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ABSTRACT 

Novel numerical procedures for solving the Boltzmann equation have been added 
to the Three Dimensional Oak Ridge Discrete Ordinates Transport Code (TORT). 
These procedures produce much more accuracy in the flux solutions for a given 
mesh size, or allow a smaller mesh to be used in order to reduce costs. The first 
method is a special adaptation of the linear nodal method proposed by Walters 
and O’Dell. The basic method has been extensively adapted in order to avoid 
numerical distortions that may occur in shielding problems. The second method 
is a characteristic procedure with linear expansion of sources and boundary flows. 
These methods are in widespread use in the TORT code. 
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1. INTRODUCTION 

The TORT (1) computer code is a three-dimensional discrete ordinates neu- 
tron/photon transport code developed at Oak Ridge National Laboratory (ORNL). 
TORT is available from the Radiation Shielding Information Center and is now 
being used by a number of researchers at ORNL and elsewhere. An advanced fea- 
ture of TORT is that linear nodal and linear characteristic methods of solving the 
discrete ordinates form of the transport equation are available in addition to the 
longer established weighted difference method. The purpose of the work described 
in this report is to provide a theoretical development of the linear nodal and linear 
characteristic methods found in TORT and also to study their accuracy and speed. 

The authors became interested in the linear nodal method in 1981 after reading 
a paper by Walters and O’DeIl of Los Alamos that compared the linear nodal, 
linear discontinuous, and diamond schemes for solving the transport equation in 
(x,y) geometry (2). This paper first introduced the linear nodal method which is 
a variation of a linear-linear nodal method (3) developed earlier by Walters and 
O’Dell. The linear nodal equations are obtained by dropping some of the terms 
in the linear-linear equations. Dropping these terms greatly simplifies the solution 
of the equations with little loss in accuracy. The motivation for using the linear 
nodal method in TORT was to obtain improved accuracy. Walters and O’Dell (2) 
estimated that linear nodal with an N by N mesh has roughly the same accuracy 
as diamond difference with a 4N by 4N mesh. Extending this estimate to three 
dimensions indicated that a diamond difference solution would require 64 times as 
many mesh cells as a linear nodal solution with the same accuracy. 

In November of 1982, the authors met with Walters and O’Dell to discuss the 
prospects for using the linear nodal method in TORT. The meeting was very useful 
and led to the decision to pursue the linear nodal method further. One of Walters 
and O’Dell’s recommendations was that we gain some experience with the method 
by working with two-dimensional (x,y) geometry first. The method had not been 
extended to three-dimensional (x,y,z) geometry at this time. The single most valu- 
able information obtained at the meeting was a listing of the FORTRAN used in a 
test version of TWOTRAN to implement the linear nodal method. 

The linear nodal method was implemented in the DOT4 (4) computer code in 
1983 ( 5 ) .  The most distinctive feature of this effort was our introduction of modi- 
fications to the linear nodal method that insured positive results. A test problem 
that included a void was also studied. Voids present a special challenge to the linear 
nodal method because special care must be taken to avoid division by zero. Near 
voids are also a problem because of roundoff errors. 
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Work began on extending the linear nodal method to three-dimensional (x,y,z) 
geometry for use in TORT in 1984 (6). This effort was aided when Walters pro- 
vided a pre-publication copy of a paper that derived an augmented weighted di- 
amond form of the linear nodal equations (7). Badruzzaman also developed an 
algorithm for three-dimensional nodal calculations (8) during this time period, but 
his solution could not be used for void or near void regions. Section 2 of this report 
contains a development of the linear ,nodal equations that follows very closely the 
derivation outlined by Walters (7). Section 3 of this report contains a derivation 
of the augmented weighted-difference solution of the linear nodal equations used in 
TORT. This derivation is strongly influenced by Walters’ work, but the final form 
is slightly different. 

When the linear nodal method was tested in TORT, very inaccurate results were 
noted for certain test problems. A modification to the definition of the linear nodal 
weighting coefficients was made that required the use of the step flux extrapolation 
model for certain unusual conditions. This “step limit” correction is described in 
Section 4. The step limit correction is unique to TORT. The linear nodal method 
would not be suitable for use in a general purpose code without this extension. 

The negative flux prevention procedures used in TORT are described in Section 
5. The requirement of non-negative flux solutions is considered essential in the 
judgment of the authors. The procedures used in TORT are based upon our finding 
that the linear nodal method always gives non-negative results for a mesh cell when 
the incoming flux distributions on the cell boundaries and the source distribution 
within the cell are flat and non-negative. When the linear expansion coefficients 
for these fluxes and sources are large enough to cause the average fluxes in the cell 
or on the cell boundaries to be negative, the coefficients are reduced a sufficient 
amount to prevent the negative results. 

Section 6 describes the numerical approximations used to implement the linear 
nodal method in TORT and also the way anisotropic scattering is treated. The 
derivations in sections 2 and 3 find two functions defined using exponentials that 
must be evaluated in linear nodal calculations. Numerical approximations for these 
functions that are accurate for void, near-void, and high cross section mesh cells are 
used in TORT. Anisotropic scattering is treated in a simple way that assumes the 
spatial distribution and the angular distribution in a mesh cell are separable. This 
treatment for anisotropic scattering is believed to reduce accuracy in a k-calculation 
test case. 

After the linear nodal method was installed in TORT, the possibility of using 
analytic (characteristic) solutions of the transport equation, rather than nodal ap- 
proximations, was studied (9). A review of characteristic methods for solving the 
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transport equation is found in Reference 10. Larsen and Alcouffe have studied a 
linear characteric method in (x,y) geometry (11). The derivation of the linear char- 
acteristic equations used in TORT are found in Section 7. The derivation of the 
characteristic method contains fewer approximations than the linear nodal deriva- 
tion. Non-physical results such as the step limit problem with the linear nodal 
method are unlikely with the characteristic method. Negative flux prevention is 
also more straightforward. The characteristic method in TORT is a hybrid method 
because characteristic solutions are used to obtain average values for fluxes in the 
mesh cell and on the cell boundaries and nodal approximations are used to obtain 
the linear expansion coefficients for these fluxes. 

Section 8 discusses the results of practical testing and applications. 

3 



2. DEVELOPMENT O F  THE 
LINEAR NODAL EQUATIONS 

Consider the three-dimensional Cartesian space cell (node) described by 

with 

and 

The subscripts used here are L=left, R=right, B=bottom and T=top. The discrete 
ordinates form of the transport equation for a single direction is 

Here $(z, y,  z )  is the angular flux at point ( 5 ,  y,  z ) .  Subscripts are used to indicate 
fluxes on the boundaries of the space cell. Thus, 



The dropping of one or more of the dependent variables indicates an average over 
that variable. Examples are 

and 

The first 5, y, orz moment is indicated by the appropriate superscript. Examples 
are 

V ( Y ? 4  

11?3(Y) 

11=(x, Y> 

and W Y  1 

When first moment quantities 
as before. Examples are 

are averaged over a variable, the variable is dropped 

1 f z T  

and 



The particle balance equation is obtained by applying the operator 
A Z a y A Z  s"" X L  syout ?/in s"" ZB dzdydz to Equation (2.1). The result is 

P where A,  = - 
Ax ' 

E 
AY 

A = -, Y 

77 
AZ 

A ,  = -. 

An exact differential equation for $(z) is obtained by applying the operator 
syout  s"' dy dz  to Equation (2.1). This result is AYA, Yin Z B  

There are analogous equations for $(y) and $ ( z ) .  

An equation describing the first x-moment is obtained by applying the operator 
-6- JxzLR(x - Z)dx to Equation (2.1). This yields 

(2.4) 

The x-moment balance equation is obtained by applying the operator 
-.!.- Jyou' s" dy dz  to Equation (2.4). This yields 
A Y A ~  Yin Z B  

h 

The y-moment and z-moment balance equations are 

6 



(2 .5b)  

and 

An exact differential equation for $ " ( z )  is obtained by applying the operator 
2- / ' O u t  dy to Equation (2.4). This is AY 'in 

d'z(z) + a?,bz(z) = S z ( z )  + A ,  [$&(a) - $tut(z)] ' da 

There are five equations analogous to Equation (2.6) for T,P(Y), $Y(z), $Y(z), $*(s), 
and $*(Y). 

The four balance equations (Equation (2.2) and Equations (2.5)) contain 13 known 
quantities and 13 unknown quantities for each node. In a local coordinate system 
in which p) t, and 7 are positive, the known quantities are 

The unknown quantities axe 
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In addition to the four balance equations, nine additional equations are needed 
to solve for the unknowns. The next three equations are obtained from Equation 
(2.3) and its y and z counterparts by substituting linear expansions. The linear 
expansions for the five functions of x on the right hand side of Equation (2.3) are 

2(x - s) 

2(x - 2 )  

S(x)  = S,,+S" 

$in(x) =* $in + $: 
Ax ' 

Ax ' 
2(x - 5) 

$OUt(X> = $out +$L Ax , 
2(x - 5 )  

2(x - z) 
$B(x) = $ B + $ g  Ax , 

and $T(x) $T + $$ Ax . 

Substituting Equations (2.7) into Equation ( 2 . 3 )  yields 

Equation (2.8) can be put into a form that contains no reference to the y and z 

boundaries using Equation (2.2) (the balance equation) and Equation (2.5a) (the 
x-moment balance equation): 

The solution of this ordinary differential equation evaluated at X R  is 
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where 

1 - PO(€,) 
and Pl(6,) = 

e ,  

There are analogous equations for $,ut and $T. 

The final six equations are obtained from Equation (2.6) and its five analogs. The 
linear nodal result is obtained by substituting average values for the functions of z 
on the right hand side of Equation (2.6). (A more complicated set of equations called 
the linear-linear method is obtained if linear expansions instead of average values 
are substituted.) With the average values substituted, Equation (2.6) becomes 

' 

The x-moment balance equation (Equation 2.5a) is used to put Equation (2.11) in 
a form that contains no reference to the x and y boundaries: 

The solution of this differential equation evaluated at ZT is 

0 
where c z  = --. 

A2 

Some simple algebra results in 

(2.12) 

(2.13) 

(2.144 
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The analogous relationship for $zut is 

$:ut $?n + J'(fy)($' - $i",)* 

There are also similar equations for $;, $+, $;, and 

In the limit of small E , ,  Equation (2.14a) becomes the diamond relationship 

In the limit of large E, ,  Equation (2.14a) becomes the step relationship 

(2.14b) 
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3. THE AUGMENTED WEIGHTED-DIFFERENCE 
FORM OF THE LINEAR NODAL METHOD 

Equation (2.10) contains three unknown quantities, $ E ,  $ a v ,  and $". In order 
to obtain the desired weighted difference form, an expression for $" containing only 
two unknowns, and $R, is needed. This result is obtained by substituting 
Equations (2.14) into the x-moment balance equation (Equation (2.5a)) to obtain: 

where 

py = A,F(c,)  and 

pz = A,F(e,) .  

This equation can be solved for $z to obtain 

where 

and 

P y  + P z  

A,  A,  * 
= E ,  + 0. + P y  + P z  D, = 

Substituting Equation (3.2) into Equation (2.10) and grouping terms results in 
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A modest amount of algebra is required to show that Equation (3.4) can be cast in 
the following weighted difference form: 

where 

* 
6, * 

a ,  = 
(1 - PO(€,)) - 3 ( 2 P 1 ( ~ , )  - PO(€,))(l - -) 

D ,  

The result for cy, can be simplified to 

1 - 2P1(€,) 
P 2 ( 4  = 7 

E, 

1 - 3 P 2 ( ~ , )  
and P3(eZ)  = 

E X  

Equation (3.6) is valid for small E ,  and also for E ,  = 0, an important consideration 
for problems containing a vacuum. 

Note that the last term in Equation (3.5) involves the x-moment of the source 
and the incoming boundary fluxes. If this term is dropped, a true weighted difference 
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form remains. As will be discussed later, this weighted difference form will always 
give positive results for TR,  +bout, $T,  and +bav given positive values of + b ~ ,  +bin, $ R ,  

and S. Also note that cv,D, is independent of the boundary flux and source values. 
However, dropping the Q" term results in a method that is less accurate than 
conventional weighted difference because a flat source assumption allows too much 
transmission in shielding problems. 

A more convenient form of Equation (3.5) is 

where 

analogous relationships for +bout and $JT are 

( 3 . 7 ~ )  

(3.7b) 

(3.7c) 

All of the terms for the y and z direction are defined in the same way that the x 
direction terms are defined. For example, 

( 3 . 8 ~ )  

and 

Q' = Sz+pz$f ,  +py$fn.  (3.8b) 

Equations (3 .7)  can be substituted into the balance equation (Equation 2.2) to 
obtain an expression for $au. This result is 
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where P, = A,?,, 

P Y  = A y Y y ,  

P z  = A,?,, 

and D = a + P z + P y + B r .  

Once gaU is known, $R, $out, and $T can be calculated from Equations (3.7). Once 
these are known, I)’, $Y, and I)* can be calculated using Equation (3.2) and its y 
and z analogs. Finally, $:, $Eut, $orut7 $+ and $$ are calculated from Equa- 
tions(2.14) and their analogs. At this point, all of the thirteen unknowns have been 
obtained for one discrete angle and one mesh cell. 



4. THE STEP LIMIT CORRECTION 
FOR LINEAR NODAL SOLUTIONS 

The initial implementation of the linear nodal method in the TORT code omit- 
ted the &’,QY, and Q’ terms in Equations (3.7) and (3.9). This simplification 
allowed the developers to obtain numerical results very quickly with minimal pro- 
gramming. Even these preliminary results were very encouraging as shown in Figure 
4.1. However, additional results revealed a very serious problem. This is shown in 
Figure 4.2. Note the thin interval at position 0.0 where the weighted difference 
result drops and the nodal result has a non-physical peak. Figure 4.3 shows the 
nodal result from Figure 4.2 along with a coarse mesh result. Here the nodal result 
has a false peak which is a factor of two too high. After the entire linear nodal 
method was implemented in TORT this problem still remained. The interval where 
the peak occurs contains a thin partition, and there is no physical reason for the 
peak. 

The reason for this problem was not immediately apparent, but the values of 
yz, yy, and yr  were immediately suspect. Note in Equation (3.7a) with Q” = 0 that 
a value of two for y, results in the diamond relationship 

while a value of one for yz results in the step relationship 

The equation for yz is 

yz z= 2 - Q,D,. 

Substituting the result for cy, from Equation (3.6) yields 
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The function G ( E , )  has a minimum value of $ when E ,  is zero, and D, can be large 
at times. Thus, y, can approach zero. y, approaching zero gives the result 

which is shown to be incorrect later in this section. In order to impose the step 
limit, the definition of a ,  was modified as follows 

This places an upper limit on a ,  such that 

The step limit correction was first tested in the calculation shown in Figures 4.2 
and 4.3 and the non-physical peak disappeared. 

The effect of the step limit correction is clearly demonstrated by considering 
a two-dimensional case in which a square mesh cell containing a void has a flat 
source on the left boundary, Figure 4.4 shows the exact solution for this problem 
as a function of the angle between the discrete direction and the normal to the left 
boundary. When this angle is zero, all particles entering the left boundary exit 
through the right boundary and $R equals $ L .  When the angle equals 45 degrees, 
all of the particles exit through the top boundary and $R is zero. 

Figure 4.5 shows the linear nodal result for this problem without the step limit 
correction along with the correct solution. The linear nodal result is completely 
non-physical for angles near 90 degrees. Figures 4.6 shows the linear nodal result 
with the step limit correction. While this result still has non-zero values for angles 
greater than 45 degrees, it does approach the correct limit near 90 degrees, and the 
accuracy near 0 degrees is also improved. 
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5 .  NEGATIVE FLUX PREVENTION 

In order to find conditions sufficient to guarantee that the linear nodal method 
will not yield negative fluxes given positive sources, substitute the expression for 
$av (Equation (3.9)) into the expressions for $~,&, , , t ,  and $T (Equations (3.7)) to 
obtain 

and 

1 

YY 
Ty = py - D(1- -), 

1 

YZ 
T, = pz - D(1 - -), 

All of the coefficients in Equations (5.1) are positive quantities. This can be 
seen immediately from the definition for all of the coefficients except T,, Ty, and T,, 
and numerical tests indicate that Tz,Ty, and T, are always positive also. For the 
one-dimensional case, the expression for Tx simplifies after considerable algebra to 
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This illustrates that T, is indeed always positive in this case. 

Substituting the expressions for Q", QY, and Q' (Equations (3.3) and (3.8)) into 
and $T (Equations (3.9) and (5 .1))  and grouping the equations for qav, $R,  

terms yields 

and 

(5.2a) 

(5.2b) 

( 5 . 2 ~ )  

The terms in Equations (5.2) which contain S ,  S", SY, and S" represent the 
and $T.  The contribution of S ( x , y , z )  to the four average values 
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following four conditions are required to insure that the contributions of S(z, y, z )  
in Equations ( 5 . 2 )  are non-negative: 

sa, - Q,S" - aysy - azSZ 2 0 ( 5 . 3 4  

sa, - Q,S2 + gysy - ~ z S Z  2 0 ( 5 . 3 4  

sa, - cY,sx - aySY + 9,s" 2 0 (5.3d) 

Sufficient adjusted values of S", S?', and S" to satisfy Equation (5.3a) are 

and 

Sa v 

3ffz 
St = min(S", -) 

S a  V 

3ffY 
S;Y = min(SY, -) 

S a  V 

3% 
S: = min(S", -1, 

( 5 . 4 4  

(5.4b) 

(5.44 

where the 1 subscript indicates the adjusted value. For example, S: will be no 

that 

larger than - Sa v no matter how large S" is. From Equation (3.6), it is easily shown 
30, 

It follows that 
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s a v  

30, 
Walters suggests an upper bound on S" of Sa,, so the upper bound of - is less 

restrictive than Walters' bound. 

From Equation (5.3b), it can be seen that a lower bound on S" is 

1 

9 Z  
SZ 2 --(Sa, - aysy - a2S"). (5 .5 )  

Numerial testing shows that 

1 
- 2 1. 
9" 

Walters lower limit for S" is -Sa,, which is similar to Equation (5.5) except 
that positive values for SY and/or S" could result in a negative value for $ R  even 
when Walters' criterion is met. Expressions for S", SY, and S' which satisfy all of 
the criteria in Equations (5.3) and are also easily calculated without complicated 
logic are 

(5 .6~)  S E  Si = max(S:, --) 
9 Z  

S E  

QY 
SZy = rnax(Sly, --) 

s; = Inax(S;, --) S E  

9" 

(5.6b) 

(5 .6~)  

where 

SE = Sa,  - a,min(S:, 0) - o,min(S,Y, 0) - a,min(S:, 0). 

Note that the worst case in terms of a negative value for $R is S" < 0, SY > 0, and 
S' > 0. For this case 



and the inequality in Equation (5 .5 )  is satisfied by Sz, Si, and S;. 

The terms in Equations (5.2) which contain $L,+;, and $E represent the con- 
tribution of $ ~ ( y ,  z )  to the four average values $ E ,  $',ut, and $T. The following 
four conditions are required to insure that the contribution of $~(y, z )  in Equations 
(5.2) is non-negative: 

and 

Px$L - P z Q y $ i  + p x g z $ i  2 0. 

The definition of Tx is 

and the step limit corrrection insures that 

Yz > - 1. 

Thus, it is always the case that 

(5.7d) 

and that Equation ( 5 . 7 ~ ~ )  will always be satisfied if Equation (5.7b) is satisfied. The 
following conditions are sufficient to satisfy Equations (5.7): 
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- 4 L  P X  + PxSy4:: 2 0 2 

Thus, sufficient upper and lower bounds for $; are 

For $L the bounds are 

(5.8a) 

(5.8b) 

Numerial testing has indicated that the use of the limits is equations (5.8) and their 
analogs for $i”, , $:, , $5, and $; 
found that relaxing the bounds 

reduce the accuracy of the results. It has also been 
by removing the “i” such that 

improves the accuracy with no apparent difficulty for some problems. For other 
problems, negative fluxes are observed when the relaxed bounds are used. 

One difficulty with this correction involves the terms T,, Ty, and T,. For a single 
mesh cell and angle with a flat boundary flux on the left boundary, the result for 

$R is 

As was seen in section 4, the correct value for $R in this case is often zero. However, 
the linear nodal equations always yield a positive value for $ R  which is not correct 
physically. In these cases, limiting the values of $1 and $; to prevent $R from 
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becoming negative, when in fact $R should be zero no matter what $: and qbi are 
is also not correct physically and could be responsible for the reduced accuracy. 

Other lower limits for ?+hi and ?+hi can be obtained from Equations(5.7~) and 
(5.7d). These are 

a simple set of bounds which satisfy Equations (5.10) are 

(5.10~) 

(5.10b) 

(5.1 la) 

(5.11b) 

These alternative lower bounds may improve accuracy while maintaining positive 
results, but they have not been tested extensively. 

Numerical studies have been performed to obtain limits on the coefficients in 
Equation (5.9). 

These are 

1 2 -. Pt. 
2 

and - 
P X S ,  

Both of these limits are non-physical in that values less than one indicate that an 
all positive incoming boundary flux distribution can cause negative fluxes. 
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6 .  IMPLEMENTATION I N  TORT 

In order to perform linear nodal calculations using the equations developed in 
previous sections, the functions F ( z )  and G ( x )  introduced in sections 2 and 3 must 
be evaluated. These functions are defined in terms of exponentials and can be 
evaluated directly from their definitions when z is not near zero. Walters suggests 
using the approximation 

60 - 242 + 3z2 

60 + 36a: + 9z2 + x 3  ' 
e-z - - 

When this approximation is used 

60 + 62+x2 
F ( z )  = 

30 + 82 + zz 

and 

5 + x  
10 + x 

G(z) = -. 

The maximum error in the approximation for F ( z )  is about 6.7 percent. A result 
similar to Equation (6.2) with a maximum error of about 0.5 percent is 

17.6767 + 4.27049~ + x2 
8.83835 + 3.52633s + x2 ' 

F ( x )  = 

Equation (6.4) is used in TORT; it preserves the two limits F ( 0 )  = 2 and F ( w )  = 1 
exactly and is quite accurate for all other values. 

Equation (6.3) has a maximum error of about 10 percent. A much more accurate 
expression for G ( x )  is 

15.1 + 4.532 + x2 
30.2 + 6.532 + x2 G ( x )  = 

This result is based of the following always positive approximation: 

30 



181.2 - 51.42s + 4.042' 
181.2 4 129.78s + 4 3 . 2 2 ~ ~  + 8 . 5 3 ~ ~  + s4' e-" = (6.6) 

Equation (6.6) is more accurate than Equation (6.1). It is important that the 
approximation for G(x)  is based on an approximation for e-" that is positive for all 
values of z. An approximation for G(z) used earlier in TORT was based on a direct 
fit to G(z) which had a maximum error of 0.3 percent and resulted in negative 
results in rare cases. 

Another extension of the linear nodal method is required to treat anisotropic 
scattering. An easy way to correct for this is to assume the spatial distribution 
for S(z, y ,  z )  is separable from the angular distribution due to the PL expansion of 
the scattering cross section. This is implemented by simply multiplying Sa,, S", 5'9, 

and S" by the ratio ( S a n i s o t r o p i c l S i s o l r o p l c )  where the ratio can be viewed as a 
correction factor relating the value of the anistropic source to the source obtained 
when only the scalar flux is considered. This approximation may not always be 
desirable, however. For example, IC-effective calculations can be affected adversely. 

The equations derived earlier are based on a coordinate system in which the 
direction cosines of the discrete direction are all positive. Since some direction 
cosines are negative, a simple coordinate system transformation is required. For 
example, if p < 0, the sign of S" must be changed. The sign of t,bz must also be 
changed in this case. Similar changes are made when [ or q are negative. 

The calculation of the scalar scattering and fission sources for the linear nodal 
method include z, y,  and z flux moments as well as the scalar flux moment. For 
this reason, a P .  calculation with weighted difference has 16 flux moments, while 
a P3 linear nodal calculation has 19. The three additional moments are treated in 
exactly the same manner as the scalar flux to obtain the source. For example, if 
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7. THE LINEAR CHARACTERISTIC METHOD 

In the following development it is convenient to introduce a local coordinate 
system for the space cell in which 

Otherwise, the notation is the same as that used previously. A useful quantity to 
introduce is 

A,  max ( A z , A y 1 A z ) .  

The physical significance of A ,  is found by considering 

1 1 1 1  

A ,  A,’ A,’ A, 
d,,, z __ = min(- - 

Thus, d,,, is the distance along the discrete direction from position (O,O,O) to 
the boundary of the cell. Also, d,,, is the distance backwards along the discrete 
direction from position (Ax,Ay,Az> to the cell boundary. d,,, is the maximum 
distance a particle can travel in the cell without a collision along the discrete direc- 
tion. 

Next consider the parametric equations for the line starting at position (O,O,O) 
along the discrete direction 

x = l id,  

Y = (4  
andz  = qd, 

where d is the distance from point (O,O,O) to any point (2, y,z) on the line. 

An alternative form of these equations is 
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X - = A , d ,  
Ax 
Y - A y d ,  

AY 
i; 

and - = A ,  d.  
AZ 

Replacing the distance d with a fractional distance u defined by 

d 

dmax 
U f -  

results in 

2 
= w, 21, 

= w y u ,  

- 
Ax 
Y - 

AY 

and - = w,u ,  
AZ 

A ,  where w, = - 
A ,  ’ 
AY wy = - 
A,  ’ (7.3) 

Notice that w,,wy, and w, are simply A,,Ay,  and A, normalized such 
that the largest one is unity. When u = 1, the boundary crossing point is 
(ul,Ax, wyAy,  w,Az) .  This information can be used to determine which portion 
of incoming boundary fluxes contribute to the average angular flux on a given out- 
going face. Figure 7.1 illustrate this point for two-dimensional x-z geometry. In 
each case, line segment AB is along the discrete direction. Any particle entering 
the cell on the left or bottom boundary and traveling along the discrete direction 
will follow a straight line parallel to AB until it has a collision or reaches the cell 
boundary. Any particle that leaks without collision will leak out the top boundary 
if its path is above AB. Similarly, any paths below AB will leak out the right 
boundary. The special case of particles leaking out the corner rather than either 
face is not important unless a delta function is allowed in the incoming boundary 
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Figure 7.1 Two Dimensional Cases For The Characteristic Method. 
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flux. Notice that the particle’s path-length when i t  enters at A and exits at B is 
d,,,. Also notice that any particle that enters along line segement AC also travels 
distance d,,, before exiting without collision. 

Next consider the more complicated three-dimensional case in which the incom- 
ing faces are two dimensional. Figure 7.2 shows different cases for particles entering 
the in face at y = 0 as a function of x and z .  These cases illustrate where a particle 
entering the boundary will leak if it travels along the discrete direction without col- 
lision. One important point is that although four cases are shown, cases 11-IV are 
just special cases of case I in which wz,wz,  or both equal unity. Also, the distance 
along the discrete direction from A to the cell boundary is d,,, in all four cases. 

The next step in the derivation is to obtain exact expressions for $T,$R,  and 
$out that result from the uncollided transport of $in(x, z )  through the cell. These 
are obtained by integrating over the appropriate area in Figure 7.2. For the 
expression is 

0 - - -  where E = odmaZ - - min(e,, c y ’  E ~ ) .  
A, 

In order to integrate over the area indicated in Figure 7.2 for $T,  parametric 
equations for line segment B A  is useful. These are 

x = Az(1 - W,U) (7.54 

Notice that when u = 0, the location is point B ,  (Ax, h z ) ,  while u = 1 corresponds 
to point A ,  (Ax - w,Az, Az - w,Az). 

The equation for $T is 
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Figure 7.2 Leakage Surface by Location on the y = 0 Cell Face. 
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This equation makes use of the fact that the distance traveled from points on 
AB along the discrete direction to the cell boundary is proportional to u ,  and this 
distance is the same for all points at that 2 .  u can be considered u ( z )  and obtained 
from Equation (7.5b). The equation for $JR is entirely analogous to Equation (7.6). 

In order to evaluate Equations (7.4) and (7.6) for $out and $T the following 
expression for t,bin(z, z )  is introduced: 

I +i“, 
+in 

where $;”, = - 

I 

$Fn 

$in 
and $ z  = -. in 

This expression represents $(x, z )  as the separable product of a linear expansion 
in x and a linear expansion in z .  The modivation for choosing this form is that it 
is very easy to insure that 

for all points on the cell face. 

These conditions are 

From this point forward in the derivation the “”” will be dropped to simplify nota- 
tion. 

A useful expression for evaluating integrals of linear expansions is 

2x 
Ax Ax [(I - +$ j + $:-Id5 (1 - U W ~ ) (  1 UW,$:~). (7.8) 

Substituting Equation (7.7) into Equation (7.4) and evaluating the two integrals 
yields 
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Similarly substituting Equation (7.7) into Equation (7.6) and evaluating the integral 
over 5 yields 

22 
e-'U[(l-$c,) + $~n-](l-uwz)(l -uwz$iz,)dz. (7.10) 

A z ( l - w z )  AZ 

A much better form of Equation (7.10) is obtained by a change of variable from z 

to u. From Equation (7.5b), it is noted that 

After the change of variable, Equation (7.10) becomes 

The solution to this equation can be written in terms of 

1 

F,(E) 3 un-le-'udu, n > 0. 

w,$iZ,u)du. (7.11) 

(7.12) 

Since this derviation is for a single mesh cell, the dependence on E can be 
dropped in the notation without ambiguity. While the solution can be written in 
terms of F,, it is convenient to introduce an additional quantity 

The solution to Equation (7.11) is 

(7.14) 
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The analogous equation for $R is 

(7.15) 

where G', Fn-l -wrF,,, n >  1. 

In addition to $R,  $out, and $T, an expression for $av is needed. An integral 
equation for $av can be formulated, but the approach used here will be to use the 
particle balance equation. Dividing Equation (2.2) by A,  yields a convenient form 
of the balance equation: 

For the special case of a boundary flux on the incoming face only, Equation (7.16) 
becomes 

Equation (7.16) can be used to obtain $au when E is not small or zero. However, 
mother expression is needed for small E .  This is obtained by substituting Equations 
(7.9), (7.14), and (7.15) into Equation (7.17). 
handle the required division by e. The function 

1 
Fl E 1 e-EUdu = 

The remaining problem is how to 
F'1 is given by 

1 - e-' 

€ 
(7.18) 

1 - e-' 
This expression allows to be replaced by F1 in the derivation. Fl 

approaches 1 as E approaches 0. Another useful expression is obtained by integrating 
Equation (7.12) by parts. This is 

E 

nF, - e-' 
Fn+1 = , n > 0 .  

E 
(7.19) 

using Equation (7.18) to eliminate reference to e-' in Equation (7.19) yields 
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1 - nF,, 
= FI - F,+1. 

E 
(7.20) 

Using Equations (7.18) and (7.20) and lengthy but straighforward algebra, the 
following expression for qav is obtained: 

(7.21) 

(7.22) 

and this is valid for all E ,  zero or not. 

In addition to the equations for +R, $out, q ~ ,  and resulting from $in(x, z ) ,  
there are also analogous equations for the angular fluxes resulting from $ ~ ( y , z )  
and $ B ( x ,  y). Summing these individual contributions along with the contribution 
from S(z, y, z )  yields the desired results for $R,  gout, +T, and + a v .  

The next step in this development is to find the contribution of S(z, y, z )  to 
?+bout. This is done by considering differential volumes at different values of y. The 
mapping of the surface from which the source leaks without collision is shown in 
Figure 7.3. The parametric equations for point A in the figure are 

x = Az(1 - w,u), (7.234 
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Figure 7.3 Leakage surface by location for sources in dy about y. 
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and z = Az(1- w,u). (7.23~) 

The integral expression for $out is 

Here u can be considered u (y j ,  where the relationship between u and y is given by 
Equation (7.23b). The expression to be used for S(z, y, z )  is 

22 

AX AZ s(x ,  y ,z )  = S,,[(l  - sz) + S,-][(l - 3') + 3 - S " )  + Sz2"], (7.25) 

I S" 
where S" E - 

S a  V 

" SY 
SY - 

Sa V 

I S' 
and S" E -. 

S a  V 

The " "" will be dropped in the following development since both S" and Sz do 
not appear together. 

Substituting Equation (7.25) into Equation (7.24) and performing the 2 and z 
integrals yields 

(1 - wzu)(  1 - w,S"u)( 1 - W " U ) (  1 - w,S"u)dy. 

A change of variable from y to u gives 

(7.26) 

(7.27) 
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The solution to this equation is 

where H t  is defined in Equation (7.22) and hn is given by 

The analogous equations for $E and $T are 

and 

Sa V 
$T = ~ ( ( 1 -  S')[(H,' - W ~ S ' H ~ Z )  - w,SZ(H," - wjSYH;)] 

(7.31) 
+ 2S2[(h4 - W y S Y h 5 )  - w,SZ(h5 - wySYhfJ), 

and = Fn-2 - F,-~(w, + wY) + F n ~ , w y .  

The applicable balance equation is a special case of Equation (7.16): 

(7.32) 
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Substituting Equation (7.28), (7.30), and (7.31) into Equation (7.32) and using 
Equation (7.20) and very lengthy algebra yields 

(7.33) 

The equations developed in this section and other analogous ones give the 

$ ~ ( z ,  y). Summing these individual contributions gives the desired values for 
these four average quantities. However, there are nine additional unknowns 
$", $Y, $*, $:, $;, $ ) o Z u t ,  $?., $5 and only three equations, the 2, y, and z mo- 
ment balance equations (Equations (2.5)). The current implementation in TORT 
uses the linear nodal equations given by Equations (3.2) and (2.14) and their analogs 
to obtain values for the nine unknowns. 

contributions to $ a v ,  $R, $out, and $T from S(z, y, z ) ,  $ L ( Y ,  z ) ,  $in(Z, z ) ,  and 

Another way to obtain '$" is from Equation (2.10), and $9 and $' can be 
obtained similarly. This would leave six unknowns and three equations, so three 
more suppliirientsl equations would be needed. Characteristic solutions can also be 
considered for the nine unknowns but at the cost of increased complexity and longer 
computing times. Further research on this topic could result in additional gains in 
speed and/or accuracy. 

The final development needed for implementing the linear characteristic method 
is a way to evaluate F,. The approach used in TORT is to introduce the functions 

f, e'F,. 

Multiplying Equation (7.19) by e' yields 

Another form of this equation is 

f n  = Efn+1 + 1 
n 

(7.34) 

(7.35) 

(7.36) 

In TORT, the approximation f g  = 0 is made, and Equation (7.36) is used to 
evaluate fs, f7 ,  - - , fi . 
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Equation (7.18) is multiplied, by e' and rearranged to obtain 

e' = ef1 + 1. 
The approximation for e-' obtained by this method is 

(7.37) 

(7.38) 
1 

e-' = 
l + e + $ + $ + $ + $ + $ + $ + $ -  

This approximation is always positive and quite accurate for transport calcula- 
tion purposes. 

Additional identities that are useful for efficient implementation and in deriva- 
tions axe 

and 
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8. TESTING AND APPLICATIONS 

In the 1384 report of nodal testing in DOT [ 5 ] ,  a difficult sodium, steel, concrete, 
and void problem taken from problem 6 of a 1982 Pevey report [12] was solved. This 
problem was, roughly, an XZ geometry version of the DOT test problem 8. The 
void region opens directly to the outer boundary, testing the robustness of a given 
method in the face of severe flux distortion. Table 8.1 shows the results of a mesh- 
refinement study comparing nodal with weighted difference. Solution time, top 
leakage, and estimated error are shown for both methods using eight mesh sizes. In 
each case, nodal provides a much more accurate result at somewhat higher solution 
cost. The report notes that, for 10% accuracy, nodal uses 1/3 of the time that 
weighted difference uses, and for 1% accuracy, nodal uses only 1/10 as much time. 

The nodal option is no longer available in our 2-d codes, since XZ geometry 
meets only limited use. It could be modernized and restored if a need for it were 
found, however. The numerical results would be different, of course, due to im- 
provements in the method as discussed below. 

In the 1985 report of nodal testing in TORT [6], a fictitious concrete building 
wits subjected to flux streaming through the windows and around obstacles inside. 
Anomalous flux distortions shown in Figures 4.2 and 4.3 lead to the implementation 
of the step limit and to 3-D positivity constraints corresponding to those used in 
2-D. With these improvements, the nodal method gave stable and reliable results. 

In the 1985 paper, results were also presented for a small XYZ model of a build- 
ing actually constructed and tested at ORNL in 1984 during the TORT Validation 
Experiment (TVE) [13]. The TVE building was constructed in front of the Tower 
Shield Reactor at Oak Ridge, and flux from the reactor was allowed to stream in 
through an open window and around a support pillar inside. A plan view is shown 
in Figure 8.1. As shown in Figure 8.2, four methods were used to calculate flux at 
the rear of the building (at the wall opposite the window) as a function of mesh 
size. This figure illustrates the usual poor performance of the 0-weighted method for 
large mesh spacing. The theta-weighted method is no better for the largest meshes, 
and it improves rapidly with mesh refinement. The “nodal (positive)” method in- 
cludes a constraint to completely prevent the production of negative results, while 
the “nodal (relaxed)” method has a version of that constraint that usually, but not 
always, prevents negatives. Both nodal methods show marked superiority to the 
weighted methods, with the relaxed restraint being the more accurate. The figure 
indicates that all methods except 0-weighted agree for the finest mesh actually tried. 
It is plausible that all four methods converge at infinitesimal mesh size, as indicated 
by the dashed extrapolation, but that is not proven, of course. 
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Table 8.1 Sodium-Steel-Concrete-Void Shielidng Problem 
(Pointwise convergence criterion 10”) 

LN Weighted Difference 

Axial Mesh Run Time, Run Time, 
Size (No of min on Top Leakage min on Top Leakage 

Mesh Points) Cray (% error) Cray (% error) 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

200. mm .0865 4.824-5 8.415-5 2.453-4 0.0475 1.416-5 2.292-4 1.121-3 
(3 x 13) (-4.1) (+ 15.9) (+20.7) (-71.8) (+215.8) (+451.7) 

100. mm .1521 5.150-5 6.%1-5 1.963-4 0.0957 1.677-5 4.190-5 1.565-4 
(6 x 26) (+2.4) (-4.1} (-3.4) (-66.6) (-42.3) (-23.0) 

66.6 mm .2001 5.109-5 7.179-5 2.010-4 0.1615 3.154-5 4.933-5 1.574-4) 
(9 x 39) (+1.6) (-1.1) (-1.1) (-37.3) (-32.0) (-22.5) 

50.0 mm .2741 5.060-5 7.241-5 2.023-4 0.2148 3.875-5 5.848-5 1.730-4 
(12 x 52) (+Oh) ( < O S )  (cO.5) (22.9) (- 19.4) (- 14.9) 

40.0 mrn 3880 5.051-5 7.255-5 2.028-4 0.2913 4.240-5 6.306-5 1.847-4 
(15 x 65) (+OS) ( ~ 0 . 5 )  ( < 0.5) (-15.7) (-13.1) (-9.1) 

33.3 nim .4765 5.037-5 7.257-5 2.030-4 .3781 4.453-5 6.610-5 1.909-4 
(18 x 78) ( ~ 0 . 5 )  (c0.5) ( ~ 0 . 5 )  (-11.4) (-8.9) (-6.1) 

28.6 mrn .6169 5.035-5 7.258-5 2.032-4 .4677 4.586-5 6.797-5 1.951-4 
(21 x 91) (<OS) ( < 0.5) ( < O S )  (-8.8) (-6.4) (-4.0) 

25.0 mm -9513 5.028-5 7.258-5 2.032-4 0.5904 4.674-5 6.925-5 1.978-5 
(24 x 104) ( < 0.5) ( c 0.5) ( 0.5) (-7.0) (-4.6) (-2.7) 
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Figure 8.1 Plan View of TVE Concrete Building. 
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In a 1987 paper [9] the TVE building was studied once again, this time with 
the addition of a linear characteristic method. In this study, maximum error at any 
air location in the building was studied, rather than error at a specific point. The 
results, shown in Figure 8.3, show the important advantage of nodal over weighted 
difference at all mesh sizes once again. Also, the relaxed nodal method was again 
superior to the positive nodal in the problem studied. The linear characteristic 
method, also a positive method, is seen to be far superior to the others in this case. 

It may be useful at this point to relate the TORT options discussed with the 
derivations of the previous chapters. The fully-positive and relaxed-constraint nodal 
procedures are accomplished in the standard nodal subroutines by adjusting a pa- 
rameter between 0 and l. This parameter was originally input using the same name, 
THETA, as the adjustment parameter needed for the theta-weighted procedure. As 
the circle of users grew, this lead to misunderstanding, and the nodal adjustment 
was moved to a new variable, WNODAL, in version 2.2.10. In either case, a value 
of 0 produced the constraint implied by Equation 5.8, and a value of 1 produced the 
result of 5.9. The constraint is continuously variable between those limits. Both 
vector and scalar coding use this formulation. 

In recent versions, a “new nodal” option has been added. This uses the con- 
straints implied by Equation 5.11. Its results are independent of any adjustable 
parameter, it does not provide negatives, and preliminary testing shows it to be 
approximately as accurate as the relaxed nodal method. 

Some comparisons have been performed to measure the execution speeds of 
the procedures. The problem selected was the TORT demonstration problem 6, a 
concrete building 70m x 17m x 15m high. A computer model of this building is 
shown in Figure 8.4. The mesh required 104,247 cells. One group of a 20-group 
cross section set was used in a P-3 calculation. The symmetrical S-6 quadrature 
had 60 directions. The computing times for a Cray Y-MP mainframe computer and 
an IBM RS/G000 workstation are shown in Table 8.2, and the computing speeds 
are shown in Table 8.3. It may be noted that the theta-weighted difference method 
used partial vector coding and a Cray Assembler Language (CAL) subroutine on 
the Cray. It would have been much slower without that help. Also, the standard 
nodal method was vectorized on the Cray, but vector versions of the other nodal 
routines were not available. The characteristic calculations were entirely scalar for 
the same reason. The “unsafe” nodal used for the table was the standard method 
with the constraints on boundary slopes removed. It is presented for the sake of 

comparison with unconstrained methods in other codes. 

Table 8.2 indicates the relative value of a key flux at the center of the building 
on the first floor. At this point, the flux has attenuated almost a factor of 100 from 
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Figure 8.3 Maximum Error for Different Methods and Mesh Size. 
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Figure 8.4 Model of a Large Concrete Building. (Dimensions in cm) 
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Table 8.2 Timing Results for Flux Procedures 

Nodal( new) 
(scalar) 

Theta-weighted 
(vector +cal) 

56.5 14.5 2.43 

(scalar) 

--- 

15.9 

52.4 

--- 

Characteristic 
(scalar) 

1.85 2.6 1 

--- 2.61 

21.9 2.52 

4.52 2.41 Nodal (positive) 
(vector) 

57.1 

--- 

57.2 

(scalar) 2.4 1 

4.52 2.35 

-__ 

--- 2.35 

Nodal (relaxed) 
(vector) 

Nodal (unsafe) 38.6 
(scalar) 

(scalar) 

8.64 2.15 

Notes: 

0 The precompiler was not used on either machine. 

The IBM results are for an RS/6000 model 320h. Tests indicate that a model 220 
might run 40% longer, while a model 550 might run roughly half as long. 

0 The Cray results are for a Y-MF. 

0 The unsafe nodal did not converge in 15 iterations. 
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Table 8.3 Computing Speed for Flux Procedures 

Ir 

Nodal (unsafe) 184 
(scalar) 

4.8 

Cray 
Mflopshec 

76 

67 

17 

21 

Notes: 

e The theta-weighted procedure used a variable number of flops, depending upon 
whether negatives are discovered. The smaller value is used here. 

0 Only 48 directions contributed flops. The other directions had zero weight, and their 
calculation was bypassed. 

e A "flop" is a floating point operation, Le., add, subtract, multiply, or divide. 
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the building surface. All of the methods that converged gave relatively consistent 
results for this point in spite of the difficulties imposed by large mesh sizes and the 
alternating pattern of windows and thick concrete. Other results indicate important 
differences near the pillars between the windows, where the larger numerical dis- 
persion inherent to weighted difference scatters flux into the shadow area. For this 
and other reasons, the customer for this calculation required the added accuracy 
of nodal. A discussion of numerical dispersion is given in the TORT document [l]. 
Production results using somewhat more elaborate building models were reported 
in an ORNL report and in a conference paper, [14,15] 

A KAPL analysis of a streaming experiment of an iron-lined duct embedded in 
polyethylene showed that the nodal procedure produced good results with only 8% 
of the computing time required by weighted difference. 1161 One suspects that the 
improved numerical dispersion properties may be important in this application, as 
well as the ability to calculate thick mesh spacing accurately. 

Reactor analysts have also made good use of the new methods. In a study 
of neutron exposure in the HFIR reactor, the 2-d DORT code was used to calcu- 
late flux at a surface surrounding experimental penetrations (Figure 8.51, and then 
TORT nodal calculations were used to calculate the streaming through the void 
tubes and into the vessel adjacent to the tubes. [17,18] The objective was to relate 
experimental data in test samples near the vessel, as indicated in the figure, to flux 
in the vessel steel, where experiments were not possible. The calculation also pro- 
vided essential spectral information that could not be observed experimentally. The 
calculated results are compared with the observations in Table 8.4. It was necessary 
to exclude three of the samples due to inconsistent nickel-to-iron ratios, a certain 
indication of experimental error. The remaining calculations fit the observations 
with a normalization of 0.69 and a fractional standard deviation of 10%. This was 
considered an excellent fit, considering that the samples differed by a factor of 5 
in their exposure, and it was sufficient to accomplish the objectives. The normal- 
ization apparently resulted from the DORT core calculation, not from the nodal 
TORT analysis. 

The importance of ray effects in this calculation was examined in some detail. 
It was found that a biased quadrature set was required to calculate a proper flux 
shape in the void tube, although that treatment was not used in the calculations 
reported here. 

The characteristic calculations have not been used extensively on large-scale 
production applications. They are newer, and potential users have not built a feeling 
of confidence in them, as compared to the nodal procedures. Also, successful vector 
routines for the characteristic procedure have not been constructed, although this is 
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Figure 8.5 Cross Section of HFIR Vessel Showing Locations of Surveillance Capsules. 
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potentially feasible. Our existing characteristic routine is actually faster than nodal 
on the IBM scalar work stations, however, and that should encourage increased 
application in the future. 

It may be noted that the increased work required to perform nodal or character- 
istic procedures make them good candidates for parallel computers. A 1989 paper 
found that adjacent directions could be calculated in parallel, resulting in more 
efficient use of computer resources. [19] Although the actual coding that accom- 
plished the parallel testing is obsolete, it could be modernized in a new computer 
environment as required. 

Finally, we note abstracts of newer versions of TORT published in 1991 [20,21]. 
Both versions contained nodal and characteristic routines, but the latter version 
was adapted to IBM workstations as well as Cray computers. Compatibility with 
SUN and HP workstations has been demonstrated since that time. 
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9. CONCLUDING COMMENTS 

The basic idea involved in nodal and Characteristic methods is that an analytical 
solution is performed over a relatively large mesh cell containing only one type of 
material, and then the flux shapes at the boundaries are linked to adjacent cells by 
using suitable approximations, such as polynomial expansions. This also requires 
that the source within the cell be approximated similarly. When this is done, 
the limit on mesh cell size imposed by conventional finite difference methods is 
overcome, and the limits are only those imposed by material discontinuity or by 
limitations in the accuracy of the boundary and source approximations. 

Applications of this idea date back at least to the 1960’s [22], but more-powerful 
computing machines and refined mathematics were required to make the methods 
practical. The linear nodal method pioneered by Walters and discussed herein is 
more than 10 year old, and it has taken its place as a competitor to, or possibly 
a replacement for, the weighted difference method that has been the mainstay of 
radiation transport since the mid-1 970’s. 

Initial testing of the basic linear nodal method on difficult problems typical of 
radiation transport uncovered limitations that would limit its acceptance. The ad- 
dition of the positivity constraints and the step limit controlled these difficulties, 
however, and nodal calculations have proven at least as robust as weighted differ- 
ence. In addition, they have proven to be much more tolerant of the large mesh 
sizes common in ex-core transport work. 

In some applications, nodal methods are viewed as allowing larger mesh spacing, 
with a mesh-cubed savings in computer costs in 3-dimensions. In other applications, 
the mesh size is fixed by geometric or economic constraints, and the nodal approach 
provides improved accuracy. In still others, the weighted difference method is found 
adequate, but the value of nodal is in providing independent confirmation of that 
adequacy. 

The characteristic method shows improved accuracy as compared to nodal in 
many tests. Its applications have been slower to grow, in part because it  is less 
familiar, and in part because a vectorized version is not available. The method is 
actually faster on the IBM RS/6000 workstation, however, and its popularity may 
grow in the future. 

Both methods produce positive results, given positive inputs. They may react 
badly to negative inputs, however, and this matter must be dealt with in the com- 
puter implementation. Acceleration is also a problem, in that the complexity is 
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an obstacle to the use of diffusion synthetic acceleration. In the TORT code, the 
partial current method used with weighted difference has been used successfully in 
problems that do not depart too far from typical mesh spacing and scattering ratios. 
The development of a globally-effective acceleration scheme would be important in 
extending the range of application, however. 
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