

...

ORNL/TM-12203

Engineering Physics and Mathematics Division

AN INTRODUCTION TO CHORDAL GRAPHS
AND CLIQUE TREES

Jean R. S. Blair t
Barry W. Peyton 1

t Department of Computer Science
University of Tennessee
Knoxville, T N 37996-1301

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

1 Mathematical Sciences Section

Date Published: November 1992

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
man aged by

Martin Marietta Energy Systems, Iiic.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

Contents

1 Introduction . 1
2 Chordalgraphs . 1

2.1 Graph terminology . 2
2.2 Minimal vertex separators . 3
2.3 Perfect elimination orderings . 4

3 Characterizations of clique trees . 8
3.1 Definition using the clique-intersection property 9

3.4 The maximum-weight spanning tree property 14

4 Clique trees, separators. and MCS revisited 17
4.1 Clique tree edges and minimal vertex separators 17

4.2.2 MCS as a block algorithm . 23

2.4 Maximum cardinality search . 6

3.2 The induced-subtree property . 12
3.3 The running intersection property . 13

3.5 Summary . 16

4.2 MCS and Prim’s algorithm . 19
4.2.1 Detecting the cliques . 21

5 Applications . 27
5.1 Terminology . 27
5.2 Elimination trees . 27
5.3 Equivalent orderings . 28
5.4 Clique trees and the multifrontal method 30
5.5 Future progress on the “ordering” problem 30

6 References . 30

AN INTRODUCTION TO CHORDAL GRAPHS
AND CLIQUE TREES

Jean R. S. Blair
Barry W. Peyton

Abstract

Clique trees and chordal graphs have carved out a niche for themselves in recent
work on sparse matrix algorithms, due primarily to research questions associated
with advanced computer architectures. This paper is a unified and elementary
introduction to the standard characterizations of chordal graphs and clique trees.
The pace is leisurely, as detailed proofs of all results are included. We also briefly
discuss applications of chordal graphs and clique trees in sparse matrix computa-
tions.

- v -

1. Introduction

It is well known that chordal graphs model the sparsity structure of the Cholesky
factor of a sparse positive definite matrix [39]. Of the many ways to represent a
chordal graph, a particularly useful and compact representation is provided by clique
trees [24,45].l Until recently, explicit use of the properties of chordal graphs or clique
trees in sparse matrix computations was rarely needed. For example, chordal graphs
are mentioned in a single exercise in George and Liu [16]. However, chordal graphs

and clique trees have found a niche in more recent work in this area, primarily due

to various research questions associated with advanced computer architectures. For
instance, the multifrontal method [8], which was developed to obtain good performance
on vector supercomputers, can be expressed very succinctly in terms of a clique tree
representation of the underlying chordal graph [34,37].

This paper is intended as an update to the graph theoretical results presented and

proved in Rose [39], which predated the introduction of clique trees. Our goal is to

provide a unified introduction to chordal graphs and clique trees for those interested
in sparse matrix computations, though we hope it will be of use t o those in other
application areas in which these graphs play a major role. We have striven to write

a primer, not a survey article: we present a limited number of well known results of
fundamental importance, and prove all the results in the paper. The pacing is intended

to be leisurely, and the organization is intended to enable the reader to read selected
topics of interest in detail.

The paper is organized as follows. Section 2 contains the standard well known char-

acterizations of chordal graphs and presents the maximum cardinality search algorithm
for computing a perfect elimination ordering. Section 3 presents several characteriza-

tions of the clique trees of a chordal graph, including a maximum spanning tree property

that is probably not as widely known as the others are. Section 4 ties together certain

concepts and results from the previous two sections: it identifies the minimal vertex
separators in a chordal graph with edges in any one of its clique trees, and it also shows

that the maximum cardinality search algorithm is just Prim's algorithm in disguise.

Finally, Section 5 briefly discusses recent applications of chordal graphs and clique trees

to specific questions arising in sparse matrix computations.

2. Chordal graphs

An undirected graph is chordal (triangulated, rigid circuit) if every cycle of length

greater than three has a chord: namely, an edge connecting two nonconsecutive ver-

'ces on the cycle. After introducing graph notation and terminology in Section 2.1,
.e present two standard characterizations of chordal graphs in Sections 2.2 and 2.3.

'All technical terms used in this section are defined later in the paper.

- 2 -

The latter of these two sections shows that chordal graphs are characterized by posses-

sion of a perfect elimination ordering of the vertices. The maximum cardinality search
algorithm is a linear-time procedure for generating a perfect elimination ordering. Sec-
tion 2.4 describes this algorithm and proves it correct. The necessary definitions and
references for each of these results are given in the appropriate subsection.

2.1. Graph terminology

We assume familiarity with elementary concepts and definitions from graph theory, such

as tree, edge, undirected graph, connected component, etc. Golumbic [20] provides

a good review of this material. Here we introduce some of the graph notation and
terminology that will be used throughout the paper. Other concepts from graph theory
will be introduced as needed in later sections of the paper.

We let G = (V, E) denote an undirected graph with vertex set V and edge set E .
The number of vertices is denoted by n = IVI and the number of edges by e = /El. For
any vertex set S C V , consider the edge set E (S) E. E given by

E (S) := { (u p) E E I u,v E S}.

We let G (S) denote the subgraph ofG induced by S , namely the subgraph (S, E (S)) . At
times it will be convenient t o consider the induced subgraph of G obtained by removing

a set of vertices S C V from the graph; hence we define G \ S by

G \ S := G(V - S) .

Two vertices u, v E V are said to be adjacent if (u , v) E E . Also, the edge (u , v) E E
is said to be incident with both vertices u and v. The set of vertices adjacent t o v in G
is denoted by adjc(w). Similarly, the set of vertices adjacent to S C V in G is given by

a d j , (S) := {v E V 1 v S and (P L , ~) E E for some vertex u E S}.

(The subscript G often will be suppressed when the graph is known by context.) An

induced subgraph G (S) is complete if the vertices in S are pairwise adjacent in G. In

this case we also say that S is complete in G.
We let [vo, V I , , . . , vk] denote a simple path of length b from DO to V I , in G, i.e.,

v; # vj for i # j and (vi, v;+1) E E for 0 5 i 5 b - 1. Similarly, [vo, v1,. . ., vk, vo]
denotes a simple cycle of length k t 1 in G. Finally, a chord of a path (cycle) is any
edge joining two nonconsecutive vertices of the path (cycle).

Definition 1. An undirected graph G = (V, E) is chordal (triangulated, rigid circuit)
if every cycle of length greater than three has a chord.

Clearly, any induced subgraph of a chordal graph is also chordal, a fact that is

- 3 -

useful in several of the proofs that follow.

2.2. Minimal vertex separators

A subset S C V is a separator of G if two vertices in the same connected component

of G are in two distinct connected components of G \ S . If a and b are two vertices

separated by S then S is said to be an ab-separator. The set S is a minimal separator

of G if S is a separator and no proper subset of S separates the graph; likewise S is a

minimalab-separatorif S is an ab-separator and no proper subset of S separates a and b
into distinct connected components. When the pair of vertices remains unspecified, we
refer to S as a minimal vertex separator. It does not necessarily follow that a minimal

vertex separator is also a minimal separator of the graph. For instance, in Figure 2.1
the set S = { b , e] is a minimal clc-separator; nevertheless, S is not a minimal separator
of G since { e } C S is also a separator of G. Minimal vertex separators are used t o

Figure 2.1: Minimal dc-separator (b,e} is not a minimal separator of G.

characterize chordal graphs in Theorem 2.1, which is due to Dirac [6]. The proof is
taken from Peyton [34], which, in turn, closely follows the proof given by Golumbic [20].

Theorem 2.1 (Dirac [SI). A graph G is chordal if and only if every minima) vertex
separator of G‘ is complete in G.

Proof: Assume every minimal vertex separator of G is complete in G, and let p =
[VO, . . . , vk, vo] be any cycle of length greater than three in G (i.e., k 2 3). If (210, ‘ua) E E,
then p has a chord. If not, then there exists a wow2-separator S (e.g., S = V - {VO, 212));

furthermore, any such separator must contain v1 and ‘uz for some i, 3 5 i 5 k. Choose
S to be a minimal vou2-separator so that S, by assumption, is complete in G. It follows

that (VI, wt) is a chord of p, which proves the “if” part of the result.
KOW assume C is chordal and let S be a minimal &separator of G. Let G (A)

and G (B) be the connected components of G \ S containing a and b, respectively. It

suffices to show that for any two distinct vertices in S, say 5 and y, we have (t, y) f E .
Since S is minimal, each vertex v E S is adjacent to some vertex in A and some

vertex in B; o’ ’ erwise, S - {v} would be an ab-separator contrary to the minimality
of S. Thus, titci-e exist paths p = [z , a l , . . . ,a , , y] and Y = [y ,b l , . . ., bt, z] where each

ai E A and each b; E B (see Figure 2.2). Further, choose p and v so that they are

- 4 -

Figure 2.2: Cycle in proof of Theorem 2.1 that induces chord (2, y).

of the smallest possible length greater than one, and combine them t o form the cycle

u = [z, al , . . . , a , , y, b l , . . . , bt, z]. Since G is chordal and u is a cycle of length greater

than three, c must have a chord. Any chord of u incident with ai, 1 5 i 5 T , would

either join a; to another vertex in p contrary to the minimality of T , or would join a; to
a vertex in B , which is impossible because S separates A from B in G. Consequently,

no chord of c7 is incident with a vertex a;, 1 5 i 5 T , and by the same argument no

chord of the cycle is incident with a vertex b j , 1 5 j 5 t . It follows that the only
possible chord is (2, y). a

Remark In reality, r = t = 1, otherwise [z,a1,. . . , a , , y, z] or [y , b l , . . . , bt , z, y]
is a chordless cycle of length greater than three.

2.3. Perfect elimination orderings

We need the following terminology before we can state and prove the ma.in result in

this section. An ordering a of G is a bijection Q : V + { 1,2 , . . . , n}. Often it will be

convenient t o denote an ordering by using it to index the vertex set, so that c.(vi) = i
for 1 5 i 5 n where i will be referred t o as the label of v;. Let v1, v2,. . . , vn be an
ordering of V . For 1 5 i 5 n, we define C; to be the set of vertices with labels greater
than i - 1:

c; := {w: ,v I+~ , - . . ,vn} .

The monotone adjacency set of v;, denoted madjG(v;), is given by

- 5 -

Again, the subscript G often will be suppressed where the graph is known by context.

A vertex v is simpIicia2 if adj(v) induces a complete subgraph of G. The ordering cy

is a perfect eIirnination ordering (PEO) if for 1 ,< i 4 n, the vertex vi is simplicial

in the graph G(C;). As shown below in Lemma 1, every nontrivial chordal graph has
a simplicial vertex (actually, a t least two). Theorem 2.2, which states that chordal

graphs are characterized by the possession of a PEO, follows easily from Lemma 1.
The proofs are again taken from Peyton [34], which, in turn, closely follow argunients

found in Golumbic 1201.

Lemma 1 (Dirac [S]). Every chordal graph G h a s a simplicial vertex. If G is not
complete, then it has two nonadjacent simplicial vertices.

Proof: The lemma is trivial if G is complete. For the case where G is not complete
we proceed by induction on the number of vertices n. Let G be a chordal graph with
n 2 2 vertices, including two nonadjacent vertices a and b. If n = 2, both vertices of the
graph are simplicial since both are isolated (Le., @ (a) = adj(b) = 0). Suppose n > 2
and assume that the lemma holds for all such graphs with fewer than n vertices. Since a

and b are nonadjacent, there exists an ab-separator (e.g., the set V - { a , b }) . Suppose S
is a minimal ab-separator of G, and let G (A) and G(B) be the connected components
of G \ S containing a and b , respectively. The induced subgraph G(A U S) is a chordal

graph having fewer vertices than G; hence, by the induction hypothesis one of the

following must hold: Either G(A U S) is complete and every vertex of A is a simplicial
vertex of G (A U S), or G (A U S) has two nonadjacent Simplicial vertices, one of which
must be in A since, by Theorem 2.1, S is complete in G. Because @ , (A) C A U S,
every simplicial vertex of G (A U S) in A is also a simplicial vertex of G. By the same

argument, B also contains a simplicial vertex of G, thereby completing the proof.

Theorem 2.2 (Fulkerson and Gross [lo]). A graph G is chordal if and only if G
has a perfect elimination ordering.

Proof: Suppose G is chordal. We proceed by induction on the number of vertices n

to show the existence of a PEO of G. The case n = 1 is trivial. Suppose n > 1 and
every chordal graph with fewer vertices has a PEO. By Lemma 1, G has a simplicial

vertex, say v. Now G \ {v} is a chordal graph with fewer vertices than G; hence, by
induction it has a PEO, say p. Lf a orders the vertex v first, followed by the remaining

vertices of G in the order determined by p, then Q is a PEO of G.
Conversely, suppose G has a PEO, say cy, given by v1, 1.9,. . . , v,. We seek a chord of

an arbitrary cycle p in G of length greater than three. Let v, be the vertex on p whose

label i is smaller than that of any other vertex on p. Since Q is a PEO, rnadj(v;) is
complete; whence p has at least one chord: namely, the edge joining the two neighboring
vertices of vg in p. I

- 6 -

2.4. Maximum cardinality search

Rose, Tarjan, and Lueker [40] introduced the first linear-time algorithm for producing

a PEO, known as the lexicographic breadth first search algorithm. In a set of unpub-

lished lecture notes, Tarjan [43] introduced a simpler algorithm known as the mnzinivm
cardinality search (MCS) algorithm. Tarjan and Yannakakis [45] later described MCS

algorithms for both chordal graphs and acyclic hypergraphs. The MCS algorithm for

chordal graphs orders the vertices in reverse order beginning with an arbitrary ver-
tex E V for which it sets a (~) = n. At each step the algorithm selects as the next
vertex to label an unlabeled vertex adjacent t o the largest number of labeled vertices,
with ties broken arbitrarily. A high-level description of the algorithm is given in Fig-
ure 2.3. We refer the reader to Tarjan and Yannaka.kis [45] for details on how to

implement the algorithm to run in O (n + e) time.

Ln+l +- 0;
for i c n to 1 step -1 do

Choose a vertex v E V - Li+l for which
Jadj(v) n L;+1J is maximum;

a (u) t i; [v becomes v;]
Li + u {vi};

end €or

Figure 2.3: Maximum cardinality search (MCS).

The following lemma and theorem prove that the MCS algorithm produces a PEO.
The lemma provides a useful characterization of the orderings of a chordal graph that

are not perfect elimination orderings. Edelman, Jamison, and Shier [9,42] prove sim-

ilar results while studying the notion of convexity in chordal graphs. Theorem 2.3 is
then proved by showing that every ordering that is not a PEO is also not an MCS

ordering. The proof is taken from Peyton [34]. Later in Section 4.2, we will provide
a more intuitive view of how the MCS algorithm works: it can be viewed as a specia.1
implementation of Prim’s algorithm applied to the weighted clique intersection graph
of G (defined in Section 3.4).

Lemma 2. An ordering a o f the vertices in a graph G is not a perfect elimination
ordering if and only i f for some vertex v, there exists a chordless path o f length greater
than one from v = a-l(i) to some vertex in Li+l through vertices in V - L;.

Proof: Suppose a is not a PEO. There exists then by Lemma 1 a vertex u E V for

which madj(v) is not complete in G; hence, there exist two vertices u, w E madj(u)
joined by no edge in E . Without loss of generality assume that i = a (u) < cy(zv).

- 7 -

Then [o, u, w] is a chordless path of length two from 2, = a-'(i) to w E Ci+l through

U E V - L ; .

Conversely, suppose there exists a chordless path p = [uo, u1, . . . , ~ r] of length T 2 2
from uo = a-l(i) t o u, E &+I through vertices uj E V - C;, 1 5 j 5 T - 1. Let u k ,

where 1 5 k 5 T- 1, be the internal vertexin p whose label l y (u k) is smaller than that

of any other internal vertex in p. Then m a d j (u k) includes two nonadjacent vertices:

namely, the two neighboring vertices of ?Ik in p. It follows that cy is not a PEO. 1

Theorem 2.3 (Tarjan [43], Tarjan and Yannakakis [GI). Every maximum car-
dinality search ordering of a chordal graph G is a perfect elimination ordering.

Proof: Let CY be any ordering of a chordal graph G that is not a PEO. We will show

that the ordering CY cannot be generated by the MCS algorithm.

of length T 2 2 from uo = CY-'(;) to ur E through vertices uj E V - Li,
1 5 j 5 r - 1. (See Figure 2.4.) Choose uo so that the label i = a (u 0) is maxi-
mum among all the vertices of G for which such a chordless path exists.

To show that Q is not an MCS ordering it suffices to show that there exists some
vertex w E V - C;+1 for which ladj(w) n C;+ll exceeds ladj(uo) n &+I/. We will show
that the vertex ur-l E p is indeed such a vertex. Note that ad . (uo)nL~+l and rnadj(u0)
are by definition identical, and thus it suffices to show that

By Lemma 2, for some vertex uo there exists a chordless path p = [UO, u1,. . . , Ur-17 u r]

For the trivial case mudj(u0) = 0, the theorem holds since u,-1 is adjacent to

u, E &+I. Assume instead that madj(u0) # 8, and choose a vertex z E madj(u0). To
see that 5 is also adjacent to u,,l, consider the path y = [z, u g , . . . , ur-l, u,] pictured
in Figure 2.4. The maximality of i implies that every path of length greater than one
having the following two properties will have a chord: a) the endpoints of the path are

both numbered greater than i, and b) the interior vertices are numbered less than the
minimum of the endpoints. The path y satisfies these two properties and hence has a

chord. Moreover, since p = [uo, 211,. . . , 7 4 1 has no chords, every chord of 7 is incident

with 5. Let uk be the vertex in y adjacent to z which has the largest subscript. If
k # r then [z , U k , . ..,u,.] is a chordless path, again contrary to the maximality of i;
hence (z,~,) E E .

It follows that cr = [z, uo, . , . , u,.-1, u,, z] is a cycle of length greater than three in G
(recall that T 2 2). Since G is chordal, CT must have a chord, and, as argued above, any
such chord must be incident with z. Let ut be the vertex in u with the highest subscript

other than T, for which (z, ut) E E . If t # T - 1, then [z, ut,. . . , u,, z] is a chordless cycle
of length greater than 3, contrary to the chordality of G. In consequence, (5, u r - l) E E
for all 2 E madj(u0). nut u,-1 is also adjacent t o u, E Cr+l - r n a d j (u ~) , whence (2.1)
holds, completing the proof.

- 8 -

Figure 2.4: Illustration for the proof of Theorem 2.3. The dark solid edges exist by
hypothesis; existence of the lighter broken edges is argued in the proof and the remark
that follows it.

Remark In the preceding proof the argument leading to the inclusion of (2, u,--1)

in E can be repeated for every edge (2, uj), 1 5 j 5 r - 2. In consequence we have

Statement (2.1) implies that if the MCS algorithm “tried” t o generate a, then as the
vertex to be labeled with i is chosen, the priority of u,-1 would be greater than that

of uo. Similarly, (2.2) implies that the priority of each vertex u j (1 F: j 5 T - 2) would
be at least as great as that of pio.

3. Characterizations of clique trees

Let G = (V , E) be any graph. A clique of G is any rnazimal set of vertices that is

complete in 6, and thus a clique is properly contained in no other clique. We will

refer to a “submaximal clique” as complete in G, as we did in the previous section.

Henceforth ?CG = { I < l , I<*, . . . , I<,} denotes the set containing the cliques of G, and m
will be the number of cliques.

The reader may verify that the graph in Figure 3.1 is a chordal graph with four

cliques, each of size three. The graph in Figure 3.1 will be used throughout this section

t o illustrate results and key points. For convenience we shall refer to the vertices of

this graph as 01 , v2, . . . , v7; e.g., the vertex labeled “6” will be referred t o as v6. Note
that the labeling of the vertices is a PEO of the graph.

For any chordal graph G there exists a subset of the set of trees on Kc known as

clique trees. Any one of these clique trees can be used to represent the graph, often in
a very compact and efficient manner [24,46], as we shall see in Section 4. This section
contains a unified and elementary presentation of several key properties of clique trees,
each of which has been shown, somewhere in the literature, to characterize the set of

- 9 -

Figure 3.1: Chordal graph with seven vertices and four cliques.

clique trees associated with a chordal graph.
The notion of clique trees was introduced independently by Buneman [5], Gavril[12],

and Walter [46]. The property we use to introduce and define clique trees in Section 3.1
is a simple variant of one of the key properties introduced in their work. We use this
variant because, in our experience, it is more readily apprehended by those who are

studying this materid for the first time. Section 3.2 presents the short argument needed
to show that the more recent variant is equivalent to the original.

Clique trees have found application in relational databases, where they can be

viewed as a subclass of acyclic hypergmzphs, which are heavily used in that area. Open

problems in relational database theory motivated the pioneering work of Berns tein and
Goodman [2], Beeri, Fagin, Maier, and Yannakakis [l], and Tarjan and Yannakakis [45].
Our two final characterizations of clique trees, presented in Sections 3.3 and 3.4, are
based on results from these papers. Section 3.5 summarizes these results, and also
illustrates these results in negative form using the example in Figure 3.1.

Throughout this section it will be convenient t o assume that G is connected. All
the results can nevertheless be applied to a disconnected graph by applying them

successively to each connected component; thus no loss of generality is incurred by

the restriction. Note also that Sections 3.2, 3.3, and 3.4 can be read independently

of one another, but any of these three subsectioiis should be read only after reading

Section 3.1. As i n the previous section, needed definitions and specific references to
the literature are given in the appropriate subsections.

3.1. Definition using the clique-intersection property

Assume that G is a connected graph (not necessarily chordal), and consider its set of
maximal cliques KG. In this section we consider the set of trees on 1 c ~ that satisfy the

following clique-intersection property:

For every pair of distinct cliques K , I<' E I C G , the set K n Ii" is contained

in every clique on the path connecting I< and IC' in the uee.

- 1 0 -

As an example of a tree that satisfies the clique-intersection property, consider the tree
shown in Figure 3.2, whose vertices are the cliques of the chordal graph in Figure 3.1.
The reader may verify that this tree indeed satisfies the clique-intersection property:

Figure 3.2: A tree on the cliques of the chordal graph in Figure 3.1, which satisfies the
clique-intersection property.

for example, the set IC4 n l i 2 = (217) is contained in lil, which is the only clique on the
path from I i 4 to l i z in the tree. The reader may also verify that the only other tree

on {Kl, K2, K 3 , I i 4) that satisfies the clique-intersection property is obtained from the
tree in Figure 3.2 by replacing the edge (I i 3 , l i z) with (K 3 , K1).

We will show in Theorem 3.1 below that G is chordal if and only if there exists a tree

on ICG that satisfies the clique-intersection property. For any given chordal graph G,
we shall let 7zt denote the lionempty set of trees T = (ICG,ET) that satisfy the clique

intersection property, and we shall refer to any member of 7$ as a clique tree of the

underlying chordal graph G. In Section 3.2, we prove the original version of this result,

which was introduced independently by Buneman [5], Gavril [12], and Walter [46].
To prove the main result of this subsection, we require two more definitions and a

simple lemma. A vertex K in a tree T is a leaf if it has precisely one neighbor in T
(i.e., ladjT(lC)l = 1). We let ICc(v) K G denote the set of cliques containing the

vertex v. The following simple characterization of simplicial vertices has been useful in

various applications. This result has been used widely in the literature [7,19,23,24,45],
and has been formally stated and proven in at least two places [23,24].

Lemma 3. A vertex is simplicial if and only if it beloiigs to precisely one clique.

Proof: Suppose a vertex v belongs to two cliques li,li' E I C G . Maximality of the
cliques implies the existence of two distinct nonadjacent vertices u E K - li' and
u' E A'' - li. Since both u and u' are adjacent to o, it follows that o is not simplicial.

Assume now that the vertex o belongs to one and only one clique li E KG. Note
that v is adjacent to a vertex u # v if and only if there exists a clique of G to which

both 'II and v belong. Consequently ad j (v) = li - {v}, whence is simplicial.

- 11 -

The first part of the following proof closely resembles the argument given by Gavril[12]

to prove a result that shall be presented in the next section. The second half was im-

provised for this paper, and resembles the first half in many of its features.

Theorem 3.1. A connected graph G is chordal i f and only i f there exists a tree T =
(XG, E T) for which the clique-intersection property holds.

Proof: We proceed by induction on the number of vertices n to show the 4 L ~ n l y if”

part. The base step n = 1 is obvious. For the induction step, let G be a chordal

graph with n 2 2 vertices and assume the result is true for all chordal graphs having
fewer than n vertices. By Lemma 1, G has a simplicial vertex, say v. Let K be the

single clique of G that contains u (see Lemma 3), and consider the induced subgraph
G’ = G\{v}. Since G’ is a chordal graph with n- 1 vertices, by the induction hypothesis

there exists a tree T’ = (K G I , € ~) that satisfies the clique-intersection property.

To complete the proof of the “only if“ part, there are two cases to consider. First,

suppose K’ = K - {v} remains maximal in G’ (i.e., K’ E K Q) . It is trivial to show

that ICG~ = KG U {IC’} - {A’}, and we leave it for the reader to verify this. It follows

that the only difference between the cliques of G and G‘ is the presence in G of the
simplicial vertex v in K and the absence of v from the corresponding clique li’ of G’. In
consequence, the intersection of any pair of cliques in G is identical to the intersection
of the corresponding pair in G’. Let T be the tree on Kc obtained from T’ by replacing
K’ with K . Since T’ has the clique-intersection property, it follows that T has this
property as well, thereby completing the argument foi the first case.

Now, suppose S’ = K - { u } is not a maximal clique in G’ (Le., S’ # K Q) . Since

n 2 2 and G is connected, v is not an isolated vertex, and we have

Since S’ is complete in G’, there exists a clique P E ?&I = 1cc - {IC} for which

S’ C P. (As before, we leave it for the reader to verify that KG, = K;c - {li}.) Let
T be the tree on KG obtained by adding the clique fi and the edge (I<,P) to T’. We
now verify that T satisfies the clique-intersection property. Because T‘ satisfies the

clique-intersection property, the set Ir‘l n K z is contained in every clique on the path

from IC1 t o I i z in T whenever neither K1 nor li’z is li. Consider now the set K n Ii”
where I<‘‘ E KG - {IC} = KG, . Since K - {v} C P and v belongs to no clique in

XG - { I C } , it follows that A’’’ n Ii C P. Because T’ satisfies the clique-intersection
property, the set li n X” = P n li” is contained in every clique on the path from A’ t o

ET” in T , and T therefore satisfies the clique-intersection property as well.
To prove the “if” part, let G = (V, E) be a graph and suppose there exists a tree

T = (?CG,€T) that sat; ‘w the clique-intersection property. Again we proceed by
induction on n to show t m t G is chordal. The base step n = 1 is obvious. For the
induction step, let G be a graph with n 2 2 vertices and assume the result is true for
all graphs having fewer than n vertices.

- 12 -

Let K and P be respectively a leaf of T and its sole neighbor (i.e., “parent”) in T .
By maximality of the cliques there exists a vertex v E li - P . The vertex v moreover

cannot belong to any clique li‘ E Icc- {K, P}, for were it otherwise the clique P, which
is on the path from K to IC’ in T , would not contain the set K n 1;’. Consequently v

belongs to no other clique but I<, whence by Lemma 3 it is a simplicial vertex of G.
P,

then the “reduced” tree 7’‘ for G’ is obtained simply by replacing K with h” in T ; if
K‘ C P, then T’ is obtained by removing from T the vertex li and the single edge
(K , P) incident with it in T . As before, in the first case, ~ C G , = K G U {K’} - {K}; in

the second case, ~ C G , = 1cc - { I C } . In either case, it is trivial to verify that the tree
T’ satisfies the clique-intersection property. From the induction hypothesis it follows
that G‘ is chordal. Let /3 be any PEO of G‘. A PEO of G can then be obtained by
ordering v first, followed by the remaining vertices of G in the order determined by p.
Thus by Theorem 2.2, G is also chordal, giving us the result. I

Consider the reduced graph G‘ = G \ {v} and let K‘ = K - {v}. If K’

3.2. The induced-subt ree property

In this section we are concerned with the set of all trees on 1ca that satisfy the induced-
subtree property:

For every vertex v E V , the set X G (V) induces a subtree of T .

We shall let 7$t denote the set of all trees on ?CG that satisfy the induced-subtree

property.

Consider again the clique tree in Figure 3.2. Observe that each of the sets I c ~ (v 3) =
{ K 3 } and l C ~ (v 6) = {ICl, K 2 , ICJ} induces a subtree of this tree. The reader may verify
that this tree satisfies the induced-subtree property. It is trivial t o prove that the clique-
intersection and induced-siibtree properties are indeed equivalent.

Theorem 3.2. For any connected graph G, we have 7Zt = 7 G t .

Proof: To see that C 7gt, let Tct E 7 G t and consider the set of cliques I cc (v)
for some vertex v E V . Choose two cliques fi, Ii‘ E K G (v) . Since the set K n h”
lies in every clique on the path joining I< and Ii‘ in Tct, it follows that the vertex

v E K n Ii’ also lies in each clique along this path. In consequence, the induced

subgraph Tct(lCG(v)) is connected and hence a subtree of G. It follows that T,, E 7gt,
whence 7Zt 5 7kt, as desired.

To see that I F C ICt , 1 et Tist E 7$t. Choose two cliques I<,IC’ E KG, and
consider the set K n IC‘. For each vertex v E A’ n A’’, the set K G (v) induces a subtree
of Tist (i.e., a connected subgraph of Tist); and thus the vertex v lies in each clique
along the path joining A’ and Ii’ in Tist. It follows that ?;st E 7Gt, whence 7gt S 72t ,
as desired. I

We thus have the following well known result from the literature.

- 1 3 -

Theorem 3.3 (Buneman [5] , Gavril [12], Walter [46]). A connected graph G is
chordal i f and only i f there exists a tree T = (KG, E T) for which the induced-subtree
property holds.

Proof: The result follows immediately from Theorems 3.1 and 3.2. 1

3.3. The running intersection property

A total ordering of the cliques in KG, say K 1 , K z , . . . , ICrn, has the running intersection
property (RIP) if for each clique Kj, 2 5 j 2 rn, there exists a clique Iii, 1 _< i 5 j - 1,
such that

rij n (K l u K2 u , a u c ICi. (3.1)

For any RIP ordering of the cliques, we construct a tree Trip on ICG by making each
clique K , adjacent to a “parent” clique I<; identified by (3.1). (Since more than one

clique K i , 1 _< i 5 j - 1, may satisfy (3.1), the parent may not be uniquely determined.)
We let 72 be the set containing every tree on ?CG that can be constructed from an

RIP ordering in this manner. We define a reverse topological ordering of any rooted

tree as an ordering that numbers each parent before any of its children. Finally, note

that any RIP ordering is a reverse topological ordering of a rooted tree constructed

from the ordering in the manner specified above.
The ordering fC1, ICz, Ji3, K 4 of the cliques shown in Figure 3.1 is an RIP ordering;

a corresponding RIP-induced parent function is displayed in Figure 3.3. Note that the

parent function specifies precisely the edges of the clique tree in Figure 3.2. Indeed, we

can show that for any connected graph G, we have 7;’ = 7zt.

4-

Figure 3.3: Clique tree in Figure 3.2 is an RIP tree. Arrows point from child to parent.

Theorem 3.4 (Beeri, Fagin, Maier, Yannakakis [l]). For any connected graph G,
we have 12 = 72t.

- 14 -

Proof: We first show that 7Zt C 7;”. Let T,, E 7Zt; choose R E 1 c ~ ; and root

TCt a t R . Consider any reverse topological ordering R = Iil, K 2 , . . . , Ii, of the rooted
tree Tct. For any clique lij, 2 5 j <_ m, let K, be its parent clique in the rooted tree

(whence 1 5 p 5 j - 1). Now, for 1 5 i 5 j - 1, the clique li; cannot be a descendant
of Kj, hence K, is on the path in TCt connecting l i j and li;. The clique-intersection

property implies that Kjnlii S. K,. This implies that ~ ~ j n (I i , u ~ ~ 2 U . . . U h ‘ j - l) E K,;
furthermore, K, cannot be a subset of K j by maximality, so the containment is proper.

Thus, Tct E 7Gp, and we have 7Gt 2 7;’.
To see that 7;” C 7Zt, consider a tree T = (K G , €) 4 I$. We will show that

T 4 7;”. Since T I$ 7 G t , there exists then a pair of distinct cliques K,K‘ E 1 c ~ such
that the set KnK’ is not contained in a t least one clique on the path connecting A’ and

IC’ in the tree. Choose two such cliques #, K’ E 1 c ~ that minimize the length of the

path from li to li‘ in T. The key observation on which our argument depends is that
the set KnK‘ belongs t o no clique on the path connecting K and li’ in the tree, except

K and li’. Let K1, K z , . . . , I<, be any reverse topological ordering of T for arbitrary

root K1 E 1 c ~ . It suffices to show that (3.1) does not hold for some parent-child pair
in T .

Consider the path p = [li = A’;,, K;, , . . . , I<,= = li’] in T. Let K;, be the clique

with lowest index among the cliques in p, and without loss of generality assume that

io > is. Since under the given reverse topological ordering K;, is a proper descendant
of K ; , E p, the clique Ki, is necessarily the parent of K;, in the rooted tree, and hence

io > il. Our choice of li (= Ki,) and Ii‘ (= A’;$) implies that (a) s 2 2, and (b)

K;, n Kil,

whence (3.1) does not hold for the parent-child pair l i i l and K;,, which completes the

proof. I

K;, for each T , 1 5 T 5 s - 1. In consequence, we have K;, n 1iis

Remark In the preceding proof, the argument that I,“, C 7;’ verifies that any

reverse topological ordering of a clique tree T,, E 7Gt is an RIP ordering of the cliques.

3.4. The maximum-weight spanning tree property

Associated with each chordal graph G is a weighted clique intersection graph, WG,
defined as follows. The vertex set of WG is the set of cliques K G . Two distinct cliques

K,K’ E ?CG are connected by an edge if and only if their intersection is nonempty;
moreover, each such edge (li, li’) is assigned a positive weight given by IIi n K’I. We
let 7Tst be the set containing every maximum-weight spanning tree (MST) of WG.

Figure 3.4 shows TVG for the chordal graph in Figure 3.1, aid highlights the edges
of the clique tree in Figure 3.2. Observe that the highlighted clique tree is a maximum-
weight spanning tree of M ~ G , with edge weights that sum t o five. Bernstein and Good-

man [2] first showed that for any chordal graph G, we have 7Ft = 7t;ct. Our proof of
this result is similar to that given by Gavril [13].

- 1 5 -

T-

Figure 3.4: Weighted clique intersection graph for graph in Figure 3.1. Bold edges
belong to the clique tree in Figure 3.2. Also shown are the intersection sets upon which
the weights are based.

Our argument requires two ideas commonly used in the study of maximum-weight

(minimum-weight) spanning tree algorithms. First, let T = (K G , € T) be a spanning

tree of WG. It is well known that T is a maximum-weight spanning tree if and only if for
every pair of cliques IC, Ii‘ E ICG for which (A’, IC’) # E T , the weight of every edge on

the path joining K and li‘ in T is no smaller than lrinli‘l (see, for example, Tarjan [44,
pp. 71-72]). Second, given an edge (K , IC’) in a tree, we define the fundamental cut set

(see Gibbons [18, p. 581) associated with the edge as follows. The removal of (K , A’’)
from the tree partitions the vertices of T into precisely two sets, say IC1 and K2. The

fundamental cut set associated with (IC, K‘) consists of every edge with one vertex in
IC1 and the other in ?Cz, including (I { , IC’) itself.

Theorem 3.5 (Bernstein and Goodman [2]). For any connected cfiordalgraph G,

Proof: We first show that C_ Test. Let T,, E 7;it and choose two cliques IC and

li’ that are not connected by an edge in Tc.. Consider the cycle formed by adding the

edge { I (, IC’} to TcL. By Theorem 3.1 every edge along this cycle has weight no smaller
than lK n I<‘l, whence T‘, is a maximum-weight spanning tree of Wc.

choose Tmst E IFst . By Theorem 3.1, 7&t # 0. Choose

TCt E 7;;Ct that has a maximum number of edges in common with Tmst. Assume for
the purpose of contradiction that there is an edge (I<l, h of Tmst that is not an edge

of Tct. Consider the fuiida.menta1 cut set (in WG) assoc ced with the edge (K l ,K2)
of Tmst and also the cycle (in Tct) obtained by adding the edge (K l , K,) to Tct. Any
cycle containing one edge from the cut set must contain another edge from the cut set
as well. Select from the cycle in Tct one of the edges (Ii3, IC4) # (K1, K z) that belongs

T,mst = 7g.

To see that 7pt C_

- 16 -

to the cut set.

Note that the edge (Ii3,Ii4) is an edge of Tct, but it is not an edge of Tmst. Since

T,t is a clique tree, it follows from Theorem 3.1 that Iil n I i 2 2 IC3 n I i 4 . However, if
K1 n K2 were a proper subset of 113 n K4, then replacing (ICl, I i 2) in ‘Imst with (ICs, I i 4)

would result in a spanniiig tree of greater weight, contrary to the maximality of TmSt’s
weight. Hence, Iil n I i 2 = Ii3 n K4. Consider the tree obtained by replacing (Iis, fi4)
in Tct with the edge (Ii l ,K2). The reader can easily verify that the resulting tree is

a clique tree. The new clique tree moreover has one more edge in common with Tmst
than originally possessed by Tct, giving us the contradiction we seek.
TmSt = Tct, and the result holds. I

3.5. Summary

The following corollary summarizes the results presented in this section

Zonsequently,

Corollary 1. For every connected graph G, we have

Furthermore, G is chordal if and only if this set is nonempty, in which case we have

Based on Corollary 1, we henceforth drop the superscripts from our notation and

shall use 7G to denote the set of clique trees of G. Finally, Figure 3.5 illustrates

Corollary 1 in negative form. We now verify that the tree displayed in this figure

Ill

Figure 3.5: Not a clique tree of the graph in Figure 3.1.

indeed satisfies none of the characterizations of a clique tree:

- 17 -

[CT] The set K1 n I i 2 is not contained in K4.

[ET] K G (v ~) does not induce a subtree.

[RIP] The reverse topological ordering I C - ~ , K 2 , I i 4 , I C 1 is not an RIP ordering: K1 n
(K4 U 112 U lis) = IC-1, which is, of course, contained in no other clique. It follows

then from the remark after Theorem 5 that the tree is not an RIP tree.

[MST] The weight of the tree, which is four, is submaximal by one.

4. Clique trees, separators, and MCS revisited

This section ties together some of the results and concepts presented separately in Sec-
tions 2 and 3. Section 4.1 presents results that link the edges in a clique tree with

the minimal vertex separators of the underlying chordal graph. Section 4.2 presents an

efficient algorithm for computing a clique tree. This algorithm, which is a simple exten-

sion of the MCS algorithm, is shown to be an implementation of Prim's algorithm for
finding a maximum-weight spanning tree of the weighted clique intersection graph Wc.
New definitions and notation will be introduced as needed, and appropriate references

t o the literature will be given in each subsection. As in the previous section, we assume

without loss of generality that G is connected.

4.1. Clique tree edges and minimal vertex separators

Choose a clique tree T E IC and let S = h'; n Kj for some edge (ICi, K j) E E T . Let
Ti = (Xi,€;) and T, = (K j , € j) denote the two subtrees obtained by removing the
edge (1ii ,K3) from T , with li; E IC; and l < j E ICJ. We also define vertex sets V, c V
and Vj c V by

v'- Srst prove two technical lemmas, the second of which shows that the set S =
Ii; I .., separates V, from V, in G. These two results are then used in the proof of

Theorem 4.1 to show that for any clique tree T E T,, the set S' C V is a minimal
vertex separator if and only if S' = Ii n 11'' for some edge (Ii, 1;') E E T . The results
in this section have appeared in both Ho and Lee [21] and Lundquist [33]. The proofs

of Lemma 5 and Theorem 4.1 are similar to arguments given by Lundquist [33].

Lemma 4. The sets K, V,, and S form a partition of V .

- 18 -

Proof: Let T , S, K;, Iij, IC;, K;,, V,, and Vi be as defined as in the first paragraph
of the subsection. Clearly, V = V , U Vj U S , and S is disjoint from both V, and Vj.
Hence it suffices to show that V , n V, = 0. By way of contradiction assume the there
exists a vertex v E V, n 5. It follows that v belongs to some clique Ii‘ E K;; a.nd also
belongs t o some clique li‘ E Kj. Since T E 7 ~ , the vertex v belongs t o every clique
along the path joining K and li’ in T , which necessarily includes both li; and K j . In

consequence, u E S = K ; n Kj, which is impossible since both Vi and Vj are disjoint
from S, whence the result follows. I

Lemma 5. I f S = K ; n K j and (.Ki ,Kj) E ET for some T f TG, then S is a vw-
separator for every pair of vertices v E V , and w E V,.
Proof: Again let T , S , K;, K j , IC;, Kj, K, and V, be as defined in the first paragraph
of the subsection. To prove the result it suffices t o show that there exists 110 edge

(v, w) E EG with v E V , and w E V,. Now, if (v , w) E EG, then there exists a clique

K E ICG for which v, w E li. If li E K;; then clearly v , UJ E S U V,. Moreover since by
Lemma 4, Vi, Vj, and S form a partition of V , it follows that neither v nor w belongs

to 4. Likewise, if Ii E Kj then v, w E S U V,, and neither v nor w belongs to V,. In
consequence, no edge in Ec joins two vertices v E V, and w E V,, which concludes the

proof. I

Theorem 4.1. Let T E TG. The set S C V is a minimal vertex separa.tor of G if and
only i f S = li n K’ for some edge (K, Ii’) E ET.

Proof: For the “if” part let T E IC;, and let S = li n I<‘, for some edge (K, K’) E ET.
Consider two vertices o E li - S and w E li‘ - S . By Lemma 5, S is a vw-separator.

Moreover, since both v and w are adjacent to every vertex in S , it follows that S is a

minimal vw-separator, as desired.

To prove the “only if” part, choose T E 7G and let S be a minimal vw-separator

of G. Since (v , w) 4 E , the sets K G (v) and I C G (W) induce disjoint subtrees of T .
Choose li E I C G (V) and K‘ E K c (w) to minimize the distance in T between li and

K’. Consider the path p = [A’ = KO, K 1 , . . . , I{,-*, li, = I<’] in T, where T 2 1. Define

Si := K; n for 0 5 i _< r - 1, and let S := {So,S1,. . ., S,-l}. We will show that
S E S, which suffices t o prove the result.

First, t o see that Si C_ S for at least one set S; E S, suppose (for the purpose of
contradiction) that Si S for every Si E 5, and choose 2; E S; - S for each member of

S. Since z; E li; fl K ; + 1 (0 5 i 5 T - l), we have a path [v, q , x 1 , . . . , xr-1, w] joining
v and 7~ in G \ S , contrary to our assumption that S is a vw-separator. It follows that

Si
Now select S; E S for which Si C S , and consider the two subtrees obtained by

removing the edge (Iii,Ki+l) from T . Let T, be the subtree containing IC, 3 u, and
let T, be the subtree containing li, 3 w. Since S; is contained in the vw-separator
S , we clearly have v, w $! S;. Hence, by Lemma 5, S; is a mu-separator. Since S is

S for at least one set Si E S.

- 1 9 -

moreover a minimal vw-separator, we have S = Si = 11; n Ki+1 where (K i , K + l) E E T ,
as required. a

For a clique tree T = (?&, E T) E 7 G , consider the set containing every &stincl set
K n K’ where (IC, 11’) E ET. It follows immediately from Theorem 4.1 that this set is
the same for every clique tree T E TG. In light of Theorem 4.1, we shall refer to the

members of this invariant set as sepurutors. For any clique tree T = (K G , & T) E 7~
consider the multiset of separators defined by

That this multiset is the same for all clique trees T E 7G is an immediate consequence

of a result by 130 and Lee [21]; the result was also proven by Lundquist [33]. The proof
is taken directly from Blair and Peyton [4].

Theorem 4.2 (330 and Lee [21], Lundquist [33]). The muItiset of separators is
the same for every clique tree T E 7 G .

Proof: For the purpose of contradiction, suppose there exist two distinct clique trees

T,T‘ E 7 G for which M T # M p . From among the clique trees T’ E 7~ for which
JUT, # MT, choose T’ so that it shares as many edges as possible with T . (Note
that T and 7’’ cannot share the same edge set, for then they also would share the same
mult iset of separators .)

Let (.&’I, 1 - 2) be an edge of T that does not belong to T‘. As in the proof of Theo-
rem 3.5, consider the fundamental cut set (in WG) associated with the edge (111, f i z)
of T and also the cycle (in 7”) obtained by adding the edge (fC,,f<2) to TI. Recall
that any cycle containing one edge from the cut set must contain another edge from

the cut set as well. Select from the cycle in T’ one of the edges (l i s , I<,) # (Kl, K2)
that belongs to the cut set. Note that the edge (I<3,1<4) is an edge of T‘ but not an

edge of T .
111 n K z ; similarly, since

T’ E Tct, it follows by Theorem 3.1 that lil n fiz S IC3 n -Ii4; hence K3 n l<q = Kl n 111.
By Theorem 3.5, the replacement of (I i3 , lC4) in T‘ with (K l , l i ~) results in a clique

tree, which, moreover, clearly has the same multiset of separators that T’ has. Contrary

to our assumption about T’, the modified tree shares one more edge with T, and thus

result follows.

Since T E Tct, it follows by Theorem 3.1 that 1{3 n 114

4.2. MCS and Prim’s algorithm

Prim’s algorithm [38] is an efficient method for computing a maximum-weight (minimum-
weight) spanning tree of a weighted graph. Thus, by Theorem 3.5, Prim’s algorithm
applied t o the weighted clique intersection graph WG computes a clique tree T E 7G.
At any point the algorithm ha.s constructed a subtree of the eventual maximum-weight

- 20 -

spanning tree T , and a t each step it adds one more clique and edge t o this subtree.

Let k C KG be the cliques in the subtree constructed thus far, As the next edge to be
added, the algorithm chooses the heaviest edge that joins k to KG - k. For a proof

that Prim’s algorithm correctly computes a maximum-weight spanning tree, we refer
the reader t o Tarjan [44, pp. 73-75] or Gibbons [18, pp. 40-421. A version of Prim’s
algorithm formulated specifically for our problem is given in Figure 4.1.

ET + 8;
Choose li E KG;

for T c 2 to m do
k +- { K } ;

Choose cliques K E k and A’’ E KG -
for which IIi n li‘l is maximum;

ET 4-- ET u { (I < , IC’)};
K +- 12 u {IC’} ;

end for

Figure 4.1: Prim’s algorithm for finding a maximum-weight spanning tree of the
weighted clique intersection graph WG.

In this section we will show that the MCS algorithm applied to a chordal graph G
can be viewed as an implementation of Prim’s algorithm applied to Wc. In Section 4.2.1
we show that since the MCS algorithm generates a PEO, it can easily detect the cliques
in KG during the course of the computation. Section 4.2.2 shows that 1) the MCS
algorithm can be viewed as a block algorithm that “searches” the cliques in ?CG one

after the other, and 2) the order in which the cliques are searched is precisely the order

in which the cliques are searched by Prim’s algorithm in Figure 4.1. Using the results

in Sections 4.2.1 and 4.2.2, we also show how to supplement the MCS algorithm with

a few additional statements so that it detects the cliques and a set of clique tree edges

as it generates a PEO. A detailed statement of this algorithm appears a t the end of

Section 4.2.2.
The close connection between the MCS algorithm and Prim’s algorithm was, t o

our knowledge, first presented by Blair, England, and Thomason [3]. Several of the
proofs in this section are similar to arguments given by Lewis et al. [24]. Though the
techniques discussed in this section can be implemented t o run quite efficiently, there
are more efficient ways to compute a clique tree when certain data structures that arise
in sparse matrix computations are available. The reader should consult Lewis et al. [24]
for details on how t o compute a clique tree in the course of solving a sparse positive

definite linear system.

- 21 -

4.2.1. Detecting

In this subsection

the cliques in 1 c ~ .

the cliques

we show that the MCS algorithm can easily and efficiently detect

To do so we exploit the fact that MCS computes a PEO. We shall

use the following result from Fulkerson and Gross [lo].

Lemma 6 (Fulkerson a n d Gross [lo]). Let v1, v2,. . . , v, be a perfect elimination
orderingofG. The set ofmaximal cliques 1 c ~ containsprecisely the sets (vi} U madj(v;)
for which there exists no vertex vj, j < i, such that

{ V i } u madj(v;) c { "j} u madj(Vj). (4.1)
Proof: Choose K E ?CG and let v1 E Ii be the vertex whose label i assigned

by the PEO is lowest among the labels assigned to a vertex of K. Consider the

vertex set {ut> LJ rnadj(vp). Since A' consists of v; and neighbors of vi with labels

larger than i , clearly li E (vi} U madj(vl) . Because the ordering is a PEO, the set
{vi} U rnadj(vi) must be complete in G. Thus by maximality of the clique Ii we have
li = {vi} U rnadj(v;), and moreover it follows that (4.1) holds for no vertex vj, j < i .

Now, let I< = {v,} U madj(v;) and suppose that (4.1) holds for no vertex vj, j < i.
Since the ordering is a PEO, clearly li is complete in G. If li is submaximal, then there

exists a vertex v3 E V - Ii that is adjacent to every vertex of K. But the existence of
such a vertex vj is impossible: if j > i then vj E madj(v;), contrary t o vj E V - K;
if j < i then (4.1) holds for v J , contrary to our assumption. In consequence, no such
vertex vJ exists, and the result follows. 1

Throughout the remainder of the paper we let v1, 212,. . . , v, be a PEO obtained

by applying the MCS algorithm to a connected chordal graph G. We shall call v,,
the representative verter of ICr whenever li, = {q,} LJ mndj(v,,.); that is, we let

Vjl, Vi2 , . . . , q,,, be the representative vertices of the cliques Iil, I<z,. . . , li,, respec-

tively, where il > i2 > - > i,. Thus the ordering 11-1, K 2 , . . . , Iim specifies the order
in which the cliques are searched by the MCS algorithm.

As the MCS algorithm generates a PEO it can easily detect the representative

vertices and hence can easily collect the cliques in KG. Condition 2 in the next lemma

provides a test for determining when a vertex in an MCS ordering is not a representative

vertex. Lemma 8 then provides a simple test for detecting the representative vertices.

Lemma 7. Let 211, v2,. . . , v, he a perfect elimination ordering obtained by applying
the maximum cardirialjty search algorithm to a connected chordal graph G. For each
vertex label i, 1 5 i 5 n - 1, the following are equivalent:

- 22 -

Proof: First we state two inequalities that prove useful here and in later proofs. Note
that the maximum cardinality selection criterion ensures that the following inequality

holds true when v;+1 (1 5 i 5 n - 1) is selected to be labeled:

Equation (4.2) along with the fact that C;+1 = C;+2 U {v;+~}, gives us

Assume that the first condition in the statement of the lemma holds for vu;+1, and
consider the vertex vi selected by the MCS algorithm at the next step. When the

algorithm selects v; there exists (by Lemma 6) a vertex 2~ E V - .C;+1 that is adjacent
t o every vertex in u madj(v;+l). In light of (4.3), the existence of such a vertex

u ensures that the vertex w; chosen by the MCS algorithm (perhaps vi = u) satisfies
the second condition.

Assume now that the second condition in the statement of the lemma holds for the

two vertices vi and v;+1. It immediately follows that

Consequently, to prove that the third condition holds true it suffices to show that

rnadj(v;) C {v;+I} U madj(v;+r). Now if it were the case that v;+l 4 adj (v;) , then from
(4.2) and the fact that C;+1 = C;+2 U {v;+1} we would have

contrary to our assumption that condition 2 holds true. It follows then that v;+1 is

adjacent to o; in G. Now choose vk E madj(v;) - (0;+1}. Clearly k 2 i + 2; moreover,

since {vi} u madj(v;) is complete in G, vk is necessarily adjacent to ui+l E madj(v;);
whence vk E mudj(vi+1), giving us condition 3.

Finally, by Lemma 6 the first condition follows immediately from the third, which
completes the proof. a

Further extending the result in Lemma 7, we obtain the following technique for

detecting the representative vertices of ICc while generating the MCS ordering.

Lemma 8 . Let ~1,212,. . . , v, be a perfect elimination ordering obtained by applying
the maximum cardinality search algorithm to a connected chordal graph G. Then

1 c ~ contains precisely the following sets: { V I } U rnadj(v1) and {0;+1} U mndj(v;+l),
1 5 i 5 n - 1, for which

- 23 -

Proof: From Lemma 6 it follows that {vl} U madj(vl) f KG. Consider the set

{w;+1} U madj(vi+l) where 1 <_ i 5 n - 1. It follows from (4.3) and the equivalence
of conditions 1 and 2 in Lemma 7 that {v ;+l) U m a d j (~ ; + ~) is a member of ?CG if and

only if (4.4) holds. This concludes the proof. 4

4.2.2. MCS as a block algorithm

Clearly, the MCS algorithm can detect the cliques in ?CG by determining a t each step

whether or not (4.4) holds. With the next lemma we show that the MCS algorithm
can be viewed as a block algorithm that searches the cliques of KG one after the other.

Lemma 9. Let , v2,. . . , vn be a perfect elimination ordering obtained by applying
the maximum cardinality search algorithm to a connected chordal graph G, and let
v;, , viz,. , . , v;, be the representative vertices of the cliques IC1, Ii,, . . . , Ii,, respec-
tively, where il > i2 > - > i,. Then

for each r , 1 5 t _< m.

Proof: Choose T , 1 5 T 5 m, and assume vJ 4 L;,, i.e., j < i , . Since clearly

vi 4 {Via} U madj(v;,) for each s, 1 5 s 5 r , it follows by Lemma G that vj ft' U:=lIis.

Now assume vj E Ci, and for convenience of notation define io := n + 1. Choose s,
1 5 s 5 r , for which i, 5 j < i,-1. If j = i,, then clearly v j E Zi, = {vj} U madj(vj).
If i, < j , then by repeated application of condition 3 of Lemma 7, we have

Consequently, v, E lis, and the result follows. @

I t follows from Lemma 9 that the MCS algorithm labels the vertices contiguously
in blocks as follows:

- 24 -

For convenience we define the function clique : V i { 1 , . . . , m} by clique(vj) := T

where io := n + 1 and vj E {q,,v;,+l ,..., ~; , -~ -1} (i.e., ir 5 j < &-I) . Clearly
clique(v) is the lowest index of a clique that contains v; that is,

clique(v) = min{r I v E ICr}.

The following lemma is needed t o provide a means of detecting the edges of a clique

tree, and it is also critical in the proof of the main result in this subsection.

Lemma 10. Let 01, 'u2, . . . , v, be a perfect elimination ordering obtained by applying
the maximum cardinality search algorithm to a connected chordal graph G, and let
vi,, vi2 , . . . , virn be the representative vertices of the cliques Iil, I i 2 , . . . , ICm, respec-

tively, where il > iz > > i,. For any integer T , 1 5 T 5 m - 1, there exists an

integerp, 1 5 p 5 T , such that

Moreover, Equation (4 .6) is satisfied when p = clique(vj), where vj is the vertex in

Kr+1 n C;, with smallest label j .

Proof: Let 1 5 T 5 rn - 1. From Lemma 9 it follows that for 1 5 p 5 T we have

To prove the result it suffices to show that Kr+1 n C;, C I<,. Now consider the set

Kr+1 n L;r, and choose vj E K r + 1 n C;, with smallest label j . Clearly n C;, is
complete in G and moreover

Choose p , 1 5 p 5 T , for which i, 5 j <
argument used in the proof of Lemma 9, we have

(Note that p = clique(vj).) By the same

Combining (4.7) and (4.8), we obtain the result. I

From Lemmas 9 and 10 it follows that any MCS clique ordering is also an RIP
ordering. Furthermore, Lemma 10 shows specifically how to use the clique function to

obtain the edges of a clique tree in an efficient manner. (This technique for determining

a clique tree parent function was introduced by Tarjan and Yannakakis [45] and also

- 25 -

appears in Lewis et al. [24].) It follows that the MCS algorithm can generate a clique

tree by 1) detecting the cliques via representative vertiu .:Lemma 8) and 2) choosing
as the parent of K , + 1 the clique K p for which p = cfique(vj) where j is the smallest

label in Kr+1 n C;,. The following result shows that any clique tree generated in this

fashion could also be generated by Prim's algorithm applied t 3 WG.

Theorem 4.3. Any order in which the cliques are searched by the maximum cardi-
nafity search algorithm is also an order in which the cliques are searched by Prim's
algorithm applied to ~ V G .

Proof: Let K1, K 2 , . . . , ICm be an ordering of KG generated by the MCS algorithm.

Choose r , 1 5 T <. m - 1. To show that this clique ordering is also a search order for
Prim's algorithm applied to MJG (see Figure 4.1), it suffices to show that there exists p
(1 5 p 5 T) for which

To prove that (4.9) holds, choose any s and t for which 1 5 s 5 T < t 5 m. Consider the

vertex vi E Kr+l n C;, for which j is minimum, and let p = clique(vj). By Lemma 10,
we can write

lir+l n I<, = K r + l n C;, . (4.10)

Lemma 9 and the discussion following that result imply that qr-l is the vertex from
KT+l -L;, whose label is maximum. By repeated application of condition 3 of Lemma 7
(as needed) we obtain the following:

In consequence we have

(4.11)

- 26 -

contrary to the maxirnum cardinality search criterion by which the vertices were labeled.

It follows then that

Iadj(viT-1) n &,I 2 [lit n & , I - (4.12)

Finally, Lemma 9 implies that

Combining (4.10), (4.11), (4.12), and (4.13) shows that (4.9) holds, giving us the result.

I

From the results in this subsection, we obtain an expanded version of the MCS
algorithm, which computes a clique tree in addition to a PEO. The MCS algorithm is
shown in Figure 2.3, and the expanded algorithm is shown in Figure 4.2. We emphasize

prev-card +- 0;
Cn+l +- 0;
s +- 0;

for i t n to 1 step -1 do
ET +- 0;

Choose a vertex v E V - C;+1 for which
Indj(v) n C;+1 I is maximum;

a(.) t i; [v becomes vi]

if new-card 5 prev-card then
new-card + I ~ d j (v j) fl C;+11;

[begin new clique]
s + s + l ;

lis +- adj(v,) n Ci+l ; [= mtldj(v)]
if new-card # 0 then [get edge to parent]

I; t min{j 1 uj E Ks};
p +- clique(vk);
€ 2 +- ET u {l<s, l < p } ;

end if
end if

li, +- lis u {vi};

prev-card +- new-card;

cZique(v;) +- S ;

.Ci + Ci+1 u {v i } ;

end for

Figure 4.2: An expanded version of MCS, which implements Prim’s algorithm in Fig-
ure 4.1.

that the primary purpose of this section is to establish the connection between the MCS

- 27 -

algorithm and Prim’s algorithm (applied to Wc), and Theorem 4.3 demonstrates that
the detailed algorithm in Figure 4.2 can be viewed as a special implementation of Prim’s

algorithm shown in Figure 4.1. Some of the details necessary to represent a chordal

graph as a clique tree have been discussed here; for a complete discussion of this topic

the reader should consult the papers [24,45]. It is worth noting that a clique tree is

often a much more compact and more computationally efficient data structure than
the adjacency lists usually used to represent G.

5 . Applications

In this section we briefly review a few recent applications of chordal graphs and clique

trees in sparse matrix computations.

5.1. Terminology

Let A s = b be a sparse symmetric positive definite system of linear equations, whose

Cholesky factorization is denoted by A = LLT. Direct methods for solving such linear
systems store and compute only the nonzero entries of the Cholesky factor L. This
factorization generally introduces fill (or fill-in) into the matrix; that is, some of the
zero entries in A become nonzero entries in L .

Assume the coefficient matrix A is n x n. We associate a graph GA = (V, EA) with

the matrix A in the usual way: the vertex set is given by V = {vl, v2,. . . , vn), with two
vertices vi and vj joined by an edge in EA if and only if aij # 0. We define the filled
graph GF = (V, EF) in precisely the same way, where F := L f L*. Note that GF is
a chordal suergraph of GA (E A C_ E F) [39], and the order in which the unknowns are
eliminated is a PEO for the corresponding filled graph GF.

5.2. Elimination trees

More commonly used than the clique tree, the elimination tree associated with the

ordered grap-i G A has proven very useful in sparse matrix computations. The elimina-

tion tree TA = (V, E T) for an irreducible graph GA is a rooted tree defined by a parent

function as follows: for each vertex a j , 1 5 j 5 n - 1, the parent of v j is v,, where the

first off-diagonal lionzero entry in column j of L occurs in row i > j. If GA is reducible,

one obtains a forest rather than a tree * topological ordering of TA is any ordering of
the vertices that numbers each parent a label larger than that of any of its chil-

dren. The order in which the unknowns are eliminated, for example, is a topological
ordering of the tree T.4, and, in fact, any topological ordering of the tree is a PEO of
G p . Elimination trees evidently were introduced by Schreiber [41], though they had
earlier been used implicitly in a number of algorithms and applications. Liu [31] has
provided a survey of the many uses of elimination trees in sparse matrix computations.

- 28 -

Liu has also discovered an interesting connection between clique trees and elimi-

nation trees. To facilitate our discussion of this connection we need to introduce the

following concepts and results. If 3 is a finite family of nonempty sets, then the
intersection graph of 3 is obtained by representing each set in 3 by a vertex and con-

necting two vertices by an edge if and only if the intersection of the corresponding sets

is nonempty. A siibtree graph is an intersection graph where 3 is a family of subtrees
of a specific tree. Buneman [5] , Gavril [12], and Walter [46] independently discovered
that the set of chordal graphs coincides with the set of subtree graphs in a result that

further extends Theorem 3.3.
Theorem 3.2 provides an obvious way to represent a chordal graph G := Gfi- as a

subtree graph. Choose any clique tree T,, E 76, and consider the family of subtrees of
T,t given by

3 = {K&) 12, E V } .

Since two vertices are adjacent to one another in G if and only if there exists a clique
li' E KG to which both vertices belong, it follows that for each pair of vertices u, v E V ,
we have (u , ~) E E if and only if the subtree induced by K G (u) intersects the subtree
induced by K c (v) . In consequence, G is a subtree graph for the family of subtrees 3
in any clique tree T,, E 7~.

Liu has shown how elimination trees provide another way to view chordal graphs

as subtree graphs. Let the row vertex set, denoted Struct(L;,,), be defined by

Strucl(L;,*) := {Vj I eaj # 0).

Liii [27] has shown that each row vertex set Struct(L;,,) induces a subtree of TA rooted

a t vi. In consequence, Gz;, is a subtree graph for the family of subtrees induced by the

row vertex sets of L. For a full discussion of this result, consult Liu [31].

5.3. Equivalent orderings

The fill added to GA contains precisely the edges needed to make the order in which
the unknowns of the linear system are eliminated a PEO of the filled graph GF [39].
Usually, the primary objective in reordering the linear system is t o reduce the storage
(i.e., fill) and work required by the factorization. Every PEO of GF results in precisely
the same factorization storage and work requirement [29]. It is common practice in
this setting to define all perfect elimination orderings of GF as equivalent orderings.

Before advanced machine architectures entered the marketplace, there was little
reason to consider choosing one PEO of GF over another. Generally, whatever ordering
was produced by the fill-reducing ordering algorithm (e .g . , nested dissection [14,15] or

minimum degree [17,2G]) was accepted without modification. But this situation has
changed to some extent with the advent of vector supercomputers, powerful RISC-based
workstations, and a wide variety of parallel architectures. Algorithms designed for such

- 29 -

machines may benefit by choosing one PEO of GF over the others in order t o optimize

some secondary objective function. (There is still the underlying assumption that a
good fill-reducing ordering is desired, though this assumption is subject t o question

more than it once was and deserves further study.) The following summarizes a few

algorithms designed to produce an equivalent ordering that optimizes some secondary

objective function.

Reordering for stack storage reduction One of the first algorithms of this type

was a simple algorithm due to Liu 1281 for finding, among all topological orderings of
the elimination tree, an ordering that minimizes the auxiliary storage required by the

rnultifrontal factorization algorithm. In addition, Liu [29] gives a heuristic for finding an
equivalent ordering that further reduces auxiliary storage €or multifrontal factorization.

Finding an optimal equivalent ordering for this problem is still an open question.

Jess and Kees reordering Short elimination trees can be useful when the factor-

ization is to be performed in parallel. Jess and Kees I221 introduced a simple greedy

heuristic for finding an equivalent ordering that reduces elimination tree height. Liu [30]
has shown that the Jess and Kees ordering scheme minimizes elimination tree height
among all equivalent orderings. Liu and Mirzaian [25] introduced an O(n+ IEpI) imple-
mentation of the Jess and Kees scheme. Lewis, Peyton, and Pothen [24] used a clique
tree of GF to obtain an O (n + q)-time implementation of the Jess and Kees algorithm

where q = Cgl l.K;l, which in practice is substantially smaller than IEFI. Because a
PEO of GF is known u priori, a clique tree of GF can be obtained in O (n) time using

output from the symbolic factorization step of the solution process [24].

A block Jess and Kees reordering Blair and Peyton [4] have studied a block form

of the Jess and Kees algorithm that generates a clique tree T E 7~ of minimum diame-
ter. The primary motivation for this algorithm is to minimize the number of expensive
communication cal ls to the general router on a fine-grained parallel machine [19]. The

time complexity of their algorithm is also O(n + g) in the sparse matrix setting, where

a PEO is known a priori. A similar algorithm motivated by the same application was

given by Gilbert and Schreiber [19].

Partitioning (and reordering) for parallel triangular solution A related prob-

lem is the following: Find a partition of the columns in the factor L with as few members

as possible, such that for each partition member, the elementary elimination matrices

associated with that member can be multiplied together without increasing the storage

requirement for the factor. Such a partition and its associated PEO is desirable for
implementing sparse triangular solution on a fine-grained massively parallel machine.
Pothen and Alvarac :37] have solved this problem when the ordering is restricted

to topological orderirigs of the elimination tree. Peyton, Pothen, and Yuan [36] have

- 30 -

developed an O(n + IEpI) algorithm that solves the problem for the larger set of all
equivalent orderings; they are also working on an O (n + q) clique-tree-based algorithm

for solving the problem [35].

5.4. Clique trees and the multifrontal method

Block algorithms have become increasingly important on advanced machine architec-

tures, both in dense and sparse matrix computations [ll]. The multifrontal factoriza-

tion algorithm [8,32] is perhaps the canonical example in sparse matrix computation.

That clique trees, which represent chordal graphs in block form, might be a useful tool
in explaining the multifrontal method is not at all surprising.

Clique trees provide the framework for presenting the multifrontal algorithm in Pey-
ton, Pothen, and Sun [34,38]. The clique tree is rooted and ordered by a postordering

of the tree, and each clique K has associated with it a frontal matrix F (K) . Let K
and P be respectively a clique and its parent in the clique tree. The columns of F (K)
are partitioned into two sets: the factor columns of F (K) correspond t o the vertices

in K \ P, and the update columns of F (K) correspond to the vertices in K n P. For

further details consult the two references given above.

Due to its simplicity, the supernodal elimination tree is more commonly used in
descriptions of the multifrontal algorithm. Liu’s survey article [32], for example, uses

the supernodal elimination tree to describe the block version of the algorithm.

5.5. Future progress on the “ordering” problem

Finally, we anticipate that a solid understanding of chordal graphs and clique trees will

play a role in future progress in the difficult area of analyzing and understanding order-

ing heuristics. The problem of finding a fill-minimizing ordering of an arbitrary graph
is NP-hard [48]. Consequently, progress in understanding the “ordering” problem will
probably require a better understanding of the broad but nontheless highly restricted
classes of graphs GA that arise in various application areas. If there is some progress

in that area, then we further speculate that creating and/or analyzing ordering algo-

rithms for these classes of graphs will involve many interesting properties and features

of chordal graphs and clique trees. Some will be the results presented in this paper;

perhaps others will be new, or a t least a fresh look at familiar concepts.

6. References

[l] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic

database systems. J . Assoc. Comput. Mach., 30:479-513, 1983.

[2] P. A. Bernstein and N. Goodman. Power of natural semijoins. SL4M J . Cornput.,
10:751-771, 1981.

- 31 -

[3] J.R.S. Blair, R.E. England, and M.G. Thomason. Cliques and their separators

in triangulated graphs. Technical Report CS-78-88, Department of Computer
Science, The University of Tennessee, Knoxville, Tennessee, 1988.

[4] J.R.S. Blair and B.W. Peyton. On finding minimum-diameter clique trees. Tech-
nical Report ORNL/TM-11850, Oak Ridge National Laboratory, Oak Ridge, TN,
199 1.

[5] P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205-212,

1974.

[GI G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. HamDurg, 25:71-76,

1961.

[7] I. S. Duff and J . K. Reid. A note on the work involved in no-fill sparse matrix

factorization. IMA J . Numer. Anal., 3:37-40, 1983.

(81 I.S. Duff and J.K. Reid. The multifrontal solution oi indefinite sparse symmetric

linear equations. A CM Trans. Math. Software, 9:302-325, 1983.

[9] P. Edelman and R.E. Jamison. The theory of convex geometries. Geometriae
Dedicata, 19:247-270, 1985.

[lo] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific
J . Math., 155335-855, 1965.

[ll] K.A. Gallivan, M.T. Heath, E. Ng, J.M. Ortega, B.W. Peyton, R.J. Plemmons,
C.H. nomine, A.H. Sameh, and R.G. Voigt. Parallel Algorithms for Matrix Com-
putations. SIAM, Philadelphia, 1990.

[12] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. 3. Combin. Theory Ser. 8, 16:47-5G, 1974.

[13] F. Gavril. Geiieratirig the maximum spanning trees of a weighted graph. J .
Algorithms, 8:592-597, 1987.

[14] A. George. Nested dissection of a regular finite element mesh. SIAM J . Nunaer.
Anal., 10345-363, 1973.

[15] A. George and J.W-11. Liu. An automatic nested dissection algorithm for irregular

finite element problems. SIAM J. Numer. Anal., 15:1053-1069, 1978.

[16] A. George and J.W-11. Liu. Computer Solution of Large Sparse Positive Definite
Sgslems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[17] A. George and J.W-€I. Liu. The evolution of the minimum degree ordering algo-

rithm. SIAM Review, 3l:l-19, 1989.

- 32 -

[18] A.M. Gibbons. Algorithmic Graph Theory. Cambridge University Press, Cam-
bridge, 1985.

[19] J.R. Gilbert and R. Schreiber. Highly parallel sparse Cholesky factorization.

SIAM J. Sei. Stat. Conlput., 13~1151--1172, 1992.

[20] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

[21] C-W. Ho and R. C. T. Lee. Counting clique trees and computing perfect elimina-

tion schemes in parallel. Inform. Process. Lett., 31:61-68, 1989.

[22] J.A.G. Jess and H.G.M. Kees. A data structure for parallel L/U decomposition.
IEEE Truns. Comput., C-31:231-239, 1982.

[23] E.S. Kirsch. Practical parallel algorithms for chordal graphs. Master’s thesis,

Dept. of Computer Science, The University of Tennessee, 1989.

[24] J.G. Lewis, B.W. Peyton, and A. Pothen. A fast algorithm for reordering sparse

matrices for parallel factorization. SIAM J . Sci. Stat. Comput., 10:1156-1173,
1989.

[25] J. W-H. Liu and A. Mirzaian. A linear reordering algorithm for parallel pivoting

of chordal graphs. SIAM J. Disc. Math., 2:lOO-107, 1989.

[2G] J.W-€1. Liu. Modification of the minimum degree algorithm by multiple elimina-

tion. ACM Trans. Math. Software, 11:141-153, 1985.

[27] J.W-€1. Liu. A compact row storage scheme for Cholesky factors using elimination

trees. ACM Trans. Math. Software, 12:127-148, 1986.

[28] J.W-H. Liu. On the storage requirement in the out-of-core multifrontal method

for sparse factorization. A CM Tmns. Math. Software, 12:249-264, 1986.

[29] J.W-II. Liu. Equivalent sparse matrix reordering by elimination tree rotations.

SIAM J . Sci. Stat. Cor)i1Iut., 9:424--444, 1988.

[30] J.W-H. Liu. Reordering sparse matrices for parallel elimination. Parallel Com-
puting, 11:73-91, 1989.

[31] J.W-II. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix
Anal. Appl., 11:134-172, 1990.

[32] J.W-H. Liu. The multifrontal method for sparse matrix solution: theory and
practice. SIAM Review, 34:82-109, 1992.

[33] M.E. Lundquist. Zero patterns, chordal graphs and matrix completions. PhD
thesis, Dept. of Mathematical Sciences, Clemson University, 1990.

- 33 -

[34] B.W. Peyton. Some applications of clique trees to the solution of sparse linear
systems. PhD thesis, Dept. of Mathematical Sciences, Clemson University, 1986.

[35] B.W. Peyton, A. Pothen, and X. Yuan. A clique tree algorithm for partitioning

chordal graphs for parallel sparse triangular solution. In preparation.

[36] B.W. Peyton, A. Pothen, and X. Yuan. Partitioning a chordal graph into transitive

subgraphs for parallel sparse triangular solution. In preparation.

[37] A. Pothen and F.L. Alvarado. A fast reordering algorithm for parallel sparse

triangular solution. SIAM J. Sci. Stat. Cornput,, 13:645-653, 1992.

[38] A. Pothen and C. Sun. A distributed multifrontal algorithm using clique trees.
Technical Report CS-91-24, Department of Computer Science, The Pennsylvania

State University, University Park, PA, 1991.

[39] R.C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, pages 1389-1401, 1957.

[40] D.J. Rose. A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equations. In R. C. Read, editor, Graph Theory and
Computing, pages 183-217. Academic Press, 1972.

[41] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertexelimination

on graphs. SIAM J . Cornput., 5:266-283, 1976.

[42] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Tmns.
Math. Software, 8~256-276, 1982.

[43] D.R. Shier. Some aspects of perfect elimination orderings in chordal graphs. Discr.
Appl. Math., 7:325-331, 1984.

[44] R.E. Tarjan. Maximum cardinality search and chordal graphs. Unpublished Lec-
ture Notes CS 259,1976.

[45] R.E. Tarjm. Data Structures and Network Algorithms. SIAM, Philadelphia, 1983.

[46] R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms t o test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J . Cornput., 13:566-579, 1984.

[47] J.R. Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State
University, 1972.

[48] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J . Alg.
Disc. Meth., 277-79, 1981.

- 35 -

ORNL/TM-12203

INTERNAL DISTRIBUTION

1. B.R. Appleton
2-3. T.S. Darlaiid

4. E.F. D'Azevedo
5. J.M. Donato
6. J.J. Dongarra
7. G.A. Geist
8. M.R. Leuze
9. E.G. Ng

10. C.E. Oliver
11-15. B.W. Peyton
16-20. S.A. Raby

21.
22.

23-27.
28-32:

33.
34.
35.
36.
37.
38.

39-40.

C.H. nomine
T.H. Rowan
R.F. Sincovec
R.C. Ward
P.H. Worley
Central Research Library
ORNL Patent Office
I(-25 Appl Tech Library
Y-12 Technical Library
Lab Records Dept - RC
Laboratory Records Dept

EXTERNAL DISTRIBUTION

41. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

42. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, MN 55455

43. Robert G . Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

44. Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

45. Lawrence J . Baker, Exxori Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

46. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

47. Edward 11. Barsis, Computer Science and Mathematics, P.O. Box 5800, Sandia
.'Jational Laboratories, Albuquerque, NM 87185

48. Chris Bischof, Mathematics and Computer Science Divisioi lrgonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

49. Ake Bjorck, Department of Mathematics, Linkoping University, 5-581 83 Linkop-
ing, Sweden

50-54. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

55. Heather Booth, Department of Computer Science, 107 Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

56. Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

WA 98124-0346

- 36 -

57. James C. Browne, Department of Computer Science, University of Texas, Austin,
TX 78712

58. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

59. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

60. John Cavallini, Deputy Director, Scientific Computing Staff, Applied Mathemati-
cal Sciences, Office of Energy Research, U.S. Department of Energy, Washington,
DC 20585

61. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

62. Tony Chan, Department of Mathematics, University of California, Cos Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

63. Jagdish Chandra, hrrny Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

64. Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada N1G 2W1

65. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

66. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

67. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

68. Andy Conn, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

69. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

70. Jane K. Cullum, IUM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

71. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

72. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

73. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, FL 3261 1-2024

74. John J . Dorning, Department of Nuclear Engineering Physics, Thornton IIall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

75. lain Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11
OQX, England

76. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

- 37 -

77. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

78. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

79. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

80. Robert E. England, Mathematics and Computer Science Department, Northern
Kentucky University, Highland Heights, KY 41076-1448

81. Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, ETA Division, P.O. Box 24346, MS-7L-20 Seattle, WA 98124-0346

82. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

83. Paul Frederickson, Los Alamos National Laboratory, Center for Research on Par-
allel Computing, MS €3287, Los Alamos, N M 87545

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Fred N. Fritsch, L-316, Computing and Mathematics Research Division, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550

Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ
08540

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, P - h
Alto CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA

John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

Per Christian Hansen, UCI*C Cyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

9455 1-0969

- 38 -

98. Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, T X 77042-3020

99. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IT,
6 180 1-2300

100. Stephen T. IIedetniemi, Department of Computer Science, Clemson University,
Clernson, SC 29634

101. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

102. Nicholas J . Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

103. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

104. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

105. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

106. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada

107. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142- 12 14

108. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

109. Bo Kagstrorn, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

110. Malvyn 11. Kalos, Cornel1 Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

111. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

112. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

113. Robert J . Kee, Division 8245, Sandia National Laboratories, Livermore, CA 94551-
0969

114. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, T X 77001

115. Eric S. Kirsch, Department of Computer Science, 107 Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

116. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Gerrnantown, Washington, DC 20585

117. Michael A. Langston, Department of Computer Science, 107 Ayres Hall, University
of Tennessee, Knoxville, T N 37996-1301

118. Richard Lau, Ofice of Naval Research, Code I I l M A , 800 Quincy Street, Boston
Tower 1, Arlington, VA 22217-5000

- 39 -

119. Alan J . Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

120. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

121. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

122. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

123. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

124. John G . Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

125. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,

126. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London El 4NS, England

127. Arno Liegmann, c/o ETfI Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich,
Switzerland

128. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

129. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

130. Franklin Luk, Department of Computer Science, Amos Eaton Building - #131,
Rensselaer Polytechnic Institute, Troy, NY 12180-3590

131. Brian A. Malloy, Department of Computer Science, Clemson University, Clemson,
SC 29634

132. Thomas A. Manteuffel, Department of Mathematics, Uuiversity of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, GO 80217-3364

133. Consuelo Maulino, Universidad Central de Venezuela, Escuela de Cornputacion,
Facultad de Ciencias, Apartado 47002, Caracas 1041-A, Venezuela

134. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

135. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd., Pasadena, CA 91125

136. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

137. Neville Moray, Department of Mechanical and Industrial Engineering, Unive-pity
of Illinois, 1206 West Green Street, Urbana, IL 61801

138. Dianne P. O'Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

139. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

WA 98 124-0346

TX 77042-3020

- 40 -

140. Charles F. Osgood, National Security Agency, Ft. George G. Meade, hlD 20755

141. Chris Paige, McGill University, School of Computer Science, McConnell Engineer-
ing Building, 3480 University Street, Montreal, Quebec, Canada H3A 2A7

142. Roy P. Pargas, Department of Computer Science, Clernson University, Clemson,
SC 29634-1906

143. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

144. Merrell Patrick, Department of Coriiputer Science, Duke University, Durham, NC
27706

145. Dan Pierce, Boeing Computer Services, P.O. Box 24346, M/S 7L-21 Seattle, WA
98124-0346

146. Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University, Winston-Salem, NC 27109

147. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37906-1301

148. Alex Pothen, Computer Science Department, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

149. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 EIafrsfjord, Norway

150. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

151. S. S. Ravi, Department of Computer Science, LI67A, 1400 Washington Avenue,
Albany, NY 12222

152. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

153. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

154. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

155. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

156. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

157. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

158. Axel Ruhe, Dept. of Computer Science, Chalmers University of Technology, S-
4129G Goteborg, Sweden

159. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Harnpton, VA
23665

160. Ahmed €I. Sameh, Center for Supercomputing R&D, 1384 W . Springfield Avenue,
University of Illinois, Urbana, IL 61801

- 41 -

16 1. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

162. Robert Schreiber, RIACS, hiail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

163. Martin H . Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

164. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

165. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, TX 75275

166. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

167. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

168. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

169. Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East Ave., L-
316, P.O. Box 808 Livermore, CA 94551

170. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P.O.
Box 1892, Houston, TX 77251

171. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

172. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

173. Michael G . Thomason, Department of Computer Science, 107 Ayres Hall, Univer-
sity of Tennessee, Knoxville, T N 37996-1301

174. Philippe Toint, Dept. of Mathematics, University of Namur, FUNOP, 61 rue de
Bruxelles, B-Namur, Belgium

175. Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyori cedex 07, France

176. Herik van der Vorst, Dept. of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 A3 Delft, The Netherlands

177. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

178. Jim M . Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Ofice 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

179. Udaya B. Vemulapati, Dept. of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

180. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

181. Phuong Vu, Cray Research, Inc., 19607 Franz Rd., Houston, TX 77084

- 42 -

182. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

183. Robert P. Weaver, 1555 Rockmont Circle, Boulder, CO 80303

184. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O.
Box 1892, Houston, TX 77251

185. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O.
Box 1663, MS-265, Los Alamos, N M 87545

186. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

187. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, T X 78731

188. Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

189. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N
37831-8600

190-199. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

