = H ,  such that the upper triangular factor 
U of A in Gaussian elimination with partial pivoting has [UlTC # 0.  

Proof: Since H is strong Hall, it has a column-complete matching. Let 77 be H with 
its row vertices permuted so that ( i ’ , i )  is a matching edge for all i. The filled column 
intersection graph is independent of the row permutation, so G;f(H) = GA(T). Corollary 4 
says that the upper triangles of Gk(X) and G“(f;i)  are the same. Therefore (T,c) is an 
edge of G”(X).  Then, by Theorem 13, there is a nonsingular matrix with 11(2) = H ,  
such that the upper triangular factor of 2 in Gaussian elimination with partial pivoting 

By a measure-theoretic argument like that in Theorem 10, we can choose 2 so that 
there is never a tie for the choice of pivot element, that is, so that at each elimination step 
all the subdiagonal nonzeros of the pivot column have different magnitudes. Under this 
assumption, the upper triangular factor is independent of the row ordering of 2. Let A 
be 3 with its rows permuted so H ( A )  = H .  The upper triangular factor U of A is equal 

to  8, and hence [VI,, # 0. 0 

has [ q r c  # 0. 

Theorem 13 on LU differs from Theorem 10 on QR in that the latter is all-at-once; that 
is, for each structure a single matrix exists that fills all the predicted nonzeros. Theorem 13 
is not all-at-once, and no tight exact all-at-once result is possible for LU factorization with 
partial pivoting. To see this, consider a matrix that is tridiagonal plus a full first column, 

x x  
x x x  

The graph H ( A )  is strong HaU. The row merge graph G ” ( A )  is full. As Theorem 13 says, 
any single position in L or U can be made nonzero by an appropriate choice of pivots. 
But the first row of U will have the same structure as some row of A ,  so it is impossible 
for U to be full. 
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One application of structure prediction for partial pivoting is to  predict which columns 
of A will update which other columns if the factorization is done with a column-by-column 
algorithm. For example, Gilbert [15] gave a parallel implementation of LU factorization 
with partial pivoting in which tasks (columns of the factorization) were scheduled dynam- 
ically to  processors, based on a precedence relationship determined by precomputing the 
elimination tree [23] of Gn(A).  Since [U]ij is nonzero if and only if column E updates 
column j during the factorization, a corollary of Theorem 13 is that ,  for strong Hall A ,  
this is the tightest prediction possible from the structure of A alone. 

Corollary 8 (Gilbert [lS]). Let a strong Hall structure for the square matrix A be 
given. I f  k is the parent ofj in the elimination tree of Gn(A),  then there exists a choice of 
nonzero values of A that will make column j update column k during factorization with 
partial pivoting. U 

This corollary is a one-at-a-time result. However, if we restrict our attention to the 
edges of the elimination tree of Gn(A)  instead of all of G"(A),  it may be possible to prove 
an all-at-once result. We conjecture that for every square strong Hall matrix a, there 
exists a single matrix A with H ( A )  = H such that every edge of the elimination tree 
of Gn(A) corresponds to  a nonzero in the upper triangular factor U of A with partial 
pivoting. 

Little if anything is known about the case when H ( A )  is not strong Hall. Hare et 
al. I211 gave a complete exact result for QR factorization assuming only the Hall property; 
is a similar analysis possible for partial pivoting? In particular, since the upper triangles 
of G " ( A )  and Gfi(A) can differ in the non-strong Hall case, how tight is the former for 
partial pivoting? There are non-strong Hall structures for which G"(A)  is tight but GA(A) 
is not; an example is a matrix whose only nonzeros are the diagonal and the first row. 

5 .  Remarks 

The theme of this paper is that, when solving a nonsymmetric linear system, structure 
prediction is easier if the matrix is strong Hall. On the other hand, a system whose 
matrix is not strong H d  can be partitioned (by Dulmage-Mendelsohn decomposition) 
into smaller strong Hall systems. This useful coincidence makes some intuitive sense. 
Symbolic independence of vectors (the Hall property) is a weaker condition than numeric 
linear independence. In a sense, Dulrnage-Mendelsohn decomposition tries to wring as 
much as possible out of symbolic relationships before Gaussian elimination takes over to 
handle numeric relationships; the tight exact (i.e. numeric) lower bounds in this paper say 
that Dulmage-Mendelsohn decomposition is doing its job. 

Predicting structure in algorithms that combine numerical and structural information 
is an interesting challenge. Murota et al. [25] have studied block triangular decompositions 

that take some but not all of the numerical values into account. 
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We point out once more that Hare, Johnson, Olesky, van den Driessche, and Pothen [21, 

281 have recently obtained tight exact bounds on both Q and R in the general Hall case, 
thus extending the work of Coleman, Edenbrandt, and Gilbert that we reviewed in Sec- 
tion 3. It would be interesting to see whether our bounds on L and U for partial pivoting, 
in Section 4,  could be similarly extended. 

We conclude by mentioning three open problem areas for nonsymmetric structure 
prediction. 

First, it would be interesting to understand the relationship between the structure of 
L and the structure of Lo,  both of which are different ways of storing the lower triangular 
factor in Gaussian elimination with partial pivoting. Can the techniques discussed in this 
paper be used to obtain bounds on the structure of Lo? 

Second, it would be useful to achieve a complete structural understanding of the Bunch- 
Kaufmann symmetric indefinite factorization [18, Chapter 4.41. Here a symmetric indefi- 
nite matrix is factored symmetrically by choosing pivots from the diagonal, but each pivot 
may be either an element or a 2 x 2 submatrix. Thus the factorization is PAP* = L D L T ,  
where P is a permutation, L is lower triangular, and D is block diagonal with 1 x 1 and 
2 x 2 blocks. This factorization is particularly useful for solving “augmented systems” of 
the form 

(: 3 (”,> = (3 
where A is rectangular and Ir’ is symmetric and (perhaps) positive definite fl]. Even the 
common case K = I is not well understood. 

Third, it would be interesting to understand the structural issues in the incomplete 
LU factorizations sometimes used to precondition iterative methods for solving linear 
systems [7j. 
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