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This report proposes a new definition for how long environmental samples can be held before 
chemical analysis. Preanalytical holding time is an important factor in obtaining valid 
information from environmental soil and water samples. The basic concept of holding times 
is to specify how long a sample can be held with reasonable assurance that thc initial 
concentration has not changed Significantly. The definitions of "reasonable assurance" and 
"changed significantly" are key to holding-time determinations. This paper proposes a 
"Practical Reporting Time"(PRT) based on statistical definitions of these tcrms. 

A significant change in initial concentration is defined using statistical properties of the 
measurement system. A critical concentration (CC) is determined on the first day of the 
holding-time study; it is the concentration below which there is only an a% chance, due to 
measurement error, that a measured concentration would be observed. A significant change 
has occurred when the concentration falls below this critical concentration. The PRT is 
defined as the day when there is a risk of y% = 15% that the measured analyte will be below 
the CC for an a% = 5%. 

From 1986-1988, several studies were conducted at Oak Ridge National Laboratory to 
evaluate holding times €or volatile organic compounds and explosives. The data from these 
studies were used in developing the PRT definition. Maximum holding times (MHT) have 
previously been calculated for the ORNL holding-time studies by an alternative definition 
specified by the American Society for Testing and Materials (ASTM). The PRT and ASTM 
MHT compared favorably with 75% of the cases having holding-time differences of less than 
10 days. The PRT and ASTM MHT definitions yield similar holding-time requirements but 
the PRT definition has the advantage that it is possible to assess the risks for samples held 
beyond the PRT. 

An equation was developed to estimate PRT values from short term holding-time studies. 
If a chemist is willing to assume a zero-order or first-order kinetics model, a short term 
experiment could be conducted to estimate the slope of the kinetics model and the standard 
deviation (sigma) of a single analytical measurement. The PRT value can be estimated from 
the sigma-to-slope ratio and the quadratic polynomial provided in this report. The risks for 
holding samples beyond their PRT can be determined using the sigma-to-slope ratio and the 
nomograph presented in this report. 
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1. INTRODUCTION 

Analyte concentrations are not always stable in environmental samples. Analytical chemistry 
laboratories analyze environmental samples as quickly as possible to cnsure accurate 
measurements of the concentration at the time the analyte was sampled. With an increasing 
number of environmental samples, the time between collecting an environmental sample and 
its chemical analysis (holding time) may be too long; during this time the analyte may 
biodegrade (1,2,3) or may decompose. Regulatory agencies have specified holding times for 
classes of compounds (volatile organics, semivolatiie organics, pesticides, explosives) to 
standardize analytical laboratory procedures. For example, 40 CFR 136 (Code of Federal 
Regulations, 4),  requires that volatile organic compounds (VOCs) samples stored at 4" C must 
be analyzed within 7 days of collection. This requirement is very stringent for most analytical 
laboratories. Currently, the holding time has been extended to 14 days for acid-preserved 
samples (5). The U.S. Army Toxic and Hazardous Materials Agency (USATHAMA, 6) 
recommends a =-day holding time for VOCs preserved with sodium bisulfate, and a 56-day 
(until extraction) holding time for explosives stored at 4°C. These results are based on the 
Oak Ridge National Laboratory (ORNL) holding-time study (7,8,9,10). The purpose of this 
study is twofold. First, a statistical definition for a holding time is developed, and second, a 
method is developed to predict the risks for analyzing an analyte beyond the holding time. 

The basic concept of holding times is to specify how long a sample can be held with 
reasonable assurance that the initial concentration has not changed significantly. The 
definitions of "reasonable assurance" and "changed significantly" are key to holding-time 
determinations. This paper proposes a "Practical Reporting Time"(PRT) based on statistical 
definitions of these terms. 

A significant change in initial concentration is defined using statistical properties of the 
measurement system. A critical concentration (CC) is determined on the first day of the 
holding-time study; it is the concentration below which there is only an a% chance, due to 
measurement error, that a measured concentration would be observed. A significant change 
has occurred when the concentration falls below this critical concentration. 

Figure 1 illustrates an analyte concentration that is linearly decreasing with time, and 
measurement variation follows a normal distribution. As the concentration decreases, the 
chance that an individual sample will be below the critical concentration increases. The 
probability (y) that a sample concentration is below the critical concentration is used as a 
measure of risk. The PRT is defined as the day when there is a risk of y% = 15% that the 
measured analyte will be below the CC for an a% = 5%. 
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Concentratlon 
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Fig. 1. Practical reporting time (PRT) for an m e  with a hear decreasing concentration. 

The PRT depends on the model used to approximate the degradation of an analyte 
concentration and the precision (standard deviation) of the analytical measurement variation. 
For a given analyte, large measurement variation will give a longer PRT than those for 
smaller measurement variation. This result occurs because it is more difficult to detect 
changes in the initial concentration with larger measurement variation. The chance that a 
measured analyte is below CC will increase the longer an environmental sample is held past 
the PRT. The rate of this probability increase reflects the consequences of missing the PRT. 

2 



2 €XJ?ERIMENTAL 

Holding-time studies for volatile organic compounds and explosives were conducted at ORNL 
(7,8,11) from August 1986 to September 1988. Data from these studies were used to develop 
the Practical Reporting Time definition. 

2-1 ORNL Holding-Time Study 

Practical reporting times were calculated for 19 volatile organic compounds (VOCs) and 4 
explosives for the holding-time studies conducted at ORNL. The ORNL holding- time study 
made four replicate concentration measurements on days 0, 3,7,  14,28, 56, 112 and 365 for 
VOCs in three water matrices, and four explosives in three water and three soil matrices. For 
VOCs in three soil matrices, the four replicate measurements were made on days 0, 3, 7, 14, 
28, 56 (or 111 days for sterilized USATHAMA soil). Two-spiking levels and four storage 
temperatures were included in the ORNL holding-time study. The experimental parameters 
are column and row labels in Tables k l - A . 4 .  The ORNL holding-time study represents 
13,422 concentration measurements over long periods under a variety of matrices and storage 
tempera tures. 

Practical reporting times are calculated using the following procedure: (a) an approximating 
model representing "concentration versus timc" is fitted to the data by the method of least 
squares (12); (b) the one-sided 95% prediction limit for time zero is located for the 
approximating model (this limit is the critical concentration); (c) a horizontal line is drawn 
from the critical concentration until it intersects with the one-sided 85% prediction limit; and 
(d) a vertical line is drawn from the intersection described in (c) to the time-axis. This 
intersection with the time-axis is the PRT. 

Critical concentrations at the 95% prediction limits on day zero represent decision points for 
analyte concentrations with a normal probability distribution. Concentration measurements 
below the decision point would be identified as lower than the original concentration. At 
zero time, about 5% of the concentrations would be below this critical concentration due to 
measurement distribution. At the PRT, the analyte concentration would have decreased 
enough to give a 15% chance that a measured concentration would be below the CC. 

Maximum holding times (MHT) have previously been calculated for the ORNL holding-time 
study by two alternative statistical definitions. The first definition was specified by the 
American Society for Testing and Materials (ASTM, 13). The second definition was specified 
by Environmental Science and Engineering, Inc. (BE, 14) for a holding-time study conducted 
in cooperation with the U.S. Environmental Protection Agency. The ASTM defines the 
MHT as the time the predicted concentration falls below the lower two-sided 99% confidence 
intervai on the estimated initial concentration. The ESE defines the MHT as the time a one- 
sided 90% confidence interval on the predicted concentration falls below a 10% change in 
the initial concentration. 
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A direct comparison of the ASTM MHT and ESE MHT is dirficult because of the two 
methods for defining critical concentrations and their intersection with the approximating 
model or the prediction interval. In addition, a good measure is not available for the 
consequences of measuring analyte concentrations beyond the maximum holding times. The 
PRT definition has the advantage that a probability of being below the CC can be calculated 
for a measured analyte concentration at any time period. The increase in this probability can 
be used to measure the effect of analyzing samples beyond the PRT. 

Figure 2 is a histogram of the differences between ASTM MHT and PRT for 360 
combinations of the experimental parameters in the ORNL holding-time study. Positive 
differences show that ASTM values are larger than PRT values, and negative differences 
show that PRT values are larger than ASTM values. As estimated holding times increase, 
PRT values are usually larger than ASTM values. All differences are between 18 to -23 days 
with 75% of the differences between 10 and -10 days. One reason for choosing the value y% 
= 15% is because at this y%, the PRT values closely approximate the ASTM MHT values. 
A comparison with ESE MHT values show no general trends. The differences between ESE 
MHT and PRT values range from 256 to -155 days. 

*I 0 

T 

-25 -20 -15 -10 -5 0 5 1 0  1 5  20 25 

(ASTM - PRT) Days 
Fig. 2 Frequencies of the differences between ASI'M and PRT holdiug-time estimates. 
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22 Approximating Models 

Practical reporting times depend on approximating models to represent the degradation of 
analyte concentrations with time. Approximating models can be either decreasing (most 
common), increasing, or a combination of a period of stability followed by a rapid decrease. 
Different approximating models may represent the same analyte under different 
environmental matrices and storage conditions. Five approximating models were used to 
represent analyte degradation (zero-order kinetic model, first-order kinetic model, log-term 
model, inverse-term model and cubic-spline model). Zero-order and first-order kinetic models 
represent the degradation of concentration or the logarithm (base e )  of concentration by a 
line [C = C, + B day, or In(C) = C, + B day], respectively. These two models successfully 
approximated the data for 73% of the ORNL holding-time experimental cases. To 
approximate more rapidly degrading concentrations, additional terms were added to the zero- 
order model. The iog-term model adds a logarithmic term [e.g., ln(day), base e] and the 
inverse-term model adds a reciprocal term [e.g., l/(day)]. The log-term model and inverse- 
term model can approximate data with rapid concentration degradation for 18% of ORNL 
holding-time cases. The coefficients for these four models can be estimated by the usual 
method of least-squares (11). In addition, the least-squares analysis can estimate the precision 
(standard deviation, So) for measuring a single analyte by the square-root of the mean square 
error. 

The four linear models couldn’t approximate 9% of ORNL holding-time experimental cases 
that had an initial constant-concentration plateau followed by degradation. An empirical 
model was applied for these cases which had an initial constant-concentration for days less 
than day = Do, and a final concentration for days greater than day = D1. The concentrations 
were modelled by a cubic polynomial between day Do and day D,. The cubic spline starts 
with a value of the initial concentration at day Do and ends with a value of the final 
concentration at day D,. In addition, the cubic spline is continuous at day Do and day D,. 
Coefficients for the cubic spline are estimated by the method of non-linear least-squares (11). 
Figure 3 illustrates the five approximating models. 
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Fig. 3. Five models used to approximate degradation of analyte concentration. 
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3. RESULTS AND DISCUSSION 

PRTs from the ORNL holding-time study were used to develop a quadratic equation for 
estimating PRTs, and a graphical method to assess the risk for samples held past the PRT. 

3.1 Sigma-to-Slope Ratios 

Holding-time studies at other laboratories may have different spiking levels, environmental 
matrices, storage conditions and measurement errors. For zero-order and first-order kinetic 
models, these holding-time results can be related to the new PRT definition through the ratio 
of the single measurement precision (standard deviation) to the absolute value of the slope 
of the line that approximates the concentration change (is., sigma-to-slope ratios}. Figure 
4 plots the observed PRT values versus sigma-to-slope ratios (Sd 133 I )  for ORNL holding-time 
cases approximated by zero-order and first-order models. Sigma-to-slope ratios greater than 
385 indicate that precision values are divided by small slope values. These small slope values 
would not be significantly different from zero at the 5% significance level. Their 
corresponding PRT values would be set to the maximum experimental time (56, 111, or 365 
days). Tables A1 to A4 list the sigma-to-slope ratios with the positive (increasing slope) and 
negative (decreasing slope) signs for the ORNL holding-time experiment. Mathematical 
formulas to calculate PRT values exactly for zero-order and first-order models are given in 
Appendix €3. 

A quadratic polynomial fitted by the method of least-squares to PRT versus the sigma-to- 

250 I 1 

0 50 100 150 200 250 300 350 400 

Slg ma-to-$lo pe 
Fig. 4. Quadratic polynomial fitted to PRT dues .  
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slope ratio represents 99.95% of the variation in the PRT values. Predicted PRT values are 
also shown in Fig. 4 for the quadratic approximation 

PRT = -0.3051 + 0.6894 

For example, Table A1 shows that ( S a )  = -151 for benzene at 50 pg/L concentration 
in ground water stored at 4°C. First convert this number to sigma-to-slope ratio by taking 
the absolute value, (SdlBI) = +151. The corresponding PRT value can be approximated 
either graphically by Fig. 4 or by the quadratic polynomial. Approximate PRT values are 
rounded down to the next whole number of days: 

PRT = -0.3051 + 0.6894(151) - 0.0134 x 10-2(151)2 . 

PRT = 100.7 100 days . 

The actual PRT value is 101 days calculated from the mathematical formula in Appendix B. 
Smaller sigma-to-slope values have shorter holding times. For example, Table A1 shows 
(S@) = -94 for benzene at 50 pg/L concentration in surface water stored at 4°C. The 
quadratic polynomial approximate value is PRT = 63 days and the exact calculation is PRT 
= 62 days. The margin of error is small between thc quadratic polynomial and the exact 
calculations in Fig. 4 with a maximum difference of 5.6 days at PRT = 198 days. 

Estimating PRT values based on the sigma-to-slope ratios is very useful for short term 
holding-time studies. Suppose a chemist wishes to estimate the PRT value for a compound 
and their experimental time is limitcd. If the chemist is willing to assume a zero-order or 
first-order kinetics model, a short term experiment could be conducted to estimate the slope 
of the model and the standard deviation of a single analytical measurement. The best 
procedure is to run replicate concentration measurements at the beginning and end of their 
experimental time. The chemist may wish to run additional measurements on the third and 
seventh days to detcct rapid degradation, and additional measurements in the middle of their 
experimental time to detect lack-of-fit. From this experiment, they can estimate the slope and 
the measurement standard deviation. Using the sigma-to-slope ratio, a PRT valuc can be 
estimated for the compound using either Fig. 4 or the quadratic polynomial. This procedure 
can be used despite analyte, concentration level, sample matrix, or storage condition. The 
chemist can calculate PRT values for any analyte and conditions for which zero-order and 
first-order models are used to approximate the analyte concentration degradation. Longer 
holding-time experiments will give additional confidence that the correct assumptions have 
been made. 
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3 2  Impact of Missing the PRT 

What happens to the risk (y) probability if samples are held past the PRT? The risk 
probability is the probability that an analyte concentration measurement is less Lhan the 
critical concentration. This risk probability will increase as samples are held past the PRT. 
The decision maker must decide if the increased risk probability is unacceptable. The rate 
of increase of the risk probability will depend on the sigma-to-slope ratio. Figure 5 is a 
nomograph for increasing risk probabilities for days past the PRT value. This nomograph is 
based on the sigma-to-slope ratios estimated for the ORNL holding-time study. The holding- 
time nomograph is used in conjunction with the sigma-to-slope ratios in Tables Al-A.4. For 
example, the PRT value is 101 days for benzene at 50 pg/L concentration in ground water 
stored at 4°C with a sigma-to-slope value of (SdlBI) = +151. Figure 5 shows that at 10 
days past the PRT value the risk probability is a little less than 0.17. This increase may be 
considered acceptable. But, 30 days past the PRT value, the risk probability increases to 0.20 
and this increase may be considered unacceptable. This risk probability means the analyte 
concentration has degraded so that there is a one in five chance an analysis of an 
environmental sample gives a concentration below the critical concentration. Figure 6 is an 
enlargement of a section of the nomograph for cases with sigma-to-slope rations less than 50. 

The nomograph illustrates the risk probabilities of concentration changes (below the CC 
level) rather than the actual concentration change for a single measurement. In addition to 
measurement precision and slope, the actual concentration change would require the value 
€or the initial concentration which may vary for different holding-time studies. Different 
holding-time experimental designs would affect the risk probability calculations through the 
number of degrees of freedom, and the variances and covariances of the intercept and slope. 
PRT calculations for the ORNL holding-time study show this methodology can be 
extrapolated to results from a large class of experimental parameters for analytes, spiking 
levels, matrices, and storage temperatures. 

3 3  PRT Values for Special Cases 

Tables k l - A 4  list the sigma-to-slope ratios €or analytes modelled by the zero-order and first- 
order kinetic models. Entries designated by "NS" are for cases that have a non-significant 
slope @e., no concentration degradation) at the 5% significance level, and the PRT values 
are the maximum experimental time. Entries designated by "A" are modelled by the log-term, 
inverse-term, or cubic spline models and have PRT values less than seven days. In addition, 
the number of days past PRT is less than seven days for a probability value of y% = 50%. 
These cases represent rapid degradation of analyte concentration. Entries designated by "B" 
indicate the number of days past PRT is greater than seven days for a probability value of y% 
= 50%. All 27 cases designated as "B" are modelled by the cubic-spline model except 50 pg/L 
of DNT in ground water stored at 4" C which was modelled by a log-term model. PRT values 
and days past the PRT for these special cases are listed in Table A5 in Appendix A. Two 
cases in Table A5 show unusual jumps in the number of days past PRT. Ethylbenzene 
spiked at 50 pglg in USATHAMA soil stored at -20°C shows a jump from 6 days to 90 days, 
and toluene spiked at 50 pglg in Mississippi soil stored at -70°C shows a jump from 2 days 
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to 54 days as the y probability changes from 30% to 35%. These unusual increases are due 
to the cubic spline leveling off to a constant concentration. As a result of these cubic spline 
behaviors the (1 - y)% prediction limits less than 70% become parallel to the critical 
concentration limit. These parallel lines never intersect with the critical concentration limit 
for y% greater than 30%. 
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Fig. 5. Holding-tirne nomograph for days past the PRT. Contours are probabilities of an 
analyte measurement being less than the critical concentratioa 
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0 5 10 15 20 
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Fig. 6. Holding-time nomograph for sigma-to-slope ratios less than 50. Contours are 
probabilities of an analyte measurement being less than the critical concentration. 

12 



4. CONCLUSIONS 

Practical reporting time is a statistically defined holding time to specify how long a sample can 
be held with reasonable assurance that the initial concentration has not changed significantly. 
PRT values depend only on the degradation kinetics and the analytical measurement 
variation. Results from the ORNL holding-time study show that the PRT values are 
comparable to holding times calculated by the ASTM definition. But, the PRT method can 
also indicate the consequence of making analytical measurements past the PRT. A quadratic 
polynomial has been estimated to predict PRT values for a large class of analytes, matrices, 
and storage temperatures with zero-order and first-order approximating kinetic models. 
Future holding-time studies with limited resources can calculate PRT values using the sigma- 
to-slope ratio. The PRT method can indicate the risk of making analytical measurerncnts past 
the PRT. Finally, a nomograph is presented for decision makers to evaluate thc risk of 
analyzing a sample past the PRT value. 
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Sigma-to-Slope Ratios and Past PRT Risks for Special Cases 
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Table k 1 Sigma-to-slope ratios for volatile organic compounds 
in environmental water samples used in the ORNL holding-time study. 

Water Q p e  

Distilled Surface Ground 
Vola tile 
Organic 

Compound ancentration Storage Temperature Storage Temperature Storage: Temperature 

4 "C Room 4 "C Room 4 'C Room fl& 

II Benzene 

50 NS NS -94 -131 -151 -227 

500 233 -256 369 NS -246 -286 

50 NS -225 -76 -40 1 20 -121 

500 351 -150 NS -242 NS NS ll 
Carbon Tetrachloride 50 NS NS -144 B NS -189 ll 500 NS -207 -308 -72 NS NS 

Chlorobenzene 50 NS -337 -97 -180 NS -188 

500 NS -79 NS -221 NS -202 /I 
Chlorofom I1 50 -304 -229 -87 -282 NS 219 

500 217 -240 NS NS -286 -375 

1,l-Dichloruerhane 50 NS NS 5 2  -130 NS NS 
500 304 NS NS NS -309 -366 II 

1,l -Dichlorwthene 50 NS 152 -120 -107 349 -21 3 

500 246 -103 NS 5 3  -175 -118 

1,t-Dichhtfopropane 50 NS NS -128 N S  133 184 

500 170 220 223 NS NS NS 

Ethylbenzene ll 50 NS -372 B -79 B -45 
500 NS -89 B -198 -2% -105 

Methylene Chloride 50 NS -326 -108 -148 292 NS 
500 244 -146 -345 -199 -357 -364 /I 

ll 50 NS -263 B A A -134 

500 NS -8 1 -140 -92 NS -120 

1,1,2,2-Tetrachloroethane 50 B A -282 -12 132 -16 

500 A A NS -61 NS -12 II 
Tetrachlomethene 50 NS -203 -83 -132 NS -297 

500 -209 -38 -146 -57 -128 -65 
1,1,2-Tnchloroethane 50 NS -15 -131 -2b3 65 147 

500 303 B NS NS NS -140 
Trichloroethene II 50 21 0 -298 -80 285 NS NS 

500 207 -86 NS -193 -343 -163 

50 NS -313 -85 -46 -100 -71 

500 NS -122 -127 -204 -310 -234 II Toluene 
o-Xylene 50 NS -371 -202 -5 1 -119 -27 

500 NS -173 NS NS NS -112 

NS = SI not significant 
A = PR%aIues and days past the PRT (15% < y 8  ?! 50%) are less than Seven days. 
B = See Table A5. 
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Table A2 Sigma-to-slope ratios for volatile organic compounds 
in environmental soil samples used in the ORNL holding-time study. 

Soil II)rpe 
Volatile 
Organic USATHAMA Tennessee Mississippi 

Compound 
(Concentrations < 100 pdg) Storage Temperature Storage Temperature Storage Temperature 

-70°C -2O’C -70°C -20°C 4°C -70°C -20°C 4’C 

Benzene 

Bromoform 

Bromomethane 

o-Xylene 

I NS = Slo not significant 
A = PRfialues and days past the PRT (15% < y% 5 50%) are less than seven days. I B = See Table k5. 



Table A3 Sigma-to-slope ratios for explosive compounds 
in environmental water samples used in the ORNL holding-time study. . 

Water Type 

Distilled Surface Ground 

Storage Conditions Storage Conditions Storage Conditions 

4 ° C  Room 4°C Room 4°C Room 

J3plosive Concentration 
fifl2 

-124 loo0 167 197 -74 -110 NS 

NS 

loo -100 -91 -25 -40 -105 

1000-2000 B B -141 -170 NS /I HMX 

I1 RDX NS 
50 NS -134 -38 -31 NS 

lo00 NS -76 130 99 NS 

R 
SO -1OU -10 R A -27 

1OOO 360 NS B A -122 

NS = Slo not significant 
A = P R 6 a l u e s  and days past the PRT (15% < y% -< 50%) are less than Seven days. I B = See Table AS.  

Table A4 Sigma-to-slope ratios for explosive compounds 
in environmental soil samples used in the ORNL holding-time study. 

Soil Type 

US ATIIAMA Tennessee Mississippi 

Storage Temperature Siorage Temperature Explosive Concentration Storage Temperaturrr 
fig& 

I -20°C 4°C Room -2O'C 4°C Room -20°C 4'C Room 

10 NS -367 A 116 -182 A NS NS -110 

100 169 169 231 233 NS NS 120 181 240 

IO NS NS NS 228 NS -41 125 136 NS 
100 NS NS NS 104 97 91 70 89 88 II - 
10 NS NS €3 144 -193 B NS NS -216 It RDx 100 NS -293 NS 104 132 106 86 108 114 

10 -144 -84 A NS -67 A NS A A 

100 -.WJ -24 A NS $3 -24 NS -247 -78 

NS = Slo not signiccant 
A = P R s a l u e s  and days past the PRT (15% < y% 5 50%) are less than seven days. 
B = See Table A.5. 
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Table AS. Days past PRT corresponding to y% probability. 

Probability (y%) that a sample is less than C( 

Day 20% 25% 30% 35% 40% 45% 50% 
Analyte Spike Matrix Storage PRT 

Carbon Tetrachloride 50pg/Id Surface Room 17 3 4 6 7 8 1 0 1 1  

lo00 pg& Distilled Room 29 1 2 3 3 4 5 5  

TNT 50pgR, Surface 4°C 18 0 1 1 1 1 1 1  

lO0OpgL Surface 4'C 32 2 4 5 7 8 9 1 0  

lO0OpgL Ground Room 0 4 6 8 9 10 11 12 

Chloroethane 7Opg/g USATHAMA -2O'C 19 2 3 4 4 5 6 7  

Methylene Chlonde 6Opglg  USA- -70°C 20 1 2 3 3 4 4 5  

Trichloroethene 5 0 p &  Tennessee -20°C 40 2 3 4 5 5 6 7  _ _  
9OWg Tennesee -2O'C 42 0 1 1 2 2 2 3  

50pgg Mississippi -7O'C 2 1 1 2 54 54 54 54 ll To'uene 
11 o-xylene 4Orre.k Mississiaoi -70°C 14 1 2 2 3 4 4 5  . II .. 

l0pglg USATHAMA Room 18 1 2 3 3 4 3 5  RDX 
lOpg/g Tennessee R m m  7 2 4 5 5 6 7 7  
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APPENDIX B 

Mathematical Equations for Practical Reporting Time 

23 



This page was intentionally left blank. 

24 



PRACTICAL REPORTING TIME EQUATIONS 

We assume that a linear approximating model with a decreasing slope can represent an 
analyte concentration (Cj) as a model of time (Day, Dj). 

The intercept parameter ( a )  and slope parameter (p)  are estimated by the method of least 
squares. The estimated values are denoted by "A" and "B" for the estimated intercept and 
estimated slope, respectively. The measurement error "E'' is a random variable assumed to 
have a normal probability distribution with zero mean and constant variance (a2). The 
constant variance assumption means that concentration measurements vary about the same 
amount for any day. This may not be true if measurement error depends on concentration 
levels and concentration decreases with time. Measurement variance is estimated by the 
mean square error for residuals (MSER). The measurement precision is defined by the 
standard deviation. This precision is estimated by the square root of MSER and is denoted 
by "S,,". 

The case we are investigating is a linear approximating model with a decreasing slope. 
Therefore, we restrict the estimated slope to be significantly smaller than zero at a one-sided 
significance level of 5% {i-e., B < -t(0.O5,df)[var(B)J1R). We set the PRT to the maximum 
number of days (e.g., 365 days) in holding-time experiments for estimated slope values that 
are not significantly different than zero. 

The definition for PRT for a linear decreasing approximating model says the 5% 
percentile point for a predicted measured value at zero time is equal to the 15% percentile 
value for a predicted measured value at PRT. 

where, 

t(Y ,do = is the (1 - y)  percentile point of the t-distribution with df = degrees 
of freedom. 

var(A) = estimated variance of A. Note var(A) = a,,S? which is the first row 
and first column in the 2 X 2 estimated covariance matrix The value 
of all depends only on the experimental design (i.e., days) used to 
estimate the linear approximating model. 



var(C,,,) = estimated variance of a predicted concentration at time D,, = PRT. 
This estimated variance is 

var(CpRT) = var(A) + D : R , ~ ~ r ( B )  + 2Dpmcov(A,B) + So 2 . 

var(B) is the estimated variance of B and cov(A,B) is the estimated 
covariance between A and B. The estimated var(B) = anSoz is the 
second row and second column in the 2 X 2 estimated covariance 
matrix. The estimated cov(A,B) = aI2S2 = a21S,2 is either the first 
row and second column or second row and first column in the 2 X 2 
estimated covariance matrix. The coefficients aZ, aI2, and a21 depend 
only on the experimental design @e., days) used to estimate the linear 
approximating modcl. 

Substituting €Q. B.3 into B.2, we can solve for D,, = PRT as 

where 

A = B 2  - r2(0.15,d!v~r(B) 

03-41 

Equation B.4 shows there are two solutions to a quadratic equation. The PRT is equal to the 
smallest positive root of Eq. B.4. 
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