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ABSTRACT

This report contains a review of issues related to density-wave instabilities in boiling water reactors (BWRs).
The report describes the types of instability modes that can be expected in operating reactors; these modes are (1)
the channel thermohydraulic instability mode, (2) the core-wide instability mode, and (3) the out-of-phase
instability mode. The physical mechanisms leading to each type of instability are reviewed and documented, along
with some common mathematical models used in stability calculations. The main approximations used in these
mathematical models are presented, and their impact on the accuracy of the calculations is reviewed. The linear
behavior of a BWR is studied through the use of transfer functions, and the nonlinear behavior and limit cycle
development are studied. A summary of the sensitivities to physical parameters is also included in this report.
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1 Introduction

This report contains a review of issues related to
density-wave instabilities in boiling water reactors
(BWRs). The goal of this report is not to present
new information; it is to collect information and ideas
that are generally known and accepted in the ficld of
BWR stability but have not been published in a
coherent and concise style in any other document.
The number of people working in the ficld of BWR
stability has grown over the past years to a
respecTable number (e.g., there were close to 100
participants in a recent BWR stability international
workshop held at Brookhaven National Laboratory);
nevertheless, the field is still small enough so that
personal communication is an effective way of
conveying information. ' This report is a summary of
many such personal communications as well as formal
oral presentations.
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Section 2 of this report describes the types of
instability modes expected in operating reactors.
These modes are (1) the channel thermohydraulic
instability mode, (2) the core-wide instability mode,
and (3) the out-of-phase instability mode. Section 3
presents the physical mechanisms leading (0 each type
of instability, and Sect. 4 summarizes some cOMMOn
maihematical models used in stability calculations.
The main approximations used in these mathematical
models are presented, and their impact on the
accuracy of the calculations is reviewed. In Sect. 5,
the linear behavior of a typical BWR is studied
through the use of transfer functions, and Sect. 6
contains a study of the nonlinear behavior and limig
cycle development. Section 7 presents a summary of
the sensitivities to physical parameters.



2 Types of Instabilities Observed in BWRs

Boiling water reactors have complex dynamic
responses that result in many instability types, and
each of these types may have different modes of
oscillation. This section describes the most common
instability types and gives some examples of how they
are manifested in commercial BWRs.

The names given to each of the instability types
are not universal, and this causes confusion at times.
It is not within the scope of this report to set a new
nomenclature standard; therefore, we will use some of
the synonyms most commonly used in the literature.

2.1 Control System Instabilities

Conirol systiem instability is the most common
type of instability a reactor designer encounters. It is
related to the action of controllers that, through
actuators, attempt to regulate some of the variables of
the reactor. BWRs are very complex nonlinear
dynamic machines, which makes their control design
difficult. For example, a controller that is optimized
to respond at 100% flow might become unstable at
30% flow because of system nonlinearities. Also,
improper maintenance might result in controller gain
adjustments that cause unstable operation at different
operating conditions.

This type of instability usually manifests itself as
low-frequency oscillations (BWR controllers are
typically slow) in either feedwatier flow, feedwater
temperature, or reactor pressure. These oscillations
are caused by the action of an actuator (typically a
valve) that follows the signals given by the control
system. Most of the time, the unstable control action
is so small (and the reacior so forgiving) that these
instabilities go unnoticed. They result in low-
frequency power or flow oscillations (of the order of 3
to 5%), which are practically masked by the normal
reactor nojse. Nevertheless, these instabilities should
be detected and corrected, if for no other reason than
to avoid excessive wear of the control actuators that
may cause a more serious problem later on.

There are two main controllers that affect the
core of a BWR: the pressure controller and the
reactor water level coniroller. The reacior power is,
typically, not controlled automatically, and it is set
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manually by the operator through the positioning of
control rods and recirculation pump speed. The most
complex of the BWR controllers is the level control
caused by "non-minimum-phase” effects, the "shrink-
and-swell” phenomenon, and the effect on power of
the core inlet flow subcooling. To solve this problem,
the designers opted for the so-called "three-clement”
controller that not only takes into account the reacior
water level but also the feedwater and steam flows.
This results in a control design that is fairly sensitive
to feedback gains and changes in operating conditions.

Several control-system-type instabijities have been
reported. For example, Fig. 2.1 shows a sinusoidal
oscillation observed in the core inlet flow of a BWRS
when it was operated at minimum recirculation pump
speed (60% power, 46 Mlb/h)." The observed
oscillation is quite small in magnitude (0.5 Mib/h or
about 1% of current flow) and its period is of the
order of 50 s, so that this type of oscillation can easily
go unnoticed in the control room.

2.2 Channel Thermohydraulic
Instabilities

Heated channels under two-phase flow regime are
susceptible to a variety of instability types. Lahey’
classifies these instabilities into two broad categories:
static and dynamic. The static instabilities are
explained in terms of steady-state laws, whereas
dynamic instabilities require the use of dynamic
conservation equations.

Examples of static instabilities” are (1) flow
excursion or Ledinegg instability, (2) flow regime
"relaxation” instability, and (3) geysering or chugging.
All of these insiability types have in common the
existence of iwo equilibrium points, and the system
tends to "jump” from one 1o the other. Examples of
dynamic instabilities are (1) density-wave oscillations,
(2) pressure drop oscillations, and (3) flow regime
induced instabilities.

The most common instability for commercial
BWRs is the density-wave instability, which is also
referred 1o as the channel flow instability. This type
of instability can be described as follows: given a flow
perturbation, a "wave" of voids travels upward through
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Fig. 2.2. Density wave mechanism introduces a time delay. The effect of a power pulse is seen up to 2 seconds
later in the channel pressure drop due to void propagation delay
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Instability Types

the channel producing a pressure drop that is delayed
with respect to the original perturbation (Fig. 2.2).
An increase in flow typically induces an increase in
pressure drop and a negative feedback that tends to
reduce the flow perturbation. The density-wave
phenomenon, however, delays this feedback, and, at
some frequency, the delay is equivalent to a 18(°
phase lag; thus, at this frequency, the pressure drop
feedback is positive. If the gain is large enough, the
channel flow becomes unstable and oscillates at that
frequency.

The two main modes of oscillation that exist for
the channel thermohydraulic instability are single-
channel and parallel-chanoel instabilitics. In the
parailel-channel mode of oscillation, the flow in one
channel increases while the flow in the other channel
decreases; thus, this mode of oscillation is called out-
of-phase flow instability. During out-of-phase
oscillations, the channel void fraction follows trends
opposite to those of the flow, so that the pressure
drop is the same across both channels. Experiments
and analytical studies show that the parallel-channel
mode of flow oscillation dominates the single-channel
mode.? This is caused by the increased inlet flow
feedback that is imposed by the constani-pressure-
drop boundary condiiion {see Section 3.3).

Another mode of density-wave flow instability ihai
has been observed in experiments is the three-channel
type oOf instability. In this mode three channels (or
groups of channels) oscillate 120° out-of-phase with
respect 1o each other. The void fractions oscillate
opposite to the local channel flow, and, as was the
case with two-parallel-channel oscillations, the
pressure drop is maintained constant across all the
oscillating channels.

Channel thermohydraulic oscillations are also
called "local” insiabilities because they may affect a
single channel in the core of a large BWR that has up
to 800 channels. This type of instability, should it
occur, is quite dangerous and it may go undetected for
a long period of time because it only affects the local
flow of a single channel. The local void oscillations
will be seen in the local power range monitors
(LPRMSs) but will probably be hard to distinguish in
the average power range monitors (APRMS) time
traces. The reactor only takes protective action (i.e.,
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scram) based on APRM signals. Local flow
oscillations of significant amplitude have the potential
for cansing transition boiling and prolonged periods of
dryout condiiion, which can lead to fuel clad failure, if
fuel surface reweiting is prevented by the film boiling.

The only reporied case of channel
thermohydraulic instability occurred in the Garigliano
reactor in Italy in the mid-1960s during special tests.
A special turbine flowmeter was installed at the outlet
of some channels in this reactor. One of the
flowmelers failed in a locked position, which caused a
significant increase in the iwo-phase pressure drop of
that channel, This caused the channel flow to become
unstable, and it oscillated following a single-channel
mode of instability.

2.3 Coupled Neutronic-
Thermohydraulic Instabilities

The dominant type of instabilities in commercial
BWRs is the coupled neutronic-thermohydraulic
instability, and approximately 20 events attributed to
this type of instability have been reported worldwide.
Although maosi of these instabilities were produced
during special stability tests, some of them occurred
during normal operation and caused the reactor to
scrami.

The coupled neutronic-thermohydraulic type of
instability is also called the reactivity instability
because it involves the changes in reactivity caused by
void fraction fluctuations. Because of the densiiy-
wave effect, the reactivity feedback caused by changes
in void fraction is delayed as the voids trave] upward
through the channel. If the delay is long enough or
the void feedback coefficient is strong enough, the
reacior configuration is unstable, and the neutron flux
oscillates with a frequency close to the inverse of the
density-wave time constant (i.e, the time delay caused
by the voids traveling through the core).

This instability type is called coupled neutronic-
thermohydraulic because it involves two feedback
loops: (1) the neuntronic feedback described above and
(2) the thermohydraulic feedback that affects the inlet
flow rate in a manner similar to that of the channel
flow stability. This is the dominant mode of instability
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Fig. 2.3. Modes of oscillation for the coupled neutronic-thermohydraulic instability type

in BWRs because it adds all the destabilizing effects
of the thermohydraulic feedback to those of the
neutronic feedback.

The two modes of oscillation that are commonly
recognized for this type of instability are the core-wide
or in-phase mode and the regional or out-of-phase
mode. In the core-wide mode, the power and inlet
flow of the whole core oscillate in phase for all
channels. In the out-of-phase mode that has been
observed in experiments and instability events
worldwide, the power of half of the cor¢ oscillates
out-of-phase with respect to the power of the other
cor¢ hall. The inlet flows of both halves of the core
are also out-of-phase with respect to each other.

The different modes of the reactivity-type of
instability have been explained based on the spatial
modes of the neutron flux field that are coupled to
the thermohydraulic reactivity feedback. The neutron
flux caused by a spatial distribution of reactivity tends
to organize itself in the form of its dominant modes
(i.e., harmonics) in a manner similar to thatof a
string that oscillates with different harmonics (i.e.,
modes) depending on the initial condition chosen.
Figure 2.3 shows the dominant modes of the neutron
field in the radial direction for a cylindrically shaped
reactor. Depending on the type of excitation and the
particular reactor conditions, one mode dominates the
other. This hierarchy of modes and how and when the
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out-of-phase mode dominates the fundamental core-
wide mode are discussed in Sect. 3.

Because of their spatial distribution, core-wide
oscillations are readily observed and measured with
the reactor’s APRM instrumentation. In this manner,
large core-wide osciliations result in an automatic
scram when the plant protection system setpoint is
reached. Out-of-phase oscillations, however, are not
readily detectable by the APRM system because the
oscillations in one side of the reactor cancel the ones
in the other side. Indeed, a perfectly symmetric out-
of-phase oscillation and LPRM distribution would
result in no perceived oscillation in the APRM signal.
Fortunately, the real worid oscillations are not
perfectly symmetric with respect to the LPRM
distributions of detectors, and nonlinearities in the
neutron flux response make perfect cancellation
impossible. Nevertheless, attenuation factors of 7 to
10 have been observed in experiments.’ This implies
that by the time the APRM oscillation reaches the
120% safety setpoint, local LPRM oscillations might
be as high as 1200%. Thus, at the present time, out-
of-phase oscillations pose a dangerous threat to the
integrity of present reactors that do not have
automatic protection against these oscillations.
Utilities in the United States are currently required to
scram manually upon the detection of any type of
oscillation," based mostly on LPRM upscale and
downscale alarms, which are sensitive to large out-of-
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Fig. 2.4. Example of an in-phase oscillation event: LaSalle reactor, March 1988

phase oscillations. An automatic protection system
for all types of expected modes of oscillation is
currently being designed by U.S. utilities and should
be implemented in the near future.

Figures 2.4 and 2.5 show an example of in-phase
and out-of-phase instability events in commercial
BWRs. The oscillation in the LaSalle reactor
(Fig. 2.4) resulied in an automatic scram within a
minute from the end of this time trace due to high
APRM flux (< 118%). The oscillation event in the
Ringhals BWR (Fig. 2.5) was in the out-of-phase
mode and was terminated by a partial scram
performed manually by the operator. The LaSalle
event was compounded by a partial failure of a
feedwater heater controller valve that was sticking
open until the controller demand was large enough to
force it 10 close all the way. This was the cause for
the modulation in the limit cycle amplitude observed
in Fig. 2.4. Thus, the LaSalle event is also an example
of a control system instability that drives a low-
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frequency power oscillation.

There is some evidence, not yet completely
understood, that axial modes play an important role in
oscillations caused by the coupled neutronic-
thermohydraulic instability type. For instance, Fig. 2.6
shows the time delay between the oscillations at
different LPRM levels during an in-phase core-wide
oscillation. It is well known that the static modes of
systems with distributed spatial feedback are not
necessarily orthogonal to each other. Thus, the
fundamental mode may excite the first axial mode by
the propagation of voids through the density-wave
mechanism, and vice versa. This is an area that
deserves more research effort, especially in the study
of implications t0 the applicability of codes based on
the point kinetic approximation, which only models
the fundamental neutronic mode.
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3 Physical Mechanisms Leading to Instabilitics in BWRs

This section describes the physical mechanisiis
that lead to the observed instabilities in BWRs. As
stated in Sect. 2, the most probable instabilities in
BWRs are either the channel flow instability or the
coupled neutronic-thermohydraulic instability. Both
of these types of instabilities have their roots in the
density-wave mechanism, which adds a significant
delay to the feedback path. Thus, this seciion
describes first the density-wave mechanism, which
governs the inlet flow feedback, and later the
neutronic feedback, which determines the power level

3.1 The Density-Wave: Flow
Oscillations

The density wave causes a delay in the local
pressure drop that is caused by a change in inlet flow.
Because of this delay, the sum of all local pressure
drops may result in a total drop that is out-of-phase
with the inlet flow. The basic mechanism causing fiow
instabilities in BWRs is the density wave, whose effect
on pressure drop is illustrated in Fig. 3.1. The
coolant in commercial BWRs flows upward through
the core and is guided by bundle boxes that surround
a matrix of fuel pins (iypically an array of 8 by 8 or
9 by 9 pins). Thus, variations in density in the bottom
part of the channel travel upward with the flow. For
example, if the inlet flow is decreased while the
channel power is kept constant, there is an increase in
the number of voids in the channel that will travel
upward as a packet forming a propagating density
wave. This packet of voids produces a change in the
local pressure drop at each axial location, which is
delayed axially by the density-wave propagation tiine
(i.e., the effective time for the voids 10 move upward
through the core). In two-phase flow regimes, the
local pressure drop is very sensitive to the local void
fraction and is very large at the outlet of the channel
where the void fraction is greatest; thus, a significant
part of the pressure drop is delayed with respect to
the original perturbation.

If the inlet flow is perturbed sinusoidally, the local
pressure drops are also sinusoidal (within the linear
range), but they are delayed with respect to the
perturbation (Fig. 3.1). The total pressure drop across
the channel is the sum of a series of delayed sinusoids
(the local pressure drop) and, thus, also has a
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sinuscidal form that is delayed with respect to the
flow perturbation. If the channel outlet pressure drop
(the one that is more delayed) is larger than the inlet
pressure drop, the total pressure drop may be delayed
180° with respect to the inlet flow and, therefore, have
the opposite sign. This is the case in Fig. 3.1, where
an increase in inlet flow results in a decrease in
channel pressure drop. One might think that this
channel behaves as if it had a "negative” effective
friction coefficient at this particular frequency; thus,
the channel flow is unstable, and any inlet flow
periurbation feeds on itself (positive feedback), and
oscillations grow at that unstable frequency. The
critical point at which the channel flow instability
starts is when the outlet (i.e., delayed) local pressure
drop equals the pressure drop at the inlet at a
particular frequency. In this case, we have a channel
with an effeciive zero friction at that frequency, so
that any perturbation sustains itself.

In the above description we have simplified the
argument by talking only about an inlet pressure drop
(which is also called the single-phase pressure drop)
and an outlet, or delayed, pressure drop (which is also
called the two-phase pressure drop). In reality, as
illustraied in Fig. 3.1, the local pressure drop is a
continuous function of axial position and the situation
has to be modelled accurately. However, it sometimes
helps to have a simplified mental picture (like the one
presented above) in which all the jssues are black or
white and therefore easier to understand. This is the
simple view that will be used for arguments
throughout this paper, the reader should understand
that the real physical problem is more complex, and
that a simple mental model, although helpful, is not a
substitute for a detailed numerical calculation.

The relative flow stability of a channel depends on
the amount of inlet flow feedback, and the inlet flow
feedback is a function of the channel boundary
conditions. The three main types of boundary
conditions are (1) constant pressure drop, (2) variable
pressure drop, and (3) constani inlet flow.

A constant-pressure-drop boundary condition may
be achieved in a test stand by having a large bypass
flow in parallel with the test channel. If a single
channel were to become unstable in a BWR that is
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Fig. 3.1. Tllustration of the local pressure drop delay introduced by the density-wave mechanisim

formed of as many as 800 bundles, the boundary
condition would be forced by the remaining 799
bundles, and it would remain essentially constant
across the unstable channel. This type of boundary
condition is the most unstable of the three because it
results in the largest number of inlet flow feedback
oscillations required to maintain the constant pressure
drop.

A variable pressure drop boundary condition
occurs when the channel inlet flow is determined by
the recirculation loop and pump dynamics. In this
case, the channel pressure drop at a particular flow
and time must match the pressure drop across the
recirculation loop plus the pressure gain at the pump
for the particular loop flow. For this pressure
balance, dynamic terms, such as inertia, have 1o be
taken into account in the channel as well as in the
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circulation loop. Because the pressure drop across the
channel is allowed to oscillate according to the
recirculation-loop dynamics, the inlet flow feedback is
not as strong in this case as in the constant-pressure-
drop boundary condition.

A constant inlet flow boundary condition can be
achieved in a test stand by having a constant
displacement pump feed the channel a constant inlet
flow regardless of pressure. This is the most
sTable boundary condition. Indeed, because the flow
is constant, it cannot oscillate; therefore the channel is
always stable.

The physical processes that cause flow 0<ciﬂd@ions
are hard to visualize, but they are slightly easicy for
the case of the constant-pressure-drop boundary
condition. Let us assume an unstable channel that, as
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described before, has an effective negative friction
cocfficient at a frequency. Let us further assume that
the pressure drop across this channel is maintained
constant by (for insiance) maintaining a large flow
through a bypass region in parallel with the channel.
Then, if a perturbation occurs that increases the inlet
flow, the negative effective friction coefficient would
tend to decrease the pressure drop. To compensate
and keep the pressure drop constani, the channel
increases the inlet flow even further, which causes a
runaway instability. What complicates the situation is
the fact that the effective friction coefficient is only
negative at a particular frequency; thus, the flow
increase is not an average flow increase but a flow
increase at the frequency. In other words, the
instability results in an oscillation of that frequency
with an exponentially growing amplitude.
Nonlinearities in the system eventually cancel the
growth of the oscillation, and a limit cycle is
established at a finite oscillation amplitude.

3.2 Neutronic Feedback During
Oscillations

In the previous section, we described the density
wave in relation to flow instabilities. For those
instabilities, only flow is involved, and the power
generation term in the fuel is assumed constant. In
BWRs, the power generation is directly related to the
neuiron flux, which is a function of the reactivity
feedback and, therefore, depends strongly on the core
average void fraction. Thus, when a void fraction
oscillation is established in a BWR, the power
oscillates according to the neutronic feedback.

The neutronic fecdback path is different from the
inlet flow feedback path. The neutronic feedback
involves (1) the neutron dynamics, which determine
the power generated in the fuel; (2) the fuel dynamics,
which define the heat flux from fuel to coolant; (3)
the channel thermal hydraulics, which characterize the
void fraction respense to changes in heat flux and
include the inlet flow feedback through the
recirculation loop; and (4) the reactivity feedback

Reaclivity

x 3| NEUTRONICS

Power

Fuel Temp.

FUEL
Void
Reactivity CORE T-H , ',{
2“““""""‘"‘“‘ Inlet enthalpy
Outlet
Pressure RECIRCULATION LOOP Inlet flow

Fig. 3.2. Block diagram of the feedback paths for the coupled neutronics-thermohydraulics instability type
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dynamics, which relate the void fraction distribution to
a reactivity value that affects the neutron dynamics.
These feedback paths are illustrated graphically in
Fig. 3.2. One important difference between the
neutronic feedback and the flow feedback paths is
caused by the fuel transfer function. Before the power
generated by the neutronics can feed back through the
moderator density, it has to change the fuel
temperature to alter the heat flux from fuel to
coolant. The fuel in commercial BWRs responds
relatively slowly with a time constant between 6 s and
10 s. This results in a single pole break frequency of
the order of 0.03 Hz. Since the unstable oscillations
occur approximately one decade above this break
frequency (i.e., at approximately 0.3 to 0.5 Hz), the
fuel adds almost a 90° phase delay to the feedback.
Furthermore, the gain of the fuel transfer function
decreases inversely proportional to the frequency for
frequencies between 0.1 and 1.0 Hz. This effect can
be seen in Fig. 3.3, which shows a typical power-to-
heat-flux transfer function calculated by the LAPUR®
code. Thus, the fuel has some destabilizing effect
because of its phase delay, but it also has a significant
stabilizing effect caused by its inherent filtering of the
oscillation amplitude at frequencies higher that 0.1
Hz. Changes in fuel time constant affect the reactor
stability in two ways, but experience has shown that
the gain effect is dominant over the phase effect.
Thus, decreasing the time response of the fuel (ie.,
smaller diameter fuels or increased pellet-clad gap
conductance) has a destabilizing effect in general.

The void reactivity feedback is computed by
performing a spatial averaging of the void distribution
in the core weighted by the local void reactivity
coefficients and the local neutron flux and adjoint. In
mathematical terms, the reactivity feedback, Ap, due to
a void perturbation, A, can be written as shown in
Eq. 3-1),

H R

8e0) = [ [2¢2) 20) (g—s)(r,z) Aa(rzddrdz
[+ 301}

G-1)

where @ and &* are the normalized neutron flux and
its adjoint, respectively, and dp/d« is the local density
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reactivity coefficient.

The averaging described by Eq. (3-1) results in a
phase delay of slightly over 90 and a large filtering
effect (i.e., gain reduction) for frequencies higher than
the inverse of the density-wave time constant. Figure
3.4 illustrates this effect in the LAPUR-calculated
transfer function from fuel surface heat flux to density
reactivity feedback. The units in this figure are
normatized to the average (i.e., zero {requency) value
because only the shape of the transfer function is
relevant to this general discussion. The absolute gain
value of this transfer function will depend on the
particular characteristics of the reactor being modeled;
for example, the gain is directly proportional to the
density reactivity coefficient. The filtering effect on
the channel gain is very significant at high frequencies
(Fig. 3.4), and it results in a fast roll-off that, for all
practicai purposes, eliminates all frequencies higher
than the fundamental oscillation frequency from the
feedback path. This is the reason for the observation
that in time domain codes the reactivity feedback is
essentially sinusoidal even under large limit cycle



Physical Mechanisms

conditions when the neutron flux has a significant
amount of higher harmonic contamination. The
filtering effect observed above is caused by the spatial
averaging introduced by Eq. (3-1) combined with the
density-wave mechanism. For example, if the rcactor
power (and, consequeitly, the fuel heat flux) is
oscillated at a high frequency, there will be an
associated density wave formed by the void
perturbations that will travei upward through the
channel. If the oscillation frequency is higher than
the density-wave characteristic time delay, the wave
front will not have time to leave the top of the
channel before the next wave front is created. In this
manner, when the average void fraction is calculated
using Eq. (3-1), the positive and negative parts of the
wave cancel each other, and there is a significant
decrease in overall density reactivity feedback. On the
other hand, if the power oscillation is of a very low-
frequency, the spatial averaging does not produce the
canceling effect described above, and the gain is not
reduced.

3.3 Boundary Conditions for Ditferent
Oscillation Modes

It has been established experimentally® that
momentum dynamics and the recirculation-loop flow
path play an important role in defining reactor
stability because, for the fundamental mode of
oscillation, any change in power is accompanicd by a
change in inlet flow. The amount of this change is
determined by momentum dynamics in the core and
recirculation-loop characteristics. However, an out-of-
phasc mode of oscillation in parallel channels does
not require changes in total inlet flow because the two
oscillating core regions adjust their flows 10 maintain
equal pressure drops across the core. In other words,
if the flow increases in channel 1, the flow of channel
2 decreases by the same amount (at least within the
linear operating region), and the total flow remains
unchanged. This mechanism allows for large flow
oscillations within e¢ach channel, and it has the cffect
of increasing the gain of the thermohydraulic
component in the BWR dynamics feedback, thus
decreasing the reactor stability.

The mechanism described above is represented
schematically in Fig. 3.5. In this figure, the arrows
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represent the flow intensity through the representative
channels during an osciliation of period T. For the
fundamental (core-wide) mode of oscillation, the
whole core behaves as a unit, and the total core inlet
flow oscillates in phase with the core pressure drop.
In the out-of-phase mode of oscillation, a constant
total core inlet flow is maintained by readjusting
individual channel flows, and the core pressure drop is
maintained constant. This flow pattern is graphically
represented in Fig, 3.5 by two flow components: the
in-phase component that remains constant, and the
out-of-phase component that oscillates; the actual flow
is the sum of the iwo components. When a single
channel instability occurs, the inlet flow of the single
unsiable channel oscillates, but the total core flow and
core pressure drop remains essentially constant
because it is controlled by the large number of

stable channels.

Thus, the boundary conditions that must be used
to model the three instability modes are as follows:
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# Core-wide instability mode - variable pressure
drop across the core that is determined by the
recirculation-loop dynamics,

® Out-of-phase instability mode - constani pressure
drop across all channels in the core, and

@ Channel thermohydraulic instability mode -
constant pressure drop across the channel.

A thermohydraulic model of a BWR includes fuel,
core coolant, and recirculation-loop dynamics. The
dynamic processes solved by most BWR stability codes
can be summarized as follows: an energy balance in
the fuel region yields the heat transferred to the core
coolant. The energy and continuity balance equations
are solved in the coolant region to obtain the core
enthalpy (i.e., void fraction) distribution. Neglecting
second-order effects, the momentum equation can
integrate this distribution to yield the core pressure
drop. The recirculation-loop momentum equation
yields the core inlet flow from the pressure drop
across the jet pumps, which must equal the pressure
drop across the core. The thermohydraulic loop is
closed when the inlet flow is coupled to the coolant
energy and continuity equations. Finally, the
thermohydraulic and neutronic models are coupled via
the fuel temperature and void reactivity feedbacks,
which yield the A« term in Eq. (3-1). Thus, the two
main feedback paths in the closed-loop dynainics of a
BWR are (1) the inlet flow feedback, characterized by
the reactor and recirculation-loop momentum
dynamics, and (2) the neutronic feedback, caused by
the void reactivity coefficient. These feedback paths
are represented in Fig. 3.6.

In physical terms, the dominance of the out-of-
phase and core-wide modes of unstable oscillations
depends on the relative gains of the two feedback
paths in Fig. 3.6. The out-of-phase instability mode
has a very large gain for the inlet flow feedback (in
essence the flow can oscillate as much as it wants
without having to pay any friction "penalty” in the
recirculation loop), but it has low gain from neutronic
feedback because it corresponds to a damped
subcritical mode. For the core-wide instability mode,
the situation is reversed; the neutronic feedback is
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large, but the inlet flow feedback is smaller because
flow oscillations are damped by the friction in the
recirculation loop. Thus, either of the two instability
modes (out-of-phase or core-wide) may dominate the
response of the reactor. Which of the two will
dominate depends on specific values of parameters as
they affect the relative gain of the iwo main feedback
paths.

The thermohydraulic equations in a particular
channel are essentially the same for the out-of-phase
mode as for the core-wide (fundamental) mode; they
are based on the momentum, energy, and continuity
equations. The only difference between the two
modes arises on the core boundary conditions (i.e.,
inlet flow and pressure drop). For the core-wide
mode, the boundary conditions are determined by the
recirculation-loop dynamics. For the out-of-phase
mode, however, the boundary conditions are fixed, and



they determine the necessary inlet flow to maintain a
constant pressure drop across the core. This is a well-
known boundary condition for parallel-channel
oscillations and is caused by the common plena
connecting all channels.

In frequency domain linear codes, the constant-
pressure-drop boundary condition can be implemented
either by properly connecting the individual open-loop
transfer functions as they are combined to form the
closed-loop or by setting the gain of the
recirculation-loop pressure-to-flow transfer function to
an arbitrarily large number and using an existing core-
wide stability code. Both methods yield the same
result because both minimize pressure drop variations.
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In summary, there are two competing effects in
the out-of-phase mode: on the one hand, the
neutronics component is subcritical and tends to damp
out oscillations; on the other hand, the
thermohydraulic component in the out-of-phase mode
has more gain than in the fundamental mode and
tends to destabilize it. The relative importance of the
two above effects depends on the degree of
subcriticality of the out-of-phase mode. Thus, it
seems plausible that there is a threshold subcritical
reactivity at which the out-of-phase mode can become
unstable, even if the fundamental mode is stable.



4 Mathematical Models for BWR Stability Calculations

This section presents some of the mathematical
models that are commonly used for stability
calculations. The purpose of this section is to point
out the approximations and limitations for these
models rather than io provide a complete reference of
equations and correlations, which would be outside of
the scope of this report. This section uses a
significant number of buzz words, whose definitions
are also beyond the scope of this document. For
convenicnce to the reader, the first introduction of
these buzz words is in italics.

4.1 Numerical Approximations {or the
Solution of Partial Differential
Equations

The main approximation of all models used for
stability evaluation comes from the fact that the
conservation laws that must be satisfied by the
variables of interest are typically expressed as partial
differential equations (PDEs). Numerical
mathematics, however, is well suited to solve ordinary
differential equaiions (ODESs); thus, approximations
are required to solve the physical problems
numerically.

4.1.1 Nodal Approximations

The most commonly used approximation to
reduce a PDE to a set of ODEs is to discretize the
space variables by creating a group of nodes. The
following steps are involved in this process:

1. Define a mesh of nodes that cover all the space of
interest. This step is commonly referred to as a
nodalization process.

2. Define node-averaged values for all the variables
that have a space dependence.

3. Define boundary conditions that arc consistent for
the mesh chosen.

4. Approximate the space derivatives in the original
PDE by relations between the node-averaged
values. For example, the first-order space
derivative may be approximated by the difference
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between the node-averaged values of two adjacent
nodes divided by their distance. The result of this
step is a set of algebraic equations that relate all
the node-averaged values to each other and to
their time derivatives.

5. Solve for the set of ODEs defined in step 4.

The accuracy of a nodal approximation depends
on how coarse the nodalization is: the finer the mesh,
the better the result (if one does not consider
truncation errors due to the finite number of digits
used by computers to represent real numbers).
Accuracy can also be improved by defining optimized
node-averaged values in step 2, instead of simple
averages or node-cenier values. These optimized
values are chosen so that the original PDE is
conserved inside the node itself. This type of
approximation is often called finite element, and it
allows for coarser meshes with improved accuracy.

4.1.2 Modal Approximations

Another approximaiion that is commonly used
(often without recognizing it) is a modal iype of
numerical solution. In this approximation, a shape is
assumed for the space-dependent part of the solution,
and ihe space derivatives are calculated analytically
based on this shape; this process results in an ODE
with time being the only independent variable. For
this approximation, the solution is assumed (0 be
separable and equal to the product of two functions:
one that is only a function of time and another (the
shape function) that is only a function of space.

An example of this modal approximation is the
commonly used point kinetics formalism for the
neuiron field dynamics. Within poini kinetics, the
time- and space-dependent fiux, P(ir), is assumed to
be equal to the product of a time-dependent flux level,
n(t), times a shape function, #(r); therefore,

@.r) = n) ®@) (#-1)

In this approximation, the space-dependence, &(r),
is obtained from a steady state solution of the neuiron
ficld PDE (i.e., by forcing all time derivatives equal to
zero). The steady state solution is then plugged into



the time- and space-dependent neutron field PDE to

obtain an ODE for the time component, n{¢). In this
way, the coefficients of the time-dependent ODE for

n(t) are a function of &(r).

A close inspection of Eq. (4-1) reveals that it is
not a very good approximation in the sense that no
deviation from the steady state space dependency, &(r),
is allowed. Mathematicians, however, solved this
problem long ago by realizing that the steady state
solution of an autonomous space-dependent equation
is typically degenerate, which means that there are an
infinite number of spatial shapes, @®(r) (i = 1, ), that
satisfy the steady state equation. Thus, the general
solution for the time- and space-dependent flux is not
given by Eq. (4-1) but by

P(t,r) = in,.(:) @ (42
i=1

Each of the &(r) solutions is called a spatial mode
or a spatial harmonic. The first harmonic or mode
[the one called &(r) in Eq. (4-1)] is called the
fundamental, and it is the one that dominates most
transients. Spatial harmonics have some interesting
mathematical properties, the most important of which
is that they are orthogonal 10 each other

fvd)‘,(r)d)j(r)dr =0;if i#j 4-3)

A consequence of this orthogonality is that
equations for each of the n(t) can be derived that are
independent of the other ngt). In a stable critical
reactor, all n(f) have negative eigenvalues (i.e., they
decay with time), so that only the contribution from
the fundamental component is important and
Eq. (4-1) becomes a good approximation. Under
special circamstances (such as Xenon spatial
oscillations, or out-of-phase instabilities in BWRs),
the higher harmonics play an important role in the
reactor dynamics.

The advantage of modal approximations over
nodal approximations is that if one is interested in the
temporal behavior of the fundamental or any other
mode, this is precisely the quantity being computed
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and the results are exact. The disadvantage is that
changes in spatial shape cannot be accommodated.

BWRSs have a very complex dynamic behavior. To
complicate the issue even further, the solution of the
neutron dynamics blends itself quite easily to a modal
approach (i.e., point kinetics), whereas a nodal
approach is more appropriate for the
thermohydraulics part of BWR dynamics. Thus, it is
not unusual to see mixed nodal-modal calculations of
BWR stability.

4.2 BWR Neutron Dynamics

Neutron dynamics define the behavior of the
neutron field in a BWR, and, thus, they control the
power generation term that feeds the
thermohydraulics. One of the most exact
representations of neutron dynamics is the time-
dependent Boltzman Equation (also known as the
neutron transport equation), which not only depends
on time and space but also on energy and direction,
for a total of eight independent variables. For
obvious reasons, this equation cannot be solved
directly numerically, and a significant number of
approximations are required that are beyond the scope
of this report.

The way in which the thermohydraulic calculations
are coupled to the neutronics is of particular
relevance t0 BWR stability calculations. This is
accomplished by a reactivity calculation in the point
kinetics formalism or by modifying the cross sections
used in the diffusion or transport multidimensional
calculations.

4.2.1 Reactivity Feedback in the Point
Kinetics Formalism

Point kinetics, as stated before, is a modal
approximation to the neutron dynamics. Indeed, the
conventional point kinetics formalism solves for the
time-dependent behavior of the fundamental mode of
the neutronics. A rigorous derivation of the point
kinetjcs formalism can be accomplished starting from
the neutron transport equation and introducing the
concept of adjoint flux, ¢*(r). This derivation results
in a series of formulas for all the space-independent
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constants and variables that appear in the point
kinetics equations for n(z). The most important of
these variables is the net reactivity feedback, p{f),
which is defined by Eq. (4-4),

P =~ [, ¢°0) o) @) dv (44)

where Vis the core volume and p(rt) is the local
reactivity feedback at position », which is typically
estimaied as a function of changes in void fraction, &,
and fuel temperature, T, Using the linearized
reactivity coefficients dp/da and dp/Jl},
Apn) = L0 datr)
3 da (4_5)
p

+ A D) AT (r,t

a1, (.0 AT(r,1)

In the above equations, the local flux, &(r), is assumed
to be normalized so that the integral over the whole
volume, ¥, of the product of the flux times its adjoint
is equal to one.

Radial Nodalization

Equations (4-4) and (4-5) wouid represent the
optimal coupling from thermohydraulics to neutronics
if the thermohydraulic solution were perfect and
known at every position, 7, in the reactor.
Unfortunately, thermohydraulics is the most expensive
part of the calculation because the solutions to many
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(sometimes ill-behaved) differential equations are
involved. Thus, the thermohydraulics are often solved
in fairly coarse meshes by grouping thermohydraulic
channels in the radial direction. The process for
coupling the point kinetics neutronics to the
thermohydraulic calculations is shown schematically in
Fig. 4.1 and is described maihematiically in the
following paragraphs.

To account for the coarse radial mesh, we must
rewrite Eq. (4-4) as

1
p(® = = | @) p(r,0) () dV
f (4-6)
1

11 r
=< . H ®'(r,2) p(r,z,0) B(r,2) dz dA

where A is the horizontal (i.e., radial) area of the
core. The radial integration in Eq. (4-6) is then
approximated by a sum over a group of channels (or
thermohydraulic regions) that have similar power
levels, @, In mathematical terms, this approximation
becomes

po) = ‘f N o oo, (4D
i=

1
N,

where N, is the total number of bundles in the core,
Ny, is the aumber of thermohydraulic regions (or
channels) used for the calculation, &, is the number of
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Fig. 4.1. Schematic diagram of the interface between thermohydrautics and neutronics
for a iypical BWR stability calculation using point kinetics
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bundles in region i, and p,(¢) is the reactivity feedback
contribution from a single channel in region i, which
is given by the following equation:

H
. 1 + 4_8
Pl = — { 0@ ph) 9, &z (4+8)

where @,(z) is the axial flux distribution for
thermohydraulic region i, which is normalized so that
the integral over the height of the core of the axial
flux times its adjoint equals one.

Axial Nodalization

Equation {4-8) again is solved by discretizing the
axial dimension into a set of axial nodes. This axial
nodalization is also fixed by the thermohydraulic
calculation, and the number of nodes is typically
determined by the accuracy desired. The reactivity
feedback from a channel of thermohydraulic region i
is then given by the following expression:

N

z

Z ‘Pi; p,’,'(t) @y (4-9)

1
P‘i(t) =
N, j-

where p.(t) is the local reactivity feedback
contribution from axial node § in a single bundle of
thermohydraulic region i, and it is calculated by an
equation similar to Eq. (4-5).

Within one group diffusion theory, the adjoint
flux is equal to the forward flux, and both are
approximately proportional to the power generation
term, P (if one assumes fairly constant fission material
loading). Therefore, all the products of flux times its
adjoint may be approximated by the power squared.

Thus, the general integral equation represented by

Eq. (4-4) is approximated in most BWR stability point
kinetics calculations by the following series of sums:
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Ny N,
p@) = ;}- A [7\1, 3 P pii(t)] (4-10)

b i=1 z J=1

where P; is the normalized power of thermohydraulic
region i and Py is the local power at axial node j of
region i. This process is shown graphically in Fig. 4.1.

Note that in Eq. (4-10) the term p%), which is
inside both summations, is the product of the
reactivity coefficients times the variations in void and
fuel temperature [Eq. (4-5)]. A common mistake is to
generate average reactivity coefficients and then
multiply them by the time-dependent, spaced-averaged
void fraction and fuel temperature. The result of this
approximation is not equal to the result of Eq. (4-10)
and can be in error significantly because of the strong
nonlinear dependence of the reactivity coefficients.
Whenever possible, an equation similar 10 Eq. (4-10)
should be used.

4.2.2 Thermohydraulic Feedback in
Multidimensional Diffusion Calculations

In multidimensional diffusion calculations,
whether in one, two, or three dimensions, a process
similar to the one described for the point kinetics case
must be followed 1o estimate the thermohydraulic
feedback. In principle, it is possible to generate a
computer model with a one-to-one correspondence
between the neutronic and thermohydraulic nodes.
However, because the thermohydraulic part of the
calculation is significantly more expensive than the
neutronics, often the thermohydraulic mesh is defined
based on representative regions that group many
bundles with similar power density. Thus, an
algorithm must be used (0 couple the thermohydraulic
mesh to the neutronic mesh. In diffusion calculations,
the concept of reactivity does not apply properly.
Instead, the local cross sections of each neutronic
node are varied as functions of the local void fraction
and fuel temperatures based on static calculations that
are performed at different void fractions, fuel
exposure, and fuel temperatures.

One-dimensional (1-D) neatronic calculations
(shown schematically in Fig. 4.2) typically conserve the
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Fig. 4.2. Schematic diagram of the interface between thermohydraulics and neutronics
for a typical BWR stability calculation using 1-D neutronics

axial direction in BWR stability calculations. In this
way, the propagation of the density wave and its effect
on the local power density can be modeled. To
perform these calculations, the three-dimensional (3-
D) thermohydraulic feedback must be collapsed into
effective 1-D cross sections. Similarly, as in the case
of the reactivity feedback, the optimal way to collapse
cross sections is 1o use a flux adjoint weighing as
shown mathematically in Eq. (4-11):

2@ = 5 [, €00 3020 0 a4 (@11

where the time-dependent local 3-D cross section,
Z(rzt), is updated based on the local void fraction and
fuel temperature calculated in the thermohydraulic
mesh, and then collapsed to 1-D cross sections, X(z1),
based on Eq. (4-11).

As in the case of point Kinetics, the integral in
Eq. (4-11) is replaced by a summation over the
thermohydraulic channels, so that the 1-D cross
section, XY(z1t), is cstimated as

Nn
2@h = -~ Y N P@ Sy (+12)
N, 9

where X(zt) is the cross section of thermohydraulic
channel i. Similarly, as in the case of the reactivity
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feedback in point kinetics, a common mistake is to
average first the radial void distribution and then
estimate radially averaged cross sections. This mistake
may underestimate the thermohydraulic feedback
significantly because of the nonlinear nature of the
process.

In 3-D neutronic calculations, the neutronic mesh
is typically (although not always) smaller than the
thermohydraulic mesh; thus, raany neutronic nodes
receive the same thermohydraulic feedback (especially
when a limited number of thermohydraulic regions are
used). The process to estimate the thermohydraulic
feedback in 3-I) calculations is shown schematically in
Fig. 4.3. The key approximation in 3-D calculations is
that only a few thermohydraulic regions are typically
modeled; therefore, 3-D calculations require one
algorithm to convert the 1-D cross section feedback
calculated for each region to the finer neutronic mesh
and another algorithm to collapse the fine 3-D power
to region-averaged axial power shapes.

The selection of the number of thermohydraulic
regions and the association between the finer
neutronic nodes to the coarser thermohydraulic nodes
are a key process in 3-D neutronics. This is especially
true when inherent symmetries are used to reduce the
problem dimensionality. It is not uncommon to
perform 3-D quarter or even octant symmetry
calculations where only an eighth of the core is really
modeled. These symmetry approximations are
appropriate for the fundamental mode of oscillation,
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for a typical BWR stability calculation using 3-D neutronics.

but they prevent numerically higher harmonics from
developing; thus, 3-D octant calculations might show a
stable reactor (in the calculated fundamental mode),
while the out-of-phase mode is clearly unstable.

In spite of the problem described above, the 3-D
solution should always be a more accurate
approximation.

4.3 BWR Thermohydraulics

Thermohydraulics are by far the most complex
part of BWR dynamics. Basically, one has to solve for
the conservation of energy mass and momentum in
the fuel and the coolant; however, because BWR
conditions result in two-phase flow through a number
of parallel fuel bundles, the solution to those
conservation equations is quite complex.

As stated before, the thermohydraulics are not
typically solved for each and every one of the bundles
in the core, but a number of representative
thermohydraulic regions are defined that group
bundles with similar power and flow characteristics,
and only one representative channel from each region
is solved. The problem of coupling the calculations
for different channels:into a single core is shown
schematically in Fig. 4.4. In this figure, we observe
that the power and axial power distribution for each
thermohydraulic region {or channel) is known from
the neutronic calculation. Assuming an inlet flow, the
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thermohydraulic calculation estimates the temperature
and void distribution that feeds back to the neutronic
calculation through a reactivity feedback. The
thermohydraulic part of the calculation also computes
an outlet pressurc. The outlet pressures from all
regions are compared with each other, and the inlet
flow to all regions is readjusted to achieve the same
outlet pressure in all regions. The core outlet
pressure also feeds back through the recirculation
loop and alters the inlet flow. For instance, if the
core pressure drop is too high, the core outlet
pressure decreases, causing a reduction in inlet flow
until the pressures are balanced.

4.4 Mode Orthogonality: Excitation of
the First Axial Harmonic

An interesting fact that arises during BWR
unstable oscillations is that the fundamental mode of
oscillation does not appear alone, but it appears to be
always accompanied by at least the first axial
oscillation mode. From observations in actual reactor
instability tests and 3-D code simulations, it appears
that the fundamental mode always excites at least the
first axial mode (and probably all higher axial mode
harmonics). This fact is an apparent paradox because,
in principle, the different harmonic modes are
orthogonal to each other and, therefore, one cannot
excite the other. This section attempts to explain this
phenomenon. In a few words, this effect can be
explained by the fact that the reactivity feedback is
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Fig. 4.4. Schematic algorithm for the solution of BWR thermohydraulic problems with multiple channels

nonlinear and, thus, linear mode orthogonality
theorems do not apply.

To simplify the problem, we will assume a
homogeneous, 1-D problem, where diffusion theory is
applicable. In that case, the time- and space-
dependent neutron flux, ¥{4z), is given by the equation

(4-13)

+ U@t,2) ¥@,2)

1%y _ Y02
v & 2

where D is the diffusion coefficient. The production
operator, IKtz), is a function of the fission and
absorption cross sections, and it contains implicitly all
the feedback terms (i.e., the cross sections depend on
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the local void fraction and fuel temperature). To
simplify, we will assume that the feedback is directly
proportional to the local neutron flux, ¥{1z), as

0tz = M, + I, [T -P,0] “14)

where @,(z) is the sieady state neuiron flux and IZ, and
II; are the linear and nonlinear components,
respectively, of the produciion operator.

Following standard linear theory, we would
assume that the neutron flux, ¥(%z), is separable into
iwo components: a time-dependent term, n{¢), and a
space-dependent term, #{z). Again, following standard
linear theory, we solve for the steady state eigenvalue



problem of Eq. (4-15), which results in a set of
eigenvalues, A, and eigenfunctions, ¢, which are also
called harmonic modes:

A 0 = (4-15)

These harmonic modes are orthogonal to each
other, and they form a complete set because Eq. (4-
15) is of the Sturm-Liouville type. Therefore, the
relation of Eq. (4-16) is satisfied:

fo @) dz = 8,

8, =1ifi=j
3, =0ifi#j

(&-16)

i

Within linear theory, the general solution for the
time- and space-dependent neutron flux would be
given by Eq. (4-17)

=

¥(t,2) = Z n,‘(t) (Pi(z)

i=0

(4-17)

where the time-dependent terms, m(t), should be
independent of each other; but, because of the
nonlinear nature of the feedback, this is not the case.
Let’s assume, to further simplify the algebra, that only
two harmonic modes are present:

(1,2 = 0@ + e  (418)
Substitution into the original Eq. (4-13), taking into
account the steady state eigenvalue [Eq. (4-15)] to
climinate the space derivatives, and performing some
straightforward algebra results in
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| d”o dn,
> Po—- pr L Sy o = Ryho @,
+m A + I { (”n‘l)”oq’g

2
+ nlo} + M@=, 1

(4-19)

where the term that multiplies I7, is caused by the
nonlinear nature of the feedback.

Multiplying Eq. (4-19) by each of the
cigenfunctions (i.e., harmonic modes), integrating over
the core height, and taking into account the
orthogonality relations, Eq. (4-16), one obtains a set
of ordipary differential equations for the time-
dependent part of the solution:

1 dn, "

S = oty + I [y l)nofq)odz
H

+ nf [o@idz + my@ny-1) f 90914z ]
0 0 (4-20)

1dn

1 r 2
17 amy + I, -1 &
o & 1+ G )n0£¢0(p1

H H
* nffwi'dz * n,(Znoml)f%tpfdz ]
] 0

Note that if the feedback term did not exist (i.e.,
I, = 0), the equations for n,z) and n,(t) would be
independent of each other. However, because of the
nonlinear and space-dependent nature of the feedback,
there are cross terms and ng{t) depends on n,(t) and
viceversa. Note that the underlying cause of these
cross terms is the fact that the cube integrals in
Eq. (4-20) between orthogonal harmonics do not
necessarily cancel. These cube integrals arise from the
fact that the feedback term in Eq. (4-14) is space
dependeat; if the feedback were not space dependent,
the space integrals containing cross terms would
cancel and the modes would be truly orthogonal.
Therefore, we can conclude that the harmonic modes
are not, in general, orthogonal to each other during
the oscillations, even though their space dependence
(i.e., the steady state solutions) are orthogonal and
they form a complete set.
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Therefore, although the excitation of the axial
harmonics during fundamental mode instabilities came
as a surprise when first observed in tests and 3-D and
1-D calculations, this effect is not unusual and should
have been expected because it derives directly from
the theory. This section shows mathematically that
the excitation of these axial harmonics is caused by
the nonlinear and space-dependent nature of the
reactivity (or cross section) feedback.

Equation (4-20) warrants further study. If we are
interested only in the onset of linear instability, we
can study the behavior of Eq. (4-20) under small
perturbations around its equilibrium conditions (n, =
1, n; = 0). Linearizing Eq. (4-20) results in Eq. (4-21)

1 don, . 3 h 2
@ % I oo [ wodz + m [ @30 dz
0 0
1 48n, . h

v di

= A 0n + I anofcpgq;ldz + bnlfq)(,tpfdz
0 0
(4-21)

Furthermore, we notice that some cubic-type integrals
are zero if the odd harmonics are symmetric; thus, the
integral of (@, ;) is zero under most circumstances
(e.g., fcos’(nz/H) sin(2rz/H) is equal to zero). Thus,
under those conditions, the linearized equation
becomes Eq. (4-22)
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Therefore, the linearized problem does not have cross
terms (at least in first approximation), and it makes
sense o study the linear stability of each individual
mode as suggested previously in this report. However,
when nonlinear time domain calculations are
performed beyond the linear instability threshold,
cross terms cannot be neglected, and the equivalent of
the full Eq. (4-20) must be used so there will be cross
excitation among harmonics.



5 BWR Linear Behavior: Transfer Functions

Boiling water reactors behave linearly most of the
time; nonlinearities become relevant only when an
instability occurs and large amplitude oscillations
develop, leading to a limit cycle caused by the
excitation of these nonlinearities. Thus, it makes
sense to describe the BWR behavior using linear
transfer functions. This section presents some typical
transfer functions calculated using the linear frequency
domain code LAPUR.

To maintain some consistency, all the transfer
functions presented in this section correspond to a
single LAPUR calculation of the LaSalle instability
cvent on March 1988. The following reactor
conditions were used for this simulation: power, 1463
MW,; flow, 29.82 Mlb/hr; pressure, 964 psi; and inlet
enthalpy, 503.5 BTU/Ib. Six thermohydraulic regions
(or channels) were used for the calculation, and
Table 5.1 summarizes some of their conditions.
Thermohydraulic channel 1 has the highest power, and
channel 6 has the lowest. Channels 1 through 5
represent the core center, and channel 6 represents
the periphery channels with reduced power and
increased inlet restriction to minimize their flow. It
should be noted that the conditions for the LaSalle
event resulted in a fairly skewed radial power
distribution that can be observed in Table 5.1. This
skewed radial power distribution, along with a fairly
bottom-peaked axial power shape, was probably the

main cause of the observed instability. With this
conditions, the LAPUR code predicts
unstable conditions with a decay ratio of 1.05.

Figure 5.1 shows the closed-loop transfer function
that relates external reactivily perturbations (measurcd
in %Ak/K) to changes in reactor power (normalized to
the steady state power, which in this case is 1465
MW,). We observe that there is a fajrly large
amplitude peak in the gain plot at about 0.4 Hz; this
indicates that the reactor conditions are close to the
instability boundary. The fact that the phase plot has
a positive 180° shift at about the same frequency (0.4
Hz) indicates that this reactor condition is unstable.

The general shape of this transfer function is
typical in that the gain plot increases at low frequency
because of the presence of a low-frequency closed-
loop zero. Then it peaks at about 0.5 Hz, and finally
it flattens out at higher frequencies. The main
features of the closed-loop transfer function are
summarized, in Figs. 5.2 and 5.3. Figure 5.2 shows a
typical closed-loop reactivity to power transfer
function in a Bode-type representation, and Fig. 5.3 is
a root locus that shows the location in the complex
plane of the main poles and zeros of the closed-loop
reactivily to power transfer function as a function of
an artificial parameter, which is the overall gain of the
feedback loop. The most relevant poles are the two

Table 5.1. Description of thermohydraulic regions used for the LaSalle simulation

Thermohydraulic Region Number (for Analysis)
Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6
Relative Power 144% 124% 108% 89% 65% 37%
Number of bundles 179 48 228 116 104 92
Inlet Restriction Low Low Low Low Low High
Exit Quality 0.321 0.255 0209 0.156 0.099 0.108
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complex poles at approximately 0.4 Hz; as seen in the
root locus of Fig. 5.3, the poles start at the left-hand
side of the plane (the stable side) and move along a
line towards the right-hand side (the unstable half-
plane). If the complex poles are in the right-hand
plane, the reactor is unstable. Other relevant features
are (1) the low-frequency closed-loop zero (at
approximately 0.03 Hz) that is caused by the fuel time
constant and its associated filtering effect and (2) the
pair of complex closed-loop zeros (at about 0.4 Hz)
that are caused by the channel thermohydrautics.
These features can also be observed in Fig. 5.2.

Figure 5.4 shows the open-loop transfer function
that represents the LaSalle event reactor conditions.
The open-loop transfer function is the product of the
forward (G) and the feedback (H) transfer functions.
Since the G function has units of power divided by
reactivity and the H function has units of reactivity
divided by power, the open-loop iransfer function
(GH) is actually unitless. The point at which the gain
plot crosses 1 (or 0 in dB units) or the phase plot

BWR Linear Behavior
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crosses -180° defines the sysiem stability. In this case,
we observe that the system is barely unstable (in fact
it has a decay ratio of 1.05) because the gain is slightly
higher than 0 dB when the phase is -180°.

Figure 5.5 shows a plot of the feedback transfer
function gain, H, from power to reactivity for the
LaSalle conditions. In this figure, the power is
normalized to steady siate and the reactivity has uniis
of %Ak/k. Figure 5.5 also shows the relative
contributions to H of the density reactivity and
Doppler feedback mechanisms; the density feedback
mechanism dominates the response and contributes
more than 99% to the total value. Note that dBs are
a logarithmic-type unit, where 20 dBs corresponds to a
decade in linear scale. It is worthwhile to notice that
the relative importance of the Doppler and density
feedbacks changes as a function of frequency. As it
can be observed in Fig. 5.5, the density feedback
transfer function rolls off faster than the Doppler
feedback contribution. The relative contribution from
Doppler becomes more important for nonlinear large-
amplitude oscillations.
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The general shape of the fecdback transfer
function, H, can also be observed in Fig. 5.5, which
shows a slow decrease at low frequencies but a fast
roll-off close to the natural frequency of oscillation
(0.4 Hz) of the reactor thermohydraulics. That roll-
off at 0.4 Hz is also accompanied by a decrease in
phase that coniributes to the possibility of instabilities
at this frequency.

Figures 5.6 and 5.7 show the contribution from
each channel in a thermohydraulic region to the total
density reactivity feedback. As it can be observed, the
higher-power channels have a significantly higher
contribution to the density reactivity feedback than
the low-power channels. Note that dB units are
logarithmic, so the differences in Fig. 5.6 are cven
larger than they appear. For example, Table 5.2
shows the relative gain of each of these transfer
functions at 0.4 Hz, normalized to the gain of the
high-power region (chaonel 1). In Table 5.2, we
obsecrve that region 3, which has a power level 108%
higher than the average reactor, contributes only 18%
to the total gain whereas region 1 contribuies 41%.
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Table 5.2. Gains of the individual channe} power to density reactivity feedback iransfer function at 0.4 Hz.
are normalized to the gain of the highest power channel.

Gains

Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6
Relative Power 144% 124% 108% 89% 65% 37%
Number of bundles 179 48 228 116 104 92
Normalized gain 1.0 0.74 0.44 0.17 0.06 0.01
Overall Contribution 41% 31% 18% 7% 2% 0.4%

This implies that the relative contribution of a
channel from region 3 is only 44% (18/41) of that
from a channel in region 1.

The results presented in Table 5.2 and Figs 5.6
and 5.7 illustrate the need to model the radial power
distribution fairly accurately. In particulaz, it is
extremely important to represent properly the high-
power channel distribution because these channels
contribute most of the response. For example, the
last row in Table 5.2 shows the relative contribution
of each region to the overall density reactivity
feedback if we assumed that all regions have the same
number of channels. We observe that region 1 (the
high-power region) would contribute 41% of the
response, even if it had only 176 of 764 chaunnels
(23%). Thus, modeling the high-power channels is
very important; however, we observe that all low-
power channels could be lumped into a single region
without much loss of accuracy because these channels
do not contribute significantly to the overall feedback.

The underlying reason for the dominance of the
high-power channels is that the density reactivity
feedback is weighed by the local power square (i.c.,
the product of the neutron flux times its adjoint);
furthermore, the density variations are proportional to
the local channel power (for instance, the high-power
channel has more voids). Therefore, there is an
almost third-power dependence of the density
feedback on the local channel power that strongly
favors the high-power channels.
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An effect similar to the one observed above can
be seen in the transfer function from individual
channel flow to density reactivity feedback (Figs. 5.8
and 5.9). These figures show in log scale (i.c., dB) the
relative contribution that changes of inlet flow make
to the overall density reactivity feedback. As in
Fig. 5.6, the channels from the high-power tegion
dominate the response.

Figures 5.10 and 5.11 show the response of
individual channel flows 1o changes in reactor power.
The picture here is not as clearcut as in Figs. 5.6
through 5.9, and one must look at the phase plot
(Fig. 5.11) to understand it. What we observe is that
the responses of channels 1, Z, and 3 (the high-power
channels) are cut-of-phase with respect to the
responses of the low-power channels (4, 5, and 6).
This indicates that, following a power increase, there
is a flow redistribution between channels to maintain
the same pressure drop across all of them.

A typical BWR core is composed of a large
number of independent bundles that are connected
hydraulically at both ends by the upper and lower
plena. Because of these large plena, the pressure drop
across all bundles must be maintained equal among all
channels, although not necessarily constant in time, so
that low-power channels must have the same pressure
drop as high-power channels. Thus, t0 maintain this
boundary condition, the inlet flow in the high-power
channels must oscillate significantly more than in the
low-power channels. This effect is caused by the fact
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that the void oscillations are larger in the high-power
channels. This has a very significant effect on channel
pressure drop; thus, the inlet flow in the high-power
channels has to compensate more for the increased
flow oscillations, resulting in a more

unstable configuratjon.

The effect of the radial power distribution can be
observed in Table 5.3, which shows the decay ratio
calculated by the LAPUR code for a core
configuration formed by two thermohydraulic regions
of an equal number of bundles. We observe that as
the radial power distribution becomes more skewed
(i.e., power is taken from region 1 to region 2), the
reactor becomes more unstable. The conditions for
Table 5.3 are 1500 MW, power and 27 Mlb/h flow,
with a sinusoidal axial power shape.

An interesting result that highlights the effect of
radial power distributions on inlet flow feedback can
be observed in Table 5.4. From this table, we can
conclude that a 1500 MW, reactor with a skewed
radial power shape is more unstable than a reactor
condition with a higher power. For example, if the
power is raised to 2100 MW, (approximately 140% of
1500 MW,,) but only one thermohydraulic region is
used, the calculated decay ratio is only (.68, which is
larger than the one-region decay ratio at 1500 MW,
(0.54) but smaller than the two-region (60%, 140%)
reactor with only 1500 MW/, that results in a decay
ratio of 0.98 (Table 5.3). This is a counterintuitive
result. It says that if we take a reactor that operates

Table 5.3. Effect of checker board pattern loading on

BWR Linear Behavior

core-wide decay ratio

Relative Power Decay
Ratio
Region 1 Region 2
100% 100% 0.54
80% 120% 0.81
60% 140% 0.98
40% 160% 1.35

at 2100 MW,, and reduce the power of half of the
bundles (maintaining the rest of the bundles at
constant power) so that the average power is 1500
MW, the resulting lower-power configuration is more
unstable than the original high-power configuration.

The above effect can be explained by the effect
the low-power channels have on the inlet flow
feedback of the high-power channels. In the low-
power channpels, the void fraction does not oscillate as
much as in the high-power channels following a
reactivity perturbation. The large void fraction
oscillation in the high-power channels would tend to
produce large pressure drop oscillations; however, the

Table 5.4. Sensitivity of calculated core-wide decay ratio to recirculation loop gain for a uniform and a skewed
radial power distribution

Relative Power Decay Ratio if Recirculation Loop Gain
{ is Multiplied by a Factor of
Region 1 | Region 2 " 0. 0.9 10 1.1 10. 100.
60% 140% 0.88 0.97 0.98 0.99 1.25 1.26
140% 140% 0.48 0.66 0.68 0.70 1.27 1.35
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pressure drop across the high-power channels must
equal that of the low-power channels. To accomplish
this, the high-power channels inlet flow must have
greater oscillation amplitude, resulting in an increased
flow feedback that desiabilizes these channels and the
whole core.

The above theory is confirmed by the data in
Table 5.4 that show the decay ratio as a function of
the gain of the recirculation-loop pressure-drop-to-
flow transfer. This gain may be increased physically by
reducing the friction in the recirculation loop. If this
loop has no friction, then it has an infinite gain and
the pressure drop is maintained constant (and equal
to the density plus pump heads) regardless of the
amount of core inlet flow required. A large gain,
then, essentially decouples the core channels from
each other by forcing a constant-pressure-drop
boundary condition. A small gain forces a constant
core inlet flow, and the dynamic flow distribution
between channels has a dominant effect. This effect is
seen in Table 5.4. For high-gain values, the channels
are uncoupled, and the one-region cor¢ with the
highest power is more unstable. For low gain values,
the two-region core (i.e., 60% and 140% powers) is
more uanstable than the one-region core because the
low-power channels act as a source of flow to the
high-power channels by oscillating their inlet flow out-
of-phase.
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In physical terms, we can explain this process as
follows: when a perturbation of power causes an
increase of voids in the high-power channels, the low-
power channels increase their flow to attempt to have
the same pressure drop as the high-power channels.
This reduces the flow available for the high-power
channels and, consequently, reinforces the original
oscillation (i.e., more voids are produced). Thus this
configuration is more unstable. For the case in which
the recirculation loop has low friction (i.e., high gain),
the increase in pressure drop in the high-power
channels is compensated for by an increase in total
flow, most of which is redirected through the low-
power channels.



6 BWR Nonlinear Behavior: Limit Cycles

This section presents an interpretation of the
physical mechanisms involved in the development of
limit cycle oscillations in BWRs. Based on this
interpretation, approximate correlations for some
oscillation parameters are developed and shown to be
largely independent of the particular reactor operating
condition. The stability of the limit cycle is also
studied. It is shown that the BWR limit cycle may
become unstable and bifurcate. The bifurcation
process leads to aperiodic (chaotic) behavior of the
reactor power and causes the peak oscillation powers
to be larger than those from a nonbifurcated limit
cycle.

6.1 Background

Reactivity instabilities result in power oscillations
that diverge from the steady state equilibrium point
following a spiral trajectory in phase space. If BWRs
behaved as linear systems, the oscillation trajectory
would diverge indefinitely. The nonlinearities in the
system, however, cause the oscillation to remain
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Fig. 6.1. Illustration of the development of a typical
limit cycle in phase space
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bounded as the trajectory converges to a limit cycle.
The limit cycle is a particular periodic trajectory in
phase space that attracts all other trajectories. If the
oscillation trajectory is perturbed away from the limit
cycle, it will eventually converge back to the limit
cycle when the cause of the perturbation is removed.
An example of a limit cycle in phase space can be
seen in Fig. 6.1. In this figure, phase space is
represented by the neutron flux and the excess fuel
temperature. It can be observed that the trajectories
diverge (i.e., spiral away) from the

unstable equilibrium point but stay bounded and are
attracted by the limit cycle trajectory. Mathematically,
the limit cycle is caused by the nonlinearitics in the
system dynamics that have a stabilizing effect on the
divergent oscillation. The main nonlinearity affecting
BWR dynamic behavior was determined to be related
to the power-dependence of the cross sections™ (i.e,
the void reactivity coefficient). In the point kinetics
approximation, this nonlinearity is represented by the
term p times n.

6.2 Reactivity Feedback During Limit
Cycle Oscillations

Boiling water reactors are extremely complex
nonlinear devices. To understand their behavior we
must simplify their dynamics to a bare minimum.
With this goal in mind, we should first attempt 10
understand their linear dynamic behavior. Figures 6.2
and 6.3 show the open-loop transfer functions of a
typical BWR (computed using the LAPUR code’). A
reactor is unstable if the open-loop gain is greater
than 0 dB at the point where the phase is -180°
Figure 6.3 shows that the phase is only below -180°
for a small range of frequencies around 0.4 Hz;
therefore, unstable oscillations in BWRs must have a
period of approximately 2.5 s, which is related to the
bubble residence time in the core. We also observe in
Fig. 6.2 that the magnitude of the reactivity feedback
transfer function has a steep slope beyond 0.3 Haz.
This implies that the reactivity feedback acts as a
strong low-pass filter that damps high frequencies
from the power oscillation. Thus, we can reach two
conclusions from these simple observations:

1. If a limit cycle is developed by 2a BWR, the
reactor power should follow a periodic oscillation
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with a period of about 2.5 s (i.e., a frequency of
approximately 0.4 Hz).

T
i Peactivity-to-Powsr
2. Regardless of the time shape of the power N
oscillation, the reactivity oscillation should be 5 A
essentially sinusoidal. This is caused by the E
filtering effect of the reactivity feedback transfer = \
function. No matter how many harmonics the .
power oscillation has, the reactivity feedback U
transfer function will filter out their contribution N
to the reactivity. ©
|
These two findings might seem somewhat N Power-toReactivity
irrelevant at first, bui they allow us to simplify the |
limit cycle analysis dramatically. Typically, most of f e
the modeling complications arise from the |
thermohydraulic feedback. If these iwo findings are N
applicablc t() any limit CYCle Case, lhen the feCdbaCK d SIS M ANE ] R EIEU) Jo L ISR Lo i
reactivity, p(t), is given approximately by an expression 8 Vo oon o1 ) o 100
of the form FREQUENCY (Hz)
N = ~p, + psin(wi (6-1) -
p®) Po * pySin(wh) Fig. 6.2. Reactivity-to-power (G) and power-to-
reactivity (H) transfer functions for a typical BWR
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Fig. 6.3. Open-loop (GH) transfer function for a typical BWR
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where p, is the average reactivity value, p, is the
amplitude of the oscillations, and w is the oscillation
frequency that is approximately equal to 0.4 Hz.

The reduction of the complexity of a
thermohydraulic model 10 a simple equation such as
Eq. (6-1) allows us to perform very simple analyses
that yield general correlations that are applicable with
some degree of approximation o any BWR, as long as
Eq. (6-1) holds. The parameters of these correlations
now become p, and p,, instead of the physical
geometry and cross sections of a particular reactor.

Equation {6-1) can be justified mathematically in
the following manner: first, we know that a limit cycle
oscillation is periodic. Thus, the power oscillation,
n{t), can be expanded in Fourier series without loss of
generality as

nd) = Xw: Agcos(hws) + ij B,sin(owry (6-2)
k=0 k=0
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Fig. 6.4. Power response to sinusoidal
reactivity with small bias
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Because of the filtering effect of the fuel transfer
function, large oscillations in power result in fairly
small oscillations in heat flux from fuel to coolant,
and the reactivity feedback transfer function can be
considered to behave linearly.® Thus, the reactivity
feedback can be approximated with good accuracy by
the following expression:

Pl = 3, HA,cos(lowt +pp) +

Y H, Bsin(kwt + )
k=0 ka0

(6-3)

where H, and ¢, are the gain and phase, respectively,
of the feedback transfer function. Typical power
feedback magnitudes (£) are (.14 dollars per percent
power change at 0 Hz, 0.007 $/% at 0.4 Hz, and
0.0014 $/% at 0.8 Hz.’ Because the first two
harmonics (k = 0 and k = 1) account for $9% of the
feedback energy, higher harmonics can be neglected,
and Eq. (6-3) reduces to Eq. (6-1) with the proper
selection of initial phase lag. We shall use Eq. (6-1)
to study the BWR limit cycle and to obtain some
general correlations.

6.3 Reactor Response to Sinusoidal
Reactivity Perturbations

The response of a nuclear reactor to sinusoidal
reactivity perturbations has been well studied.®™® It is
well known that a negative bias (i.e, -p,) is required
for the solution to exhibit bounded periodic solutions
(i.e., limit cycles). For each value of p,, there is only
one value of p, that results in a limit cycle: if p, is too
small, the oscillations diverge exponentially; if p, is
too large, the oscillations converge to zero. The
above effect can be seen in Figs. 6.4 and 6.5, which
show the response of a point kinetics model (with
typical BWR parameters) 1o a sinusoidal reactivity
perturbation of the type in Eq. (6-1). In Fig. 6.4, the
bias, p,, is too small, and the resulting power
oscillation diverges. In the case of Fig. 6.5, the bias is
too large, and the power oscillation is damped and
converges toward zero.

If the right amount of bias, p,, is present for the
particular amplitude of reactivity oscillation, p,, we
obtain the situation represented in Fig. 6.6, where the
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power oscillation reaches and maintains a constant
amplitude. The reactor behavior in this case is similar
to that of a limit cycle caused by an instability. Thus,
we conclude that in order to obtain periodic bounded
power oscillations in a nuclear reacior, a relationship
must be satisfied between the reactivity bias, g, and
the reactivity oscillation amplitude, p,. Physically, the
reactivity bias is caused by an increase in average
reactor power that increases with the oscillations until
the reactor is subcritical enough to compensate for the
divergent tendency imposed by the reactivity
oscillation term, p, sin{wt). '

To study the relationship between p, and p,, the
mode] of ref. 8 was used to compute a large number
of limit cycles with different oscillation amplitudes. In
the model, which is described and validated in refs 7
and 8, the fuel dynamics are represented based on a
single-node approximation, the channel
thermohydraulics are modeled using a two-node
represcntation, and the neutron dynamics are based
on the point kinetic approximation. The model
parameters used are those presented in ref. 8 with the
exception of using six groups of delayed neutrons
instead of one, and K, = -3.2769x107. Different limit
cycle conditions were modeled by changing the
feedback gain, K.

Table 6.1 shows a summary of the results of this
analysis, presented as the values of p_ and p, required
to obtain a limit cycle of amplitude N, The linear
decay ratio and inverse gain margins are also shown in
Table 6.1. From these data, we can obtain the
following correlation:

pf = 290 + pg «;4)

that relates reactivity bias required to maintain a
bounded limit cycle with a particular reactivity
oscillation amplitude. Equation (6-4) compares well
with the analytic solution for small oscillations
reported in ref 9 (pf = 2p,; if p, << $1).

From the results shown in Table 6.1, we observe

that the peak value of the neutron flux oscillations,
N, is related to p; through a correlation of the form
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Table 6.1.  Calculated limit cycle parameters as a

W= Ny b, + 07502 - 0.14p> function of peak magnitude

N, 65

K DR Npeak Po P

where N, is the equilibrium flux. Note that Eq. (6-5)
is valid only for reactivities satisfying Eqs (6-1) and 1.0 1.00 100% 000 | 0.00
(6-4), that is, for fully developed periodic limit cycles

[Eq. (6-5) obviously cannot be applied to cases like 102 1.02 145% 0.063 | 036

those in Figs 6.4 or 6.5]. Equation (6-5) can be 1.05 1.08 182% 0.16 0.59

interpreted as the nonlinear reactor transfer function

at the frequency studied (w = 0.4 Hz) and reverts to 1.1 1.15 235% 0.32 0.87

the linear gain (i.e., 1.0) for small values of p,, as

expected. 1.2 1.30 330% 0.65 1.32
13 1.47 424% 0.98 1.72

Numerical simulations appear to indicate that
Egs. (6-4) and (6-5) are independent of reactor 1.4 1.62 515% 1.32 2.10
parameters and, thus, general for any nuclear system
where the point kinetics approximation is applicable.

6.4 Physical Mechanism of the BWR
Limit Cycle

L5 1.78 620%* 1.65

1.6 1.93 980%* 1.90
1.7 2.08 1350%"
18 2.24 1800%®

To have a self-sustained, periodic bounded R
oscillation of the power in a nuclear reactor, the 1.9 2.39 2400%
reactivity feedback must oscillate sinusoidally and 20 253 32009%°
must have a negative bias of the appropriate
magnitude. Indeed, this bias can be understood as the ) )
stabilizing mechanism for an unstable divergent K = Inverse £ain margin (see ref. 8)
oscillation. To understand this mechanism, we can DR = Decay ratl.o )
follow, step-by-step, the development of a limit cycle Npesx = Peak oscillation value

in a BWR from the point of inception of the linear Po = Reactiv?ty bias: in 'doll_ars
instability: p; = Reactivity oscillation in dollars

* Solution has bifurcated (see ref. 8).
Value reported is highest peak

® Solution is chaotic (see ref. 8).
Value reported is highest peak

1. A moment before the instability event starts, the
reactor can be assumed to be operating in a
steady state condition with some particular power
and flow. Because the reactor is critical at this
point, the net reactivity is zero.

2. If by some change of conditions, the reactor
suddenly becomes unstable in the linear sense, any
small perturbation will result in diverging power
oscillations that, in phase space, will spiral away
from the equilibrium point similarly to the case
presented in Fig. 6.1. Initially, the perturbation
around the equilibrium point will be small enough
so that the reactor will behave linearly and the

oscillation will grow exponentially with a time
constant equal to DR/w, where DR is the decay
ratio and w is the oscillation frequency.
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3. As the oscillation becomes larger, the
nonlineariiies in the system, and especially the p-
times-n term, begin 1o grow in importance. These
nonlinearities have the effect of "leaking" power
between otherwise linearly orthogonal modes. In
effect, the power that the instability is generating
on the fundamental oscillation mode {sin{wi)] is
distributed among other modes. In particular,
some of the power of the fundamental mode
"leaks" into the steady state mode (i.e, the average
power). This increase in average power feeds
back to the reactivity and generates a negative
reactivity bias, p,,.

4. As the reactivity bias increases, the reactor
becomes more and more subcritical and tends to
damp out the unstable oscillation. When a
sufficiently large degree of subcriticality is reached
to cancel out the growth tendency imposed by the
instability, a dynamic equilibrium is established
and the limit cycle oscillation remains at a
constant level.

Therefore, the underlying cause of the appearance
of limit cycles that bound the oscillations of an
unstable BWR is the increase in average power that
accompanies the oscillations.

6.5 The Average Power Increase

We have seen that the average reactor power must
increase during oscillations. Unfortunately, general
correlations of the type of Egs. (6-4) and (6-5) cannot
be found for this increase because it depends on the
particular reactor conditions. The procedure to
estimate the average power increase for a given peak
oscillation power is as follows:

1. Estimate, from Eq. (6-5), the value of p; required
to establish the particular peak power, N,,,. Note
that this procedure depends on the initial (or
steady state) power, N,. For example, almost
twice as much reactivity, p,, is required to obtain a
peak power of 100 MW over the initial power,
when operating at an initial power of 1000 Mw
than at a power of 2000 MW. Thus, the value of
p; depends not only on N, but also on N,
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2. Determine, from Eq. (6-4), the reactivity bias, g,
required 1o mainiain a periodic bounded
oscillation with the particular value of p, obtained
from step 1.

3. Determine the average power increase required to
produce a reactivity bias of p,. This is
accomplished by dividing p, by the steady state
power reactivity coefficient, which depends on the
particular reacior and operating conditions.

This procedure results in an approximate
correlation for the average power increase, N, of the
form

N, = F (N N (6-5)

where £, is a proportionality factor that, for typical
BWR parameters, is of the order of 0.015 to 0.02.
Therefore, the average power increase is typically
1.5% 10 2% of the value of the peak power minus the
steady state power.

6.6 Limit Cycle Stability

Numerical simulations®" have shown that as a
parameter confrolling the reactor’s linear instability is
increased, the limit cycle may become unstable and
degenerate, through a cascade of period-doubling
pitchfork bifurcations,” into a chaotic (i.e., aperiodic)
sequence of power oscillations. In this regime, the
power oscillations are aperiodic bui remain bounded
by a strange aitractor.”® Tt appears, however, that the
oscillation amplitude {i.e., peak power) is increased by
this phenomenon, and that the bifurcated limit cycle
exhibits larger peak powers than exirapolation of the
non-bifurcated limit cycle would predict. Thus, the
understanding of the bifurcation phenomenon in
BWRs is relevant io accident analysis where large
peak powers may affect fuel integrity.

As seen in previous sections, if a positive
disturbance is imposed on a limit cycle, the system
nonlinearities create a positive average power increase
that, through its reactivity effect, damps out the
disturbance. An instability in this mechanism can
occur if the average power increases too much during



a power peak and causes the next peak 1o decrcase by
an amount larger than the original disturbance. Thus,
if a limit cycle should become unstable, an oscillation
of double the original period will be established
because the mechanism involves two full oscillation
periods. In first approximation, the average power
(<N>) and the reactivity bias, p,, can be assumed
proportional to the peak disturbance value, N,

Apy  A<N> _
Po

AN, 67

<N> N peak

Poincare maps were used in ref. 2 to study
numerically the stability of the limit cycle and the
bifurcation process. These maps are obtained by
plotting the value of a power oscillation peak, N,
versus the previous oscillation peak value, N;. It has
been shown in ref. 2 that this procedure results in a
quadratic map similar to those studied by
Feigenbaum.” An analytical expression for this map
is the following:

N, = N, DR(N)) (6-8)

where DR is the nonlinear decay ratio, which is a
function of the oscillation amplitude. The equilibrium
limit cycle is defined by N, = N, or DR = 1.0.

The stability of the limit cycle is guaranteed as
long as the derivative of N, with respect to N,
cvaluated at the equilibrium point (DR = 1.0) is
greater than -1.0 (i.e, the slope of the Poincare map is
smaller than 45°). Taking derivatives in Eq. (6-8), we
obtain
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, dDR dk (69)

dDR
= 10
dK dp, 70

dNZ
— = DR + N 1 ———e
dN, dN,

where K is the inverse gain margin,® and we have
made use of Eq. (6-7). Thus, the stability condition is

>._2
dDR dK (6-10)
dK dp,

From Table 6.1 we observe that the term dDR/IK
evaluated around DR = 1.0 is approximately constant
and equal to 1.43. The term dK/dp, is physically the
change in gain of the neutron dynamics caused by a
reactivity increase. For small perturbations around
the limit cycle, this second term is approximately 1.0
dollars"'. Thus, the condition for stability of the limit
cycle can be approximated by

po > $-1.40 (6-11)

Using the correlations developed above, the
stability condition can be expressed in terms of peak
power. The result is that BWR limit cycles should be
stable for peak power values of approximately less
than 500% of equilibrium (i.e, initial) power. Beyond
these limits, the bifurcation and chaotic regimes are
established, and the result is larger peak powers than
a nonbifurcated limit cycle study wouid predict.



7 Sensitivity to Physical Parameters

In this section we make a distinction between
parameters that favor the development of instabilities
of either of the two modes described (core-wide and
out-of-phase) and parameters that favor one mode
over the other. In general, though, the sensitivity of
both modes to all parameters is similar, because the
processes involved are alike.

7.1. Parameters Affecting the Core-
Wide Instability Mode

In general, to decrease the stability in a BWR,
there are two main approaches: (1) increase the
neutronic feedback or (2) increase the instability of
the density-wave mechanism. Most parameters affect
the reactor stability in one way or another. Parameter
effects are sometimes counterintuitive, so the best
solution is to perform stability calculations at the
actual operating conditions. Nevertheless, the
following general ideas can be expressed about most
parameters.

Avcrage Void Fraction. This is the single most
important parameter that affecis BWR stability.
Given two operating conditions, the one with the
higher void fraction will have a stronger neutronic
feedback (because of the increased density reactivity
coefficient) and a larger two-phase pressurce drop.
Both effects tend to destabilize the reactor.

Axial Power Shape. The axial power shape has a
strong influence on reactor stability. Bottom-peaked
power shapes are more unstable because they tend 10
increase the axially averaged void fraction. In
addition, void perturbations start at a lower axial level,
which produces a larger delay. Under some
conditions of cxtremely bottom-peaked power shapes,
shifting power to the core bottom has been shown to
have a stabilizing effect due to the efiect of reducing
the adjoint weighing in the upper, high-void-fraction
content part of the core.

Radial Power Shape. Modeling the radial power
shape is relevant 1o BWR stability calculations
because of the inherent nonlinearities. Because of
these nonlinearities, the most unstable channel (the
one with higher power) tends to dominate the overall
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response, rather than being averaged with the low-
power channel.

Void Velocity. Lower void velocities result in longer
delay times for the density wave. Thus, given the
same parameters, the operating condition with the
lower flow should be more unstable.

Iniet Subcooling. Decreasing the inlet subcooling has
two effects: (1) given a consiant control rod position,
it tends to increase the operating power level, which is
a destabilizing cffect; and (2) it raises the boiling
boundary, thus decreasing the density-wave time delay.
In raosi cases the destabilizing effect should dominate.

Fuel Gap Conductance. Increasing the gap
conductance increases the amount of power deposited
in the channel coolant during a neutron flux
oscillation of a particular frequency. Thus, it has a
destabilizing effect.

Fuel Isotopic Composition. The fuel isotopic
composition has an indirect effect on BWR stability
through its effect on the density reactivity coefficient.
This effect depends on burnup and operating
procedures, so it is difficult to predict.

7.2. Parameters that Favor the Out-
of-Phase Instability Mode

To favor the out-of-phase insiability mode over
the core-wide mode, one should either reduce the
subcritical reactivity value of the out-of-phase mode or
increase the likelihood of out-of-phase density-wave
oscillations. The following parameters accomplish
these effects.

Low Geometric Buckling. The subcritical mode
reactivity is directly proportional to the difference
between the geometric bucklings of the fundamental
and subcritical modes. Therefore, larger cores should
be more susceptible to out-of-phase instabilities than
smaller cores.

High Fission Cross Scction. The subcritical mode
reactivity is inversely proportional to the fission cross
section. The higher the fission cross section is, the
more likely the out-cf-phase mode will be dominant.



As a rule of thumb, reactor conditions with many
control rods in (i.e., at beginning of cycle) will bave
higher fission cross section and will favor the out-of-
phase mode.

High Pressure Drop Across Channel. The out-of-
phase density-wave mechanism is favored over the
core-wide mechanism at higher pressure drops. This
effect is caused by the increased flow feedback. Thus,
high core pressure drops might result in out-of-phase
oscillations.

High Flow Rate. A higher flow rate will favor the
out-of-phase mode because of the increased friction
pressure drop.

High Friction in Recirculation-loop Flow Path.
Increasing the friction of the recirculation-loop flow
path decreases the flow feedback for the core-wide
mode and, therefore, favors the out-of-phase
instability mode.
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Sensitivity to Physical Parameters

Highly-Bottom-Peaked Axial Power Shapes. For very
highly-bottom-peaked axial power shapes, the density-
wave flow instability mode is enhanced, while the
reactivity or neutronic feedback is diminished because
of a reduction of adjoint weighing at the upper part of
the channel. As a rule of thumb, axial power shapes
with peaking factors greater than 1.6 at the bottom
are likely to result in out-of-phase instability modes.

Low Single-Phase Friction. Plants with loose inlet
orifices will tend to favor density-wave flow
oscillations and, thus, increase the likelihood of out.
of-phase instability modes.
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Appendix A Nomenclature

increment operator

reactivity

reactivity contribution from location r
[see Eq. (4-4)]

reactivity contribution from
thermohydraulic region i

reactivity contribution from axial
node j in thermohydrautic region i
average reactivity value or bias [see
Eq. (6-1)]

amplitude of sinusoidal reactivity
oscillation [see Eq. (6-1}]
oscillation amplitude

void fraction

steady state neutron flux

steady state neutron flux adjoint
time-dependent neutron flux

i neutron flux harmonic

void reactivity coefficient

fuel temperature reactivity coefficient
axial flux distribution in
thermohydraulic region i

3-D cross section

1-D collapsed cross section
production operator

linear component of the production
operator

nonlinear component of the
production operator

space eigenvalue of neutron diffusion
equation

i space eigenfunction of neutron
diffusion equation (i harmonic)
phase of the feedback transfer
function at frequency k
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core Cross sectional area

diffusion coefficient

decay ratio

proportionality {actor

gain of the feedback transfer function
at frequency k

feedback gain; also reactivity
eigenvalue

time-dependent neutron density
time-dependent neutron density for
the i neutron flux harmonic
number of bundles in core

pumber of bundies in
thermohydraulic region i

peak value of neutron density
number of thermohydraulic regions
used for a particular calculation
normalized power of thermohydraulic
region i

local power at axial node j in
thermohydraulic region i

vector representing a particular
position

oscillation period

fuel temperature

(subscript) thermal

core volume
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