
3 4 4 5 b 0 3 6 9 5 8 7 4

ORNL/TM-12231

Engineering Physics and Mathematics Division 1425 32.Y

Mathematical Sciences Section

A PROPOSAL FOR A USER-LEVEL, MESSAGE PASSING INTERFACE

IN A DISTR.IBUTED MEMORY ENVIRONMENT

Jack 3 . Dongarra Sf
Rolf Hempel 4

Anthony J . G. Hey t
David W. Walker 5

Department of Computer Science
107 Ayres Hall
Knoxville, T N 37996-1301

University of Southamptori
Southampton, SO9 5NII
United Kingdom

P. 0. Box 1316
D-5205 Sankt Augustin 1
Germany

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

t Department of Electronics and Computer Sciences

a Gesellschaft fur Mathematik und Datenverarbeitung mhH

f Mathematical Sciences Section

Date Published: February 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program of the Offce of Energy Research, U.S. Department
of Energy, by the Defense Advanced Research Projects Agency uii-
der contract DAAL03-91-C-0047, administered by the Army Re-
search Office, and by the Center for Research on Parallel Comput-
ing.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05-840R21400 3 445b 0369587 4

4 : ..

Contents

1 Introduction 1
2 General Overview . 2
3 Features of the Standard . 3

3.1 Basic Message Passing Routines . 3

.

3.1.1 Receiving messages . 4
3.1.2 Sending messages . 5
3.1.3 Other message passing utilities . 6
3.1.4 Buffering of messages by the system . 6

3.2 Process Groups . 7
3.2.1 Creating and Managing Process Groups 7
3.2.2 Task parallelism . 8
3.2.3 Examples of 6he use of subgroups . 9

3.3 Communication Contexts . 11
3.4 Buffer Packing . 13
3.5 Utilities . 14

4 Discussion and Rationale . 14
5 Outstanding Issues . 15
6 Conclusions . 16
7 References . 17

A PROPOSAL FOR A USER-LEVEL, MESSAGE PASSING INTERFACE

IN A DISTRIBUTED MEMORY ENVIRONMENT

Jack J . Dongarra

Rolf Bempel

Anthony J . G. Hey

David W. Walker

Abstract

This paper describes Message Passing Interface 1 (MPIl), a proposed library inter-
face standard for supporting point-tc-point message passing. The intended standard will
be provided with Fortran 77 and C interfaces, and will form the basis of a standard
high level communication environment featuring collective communication and data dis-
tribution transformations. The standard proposed here provides blocking, nonblocking,
and synchronized message passing between pairs of processes, with message selectivity by
source process and message type. Provision is made for noncontiguous messages. Context
control provides a convenient mems of avoiding message sdectivity conflicts between dif-
ferent phases of an application. The ability to form and manipulate process groups permits
task parallelism to be exploited, and is a useful abstraction in controlling certain types of
collective communication.

1. Introduction

This paper documents a proposal, initially made in Kovember 1992, for a standard for perforni-

ing point-to-point message passing between pairs of processes in a MIMD distributed meniory

computing system. Some modifications were made in January 1993, particularly in the ap-

proach t o process groups, following input from a number of colleagues An eKort is currently

underway to develop a more coniprehensive standard for message-passing on distril)uted mem-

ory systems by July 1993. This effort involves a team of about 60 people made up of hardware

and software vendors, and researchers from universities and govrrnment laboratories

A small set of typed message passing routines form the core of the standard, and are aug-

mented by support for features such as noncontiguous messages, comniunication contexts, and

process groups. The proposed standard, called Message Passing Interface 1 (MPI l) , includes

o~i ly message passing between distinct pairs of processes, and thus does not address collective

communication of any type, including broadcasts and reduction operations. We expect these

types of communication will be included in the final version of the MPI standard. Other impor-

tant standardization issues not addressed in detail include support for virtual communication

channels, active messages, heterogeneous computing, performance tracing, and parallel I/O.

Thus, while MPIl does not at this stage provide the flexibility and range of functionality that

one would expect from a complete message passing environirient, we regard it as forming the

core of such an environment. In designing MPIl we have tried t o avoid imposing constraints

that would hinder the future extensions necessary to address the issues mentioned above

The main advantages of establishing a message passing standard are portability and ease-

of-use. In a distributed memory communication environment in which the higher level routines

and/or abstractions are built upon lower level message passing routines the bencfits of standard-

ization are particularly apparent. Furthermore, the definition of a message passing standard,

such as that proposed here, provides vendors with a clearly defined base set of routines that they

can implement efficiently, or in some cases provide hardware support for, thereby enhancing

scalability.

In designing MPIl we have sought to make use of the most attractive features of a number

of existing message passing systems, rather than selecting one of them and adopting it as the

standard. Thus, MPI l has been strongly influenced by work at the IBM T. J . Watson Research

Center by Bala, Kipnis, Snir and colleagues [2,3], Intel’s NX/2 [18], Express [17], nCUBE’s

Vertex [15], and PARMACS [11,13]. Other important contributions have come from Zipcode

[19,20], Chimp [6,7], PVM [8,2l], and PICL [9].

One of the objectives of this paper is to promote a discussion within the concurrent com-

puting research community of the issues that must be addressed in establishing a practical,

portable, and flexible standard for message passing. This cooperative process begarl with a

workshop on standards for message passing held in April 1992 [22], and continued with a sec-

ond meeting in November 1992 when an organizational structure for developing a standard

- 2 -

message passing interface was created. We believe the draft of hiPIl proposed here provides

a good, concrete basis for continued discussion, and that it will contribute over the next few

months to the developirient of an intermediate level message passing standard.

In Section 2 the rationale for an intermediate level standard is given. Section 3 presents the

programming model assumed. and describes the rnain features of MPI1. Section 4 discusses

the main decisions and compromises made in designing MPIl. Some important unresolved

issues that must be addressed before MPIl can be regarded as complete are presented in

Section 5. ‘These include support for application topologies and heterogeneous computing, and

a more general approach to process groups. Finally, Section 6 presents concluding remarks,

and solicits the involvement of the research community in the development of a standard for

a comprehensive message passing interface. Detailed specifications of the MPIl routines are

given in Appendix A in the form of manual pages.

2. General Overview

It is possible to consider defining a message passing standard at a number of levels. At the

lowest level, closest to the hardware, might be syntactically simple routmines for moving pack-

ets along wires. Above this channel-addressed level might be a process-addressed level (where

there may he more than one process on each physical processor), such as that defined by NX or

Vertex on the iPSC and nCUI3E machines, the commercially-available Express communication

environment, or the PARMACS message passing macros. Higher-level abstractions, for exam-

ple, Linda [4,10], MetaMP [16], or Shared Objects [1,14], would lie above this level. Each level

could be built using the level beneath, provided that the overhead in doing this was sufficiently

low that the cumulative overhead incurred at the higher levels was small. These successive

software levels form a series of layers, that with some stretch of the imagination resemble the

multiple skins of an onion, with the hardware being at the center. We, therefore, call this the

“Onion Skin Model” of the distributed communication environment. In deciding at which level

to try to impose a standard it should be noted that different people might favor different types

of standard. For example, a non-expert user would prefer to use high-level abstractions, such

as virtual shared memory, so that details of the message passing are hidden. On the other

hand, a compiler writer would like to produce a portable parallel compiler, and would like to

use small, fast messages such as might be provided by a low-level standard. Finally, an ex-

pert application developer might be prepared to sacrifice some ease-of-use for additional speed,

and so woiild prefer a intermediate level standard that provides a set of efficient primitives for

point-to-point message passing. The standard proposed here is intended for use by such an

application developer.

If the Onion Skin model is valid, then it makes sense to impose a standard that is also layered.

However, the hardware of different distributed memory computing systems is sufficiently varied

that it is difficult to impose a low-level standard that is efficient on all machines. Therefore,

- 3 -

it is more appropriate to define a standard at an intermediate level, and to implement this

as efficiently a s possible on each machine. There is still the possibility of defining higher-lrvel

standards on top of this intermediate level. Thus, the intermediate-level standard will be open

and extendable. It is the standardization of this intermediate lrvel of points-to-point message

passing between pairs of processes that is the focus of this paper.

3. Features of the Standard

Our programming model assumes some set of processes that coniminicate by I)oirit-to-l)oint

message passing. With each process is associated some rneniory directly accessible only by

that process - there is no shared memory. In MPll it is assumed that processes are single

threaded, though we expect the final MPI standard to permit multithreaded processes. Al-

though the message passing paradigm is usually associated with distributed memory systems,

i t is not necessary to make any strong assumptions about the underlying hardware. The pco-

posed message passing standard could also be iniplernented on shared memory machines and

uniprocessor workstations. Note that the standard does not address the issue of how the pro-

cesses are assigned to physical processing nodes. In general, this issue requires the development

of machine-dependent static and dynamic load balancers, and lies outside the scope of the

proposed standard.

MPIl provides some support for task parallelism. To this end each process is assumed to

be a member of one or more process groups, each of which is identified by a unique process

Group ID number, or GID. The processes in a group can cooperate to perform tasks com-

pletely independently of other processes, and in this sense each group can behave like a distinct

virtual machine. The concept of process groups is also important when designing collective

communication routines.

3.1. Basic Message Passing Routines

We now introduce the basic message passing routines that form the core of the proposed stan-

dard. These routines permit point-to-point message passing between pairs of processes, with

message selectivity based explicitly on message type and source process, and implicitly on

communication context. Communication contexhs are explained in more detail in Scction 3.3.

MPIl provides three modes for sending and receiving messages: blocking, nonblocking, and

synchronized. These different communication modes are explained below. The mode is passed

as an argument to the send or receive routine. A nonblocking or blocking send routine may

be matched by a nonblocking or blocking receive routine in any combination. However, a

synchronized send must be matched by a synchronized receive.

Noncontiguous messages are handled by providing three variants of the send and receive

routines. The first variant assumes contiguous messages, and MPIl provides the routines

MPI-CSEND and MPI-CRECV for such messages. The second deals with messages that are

- 4 -

gathered from, or scattered to, a buffer with constant stride. This type of routine niap be used

when communicating rows of a distributed matrix that is stored by columns. The routines

MPI-SSEND and MPI-SRECV are used in this case. The third variant deals wit,h messages

that are gathered from, or scattered to, a buffer in an arbitrary way. MPIl provides the

routines MPI-GSEKD and MPILGREC\.‘ for this purpose. This last case provides a mechanism

for doing point-to-point scatter/gather operations between pairs of processes. ‘The dat,a blocks

comprising the message may be of differing sizes and lie at arbitrary locat,ions in the buffer

gathered from or scat,tered to. The scatter/gather operations are controlled by a pair of arrays.

The first of these arrays contains pointers into a buffer that indicates where the data for the

message is coming from, or going to. The second array indicates how many data items are

to be extracted from, or stored to, each location pointed to. For example, suppose in some

spatially decomposed particle simulation we build a list of the particles that must be migrated t,o

another process in each time step. This list is a set of indices into the data structure containing

the particle information. The Fortran language requires that the scatter/gather locations be

specified by an indirection vector that applies to a specific buffer. The C language permits

pointer manipulation, so the memory location from which data are gathered, or to which data

are scattered, can be more naturally expressed as an array of pointers. This is one of the few

significant syntactic differences between the C and Fortran versions of MPI1. We expect the

final version of the MPI standard will specify the scattering and gathering of data with an

“iovec” data structure, as is used by the readv and vritev routines of the Posix standard.

3.1.1. Receiving messages

The receipt of a message is said to be blocking if the receiving process suspends execution until

all of the message has been received, i.e., until it has been placed in an application buffer on

the receiving process. If a process attempts to perform a blocking receive that i s not matched

by a corresponding loosely synchronous send, execution will be suspended indefinitely on that

process, resulting in full or partial deadlock.

A nonblocking receive takes place in two phases. First, a receive is posted on the receiving

process, that is, the application provides a buffer that is to be used to store a specified incoming

message. After this the receiving process can then continue to do useful work. However,

a t this stage receipt of the message is not guaranteed. and the data in the message should

not yet be used by the receiving process. The nonblocking receive must be completed in a

second phase that either calls the routine MPI-WAIT that blocks until the message is received,

or periodically calls the routine MPI-STATS that checks on whether the message has been

received into an application buffer. Between these periodic checks useful work can continue to

be done by the receiving process, and once receipt is confirmed the message may be processed.

Using the blocking mechanism (MPI-WAIT) to complete a nonblocking receive is usually done

immediately before the message is to be used on the receiving process, thereby allowing the

maYvimum potential for overlap of computation and cornniunication This approach is cornnion

when the amount of work that could be done between posting the receive and actually using

the received data can be quantified at compile time. In more dynamic situations there may

be an almost arbitrary amount of work that a process could do until an anticipated mrssagr

arrives. In such cases it is common to periodically check for message receipt using MPI-STATS

At the application level, a blocking receive is conceptually the same as a nonblocking receive

in which no useful work is done between the two phases, i.e., a call to an MPIl receive routine

in nonblocking mode immediately followed by a call to MPI-WAIT.

When a message is received in synchronized mode, the receiving process sends an acknowl-

edgment to the sending process once the message has been completely received and placed in

an application buffer. In the absence of hardware failures, and provided valid arguni~nts are

passed to the send and receive routines, rnessage receipt is guaranteed.

3.1.2. Sending messages

The sending of a message is said to be blocking if the sending process suspends execution until

all of the message has been sent, Le., until the application buffer containing the message on

the sending process is available for reuse. When this has occurred we say that “the message

has cleared the buffer.” It is not guaranteed that the message will actually be delivered t o

the destination process, and unless the application performs some additional handshaking, the

sending process cannot know if the message was delivered.

A nonblocking send takes place in two phases. In the first phase the user calls an MPIl

send routine in nonblocking mode which initiates transmission of a specified message buffer to

the destination process, and then returns. The sending process can then continue to do useful

work, but during this time it is not guaranteed that the message has cleared the buffer, and

it is a programming error to change i t in any way. The nonblocking send must be completed

in a second phase that either calls the routine MPI-WAIT that blocks until the message has

been sent, or periodically ralls the routine MPI-STATS that checks on whether the message

has been sent or not. Between these periodic checks useful work can continue to be done by

the sending process, and once the message has been sent the message buffer may then be safely

modified. The routine MPI-STATS may be used to check for completion of a nonblocking send

when there is an arbitrary amount of work that can be done between initiating and completing

the send operation. A blocking send is conceptually the same as a nonblocking send in which no

useful work is done between the two phases, Le., a call to an M P I l send routine in nonblocking

mode immediately followed by a call to MPI-WAIT.

When a message is sent in synchronized mode, execution is suspended on the sending process

until an acknowledgment has been received from the destination process indicating that message

receipt has completed. For a message sent in synchronized mode the message is not buffered

by the system, and upon delivery to the the destination process it is placed directly into the

- 6 -

supplied application buffer.

3.1.3. Other message passing utilities

On systems that provide buffering for messages (see Section 3.1.4) it is sometimes necessary

for a process to check whether it has any pending messages satisfying given select,ion crit,eria.

MPIl provides the routine MPI-PRORE for this purpose. A pending message is one that

was sent in blocking or nonblocking mode, but for which a corresponding receive has not yet.

been posted on the destination process. Such messages may be buffered by the system on

the destination process, thus MPI-PROBE queries the contents of the system message buffers.

Note that MPI-PROBE differs from MPI-STATS which checks for delivery of a message int,o

an application buffer.

Either, or both, of the type and source message selection criteria specified in an MPIl receive

routine, or the routine MPI-PROBE can have wildcard values. A wildcard value for the type

or source indicates that this criterion is to be ignored in selecting messages on a destination

process, so it is possible to select messages regardless of type and/or source. After it has been

ascertained by a process that it has received a wildcarded message, or that, it has such a message

pending, the actual length, type, and/or source of the message can be determined by calling

MPI-INFOL, MPI-INFOT, and MPIINFOS, respectively.

‘The routine MPI-CANCEL can be used to cancel a specified nonblocking send or receive

operation initiated previously. After returning from MPI-CANCEL the nonblocking operation

is no longer active, and the status of the nonblocking operation is left indeterminate.

3.1.4. Buffering of messages by the system

In describing MPIl’s message passing routines, we have tried to avoid making any unnecessary

assumptions about the underlying communication mechanism. In this section we will touch on

sorne implementation issues that affect application portability, and whether message delivery

is guaranteed.

In general, a communication system has some buffering capacity, as would usually be the case

if the underlying communication mechanism was asynchronous. In such cases, when a message

sent in blocking or nonblocking mode arrives a t a destination process it is placed directly in an

application buffer if a corresponding receive has already been posted; otherwise, it is placed in

a system buffer. Messages in a system buffer are referred to as “pending messages,” and remain

in a system buffer until a corresponding receive is posted, at which point they are moved to an

application buffer, and effectively deleted from the system buffer. Since the system can only

provide a finite amount of buffer space for pending messages, an asynchronous communication

rriechanism must deal with the possibility that an incoming message would cause a system

buffer to overflow. A simple recourse in such a situation is to discard the message, and flag an

error condition on the receiving process. It should be noted that this would not be detected as

- 7 -

an error by the sending process.

MPI can also be implemented on top of a synchronous communication system with no

buffering capacity. In this case there are no system buffers, so the possibility of one overflowing

does not arise On such systems, a message buffer remains volatile on the sending process

until a corresponding receive is posted on the destination process, at which point the message

is delivered. Since messages are not buffered, the routine MPI-PROBE always indicates that

there no pending messages.

To write applications that are portable between machines with different underlying com-

munication mechanisms, and between machines whose communication syste~ns have difleririg

(and usually unknown) buffering capacities, reliance on system buffering should be avoided [5].

Although a synchronous communication system can guarantee message delivery (in the

absence of hardware failures and software bugs), it is more difficult for an asynchronous system

to do so. Thus, requiring guaranteed message delivery as part of a message passing standard

may not be appropriate.

3.2. Process Groups

3.2.1. Creating and Managing Process Groups

Process groups provide a means of handling task parallelism, as well as controlling which pro-

cesses cooperate in collective cornrnunication tasks, such as broadcasl and reduction operai,ions.

MPIl does not include collective communication routines, however, the support provided for

process groups in MPIl is intended to be fully consistent with the use of process groups in

collective communications, a standard for which we expect to be defined subsequently. Thus,

within the context of MPIl process groups are provided solely as a means of supporting task

parallelism, in which different process groups work on different tasks.

A process group is identified by a unique process group ID, or GID, which is an integer

greater than zero. When a parallel program starts up, the processes allocated to an application

belong to the predefined group with GED = ALL, where ALL is sowe integer assigned by the

system. MPIl provides two basic methods for creating a new group or groups. A new group can

be created by each process in the group synchronously calling the routine MPI-DEFNG, which

takes as its arguments the number of processes in the new group, and a list of the processes

making up the group. A second routine, MPI-PARTG, is provided that allows a group to be

partitioned into distinct subgroups based on the value of a specified key.

Information about group membership can be obtained using the routines MPI-GETID and

MPIJNFOG. Given a process group with n members, the processes in the group are uniquely

labeled 0,1, . . . , n - 1. These labels may be regarded as process ID numbers that are specific to a

particular group, and will be referred to as Group Context Process ID numbers, or GCPIDs. A

process has a different GCPID for each group of which it is a member. The routine MPI-GETID

returns the GCPID of the calling process in a given group, or -1 if the process in not in the

- 8 -

group. The routine MPI-IKE'OG can be used to determine which processes belong to a specified

group of which the calling process is a member.

System memory is required to store information about the configuration of all currently

defined groups. In order to make efficierit use of this memory groups that are no longer needed

by an application can be discarded, thereby freeing some memory for reuse. MPI provides the

routine MPI-FREEG to discard a specified group. The routine MPI-FREEG must be called

synchronously by all processes in the discarded group.

Finally, the routine MPI-SYNCG imposes a barrier synchronization on a specified group of

processes.

All processes that are involved in an operation to produce, discard. or synchronize a group

must perform the operation loosely synchronously, or full or partial deadlock may rpsult.

3.2.2. Task parallelism

The routines discussed in Section 3.2.1 are concerned with creating, discarding, sychronizing,

and inquiring about process groups. The use of groups to manage t a l i parallelisni will now be

discussed. We consider three types of task parallelism, corresponding to the SIMD, SPMD, and

MIMD programming models, each of which subsumes the former. In SIMD task parallelism

each group of processes executes the samc instructions on different data. For example. suppose

we have two groups of processes of the same size, and want to find the fast Fourier transform

(FFT) of two vectors of the same length. Then, one FFT can be done by one group and

the other FFT by the second group, and processes in each group with the same GCPIDs will

execute the same instructions. In SPMD task parallelism each process executes the same code,

but different groups may execute different instructions. The groups are not required to be of

the same size, but must be distinct. Finally, in MIMD task parallelism different executable

programs are loaded into each group. I t should be noted that MIMD task parallelism can

be mirnicked by SPMP, task parallelism by having each group execute different branches of a

conditional statement within a single executable program. As currently defined MPIl supports

SPMD task parallelism, but not MIMD task parallelism.

Two routines specifically for using groups to manage the SPMD style of task parallelism

will now be introduced. MPI-PUSHG establishes an environment in which a specified group of

processes is treated as if it were the only processes in use by the application, i.e., it establishes

a process group context. MPILPOPG re-establishes the process group context in effect prior to

the corresponding preceding call t o MPI-PUSHG. The use of these routines is, perhaps, best

demonstrated with an example. Suppose we have a piece of software that performs some task in

parallel on n processes, where n is an iiiput parameter passed to the software. In executing the

parallel software, communication between the processes is based on the assumption that they

are numbered 0 ,1 , . . . , n - 1. However, the actual PIDs of the processes in the group executing

the software, in general, will not be labeled in this way since we are able to construct groups

- 9 -

PIU GID C;CPID
0 1 0
1 1 1
2 1 2
3 1 3
4 2 0
5 2 1
6 2 2
7 2 3

Table 1: Mapping of group context 1’111s to PTDs

with arbitrary membership. IIowever, the C4CPIDs of the processes do run from 0 to n - 1, so

whenever the software refers to a source or destination process in the range 0 to n - 1 this must

be interpreted as a GCPID, which is then mapped to the corresponding PID. Thus, between a

call to MPI-PUSHG and the corresponding subsequent call to MPI-POPG any reference to a

process ID number is interpreted as a GCPID and is automatically mapped to the appropriate

process ID number. For example, suppose the ALL group consists of 8 processes with process

ID numbers 0 ,1 , . . . , 7. Now suppose further that these processes have been partitioned so that

the first four form one group with GID=l, and the others form a second group with GID=2,

and that the contexts for these groups have been established by calls t o MPI-PUSHG. Then

the GCPID associated with each process is as given in Table 1. N o w , €or example, if in the

second group process 1 is required to send a message to process 3, the process ID numbers are

interpreted so the communication actually takes place between processes 5 and 7. In this way

a piece of software designed to execute on n processes with YIDs 0 through n - 1 will perform

correctly within any group context.

After a call to MPI-PUSHG the predefined group A L L refers to the group whose context

has just been established, and not to the original set of processes. The group can then be

partitioned, and subgroups can be used to form new groups, by calling the routines MPI-PARTG

and MPI-DEFNG. No reference may be made to any process or group outside the current group

context. Group contexts may be nested.

A process must not be involved in any outstanding nonblocking conirnunications within the

current communication context (see Section 3.3) when calling MYI-YUSHG or MPI-POPG. All

processes that are involved in an operation that changes the group context must perform the

operation loosely synchronously, or full or partial deadlock may result.

3.2.3. Examples of the use of subgroups

To further clarify the use of subgroups in managing task parallelism we shall consider now some

specific examples that use the NIP1 routines introduced in Sections 3.2.1 and 3.2.2. The first

example is the solution of the shallow water equations on a sphere by the spectral transform

method [23,25]. An important computational kernel of this application is the spectral transfor-

mation of a state variable defined on a rectangular longitude/latitude grid into a set of spectral

- 10 -

ROWGRP = MPIPARTG (ALL, MYBOW)

COLGRP = MPIPARTG (ALL, MY-COLI

Figure 1: Creation of row and column groups. Here MYROW and MY-COL are the position of a
process in the logical P x Q process mesh.

INFO = MPIJUSHG (ROWGRP)

do I D FFTs over l o n g i t u d e

INFO = MPIJOPG ()
INFO = MPIJUSHG (COLGRP)
do summation over l a t i t u d e
INFO = MPIJOPG ()

Figure 2: Pseudocode outline showing the use of process groups in the shallow water equation
application.

coefficients. The spectral transform is evaluated in two phases. In the first phase a fast Fourier

transform (FFT) is performed along each line of constant latitude in the grid. In the second

phase the spectral transform is completed by taking a weighted integral over latitude of the

Fourier coefficients. Numerically this is performed by weighted summation.

Suppose that the longitude/latitiide grid is distributed in blocks over a two-dimensional,

logical mesh of P x Q processes. Currently MPIl does not provide a mechanism for establishing

process topologies of this type, however, a proposal for extending MPIl to do this has been

suggested by Hempel [12]. The processes in each row of the process mesh cooperate to evaluate

the FFTs along a set of latitude lines. Then, the processes in each column cooperate to evaluate

the spectral coefficients for a set of wavenumbers. The two phases of the spectral transform

algorithm can be managed by partitioning the processes into row groups and column groups

by making two calls to the routine MPI-PARTG, as shown in Figure 1.

The calls to MPILPARTG are made once at the starto of the application. Thereafter, the

spectral transform of a state variable can be found by first establishing a process group context

for the rows, and doing the FFTs over longitude for each latitude using a generic parallel

F F T routine that assumes processes are numbered 0 , 1 , . . . , Q - 1. Then, a process group

context for the columns is established, and the summation over latitude for each wavenuniber

is performed using a parallel routine that assumes processes are numbered 0,1, . . . , P - 1. ‘Thus,

the pseudocode for the spectral transform algorithm is as as shown in Figure 2.

A second example of an application that might make use of process groups is an event-

based circuit simulation code [24]. We are grateful to K. Yelick of the University of California,

Berkeley, for suggesting this example. The circuit is decomposed into loosely coupled subcircuits

with different computational loads. Each subcircuit is assigned to a process group, where the

appropriate size of each group is determined by the computational load associated with the

- 11 -

-,

LUGRP = MPISARTG (ALL, KEY)

INFO = HPISUSHG (LUGRP)

CALL LUSOLVE (COEFFS, RES, H, P, Q)
INFO = HPISOPG (1

I I

Note that the parallel LU solver may itself use row and column orient,ed subgroups. These

would be set up within the parallel LU solve routine.

3.3. Communication Contexts

It is sometimes necessary to ensure that different streams of communication do not interfere

with one another. For example, in an application with two distinct phases, each involving

nonblocking communication, there is the possibility that one phase may intercept messages in-

tended for the other phase. This situation can arise if the message selectivity criteria of the two

phases overlap, as may be the case when using a “canned” concurrent software library in which

the selectivity criteria, in general, are unknown. Communication contexts, first used in the

Zipcode message passing system [19,20], provide a means of disambiguating such situations.

In effect, a communication context provides a third select.ivity criterion, in addition to type

and source process, that may be used to control the receipt of messages. A communication

context is uniquely labeled by a strictly positive integer called the Comniunicatiori Context ID,

or CCID. In MY11 a communication context may be created by a call to MPLNEWC, and a

list of the current valid contexts may be obtained by calling MPIJNFOC. After invoking a pre-

- 1 2 -

I I
I I
I I ---- Lu--- I I

---- ----
I I
I I
I I
I I
I I

I

Figure 3: The division of processes into three groups of 1 x 1, 3 x 3 , and 4 x 4 processes. Each
group is assigned t o a subcircuit , and independently performs a parallel LU solve. The a r row
indicate the need for intermittent communication between the groups.

viously created communication context by calling MPI-PUSHC, all messages subsequently sent

are tagged with that context, and only those messages so tagged may be received. ‘The current

communication context is terminated by a call to MPI-POPC, which restores the communica-

tion context in effect prior to the preceding call to MPI-PUSIIC. Commuiiication contexts may

be nested.

As an example, suppose we want to evaluate D = AB + C T , where A , B, C , and D are all

matrices. Then we might proceed as follows:

1. Initiate a nonblocking transpose of G

2. Call a concurrent library routine to find AB

3. Block until transpose of C is complete

4. Add CT to A B to form D

Here the task of transposing matrix C , which requires interprocess communication, is over-

lapped with the distinct task of evaluating the matrix product A B , which also requires com-

munication. If the message selectivity criteria within the two tasks are not unique there is

the possibility that one task will receive messages intended for the other task. Note that this

example assumes a sophisticated comrnunication processor that not only knows what messages

need to be sent for the transpose, but also interleaves them with those of the matrix commu-

nication. Potential message conflicts can be avoided by establishing different contexts for the

matrix multiplication and matrix transpose tasks. The MPIl code fragment for this example

would be as shown in Figure 4.

- 13 -

ICC = WPIJEWC ()
BEGIN-TRANSPOSE (C)
IOK = MPIJUSHC (ICC)
CALL RATRUL (D, A , B)
IOK = HPISOPC ()
END-TRANSPOSE (C)
D = D + C

I

Figure 4: Code fragrrieiit illustrating the use of comniunication contexts

In the above example, the communication context ICC is first created by calling MPT-NEWC.

The transposition of matrix C is then initiated, with the cornrtiunication context for this op-

eration being the default context Next, the routine MPI-PUSHC is called to establish the

communication context with CCID number TCC. When MATMUL is then called only messages

labeled with this comuiunication context will be visible t o the application, thereby, insulating

the messages associated with the matrix multiplication from those of the matrix transposilion.

When MATMUL returns, the routine MPI-POPC is called to restore the default comniunica-

tion context. The routine END-TRANSPOSE blocks, if necessary, until the transposition is

completed. If the communication associated with the transpose has already completed follow-

ing the return from MPI-POPC, then END-TFLANSPOSE just copies C from a system to an

application buffer.

Upon entering a program, or establishing a process group context by a call to MPI-PUSIIG

(see Section 3.2.2): a unique default conimunication context is established. A default commu-

nication context cannot be discarded, so a call to MPI-POPC when the current cornniunica-

tion context is the default has no effect. When exiting a process group context by a call to

MPI-POPG the communication context in effect prior to the preceding call to MPI-PUSHG is

restored. Communication and process group contexts may be nested, but not rriisaligned.

3.4. Buffer Packing

As discussed in Section 3.1, point-to-point scatter/gather types of comniunication, in which

data are gathered from a message buffer on the sending process, and subsequently scattered

into a buffer on the receiving process, may be performed using different variants of the send

and receive routines. Sometimes it may be necessary to gather/scatter data between multiple

buffers that may be of differing data types. In the Fortran language this cannot be done by a

single call to the MPIl send/receive routines.

In this section we introduce routines that (1) gather data from a buffer and pack it con-

tiguously into another buffer, and (2) scatter data into a buffer from a contiguous buffer. In all

cases the buffers are on the same process, and no interprocess communication is required. These

routines allow complex messages to be packed into a contiguous buffer on the sending process.

- 14 -

This message can then be sent to the destination process using the routines MPI-CSEKD and

MPI-CRECV, where it can then be unpacked.

Two sets of pack/unpack routines are provided, and their syntax is very similar to that of

the corresponding noncontiguous send/receive routines. The first pair of routines, hf PI-SPACE;

and MPISUNPACK, handles the case in which data blocks of constant size are respectively

gathered from, or scattered to, a buffer with constant stride. The second pair of routines,

MPLGPACK and MPI-GUNPACK, handles the case in which the data blocks may be of

differing sizes and lie at arbitrary locations in the buffer gathered from, or scattered to.

3.5. Utilities

We expect the final version of MPI will include a set of routines for performing a variety of

environmental management and inquiry functions. These routines, might for example. provide

information on the machine the calling process is running on, the size of the system buffers

available for interprocess communication, and other useful details. We also expect MPI to

include routines for determining the date and time, and for finding the CPU time and elapsed

wallclock time for a process. If a Posix standard exists for a routine then MPI should conform

to i t .

In general, the definition of these environmental and utility routines is deferred to later

versions of MPI. The only utility routines provided in MPIl are for error handling. Most of

the routines in MPIl return a value of -1 to indicate that an error has occurred. The nature

and/or cause of the error can be determined by calling the routine MPI-ERROR. This returns

an integer that indicates the error type applying to the most recent call to an MPIl routine.

Among the types of error that would be indicated by a call to MPI-ERROR are the use of an

invalid PID, GCPID, CCID, or MSGID; the loss of a message on a process due to a system buffer

overflow; the use of an invalid block length or stride in one of the message packing routines; and

so on. If the integer returned by MPI-ERROR is passed to the routine MPILETEXT, a string

is returned giving a short description of the error which can then be output by the application.

This way of handling errors is essentially the same as that used by PARMACS [13].

4. Discussion and Rationale

In this section we discuss the reasoning behind some of the decisions made in designing MPI1.

In the design of this interface, one of the main concerns was t o keep both the calling sequences

simple and the range of options limited, while at, the same time maintaining sufficient function-

ality. This clearly implies a compromise, and a good decision is vital if MPIl is t o be accepted

as a useful standard.

In order to avoid potential programming errors, values of scalar variables are not returned

through argument lists. In MPI1, routines are written as function calls rather than subroutine

calls, which provides a mechanism for returning scalars. One consequence of this is that in order

- 15-

to determine the source, length, and/or type when a wildcarded message has been received in

nonblocking mode, or is known t o be pending following a call to MPI-PROBE. it is n

to call the information routines MPI-INF, MPI-INFOL, and/or MPI-INFOT.

It is not assumed in MPI1 that messages sent from one process to another are receivrd

in the order in which they were sent since some systems may use a non-tletrrministic routing

scheme to avoid contention for comniunicat~on links. Of course, even in such cases the correct

order of messages could be recovered by the receiving process if each rnessagr was labeled by

the sending process with a sequence nunher. Whether or not messages from one process to

another arrive in the correct order has no impact on the definition of a standard, though clearly

the assumption is vital to the correct functioning of many parallel algorithms

MPIl defines three modes for send and receiving messages, namely the blocking. nonblock-

ing, and synchronized modes. We believe that these are the most widely used types of point-

to-point communication operations, and in order to avoid too many varieties of send routine,

some potentially useful functionality has been excluded from MPI1. For example, MPIl does

not include forced communication of the sort provided in Intel’s NX/2 through the use of “force

types.” In forced communication, if a message sent in nonblocking mode is delivered to a pro-

cess, and an application buffer has not already been made available for it by previously posting

a receive, then the message is simply discarded, rather than being placed in a system buffer on

the destination process. This functionality could be provided in MY11 by reserving a certain

range of types for forced communication, just as in NX/2. The justification for using forced

communication is that it avoids some overhead, and thus is often faster. The main disadvantage

is that it is the responsibility of the application to ensure that a receive is always posted prior

to delivery of a forced message, otherwise the message will be lost

In handling communication contexts MPIl uses an approach that is independent of the

message type selectivity mechanism. A different approach would be for each phase of an

application to initially register the range of types it will use, and for a central message type

registry to check for overlaps between the ranges claimed by different phases. An overlap

would indicate to the application the potential for communication conflicts. The best approach

is unclear. The first option would be more natural to the user, while for the second option

communication context control functions would be easier to port onto most current parallel

systems without major changes to the runtime systems. Thus, the question is how much MPIl

should be influenced by the presently available systems.

5 . Outstanding Issues

In this section we outline a few of the issues that need t o be addressed by MPI1, and some

features that should be considered for inclusion in future versions of MPIl.

A number of extensions to the support provided by MPl l for process groups are possible. For

example, currently in MPIl the union of groups cannot be formed, nor is it possible for single

- 16 -

processes to join or leave a group. Abstractions for permitting process groups to communicate

with each other are another possible extension MPIl does not allow processes to be created

or destroyed, or for different executable codes to be loaded into different processes, as would be

required in order to support the MIMD style of task parallelism. The need for all these possible

enhancements must be given careful consideration.

In MPIl no explicit mechanism is provided to allow a process to inquire about the existence

and membership of groups of which it is not a member. In a more general system it would be

possible for a process to access information about any group. One way of doing this would be to

have some processes dedicated to storing data about the current valid groups, and responding

to requests for this information. Whenever, a group is created, discarded, or modified the

processes involved must synchronize with one or more of the “group database” processes and

inform them of the changes. Clearly, if there are too few such processes bottlenecks may develop

in accessing their data; if there are too many then memory and compute power are wasted.

In the current version of MPI1 a process group is formed by a collection of processes without

any additional structure. Typical applications, on the other hand, have much more internal

structure. For example, the solution of a partial dieerential equation on a 3D grid is usually

performed by processes which are arranged in a corresponding structure. If the programming

interface does not provide functions for defining that structure, the user must program the

relationship of the logical position of a process and its identifier himself. Also, this information

is not available for automatic tools which map neighboring processes onto neighboring hardware

processors. Therefore, a mechanism such as that suggested by Heinpel [la] for defining, and

inquiring about, logical process topologies would be a useful addition to the message passing

standard .

Another important consideration when extending MPIl to handle heterogeneous distributed

computing is the fact that different machines not only have different data formats, but also

prefer different packet sizes. It would therefore appear that a table is needed that not only

maps a PID number to an Internet address and process ID on the destination machine, but

which also includes the target machine’s preferred packet size.

6. Conclusions

We do not claim to provide the definitive aiiswer to everyone’s communication needs. Indeed,

our insistence on simplicity precludes that. However, we believe the M P I l routines proposed

here will be useful as a basis for further discussion in the development of a standard for message

passing in distributed memory environments. An MPI standards committee was formally insti-

tuted in November 1992, with the objective of providing a forum for discussion and of defining

a standard message passing interface by July 1993. This committee is similar in structure and

organization to that which developed the High Performance Fortran standard. Members of the

distributed memory computing community who wish to become involved in the standardization

- 1 7 -

process should send email to walker@msr.epm.ornl.gov by May 1, 1993.

Acknowledgments

This work was partially supported by the ESPRIT programme and the PPI’E project. We

gratefully acknowledge the participants of the First CRPC Workshop on Standards for Message

Passing in a Distributed Memory Environment, and are grateful to the Center for Research

on Parallel Computing for sponsoring this workshop It is also a pleasure to acknowledge the

helpful comments and suggestions of Vas Bala, Mark Debbage, A1 Geist, William Gropp, Cherri

Pancake, Paul Pierce, Peter Rigsbw, Anthony Skjellum, Marc Snir, and Joel Williamson.

7. References

[l] H. E. Bal. Prognzmming Distributed Systems. Prentice Hall International, Heme1 Iiemp-

stead, England, 1991.

[a] V. Bala and S. Kipnis. Process groups: a mechanism for the coordination of and commu-

nication among processes in the Venus collective communication library. Technical report,

IBM T. J . Watson Research Center, October 1902. Preprint.

[3] V. Rala, S. Kipnis, L. Rudolph, and Marc Snir. Designing efficient, scalable, and portable

collective communication libraries. Technical report, TBM T. J . Watson Research Center,

October 1992. Preprint.

[4] N. Carrier0 and D. Gelernter. How lo write parallel programs. ACM Com,pvting Surveys,

21(3):323, September 1989.

[5] M. Debbage and M. Hill. Draft messaging ideas, revision 0.3. Technical report, Southanip-

ton University, UK, 1992. Preprint.

[6] Edinburgh Parallel Computing Centre, University of Edinburgh. C H I M P Concepts, June

1991.

[7] Edinburgh Parallel Computing Centre, University of Edinburgh. CIIIMP Version 1.0

Interface, May 1992.

[8] G. Geist and V. Sunderam. Network based concurrent computing on the PVM system.

Technical Report TM-11760, Oak Ridge National Laboratory, June 1991.

[9] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H . Worley. A user’s guide to PICL: a

portable instrumented communication library. Technical Report TM-11616, Oak Ridge

National Laboratory, October 1990.

[lo] D. Gelernter. Generative communication in Linda. ACM Trans. Prog. Lung. Sys., 7(1):80--

112, 1985.

- 18 -

[ll] It. Hempel. The ANL/GMD macros (PARMACS) in fortran for portable parallel program-

ming using the message passing programming model - users' guide and reference manual.

Technical report, GMD, Postfach 1316, D-5205 Sankt Augustin 1, Germany, Xoveniber

1991.

[la] R. Hempel. A proposal for virtual topologies in MPI1. Technical report, GMD, Postfach

1316, D-5205 Sankt Augustin 1, Germany, November 1992.

[13] R. Hempel, H.-C. Hoppe, and A. Supalov. A proposal for a PARMACS library interface.

Technical report, GMD, Postfach 1316, D-5205 Sankt Augustin 1. Germany, Oct,ober 1992.

[14] D. hlallon, J . Nash, and P. Dew. Shared objects and its role in standardization. Technical

report, Leeds University, UK, 1992. Preprint.

[15] nCUBE Corporation. nCUBE 2 Programmers Guide, r2.0, December 1990.

[16] S. Otto. MetaMP: a higher level abstraction for message passing programming. Technical

report, Oregon Graduate Institute, Department of Computer Science, January 1991.

[17] Parasoft Corporation. Express Verszon 1.0: A Comrnunzcatzon Envzronment for Parallel

Computers, 1988.

[18] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference on

Hypercube Concurrent Computers and Applicdzons, pages 384-390. ACM Press, 1988.

[19] A. Skjellum and A. Leung. Zipcode: a portable multicomputer communication library

atop the reactive kernel. In D. UT. Walker and Q. F. Stout, editors, Proceedzngs of the

FzFh Uistribuied Memory Concurrent Computing Conference, pages 767-776. IEEE Press,

1990.

[20] A. Skjellum, S. Smith, C. Still, A . Leung, and M. Morari. 'The Zipcode message passing

system. Technical report, Lawrence Livermore National Laboratory, September 1992.

[all V. Sunderam. PVM: a framework for parallel distributed computing. Concurrency: Prac-

t ice and Experience, 2(4):315--339, 1990.

[22] D. Walker. Standards for message passing in a distributed memory environment. Technical

Report TM-12147, Oak Ridge National Laboratory, August 1992.

[23] D. W. Walker, P. H. Worley, and J . B. Drake. Parallelizing the spectral transform method

- part 11. Concurrency: Practice and Experience, 4:509-531, 1992.

[24] Chih-Po Wen. Timing simulation on a distributed memory multiprocessor. Master's thesis,

University of California, Berkeley, CA, 1992.

[25] P. H . Worley and J . B. Drake. Parallelizing the spectral transform method - part I.

Concurrency: Practice and Experience, 4:269-291, 1992.

- 19 -

Appendix A

In this appendix we give Fortran specifications for the MPI1 routines. The C language specifica-

tions are not given explicitly, but are very similar, except for the routines dealing with arbitrary

scatter/gather operations (MPI-GSEKD, MPLGRECV, MPLGPACII; and MPI..GIINPACK).

In the synopses of the Fortran specifications of some of the routines, message buffers are referred

t o as integer arrays; however, real arrays can also be passed to these routines

The appendix is consists of the follo~virig five sections.

1. Point-to-point message passing routines,

2. Support for process groups,

3. Support for buffer copying,

4. Support for communication contexts,

5. UtiMies.

- 20 -

A . l Point-to-Point Message Passing Routines

In this section we provide specifications for the following point-to-point message passing and

related routines.

0 MPI-CANCEL

MPI-CRECV

MPI-CSEND

0 MPI-GRECV

0 MPI-GSEND

0 MPIINFOL

0 MPIlNFOS

0 MPIlNFOT

MPI-PROBE

0 MPI-SRECV

0 MPI-SSEND

MPI-STATS

0 MPLWAIT

Cancel nonblocking send or receive

Receive contiguous message

Send contiguous message

Receive into buffer with arbitrary scatter

Send from buffer with arbitrary gather

Get length of pending or received niessagc

Get source of pending or received message

Get type of pending or received message

Check pending messages

Receive into buffer with constant stride

Send from buffer with constant stride

Check status of nonblocking send or receive

Block until send or receive has completed

Message selectivity (within a comm~inication context) is by source process and message

type, either of which may have the “wildcard” value of -1, indicating that any source and/or

type is acceptable.

Nonblocking sends and receives return a message ID that is unique within the current group

context. All other sends and receives return the number of bytes actually sent or received, or

-1 if an error occurred.

- 21 -

NAME

MPI-CANCEL Cancel a previously initiated xionblocking send or receive

SYNOPSIS

integer function MPI-CANCEL (msgid)

integer msgid

INPUT ARGUMENTS

msgid message identifier returned by a call to a nonblocking send or receive

DESCRIPTION

MPI-CANCEL cancels a previously issued nonhlocking send or receive specified by the

message identifier, msgid. Upon return the nonblocking send or receive is no longer active,

and may or may not have completed.

RETURN VALUE

MPI-CANCEL returns 0, or -1 if a11 error occurs.

- 22 -

NAME

MPI-CRECV Receive a message contiguously into a buffer

SYNOPSIS

integer function MPILCRECV (mode, buf, source, type, maxlen)

integer mode

integer buf(*)

integer source

integer type

integer maxlen

INPUT ARGUMENTS

mode

source

type

maxlen

the mode of the receive (blocking, nonblocking, or synchronized)

the ID number of the process sending the message

the message type, or type mask

the maximum length of the message in bytes

OUTPUT ARGUMENTS

buf the application buffer into which the message is received.

DES C RIP T I 0 N

If mode has the system-defined value MPI-BLOCKING then the calling process blocks

until a message of a specified type is received from a specified source into the application

buffer buf. Deadlock will occur if no corresponding message is sent loosely synchronously

by the source process.

If mode has the system-defined value MPI-NONBLOCKING then the calling process posts

a receive for a message of a specified type from a specified source, and immediately returns.

If mode has the system-defined value MPI-SYNCHRONIZED then the calling process

blocks until the specified message has been received into the application buffer, buf, and

then sends an acknowledgment to the source process before returning. The receive must

be matched by a corresponding send, also done in synchronized mode.

For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is

-I then selectivity by type is ignored. Messages longer than maxlen bytes are truncated

to maxlen bytes.

For all modes, the message received is stored contiguously in the buffer buf.

RETURN VALUE

Upon successful completion, if mode is MPI-BLOCKING or MPLSYNCHRONIZED then

MPI-CRECV returns the length of the message received in bytes. This will exceed

maxlen bytes if the message was truncated. If mode is MPI-NONBLOCKING then

MPI-CRECV returns the message ID number associated with the receive operation.

- 23 -

A value of -1 is returned if an error occiirs.

- 24 -

NAME

MPI-CSEND Send a message contiguously from a buffer

SYNOPSIS

integer function MPI-CSEKD (mode, buf, dest. type, len)

integer mode

integer buf(+)

integer dest

integer type

integer len

INPUT ARGUMENTS

mode

buf

dest

type the message type

len

the mode of the send operation

the buffer containing the message to be sent

the ID number of the process to which the message is sent

the length of the message in bytes

DES C RIP T I 0 N

If mode has the system-defined value MPI-BLOCKING then MPI-CSEND sends a mes-

sage of type type to process dest, and blocks until the message buffer, buf is available

for reuse.

If mode has the system-defined value MPI-NONBLOCKING then MPI-CSEND initiates

transmission of a message of type type to process dest, and immediately returns. The

message buffer, buf, should not be changed until the message is guaranteed to have

been sent, i.e., to have “cleared the buffer”, by a call to MPI-WAIT, or by a call to

MPI-STATS returning a nonnegative integer.

If mode has the system-defined value MPI-SYNCHRONIZFXI then MPI-CSEND sends

a message of type type to process dest, and blocks until an ackiiowledgment is received

from the destination process to indicate that message receipt has completed. The send

must be matched by a corresponding receive, also done in synchronized mode.

For all modes, the message consists of the len contiguous bytes in the buffer buf.

RETURN VALUE

If mode is MPI-BLOCKING or MPI-SYNCHRONIZED then MPI-CSEND returns the

number of bytes sent. If mode i s MPI-NONRLOCKING then MPI-CSEND returns the

message ID number associated with the send operation. A value of -1 is returned if an

error occurs.

- 25 -

NAME

MPI-GRECV Receive a message and scatter it arbitrarily into a buffer

SYNOPSIS

integer function MPI-GRECV (mode, buf, source, type, nlist, ilist, nblks)

integer mode

integer buf(*)

integer source

integer type

integer nlist(*)

integer ilist(*)

integer nblks

INPUT ARGUMENTS

mode

source

type

nlist

ilist

nblks

the mode of the receive (blocking, nonblocking, or synchronized)

the ID number of the process sending the message

the message type, or type mask

list of the number of bytes in each data block

list of the location in buf at which each data block starts

maximum number of data blocks to be scattered

OUTPUT ARGUMENTS

buf the application buffer into which the message is scattered

DESCRIPTION

If mode has the system-defined value MPI-BLOCKING then the calling process blocks

until a message of a specified type is received from a specified source into the application

buffer buf. Deadlock will occur if no corresponding message is sent loosely synchronously

by the source process.

If mode has the system-defined value MPI-NONBLOCKING then the calling process posts

a receive for a message of a specified type from a specified source, and immediately returns.

If mode has the system-defined value MPI-SYNCHRONIZED then the calling process

blocks until the specified message has been received into the application buffer, buff and

then sends an acknowledgment to the source process before returning. The receive must

be matched by a corresponding send, also done in synchronized mode.

For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is

-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated

to maxlen bytes.

For all modes, the way in which the data received are stored in the buffer buf is controlled

by the arrays n l i s t and ilist. The data received are treated a,. a succession of data

- 26 -

blocks, with the ith block being of size nlist(i) bytes. This is stored in the buffer buf

so that the start of the block is at i l i s t (i) bytes from the start of buf. The maximum

number of data blocks received is nblks. It is assumed that all indices and numbering

of data items begin at 0. It is the responsibility of the user to ensure that buf is large

enough to hold the data scattered into it.

RETURN VALUE

Upon successful completion, if mode is MPI-BLOCKING or MPI-SYNCHRONIZED then

MPI-GRECV returns the total number of bytes received. If mode is MPI-NONBLOCK-

ING then MPI-GRECV returns the message ID number associated with the receive

operation. A value of -1 is returned if an error occurs.

- 27 -

NAME

MPI-GSEND Send a message gathered arbitrarily from a buffer

SYNOPSIS

integer function MPI-GSEND (mode, buf, dest, type, nlist, ilist, nblks)

integer mode

integer buf(*)

integer dest

integer type

integer nlist(*)

integer ilist(*)

integer nblks

INPUT ARGUMENTS

mode

b uf

dest

type

nlist

ilist

nblks

the mode of the send (blocking, nonblocking, or synchronized)

the buffer containing the message to be sent

the ID number of the process to which the message is sent

the message type

list of the number of bytes in each data block

list of the location in buf at which each data block starts

number of data blocks to be gathered

DESCRIPTION

If mode has the system-defined value MPI-BLOCKING then MPI-GSEND sends a

message of type type t o process dest , and blocks until the message buffer, buf, is available

for reuse.

If mode has the system-defined value MPI-NONBLOCKING then MPI-GSEND initiates

transmission of a message of type type to process dest , and immediately returns. The

message buffer, buf, should not be changed until the message is guaranteed to have

been sent, Le., t o have “cleared the buffer”, by a call to MPI-WAIT, or by a call to

MPI-STATS returning a nonnegative integer.

If mode has the system-defined value MPI-SYNCHRONIZED then MPI-GSEND sends

a message of type type to process dest , and blocks until an acknowledgment is received

from the destination process to indicate that message receipt has completed.

For all modes, the way in which the message sent is gathered from the buffer buf is

controlled by the arrays n l i s t and ilist. The data are gathered in blocks, with the ith

block being of size n l i s t (i) bytes. This is gathered from the buffer buf starting at the

location i l ist (i) bytes from the start of buf. The total number of data blocks gathered

is nblks. It is assumed that all indices and numbering of data items begin at 0.

- 28 -

RETURN VALUE

If mode is MPI-BLOCKING or MPI-SYNCHRONIZED then MPI-GSEND returns the

number of bytes sent. If mode is MPI-XONBLOCKI?JG then MPI-GSEND returns the

message ID number associated with the send operation. A value of -1 is returned if an

error occurs.

- 29 -

NAME

MPIlNFOL Determine the length of a pending or received message.

SYNOPSIS

integer function MPI-INFOL ()

ARGUMENTS

None

DESCRIPTION

MPIlNFOL determines the length in bytes of a pending or received message. It only

returns a valid result if used directly after a call to a receive routine in blocking or

synchronized mode, or directly after a call to MPI-STATS or MPI-PROBE that has

returned a nonnegative integer.

RETURN VALUE

Directly after a call to a receive routine in blocking or synchronized mode, a call to

MPLWAIT, or a call to to MPI-STATS that returns a nonnegative integer, the rou-

tine MPIlNFOL returns Lhe length in bytes of the message just received. If called

directly after MPIPROBE has returned a nonnegative number, MPIlNFOL returns

the length in bytes of the pending message. If there are no pending messages -1 is re-

turned.

- 30 -

NAME

MP I l N F O S Determine the source process of a pending or received message.

SYNOPSIS

integer function MPI-INFOS ()

ARGUMENTS

None

DESCRIPTION

MPIlNFOS determines the source process of a pending or received message. It only

returns a valid result if used directly after a call to a receive rout,ine in blocking or

synchronized mode, or directly after a call to MPI-STATS or MPI-PROBE that has

returned a nonnegative integer.

RETURN VALUE

Directly after a call t o a receive routine in blocking or synchronized mode, a call to

MPI-WAIT, or a call to to MPI-STATS that returns a nonnegative integer, the routine

MPIlNFOS returns the ID number of the process that sent the message just received. If

called directly after MPITROBE has returned a nonnegative number, MPIlNFOS

returns the ID nurnber of the process that sent the pending message. If there are no

pending messages -1 is returned.

- 31 -

NAME

MPIlNFOT Determine the type of a pending or received message.

SYNOPSIS

integer function MPI-TNFOT ()

ARGUMENTS

Xone

DESCRIPTION

MPLINFOT determines the type of a pending or received message. MPIlNFOT

only returns a valid result if used directly after a call to a receive routine in blocking

or synchronized mode, or MPI-WAIT, or directly after a call to MPI-PROBE or

MPI-STATS that has returned a nonnegative integer.

RETURN VALUE

Directly after a call to a receive routine in blocking or synchrouized mode, MPI-WAIT,

or a call to MPLSTATS that returns a nonnegative integer, MPIJNFOT returns the

type of the message just received. If called directly after NPI-PROBE has returned a

nonnegative number, MPLINFOT returns the type of the pending message. If there

are no pending messages -1 is returned.

- 32 -

NAME

M P I J R O B E Check for pending messages.

SYNOPSIS

integer function MPI-PROBE (source, type)

integer source

integer type

INPUT ARGUMENTS

source

type

the ID number of the process sending the message.

the message type, or type mask.

DES C RIP TI0 N

MPI-PROBE checks if there is a message from a specified source and of a specified type

awaiting receipt. That is, if there is a such a message stored in a system buffer for which a

receive has not yet been posted. If source is -1 then this argument is ignored. Similarly,

if type is -1 then this argument is ignored. Only messages sent using the routines sent in

blocking or nonblocking mode may be buffered by the system on the receiving process,

so it only makes sense to use MPII'ROBE to probe such messages.

R.ETURN VALUE

If a message satisfying the selectivity criteria is awaiting receipt MPI-PROBE returns

the length of the message i n bytes. Otherwise, -1 is returned.

- 33 -

NAME

MPI-SRECV Receive a message and scatter it with constant stride into a buffer.

SYNOPSIS

integer function MPI-SRECV (mode, buf, source, type. lenblk, stride, nblks)

integer mode

integer buf(*)

integer source

integer type

integer lenblk

integer stride

integer nblks

INPUT ARGUMENTS

mode

source

type

lenblk

stride

nblks

the mode of the receive (blocking, nonblocking, or synchronized)

the ID number of the process sending the message

the message type, or type mask

the size in bytes of each data block

the number of bytes between the start of each data block

maximum number of data blocks to be scattered

OUTPUT ARGUMENTS

buf the application buffer into which the message is scattered

DESCRIPTION

If mode has the system-defined value MPI-BLOCKING then the calling process blocks

until a message of a specified type is received from a specified source into the application

buffer buf. Deadlock will occur if no corresponding message is sent loosely synchronously

by the source process.

If mode has the system-defined value MPI-NONBLOCKING then the calling process posts

a receive for a message of a specified type from a specified source, and immediately returns.

If mode has the system-defined value MPISYNCHRONIZED then the calling process

blocks until the specified message has been received into the application buffer, buf, and

then sends an acknowledgment to the source process before returning. The receive must

be matched by a corresponding send, also done in synchronized mode.

For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is

-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated

to maxlen bytes.

For all modes, the data received are treated as a succession of data blocks, each of length

lenblk bytes. Data blocks are placed in the buffer buf so that the start of successive

- 31 -

blocks are separated by stride bytes. The maximum number of data blocks received is

nblks. It is the responsibility of the user to ensure that buf is large enough to hold the

data scattered into i t .

RETURN VALUE

Upon successful completion, if mode is MPI-BLOCKING or MPILSYNCHRONIZED then

MPI-SRECV returns the length of the message received in bytes. If mode is MPI-NON-

BLOCKING then MPI-SRECV returns the message ID number associated with the

receive operation. A value of -1 is returned if an error occurs.

- 35 -

NAME

MPI-SSEND Send a message gathered wi th constant stride from a buffer.

SYNOPSIS

integer function MPI-SSEND (mode, buf, dest, type, lenblk, stride, nblks)

integer mode

integer bur(*)

integer dest

integer type

integer lenblk

integer stride

integer nblks

INPUT ARGUMENTS

mode

buf

dest

type the message type

lenblk

stride

nblks

the mode of the send (blocking, nonblocking, or synchronized)

the buffer containing the message to be sent

the ID number of the process to which the message is sent

the size in bytes of each data block

the number of bytes between the start of each data block

number of data blocks to be gathered

DESCRIPTION

If mode has the system-defined value MPI-BLOCKING then MPI-SSEND sends a mes-

sage of type type to process dest , and blocks until the message buffer, buf, is available

for reuse.

If mode has the system-defined value MPI-NONBLOCKING then MPI-SSEND initiates

transmission of a message of type type to process dest , and immediately returns. The

message buffer, buf, should not be changed until the message is guaranteed t o have

been sent, Le., to have “cleared the buffer”, by a call to MPI-WAIT, or by a call t o

MPLSTATS returning a nonnegative integer.

If mode has the system-defined value MPI-SYNCHRONIZED then MPI-SSEND sends

a message of type type to process dest , and blocks until an acknowledgment is received

from the destination process to indicate that message receipt has completed.

For all modes, the data sent are gathered from the buffer bnf in blocks, each of length

lenblk bytes. The start of successive data blocks are separated by s t r i d e bytes in the

buffer buf. The total number of data blocks gathered is nblks.

RETURN VALUE

If mode is MPI-BLOCKING or MPI.SYNCHRONIZEI> then MPI-SSEND returns the

- 36 -

number of bytes sent. If mode is MPI-NOKBLOCKING then MPI-SSEND returns the

message ID number associated with the send operation. A value of -1 is returned if an

error occurs.

- 37 -

NAME

MP 1.3 TATS Check the status of a nonblocking send or receive operation.

SYNOPSIS

integer function MPI-STATS (msgid)

integer msgid

INPUT ARGUMENTS

nisgid message identifier returned by a call to a nonblocking send or receive

DESCRIPTION

If the message identifier, msgid, refers to a message being sent in tionblocking mode,

then MPI-STATS checks if the message has cleared the message buffer yet. If it has,

then the message buffer is available for reuse. If the message identifier, msgid, refers t o a

message being received in nonblocking mode, then MPI-STATS checks if message receipt

has been completed yet, Le., if the incoming message has been placed in an applicatioii

buffer. If it has, then the data received into the buffer is available for use.

RETURN VALUE

MPI-STATS returns the number of bytes sent or received if the nonblocking send or

receive operation has completed. Otherwise, -1 is returned.

- 38 -

NAME

MPI-WAIT Block until a nonblocking send or receive operation has completed.

SYNOPSIS

integer function MPI-WAIT (msgid)

integer rnsgid

INPUT ARGUMENTS

msgid message identifier returned by a call to a nonblocking send or receive

DES C RIP T I 0 N

If the message identifier, msgid, refers to a message being sent in nonblockiiig mode, then

MPI-WAIT blocks until the message has cleared the message buffer. Upon return from

such a call to MPI-WAIT the message buffer is available for reuse, but receipt of the

message by the destination process is not guaranteed. If the message identifier, msgid,

refers to a message being received in nonblocking mode, then MPI-WAIT blocks until

message receipt has been completed. The data received into the message buffer is then

available for use.

RETURN VALUE

On successful completion MPI-WAIT returns the number of bytes sent or received.

Otherwise, -1 is returned.

- 39 -

A.2 Support for Process Groups

In this section specifications for the following routines for supporting process groups are given.

0 MPI-DEFNG

0 MPIZREEG

0 MPI-GETID

0 MPIlNFOG

MPITARTG

0 MPI-POPG

0 MPITUSHG

0 MPI-SYNCG

Create a group from a list of processes

Discard a group

Determine GCPID of calling process in a group

Determine processes in a group

Partition a group

Restore previous group coiitext

Establish new group contest

Synchronize a group of processes

- 40 -

NAME

MPI-DEFNG Define a group of processes.

SYNOPSIS

integer function MPI-DEFNG (nprocs, plist)

integer nprocs

integer plist(*)

INPUT ARGUMENTS

nprocs

plist

the number of processes in the new group

a list, of nprocs process ID numbers

DESCRIPTION

MPIDEFNG creates a new group consisting of the nprocs processes whose ID numbers

are listed in the array plist. The new group can subsequently be partitioned by calls to

MPITARTG. MPIDEFNG must be called synchronously by all the processes listed

in plist.

RETURN VALUE

On successful completion MPI-DEFNG returns the unique group ID number of the

newly formed group. If an error occurs a value of -1 is returned.

- 41 -

NAME

MPITREEG Discard a specified group

SYNOPSIS

integer function MPI-FREFX (gid)

integer gid

INPUT ARGUMENTS

$id the group ID number of the group to be discarded

DES C RIP TI ON

MPI-FREEG may be used to free nieinory that stores information about groups that are

no longer needed. The group gid is discarded, and may not be referred to subsequently.

MPI-FREEG must be called synchronously by all processes in the group gid.

RETURN VALUE

On successful completion MPI-FREEG returns 0. Otherwise -1 is returned.

- 42 -

NAME

MPI-GETID Determine the group context PID of the calling process for a spec-

ified group ID number.

SYNOPSIS

integer function MPI-GETID (gid)

integer gid

INPUT ARGUMENTS

gid the group ID for which the group context PID is required

DESCRIPTION

MPI-GETID determines the group context PID of the calling process within the group

g i d . A value of -1 is returned if the calling process is not in the group g i d .

RETURN VALUE

MPI-GETID returns the group context PID of the calling process within the group g i d .

A value of -1 is returned if the calling process is not in the group g id .

- 43 ”

NAME

M P INFOG Determine the number of processes in a group, anL return a list of

the PID numbers of the group merrtbers.

SYNOPSIS

integer function MPI-INFOG (gid, maxlis, plist)

integer gid

integer maxlis

integer plist(*)

INPUT ARGUMENTS

gid a group ID number

maxlis the maximum size of the array plist

OUTPUT ARGUMENTS

plist a list of the PID numbers of the processes in group g i d

DESCRIPTION

MPIlNFOG determines the number of processes the group gid, and returns a list of

the PTD numbers of the group members in the array plist. The calling process must be

a member of the group gid. If there are more than m a x l i s processes in group g id , only

the PID numbers of m a x l i s of them are returned in p l i s t .

RETURN VALUE

On successful completion MPIXNFOG relurris the number of processes iu the group

gid, or -1 if an error occurs.

- 44 -

NAME

MPIPARTG Partition a group into subgroups.

SYNOPSIS

integer function MPI-PARTG (gid, key)

integer gid

integer key

INPUT ARGUMENTS

gi (1

key

the ID number of the group to be partitioned

the key whose value determines the partitioning

DESCRIPTION

MPIPARTG partitions the group gid into subgroups according to the value of key.

All processes for which key has the same value form a distinct subgroup. MPI-PARTG

must be called synchronously by all processes in the group gid.

RETURN VALUE

On successful completion MPI-PAR,TG returns the unique GID number of the subgroup

to which the calling process belongs. Otherwise, -1 is returned.

- 45 -

NAME

MPI-POPG Re-establish former process group contest

SYNOPSIS

integer function MPT-POPG ()

ARGUMENTS

None

DESCRIPTION

MPI-POPG re-establishes the process group context that was in effect before the preced-

ing call to MPI-PUSHG. MPI-POPG must be called synchronously by all processes

in the group whose context was established by the preceding call to MPI-PUSHG. The

calling process must not be involved in any nonblocking communication within the current

communication context when calling MPIPOPG.

RETURN VALUE

On successful completion MPI-POPG returns the process group ID number of the group

whose context is reestablished. Otherwise, -1 is returned.

- 46 -

NAME

MPI-PUSHG Establish a new group context.

SYNOPSIS

integer function MPI-PUSHG (gid)

integer gid

INPUT ARGUMENTS

gid the group ID number of the context to be established

DESCRIPTION

A call t o MPI-PUSHG establishes an environment in which it appears to the processes

in the group gid that they are the only processes in use by the application. This environ-

rnent is called the process group context of gid. The effect of a call to MPI-PUSHG

is nullified by the next subsequent call to MPI-POPG, which re-establishes the pro-

cess group context that was in effect before the call to MPI-PUSHG. If the group gid

contains n processes, then within the group context of gid each process is labeled by a

unique integer between 0 and n - 1, referred to as its group context PID. Processes may

only be referenced by their group context PIDs, which are automatically mapped to the

corresponding process ID numbers by the system. It is an error to refer to any process ID

number outside the range 0 to n - 1, and the processes in group gid may not communi-

cate with processes outside the group. Groups created outside the current group context

by calls t o MPI-DEFNG, or MPI-PARTG may not be referenced. Groups created

within the current group context may not be referenced after exiting the context by call-

ing MPI-POPG. Within a group context the group ALL refers to just the processes

in the current group context. Group contexts may be nested. MPILPUSHG must he

called synchronously by all processes in the group gid. The calling process must not be

involved in any nonblocking conirnunication within the current comtnunication context

when calling MPI-PUSHG.

RETURN VALUE

On successful completion MPITUSHG returns the number of processes in the group

gid. Otherwise -1 is returned.

- 47 -

NAME

MPI-SYNCG Synchronize processes.

s Y hT 0 P SIS

integer function MPI-SYNCG (gid)

integer gid

ARGUMENTS

gid a process group ID

DESCRIPTION

MPI-SYNCG performs a barrier synchronization involving all processes in the group

gid, of which the calling process must be a member.

RETURN VALUE

On successful completion MPI-SYNCG returns 0. Otherwise, -1 is returned.

- 48 -

A.3 Support for Buffer Copying

In this section specifications for the following routines for packing data into and out, of message

buffers are given.

e MPI-SPACK

e MPI-SUNPACK

e MPI-GPACK General-purpose gather routine

e MPI-GUNPACK General-purpose scatter routine

Gather data with constant stride

Scatter data with constant stride

,
- 49 -

NAME

MPISPACK Pack data blocks into a buffer with constant stride.

SYNOPSIS

integer function MPI-SPACK (buf, lenblk, stridt., nblk, rnsg)

integer buf(+)

integer lenhlk

integer stride

integer nblk

integer msg(*)

INPUT ARGUMENTS

buf

lenblk

stride

nblk

buffer from which data are to be gathered

size of each data block in bytes

number of bytes between successive blocks in buffer buf

number of data blocks to be gathered

OUTPUT ARGUMENTS

msg buffer in which the gathered data is packed

DESCRIPTION

MPI-SPACK gathers data from the buffer buf and packs it contiguously into the buffer

msg. In buf the data blocks consist of lenblk bytes, with the starts of successive blocks

being separated by a constant stride bytes. The number of blocks gathered in nblk.

The most common use of MPI-SPACK is to fill a message buffer for subsequent com-

munication.

RETURN VALUE

Upon successful completion MPI-SPACK returns the total length of the message in

bytes. Otherwise, -1 is returned.

- 50 -

NAME

MPI-SUNPACK Unpack data blocks from a buffer with constant stride

SYNOPSIS

integer function MPI-SUNPACK (buf. lenblk, stride, nblk, msg)

integer buf(*)

integer lenblk

integer stride

integer nblk

integer msg(*)

INPUT ARGUMENTS

lenblk

stride

nblk

msg

size of each data block in bytes

number of bytes between successive blocks in buffer buf

number of data blocks to be scattered

buffer in which the data to be scattered are packed

OUTPUT ARGUMENTS

buf buffer to which data are to be scatt'ered

DES C RIP TI0 N

MPI-SUNPACK unpacks contiguous data from the buffer msg and scatters it with

constant stride into the buffer buf. Successive contiguous blocks of lenblk bytes are

extracted from msg and copied to buf so that the first such block is aligned with the start

of buf, and the start of successive blocks is separated by s t r i d e bytes. A total of nblk

data blocks are unpacked. The most common use of MPI-SUNPACK is to unpack data

received from another process. I t is the responsibility of the user to ensure that buf is

large enough to hold the data unpacked into it.

RETURN VALUE

Upon successful conipletion MPI-SUNPACK returns the total length of the message

in bytes. Otherwise, -1 is returned.

- 51 -

NAME

MPI-GPACK General routine for packing data blocks into a buffer.

SYNOPSIS

integer function MPI-GPACK (buf, nlist, ilist, nblk, msg)

integer buf(*)

integer nlist(*)

integer ilist(*)

integer nblk

integer rrisg(+)

INPUT ARGUMENTS

buf

nlist

ilist

nblk

buffer from which data are to be gathered

list of the number of bytes in each block

list of the location in buf at which each data block starts

number of data blocks to be gathered

OUTPUT ARGUMENTS

msg buffer into which the gathered data are packed

DESCRIPTION

MPI-GPACK extracts nblk data blocks from the buffer buf a i d packs them contigu-

ously into the buffer msg according to the information in the arrays n l i s t and i l i s t .

The ith data block extracted consists of the contiguous n l i s t (i) bytes starting at the

location ilist (i) bytes from the start of buf. It is assumed that all indices and number-

ing of data items begin at 0. The most common use of MPI-GPACK is to fill a message

buffer for subsequent communication.

RETURN VALUE

Upon successful completion MPI-GPACK returns the total length of the message in

bytes. Otherwise, -1 is returned.

- 52 -

NAME

MPI-GUNPACK General routine for unpacking data blocks froin a buffer.

SYNOPSIS

integer function PtlPI-GUIWACK (buf, nlist, ilist, nblk, msg)

integer buf(*)

integer nlist(*)

integer ilist(*)

integer nblk

integer msg(i)

INPUT ARGUMENTS

msg

nlist

ilist

nblk

buffer from which the data to be scattered are unpacked

list of the number of bytes in each block

list of the location in buf at which each data block starts

number of data blocks to be scattered

OUTPUT ARGUMENTS

buf buffer into which data are to be scattered

DESCRIPTION

MPI-GUNPACK takes nblk successive contiguous data blocks from the buffer msg arid

unpacks them into the buffer buf according to the information in the arrays n l i s t and

i l i s t . The ith data block unpacked consists of n l i s t (i) contiguous bytes, and is copied

t o the buf so that the start of the block is aligned with the location i l i s t (i) bytes from

the start of buf. It is assumed that all indices arid numbering of data items begin at

0. The most common use of MPI-GUNPACK is to unpack a message received from

another process. It is the responsibility of the user to ensure that buf is large enough to

hold the data unpacked into it.

RETURN VALUE

Upon successful completion MPI-GUNPACK returns the total length of the message

in bytes. Otherwise, -1 is returned.

- 53 -

A.4 Support for Communication Contexts

In this section specifications for the following routines for managing communication contexts

are given,

0 MPIJNFOC

MPI-NEWC

MPI-POPC

0 MPI-PUSHC

Get information on valid cornmunicatiori contests

Create a new corrirnunication context

Restore a communication context

Establish a new communication context

- 54 -

NAME

MPIlNFOC Get information about valid communication contexts

SYNOPSIS

integer function MPI-IKFOC (maxlis. ilist)

integer maxlis

integer ilist(+)

INPUT ARGUMENTS

maxlis maximum number of communication context ID numbers in the

a.rray i l i s t

OUTPUT ARGUMENTS

ilist a list. of communication context ID numbers

DESCRIPTION

MPIJNFOC determines the number of communication contexts that have been created

for the current process group context, and returns a list of the corresponding communi-

cation context ID numbers in the array i l i s t . The first entry in i l i s t is always t.he

ID number of the default communication context. If the number of ID numbers exceeds

maxlis, then only maxlis are returned in the array i l i s t .

RET.URN VALUE

On successful completion MPI-INFOC returns the number of communica.tion contexts.

Otherwise, -1 is returned.

- 55 -

NAME

MPIJVEWC Create a new communication context.

SYNOPSIS

integer function MPI-NEWC ()

ARGUMENTS

None

DESCRIPTION

MPI-NEWC creates a new comniunication context within the scope of the current

process group context.

RETURN VALUE

On successful completion MPIBEWC returns the unique ID number of the new com-

munication context. Otherwise -1 is returned.

- 56 -

NAME

MPITOPC Re-establish former comrriunication context

SYNOPSIS

integer function MPI-POPC ()

ARGUMENTS

None

DES C RIP T I 0 N

MPI-POPC re-establishes the communication context that was in effect before the pre-

ceding call to MPI-PUSHC.

RETURN VALUE

On successful completion MPI-POPC returns the ID number of the communication

context that is re-established. Otherwise, -1 is returned.

NAME

MPI-PUSHC Establish a new cornmu~iication context

SYNOPSIS

integer function MPI-YUSHC (ccid)

integer ccid

INPUT ARGUMENTS

ccid the ID number of the comniunicatiori context to be established

DESCRIPTION

MPI-PUSHC sets the current communication context to that given by the communi-

cation context ID number, ccid. This communication context stays in effect until the

subsequent corresponding call to MFI-POPC, or until the next call to MPI-POPG,

which destroys all the communication contexts of the process group context being exited.

MPIPUSHC must be called by all processes in the current process group context.

RETURN VALUE

On successful completion MPIPUSHC returns 0. Otherwise -1 is returned.

- 58 -

A.5 Utilities

In this section specifications for the following utility routines are given,

0 MPI-ERROR

a MPIBTEXT

Determine the current MPI error status

Get text string corresponding to error stat.us

- 59 -

NAME

MPI-ERR,OR Determine error status following a call to hlPIl

SYNOPSIS

integer function MPILERROR ()

ARGUMENTS

Kone

DESCRIPTION

MPIXRROR returns an integer giving t,, error status of the preces

routine.

ing ca I to an MPI 1

The meaning of the error status returned by MPI-ERROR. is given in the table below

RETURN VALUE

Additional entries may be added later.

Error status
0
1
2
3
4
5
6
7
8
9
10
11
12

Meaning
No error
Invalid PID used
Invalid GID used
Invalid MSGID used
Invalid CCID used
Invalid GCPID used
Invalid message buffer size
Invalid stride in MPI-SPACK/MPISUNPACK
Invalid block size in pack/unpack routine
Invalid data item size in pack/unpack routine
System buffer overflow
Too many communication contexts
Too many group contexts

- 60 -

NAME

MPIBTEXT Give string describing the error stmatus

SYNOPSIS

character*80 function MPI-ETEXT (ierrno)

integer ierrno

INPUT ARGUMENTS

ierrno The error status

DES C RIP TI0 N

MPI-ETEXT gives a brief description of the error corresponding to the value of the

error status integer ierrno.

R.ETURN VALUE

MPI-ETEXT returns a string describing the error status.

- 61 -

OR.NL/TM-12231

I N T E R N A L D I S T R I B U T I O N

1. 8. R. Appleton
2. J . Choi

5. E. F. D’Azevedo
3-4. T. S. Darland

6-10. J . J . Dongttrra
11. G. A. Geist
12. L. J . Gray
13. M. R. Leuze
14. E. G. Ng
15. C. E. Oliver
16. B. W. Peyton

22. C. H. Romine
17-21. S. A. Raby

23. T. H Rowan
24-28. R. F. Sincovec
29-33. D. W. Walker
34-38. It. C. Ward

39. P. II. Worley
40. Central Research Library
41. ORNL Patent Office
42. K-25 Applied Technology Li-

43. Y-12 Technical Library
44. Laboratory Records - R e

brary

45-46. Laboratory Records Department

EXTERNAL DISTRIBUTION

47. Giovanni Aloisio, Dipt. di Elettrotecnica ed Elettronica, Universita di Bari, Via
Re David 200, 70125 Bari, Italy

48. Ed Anderson, Mathematical Software Group, Cray Research Incorporated, 655F
Lone Oak Drive, Eagan, MN 55121

49. Ian G. Angus, Boeing Computer Services, M/S 7L-22, P. 0. Box 24346, Seattle,
WA 98124-0346

50. Marco Annaratone, Digital Equipment Corporation, 146 Main Street MLO1-
5/V46, Maynard, MA 01754 ,,

51. Vasanth Bala, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown
Heights, NY 10598

Donald M. Austin, 6196 EECS Bldg ., University of Minnesota, 200 Union Street,
S.E., Minneapolis, MN 55455

52

53. Edward H. Barsis, Coniyuter Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

54. Eric Barton, Meiko Limited, 650 Aztec West, Bristol BS12 4SD, IJnited Kingdom

55. Adam Beguelin, Carnegie Mellon University, School of Computer Science, 5000
Forbes Avenue, Pittsburgh, PA 15213-3890

56. Siegfried Benker, Institute for Statistics and Computer Science, University of Vi-
enna, A-1210 Vienna, Austria

57. Ed Benson, Digital Equipment Corp., 146 Main Street, MLOl-5/U46, Maynard,
MA 01754

- 62 -

58. Roger Berry, NCUBE Corporation, 4313 Prince Road, Rockville, MI) 20853

59. Scott Berryman, Yale University, Computer Science Department, 51 Prospect
Street, New Haven, C T 06520

60. Robert Bjornson, Department of Comput,er Science, Box 2158 Yale Station, New
Haven, C T 06520

61. Peter Brezany, Institute for Statistics and Computer Science, University of Vienna,
A-1210 Vienna, Austria

62. R,oger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences,
Harvard TJniversity, Cambridge, MA 02138

63. Clemens 11. Cap, University of Zurich, Department of Computer Science, Win-
terthurerstr. 190, CH-8057 Zurich, Switzerland

61. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington, DC
20585

65. Siddhartha Chatterjee, RIACS, Mail Stop “045-1, NASA Ames Research Center,
MoEett Field, CA 94035-1000

66. Kuo-Ning Chiang, MacNeil-Schwendler Corporation, 815 Colorado Blvd, Los An-
geles, CA 90041

67. Lyndon Clarke, Edinburgh Parallel Computing Centre, James Clerk Maxwell
Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, United King-
dom

68. Michele Colajanni, Dip. di Ingegneria Elettronica, Universita’ di Roma “Tor Ver-
gata” Via della Ricerca Scientifica, 00133 - Roma, Italy

69. Jeremy Cook, Parallel Processing Laboratory, Dept. of Informatics, University of
Bergen, High Technology Centre, N-5020 Bergen, Norway

70. Jim Cownie, Meiko Limited, 650 Aztec West, Bristol BS12 4SD, United Kingdom

71. Michel Dayde, CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse Cedex, France

72. Mark Debbage, University of Southampton, Dept. of Electronics and Computer
Science, Highfield, Southampton SO9 5” , United Kingdom

73. John J . Dorning, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

74. Tom Eidson, Theoretical Flow Physics Branch, M/S 156, NASA Langley Research
Center, IIampton, VA 23665

75. Victor Eijkhout, University of ‘Tennessee, 107 Ayres Hall, Department of Com-
puter Science, Knoxville, T N 37996-1301

76. Anne Elster, Cornel1 University, Xerox DRI, 502 Engineering and Theory Center,
Ithaca, NY 14853

77. Rob Falgout, Lawrence Livermore National Lab, L-419, P. 0. Box 808, Livermore,
CA 94551

78. Jim Feeney, IBM Endicott, R. 11. 3, Box 224, Endicott, NY 13760

- 63 -

79. Edward Felten, Department of Computer Science, University of Washington, Seat-
tle, WA 98195

80. Vince Fernando, KAG Limited, Wilkinson House, Jordan Hill Road, Oxford, OX2
8DR, [Jnited Kingdom

81. Randy Fischer, 615 NW 32st Place, Gainesvillr, FL 32607

82. Jon Flower, Parasoft Corporation, 2500 E. Foothill Hlvd., Suite 205. Pasadena,
CAS1107

83. David Forslund, Los Alamos National Laboratory, Advanced Computing Lahora-
tory, MS B287, Los Alamos, NhiI 87545

84. Geoffrey C. Fox, Syracuse University, Northeast Parallel Architectures Center, 111
College Place, Syracuse, NY 13244-4100

85. Josef Fritscher, Computing Center, Technical University of Vienna, Wiedner Haupt-
strasse 8-10, A-1040 Vienna, Austria

86. Daniel D. Frye, IBM Corporation, Dept. 49NA / MS 614, Neighborhood Road,
Kingston, NY 12401

87. Kyle Gallivan, University of Illinois, CSRD, 465 CSRL, 1308 West Main Streel,
Urbana, IL 61801-2307

88. J . Alan George, Vice President, Academic and Provost, Needles Ball, Universit,y
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

89. Mike Gerndt, Zentralinstitut fuer Angewandte Mathematik, Forschungszentrurn
Juelich GmbH, Postfach 1913, D-5170 Juelich, Germany

90. Ian Glendinning, University of Southampton, Dept. of Electronics and Comp.
Sci., Southampton, SO9 5NH, United Kingdom

91. Gene B. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

92. Adam Greenberg, Thinking Machines Corporation, 245 First Street, Cambridge,
MA 02142-1214

93. William Gropp, Argonne National Laboratory, Mathematics and Computer Sci-
ence, 9700 South C a s Avenue, MCS 221, Argonne, IL 60439-4844

94. Sanjay Gupta, ICASE, Mail Stop 132C, NASA Langley Research Center, Hamp-
ton, VA 23665-5225

95. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State TJniversity, Ames, IA
500 11

96. Fred Gustavson, IBM T. 3 . Watson Research Center, Room 33-260, P. 0. Box
218, Yorktown Heights, KY 10598

97. Robert Halstead, Digital Equipment Corporation, Cambridge Research Lab., One
Kendall Sq. Bldg. 700, Cambridge, MA 02139

98. Robert J. Harrison, Battelle Pacific Northwest Laboratory, Mail Stop K1-90, Y.
0. Box 999, Richland, WA 99352

99. Leslie Hart, NOAA/FSL, R/E/FSS, 325 Broadway, Boulder, CO 80303

- 64 -

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Tom Haupt, Syracuse University, Northeast Parallel Architect,ures Cent,er, 11 1
College Place, Syracuse, NY 13244-4100

Michael Heath, University of Illinois, NCSA, 4157 Beckrnan Institute, 405 North
Mathews Avenue, Urbana, 11, 61801-2300

Rolf Hempel, GML), Schloss Birlinghoven, Postfach 13 16, D-W-5205 Sankt Au-
gustin 1, Germany

Tom Henderson, NOAA/FSL, R/E/FS5, 325 Broadway, Boulder, CO 80303

Anthony J . G. Hey, University of Southampton, Dept. of Electronics and Comp.
Sci., Southampton, SO9 5NH, United Kingdom

Mark Hill, University of Southampton, Dept. of Electronics and Conip. Sci.,
Southampton, SO9 5NH, United Kingdom

C. T. Howard Bo, IBM Almaden Research Center, K54/802,650 Harry Road, San
Jose, CA 95120

Steve Huss-Lederman, Supercomputing Research Center, 17100 Science Drive,
Bowie, MD 20715-4300

S. Lennart Johnsson, Thinking Machines Corporation, 245 First Street, Cam-
bridge, MA 02142-1214

Charles Jung, IBM Kingston, 67LB/MS 614, Neighborhood Road, Kingston, NY
12401

Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornel1 University, Ithaca, NY 14853-3901

John Kapenga, Department of Computer Science, Western Michigan Universuty,
Kalamazoo, MI 49008

Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, Bldg. 221, 9700 South Cass hvenue, Argonne, IL 60439

Udo Keller, PALLAS GmbII, Hermuelheimer Strasse 10, D-W5040 Bruehl, Ger-
many

Ken Kennedy, Rice University, Department of Computer Science, P. 0. Box 1892,
Houston, TX 77251

Shlomo Kipnis, IBM T. J . Watson Research Center, PO Box 218, Yorktown
Heights, NY 10598

Robert L. Knighten, Intel Corporation, Supercomputer Systems Division, 15201
NW Greenbrier Parkway, Beaverton, OR 97006

Charles Koelbel, Rice University, CTTI/CRPC, P. 0. Box 1892, Houston, T X
77251

Edward Kushner, Intel Corporation, 15201 NW’ Greenbrier Parkway, Reaverton:
OR 97006

Falk Langhammer, Parsytec Computer GmbH, Juelicher Strasse 338, U-5100 Aachen,
G er m any

Randolph Langley, Florida State University, 400 SCL, B-186, Tallahassee, FL
32306

- 65 -

121. Bob Leary, San Diego Supercomputer Center, P. 0. Box 85608, San Diego. CA
92186-9784

122. Bruce Leasure, Kuck and Associates, Inc . , 1906 Fox Drive, Champaign, IL 61820

123. James E. Leiss, Rt. 2, Box 142C. Broadway, VA 22815

124. John Lewis, Boeing Computer Services , Mail Stop 7L-21, P. 0. Box 24346, Seattle,
WA 98124-0346

125. Rik Littlefield, Battelle Pacific Korthwest Laboratory, Mail Stop K1-87, P. 3. Box
999, Richland, WA 99352

126. Miron Livny, University of Wisconsin, Department of Computer Science, 1210
West Dayton Street, Madison, WI 53706

127. Rusty Lusk, Argonne National Laboratory, Mathematics and Computer Science,
9700 South Cass Avenue, MCS 221, Argonne, IL 60439-4844

128. Arthur R . Maccabe, Sandia National Labs, Dept. 1424, Albuquerque, NM 87185-
5800

129. Neil MacDonald, Edinburgh Parallel Computing Centre, James Clerk Maxwell
Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United King-
dom

130. Peter Madams, nCUBE Corporation, 919 East Hillsdale Blvd., Foster City, CA
94404

131. David P. Mallon, Leeds University, School of Computer Studies, Leeds LS2 9JT,
United Kingdom

132. Dan Cristian Marinescu, Computer Sciences Department, Purdue University, West
Lafayette, IN 47907

133. Tim Mattson, Scientific Computing Associates, Inc., 265 Church Street, New
Haven, CT 06510-7010

134. Oliver McBryan, University of Colorado at Boulder, Department of Computer
Science, Campus Box 425, Boulder, CO 80309-0425

135. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

136. Phil McKinley, A714 Wells Hall, Michigm State University, East Lansing, MI
48824

137. Piyush Mehrotra, ICASE, Mail Stop 132C, NASA Langley Research Center, Hamp-
ton, VA 23665

138. Paul Messina, California Institute of Technology, Mail Stop 158-79, 1201 E. Cali-
fornia Boulevard, Pasadena, CA 91125

139. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

140. Charles Mosher, ARC0 Exploration and Production 'I'echnology, '2300 West Plano
Parkway, Plano, TX 75075-8499

141. Barish Nag, Intel Corporation, M/S CO4-02, 5200 Elam Young Parkway, Hills-
boro, OR 97124

- 66 -

142. Jonathan Nash, Leeds University, School of Computer Studies. Leeds LS2 9JT,
United Kingdom

143. Dan Nessett, Lawrence Livermore National Laboratory, L-60, Livermore, CA
94550

144. Lionel h,l. Ki! Michigan State University, Dept. of Computer Science, A714 FVells
Hall, East Lansing, MI 48824-1027

145. Mike Norman, Edinburgh Parallel Computing Centre, James Clerk Maxwell Build-
ing, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom

146. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

147. Steve Otto, Oregon Graduate Institute, Department of Computer Sci. and Eng.,
19600 NW von Neumann Drive, Beaverton, OR 97006-1909

148. Andrea Overman, NASA Langley Research Center, MS 125, Hampton, VA 23665

149. Cherri M. Pancake, Department of Computer Science, Oregon State University,
Corvallis, OR 97331-3202

150. Raj Panda, IRM Corporation, Mail Code E39/4305, 11400 Burnet Rd. , Austin,
rrx 78758

151. David Payne, Intel Corporation, Supercomputer Systems Division, 15201 NW
Greenbrier Parkway, Beaverton, OR 97006

152. Arnulfo Perez, Centro de Intelligencia Artifical, I’I‘ESM, SUC. De Correos “J” C.P.
64849, Monterrey N.L., Mexico

153. Matthew Peters, Parallel and Distributed Processing, IBM UK Scientific Centre,
Winchester, United Kingdom

154. Greg Pfister, IBM Corporation, Mail Stop 9462, 11400 Burnet Road, Austin, TX
78758-3493

155. Jean-Laurent Philippe, ARCHIPEL S.A., PAE des Glaisins, 1 rue du Bulloz, F-
74940 Annecy-le-Vieux, France

156. Paul Pierce, Intel Corporation, Supercomputer Systems Division, 15201 NW Green-
brier Parkway, Beaverton, OR 97006

157. Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

158. Steve Poole, 11631 Lima, Houston, T X 77099

159. Roldau Pozo, University of Tennessee, 107 Ayres Hall, Department of Computer
Science, Knoxville, T N 37996-1301

160. Angela Quealy, Sverdrup Technology, Inc., NASA Lewis Research Center Group,
2001 Aerospace Pkwy, Brook Park, OH 44142

161. Padma Raghavan, University of Illinois, NCSA, 4151 Beckman Institute, 405
North Matthews Avenue, Urbana, IL 61801

162. Sanjay Ranka, Syracuse University, Northeast Parallel Architectures Center, 11 1
College Place, Syracuse, NY 13244-4100

- 67 -

163. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

164. Peter Rigsbee, Cray Research hcorporated, 655 Lone Oak Drive, Eagan MK
55121

165. Matt Rosing, ICASE, Mail Stop 132C, NASA Langley Research Center. Hampton,
VA 23665-5225

166. Joel Saltz, ICASE, Mail Stop 132C. NASA Langley Research Center, Hampton,
VA 23665-5225

167. Ahmed H. Sameh, CSRD, University of Illinois 1308 West Main Street Urbana.
IL 61801-2307

168. Rob Scbreiber, RIACS, Mail Stop "045-1, NASA Ames Research Center, Moffett
Field, CA 94022

169. David S. Scott, Intel Scientific Computers, 15201 N. W. Greenbrier Parkway,
Beaverton, OR 97006

170. Ambuj Singh, UC Santa Barbara, Department of Computer Science, Santa Bar-
bara, CA 93106

171. Chuck Simmons, 500 Oracle Parkway, Box 653414, Redwood Shores. CA 94005

172. Anthony Skjellum, Mississippi State University, Department of Computer Science,
Drawer CS, Mississippi State, MS 39762-5623

173. Steven G. Smith, Lawrence Liverniore National Lab, L-419, P. 0. Box 808, Liver-
more, CA 94550

174. Marc Snir , IBM T. J. Watson Research Center, PO Box 218, Room 28-226, York-
town Heights, NY 10598

175. Karl Solchenbacli, PALLAS GmbH, Hermuelheiiner Strasse 10 TI-5040 Bruehl Ger-
many

176. Charles H. Still, Lawrence Livermore National Lab, L-416, P. 0. Box 808, Liver-
more, CA 94550

177. Vaidy Sunderam, Emory University, Dept. of Math and Computer Science, At-
lanta, GA 30322

178. Mike Surridge, Univ. of Southampton Parallel Applications Centre, 2 Venture
Road, Cbilworth Research Centre, Southampton SO1 7NP, United Kingdom

179. Alan Sussman, TCASE, Mail Stop 132C, NASA Langley Research Center, Hamp-
ton, VA 23665-5225

180. Paul N. Swartztrauber, National Center for Atmospheric Rcsearcll, P. 0. Box
3000, Boulder, CO 80307

181. ClemensAugust Thole, GMD-I1 .T, Schloss Birlinghoven, D-5205 Sankt Augustin
1, Germany

182. Anne Trefethen, Engineering and Theory Center, Cornell University, Ithaca, NY
14853

183. Christian Tricot, ARCBIPEL S.A. , PAE des Glaisins, 1 rue du Bulloz, F-74940
Annecy-le-Vieux, France

- 68 -

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

Anria Tsao, Supercomputing Research Center, 17100 Science Drive, Bowie. MD
20715-4300

Lew Tllcker, Thinking Machines Corporation, 245 First Street Cambridge, hIA
02142- 12 14

Robert van de Geijn, University of Texas, Department of Computer Sciences , TAI
2.124, Austin, TX 78712

Robert G. Voigt, National Science Foundation. Room 417, 1800 G Street, N.\V. ,
Washington, DC 20550

Linton Ward, 11400 Burnet Rd, Austin, T X 78758

Dennis Weeks, Convex Computer Corp., 3000 Waterview Parkway, P. 0. Box
833851, Richardson, TX 75081

Tarrimy Welcome, Lawrence Livermore National Lab, Massively Parallel Comput-
ing Initiative, L-416, P. 0. Box 808, Livermore, CA 94550

Jim West, IBM Corporation, MC 5600.3700 Bay Area Blvd., Houston, TX 77058

Stephen R. Wheat, Dept. 1424, Sandia National Labs, Albuquerque, NM 87185-
5800

Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. 0.
Box 1892, Houston, TX 77251

Andrew B. White, Computing Division, Los Alamos Kational Laboratory, P. 0.
Box 1663, MS-265, Los Alamos, NM 87545

Joel Williain..on, Convex Computer Corporation. 3000 Waterview Parkway, Itichard-
son, T X 75083-3851

Steve Zenith, Kuck and Associates, Inc., 1906 Fox Drive, Champaign, IL 61820-
7334

Mohammad Zubair, NASA Langley Research Center. Mail Stop 132C, Hampton,
VA 23665

Office of Assistant Manager for Energy Research and Development, T I S . Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001 Oak Ridge, T N
37831-8600

199-208. Ofice of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

