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AN INTRODUCTION TO CHORDAL GRAPHS 
AND CLIQUE TREES 

Jean R. S. Blair 
Barry W. Peyton 

Abstract 

Clique trees and chordal graphs have carved out a niche for themselves in recent 
work on sparse matrix algorithms, due primarily to research questions associated 
with advanced computer architectures. This paper is a unified and elementary 
introduction to the standard characterizations of chordal graphs and clique trees. 
The pace is leisurely, as detailed proofs of all results are included. We also briefly 
discuss applications of chordal graphs and clique trees in sparse matrix computa- 
tions. 
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1. Introduction 

It is well known that chordal graphs model the sparsity structure of the Cholesky 
factor of a sparse positive definite matrix [39]. Of the many ways to  represent a 
chordal graph, a particularly useful and compact representation is provided by clique 
trees [24,45].l Until recently, explicit use of the properties of chordal graphs or clique 
trees in sparse matrix computations was rarely needed. For example, chordal graphs 
are mentioned in a single exercise in George and Liu [16]. However, chordal graphs 

and clique trees have found a niche in more recent work in this area, primarily due 

to  various research questions associated with advanced computer architectures. For 
instance, the multifrontal method [8], which was developed to  obtain good performance 
on vector supercomputers, can be expressed very succinctly in terms of a clique tree 
representation of the underlying chordal graph [34,37]. 

This paper is intended as an update to  the graph theoretical results presented and 

proved in Rose [39], which predated the introduction of clique trees. Our goal is to 

provide a unified introduction to  chordal graphs and clique trees for those interested 
in sparse matrix computations, though we hope it will be of use t o  those in other 
application areas in which these graphs play a major role. We have striven to  write 

a primer, not a survey article: we present a limited number of well known results of 
fundamental importance, and prove all the results in the paper. The pacing is intended 

to be leisurely, and the organization is intended to enable the reader to read selected 
topics of interest in detail. 

The paper is organized as follows. Section 2 contains the standard well known char- 

acterizations of chordal graphs and presents the maximum cardinality search algorithm 
for computing a perfect elimination ordering. Section 3 presents several characteriza- 

tions of the clique trees of a chordal graph, including a maximum spanning tree property 

that is probably not as widely known as the others are. Section 4 ties together certain 

concepts and results from the previous two sections: it identifies the minimal vertex 
separators in a chordal graph with edges in any one of its clique trees, and it also shows 

that  the maximum cardinality search algorithm is just Prim's algorithm in disguise. 

Finally, Section 5 briefly discusses recent applications of chordal graphs and clique trees 

to  specific questions arising in sparse matrix computations. 

2. Chordal graphs 

An undirected graph is chordal (triangulated, rigid circuit) if every cycle of length 

greater than three has a chord: namely, an edge connecting two nonconsecutive ver- 

'ces on the cycle. After introducing graph notation and terminology in Section 2.1, 
.e present two standard characterizations of chordal graphs in Sections 2.2 and 2.3. 

'All technical terms used in this section are defined later in the paper. 
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The latter of these two sections shows that chordal graphs are characterized by posses- 

sion of a perfect elimination ordering of the vertices. The maximum cardinality search 
algorithm is a linear-time procedure for generating a perfect elimination ordering. Sec- 
tion 2.4 describes this algorithm and proves it correct. The necessary definitions and 
references for each of these results are given in the appropriate subsection. 

2.1. Graph terminology 

We assume familiarity with elementary concepts and definitions from graph theory, such 

as tree, edge, undirected graph, connected component, etc. Golumbic [20] provides 

a good review of this material. Here we introduce some of the graph notation and 
terminology that will be used throughout the paper. Other concepts from graph theory 
will be introduced as needed in later sections of the paper. 

We let G = (V, E )  denote an undirected graph with vertex set V and edge set E .  
The number of vertices is denoted by n = IVI and the number of edges by e = /El. For 
any vertex set S C V ,  consider the edge set E ( S )  E. E given by 

E ( S )  := { ( u p )  E E I u,v  E S}.  

We let G ( S )  denote the subgraph ofG induced by S ,  namely the subgraph (S, E ( S ) ) .  At 
times it will be convenient t o  consider the induced subgraph of G obtained by removing 

a set of vertices S C V from the graph; hence we define G \ S by 

G \ S := G(V - S ) .  

Two vertices u,  v E V are said to be adjacent if ( u ,  v) E E .  Also, the edge (u ,  v) E E 
is said to  be incident with both vertices u and v. The set of vertices adjacent t o  v in G 
is denoted by adjc(w).  Similarly, the set of vertices adjacent to  S C V in G is given by 

a d j , ( S )  := {v E V 1 v S and ( P L , ~ )  E E for some vertex u E S}. 

(The subscript G often will be suppressed when the graph is known by context.) An 

induced subgraph G ( S )  is complete if the vertices in S are pairwise adjacent in G. In 

this case we also say that S is complete in G. 
We let [vo, V I , ,  . . , vk] denote a simple path of length b from DO to V I ,  in G, i.e., 

v; # vj for i # j and (vi, v;+1) E E for 0 5 i 5 b - 1. Similarly, [vo, v1,. . ., vk, vo] 
denotes a simple cycle of length k t 1 in G. Finally, a chord of a path (cycle) is any 
edge joining two nonconsecutive vertices of the path (cycle). 

Definition 1. An undirected graph G = (V, E )  is chordal (triangulated, rigid circuit) 
if every cycle of length greater than three has a chord. 

Clearly, any induced subgraph of a chordal graph is also chordal, a fact that  is 
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useful in several of the proofs that follow. 

2.2. Minimal vertex separators 

A subset S C V is a separator of G if two vertices in the same connected component 

of G are in two distinct connected components of G \ S .  If a and b are two vertices 

separated by S then S is said to be an ab-separator. The set S is a minimal separator 

of G if S is a separator and no proper subset of S separates the graph; likewise S is a 

minimalab-separatorif S is an ab-separator and no proper subset of S separates a and b 
into distinct connected components. When the pair of vertices remains unspecified, we 
refer to S as a minimal vertex separator. It does not necessarily follow that a minimal 

vertex separator is also a minimal separator of the graph. For instance, in Figure 2.1 
the set S = { b ,  e ]  is a minimal clc-separator; nevertheless, S is not a minimal separator 
of G since { e }  C S is also a separator of G. Minimal vertex separators are used t o  

Figure 2.1: Minimal dc-separator (b,e} is not a minimal separator of G. 

characterize chordal graphs in Theorem 2.1, which is due to  Dirac [6]. The proof is 
taken from Peyton [34], which, in turn, closely follows the proof given by Golumbic [20]. 

Theorem 2.1 (Dirac [SI). A graph G is chordal if and only if every minima) vertex 
separator of G‘ is complete in G. 

Proof: Assume every minimal vertex separator of G is complete in G, and let p = 
[VO, . . . , vk, vo] be any cycle of length greater than three in G (i.e., k 2 3). If (210, ‘ua) E E, 
then p has a chord. If not, then there exists a wow2-separator S (e.g., S = V - {VO, 212)); 

furthermore, any such separator must contain v1 and ‘uz for some i, 3 5 i 5 k. Choose 
S to  be a minimal vou2-separator so that S, by assumption, is complete in G. It follows 

that (VI, wt) is a chord of p, which proves the “if” part of the result. 
KOW assume C is chordal and let S be a minimal &separator of G. Let G ( A )  

and G ( B )  be the connected components of G \ S containing a and b, respectively. It 

suffices to  show that for any two  distinct vertices in S, say 5 and y, we have (t, y) f E .  
Since S is minimal, each vertex v E S is adjacent to some vertex in A and some 

vertex in B; o’ ’ erwise, S - {v} would be an ab-separator contrary to  the minimality 
of S. Thus, titci-e exist paths p = [ z , a l , .  . . ,a , ,  y] and Y = [y ,b l , .  . ., bt, z] where each 

ai E A and each b; E B (see Figure 2.2). Further, choose p and v so that they are 
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Figure 2.2: Cycle in proof of Theorem 2.1 that induces chord (2, y). 

of the smallest possible length greater than one, and combine them t o  form the cycle 

u = [z, al ,  . . . , a , ,  y, b l ,  . . . , bt,  z]. Since G is chordal and u is a cycle of length greater 

than three, c must have a chord. Any chord of u incident with ai, 1 5 i 5 T ,  would 

either join a; to  another vertex in p contrary to the minimality of T ,  or would join a; to  
a vertex in B ,  which is impossible because S separates A from B in G. Consequently, 

no chord of c7 is incident with a vertex a;, 1 5 i 5 T ,  and by the same argument no 

chord of the cycle is incident with a vertex b j ,  1 5 j 5 t .  It follows that the only 
possible chord is (2, y). a 

Remark In reality, r = t = 1, otherwise [z,a1,. . . , a , ,  y, z] or [ y , b l , .  . . , bt ,  z, y] 
is a chordless cycle of length greater than three. 

2.3. Perfect elimination orderings 

We need the following terminology before we can state and prove the ma.in result in 

this section. An ordering a of G is a bijection Q : V + { 1,2 , .  . . , n}. Often it will be 

convenient t o  denote an ordering by using it to index the vertex set, so that c.(vi) = i 
for 1 5 i 5 n where i will be referred t o  as the label of v;. Let v1, v2,. . . , vn be an 
ordering of V .  For 1 5 i 5 n, we define C; to  be the set of vertices with labels greater 
than i - 1: 

c; := {w: ,v I+~ , - .  . ,vn} .  

The monotone adjacency set of v;, denoted madjG(v;),  is given by 
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Again, the subscript G often will be suppressed where the graph is known by context. 

A vertex v is simpIicia2 if adj(v) induces a complete subgraph of G. The ordering cy 

is a perfect eIirnination ordering (PEO) if for 1 ,< i 4 n, the vertex vi is simplicial 

in the graph G(C;). As shown below in Lemma 1, every nontrivial chordal graph has 
a simplicial vertex (actually, a t  least two). Theorem 2.2, which states that  chordal 

graphs are characterized by the possession of a PEO, follows easily from Lemma 1. 
The proofs are again taken from Peyton [34], which, in turn, closely follow argunients 

found in Golumbic 1201. 

Lemma 1 (Dirac [S]). Every chordal graph G h a s  a simplicial vertex. If G is not 
complete, then it has two nonadjacent simplicial vertices. 

Proof: The lemma is trivial if G is complete. For the case where G is not complete 
we proceed by induction on the number of vertices n. Let G be a chordal graph with 
n 2 2 vertices, including two nonadjacent vertices a and b. If n = 2, both vertices of the 
graph are simplicial since both are isolated (Le., @ ( a )  = adj(b)  = 0). Suppose n > 2 
and assume that the lemma holds for all such graphs with fewer than n vertices. Since a 

and b are nonadjacent, there exists an ab-separator (e.g., the set V - { a ,  b } ) .  Suppose S 
is a minimal ab-separator of G, and let G ( A )  and G(B)  be the connected components 
of G \ S containing a and b ,  respectively. The induced subgraph G(A U S )  is a chordal 

graph having fewer vertices than G; hence, by the induction hypothesis one of the 

following must hold: Either G(A U S) is complete and every vertex of A is a simplicial 
vertex of G ( A  U S),  or G ( A  U S )  has two nonadjacent Simplicial vertices, one of which 
must be in A since, by Theorem 2.1, S is complete in G. Because @ , ( A )  C A U S, 
every simplicial vertex of G ( A  U S) in A is also a simplicial vertex of G. By the same 

argument, B also contains a simplicial vertex of G, thereby completing the proof. 

Theorem 2.2 (Fulkerson and Gross [lo]). A graph G is chordal if and only if G 
has a perfect elimination ordering. 

Proof: Suppose G is chordal. We proceed by induction on the number of vertices n 

to  show the existence of a PEO of G. The case n = 1 is trivial. Suppose n > 1 and 
every chordal graph with fewer vertices has a PEO. By Lemma 1, G has a simplicial 

vertex, say v. Now G \ {v} is a chordal graph with fewer vertices than G; hence, by 
induction it has a PEO, say p. Lf a orders the vertex v first, followed by the remaining 

vertices of G in the order determined by p, then Q is a PEO of G. 
Conversely, suppose G has a PEO, say cy, given by v1, 1.9,. . . , v,. We seek a chord of 

an arbitrary cycle p in G of length greater than three. Let v, be the vertex on p whose 

label i is smaller than that of any other vertex on p. Since Q is a PEO, rnadj(v;) is 
complete; whence p has at least one chord: namely, the edge joining the two neighboring 
vertices of vg in p. I 
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2.4. Maximum cardinality search 

Rose, Tarjan, and Lueker [40] introduced the first linear-time algorithm for producing 

a PEO, known as the lexicographic breadth first search algorithm. In a set of unpub- 

lished lecture notes, Tarjan [43] introduced a simpler algorithm known as the mnzinivm 
cardinality search (MCS) algorithm. Tarjan and Yannakakis [45] later described MCS 

algorithms for both chordal graphs and acyclic hypergraphs. The MCS algorithm for 

chordal graphs orders the vertices in reverse order beginning with an arbitrary ver- 
tex E V for which it sets a ( ~ )  = n. At each step the algorithm selects as the next 
vertex to label an unlabeled vertex adjacent t o  the largest number of labeled vertices, 
with ties broken arbitrarily. A high-level description of the algorithm is given in Fig- 
ure 2.3. We refer the reader to Tarjan and Yannaka.kis [45] for details on how to 

implement the algorithm to run in O ( n  + e )  time. 

Ln+l +- 0; 
for i c n to 1 step -1 do 

Choose a vertex v E V - Li+l for which 
Jadj(v)  n L;+1J is maximum; 

a ( u )  t i; [v becomes v;] 
Li + u {vi}; 

end €or 

Figure 2.3: Maximum cardinality search (MCS). 

The following lemma and theorem prove that the MCS algorithm produces a PEO. 
The lemma provides a useful characterization of the orderings of a chordal graph that 

are not perfect elimination orderings. Edelman, Jamison, and Shier [9,42] prove sim- 

ilar results while studying the notion of convexity in chordal graphs. Theorem 2.3 is 
then proved by showing that every ordering that is not a PEO is also not an MCS 

ordering. The proof is taken from Peyton [34]. Later in Section 4.2, we will provide 
a more intuitive view of how the MCS algorithm works: it can be viewed as a specia.1 
implementation of Prim’s algorithm applied to  the weighted clique intersection graph 
of G (defined in Section 3.4). 

Lemma 2. An ordering a o f  the vertices in a graph G is not a perfect elimination 
ordering if and only i f  for some vertex v, there exists a chordless path o f  length greater 
than one from v = a-l( i )  to some vertex in Li+l through vertices in V - L;. 

Proof: Suppose a is not a PEO. There exists then by Lemma 1 a vertex u E V for 

which madj(v) is not complete in G; hence, there exist two vertices u,  w E madj(u) 
joined by no edge in E .  Without loss of generality assume that i = a ( u )  < cy(zv). 
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Then [o, u, w] is a chordless path of length two from 2, = a-'(i) to w E Ci+l through 

U E V - L ; .  

Conversely, suppose there exists a chordless path p = [uo, u1, . . . , ~ r ]  of length T 2 2 
from uo = a-l(i) t o  u, E &+I through vertices uj E V - C;, 1 5 j 5 T - 1. Let u k ,  

where 1 5 k 5 T- 1, be the internal vertexin p whose label l y ( u k )  is smaller than that 

of any other internal vertex in p.  Then m a d j ( u k )  includes two nonadjacent vertices: 

namely, the two neighboring vertices of ?Ik in p. It follows that cy is not a PEO. 1 

Theorem 2.3 (Tarjan [43], Tarjan and Yannakakis [GI). Every maximum car- 
dinality search ordering of a chordal graph G is a perfect elimination ordering. 

Proof: Let CY be any ordering of a chordal graph G that is not a PEO. We will show 

that the ordering CY cannot be generated by the MCS algorithm. 

of length T 2 2 from uo = CY-'(;)  to  ur E through vertices uj E V - Li, 
1 5 j 5 r - 1. (See Figure 2.4.) Choose uo so that the label i = a ( u 0 )  is maxi- 
mum among all the vertices of G for which such a chordless path exists. 

To show that Q is not an MCS ordering it suffices to show that there exists some 
vertex w E V - C;+1 for which ladj(w) n C;+ll exceeds ladj(uo) n &+I/. We will show 
that  the vertex ur-l E p is indeed such a vertex. Note that ad . (uo )nL~+l  and rnadj(u0) 
are by definition identical, and thus it suffices to show that  

By Lemma 2, for some vertex uo there exists a chordless path p = [UO, u1,. . . , Ur-17 u r ]  

For the trivial case mudj(u0) = 0, the theorem holds since u,-1 is adjacent to  

u, E &+I. Assume instead that madj(u0) # 8, and choose a vertex z E madj(u0). To 
see that  5 is also adjacent to u,,l, consider the path y = [z, u g ,  . . . , ur-l, u,] pictured 
in Figure 2.4. The maximality of i implies that every path of length greater than one 
having the following two properties will have a chord: a) the endpoints of the path are 

both numbered greater than i, and b) the interior vertices are numbered less than the 
minimum of the endpoints. The path y satisfies these two properties and hence has a 

chord. Moreover, since p = [uo, 211,. . . , 7 4 1  has no chords, every chord of 7 is incident 

with 5. Let uk be the vertex in y adjacent to  z which has the largest subscript. If 
k # r then [ z , U k , .  ..,u,.] is a chordless path, again contrary to the maximality of i; 
hence (z,~,) E E .  

It follows that cr = [z, uo, . , . , u,.-1, u,, z] is a cycle of length greater than three in G 
(recall that  T 2 2). Since G is chordal, CT must have a chord, and, as argued above, any 
such chord must be incident with z. Let ut be the vertex in u with the highest subscript 

other than T, for which (z, ut )  E E .  If t # T -  1, then [z, ut,. . . , u,, z] is a chordless cycle 
of length greater than 3,  contrary to the chordality of G. In consequence, (5, u r - l )  E E 
for all 2 E madj(u0). nut  u,-1 is also adjacent t o  u, E Cr+l - r n a d j ( u ~ ) ,  whence (2.1) 
holds, completing the proof. 
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Figure 2.4: Illustration for the proof of Theorem 2.3. The dark solid edges exist by 
hypothesis; existence of the lighter broken edges is argued in the proof and the remark 
that follows it. 

Remark In the preceding proof the argument leading to  the inclusion of (2, u,--1) 

in E can be repeated for every edge (2, uj), 1 5 j 5 r - 2. In consequence we have 

Statement (2.1) implies that  if the MCS algorithm “tried” t o  generate a, then as the 
vertex to  be labeled with i is chosen, the priority of u,-1 would be greater than that 

of uo. Similarly, (2.2) implies that the priority of each vertex u j  (1 F: j 5 T - 2) would 
be at least as great as that of pio. 

3. Characterizations of clique trees 

Let G = ( V , E )  be any graph. A clique of G is any rnazimal set of vertices that is 

complete in 6, and thus a clique is properly contained in no other clique. We will 

refer to a “submaximal clique” as complete in G, as we did in the previous section. 

Henceforth ?CG = { I < l ,  I<*, . . . , I<,} denotes the set containing the cliques of G, and m 
will be the number of cliques. 

The reader may verify that the graph in Figure 3.1 is a chordal graph with four 

cliques, each of size three. The graph in Figure 3.1 will be used throughout this section 

t o  illustrate results and key points. For convenience we shall refer to  the vertices of 

this graph as 01 , v2, . . . , v7; e.g., the vertex labeled “6” will be referred t o  as v6. Note 
that the labeling of the vertices is a PEO of the graph. 

For any chordal graph G there exists a subset of the set of trees on Kc known as 

clique trees. Any one of these clique trees can be used to represent the graph, often in 
a very compact and efficient manner [24,46], as we shall see in Section 4. This section 
contains a unified and elementary presentation of several key properties of clique trees, 
each of which has been shown, somewhere in the literature, to  characterize the set of 
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Figure 3.1: Chordal graph with seven vertices and four cliques. 

clique trees associated with a chordal graph. 
The notion of clique trees was introduced independently by Buneman [5], Gavril[12], 

and Walter [46]. The property we use to introduce and define clique trees in Section 3.1 
is a simple variant of one of the key properties introduced in their work. We use this 
variant because, in our experience, it is more readily apprehended by those who are 

studying this materid for the first time. Section 3.2 presents the short argument needed 
to  show that the more recent variant is equivalent to the original. 

Clique trees have found application in relational databases, where they can be 

viewed as a subclass of acyclic hypergmzphs, which are heavily used in that  area. Open 

problems in relational database theory motivated the pioneering work of Berns tein and 
Goodman [2], Beeri, Fagin, Maier, and Yannakakis [l], and Tarjan and Yannakakis [45]. 
Our two final characterizations of clique trees, presented in Sections 3.3 and 3.4, are 
based on results from these papers. Section 3.5 summarizes these results, and also 
illustrates these results in negative form using the example in Figure 3.1. 

Throughout this section it will be convenient t o  assume that G is connected. All 
the results can nevertheless be applied to a disconnected graph by applying them 

successively to each connected component; thus no loss of generality is incurred by 

the restriction. Note also that Sections 3.2, 3.3, and 3.4 can be read independently 

of one another, but any of these three subsectioiis should be read only after reading 

Section 3.1. As i n  the previous section, needed definitions and specific references to 
the literature are given in the appropriate subsections. 

3.1. Definition using the clique-intersection property 

Assume that G is a connected graph (not necessarily chordal), and consider its set of 
maximal cliques KG. In this section we consider the set of trees on 1 c ~  that  satisfy the 

following clique-intersection property: 

For every pair of distinct cliques K ,  I<' E I C G ,  the set K n Ii" is contained 

in every clique on the path connecting I< and IC' in the uee. 
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As an example of a tree that satisfies the clique-intersection property, consider the tree 
shown in Figure 3.2, whose vertices are the cliques of the chordal graph in Figure 3.1. 
The reader may verify that this tree indeed satisfies the clique-intersection property: 

Figure 3.2: A tree on the cliques of the chordal graph in Figure 3.1, which satisfies the 
clique-intersection property. 

for example, the set IC4 n l i 2  = (217) is contained in lil, which is the only clique on the 
path from I i 4  to  l i z  in the tree. The reader may also verify that the only other tree 

on {Kl, K2, K 3 ,  I i 4 )  that  satisfies the clique-intersection property is obtained from the 
tree in Figure 3.2 by replacing the edge ( I i 3 , l i z )  with ( K 3 ,  K1). 

We will show in Theorem 3.1 below that G is chordal if and only if there exists a tree 

on ICG that  satisfies the clique-intersection property. For any given chordal graph G, 
we shall let 7zt denote the lionempty set of trees T = (ICG,ET) that  satisfy the clique 

intersection property, and we shall refer to any member of 7$ as a clique tree of the 

underlying chordal graph G. In Section 3.2, we prove the original version of this result, 

which was introduced independently by Buneman [5], Gavril [12], and Walter [46]. 
To prove the main result of this subsection, we require two more definitions and a 

simple lemma. A vertex K in a tree T is a leaf if it has precisely one neighbor in T 
(i.e., ladjT(lC)l = 1). We let ICc(v) K G  denote the set of cliques containing the 

vertex v. The following simple characterization of simplicial vertices has been useful in 

various applications. This result has been used widely in the literature [7,19,23,24,45], 
and has been formally stated and proven in at least two places [23,24]. 

Lemma 3.  A vertex is simplicial if and only if it beloiigs to precisely one clique. 

Proof: Suppose a vertex v belongs to two cliques li,li' E I C G .  Maximality of the 
cliques implies the existence of two distinct nonadjacent vertices u E K - li' and 
u' E A'' - li. Since both u and u' are adjacent to o, it follows that o is not simplicial. 

Assume now that the vertex o belongs to one and only one clique li E KG. Note 
that v is adjacent to  a vertex u # v if and only if there exists a clique of G to  which 

both 'II and v belong. Consequently ad j (v )  = li - {v}, whence is simplicial. 
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The first part of the following proof closely resembles the argument given by Gavril[12] 

to  prove a result that  shall be presented in the next section. The second half was im- 

provised for this paper, and resembles the first half in many of its features. 

Theorem 3.1. A connected graph G is chordal i f  and only i f  there exists a tree T = 
(XG, E T )  for which the clique-intersection property holds. 

Proof: We proceed by induction on the number of vertices n to  show the 4 L ~ n l y  if” 

part. The base step n = 1 is obvious. For the induction step, let G be a chordal 

graph with n 2 2 vertices and assume the result is true for all chordal graphs having 
fewer than n vertices. By Lemma 1, G has a simplicial vertex, say v. Let K be the 

single clique of G that contains u (see Lemma 3), and consider the induced subgraph 
G’ = G\{v}. Since G’ is a chordal graph with n- 1 vertices, by the induction hypothesis 

there exists a tree T’ = ( K G I , € ~ )  that satisfies the clique-intersection property. 

To complete the proof of the “only if“ part, there are two cases to  consider. First, 

suppose K’ = K - {v} remains maximal in G’ (i.e., K’ E K Q ) .  It is trivial to  show 

that ICG~ = KG U {IC’} - {A’}, and we leave it for the reader to  verify this. It follows 

that the only difference between the cliques of G and G‘ is the presence in G of the 
simplicial vertex v in K and the absence of v from the corresponding clique li’ of G’. In 
consequence, the intersection of any pair of cliques in G is identical to  the intersection 
of the corresponding pair in G’. Let T be the tree on Kc obtained from T’ by replacing 
K’ with K .  Since T’ has the clique-intersection property, it  follows that T has this 
property as well, thereby completing the argument foi the first case. 

Now, suppose S’ = K - { u }  is not a maximal clique in G’ (Le., S’ # K Q ) .  Since 

n 2 2 and G is connected, v is not an isolated vertex, and we have 

Since S’ is complete in G’, there exists a clique P E ?&I = 1cc - {IC} for which 

S’ C P. (As before, we leave it for the reader to  verify that KG,  = K;c - {li}.) Let 
T be the tree on KG obtained by adding the clique fi and the edge (I<,P) to  T’. We 
now verify that T satisfies the clique-intersection property. Because T‘ satisfies the 

clique-intersection property, the set Ir‘l n K z  is contained in every clique on the path 

from IC1 t o  I i z  in T whenever neither K1 nor li’z is li. Consider now the set K n Ii” 
where I<‘‘ E KG - {IC} = KG, .  Since K - {v} C P and v belongs to no clique in 

XG - { I C } ,  it follows that A’’’ n Ii C P. Because T’ satisfies the clique-intersection 
property, the set li n X” = P n li” is contained in every clique on the path from A’ t o  

ET” in T ,  and T therefore satisfies the clique-intersection property as well. 
To prove the “if” part, let G = (V,  E )  be a graph and suppose there exists a tree 

T = (?CG,€T) that sat; ‘w the clique-intersection property. Again we proceed by 
induction on n to  show t m t  G is chordal. The base step n = 1 is obvious. For the 
induction step, let G be a graph with n 2 2 vertices and assume the result is true for 
all graphs having fewer than n vertices. 
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Let K and P be respectively a leaf of T and its sole neighbor (i.e., “parent”) in T .  
By maximality of the cliques there exists a vertex v E li - P .  The vertex v moreover 

cannot belong to  any clique li‘ E Icc- {K, P}, for were it otherwise the clique P,  which 
is on the path from K to  IC’ in T ,  would not contain the set K n 1;’. Consequently v 

belongs to  no other clique but I<, whence by Lemma 3 it is a simplicial vertex of G. 
P, 

then the “reduced” tree 7’‘ for G’ is obtained simply by replacing K with h” in T ;  if 
K‘ C P, then T’ is obtained by removing from T the vertex li and the single edge 
( K , P )  incident with it in T .  As before, in the first case, ~ C G ,  = K G  U {K’} - {K}; in 

the second case, ~ C G ,  = 1cc - { I C } .  In either case, it is trivial to  verify that the tree 
T’ satisfies the clique-intersection property. From the induction hypothesis it follows 
that  G‘ is chordal. Let /3 be any PEO of G‘. A PEO of G can then be obtained by 
ordering v first, followed by the remaining vertices of G in the order determined by p. 
Thus by Theorem 2.2, G is also chordal, giving us the result. I 

Consider the reduced graph G‘ = G \ {v} and let K‘ = K - {v}. If K’ 

3.2. The induced-subt ree  property 

In this section we are concerned with the set of all trees on 1ca that  satisfy the induced- 
subtree property: 

For every vertex v E V ,  the set X G ( V )  induces a subtree of T .  

We shall let 7$t denote the set of all trees on ?CG that  satisfy the induced-subtree 

property. 

Consider again the clique tree in Figure 3.2. Observe that each of the sets I c ~ ( v 3 )  = 
{ K 3 }  and l C ~ ( v 6 )  = {ICl, K 2 ,  ICJ} induces a subtree of this tree. The reader may verify 
that this tree satisfies the induced-subtree property. It is trivial t o  prove that  the clique- 
intersection and induced-siibtree properties are indeed equivalent. 

Theorem 3.2. For any connected graph G, we have 7Zt = 7 G t .  

Proof: To see that C 7gt, let Tct E 7 G t  and consider the set of cliques I cc (v )  
for some vertex v E V .  Choose two cliques fi, Ii‘ E K G ( v ) .  Since the set K n h” 
lies in every clique on the path joining I< and Ii‘ in Tct, it follows that the vertex 

v E K n Ii’ also lies in each clique along this path. In consequence, the induced 

subgraph Tct(lCG(v)) is connected and hence a subtree of G. It follows that T,, E 7gt, 
whence 7Zt  5 7kt, as desired. 

To see that I F  C ICt , 1 et Tist E 7$t. Choose two cliques I<,IC’ E KG, and 
consider the set K n IC‘. For each vertex v E A’ n A’’, the set K G ( v )  induces a subtree 
of Tist (i.e., a connected subgraph of Tist); and thus the vertex v lies in each clique 
along the path joining A’ and Ii’ in Tist. It follows that ?;st E 7Gt, whence 7gt S 72t ,  
as desired. I 

We thus have the following well known result from the literature. 
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Theorem 3.3 (Buneman [ 5 ] ,  Gavril [12], Walter [46]). A connected graph G is 
chordal i f  and only i f  there exists a tree T = (KG, E T )  for which the induced-subtree 
property holds. 

Proof: The result follows immediately from Theorems 3.1 and 3.2. 1 

3.3. The running intersection property 

A total ordering of the cliques in KG, say K 1 ,  K z , .  . . , ICrn, has the running intersection 
property (RIP) if for each clique Kj, 2 5 j 2 rn, there exists a clique Iii, 1 _< i 5 j - 1, 
such that 

rij n ( K l  u K2 u , a u c ICi. (3.1) 

For any RIP ordering of the cliques, we construct a tree Trip on ICG by making each 
clique K ,  adjacent to a “parent” clique I<; identified by (3.1). (Since more than one 

clique K i ,  1 _< i 5 j -  1, may satisfy (3.1), the parent may not be uniquely determined.) 
We let 72 be the set containing every tree on ?CG that  can be constructed from an 

RIP ordering in this manner. We define a reverse topological ordering of any rooted 

tree as an ordering that numbers each parent before any of its children. Finally, note 

that any RIP ordering is a reverse topological ordering of a rooted tree constructed 

from the ordering in the manner specified above. 
The ordering fC1, ICz, Ji3, K 4  of the cliques shown in Figure 3.1 is an RIP ordering; 

a corresponding RIP-induced parent function is displayed in Figure 3.3. Note that the 

parent function specifies precisely the edges of the clique tree in Figure 3.2. Indeed, we 

can show that  for any connected graph G, we have 7;’ = 7zt. 

4- 

Figure 3.3: Clique tree in Figure 3.2 is an RIP tree. Arrows point from child to  parent. 

Theorem 3.4 (Beeri, Fagin, Maier, Yannakakis [l]). For any connected graph G, 
we have 12 = 72t. 
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Proof: We first show that 7Zt C 7;”. Let T,, E 7Zt; choose R E 1 c ~ ;  and root 

TCt a t  R .  Consider any reverse topological ordering R = Iil, K 2 , .  . . , Ii, of the rooted 
tree Tct. For any clique lij, 2 5 j <_ m, let K, be its parent clique in the rooted tree 

(whence 1 5 p 5 j - 1). Now, for 1 5 i 5 j - 1, the clique li; cannot be a descendant 
of Kj, hence K, is on the path in TCt connecting l i j  and li;. The clique-intersection 

property implies that  Kjnlii S. K,. This implies that  ~ ~ j n ( I i , u ~ ~ 2 U . . . U h ‘ j - l )  E K,; 
furthermore, K, cannot be a subset of K j  by maximality, so the containment is proper. 

Thus, Tct E 7Gp, and we have 7Gt 2 7;’. 
To see that 7;” C 7Zt, consider a tree T = ( K G , € )  4 I$. We will show that 

T 4 7;”. Since T I$ 7 G t ,  there exists then a pair of distinct cliques K,K‘ E 1 c ~  such 
that the set KnK’  is not contained in a t  least one clique on the path connecting A’ and 

IC’ in the tree. Choose two such cliques #, K’ E 1 c ~  that  minimize the length of the 

path from li to li‘ in T. The key observation on which our argument depends is that  
the set KnK‘  belongs t o  no clique on the path connecting K and li’ in the tree, except 

K and li’. Let K1, K z ,  . . . , I<, be any reverse topological ordering of T for arbitrary 

root K1 E 1 c ~ .  It suffices to show that (3.1) does not hold for some parent-child pair 
in T .  

Consider the path p = [li = A’;,, K;, , . . . , I<,= = li’] in T. Let K;, be the clique 

with lowest index among the cliques in p, and without loss of generality assume that 

io > is. Since under the given reverse topological ordering K;, is a proper descendant 
of K ; ,  E p, the clique Ki, is necessarily the parent of K;, in the rooted tree, and hence 

io > il. Our choice of li (= Ki,) and Ii‘ (= A’;$) implies that  (a) s 2 2, and (b) 

K;,  n Kil, 

whence (3.1) does not hold for the parent-child pair l i i l  and K;,, which completes the 

proof. I 

K;, for each T ,  1 5 T 5 s - 1. In consequence, we have K;, n 1iis 

Remark In the preceding proof, the argument that I,“, C 7;’ verifies that  any 

reverse topological ordering of a clique tree T,, E 7Gt is an RIP ordering of the cliques. 

3.4. The maximum-weight spanning tree property 

Associated with each chordal graph G is a weighted clique intersection graph, WG, 
defined as follows. The vertex set of WG is the set of cliques K G .  Two distinct cliques 

K,K’ E ?CG are connected by an edge if and only if their intersection is nonempty; 
moreover, each such edge (li, li’) is assigned a positive weight given by IIi n K’I. We 
let 7Tst be the set containing every maximum-weight spanning tree (MST) of WG. 

Figure 3.4 shows TVG for the chordal graph in Figure 3.1, aid highlights the edges 
of the clique tree in Figure 3.2. Observe that the highlighted clique tree is a maximum- 
weight spanning tree of M ~ G ,  with edge weights that  sum t o  five. Bernstein and Good- 

man [2] first showed that for any chordal graph G, we have 7Ft = 7t;ct. Our proof of 
this result is similar to that given by Gavril [13]. 



- 1 5 -  

T- 

Figure 3.4: Weighted clique intersection graph for graph in Figure 3.1. Bold edges 
belong to  the clique tree in Figure 3.2. Also shown are the intersection sets upon which 
the weights are based. 

Our argument requires two ideas commonly used in the study of maximum-weight 

(minimum-weight) spanning tree algorithms. First, let T = ( K G , € T )  be a spanning 

tree of WG. It is well known that T is a maximum-weight spanning tree if and only if for 
every pair of cliques IC, Ii‘ E ICG for which (A’, IC’) # E T ,  the weight of every edge on 

the path joining K and li‘ in T is no smaller than lrinli‘l (see, for example, Tarjan [44, 
pp. 71-72]). Second, given an edge ( K ,  IC’) in a tree, we define the fundamental cut set 

(see Gibbons [18, p. 581) associated with the edge as follows. The removal of ( K ,  A’’) 
from the tree partitions the vertices of T into precisely two sets, say IC1 and K2. The 

fundamental cut set associated with (IC, K‘) consists of every edge with one vertex in 
IC1 and the other in ?Cz, including ( I { ,  IC’) itself. 

Theorem 3.5 (Bernstein and Goodman [2]). For any connected cfiordalgraph G, 

Proof: We first show that C_ Test. Let T,, E 7;it and choose two cliques IC and 

li’ that  are not connected by an edge in Tc.. Consider the cycle formed by adding the 

edge { I ( ,  IC’} to TcL. By Theorem 3.1 every edge along this cycle has weight no smaller 
than lK n I<‘l, whence T‘, is a maximum-weight spanning tree of Wc. 

choose Tmst E IFst .  By Theorem 3.1, 7&t # 0. Choose 

TCt E 7;;Ct that  has a maximum number of edges in common with Tmst. Assume for 
the purpose of contradiction that there is an edge (I<l, h of Tmst that is not an edge 

of Tct. Consider the fuiida.menta1 cut set (in WG) assoc ced with the edge (K l ,K2)  
of Tmst and also the cycle (in Tct) obtained by adding the edge ( K l ,  K,) to Tct. Any 
cycle containing one edge from the cut set must contain another edge from the cut set 
as well. Select from the cycle in Tct one of the edges (Ii3, IC4) # (K1, K z )  that  belongs 

T,mst = 7g. 

To see that 7pt C_ 
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to  the cut set. 

Note that the edge (Ii3,Ii4) is an edge of Tct, but it is not an edge of Tmst. Since 

T,t is a clique tree, it follows from Theorem 3.1 that Iil n I i 2  2 IC3 n I i 4 .  However, if 
K1 n K2 were a proper subset of 113 n K4, then replacing ( ICl, I i 2 )  in ‘Imst with (ICs, I i 4 )  

would result in a spanniiig tree of greater weight, contrary to the maximality of TmSt’s 
weight. Hence, Iil n I i 2  = Ii3 n K4. Consider the tree obtained by replacing (Iis, fi4) 
in Tct with the edge (Ii l ,K2).  The reader can easily verify that the resulting tree is 

a clique tree. The new clique tree moreover has one more edge in common with Tmst 
than originally possessed by Tct, giving us the contradiction we seek. 
TmSt = Tct, and the result holds. I 

3.5. Summary 

The following corollary summarizes the results presented in this section 

Zonsequently, 

Corollary 1. For every connected graph G, we have 

Furthermore, G is chordal if and only if this set is nonempty, in which case we have 

Based on Corollary 1, we henceforth drop the superscripts from our notation and 

shall use 7G to denote the set of clique trees of G. Finally, Figure 3.5 illustrates 

Corollary 1 in negative form. We now verify that the tree displayed in this figure 

Ill 

Figure 3.5: Not a clique tree of the graph in Figure 3.1. 

indeed satisfies none of the characterizations of a clique tree: 
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[CT] The set K1 n I i 2  is not contained in K4. 

[ET] K G ( v ~ )  does not induce a subtree. 

[RIP] The reverse topological ordering I C - ~ , K 2 , I i 4 , I C 1  is not an RIP ordering: K1 n 
(K4 U 112 U lis) = IC-1, which is, of course, contained in no other clique. It follows 

then from the remark after Theorem 5 that  the tree is not an RIP tree. 

[MST] The weight of the tree, which is four, is submaximal by one. 

4. Clique trees, separators, and MCS revisited 

This section ties together some of the results and concepts presented separately in Sec- 
tions 2 and 3. Section 4.1 presents results that  link the edges in a clique tree with 

the minimal vertex separators of the underlying chordal graph. Section 4.2 presents an 

efficient algorithm for computing a clique tree. This algorithm, which is a simple exten- 

sion of the MCS algorithm, is shown to be an implementation of Prim's algorithm for 
finding a maximum-weight spanning tree of the weighted clique intersection graph Wc. 
New definitions and notation will be introduced as needed, and appropriate references 

t o  the literature will be given in each subsection. As in the previous section, we assume 

without loss of generality that G is connected. 

4.1. Clique tree edges and minimal vertex separators 

Choose a clique tree T E IC and let S = h'; n Kj for some edge (ICi, K j )  E E T .  Let 
Ti = (Xi,€;) and T, = ( K j , € j )  denote the two subtrees obtained by removing the 
edge (1ii ,K3) from T ,  with li; E IC; and l < j  E ICJ. We also define vertex sets V,  c V 
and Vj c V by 

v'- Srst prove two technical lemmas, the second of which shows that the set S = 
Ii; I .., separates V, from V, in G. These two results are then used in the proof of 

Theorem 4.1 to show that  for any clique tree T E T,, the set S' C V is a minimal 
vertex separator if and only if S' = Ii n 11'' for some edge (Ii, 1;') E E T .  The results 
in this section have appeared in both Ho and Lee [21] and Lundquist [33]. The proofs 

of Lemma 5 and Theorem 4.1 are similar to  arguments given by Lundquist [33]. 

Lemma 4. The sets K, V,, and S form a partition of V .  
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Proof: Let T ,  S, K;, Iij, IC;, K;,, V,,  and Vi be as defined as in the first paragraph 
of the subsection. Clearly, V = V ,  U Vj U S ,  and S is disjoint from both V, and Vj. 
Hence it suffices to  show that V ,  n V, = 0. By way of contradiction assume the there 
exists a vertex v E V,  n 5. It follows that v belongs to some clique Ii‘ E K;; a.nd also 
belongs t o  some clique li‘ E Kj. Since T E 7 ~ ,  the vertex v belongs t o  every clique 
along the path joining K and li’ in T ,  which necessarily includes both li; and K j .  In 

consequence, u E S = K ;  n Kj, which is impossible since both Vi and Vj are disjoint 
from S,  whence the result follows. I 

Lemma 5. I f  S = K ;  n K j  and ( .Ki ,Kj)  E ET for some T f TG, then S is a vw- 
separator for every pair of vertices v E V ,  and w E V,. 
Proof: Again let T ,  S ,  K;, K j ,  IC;, Kj, K, and V, be as defined in the first paragraph 
of the subsection. To prove the result it suffices t o  show that there exists 110 edge 

(v, w) E EG with v E V ,  and w E V,. Now, if ( v , w )  E EG, then there exists a clique 

K E ICG for which v, w E li. If li E K;; then clearly v ,  UJ E S U V,. Moreover since by 
Lemma 4, Vi, Vj, and S form a partition of V ,  it follows that neither v nor w belongs 

to  4. Likewise, if Ii E Kj then v, w E S U V,, and neither v nor w belongs to V,. In 
consequence, no edge in Ec joins two vertices v E V,  and w E V,, which concludes the 

proof. I 

Theorem 4.1. Let T E TG. The set S C V is a minimal vertex separa.tor of G if and 
only i f S  = li n K’ for some edge (K, Ii’) E ET.  

Proof: For the “if” part let T E IC;, and let S = li n I<‘, for some edge (K, K’) E ET.  
Consider two vertices o E li - S and w E li‘ - S .  By Lemma 5, S is a vw-separator. 

Moreover, since both v and w are adjacent to every vertex in S ,  it follows that S is a 

minimal vw-separator, as desired. 

To prove the “only if” part, choose T E 7G and let S be a minimal vw-separator 

of G. Since ( v , w )  4 E ,  the sets K G ( v )  and I C G ( W )  induce disjoint subtrees of T .  
Choose li E I C G ( V )  and K‘ E K c ( w )  to  minimize the distance in T between li and 

K’. Consider the path p = [A’ = KO, K 1 , .  . . , I{,-*,  li, = I<’] in T, where T 2 1. Define 

Si := K;  n for 0 5 i _< r - 1, and let S := {So,S1,. . ., S,-l}. We will show that 
S E S, which suffices t o  prove the result. 

First, t o  see that Si C_ S for at least one set S; E S, suppose (for the purpose of 
contradiction) that Si S for every Si E 5,  and choose 2; E S; - S for each member of 

S. Since z; E li; fl K ; + 1  (0 5 i 5 T - l), we have a path [v, q , x 1 , .  . . , xr-1, w] joining 
v and 7~ in G \ S ,  contrary to  our assumption that S is a vw-separator. It follows that 

Si 
Now select S; E S for which Si C S ,  and consider the two subtrees obtained by 

removing the edge (Iii,Ki+l) from T .  Let T, be the subtree containing IC, 3 u, and 
let T, be the subtree containing li, 3 w. Since S; is contained in the vw-separator 
S ,  we clearly have v, w $! S;. Hence, by Lemma 5, S; is a mu-separator. Since S is 

S for at least one set Si E S. 
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moreover a minimal vw-separator, we have S = Si = 11; n Ki+1 where ( K i ,  K + l )  E E T ,  
as required. a 

For a clique tree T = (?&, E T )  E 7 G ,  consider the set containing every &stincl set 
K n K’ where (IC, 11’) E ET. It follows immediately from Theorem 4.1 that  this set is 
the same for every clique tree T E TG. In light of Theorem 4.1, we shall refer to the 

members of this invariant set as sepurutors. For any clique tree T = ( K G , & T )  E 7~ 
consider the multiset of separators defined by 

That  this multiset is the same for all clique trees T E 7G is an immediate consequence 

of a result by 130 and Lee [21]; the result was also proven by Lundquist [33]. The proof 
is taken directly from Blair and Peyton [4]. 

Theorem 4.2 (330 and Lee [21], Lundquist [33]). The muItiset of separators is 
the same for every clique tree T E 7 G .  

Proof: For the purpose of contradiction, suppose there exist two distinct clique trees 

T,T‘ E 7 G  for which M T  # M p .  From among the clique trees T’ E 7~ for which 
JUT, # MT, choose T’ so that it shares as many edges as possible with T .  (Note 
that T and 7’’ cannot share the same edge set, for then they also would share the same 
mult iset of separators . ) 

Let (.&’I, 1 - 2 )  be an edge of T that does not belong to  T‘. As in the proof of Theo- 
rem 3.5, consider the fundamental cut set (in WG) associated with the edge (111, f i z )  
of T and also the cycle (in 7”) obtained by adding the edge (fC,,f<2) to TI. Recall 
that  any cycle containing one edge from the cut set must contain another edge from 

the cut set as well. Select from the cycle in T’ one of the edges ( l i s ,  I<,) # (Kl, K2) 
that belongs to the cut set. Note that the edge (I<3,1<4) is an edge of T‘ but not an 

edge of T .  
111 n K z ;  similarly, since 

T’ E Tct, it follows by Theorem 3.1 that  lil n fiz S IC3 n -Ii4; hence K3 n l<q = Kl n 111. 
By Theorem 3.5, the replacement of (I i3 , lC4) in T‘ with ( K l , l i ~ )  results in a clique 

tree, which, moreover, clearly has the same multiset of separators that  T’ has. Contrary 

to our assumption about T’, the modified tree shares one more edge with T, and thus 

result follows. 

Since T E Tct, it follows by Theorem 3.1 that  1{3 n 114 

4.2. MCS and Prim’s algorithm 

Prim’s algorithm [38] is an efficient method for computing a maximum-weight (minimum- 
weight) spanning tree of a weighted graph. Thus, by Theorem 3.5, Prim’s algorithm 
applied t o  the weighted clique intersection graph WG computes a clique tree T E 7G. 
At any point the algorithm ha.s constructed a subtree of the eventual maximum-weight 
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spanning tree T ,  and a t  each step it adds one more clique and edge t o  this subtree. 

Let k C KG be the cliques in the subtree constructed thus far, As the next edge to  be 
added, the algorithm chooses the heaviest edge that joins k to  KG - k. For a proof 

that Prim’s algorithm correctly computes a maximum-weight spanning tree, we refer 
the reader t o  Tarjan [44, pp. 73-75] or Gibbons [18, pp. 40-421. A version of Prim’s 
algorithm formulated specifically for our problem is given in Figure 4.1. 

ET + 8; 
Choose li E KG; 

for T c 2 to m do 
k +- { K } ;  

Choose cliques K E k and A’’ E KG - 
for which IIi n li‘l is maximum; 

ET 4-- ET u { ( I < ,  IC’)}; 
K +- 12 u {IC’} ;  

end for 

Figure 4.1: Prim’s algorithm for finding a maximum-weight spanning tree of the 
weighted clique intersection graph WG. 

In this section we will show that the MCS algorithm applied to  a chordal graph G 
can be viewed as an implementation of Prim’s algorithm applied to Wc. In Section 4.2.1 
we show that since the MCS algorithm generates a PEO, it can easily detect the cliques 
in KG during the course of the computation. Section 4.2.2 shows that  1) the MCS 
algorithm can be viewed as a block algorithm that “searches” the cliques in ?CG one 

after the other, and 2) the order in which the cliques are searched is precisely the order 

in which the cliques are searched by Prim’s algorithm in Figure 4.1. Using the results 

in Sections 4.2.1 and 4.2.2, we also show how to supplement the MCS algorithm with 

a few additional statements so that it detects the cliques and a set of clique tree edges 

as it generates a PEO. A detailed statement of this algorithm appears a t  the end of 

Section 4.2.2. 
The close connection between the MCS algorithm and Prim’s algorithm was, t o  

our knowledge, first presented by Blair, England, and Thomason [3]. Several of the 
proofs in this section are similar to  arguments given by Lewis et al. [24]. Though the 
techniques discussed in this section can be implemented t o  run quite efficiently, there 
are more efficient ways to compute a clique tree when certain data  structures that arise 
in sparse matrix computations are available. The reader should consult Lewis et al. [24] 
for details on how t o  compute a clique tree in the course of solving a sparse positive 

definite linear system. 
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4.2.1. Detecting 

In this subsection 

the cliques in 1 c ~ .  

the cliques 

we show that the MCS algorithm can easily and efficiently detect 

To do so we exploit the fact that MCS computes a PEO. We shall 

use the following result from Fulkerson and Gross [lo]. 

Lemma 6 (Fulkerson a n d  Gross [lo]). Let v1, v2,. . . , v, be a perfect elimination 
orderingofG. The set ofmaximal cliques 1 c ~  containsprecisely the sets (vi} U madj(v;) 
for which there exists no vertex vj, j < i, such that 

{ V i }  u madj( v;) c { "j} u madj( Vj). (4.1) 
Proof: Choose K E ?CG and let v1 E Ii be the vertex whose label i assigned 

by the PEO is lowest among the labels assigned to a vertex of K. Consider the 

vertex set {ut> LJ rnadj(vp). Since A' consists of v; and neighbors of vi with labels 

larger than i ,  clearly li E (vi} U madj(vl) .  Because the ordering is a PEO, the set 
{vi} U rnadj(vi) must be complete in G. Thus by maximality of the clique Ii we have 
li = {vi} U rnadj(v;), and moreover it follows that (4.1) holds for no vertex vj, j < i .  

Now, let I< = {v,} U madj(v;) and suppose that (4.1) holds for no vertex vj, j < i. 
Since the ordering is a PEO, clearly li is complete in G. If li is submaximal, then there 

exists a vertex v3 E V - Ii that  is adjacent to  every vertex of K. But the existence of 
such a vertex vj is impossible: if j > i then vj E madj(v;),  contrary t o  vj E V - K; 
if j < i then (4.1) holds for v J ,  contrary to our assumption. In consequence, no such 
vertex vJ exists, and the result follows. 1 

Throughout the remainder of the paper we let v1, 212,. . . , v, be a PEO obtained 

by applying the MCS algorithm to  a connected chordal graph G. We shall call v,, 
the representative verter of ICr whenever li, = {q,} LJ mndj(v,,.); that  is, we let 

Vjl, Vi2 , .  . . , q,,, be the representative vertices of the cliques Iil, I<z,. . . , li,, respec- 

tively, where il > i2 > - > i,. Thus the ordering 11-1, K 2 ,  . . . , Iim specifies the order 
in which the cliques are searched by the MCS algorithm. 

As the MCS algorithm generates a PEO it can easily detect the representative 

vertices and hence can easily collect the cliques in KG. Condition 2 in the next lemma 

provides a test for determining when a vertex in an MCS ordering is not a representative 

vertex. Lemma 8 then provides a simple test for detecting the representative vertices. 

Lemma 7. Let 211, v2,. . . , v, he a perfect elimination ordering obtained by applying 
the maximum cardirialjty search algorithm to a connected chordal graph G. For each 
vertex label i, 1 5 i 5 n - 1, the following are equivalent: 
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Proof: First we state two inequalities that prove useful here and in later proofs. Note 
that the maximum cardinality selection criterion ensures that the following inequality 

holds true when v;+1 (1 5 i 5 n - 1) is selected to  be labeled: 

Equation (4.2) along with the fact that C;+1 = C;+2 U {v;+~}, gives us 

Assume that the first condition in the statement of the lemma holds for vu;+1, and 
consider the vertex vi selected by the MCS algorithm at  the next step. When the 

algorithm selects v; there exists (by Lemma 6) a vertex 2~ E V - .C;+1 that  is adjacent 
t o  every vertex in u madj(v;+l). In light of (4.3),  the existence of such a vertex 

u ensures that the vertex w; chosen by the MCS algorithm (perhaps vi = u) satisfies 
the second condition. 

Assume now that the second condition in the statement of the lemma holds for the 

two vertices vi and v;+1. It immediately follows that 

Consequently, to  prove that the third condition holds true it suffices to  show that 

rnadj(v;) C {v;+I} U madj(v;+r). Now if it were the case that v;+l 4 adj (v; ) ,  then from 
(4.2) and the fact that  C;+1 = C;+2 U {v;+1} we would have 

contrary to  our assumption that condition 2 holds true. It follows then that v;+1 is 

adjacent to o; in G. Now choose vk E madj(v;) - (0;+1}. Clearly k 2 i + 2; moreover, 

since {vi} u madj(v; )  is complete in G, vk is necessarily adjacent to  ui+l E madj(v;); 
whence vk E mudj(vi+1), giving us condition 3. 

Finally, by Lemma 6 the first condition follows immediately from the third, which 
completes the proof. a 

Further extending the result in Lemma 7, we obtain the following technique for 

detecting the representative vertices of ICc while generating the MCS ordering. 

Lemma 8 .  Let ~1,212,. . . , v, be a perfect elimination ordering obtained by applying 
the maximum cardinality search algorithm to a connected chordal graph G. Then 

1 c ~  contains precisely the following sets: { V I }  U rnadj(v1) and {0;+1} U mndj(v;+l), 
1 5 i 5 n - 1, for which 
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Proof: From Lemma 6 it follows that {vl} U madj(vl)  f KG. Consider the set 

{w;+1} U madj(vi+l) where 1 <_ i 5 n - 1. It follows from (4.3) and the equivalence 
of conditions 1 and 2 in Lemma 7 that {v ;+l )  U m a d j ( ~ ; + ~ )  is a member of ?CG if and 

only if (4.4) holds. This concludes the proof. 4 

4.2.2. MCS as a block algorithm 

Clearly, the MCS algorithm can detect the cliques in ?CG by determining a t  each step 

whether or not (4.4) holds. With the next lemma we show that the MCS algorithm 
can be viewed as a block algorithm that searches the cliques of KG one after the other. 

Lemma 9. Let , v2,. . . , vn be a perfect elimination ordering obtained by applying 
the maximum cardinality search algorithm to  a connected chordal graph G, and let 
v;, , viz,. , . , v;, be the representative vertices of the cliques IC1, Ii,, . . . , Ii,, respec- 
tively, where il > i2 > - > i,. Then 

for each r ,  1 5 t _< m. 

Proof: Choose T ,  1 5 T 5 m, and assume vJ 4 L;,, i.e., j < i , .  Since clearly 

vi 4 {Via}  U madj(v;,) for each s, 1 5 s 5 r ,  it follows by Lemma G that  vj  ft' U:=lIis. 

Now assume vj E Ci, and for convenience of notation define io := n + 1. Choose s, 
1 5 s 5 r ,  for which i, 5 j < i,-1. If j = i,, then clearly v j  E Zi, = {vj} U madj(vj). 
If i, < j ,  then by repeated application of condition 3 of Lemma 7, we have 

Consequently, v, E lis, and the result follows. @ 

I t  follows from Lemma 9 that the MCS algorithm labels the vertices contiguously 
in blocks as follows: 
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For convenience we define the function clique : V i { 1 ,  . . . , m} by clique(vj) := T 

where io := n + 1 and vj E {q,,v;,+l ,..., ~; , -~ -1}  (i.e., ir 5 j < &-I) .  Clearly 
clique(v) is the lowest index of a clique that contains v; that is, 

clique(v) = min{r I v E ICr}. 

The following lemma is needed t o  provide a means of detecting the edges of a clique 

tree, and it is also critical in the proof of the main result in this subsection. 

Lemma 10. Let 01, 'u2, . . . , v, be a perfect elimination ordering obtained by applying 
the maximum cardinality search algorithm to a connected chordal graph G, and let 
vi,, vi2 , .  . . , virn be the representative vertices of the cliques Iil, I i 2 , .  . . , ICm, respec- 

tively, where il > iz > > i,. For any integer T ,  1 5 T 5 m - 1, there exists an 

integerp, 1 5 p 5 T ,  such that 

Moreover, Equation (4 .6)  is satisfied when p = clique(vj), where vj is the vertex in 

Kr+1 n C;, with smallest label j .  

Proof: Let 1 5 T 5 rn - 1. From Lemma 9 it follows that for 1 5 p 5 T we have 

To prove the result it suffices to  show that Kr+1 n C;, C I<,. Now consider the set 

Kr+1 n L;r, and choose vj  E K r + 1  n C;, with smallest label j .  Clearly n C;, is 
complete in G and moreover 

Choose p ,  1 5 p 5 T ,  for which i, 5 j < 
argument used in the proof of Lemma 9, we have 

(Note that p = clique(vj).) By the same 

Combining (4.7) and (4.8), we obtain the result. I 

From Lemmas 9 and 10 it follows that any MCS clique ordering is also an RIP 
ordering. Furthermore, Lemma 10 shows specifically how to use the clique function to 

obtain the edges of a clique tree in an efficient manner. (This technique for determining 

a clique tree parent function was introduced by Tarjan and Yannakakis [45] and also 
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appears in Lewis et al. [24].) It follows that the MCS algorithm can generate a clique 

tree by 1) detecting the cliques via representative vertiu .:Lemma 8) and 2) choosing 
as the parent of K , + 1  the clique K p  for which p = cfique(vj)  where j is the smallest 

label in Kr+1 n C;,. The following result shows that any clique tree generated in this 

fashion could also be generated by Prim's algorithm applied t 3  WG. 

Theorem 4.3. Any  order in which the cliques are searched by the maximum cardi- 
nafity search algorithm is also an order in which the cliques are searched by Prim's 
algorithm applied to  ~ V G .  

Proof: Let K1, K 2 , .  . . , ICm be an ordering of KG generated by the MCS algorithm. 

Choose r ,  1 5 T <. m - 1. To show that this clique ordering is also a search order for 
Prim's algorithm applied to MJG (see Figure 4.1), it suffices to  show that there exists p 
(1 5 p 5 T )  for which 

To prove that (4.9) holds, choose any s and t for which 1 5 s 5 T < t 5 m. Consider the 

vertex vi E Kr+l n C;, for which j is minimum, and let p = clique(vj). By Lemma 10, 
we can write 

lir+l n I<, = K r + l  n C;, . (4.10) 

Lemma 9 and the discussion following that result imply that qr-l is the vertex from 
KT+l -L;, whose label is maximum. By repeated application of condition 3 of Lemma 7 
(as needed) we obtain the following: 

In consequence we have 

(4.11) 
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contrary to  the maxirnum cardinality search criterion by which the vertices were labeled. 

It follows then that 

Iadj(viT-1) n &,I 2 [lit n & , I -  (4.12) 

Finally, Lemma 9 implies that 

Combining (4.10), (4.11),  (4.12),  and (4.13) shows that (4.9) holds, giving us the result. 

I 

From the results in this subsection, we obtain an expanded version of the MCS 
algorithm, which computes a clique tree in addition to  a PEO. The MCS algorithm is 
shown in Figure 2.3,  and the expanded algorithm is shown in Figure 4.2. We emphasize 

prev-card +- 0; 
Cn+l +- 0; 
s +- 0;  

for i t n to 1 step -1 do 
ET +- 0; 

Choose a vertex v E V - C;+1 for which 
Indj(v) n C;+1 I is maximum; 

a(.) t i;  [v becomes vi] 

if new-card 5 prev-card then 
new-card + I ~ d j ( v j )  fl C;+11; 

[begin new clique] 
s + s + l ;  

lis +- adj( v,) n Ci+l ; [= mtldj( v ) ]  
if new-card # 0 then [get edge to  parent] 

I; t min{j 1 uj E Ks}; 
p +- clique(vk); 
€ 2  +- ET u {l<s, l < p } ;  

end if 
end if 

li, +- lis u {vi}; 

prev-card +- new-card; 

cZique(v;) +- S ;  

.Ci + Ci+1 u {v i } ;  

end for 

Figure 4.2: An expanded version of MCS, which implements Prim’s algorithm in Fig- 
ure 4.1. 

that  the primary purpose of this section is to  establish the connection between the MCS 
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algorithm and Prim’s algorithm (applied to Wc),  and Theorem 4.3 demonstrates that 
the detailed algorithm in Figure 4.2 can be viewed as a special implementation of Prim’s 

algorithm shown in Figure 4.1. Some of the details necessary to  represent a chordal 

graph as a clique tree have been discussed here; for a complete discussion of this topic 

the reader should consult the papers [24,45]. It is worth noting that a clique tree is 

often a much more compact and more computationally efficient data  structure than 
the adjacency lists usually used to represent G. 

5 .  Applications 

In this section we briefly review a few recent applications of chordal graphs and clique 

trees in sparse matrix computations. 

5.1. Terminology 

Let A s  = b be a sparse symmetric positive definite system of linear equations, whose 

Cholesky factorization is denoted by A = LLT.  Direct methods for solving such linear 
systems store and compute only the nonzero entries of the Cholesky factor L. This 
factorization generally introduces fill (or fill-in) into the matrix; that  is, some of the 
zero entries in A become nonzero entries in L .  

Assume the coefficient matrix A is n x n. We associate a graph GA = (V,  EA)  with 

the matrix A in the usual way: the vertex set is given by V = {vl, v2,. . . , vn), with two 
vertices vi and vj joined by an edge in EA if and only if aij # 0. We define the filled 
graph GF = (V, EF)  in precisely the same way, where F := L f L*. Note that GF is 
a chordal suergraph of GA ( E A  C_ E F )  [39], and the order in which the unknowns are 
eliminated is a PEO for the corresponding filled graph GF. 

5.2. Elimination trees 

More commonly used than the clique tree, the elimination tree associated with the 

ordered grap-i G A  has proven very useful in sparse matrix computations. The elimina- 

tion tree TA = (V, E T )  for an irreducible graph GA is a rooted tree defined by a parent 

function as follows: for each vertex a j ,  1 5 j 5 n - 1, the parent of v j  is v,, where the 

first off-diagonal lionzero entry in column j of L occurs in row i > j. If GA is reducible, 

one obtains a forest rather than a tree * topological ordering of TA is any ordering of 
the vertices that numbers each parent a label larger than that of any of its chil- 

dren. The order in which the unknowns are eliminated, for example, is a topological 
ordering of the tree T.4, and, in fact, any topological ordering of the tree is a PEO of 
G p .  Elimination trees evidently were introduced by Schreiber [41], though they had 
earlier been used implicitly in a number of algorithms and applications. Liu [31] has 
provided a survey of the many uses of elimination trees in sparse matrix computations. 
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Liu has also discovered an interesting connection between clique trees and elimi- 

nation trees. To facilitate our discussion of this connection we need to  introduce the 

following concepts and results. If 3 is a finite family of nonempty sets, then the 
intersection graph of 3 is obtained by representing each set in 3 by a vertex and con- 

necting two vertices by an edge if and only if the intersection of the corresponding sets 

is nonempty. A siibtree graph is an intersection graph where 3 is a family of subtrees 
of a specific tree. Buneman [ 5 ] ,  Gavril [12], and Walter [46] independently discovered 
that the set of chordal graphs coincides with the set of subtree graphs in a result that 

further extends Theorem 3.3. 
Theorem 3.2 provides an obvious way to  represent a chordal graph G := Gfi- as a 

subtree graph. Choose any clique tree T,, E 76, and consider the family of subtrees of 
T,t given by 

3 = {K&) 12, E V } .  

Since two vertices are adjacent to one another in G if and only if there exists a clique 
li' E KG to  which both vertices belong, it follows that for each pair of vertices u, v E V ,  
we have ( u , ~ )  E E if and only if the subtree induced by K G ( u )  intersects the subtree 
induced by K c ( v ) .  In consequence, G is a subtree graph for the family of subtrees 3 
in any clique tree T,, E 7~. 

Liu has shown how elimination trees provide another way to  view chordal graphs 

as subtree graphs. Let the row vertex set, denoted Struct(L;,,),  be defined by 

Strucl(L;,*) := {Vj I eaj # 0). 

Liii [27] has shown that each row vertex set Struct(L;,,) induces a subtree of TA rooted 

a t  vi. In consequence, Gz;, is a subtree graph for the family of subtrees induced by the 

row vertex sets of L.  For a full discussion of this result, consult Liu [31]. 

5.3. Equivalent orderings 

The fill added to GA contains precisely the edges needed to  make the order in which 
the unknowns of the linear system are eliminated a PEO of the filled graph GF [39]. 
Usually, the primary objective in reordering the linear system is t o  reduce the storage 
(i.e., fill) and work required by the factorization. Every PEO of GF results in precisely 
the same factorization storage and work requirement [29]. It is common practice in 
this setting to  define all perfect elimination orderings of GF as equivalent orderings. 

Before advanced machine architectures entered the marketplace, there was little 
reason to  consider choosing one PEO of GF over another. Generally, whatever ordering 
was produced by the fill-reducing ordering algorithm (e .g . ,  nested dissection [14,15] or 

minimum degree [17,2G]) was accepted without modification. But this situation has 
changed to  some extent with the advent of vector supercomputers, powerful RISC-based 
workstations, and a wide variety of parallel architectures. Algorithms designed for such 
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machines may benefit by choosing one PEO of GF over the others in order t o  optimize 

some secondary objective function. (There is still the underlying assumption that a 
good fill-reducing ordering is desired, though this assumption is subject t o  question 

more than it once was and deserves further study.) The following summarizes a few 

algorithms designed to produce an equivalent ordering that optimizes some secondary 

objective function. 

Reordering for stack storage reduction One of the first algorithms of this type 

was a simple algorithm due to  Liu 1281 for finding, among all topological orderings of 
the elimination tree, an ordering that minimizes the auxiliary storage required by the 

rnultifrontal factorization algorithm. In addition, Liu [29] gives a heuristic for finding an 
equivalent ordering that further reduces auxiliary storage €or multifrontal factorization. 

Finding an optimal equivalent ordering for this problem is still an open question. 

Jess and Kees reordering Short elimination trees can be useful when the factor- 

ization is to  be performed in parallel. Jess and Kees I221 introduced a simple greedy 

heuristic for finding an equivalent ordering that reduces elimination tree height. Liu [30] 
has shown that the Jess and Kees ordering scheme minimizes elimination tree height 
among all equivalent orderings. Liu and Mirzaian [25] introduced an O(n+ IEpI) imple- 
mentation of the Jess and Kees scheme. Lewis, Peyton, and Pothen [24] used a clique 
tree of GF to  obtain an O ( n  + q)-time implementation of the Jess and Kees algorithm 

where q = Cgl l.K;l, which in practice is substantially smaller than IEFI. Because a 
PEO of GF is known u priori, a clique tree of GF can be obtained in O ( n )  time using 

output from the symbolic factorization step of the solution process [24]. 

A block Jess and Kees reordering Blair and Peyton [4] have studied a block form 

of the Jess and Kees algorithm that generates a clique tree T E 7~ of minimum diame- 
ter. The primary motivation for this algorithm is to  minimize the number of expensive 
communication cal ls to  the general router on a fine-grained parallel machine [19]. The 

time complexity of their algorithm is also O(n  + g) in the sparse matrix setting, where 

a PEO is known a priori. A similar algorithm motivated by the same application was 

given by Gilbert and Schreiber [19]. 

Partitioning (and reordering) for parallel triangular solution A related prob- 

lem is the following: Find a partition of the columns in the factor L with as few members 

as possible, such that for each partition member, the elementary elimination matrices 

associated with that member can be multiplied together without increasing the storage 

requirement for the factor. Such a partition and its associated PEO is desirable for 
implementing sparse triangular solution on a fine-grained massively parallel machine. 
Pothen and Alvarac :37] have solved this problem when the ordering is restricted 

to topological orderirigs of the elimination tree. Peyton, Pothen, and Yuan [36] have 
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developed an O(n + IEpI) algorithm that solves the problem for the larger set of all 
equivalent orderings; they are also working on an O ( n  + q )  clique-tree-based algorithm 

for solving the problem [35]. 

5.4. Clique trees and the multifrontal method 

Block algorithms have become increasingly important on advanced machine architec- 

tures, both in dense and sparse matrix computations [ll]. The multifrontal factoriza- 

tion algorithm [8,32] is perhaps the canonical example in sparse matrix computation. 

That clique trees, which represent chordal graphs in block form, might be a useful tool 
in explaining the multifrontal method is not at all surprising. 

Clique trees provide the framework for presenting the multifrontal algorithm in Pey- 
ton, Pothen, and Sun [34,38]. The clique tree is rooted and ordered by a postordering 

of the tree, and each clique K has associated with it a frontal matrix F ( K ) .  Let K 
and P be respectively a clique and its parent in the clique tree. The columns of F ( K )  
are partitioned into two sets: the factor columns of F ( K )  correspond t o  the vertices 

in K \ P, and the update columns of F ( K )  correspond to  the vertices in K n P. For 

further details consult the two references given above. 

Due to  its simplicity, the supernodal elimination tree is more commonly used in 
descriptions of the multifrontal algorithm. Liu’s survey article [32], for example, uses 

the supernodal elimination tree to  describe the block version of the algorithm. 

5.5. Future progress on the “ordering” problem 

Finally, we anticipate that a solid understanding of chordal graphs and clique trees will 

play a role in future progress in the difficult area of analyzing and understanding order- 

ing heuristics. The problem of finding a fill-minimizing ordering of an arbitrary graph 
is NP-hard [48]. Consequently, progress in understanding the “ordering” problem will 
probably require a better understanding of the broad but nontheless highly restricted 
classes of graphs GA that  arise in various application areas. If there is some progress 

in that area, then we further speculate that creating and/or analyzing ordering algo- 

rithms for these classes of graphs will involve many interesting properties and features 

of chordal graphs and clique trees. Some will be the results presented in this paper; 

perhaps others will be new, or a t  least a fresh look at  familiar concepts. 
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