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Preface 

This volume contains papers which were selected for presentation at the Poster 
Session of the Seventh International Symposium on Methodologies for Intelligent 
Systems - ISMIS’93, held in Trondheim, Norway, June 15-18, 1993. The symposium 
was hosted by the Norwegian Institute of Technology and sponsored by The University 
of Trondheim, NFR/NTNF - The Norwegian Research Council, UNC-Charlotte, Office 
of Naval Research, Oak Ridge National Laboratory and ESPRIT BRA Cornpulog 
Network of Excellence. 

ISMIS is a conference series that was started in 1986 in Knoxville, Tennessee. It 
has since then been held in Charlotte, North Carolina, once in Knoxville, and once in 
Torino, Italy. 

The Organizing Committee has decided to select the following major areas for 
ISMIS’93: 

1. Approximate Reasoning 
2. Constraint Programming 
3. Expert Systems 
4. Intelligent Databases 
5. Knowledge Representation 
6.  Learning and Adaptive Systems 
7. Manufacturing 
8. Methodologies 

The contributed papers were selected from more than 120 full draft papers by the 
following Program Committee: Jens Balchen (NTH, Norway), Alan W. Biermmn 
(Duke, USA), Alan Bundy (Edinburgh, Scotland , Jacques Calrnet (Karlsruhe, 

Research Office), Eero Hyvonen i? VTT, Finland), Marek Karpins i (Bonn, 
Germany), Yves Kodratoff (Paris VI, France), Jan Komorowski (NTH, Norway), 
Kurt Konolige (SRI International, USA), Catherine Lassez (Yorktown Heights, 
USA), Lennart Ljung (Linkoping, Sweden), Ramon Lopez de Mantaras (CSIC, 
Spain), Albert0 Martelli (Torino, Italy), Ryszard Michalski (George Mason, USA), 
Jack Minker, (Maryland, USA), Rohit Parikh (CUNY, USA), Judea Pearl (UCLA, 
USA , Don Pedis (Maryland, USA), F’rancois G. Pin (OWL,  USA), Henri Prade 

Erik S a n d e d 1  (Linkoping, Sweden), Richmond Thomason (Pittsburgh, ItalyI9 USA , 
College, UK), Colette Rolland (Paris I, France), Lorenza Saitta (Trento, 

Enn Tyugu (KTH, Sweden), Ralph Wachter (ONR, USA), S. K. Michael Wong 
(Regina, Canada), Erling Woods (SINTEF, Norway), Maria Zemankova (NSF, 
USA) and Jan Zytkow (Wichita State, USA). Additionally, we acknowledge the 
help in reviewing the papers from: M. Beckeman, Sanjiv Bhatia, Jianhua Chen, 
Stephen Chenoweth, Bill Chu, Bipin Desai, Keith Downing, Doug Fisher, 
Melvin Fitting, Theresa Gaasterland, Atillio Giordana, Charles Glover, Diana Gordon, 
Jerzy Grzymala-Busse, Cezary Janikow, Kien-Chung Kuo, Rei-Chi Lee, Charles Ling, 
Anthony Maida, Stan Matwin, Neil Murray, David Mutchler, Jan Plaza, 
Helena Rasiowa, Steven Sdzberg, P. F. Spelt, David Reed, Michael Sobolewski, 
Stan Szpakowicz, Zbigniew Stachiak, K. Thiiunarayan, Marianne Winslett, 
Agata Wrzos-Kamihska, Jacek Wrzos-Kamihski, Jing Xiao, Wbdek Zadrozny and 
Wojtek Ziarko. 

G Germany), Jaime Carbonell (Carne e-Mellon, U s A), David Hislop US Army 

(To I l l  ouse, France), Zbigniew W. Rad (UNC, USA), Barry Richards (Imperial 
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The Symposium was organized by the Knowledge Systems Group of the 
Department of Computer Systems and Telematics, The Norwegian Institute of 
Technology. The Congress Department of the Institute provided the secretariat 
of the Symposium. The Organizing Committee consisted of Jan Komorowski, 
Zbigniew W. RaS and Jacek Wrzos-Kamifiski. 

We wish to express our thanks to Franqois Bry, Lennart Ljung, Michael Lowry, 
Jack Minker, Luc De Raedt and Erik Sandewall who presented the invited addresses 
at the symposium. We would also like to express our appreciation to the sponsors of 
the symposium and to all who submitted papers for presentation and publication in 
the proceedings. Special thanks are due to Francois Pin at ORNL for his help and 
support. 

Finally, we would like to thank Jacek Wrzos-Kamiliski whose contribution to 
organizing this symposium was essential to its becoming a success. 

J. Komorowski and Z. W. Rai March 1993 
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IMPL I CAT IONS IN VIVID LOGIC 

Seiki Akama and Hiroto Ohnishi 
Department of Information System, Teikyo University of Technology, 

2289 Uruido. Ichihara-shi, Chiba, 290-01, JAPAN 
Toyo Women's College 

1660 Hiregasaki, Nagareyama-shi, Chiba, 270-01, JAPAN 

ABSTRACT 
We discuss implications in vivid logic to enhance the 

expressive power concerning conditional knowledge. This 
can be accomplished as an extension of Wagner's partial 
logical framework. We show that the resulting system is 
equivalent to Nelson's constructive logic. We also argue 
inconsistency handling in the proposed framework. 

1 . INTRODUCTION 
The idea of vivid knowledge was proposed by Levesque[l] to handle 

incomplete information in knowledge bases. However, to make Levesque's 
idea computationally feasible we have to incorporate both closed world 
assumption(CWA) and the open world assumption(0WA) in a unified frame- 
work. Unfortunately, as is well known these two meta-rules for han- 
dling negative information are incompatible. 

formalize two types of negation corresponding t o  CWA and OWA. In 
particular, we should deal with explicit negative information. For 
example, negation in logic programming has been considered as negation 
as failure(NAF) t o  avoid the computational overhead in implementing 
classical negation. Eut, recently several people have proposed to add 
explicit negation to logic programming effectively: see Gelfond and 
Lifschitzla] and Kowalski and Sadri[3] for details. It is thus inter- 
esting to explore a logical framework for vivid reasoning. 

weak negation within the framework of partial logic. In fact, vivid 
logic can be regarded as the first promising system f o r  vivid reason- 
ing. For instance, Wagner's system has some similarities with Nel- 
son's[6] constructive logic. Constructive logic has attracted re- 
searchers in AI, e.g., Akama[7] and Pearce and Wagner[8]. The vivid 
logic can also be automated by means of logic programming with strong 
negation due t o  Pearce and Wagner[8]. 

implication for describing conditional knowledge. By introducing 
implications in Wagner's logic, we can improve the expressive power 
required f o r  vivid reasoning. From a theoretical point of view, the 
given system is also attractive in the sense that it corresponds to the 
full system of Nelson's constructive logic. This is because Nelson's 

The lesson from Levesque's observation is that there is a need to 

Wagner[4][5] proposed a vivid logic(VL) to incorporate strong and 

The purpose of this paper is to expand Wagner's vivid logic with 
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system can express both truth and falsity in a constructive setting. 
The rest of this paper is structured as follows. In section 2, we 

review Wagner's vivid logic VL. Section 3 discusses Nelson's construc- 
tive logic. We proposed the extended vivid logic EVL in section 4. We 
develop a semantics and proof theory for EVL. We also try to embed EVL 
in an extended version of logic programming with strong negation. 
Section 5 argues the inconsistency handling in the proposed framework. 
Section 6 ends with our conclusions. 

2. VIVID LOGIC 
The language of Wagner's[4][5] vivid logic VL consists of &(con- 

junction), V(disjunction),-(weak negation), and true(truth). A liter- 
al is either an atomic formula or strongly negated atom. A vivid 
knowledge base V consists of inference rules of the form lit +- F 
read as lit if F ,  where lit is a literal and F is an arbitrary formula. 
We call such rules condi t ional  f a c t s .  A rule with its premise true is 
called a f a c t  denoted by lit instead of lit t- true. A variable-free 
expression is said to be ground. 

Although we assume implicit quantification, a vivid knowledge base 
V with non-grounded conditional facts can be identified with a dynamic 
representation of the corresponding set of ground conditional facts by 
means of the current domain of individuals U, denoted by [VI,: 

[VIu = {lito t Fo: lit c F E V  and o: Var(lit, F) 4U} 

where o ranges over all mappings from the set of variables of lit and F 
into the set of all constant symbols U. We call o a ground substitu- 
tion for lit t F and [VI, the Herbrand expansion of V relative to a 
certain Herbrand universe U. We also denote by [VI the Herbrand expan- 
sion of V relative to the Herbrand Universe Uv. 

Wagner argued that VL can represent four kinds of information, 
namely definite positive information, definite negative information, 
conditional information, and implicit negative information. The dif- 
ference between strong and weak negation is that lp means that p is 
falsifiable and -p means that p is not verifiable, respectively. 

partial Herbrand interpretation, where Mt contains positive facts and 
M- contains negative facts. A model of a program P is an interpreta- 
tion satisfying a l l  clauses of P. The partial Herbrand interpretation 
can define two forcing relations to express provability and re 
futability, respectively: 

(2 .1)  

We then describe a model theory for VL. Let M = cMt, M-> be a 

1 and 4 
M 1 a iff a E M+ 

M I F & G  iff M F F  and M F G ,  

M F F V  G iff M F F  or M F G ,  

M 1 -F iff M 4 F, 
M 1 -F iff M ,f F, 
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M j a iff a E M-, 

M J F & G  iff M d F  or  M j G ,  

M j  F V  G iff M i  F and Mj G ,  

?I I 1 F  iff M F, 

M j -F iff M 1 F. 

In this model, we assume that M 1 true for all models M. M is  a par-  
tial Herbrand model of V ,  denoted by M ! V, if for a l l  lit t F E [VI 
and any ground instance Fo of F, M FCJ impl i e s  M lito. We say that 
F is a 1ogzcal consequence of P, denoted by P 1 F, if every model of P 
is also a model of F. We call M' an extension of M, denoted by M' 2 
PI, if M'GP.3'' and M " c : M ' - .  
Theorem 2.2 (Wagner [ 4 ) 
Let M ' r M  and let F be a ground formula without weak negation, then 

M 1 F ==> M' 1 F, 
M { F ==> M' .f F. 

Theorem 2- 3 (Wagner [ 4 ] ) 
Every vivid knowledge base V without weak negation has a least model. 

ity relation using natural deduction. 
show that F is derivable from V: 

A proof theory for VL can be developed by formalizing a derivabil- 
We use the notation V t F to 

( & )  V 1 F and V G ==> V t F & G, 

(4) V 1 7F or  V 1 %  ==> V 1 l(F & G), 
(4) V 1 -F or V 1 -G ==> V 1 -(F & G), 
(-&) V 1 --.F and V 1 -7G ==> V 1 -7(F 6 G), 
(11) V 1 F ==> V 1 l-F, 
(-11) V 1 -F ==> V 1 -ylF, 
(1-) V 1 F ==> V ~ T - F ,  

( - - )  V 1 F ==> V 1 --F, 
(-T-) V 1 -F ==> V 1 -l-F, 

where F and G are ground formulas. 
Let V be a set of simple facts. Then, the derivability af a fact from 
V can be defined as a membership check in the following way: 

We assume that for  any V, V 1 true. 

(lit) V 1 lit iff lit EV. 
(-lit) v 1 -lit iff lit @v. 

In a general case, we can define the derivability as 

(lit) V 1 lit iff 3 (lit + F) E [VI: V 1 F, 
(-lit) V /- -lit iff v(lit +- F) E [VI: V 1 -F. 

However, this definition only works for well-founded VKB. 
al case, we need t o  add the following deduction rules: 

For a gener- 

c 
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( 2 - 4 )  

A formul 

V - F for some lit - F E [VI ==> V C lit, 

V C -F for all lit + F E [VI ==> V t -lit. 

F is thus derivable from V if there is a derivatic f o r  the 
sequent V 1 F. Wagner also discussed weakly well-founded VKB and a 
1 oop- t olerant recursive proof theory. 

3 .  CONSTRUCTIVE LOGIC 
Nelson[6] proposed constructive logic to formalize the notion of 

constructible f a l s i t y  o r  strong negation to overcome the weakness of 
intuitionistic negation. In this sense, we distinguish constructive 
logic from Heyting's intuitionistic logic. Nelson's principal aim is 
to describe negation in the same way as in constructive truth. Then we 
need strong negation satisfying some of the classical principles. For 
constructive logic, the reader is referred to Gabbay[9] and 
Akama[lO][ll][l2][7][13] for details. 

denoted by N can be given as that of positive intuitionistic predicate 
logic with the following axioms for strong negation: 

( A l )  -A - ( A  -, B), 

The axiomatization of constructive logic with strong negation 

(A2) - ( A  & B )  e ( -A V - B ) ,  

( A 3 )  - ( A  V B) e+ ( -A & - B ) ,  

(A4) - ( A  -+ B) * ( A  & - B ) ,  

( A 5 )  --A t-, A ,  

(A6) - V X A ( X )  c--, EIx-A(x), 

( A 7 )  - 3 x A ( x )  VX-A(X), 

being closed under detachment and two obvious quantificational rules. 
If we delete (Al) from N, the resulting system is said t o  be N-. 

following forms: see Nelson[6]: 
Intuitionistic negation "1" can be defined in N as one of the 

We also have the following as a theorem in N: 

-A -+ -IA ( 3 . 3 )  

For a semantics f o r  N, we can give a Kripke type model theory by ex- 
tending intuitionistic Kripke semantics. Following Gabbay[9], let 
(S,R,O,val) be a strong propositiona2 Kripke s t r u c t u r e ,  where (S,R,O) 
is a partially ordered set with first element 0 ES and Val is a three- 
valued function such that for  each t € S and atomic q, val(t,q) € (-1, 
0, 1) satisfying that tRs and val(t,q) #O imply val(t,q) = val(s,q). 
Intuitively, the values of val 1, 0, -1 are, respectively, used to 
express truth, undefined, falsity in a constructive sense. 

The truth-value (A)t of a formula A at a point t of a strong 
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propositional Kripke structure is defined by induction as: 

(A)t = val(t,A) for atomic A ,  

( A  BIt = min((A)t, (B)t)t 

(A V B)t = max((A)t, (3)t)J 
( A  ---$ B)t = 1 iff for all s, tRs and (A),=l imply (B)s=l, 

( A  ---t B)t = -1 iff ( A ) t  = 1 and ( B ) t  = -1, 

= 1 iff (A)t = -1. 

We say that A is v a l i d  in the structure if (AIO = 1. 
the completeness of N as follows: 
Theorem 3.4 (Completeness theorem) 
tNA iff A is valid in every strong propositional Kripke structure. 

logic; see Thomason[l4] and Akama[lll[l3]. 

We can establish 

The above Kripke semantics can also be extended f o r  the predicate 

4. AN EXTENSION OF VIVID LOGIC 
WITH IMPLICATION 

We are now in a position to extend Wagner's vivid logic VL with 
intuitionistic implication to formalize vivid reasoning within the 
framework of constructive logic.  It is obviously of importance to add 
implications to VL because we can express conditional knowledge flexi- 
bly. 

We introduce (intuitionistic) implication --, to VL. The resulting 
system is called extended vivid logic EVL. Then we can use embedded 
implications to describe conditional knowledge in connection with 
hypothetical reasoning. In EVL, implications are interpreted in the 
following way: 

M F -, G iff V M ' > M  ( M ' F  A implies M I 1  B), 

M j  F -  G i f f  M f . F  and M j  G. 
The derivability relation of the implication can be expressed as 

(4) V, F / - G  ==> V I F +  G, 
(-+) V /- F and V f y G  ==> V t- l(F -+ G). 

Next, we prove the relationship of EVL and Nelson's constructive 
logic by showing the equivalence between partial Herbrand semantics and 
Kripke semantics. The proof can be developed using a variant of 
strong Kripke structure defined above in such a way that Herbrand 
interpretations are defined as subsets of the Herbrand base. Let a 
Kripk%iA7terpretation M for A be a tuple CW, G ,V+,V-,D>, where 
w c 2  is a partially ordered set of worlds, V, and V- are func- 
tions which map every literal to a subset of W closed under G satisfy- 
ing V,(a) n V-fa) = %, and D is a (constant) domain. We here denote 
the Herbrand base f o r  P by B ( P ) .  Then we can define two forcing rela- 
tions and with respect to a formula A in a world w of M, denoted by 
M, w 1 A (M, w j A )  to state that A is true (false) at a world w in a 
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model Y as follows: 

Y ,  w ) a iff w E V + ( a ) ,  

M ,  w j a iff w E V-(a). 
The forcing relations can thus be extended by induction on A as 

M, w b true, 

M, w j false, 
M ,  w F & G iff M, w k F and M, w k G, 
M ,  w IlF iff M, w I F, 

M, w -F  iff M ,  w X. F, 
M, w 1 F -+ G iff v w ' 2 w  ( M ,  w'1 F ==> M, w'1 G), 

M 1 F(x) iff M 1 F(t) for some t E D, 

M, w j  F & G  iff M, w j  F o r  M, w j  G, 

M, w 21 1F iff M, w 1 F, 
M, w j -F iff M, w 1 F, 
M, w 4 F -+ G iff M, w 1 F and M, w 4, G, 

M 1 F(x) iff M 1 F(t) for all t E D. 
We say that a Kripke interpretation satisfies a formula A iff M, wo 
A, where wo is the least (actual) world. A goal G is a logical conse- 
quence of the knowledge base V, denoted by V FKG iff M, wo 1 V ==> M, 
wo 1 G for all Kripke interpretations M f o r  P. We here write PB(A) for 
a partial Herbrand base for A defined as a pair tB(A), {la:a€B(A)}>. 
Lemma 4.1 
Let Io be a subset of PB(A) for  a formula A nd M the Kripke interpre- 
tation t W , G  ,V+,V-,D>. If W = {I!: I ' E  2PBfAiS and IoC  I!}, where Io is 
a subset of PB(A), then for all IEW, 

Proof: By induction on A. 
Lemma 4.2 
I 1 G <==> M, I 1 G. 
Proof: By induction on G. 
Theorem 4 . 3  
For any vivid knowledge base V and any goal G, 

Proof: For ( = > ) ,  we have M, Io 1 P ==> M, 
pretations by hypothesis. Let I be an interpretation satisfying I 
Then, M, I 1 P by lemma 4.1, where M and I are as described above. 
M, I 1 G by hypothesis. From lemma 4.2, we obtain I 1 G. 

tions. Then, we must prove that M, Io 1 P ==> M, Io t= G for all 
Kripke interpretations. There are two cases €or Io. In other words, 
either Io f P or P then M, Io F P by lemma 4.2. 

1 

I 1 A iff M, I 1 A .  

V lK G iff V 1 G. 
Io 1 G for all Kripke inter- 

1 P. 
So, 

To prove ( < = ) ,  by hypothesis I 1 P ==> I 1 G for all interpreta- 

Similarly, if I y lemma 4.2. As a consequence, we 
have either M, ?, This implies that M, Io 1 P ==> 
MI Io 1 G. 
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Because Pearce and k'agner Is [ 81  logic programming with strong 
negation(LPS) is faithful to Nelson's logic N-, EVL without "not' is 
also faithful to not only N- but also LPS with intuitionistic implica- 
tions. This implies that EVL can be simulated within LPS. In other 
words, LPS can serve as a general constructive framework for implement- 
ing vivid reasoning. 

5. WEAK NEGATION AND INCONSISTENCY 
In this section, we discuss the issue of weak negation in relation 

to reasoning about inconsistency. First, we describe how negation as 
inconsistency can be interpreted in EVL. In fact, EVL has weak nega- 
tion "not" as negation by failure, which is, however, meta-level nega- 
tion. To make EVL more logical, we would like to define weak negation 
as in constructive logic, as intuitionistic negation can be defined in 
N. Thus, we introduce weak negation in EVL identifying with intuition- 
istic negation in the manner of negation as inconsistency. 

Negation as inconszstency(NA1) was proposed by Gabbay and Sergot 
[15] as an alternative to NAF in order to give a logical negation to 
logic programming. NAI can express negation by means of inconsistency 
checking. In fact, Gabbay and Sergot's formulation assumes that a 
database can be identified with a positive program P augmented with a 
set of negative clauses N of the form of integrity constraints. If 
both positive goal G and negative goal -.G are proved from the database, 
then NAI denoted by "not*" can be confirmed in the sense that: 

(P,Nj?not* A = 1 iff (P,A)?B = 1 (5 .11  
where B E N .  Unfortunately, NAI is not local negation since it is 
based on indirect interpretation via inconsistency checking. Thus NAI 
cannot express explicit negative information. This means that NAI is a 
kind of weak negation. 

assuming N as a set of atoms which finitely fail from P, namely 
Gabbay and Sergot showed that NAF is a special case of NAI by 

P(?F)G = 1 iff (P,N)(?I)G = 1 (5.21 
where P(?F]G = 1 ((P,N)(?I)G = 1) denotes success computation of G from 
P ( ( P , N ) )  by NAF (NAI). Gabbay and Sergot also showed the translation 
of NAI into N-Prolog of Gabbay and Reyle[l6]: 

Definition 5.3 
Let (P,N) be a database, and let "false" be a symbol for absurdity: 
(a) Define the following translation * from the language of NAI into 

N-Prolog : 

(all q" = q for atomic, 

(a21 (A c B)* = A* L B*, 

(id) ( A  --+ B)" = A* + B" I 

(a41 (not" A ) *  = A" -+ false. 

( b )  Let D" be the following database of N-frolog: 
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D* = {A*: AEP) u CB* -+ false: BEN). 

D" is called the translation of ( P , N ) .  

Theorem 5 . 4  
(P,N)(?I)G = 1 

This result can be recast in our case by formalizing N-Prolog with 
strong negation extending Gabbay and Reyle's language. As N-Prolog is 
in fact complete for intuitionistic logic, A +false is identified with 
intuitionistic negation -A. This interpretation is in parallel with 
the definition of intuitionistic negation in N, namely 

iff D*?G* = 1 in N-Prolog. 

- A = A +  1A ( 5 . 5 )  

(a4') (not" A)" = A* + (lA)*, 

By ( 5 . 5 ) ,  we modify the translation of "not*' as follows: 

where (1A)" = lA* f o r  atomic A .  We should also rewrite ( b )  as 

(b') D" = {A":  A E P }  {B* -(1B)": B EN} 

It is easy to understand that, NAI (also NAF) can be expressed as 
intuitionistic negation. Therefore, NAI is a lso  complete for Nelson's 
constructive logic M and EVL. Unfortunately, this result cannot be 
applied to the case where underlying logic is replaced by the weaker 
system N-. This is because N- is a paracons i s t en t  logic, which is a 
logical system in which inconsistency does not mean triviality; see 
Priest, Routley and Norman[l7]. 

Second, we discuss the problem of inconsistency resolution. One 
way to overcome difficulties with inconsistency is to employ paracon- 
sistent logic which can view a contradiction true. Namely, when A & 
1 A  is true, we can both assume that both A and -.1A are true. Unfortu- 
nately, the paraconsistent approach cannot extract reasonable informa- 
tion from the inconsistent database. Since EVL can be considered as a 
version of paraconsistent logic, similar difficulty arises. Thus, we 
must work out a method of resolving inconsistency in our system. 

As paraconsistent constructive logic N- (which is also a basis for 
E V L ) ,  can tolerate inconsistency, we can utilize the underlying system 
for conflict resolution. This is because N- can still do constructive 
reasoning under inconsistency. Our architecture thus deduces contra- 
dictions by means of N-, and to resolve it so that we can get a plausi- 
ble conclusion based on some meta-level control strategy. However, it 
is very difficult to carry out the idea in EVL mainly due to the 
presence of weak negation. 

Example 1. 
Let VKB be the following: 

Consider the following example: 

fly(x) - bird(x), -abnormal(x) 
lfly(tweety) 

bird( tweety) 

Existing logic programming semantics cannot capture the intended mean- 
ing of the VKB. In fact, there is no model in well-founded semantics 
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due to inconsistency. We can thus prove both fly(tweety) and 
lfly(tweety). However, the VKB intends to express that 'I'weety does not 
f l y  explicitly. In this sense, we should deduce a plausible conclusion 
-fly(tweety) even if inconsistency arises. 

tions in the sense of Kowalski and Sadri's[3] logic programs with 
exceptions. In their system, the negative conclusion 1 A  is adopted if 
we conclude both A and 'A, simultaneously. It is, however, rather ad 
hoc, since the postulate is definitely false in common-sense reasoning. 
The problem with the example is that the closed world dssumptlon(CWA) 
by way of NAF is unrestrictedly applied. Since CWA is expressed as the 
rule 1A +--A in Gelfond and Lifschitz's[l8][2] answer set semantics, we 
obviously face the defect. The lesson from the fact is that in logic 
programming with two kinds of negation we have to flexibly tell closed 
world reasoning (i-e. weak negation) from open world reasoning (i-e. 
explicit negation). 

complementary conclusions was derived by CWA, then we can resolve 
inconsistency by discarding the conclusions induced by CWA. In other 
words, we need an action to revise VKB so that we can block the appli- 
cation of CWA in relation t o  the inconsistency. Using this strategy, 
we get the revised VKf3 

(5 .6)  fly(x) +- bird(%), -abnormal(x) 

One possible solution is to amalgamate general rules and excep- 

This suggests that if contradiction appears and if one of the 

-fly(tweety) 

bird(tweety) 

abnormal(x) - -abnormal(x) 
We can then prove the plausible conclusion -fly(tweety). The point is 
to add the fourth clause to avoid the application of CWA. We can thus 
see that NAF is not logically sound in vivid reasoning, The above 
strategy can easily be described by means of meta-level: 

find-naf-body(V,A,-B) c- prove (V,A), prove(V,lA) 

prove(V",lA) cwa-prove(V,-B,A), C = (B 6 431,  

prove(V",A) + cwa-prove(V,-B,TA), C = (B +- -B) ,  

add(V,C,V'), delete(V',lA,V") 

add(V,C,V'), delete(V',lA,V") 

where "find-naf-body(V,A,-B)" is to mean that if contradiction A & 
-A is provable, find weak negation in a body, "cwa-prove(V,-B,A)" that 
A is provable from V by CWA to assume -B, "add(V,A,V')" that V' is ob- 
tainable from V by adding A, and "delete(V,A,'J')" that V' is obtainable 
from V by deleting A, respectively. The meta-program is a natural 
specification of our strategy. It is, however, open whether the 
strategy can be established in the object-level computation. 

to the formalization of common-sense reasoning. 

Example 2. 

The next example is called Barber's Paradox, which is of interest 



10 

Let VKJ3 be given as follows: 

shave(fred, x) +- -shave(x,x) 

The problem is: does the barber Fred shave himself? The well-founded 
semantics can conclude that he does not. However, VKB proves that 
shave(fred,fred). The reason is that we have -shave(fred,fred) since 
shave(fred,fred) is not contained in VKB. As a consequence, we can 
deduce that shave(fred,fred). Next, we add "shave(casanova,casanova)" 
to VKB. Then we can prove both shave(fred, bill) and -shave(fred, 
Casanova). Consider the case that we instead add "mayor(casanova)". 
In this case, no semantics including our  method cannot conclude that 
Fred shaves Casanova. But, from the view point of common-sense reason- 
ing, we would like to deduce shave(fred, Casanova). This example 
suggests that we can incorporate some empirical evidence into reasoning 
about incomplete information. In other words, vivid logic also has to 
employ meta-level reasoning in addition to inference engine based on 
constructive logic. 

6 .  CONCLUSIONS 
We have introduced intuitionistic implication into Wagner's vivid 

logic. We have also shown how NAI(NAF) can be interpreted in our 
logic. It has been argued that EVL with its device t o  resolve contra- 
dictions is a promising theory for reasoning about inconsistency. 
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ABSTRACT 

This paper presents a Bayesian Expert System (B.E.St.). 
This system is different from other forms of  supervised 
machine learning in that it induces likelihood ratios from a 
set of  cases. B.E.St. provides unique methods for managing 
conditional dependencies, for selecting questions to use in 
its models, and for predicting events when given responses 
that are not contained in its original set of cases. 

1. TERMINOLOGY 

B.E.St. predicts the probability that one of two mutually exclusive 
and collective exhaustive target events will occur. We identify a target 
event as H, indicate the presence of the event as H,, and indicate the 
absence of the event as Ho, Probability is represented by the small letter 
p. 

B.E.St. assumes that answers to a set of questions developed by 
experts can serve as clues for predicting the target event. In this 
paper, the terms "answers, 'I "prediction clues, " and "data" are used 
interchangeably, and they are identified as D,, D,, . . . , D,. Thus, Di 
represents the answer to the ith question, the ith datum, and the ith clue 
in the prediction task, 

The possibility of the target event can be written as the 
conditional probability of H, given the various clues: 

Thus, the probability of the event H, may be written as p(H,). 

The posterior odds for the occurrence of  the target event is shown as: 

B.E.St. is designed to calculate the posterior odds of a specified target 
event. These odds are calculated as a function of likelihood ratios. The 
likelihood ratio of D, is defined as: 

Likelihood Ratio of D, = p(D,IH,)/p(DiIHo) 
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Where p(DiIH1) is the probability of  observing clue Di in cases where H, 
has occurred and p(DilHo) is the probability of observing the same clue in 
cases where Ho has occurred. For example, if we are examining the 
importance of shock in predicting in-hospital mortality, then the 
likelihood ratio principle suggests that this importance is equal to the 
prevalence of shock among patients who live divided by the prevalence o f  
shock among patients who die: 

Likelihood Ratio of Shock = p(ShocklLive)/p(ShocklDie) 

A likelihood ratio is a non-negative score. Values larger than one 
suggest qualitatively greater support f o r  the occurrence of  the target 
event, while unity suggests that no evidence exists for or against the 
target event. 

2. KNOWLEDGE MANAGEMENT APPROACH 

There are numerous approaches to reasoning. Many expert systems 
incorporate heuristics or rules providedby experts in a particular field. 
Such an approach is advantageous because it is flexible and easily 
understood by experts. However, this approach has two disadvantages: (1) 
it requires a substantial time commitment on the part of the experts and 
(2) it fails to provide a clear mechanism for resolving contradictions in 
experts' opinions. Other supervised learning systems, such as neural 
networks, do not require that experts provide rules as these systems 
assess the relationships between clues and the target event through 
automatic analysis of data and goodness of fit principles. However, these 
systems often require that all contraditions in their data be resolved 
before a solution can be determined. 

2.1 BAYESIAN REASONING 

B.E.St. has many advantages of both heuristic-based expert systems 
and neural networks. B.E.St. is flexible and takes little time to set up, 
and, unlike a neural network, its inference mechanism can be easily 
understood by experts. Furthermore, unlike heuristic-based expert 
systems , B. E. St. is capable of resolving the contradictory opinions of one 
or more experts. 

p(D,, D,, . . . ,D,]H,)/p(D1, D2, . . . , Dn) describes the likelihood ratio 
associated with clues D, through D,, then B.E.St. calculates the odds for 
the target event using a formula first suggested by Bayes:' 

B.E.St. predicts the target event using probability rules. If 

1 T. Bayes , "Essays toward solving a problem in the doctrine of changes , *' 
Philosophical Transaction of Royal Society, 53: 370-418 (1783). 
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The principles underlying Bayes' formula include the use of 
likelihood ratios. Although controversy exists regarding the use of 
Bayes' formula for subjective inferences, the use of likelihood ratios is 
well accepted by statisticians. 

2.2 BAYESIAN LEARNING 

Machine learning occurs in at least two different ways: (1) through 
deduction from a set of rules or (2) through induction from a set of 
cases.3 Researchers who study 
automated learning suggest several methods f o r  inductive learning. In one 
approach to supervised learning, a case example is used to generate an 
' if - then' rule. Subsequent counter-examples are used to refine the rule 
with a series of 'unless' conditions. The process continues until a set 
of 'if-then' and 'unless' rules can explain all cases. Another approach 
to unsupervised learning searches for regularities among cases by 
clustering similar cases together. 

While the above methods of automated learning are reasonable in many 
domains, we found that inducing likelihood ratios from a set of cases is 
another valid method of machine learning. For some time, statisticians 
have argued that the only way to properly measure the impact of a clue in 
an inference task is with the likelihood ratio.6 Figure 1 describes the 
system's knowledge base and the method it uses to calculate the likelihood 
ratio associated with a clue. 

The system's knowledge base contains previous users' answers and 
subsequent observations related to the occurrence of the target event. 
The knowledge base for m previous users who have answered n questions is 
as shown in Figure 1. Entries under the first column are the  number of 
cases in the knowledge base. Entries under the question columns are the 
answers to questions that were provided by previous users. For example, 

Our focus here is on inductive learning. 

2 A. W. F. Edwards, "The History of Likelihood," International 
Statistical Review, 42: 8-15 (1974). 

3 R ,  S. Michalski, J .  G. Carbonell, and T. M. Mitchell, Machine Learning, 
Morgan Kaufmann Publishers, Inc., Los Altos, California (1986). 

4 P. H. Winston, "Learning by Augmenting Rules and Accumulating Censors", 
Machine Learning: An Artificial Intelligence Approach, Vol 11, R. S. 
Michalski, J. G. Carbonell, and T. M. Mitchell (eds.), Morgan Kaufrnann 
Publishers, Inc., Los Altos, California (1986). 

5 R. E. Stepp 111 and R. S .  Michalski, "Conceptual Clustering: Inventing 
Goal-OrientedClassifications of StructuredObjects", MachineLearning: 
An Artificial Intelligence Approach, Vol. 11, R. S. Michalski, J. G. 
Carbonell, and T. M. Mitchell (eds.), MorganKaufmann Publishers, Inc., 
Los Altos, California (1986). 

6 R. A .  Fisher, Statistical Methods and Scientific Inference, (2nd ed 
rev. 1959), Hafner, London, Oliver and Boyd, New York (1956) 
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Case 

1 

2 

3 

. . .  
m 

if the first entry for  question 1 in column 2 is a 2 ,  this means that the 
first user, case number 1, answered option 2 f o r  question 1. An entry o f  
-1 means that an answer is missing from the data set. The entry under the 
hypothesis column indicates whether the target event actually occurred. 
Specifically, a value of 1 means that the target event has occurred, while 
a value of 0 means that the target event has not occurred. No missing 
values are allowed in the hypothesis column. The knowledge base may be 
specified by experts or may be established by collecting data on actual 
events. B.E.St. utilizes the information in its knowledge base to 
calculate the likelihood ratios associated with each clue. 

Question 1 Question 2 . . . . .  Question n Hypothesis 

2 2 . . . . .  -1 1 

9 1 . . . . .  1 0 

2 2 . . . . .  1 1 

... ... . . . . -  ... . . .  
1 1 . . . . .  -1 1 

Figure 1. System knowledge base organization 

3 .  MANAGING CONDITIONAL DEPENDENCE 

3.1 CONDITIONAL LIKELIHOOD RATIOS 

B.E.St. assesses likelihood ratios while accounting for 
interdependencies that may exist among clues. There are a number of 
mathematical methods for accounting for interdependencies. These methods 
include various equivalent probability formulas, the use of dependence 
trees, and the use of correlations among pairs of clues.7i '1 lo* 11* l2 

7 D. J. Croft, Is Computer Diagnosis Possible, Computers and Biomedical 
Research, 5: 351-367 (1972). 

8 M. J .  Norusis and J. A. Jacquez, Diagnosis. I. S4vmptom 
Nonindependence in Mathematical Models for Diagnosis, Computers and 
Biomedical Research, 8: 156-172 (1975). 

9 B. Seroussi, ARC and AURC Cooperative Group, Computer Aided Diagnosis 
of Acute Abdominal Pain When Taking Into Account Interactions, 'I Methods 
of Information in Medicine, 25: 194-198 (1986). 

10 C .  Ohmann, Q. Yang, M. Kunneke, H. Stolzing, K. Thon and W. Lorenz, 
"Bayes Theorem and Conditional Dependence of Symptoms: 
Models Applied to Data of Upper Gastrointestinal Bleeding, 

Different 
Methods of 
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In addition, there are behavioral approaches that may be used to account 
for interdependencies, whereby experts are asked to group clues into 
independent clusters. 13, l 4  We chose a mathematical approach to account 
for the interdependence of  clues, s o  that modifications could be 
calculated automatically by the computer. B.E.St. uses the following 
probability rule to assess the joint likelihood ratio of a set of 
dependent clues: 

Note chat each term in the above formula is conditioned on answer to 
previously asked questions. The first term is conditioned on no answers 
since no questions were previously asked; the second term is conditioned 
on answers to the first question; the third term is conditioned on 
answers to the first two questions; and the last term is conditioned on 
answers to the first n-1 questions. B.E.St. follows the above rule, and 
every time an answer is given, it calculates all subsequent likelihood 
ratios conditioned on the user's previous answers. 

To calculate conditional likelihood ratios, the system automatically 
reduces the data base to cases in which the condition is met. For 
example, if the answer to the first question is that the patient is in 
shock, then all cases of non-shock patients are not incorporated in the 
calculations of likelihood ratios for subsequent answers. Since 
likelihood ratios are recalculated dynamically, this approach all.ows the 
interdependence among the clues to change. Thus, two clues that are 
dependent when the full data set is analyzed may be independent when the 
reduced data set is used and vice versa. This dynamic approach is more 
sensitive than an approach that calculates the interdependence of clues at 
the beginning of the data analysis. 

11 

12 

13 

14 

Information in Medicine, 27: 73-83 (1988). 

S. Lichtenstein, "Conditional Non-Independence of Data in a Practical 
Bayesian Task, '' Organizational Behavior and Human Performance, 8 : 21- 
25 (1972). 

A .  Gammerman and A. R. Thatcher, "Bayesian Diagnostic Probabilities 
Without Assuming Independence of Symptoms," Methods of Information in 
Medicine, 30: 187-193 (1991). 

H. J. B. Moens and J, K. Van Der Korst, "Comparison of  Rheumatological 
Diagnoses by a Program and by a Physician," Methods of Information in 
Medicine, 30: 187-193 (1991). 

D. H. Gustafson, J. J. Kestly, R. L. Ludke, and F. Larson, 
"Probabilistic Information Processing: Implementation and Evaluation 
of a Semi-PIP Diagnostic System,'' Computers and Biomedical Research, 
6: 355-370 (1973). 



17 

The primary disadvantage of  this dynamic approach, and of approaches 
for accounting for interdependencies i n  general, is that large data bases 
are required. As the number of conditions increases, more and more data 
become irrelevant and the size of the knowledge base decreases. For 
example, if a user indicates that the patient is in shock, B.E.St. ignores 
all of the data collected f o r  non-shock patients. I f  shock and non-shock 
patients are equally probable, the data base is reduced by one-half. 
Likewise, each subsequent equally probable question can reduce the data 
base by one-half. Asking 8 equally probable questions will reduce the 
data by 2', or 256 times. Therefore, the application of Formula 2 requires 
large knowledge bases. In order to overcome this difficulty, we allow 
approximation of Formula 2, as discussed in the following section. 

3.2  APPROXIMATING CONDITIONAL DEPENDENCIES 

A number of authors have suggested methods that could account f o r  
some of the dependencies among the clues. A method used in most 
statistical approaches, e.g. discriminant analysis or logistic regression, 
relies upon the correlations among the clues. Another approach, first 
suggested by Lincoln and Parker, allows users to condition each answer on 
the answer to one previous question. B.E.St. expands the latter 
approach to allow users to specify the number of previous answers on which 
the calculation of subsequent likelihood ratios should be conditioned; 
the answers chosen for inclusion in subsequent calculations are those that 
are the most predictive. If this number is zero, then the system assumes 
that all answers are conditionally independent, i.e.: 

If the number is n-1, then all answers are assumed to be dependent and 
equation 2 is used. If the number is between zero and n-1, some 
dependencies are accounted for while other are ignored. For example, if 
the user specifies the number 2, the llkelihood ratios should be 
conditioned on no more than two previous answers. B.E.St. will 
automatically choose the two most predictive answers as defined below: 

P(D1, D,, - - 9 DnIHi) - p(D1lH1)*P(D,IH,, D1)* 
P(D,IH1i D1s D~)*P(D~IH~, D,, Dj)** * .*P(DnIHl, & r  D1) (4) 

Where i and j are chosen so that the difference between p(D41H1, D,, Dj) 
and p(D,(H1, D1, D2, D3) is minimized and k and 1 are chosen so that the 
difference between p(DnIH1, 4, D1) and p(DnIHl, D,, D,, D,, . . , ,Dn-l) are 
minimized. In this manner, most of the dependencies are accounted for and 
more effective usage is made of a limited amount of learning data. 

15 T, L. Lincoln and R. D. Parker, "Medical Diagnosis Using Bayes 
Theorem", Health Services Research, 2 : 3 4  (1967). 
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4 .  QUESTION SELECTION 

4 . 1  TEST FOR STATISTICAL SIGNIFICANCE 

Researchers have for some time known that the performance of a self- 
learning expert system depends upon the number of cases in its knowledge 
base. Through simulations, some researchers have found that the number of 
cases should be greater than 200 and less than 500, provided that the 
questions are conditionally independent. l6 An alternative approach for 
determining the appropriate size for a knowledge base is to rely on 
statistical sample theory. 

In B.E,St. every time a question is answered, the knowledge base is 
reduced, which in turn changes the likelihood ratios associated with 
subsequent answers. If there are too few cases in the reduced knowledge 
base, then the calculated likelihood ratios may reflect random error and 
thus, may be misleading. Random variations suggest that a likelihood 
ratio is close to one and that the answer associated with the ratio has 
little or no statistical significance, B.E.St. was designed to examine 
whether changes in the knowledge base have led to likelihood ratios that 
are close to one. 

To test the statistical significance of the likelihood ratio, one 
specifies a power and then B.E.St. uses binomial distributions to test 
whether the p(D,)H,) is statistically different from p(D,IH,). The 
following gives a brief overview. Let: 

d - 2 [ p (Hl)p (H,) 'I2{ arcsin[p(D, (HI) ' I 2 ]  -arcsin[ p(Di I H,) '''1 ) 

Then the effect size, D, can be calculated as: 

Kramer and Thieman provide tables for the number of cases needed to 
detect the effect size D in a binomial distribution at different levels of 
power." B.E.St. compares this required number of cases to the observed 
number of cases in the knowledge base. If the observed number is lower 
than the required number of cases, then there is insufficient data to 
detect the difference between p(D, IH,) and p(D, JH,) ; therefore, the 
likelihood ratio is not used in predicting the target event. In these 
cases, B.E.St. will attempt to create likelihood ratios by combining 
neighboring responses to the same question in order to create a large 
enough sample to justify including the question. 

16. T. Chard, "Self Learning For A Bayesian Knowledge Base. How Long 
Does It Take For The Machine To Educate Itself," Methods of 
Information in Medicine, 26: 185-188 (1987). 

17 H. C .  Kramer and S. Thieman, How Many Subjects: Statistical Power 
Analysis and Research, Sage Publications, Inc., Newbury Park, 
California (1987). 
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4.2 DYNAMIC SEQUENCING OF QUESTIONS 

B.E.St. changes the sequence o f  its questions based upon the answers 
it has previously received; this process is typical of many clinical 
interviews. Each time a question is asked, B.E.St. recalculates the 
likelihood ratios associated with the answers to the remaining questions. 
For the next inquiry, it chooses the question with a response having the 
likelihood ratio with the most extreme value. In essence, B.E.St. asks 
the questions with rare but very informative answers first. 

Researchers have suggested alternative methods for sequencing 
questions. One group of researchers re ly  on the expected impact of the 
questions (the criterion is defined as a function of  both the probability 
and the likelihood ratios associated with the answers to a question) . la 

The second group of researchers sequence questions by asking questions 
with maximum conditional correlation first) .I9 

The approaches described above are unlike the approach used by 
B.E.St.; both the computational requirements and the sequencing of 
questions differ. We prefer the B.E.St. approach because questions with 
rare but informative answers area asked at the beginning of the interview, 
when there is less chance that the knowledge base has been reduced (due to 
dependencies), and when it is more likely that sufficient data exist to 
use the answers to the informative questions. 

Another advantage of the B.E.St. approach to sequencing is that it 
is computationally simple. Because the likelihood ratios are already 
calculated for the inferential task, no new computations, e.g. calculation 
of correlations among questions, are needed. 

5. CONFIDENCE BUILDING 

B.E.St. attempts to increase the user's confidence in the system's 
advice by explaining the reasons for its predictions. It lists clues with 
likelihood ratios larger than one as being for the prediction, and clues 
with likelihood ratios less than one as being against the prediction. A 
number of studies have shown that explaining one's reasoning increases the 
acceptance of one's conclusions by others. In one study, subjects listed 

18 L. R. Bigongiari, D. F .  Preston, L. Cook, S. J. Dwyer, S. Fritz, 
D. G. Fryback, J. R. Thornbury, 'lUncercainty/Information As Measures 
of Various Urographic Parameters: 
Diagnosis of Renal Masses," Investigative Radiology, 16: 77-81 

An Information Theory Model Of 

(1981). 

19 D. G .  Fryback, "Bayes Theorem And Conditional Nonindependence Of Data 
423-434  In Medical Diagnosis," Computers and Biomedical Research, 11: 

(1978). 
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persuasive pro an con arguments for their judgments ." Other 
individuals, after being exposed to the same arguments, changed their 
attitudes to conform with the judgments of the original subjects. This 
study revealed that explaining a judgment, in terms of arguments for and 
against it, induces others to accept the judgment. More direct evidence 
comes from the work of Erdman.21 He developed a computer consultation 
program for advising physicians about depression. Half of the physicians 
received only computer advice, while the other half received both the 
advice and explanations from a computer. Erdman found that the 
explanations helped some groups of users decide whether the computer's 
advice was reasonable. 

B.E.St. also attempts to increase the user's confidence by providing 
anecdotal evidence in support of  its predictions. The system searches its 
knowledge base for cases similar to the current case and prints the five 
most similar cases. Similarity is defined by the following formula:22 

Where DA,B is the number of clues in both case A and case B, DA,Not is the 
number of clues not in case A but in case B, and D N o t A , B  is the number of 
clues in case A but not in case B .  This allows the user to use the 
printed cases as anecdotal evidence in support of the system's 
predictions. 

6 .  MYOCARDIAL INFARCTION APPLICATION 

6.1 DESCRIPTION OF TEST DATA 

To evaluate the effectiveness of B.E.St., we used it to predict 
mortality from myocardial infarction. Under a separate grant from the 
Health Care Financing Administration, we collected data on approximately 
1100 patients with myocardial infar~tion.~~ For each patient, this data 
base contained clues describing the patients' condition on admission as 
well as one variable describing the patients' condition upon discharge 
from the hospital (coded as alive or dead). 

20 E. Burnstein, A. Vinokur, and Y. Trope, "Interpersonal Comparison 
Versus Persuasive Argumentation," Journal of Experimental Social 
Psychology, 9: 236-245 (1973). 

21 H. P. Erdman, "The Impact Of Explanation Capability For A Computer 
Consultation System," Methods of Information in Medicine, 24: 181-191 
(1985). 

22 A .  Tversky, "Features Of Similarity," Psychology Review, 84: 327-352 
( 1 9 7 7 ) .  

23 F. Alemi, J. Rice, and R. Hankins, "Predicting In-Hospital Survival Of 
Myocardial Infarction," Medical Care, 28(9): 7 6 2 - 7 7 5  (1990). 
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The questions/variables used to predict in-hospital mortality are 
given in Table 1. Other authors have classified these factors into 
groups, based on their relative deviation from normal values. 2 4 ,  25  

Because B.E.St. currently works only with discrete variables, we used the 
groupings suggested by these authors. 

A recent study found that the above set of  questions/variables are 
as predictive of in-hospital mortality in patients with myocardial 

I Table 1: Questions Used to Predict In-Hospital Mortality 

1. Temperature 

2 .  Mean Arterial 
Pres sure 

3 .  Heart Rate 

4 .  Respiratory Rate 

5 .  Oxygenation 

6 .  Arterial pH 

7 .  Sodium 

8 .  Potassium 

9. Creatinine 

10. Hematocrit 

11. White Blood 
Count 

12. Coma Score 

13. Age 

14. Chronic 
Health 

15. Surgical 
Treat men t 

16. Emergency 
Admission 

infarction, as are five other sets of questions/variables .26 Therefore, 
our choice to focus on the above clues is a s  reasonable as if we were to 
focus upon any other set of clues. 

The performance of B.E.St. can be compared to that of optimal 
statistical procedures such as logistic regression. In logistic 
regression, a dichotomous variable like mortality is regressed on other 
variables. Since both logistic regression and 3.E.St. use the same set of 
questions/variables and the same data, the performance differences are 
only due to the method that is chosen €or making inferences. 

24 W. A. Knaus, E. A. Draper, D. P. Wagner, J. E. Zimmerman, "APACHE 11: 
A Severity Of Disease Classification System," Critical Care Medicine, 
13(10): 818 (1985). 

25 W, A. Knaus, J. E. Zimmerman, D. P. Wagner, E. A .  Draper, D. E. 
Lawrence, "APACHE - -  Acute Physiology And Chronic Health Evaluation: 
A Physiological Based Classification System," Critical Care Medicine, 
9: 591-597 (1981). 

26 F. Aleml, J. Rice, and R. Hankins, "Predicting In-Hospital Survival Of 
Myocardial Infarction," Medical Care, 28(9): 762-775 (1990). 
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6.2 METHOD OF COMPARISON 

B.E.St. uses two thirds of the data for its knowledge base, and the 
remaining data, referred to as the "hold out" sample, were used in the 
cross-validated evaluation of the system. Similarly, a logistic 
regression would require the same two thirds of the data for parameter 
estimation and the same hold out sample for evaluation. Two different 
logistic regressions were run. In one regression, all 16 variables were 
forced into the model. In the other regression, stepwise selection was 
used, and only variables that were found to be significantly related to 
mortality were included. 

We compared the performance o f  B.E.St. and the logistic regression 
using Receiver Operating Curves (ROCs). An ROC is constructed by assuming 
several cutoff points or scores for predicting whether one will live or 
die. Patients with a score exceeding a cutoff point are predicted to die, 
while those with a score below the cutoff point are predicted to live. By 
experimenting and changing the cutoff point, a curve may be constructed 
and an optimal point may be found where differences between observed and 
predicted survival are minimized. The two ends of the curve show two 
extreme strategies for choosing a cutoff point. If one assumes all 
patients will live, in effect he/she will accurately predict all cases 
discharged alive, but will not predict all of the deaths; such an 
assumption would result in perfect sensitivity but no specificity. On the 
other hand, if one assumes all patients will die, he/she will accurately 
predict all cases who die, thus achieving perfect specificity but not 
sensitivity. A straight line between these two extreme points shows the 
sensitivity and specificity of a random prediction of those cases who will 
live. The areas between ROCs and this line show the predictive ability of 
each approach. The larger the area under the curve, the more accurate the 
index. 

We estimated the area under the ROCs using procedures recommended by 
Hanley and M ~ N e i l . ~ ~  Because the approaches are compared using the same 
hold out sample, and are related to the same outcome, the areas calculated 
for each approach were interdependent. To correct for these 
interdependencies, we used a method also suggested by Hanley and 
McNeil. 2 8 #  29 

27 J. Hanley and B. McNeil, "The Meaning And Use OF The Area Under A 
Receiver Operating Curve," Diagnostic Radiology, 143(1): 29-36  
(1982) . 

28 B. J. McNeil and J. Hanley, "Statistical Approaches To The Analysis Of 
Receiver Operating Characteristic Curves," Journal o fMedica1  Decision 
Making 4(2): 137-150 (1984). 

29 J. A. Hanley and B. J. McNeil, "A Method of Comparing The Areas Under 
Receiver Operating Characteristic Curves Derived From The Same Data," 
Radiology, 148: 839-843 (1983). 
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6.3 RESULTS OF COMPARISON 

Table 2 shows the results of the logistic regression on the learning 
data base. Note that only 7 out of the 16 variables had a statistically 
significant relation to mortality. Thus, according to the logistic 
regression, a model including only the 7 significant variables would be as 
predictive as a model with all 16 variables. 

Table 2: Variables Predictive of Mortality in Logistic Regression 

Variables 

Intercept 

Temperature 

Arterial Pressure 

Heart Rate 

Respiratory Rate 

Oxygenation 

Arterial pH 

Sodium 

Potassium 

Creatinine 

Hematocrit 

White Blood Count 

Coma Score 

Age 

Chronic Health 

Surgical T x  

Eme r gency Admi s s ion 

All Questions / 
Variables Model 

+4.9186* 

+O. 1504 

+O. 3477* 

-0.0054 

-0.2094 

-0.2270* 

-0.0381 

-0.0170 

-0.1096 

-0.3759* 

-0.4614* 

-0.7648* 

-0.1330 

-0,4772.k 

-0.1446 

- 0.8450.k 
-0.7403 

S tepwise 
Model 

+4.9987* 

+O.  3301* 

-0.2603* 

-0 .3871* 

-0.4343* 

-0.8801* 

-0.4892* 

-0.9351* 

Logistic regression finds the single optimal combination of 
variables that explain the data. Similarly, B.E.St. also uses all of the 
variables and finds subsets of questions/variables that are most 
predictive. However, the subsets of questions/variables used in the 
B.E.St. model vary from case to case. In some cases, questions/variables 
are ignored because they are left unanswered or because they fail the 
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sample test requirements that were previously explained. However, 
variables ignored in one case may be used in another. 

Table 3 shows the use of the 16 questions/variables by B.E.St. in 
predicting mortality using the learning data set. The right hand columns 
report the impact of each question in cases where these questions were 

Table 3: Use of Questions/Answers by B.E.St. in Predicting Mortality 

Variables 

Temperature 

Arterial Pressure* 

Heart Rate 

Respiratory Rate 

Oxygenation* 

Arterial pH 

Sodium 

Potassium 

Creatinine* 

Hematocrit* 

White Blood Count* 

Coma Score 

Age* 

Chronic Health 

Surgical Tx* 

Emergency Admission 

Percent 
Used 

1 8 . 7 5  

44.13 

5 . 7 5  

96 .25  

7 . 1 3  

2 0 . 0 0  

57 .50  

2 . 2 5  

4 7 . 5 0  

94 .38  

93 * 75 

95 .00  

95 .25  

0.00 

9 7 . 8 8  

0.00 

Mean Impact 
When Used 

2 . 0 4  

1 . 3 6  

1 . 4 0  

1 . 5 4  

2 . 6 1  

2 . 0 7  

1 . 0 6  

3 . 3 3  

2 . 0 3  

1 . 2 0  

1 . 4 9  

1 . 4 2  

1 . 5 9  

- 

1 . 9 8  

Standard 
Deviation 

0.93 

0.08 

0.39 

1.19 

2 . 0 5  

1 . 6 9  

0 . 0 8  

2 . 5 5  

1 . 6 2  

0 . 3 2  

0 . 8 2  

1 . 5 7  

0 . 4 7  

0 . 3 5  

* - Variables which were statistically significant in logistic 
regression reported in Table 2 .  

used (for a definition of how impact was calculated see the Terminology 
section). Also note that the average impact of each question changes from 
case to case. This is due to the fact that different answers to the 
questions have different likelihood ratios, and that the likelihood ratio 
associated with an answer changes as the knowledge base is reduced. 
Because of the variation in the impact of each question, the standard 
deviations for the impact of each question are also reported. The 
questions/variables with the largest average impacts are the most 



25 

informative when they are used. A comparison of  Tables 2 and 3 highlights 
the differences in how the questions/variables are used in the two 
different approaches. 

For example, note that Potassium is almost never used (2 .25%) ,  but 
when it is used, it has a large impact on the prediction of mortality 
(Mortality odds are changed by a ratio of 3 . 3 3 ) .  In contrast, Potassium 
does not appear to be significantly related to mortality in the logistic 
regression model. 

The ROC curves associated with B.E.St. and with the stepwise 
logistic regression using the hold-out sample are shown in Figures 2 and 
3 .  The area under the B.E.St. ROC curve was 81.19% and the area under the 
Stepwise Logistic Regression ROC curve was 7 6 . 5 4 % .  The difference between 
these two  areas is statistically significant at an alpha level of  0.07 
( z  - 1.80), suggesting that B. E .  St. constructed a more accurate model than 
the Stepwise Logistic Regression. 

7. DISCUSSION 

One of the major strengths of B.E.St. is the manner by which it 
accounts for dependencies. Most statistical approaches attempt to reduce 
the number of variables in a model until an optimum number remains; 
variables that are interdependent are dropped out of the model. B.E.St. 
takes an opposite approach. All variables are used by the system, 
including dependent variables. Therefore, B.E.St. is more robust to 
missing information, a problem for the optimal statistical approaches. 
3.E.St. will only ask one of two redundant questions, since asking the 
other question would not be informative. This procedure has no effect on 
the data collection time. Thus, compared to the optimal statistical 
approaches, B.E.St. is more robust and does not have any additional data 
collection requirements. 

Redundant systems are designed to function very much like human 
beings and experts. For example, words in a singe sentence are often 
redundant. Such redundancy in language ensures that a sentence can still 
communicate the intended meaning even if some words are omitted. By 
allowing for redundancy, B.E.St., in effect, simulates the robustness of 
an actual expert. 

In this study, one of the surprising findings was the relative 
performance of B.E.St. and the logistic regression. Both approaches 
derive their parameters from the data, but B.E.St. was more accurate than 
the logistic regression. Unlike B.E.St., logistic regression ignores 
variables that are very informative but rare. For example, the presence 
of coma is very informative in predicting mortality, but the overwhelming 
majority of patients are not in a coma. Therefore, the coefficient for 
this variable is not statistically significant in the logistic regression. 
In contrast, B.E.St. uses this variable considerably. 

We have not compared B.E.St. to other statistical approaches like 
Automatic Interaction Detection. In addition, our findings are based on 
one data base and may not be generalizable. 
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ABSTRACT 
In this paper we describe the design issues of a database independent 

natural language generation system (NLG system) targeted for non-technical 
users. The NLG system generates output in  the form of a coherent, consistent 
and stylish text. A prototype NLG system which addresses these issues has been 
built for integration into a multilevel interface for a Heterogeneous Distributed 
Database Management System. 

INTRODUCTION 

Database systems are used by different kinds of users for various purposes. 
The users can generally be classified into two different types: technical and non- 
technical users. The latter pose simple requests and have very little knowledge of 
the database system, other than the conceptual organization of the objects they 
want to query, 

To bridge the gap between the casual users and a complex database system, 
a natural language interface (NLI) is required. The principal role of a NLI is that 
of  an intermediary which encodes and translates information in  natural 
language (NL). This provides a means of communication between the machine 
and the casual user. 

The use of NL, as the vehicle for communication, is very important for the 
following reasons[20]. NL is the common mode of communication in everyday 
life; using i t  requires no special training. NL frees the user from knowing how a 
formal language is  used and how information is stored and processed. Natural 
language is however, syntactically and semantically ambiguous. These ambigui- 
ties cannot be resolved completely by a NLI system[7]. 

Many natural language processing(NLP) systems have been developed in 
recent years. Some examples of these are ASK1281, Data Talker[20], Eufid[27], 
TQA[6], KID[16], Datalog[l4], TEAM[13], KAMPf21, [33, MUMBLE[24], PJJRED[17], 
PAULINE[lS], TEXT[22], Aua[18], Yh[12] and Adornill]. These sytems are used for a 
wide range of applications, such as, machine translation, story comprehension, 
language learning assistance, database front-ends, and tutoring systems. 

This work will focus on the design and implementation of a NLG system. A 
model for the system is proposed in this work. The production of text generation 
is viewed as a mapping from meaning to text, through a series of transforma- 
tions. A prototype system has been developed using this approach for integration 
with a Mu1 tilevel Interface to an Heterogeneous Distributed Database 
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Management System (MIDBMS) environment[ IO].  The MIDBMS environment pro- 
vides its users with a multilevel interface using different languages such as nat- 
ural or formal query languages. The interface consists of four levels, based on 
the users knowledge of the system: the NLI, SQL, General Mapping and Query 
Language(GQML)[25], and local database query language interfaces levels. 

The conceptual architecture of the system is shown in Figure 1. At the NLI 
level, the users pose their queries using natural language. This level is targeted 
to the users of the system who merely want to make some casual queries. 
However, the users are assumed to have a knowledge of the underlying database 
schema, since the system does not support a dialogue with the user to clarify 
hisher  questions regarding the database structure or the way to form queries. 

At the second level, SQL is provided as the language to access the database. 
The database users who are experienced with the syntax of the language and the 
structure of the database can form their requests directly in SQL, skipping the 
NLI level. This saves computational time and results in a more efficient process- 
ing. The request in SQL can be stated in  a clear and unambiguous way, compared 
to a natural-language request which may result in a misunderstanding due to the 
vagueness of the natural language. This level can be considered as the bridge 
linking the natural language and GQML. The GQML operates on a Heterogeneous 
Distributed Database Management System(HDDBMS). In this way, a higher level 
interface is provided over several different types of databases, each of which has 
its own native query language. 

Since GQML is operating on a HDDBMS environment, it has special opera- 
tions related to the mapping among the heterogeneous database schema which 
are not provided in the SQL. The processing of the GQML includes interpreting 
the global query into a set of local queries. These are sent to the corresponding 
local DBMS, collecting the database results from each of the local database systems 
which are involved in the global query processing, translating and combining 
all the collected database results and relaying to the previous level. Consequently, 
i t  appears to the database users that they are interfacing with a single conven- 
tional database system rather than a set of different DBMS products. Each compo- 
nent DBMS of the HDDBMS provides a local query language and a local user could 
use i t  to query the individual database system. 

A& &he highest level of the interface, there is the lack of a natural lan- 
guage response from the system. The motivation for the proposed NLG system is 
the realization that a NLI should produce a response which must consist of natu- 
ral language sentences, rather than a formal output. For non-technical users, 
interpreting a complete text is much easier and more natural than understanding 
a structured answer from the computer. Thus, the requirement of the NLG system 
is to produce stylish text, which is coherent, consistent and easily comprehensi- 
ble. The NLG system can also be used to provide feedback to the user. This can be 
done by paraphrasing the user's request and sending i t  back to the user. The 
paraphrase can be generated from the SQL query by applying the transforma- 
tional steps described in the Section 3 and turning a declarative sentence into an 
impera t ive .  

This paper is organized as follows. In section 2, a brief discussion of the 
components of the NLI systems is presented. Different approaches for syntactic 
and semantic processing, and query interpretation, are addressed. In section 3, 
the model of the proposed NLG system is described. Section 4 we give a detailed 
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example. Finally, section 45 gives the conclusion and further development guide- 
l i nes .  

2 .  Components of a NLI 

The integration of NLG into the MIDBMS is shown in Figure 1 The NLI con- 
sists of ten processing phases, of which five are "down" phases and five are "up" 
phases (Figure 2). In the following discussion, we elaborate on the functions of 
the NLI modules. 

NLP systems use language information i n  many different forms to com- 
municate effectively with the end-user. In  the context of computational linguis- 
tics, natural language is described in terms of its morphology, syntax, semantics 
and pragmaticsE191. In order to process a user's request and respond appropri- 
ately to it, the NLJ to a DBMS assigns an internal interpretation to the natural 
language input and generates from this representation a response that is natural 
as well. To do so, it integrates information from a number of sources of knowl- 
edge. A NLI system must embody not only a grammar, a lexicon, and morphologi- 
cal rules, but also a parser and translator, to effectively analyze input sentences 
and generate responses i n  accordance with grammatical and morphological 
ru les .  

The proposed system is designed to operate under the MIDBMS environ- 
ment, and the lexicon and extended Entity/Relationship Model proposed in [ 101 
are used. An entry in the lexicon, called lexeme, is defined with its syntactic and 
semantic properties. The syntactic part of the definition contains all the neces- 
sary syntactic categories of the lexeme, such as noun, verb, preposition etc. The 
semantic part contains the semantic category of each lexeme, for example, ani- 
mate, abstract object, and so on. 

The parser verifies that the sentence is syntactically well-formed and de- 
termines its linguistic structure. During the parsing process, the linguistic rela- 
tions such as subject-verb, verb-object, and noun-modifier are determined. These 
relations provide the framework for semantic interpretation during the natural 
language understanding(NLU) phase and response generation in the NLG phase. 

In the NLU phase, two basic strategies for parsing exist; top-down and bot- 
tom-up[26]. Top-down parsers construct the parse-tree by starting at the top and 
working downward. They start with the symbol for "sentence" and recursively 
expand it, until the parse-tree contains pre-terminal symbols which can be 
checked against the lexicon. 

Top-down parsers often impose constraints on the allowable grammar 
rules. For instance, a left-to-right top-down parser requires that the grammar be 
put i n  a form which avoids the use of recursive left-branching rules, which 
could result i n  infinite processes during parsing. 

Bottom-up parsers start with the input words and develop the parse-tree 
from the bottom-up, by replacing right-hand-side patterns with those from the 
left-hand-side. They end when all that remains is the "sentence" symbol. 
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As opposed to top-down parsers, bottom-up parsers avoid the backtracking 
problem, and the generation of infinite parse-trees. However, they still produce 
undesirable results such as the generation of all possible sentences. 

The input of the Lexical Analysis module is a natural language sentence. 
The lexical analyzer searches the lexicon to find the lexical entries for the words 
appearing in the sentence. In  natural language, a word may have several syn- 
tactic or semantic definitions. As a result, a sentence could have several lexical 
interpretations. The task of the Lexical Analyzer is to provide associativity be- 
tween each word and its syntactic and semantic definitions. 

For each word, all its possible lexical interpretations are constructed in the 
form of syntactic markers. Each lexical representation(LR) is submitted to the 
Syntactic Analysis module for further processing. The syntactic analyzer applies 
grammar rules to the LR to verify that the sentence is grammatically legal. If the 
sentence fails to be parsed, the next lexical interpretation is processed, and so on, 
until a suitable interpretation is  successfully parsed into a Syntactic 
Representation(SyR), or there are no more lexical interpretations. 

If the sentence is parsed, a parse-tree is produced. The parse-tree contains 
lexical markers, such as noun and verb and phrase markers, such as, noun 
phrase and verb phrase. 

Since i t  is possible for a syntactically legal sentence to make no sense be- 
cause of its semantic disagreement, Semantic Analysis is  performed. Semantic 
processing is needed to translate the parse-tree into a semantically-legal inter- 
pretation in the NLU phase and assign semantic roles to formal (database) objects 
in the NLG phase. The output of the Syntactic Analysis module is accepted by the 
Semantic Analyzer module and semantic restriction rules are applied. 

If the semantic analysis fails, the next SyR is processed until a semanti- 
cally legal interpretation is encountered or the SyR's are exhausted. A semanti- 
cally legal interpretation is recorded as a Semantic Representation(SR) and it 
represents the deep structure of the sentence. 

The Query Interpretation module accepts the SR's and performs the inter- 
pretation of the query. If the query interpretation fails, the next SR is examined 
until one is interpreted correctly or the SR's are exhausted. If the query inter- 
pretation phase succeeds, the SR which is linguistic-oriented, is transformed into 
a query meaning representation(QMR) which is query specification oriented. 
QMR fills the gap between the general meaning representation and the formal 
query language. 

The task of the Formal Query Generator is to map the QMR into an SQL 
query. The SQL query is translated into a GQML query which is then handled by 
the HDDBMS system. 

For a generally applicable natural language interface the main concern is 
that of embodying the knowledge in order to establish the associations between 
the semantic notions and the database notions. For the purpose of portability it is 
reasonable to separate knowledge about English words from database attributes. 
For this reason the knowledge can be separated into two parts: one which is do- 
main-independent and another which is domain-dependent. 
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To model the database, the Entity-Relationship(E-R) Model is  used. 
According to this model, the entities represent distinguishable objects, and 
the relationships represent the associations between these entities. The enti- 
ties and relationships have a number of attributes, and each attribute has an 
associated domain. For example, a <University> database which consists of 
three entities, namely <Student>, <Course> and <Teacher>, and two relation- 
ships <Stu-Cour> and <Cow-Teach> is represented using the E-R model shown 
in Figure 3. In the E-R model, the arcs between an entity or a relationship 
and their attributes, and between an entity and a relationship represent the 
existence of various associations. They do not, however, indicate what kind of 
association it is, because they lack the semantic content. To overcome this 
drawback and enhance the model, an explicit semantic meaning is assigned 
to each arc in the form of a transitive verb. Figure 3 shows the extended E-R 
model for an University database. 

Figure 3 Extended E-R Model for an University Database 

Finally, a preposition is assigned to each arc, which is illustrated by an 
arc from attribute to an entity or a relationship. For example, the <Teacher> 
entity may be modifiedas shown in Figure 4. 
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Figure 4 Teacher Entity 

Many researchers have attempted different approaches to represent the 
deep meaning of a sentence. Commonly used representations include conceptual 
graphs, conceptual dependencies, case-frames and logic-representations. The 
most influencial work among these is the Case Grammar developed by 
Fillmore[ 113. Case Grammar is semantically-oriented and establishes a represen- 
tation for expressing the deep meaning of the sentence to be generated or ana- 
lyzed. The verb plays an important part in building the semantic representation, 
since i t  defines relationships between the subject, object and other syntactic 
components of the sentence. For each verb, a case frame specification is set up to 
indicate which case is required, optional or not allowed. 

The case frame representation is used for the description of the tran- 
sitive verbs. Figure 5(a) shows the domain-independent definition of the 
verb teach, and Figure 5(b) shows the domain-dependent definition of teach 
within the context of the university database. This separation of knowledge 
into domain-dependent and domain-independent parts is very important for 
making the system transportable and easily expandable. 

teach(agent: optional 
action: teach 
instrumental: not-required 
dative: optional 
neutral: required 
locative: optional) 

teach(agent: teacher 
action: teach 
instrumental: null 
dative: null 

neutral: course 
locative: campus) 

Figure 5(a) Domain-Independent Figure 5(b) Domain-Dependent 
Definition of teach Definition of teach 

At the query interpretation stage of processing, a mapping between the 
semantic primitives and the database attributes is established. In the NLU phase 
'the task of the query interpreter is  to map the meaning representation structure 
obtained from the semantic analysis onto a query meaning representation 
scheme. This creates a query-oriented representation which can be processed by 
the query language translator. During the NLG phase, the query along with the 
answer obtained from the database, is mapped to the semantic structure. With this 
mapping, semantic markers are assigned to the database attributes. 
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3. NLG of Database Response 

The requirement of the NLG system proposed i n  this work, is to generate a 
natural, coherent and stylistically satisfying English text, in the form of one or 
more sentences. The generated text is a response to a user's query, formed using 
natural language. The NLG system is database-independent, i.e., the generation 
process is not affected by the change of the domain of the database. To model such 
a system, the Meaning Text Model formalisrn[23] is adapted in combination with 
Chomsky's phrase-structure approach[4]. The knowledge sources needed for the 
generation process, are the lexicon and the semantics expressed in the extended 
E-R model of the database. 

The first phase of the NLG process is the Conceptual Synthesis module. It 
generates CR: the conceptual representation, of the response to be generated by 
the NLG system, This module is the interface between the NLG system and the 
GMQL. 

The input to the conceptual synthesis process is a SQL query Q (SC, FC, WC) 
and a database response 33. Here SC is the select clause, FC is the from clause and 
WC, the where clause of the query. The response '3 is in the form of a table with a 
column for each attribute in the select clause. The SQL query is taken from the 
formal query generation module and the the corresponding database response, in 
table form, from the GQML translator. 

CR is a compact form of the query and the response, which preserves the 
association between an entity or a relationship and its attributes and between an 
attribute and its values. The CR is the input for the semantic synthesizer module. 
It is a list created from four sets: S ,  F, W, and 3 ,  where: 

S = {aijl aij E SC) Le., the set of attributes in the select clause of the 
SQL query, 
F = {fil fj E FC) i.e., the set of entities and relationships in the 
from clause, 
W = {Caij, Vij> I aij 0 Vij E WC) i.e., the set of attribute-value 

93 is the database response. 

pairs  i n  
the where clause (note that the join conditions are not needed and 
thus they are suppressed), 

The elements of the CR list are triples of the form ( f i ,  Subl i s t l i ,  Subl is t2i) ,  
w h e r e :  

fi E E 
Subl i s t l i  = {Caij, vij> I aij E fi & aij e vij E WC) 
SublistZi = (<aij, %[aij]> I aij E fi f 

The first sublist, Sublistl, consists of the elements from W such that: a 
member <aij, Vi j> ,  of the set W, becomes an element in the sublist. if the attribute 
a i j  is an attribute of the fi relation in the extended E-R model. The second sublist, 
Sublist2, consists of the elements from the set S and the elements from 93, such 
that each attribute aij,  of the set S which is an attribute of the fi relation in the 
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extended E-R model, becomes a candidate for the sublist. For each such attribute, a 
sublist is created with 31 [aijl. 

SR 

Figure 6 Semantic Synthesis 
The input of the second phase, the Semantic Synthesis module(Figure 6) .  is 

CR's and its output is a number of semantic representations(SR's), which repre- 
sent the deep meaning of the sentences to be generated. The process of the SR 
generation is divided into two subphases: Semanteme Representat ion and 
Semantizat ion.  Semanteme representation breaks the CR into smaller units, SRi, 
which are called semanternes. Semantization maps each SRi against the semantic 
model, in order to assign semantic meaning to the SRi objects. 

In the semantization subphase, the principle of decomposability is applied, 
wherein, the meaning of the whole is constructed out of the meanings of its 
parts. The meaning of the whole is represented by the CR's and the meaning of 
the parts by the semantemes. For each SR, the mapping is as follows: (i) Every 
element of the Sublistl is mapped onto the corresponding database attribute in 
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the E-R model. Since each element of the Sublistl will form a prepositional 
phrase i n  the final text, only the 'preposition' arrows are retained. Thus, the 
mapping of the elements of the Sublistl to the database attributes retains the 
'preposition' arrows and discards the 'verb' arrows, (ii) Each element of the 
Sublist2 will form the object part of the sentences to be generated. Thus, by 
mapping each element onto the Extended E-R model, only the 'verb' arrows of the 
corresponding database attributes are retained and the 'preposition' arrows are 
discarded. (iii) The attributes of the Extended E-R model which do not occur in 
either sublist are discarded. 

SR 

Figure 7 Syntactic Synthesis 

In the next phase of the NLG process the intent is to produce the syntactic 
representation (SyR). It specifies the organization of the sentences based on 
their meaning. The meaning is represented by the SR's which are created in the 
previous phase and passed on as the input to this phase. The generation of the 
syntactic representations is divided into three subphases: S y n  t a c t i z a t i o n ,  
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SynrMerging and Lexicalizalion (Figure 7). Syntactization creates a SyRi for each 
SRi. SyntMerging merges the SyR's that have common properties. Finally, 
Lexicalization maps each attribute from the SyR onto a lexicon entry. 

The syntactization phase creates three-part structures of the form: 
<Subject - Prepositional Phrase set (PPset) - Object set>. The PPset is a set of 
prepositional phrases which we call global prepositional phrases (globalPPs), 
and the object set is a set of zero, one or more objects. The Sublistl of the SR is 
mapped onto the globalPP(s) of the SyR, whereas the Sublist2 from the SR is 
mapped onto the object set of the SyR. Each object may have its own PPset associ- 
ated with it; we call these the object's local prepositional phrases (1ocalPPs). 

The second sub-phase operates on the SyR's created by the Syntactization 
phase. The SyntMerging process has two subphases, namely SubjecrMerging,  
which merges the SyR's that have a common subject, and Localizat ion,  which ap- 
pends a globalPP of a SyR to a IocalPP of another SyR. The SubjectMerging pro- 
cess combines two SyR's that have a common subject, into one SyR. The PP and 
object parts of the new SyR are the union of the corresponding parts of the input 
SyR's. 

During the merging of the object parts of the two SyR's, (one of which 
corresponds to an entity and the other to a relationship) a process called ob jec t -  
l inearization occurs. In object linearization, the object set is sorted, such that the 
first object entry of the new SyR is the first entry of the relationship's object set, 
followed by the object set from the entity's set, and then the remaining entries 
from the object set of the relationship. 

The localization process appends a globalPP from a SyR to a IocalPP of an- 
other SyR. If there is a SyRi with empty object-set and non empty global PP set, 
and the subject of the SyRi occurs in the object set of another syntactical repre- 
sentation, SyRj, then localization of the global PP takes place. 

Lexicalization, the final subphase of syntactic synthesis, is a mapping be- 
tween semantic objects and lexemes from the lexicon. Two types of mapping are 
defined, namely lexico-semantic and phraseologico-semantic  mapping. The lex- 
ico-semantic mapping is a substitution of a semantic object by a lexeme from the 
lexicon. Phraseologico-semantic mapping is very much like a lexico-semantic 
mapping, the difference being the substituent contains a p h r a s e m e .  A phraseme 
is a sequence of lexemes, i.e., adjective-nouns, instead of a single lexeme. For ex- 
ample, the mapping of <tfname> into cfirst name>. 

Recall the principle of decomposability: the meaning of the whole is con- 
structed out of the meaning of its parts. Thus, the meaning of the sentence is 
built up out of the meanings of its constituents. Ultimately, the meaning of the 
sentence is built up out of the meanings of the lexical items occuring in it. The 
lexicalization process transfers each database attribute into its corresponding 
lexical entry. The morphologic synthesis module (Figure 8) generates morpho- 
logic representations(MR), an ordered sequence of lexemes in their required 
forms, out of the SyR's. The process consists of three phases, namely 
S e n t e n  c i a l i t a  t i  o n ,  Lexeme-  Transformat ion and S e n  t e  n c e -  G e n e  r a  t i o n .  
Sentencialization breaks each SyR into a number of MR's, each of them corre- 
sponding to a potential sentence. Lexeme transformation implements the trans- 
formation of the lexemes to their required forms. Finally, sentence generation 
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transforms each MR into a sentence-like form by inserting the articles, conjunc- 
tions, and punctuation. 

SR 

MR 
Figure 8 Morphologic Synthesis 

The final phase of NLG is Textual Synthesis(Figure 9) which creates the 
text to be displayed to the users. The intent of textual synthesis is to generate co- 
herent and stylish English text, in the form of one or more sentences. In most 
cases, MR's created in the previous step are a sequence of independent sen- 
tences, rather than coherent text of the final output presented to the user. 
Textual synthesis reorganizes a sequence of independent sentences into a more 
readable and stylish text. The TRs are generated from the MR's by applying the 
textual transformation rules(TTR). These rules combine the MR's with common 
attributes into compound, anaphoric and elliptical sentences. This results in  a 
coherent, consistent and stylish text. 
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MR 

Transf ormetion 

Figure 9 Textual Synthesis 

The first two MR's, with the same subject and verb that agree on the num- 
ber(TTR1),  are combined into one by combining the object-value parts. If there is 
a third MR, with the same subject and verb as the previous ones, it is transformed 
into its possessive case(TTR2). If there is a fourth MR, with the same subject and 
verb as before, a pronoun replaces the subject, if the latter is in its plural 
form(TTR3).  In the case where the subject is singular, this step is skipped and the 
next rule is applied. The problem with the singular case is that, the gender of the 
noun cannot be determined, i n  order to use the appropriate pronoun. If there is a 
fifth MR, with the same subject and verb as before, or if the previous step was 
skipped, then TTR4 is applied. In this step, each MR is transformed into its posses- 
sive case, by applying TTR2. The subject of the sentence is relinquished and an 
elliptical sentence is generated, retaining only the object from the original MR 
and the value list which become the subject and object(s) respectively, of the 
new sentence. 

54 CONCLUSION 

This project proposed a model for a NLG system. A prototype based on this 
model has been developed in ANSI-C. The choice of the language makes the sys- 
tem easily transportable to different environments which support the C lan- 
guage. Since the HDDMBS (which is at the lowest level of MIDBMS) resides on PCs, 
the NLG system has been implemented on these machines. 

The NLG system is database independent and has been tested using two dif- 
ferent database domains. The results have shown that the NLG system meets its 
design goal: to generate Natural Language as the response of the system to its 
non-technical users, 
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The output contains all the necessary information and is in a textual form. 
The Textual Synthesizer module maintains a textual transformation rule 
base(TTRB). Currently, the TTRB has four rules to transform the generated sen- 
tences into the final text. The generated text consists of one or more sentences i n  
nominative and possessive cases. It may also contain anaphoric and elliptical 
sentences, based on the common attributes and the number of generated sen- 
tences. The text can be further improved by  adding discourse rules in the TTRB. 
Aside from the rules discussed in Section 3, it is possible to add new rules. For ex- 
ample, consider the following three sentences: 

S1 : Sub jec t l  Verb1  Object1 
S 2 :  Sub jec t l  Verb2  Object2 
S 3 :  Subject2 Verb3  Object3 

such that Object1 = Subject2. If the sentence S3 is placed after the S2 it 
"cuts" the flow of the text. It is rather preferable to place S3 right after S1, as an 
elliptical sentence by applying the TTR4. Thus, a new rule can be inserted in the 
TTRB, which implements the above transformation. 

At this point the NLG system responds to the users by treating their 
queries as independent requests. For example, if the user asks for Professor 
Smith's phone number, the response of the system is "Professor Smith has phone 
number 327 3943". ff the next request is for his office number, the system, will 
similarly answer, "Professor Smith has office number AD 639". The user might 
however, expect a more natural and friendly response such as "His office number 
is AD 639" or simply "It is AD 639". Such system behavior can be achieved if the 
NLG system can keep track of the most recent history of requests and responses 
and adjust its behavior accordingly. 

A problem arises when the response contains many tuples. For example, 
the query "List the student names" may generate 100 or 1000 names. Then, i t  is 
not feasible to provide a "row" sentence having one subject and a hundred or a 
thousand objects. Rather, it is preferable to generate the NL text and provide a 
reference to the corresponding student table, i.e., "The students' names are 
shown in table 1". 

The NLG system is aimed at the non-technical users of the MIDBMS. The 
users can range from knowledgeable to inexperienced, according to their famil- 
iarity with the system. The NLG system should adapt the system's responses to the 
users' level of expertise in order to behave in an intelligent way. This can be 
achieved by maintaining a model of the user. In practice, the users are expected 
to gain some familiarity after using the system for some time. Thus, they may be- 
come local experts in specific domains. Therefore, the system should also be able 
to dynamically change its model of the users by maintaining the relevant pa- 
rameters that describe their profiles. 

One of the goals of the NLG system is to make the user interface more natu- 
ral. The term natural here means that the system has to behave like humans as 
much as possible. However, naturalness is not a single characteristic. Rather, i t  is 
a collection of  attributes that jointly enhance the naturalness of the interface. 
Providing NLI, in  terms of writing text, is one attribute. Using sound is another. 
Supporting a voice interface for the NLG system will increase the overall re- 
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trieval efficiency: using voice is faster than writing text, and provides the users 
with a more familiar environment. 
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ABSTRACT 

This article deals with problems of time-management and the 
coordination of activities of heterogeneous agents. To support the 
planning of strongly interwoven jobs more than a pure scheduling 
algorithm is needed: Since hierarchical power-relations, diverging 
objective functions and unequally distributed decision competencies 
prohibit any straight-forward solution, a more complex framework 
switching between computer support and face-to-face decisions is more 
adequate. We discuss these issues in the context of hospital organization, 
in particular for the example of surgery-planning. 

1. INTRODUCTION 

In human societies work is a group process. Different persons perform different tasks 
at well-defined time-points to achieve a common goal. Therefore there has to be some kind 
of co-ordination for these heterog eneous agentsl. Recent developments in automatization 
do not focus anymore only on mere machine-eo-ordinated production processes, but 
invade also areas of decision-making and control. This trend has not been paralleled by a 
theoretical treatment, which could be a reason for the apparent fnmstration with many of 
these tools. Since time has been introduced as relation between the single heterogeneous 
agents within an organisation, it is embedded in decision-making and control with respect 
to the given power-structure. Due to this a more basic discussion on switching competence 
between person and machine is urgently needed. 

[I] distinguish between three needs which determine time-patterns in groups: the need to set and 
meet deadlines, the need for dynamic teamwork and the need to assure an adequate 
demandcapability match. 
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Chapter 1 of this article deals with one approach to solve problems of time- 
management, namely scheduling-algorithms. Though they are of great importance for 
many fields of applications, it is evident that they do not cover more complex decision 
structures of large-scale organizations. In chapter 2 we will show where and why these 
short-comings appear. This critique leads us to a system-design in chapter 3 which we 
consider as intelligent and which helps to improve on prevailing solutions. Finally chapter 4 
presents an empirical case-study : operation-planning in a surgery-clinic. 

2. TIME - SCHEDULLNG 

All working-processes consist of a sequence of single tasks, which have to be co- 
ordinated. In this context co-ordination is defined as the order of tasks and their start- and 
end-times. 

e.g.: C(wp):= (taskl, task2, task3, taskl, task4, taskl) 

with taskl[tO, tl], ... tasq [tn-1, tn] 
with wp: working-process, [to, tl]: tO ... start-time, t l  ._. end-time 

This means that time is introduced as relutzon between the agents: It is determined 
when a certain task has to start, when it has to end and which task has to be finished before 
another one can begin. It is evident that there is an underlying objectivefunction which can 
also be expressed by terms of times: The objective-fimction describes the expected goal 
variable, which should reach an optimum, a maximum or a minimum2 in a certain time- 
interval. These connections and dependencies of tasks and times can be represented 
graphicdy by network-techniques. The according scheduling-algorithm optimized with 
respect to time computes an optimai soIution3. 

Fig. 1. Graph of time-sequence 

...... .. . .. . ..... 

fask n 

2 While a maximum is wanted in production, mimimum is sear~hed in questions of cost. 



46 

Usually constraints to be met have to be formulated. Temporal constraints can be e.g. 
the absence of agents at certain times4, no clear duration of certain tasks, no clear time- 
points but time-intervals in between tasks etc. Scheduling-algorithms also offer the 
possibility of priority-setting to arrive at unique solutions. As a consequence it can be 
defined which tasks are the most important ones. 

In literature there are two main approaches to scheduling problems. The traditional 
one stems from operation-research using methods of optimization like illustrated above5. 
The most practical problem is the enormous solution-space which has to be searched in 
order to find good solutions. To make the search-process more efficient (in terns of time 
and memory-space) genetic algorithms6 are introduced which build on search-techniques 
like random search, hill climbing and sampling. 

The second approach is considering scheduling as knowledge-intensive activity which 
requires mechanisms for representing and acquiring knowledge7, both questions of the 
field of AI. This leads to the constraint-based approach, which is a combination of 
propagation techniques and specified constraints. Still there is the problem of applicability 
to real-world-problems, where information is not only uncertain but even incomplete. 

The above mentioned ideas of scheduling can also be found in the context of questions 
of time-scheduling. Usually scheduling problems are under specified concerning 
organizational characteristics of the problem to be solved. Normally there is a given 
hierarchical power-structure, where decision-competence is focused on one agent. This 
agent usually determines the objective-functions and has the power to ignore other agents’ 
obj ective-functions*. Time is treated as quantifiable variable, as a resource-parameter, 
which enters his objective-function. A typical application-field of this kind of scheduling is 
a production-process, where machines are programmed to steer the sequence of tasks. 
Human agents are seen as part of the machinery, they do not have the power to participate 
in the optimization-process. 

In working-areas with a less exclusive and inflexible division of competence this kind 
of scheduling has to fail9. The treatment of time as a measurable scalar does neglect the 
political character of time. [SI illustrates that successful running of electronic calendars and 
maintaining them are based on two conditions: First, each of the concerned groups has to 
invest additional work in updating electronic calendars and second has to leave time- 
scheduling to a supervising system. Both aspects are not fulfilled in organizations where 
agents are able to insist on their time-autonomies. 

In the following chapter we will discuss other issues arising when seeing automized 
co-ordination as pure scheduling-problem. 

3 compare e.g. [21 
Therefore electronic calendars are needed to describe this kind of temporal constraints. 
see also [3] 
compare also [4] 
For more detailed discussion see e.g. [5] ,  [6]. 
e.g. In many cases the objective functions of workers are not the same as those of employers. 
for further discussion also see [7] 
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3. LIMITS OF TIME - SCHEDULING 

Since the agents within a production-unit are heterogeneous, it would be an arbitrary 
event if they had not conflicting interests. The degree of participation in decision-making is 
strongly interwoven with the position within the hierarchy. Decision-competence is 
unequally distributed, even though a certain decision can effect the whole organization. 
This leads to following problems when trying to establish a scheduling-algorithm: 

Fig. 2a. Time-conflicts in organkations: time-autonomies 

I throughput-refated income I 
I fixed worm-times I 

While the group with throughput-related income will use their high time-autonomy to 
expand their workingtimes, the group with fixed working-hours is interested in keeping to 
their working-hours as defined in their working-contracts. The third group, agents with 
limited autonomy, also will try to stick to their working-hours, but do have a special 
interest in allocating self-managed buffer-times. 

Co-ordination of these types of time-orientation surpasses the capacities of most 
scheduling-algorithms. External information on power-relations between groups is needed. 
Either there is one group (e.g. the group sticking to fixed working-hours without 
autonomy) which determines the final outcome - all the others have to adjust - or there is a 
weighting of the importance of different groups. Still the questions where these power- 
relations come fiom is open. 



Fig. 2b. Time-conflicts in organizations: sources of bottle-necks 

As already mentioned co-ordination means to fix the order of single tasks. The time- 
point from the end of one task to the beginning of the next one is always a source for 
bottlenecks. Reasons for the extension of the task of group A are unforeseen complications 
or unrealistic estimates of task-duration. On the other hand group B could fail to begin 
with their task at the planned time-point because of lack of time-discipline etc. 

Especially the last aspect (time-discipline) is very much connected with an agent's 
autonomy, which itself is specified by the internal power-distribution. 

Problems of bottlenecks are severe in organizations where the different tasks of the 
single agents are strongly interwoven and depending on each other. Even if some kind of 
buffer-times is foreseen, the perception of responsibility for bottlenecks can be quite 
different. The consequences for the originator of bottlenecks depend again from his 
position within the hierarchy. 

Automized time-scheduling can to some extend take organizational factors into 
account (by using constraints, weighting, etc.), but the designer has to decide which 'view' 
he/she will implement - which usually is the view of the one who is buying the system - 
without considering the other agents' wishes. As empirical studies show lack of acceptance 
of certain decisions can lead to passive counter-reaction. In organizations where decisions 
are not understandable there is some kind of institutionalized counter-action. It is quite 
easy to find reasons for delays, slow-down of work and the like. Trying to eliminate 
obstructions would mean expanding control, which goes hand in hand with increasing cost. 
This effect does also arise in cases, where certain decisions are made by computer systems. 
Instead of forcing users to accept automized decisions by extended control it seems to be 
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more adequate (and cheaper) to hrther the acceptance of decisions by transferring critical 
ones to face-to-face-meetingsl*. 

This means that a general discussion on competence-switching between person and 
machine has to be started. As we will show in the next chapter this is not a trivial 
requirement for the design of computer-systems. 

4. INTELLIGENT COMPETENCE-SWITCHING 

Agents in organizations have on the one hand explicit knowledge concerning the 
power-structure and on the other hand mental maps of informal relations among the 
members. They also can locate their own position in this structure, though they need not 
necessarily accept it, Decisions which are conceived as threatening their position are 
critical ones. Transferring such decisions to a information-system leaves to the concerned 
agents only institutional ways of defence11. This is so because there is no terrain for 
negotiation. Negotiation in this context means facing conflicting interests and elaborating 
modes to handle them. Even if there exist underlying contradictions which cannot be 
eliminated by negotiating there still might be some room for ameliorating the prevailing 
situation. The most efficient way to negotiate actually is face-to-face. 

Let us discuss this issue with respect to the examples given in figures 2a and 2b: If the 
group with the high autonomy and throughput-related income (compare fig. 2a) is 
powerful enough to force the other groups to adjust to their choice of time-fiame, the 
weak groups will try to find ways of institutional response. Diverse reactions are open to 
them: passive defence through low work-intensity, invoking union actions, . . . 

As soon as a bottleneck appears there is the question who caused it. In organizations 
with a strong hierarchical structure the manager perceives who is responsible and initiates 
appropriate sanctions. The person concerned might have a different view and in that case 
will respond in ways similar to those described in the first example. 

These different perceptions of the same bottleneck will also appear in organizations 
with a less rigid hierarchy. Since in this case there is no possibility of direct sanctioning, the 
diverse assessment of reasons will lead to passive counter-actions. Both situations can be 
improved by the introduction of face-to-face negotiations giving the single agents the 
opportunity to articulate their views. 

Obviously face-to-face meetings cannot be substituted by automatized decision- 
making, but information-systems can support negotiations by structuring the&. 

lo Critical decisions are the ones which undermine a person's or a group's autonomy or position 
within the organization. 

l2 [9] justifies the increasing demand to computer supported decision-malung with 'losses' of 
productivity in group decision-making occuring because of certain individual's domination, group 
pressure (which leads to confofiniry of thoughts) etc. 

This kind of reaction usually is counter-productive and leads to high cost. 
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Therefore intelligent competence-switching modules can be used for demonstrating 
consequences of certain decisions. But before going into details let us first analyze the 
meaning of 'intelligence' in this respect. 

[lo] describes that in complex systems agents are unable to identify all of the 
constraints on their actions and that their information-processing capacities are limited13. 
The common characteristic of artificial-intelligence techruques is the attempt of modelling 
decision-making14. In our understanding an information system can only be called 
intelligent if it is able to simulate the interaction of differeirt agents with dijferent world 
views to hrther in a direct feedback their co-operation. In this context ca-operation is not 
restricted to cases where agents have the same goals, it particularly occurs and needs 
simulation support in cases of diverging or even opposite objectives of agentsl5. It is this 
property of simulating contradictions, of anticipating actions and opinions of others leading 
to these actions, which can be used to solve them or at least to transform them to improve 
solutionsl6. 

Fig. 3. Simulating contradicting views 

GROUP A GROUP E 

specification of cuatwn P 

All groups involved in organizations produce more or less simple preliminary 'visions' 
of internal structures and their own role within the hierarchy. Information systems can be 

l3  [lo, p. 251 
l4 or in other words 'to cast the problem in a frame' [I  13. 
l5 We insist that these contradictions exist in reality and are not just different views which can be 
eliminated by communication as for example proposed by [12, pp.488-5501. 
l6 Since contemporary organizations ban all underlying processing contradictions from the 
internal sphere, they permanently reappear in the outer political field. For an innovative game 
theoretic treatment of contradictions compare [ 131. 
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used to verify these visions by inducing agents to make their objectives explicit. The 
system-designer provide them with a causation structure (excluding what we called critica2 
decisions before) which then is used by sim~lationsl~. 

The result of a simulation run are a preliminary solutions which differ from group to 
group. The choice of a certain solution as final solution - which is a critical decision - 
cannot be delegated to the information-system. At this point competence-switching from 
the system to face-to-face has to take place. Nevertheless groups enter the bargaining- 
process more informed since they have preliminary solutions at hand. Assessing and 
balancing of preliminary solutions is the main purpose of negotiations. A particular 
agreement can be used as a new input for another simulation - a reverse competence- 
switching takes place. This recursion is terminated by a final face-to-face agreementI*. 
Learning as defining characteristic of intelligent system-design is guaranteed by these 
recursions. The next chapter will illustrate some of our major issues. 

5. CASE-STUDY: OPERATION-PLANNING IN A SURGERY CLINIC 

The clinic, part of a large university hospital, consists of five departments, representing 
different specialities19. The underlying organizational structure is characterized by a strict 
hierarchical order and the existence of well-defined disjunctive professional groups (namely 
surgeons, surgery-nurses, anaesthesiologists). The clinic disposes of six operation-theatres. 
There is a fixed allocation-plan which assigns operation-theatres to departments (see figure 
4). 

Fig. 4. Allocation-plan 

In other words each ward has certain operationdays. The planning of operations is a 
several phase-process. Pre-planning is done by entering an operation (including name of 
patient and responsible surgeon) into a book which is located in the clinic's main 
secretariat. A pre-program for the following day is discussed in a 14.30 session in which 
one representative from each department (normally a doctor), the head surgery-nurse and 
one representative from anaesthesiology are present. In this session the schedule for the 

~ 

Simulations probably will use the scheduling algorithms described in chapter 2 as subprograms. 

For a more detailed descriptm of the case-study see [ 151. 
I8  An indispensable rule for negotiating is to define finite durations (see f 141). 



52 

next day is set up. The result of these consultations is a time-table which shows the 
distribution of operations over the available theatres. Nurses decide among themselves (in 
a 7.00 meeting the following morning) who is going to join which surgical team. No pre- 
planning for the following days is done, although surgeons may enter operations ahead. 

Normally a day's program cannot be realized as it was planned. Due to unrealistic 
time-estimates, unforeseen complications, emergencies and organizational delays, ad-hoc 
adjustments have to be made. Responsible for all kinds of re-scheduling is one main 
surgeon, who, as a consequence of his role, monopolizes valuable information (especially 
knowledge on vacant operation-capacities) and is only selectively involving implicated 
colleagues in his decisions. 

As can be seen from this brief description all criteria for the emergence of time- 
conflicts as discussed more generally in the preceding chapters are met: strong hierarchical 
structure, disjunctive groups (implying different views), different time-autonomies and the 
urgent need for planning. 

Consider again figure 2a: In this case-study the group with high time-autonomy 
evidently are the surgeons. They press for longer working-days since their income is 
related to the number of treated patients. The group with no autonomy can be identified as 
surgery-nurses who want to keep to fixed working-times. Anaesthesiologists - as group 
with limited autonomy - are interested in self-managed buffer-times to contact next day's 
patients . 

As empirical investigations prove surgeons as the most powerfid group set starting 
times for operations close to the end of the working-day to force nurses and 
anaesthesiologists to do overtime. As a reaction - we called it institutionalized counter- 
action above - there is passive resistance of surgery-nurses in form of delaying routine 
work during the day. 

What we showed in figure 2b now can be interpreted in the following way. 
Bottlenecks do occur when e.g. anaesthesiologists (group B) have to wait with the 
introduction of the anaesthesia for the surgeon (group C). An analogue situation arises 
between surgery-nurses (group A) and anaesthesiologists. 

This last example leads us to the discussion of contradicting views: While surgeons 
argue that time can be saved by introducing anaesthesia before they arrive and therefore 
identi@ anaesthesiologists as the source of the bottleneck, the latter counter-argue that 
because of surgeons' high time-autonomy there is an uncertainty concerning the arrival of 
them. Because of medical reasons they do have to wait with the introduction of anaesthesia 
- and therefore they accuse surgeons to be responsible for bottlenecks. 

Simulations making these views and their consequences for planning explicit can be 
used to structure and support face-to-face-negotiations between the concerned groups. 
Therefore an intelligent computersystem has to include features managing the treatment of 
critical decisions. During the design phase it has to be discussed which decisions are not 
critical and could therefore be solved by implemented algorithms. E.g. how to distribute 
additional surgery-time: This can be done by the use of certain priority-lists expressing the 
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hospital's favorite specialities (heart-surgery, ...). Critical decisions on the other hand will 
be singled out by the computersystem and have to be treated during face-to-face-meetings. 
E.g the cancelling of operations because of time-constraints, falls under this category, since 
on one side organizational conditions (working-hours of staff) have to be met, whereas on 
the other side the operation is very urgent. But this is not the only example of competence- 
switching in our case-study2O. 

There are a lot of other cases where automized decision-making fails. The system- 
designer has to anticipate critical decisions and therefore implement a "collision- 
management"-module, which detects them and provides a print-out with such topics for 
the face-to-face-meeting. In cases where more sophisticated "what-if"-arguments appear in 
face-to-face-discussions, collision-management can be extended to include simulations of 
such questions (e.g. the effects of a change of priorities among a hospital's specialities). 

6. CONCLUSION 

We have shown that competence-switching between person and machine is an 
interesting alternative to the increasing unreflected automatization of group decision- 
making. It will be an important ingredient of the design of intelligent information systems, 
because it combines elements of organizational development with the more technical 
aspects of computer support. 
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ABSTRACT 

Artificial neural networks have been successfully used to 
perform a variety of tasks, mostly in the areas of pattern 
recognition and classification. This paper explores their use in 
learning and executing strategies. A series of experiments are 
performed in which a network using the backpropagation 
algorithm learns strategies for playing the game of casino 
blackjack. The experiments range from the supervised learning 
of a blackjack strategy using the normal backpropagation regime, 
t o  supervised learning using situations generated from the 
naturally occurring probabilities of the game, and, finally, to an 
unsupervised experiment where the network learns a strategy 
based on Its perfonnance and past experience in playing. The 
latter experiments introduce probabilistic and contradictory 
feedback to the network due to the stochastic nature of the game. 
The experiments show that artificial neural networks can be used 
to represent and learn strategies for a stochastic game and that 
their performance can be favorably compared to that of human 
p laye r s  . 

1. INTRODUCTION 

Artificial neural networks in general, and the  backpropagation 
a l g o r i t h m  1 in particular, have been shown to be powerful pattern 
recognition This paper will explore the use of the backpropagation 
algorithm in representing and learning strategies associated with the game 
of casino blackjack. Casino blackjack is first adapted for use with 
backpropagation networks and then a series of learning experiments are 
per formed.  

The first experiments utilize the normal backpropagation mechanism 
of supervised learning. A set of patterns and desired outputs, as prescribed 
by an expert, are continually cycled through the network during training, 
Sejnowski and Tesauro have had outstanding success i n  teaching 
backpropagation networks to play backgammon using this appr0ach59~. 

The second set of experiments again models an expert strategy but 
utilizes a passive observation mode. In this case, the network views an expert 
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working in the naturally occurring environment of the game. The network 
can no longer request to see a particular situation but must instead deal with 
the differing probabilities of situation occurrence. 

The final experiment does not involve an expert. The network learns a 
strategy based on its own performance during play of the game. This 
introduces problems associated with credit assignment and contradictory 
feedback to the system based on the stochastic nature of the game. The 
ability to learn based on performance has a long history in artificial 
intelligence from Samuel's landmark work with the game of checkers' to 
more recent work utilizing evolutionary replicators* and stochastic 
a u t o m a t  a9 .  The backpropagation algorithm will be utilized here with a 
reward or penalty1* given to actions based on the outcome of each hand. 

2. CASINO BLACKJACK 

Casino blackjack is a gambling game played with a standard deck (or 
several decks) of playing cards. A player competes against a dealer who 
utilizes a fixed strategy. The object of the game is to accumulate a greater 
hand value than the dealer without going over 21. The cards two through ten 
are evaluated at face value, jacks, queens and kings have a value of 10 and 
aces are given a value of 1 or 11 based on which value will favor the holder. 
A hand that contains an ace counted as 11 is termed a soft hand. All others 
will be called h a r d  hands. 

In the casino game, there may be several players playing against a 
single dealer. Each player makes a bet for the hand. The initial play sees two 
cards dealt to each player and the dealer with the last of the dealer's cards 
exposed (the show card).  Each player, in turn, plays out his hand. The 
player may choose to s t a n d  on his given hand, hit (request another card) or 
double down (double the bet to receive only one card). 

After receiving an extra card with a hit, the player may continue 
making hit decisions. After an initial hit decision, the play ends when the 
player makes a stand decision or when the held cards total more than 21 
(called a b u s t ,  in which case the player immediately loses). 

After all players have completed making their decisions, the dealer 
completes the h a n d  by continually taking extra cards until the cards that are 
held total 16 or greater. If the value is more than 21, the dealer loses to all 
players who did not bust. Dealer values from 17 to 21 beat players with lower 
hand values, tie players with equal hand values and lose to players with 
greater hand values. 

There are three decision variables that a player considers when 
making decisions. The player's hand total is obviously a major factor in 
decision making. A total of greater than 11 introduces the possibility of 
busting when drawing a card while low totals will be beaten by a dealer hand 
that does not bust. A value of 11 is favorable for doubling down. The second 
decision variable is whether the player's hand is soft or hard. A soft hand 
cannot go over 21 with the drawing of a card. The value of the dealer's up 
card is the last decision variable. Values of 4 through 6 indicate a stronger 
possibility that the dealer will bust than when a 10 is shown. 



57 

One could also devise a fourth decision variable and use a history of the 
cards that have been played to influence betting amounts and decisions. 
Card counting strategies are considered illegal at the gaming tables and are 
combatted by using a large number of decks (from 4 to 6) and reshuffling 
cards often. This paper will not consider this variable. 

There are various postulated optimum blackjack strategies in the 
literature1 All such strategies considered are either the same or differ 
by a small number of decisions. We will not be concerned with the slight 
variations and will adopt the soft and hard strategies from Silberstang shown 
in Figures 1 and 2. 

Value in Hand 
4 5 6 7 8 9 1011121314151617181920 

A 
2 
3 

5 
6 
7 
8 
9 

Show 
Card 

Hit 0 Stand 

Fig. 1. Silberstang strategy for hard blackjack hands. 

Double 

3. THE BACKPROPAGATION ALGORITHM 

The standard backpropagation algorithm utilizes a network consisting 
of layers of non-symbolic nodes to learn to recognize a set of patterns. The 
learning is supervised as each time a pattern is presented to the network, the 
desired output for the pattern is also provided. The network gradually 
converges to a point where all patterns are properly associated with the 
correct output. These networks are general purpose pattern recognizers and 
have desirable generalization and robustness properties. 
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Value in Hand 
1 2 1  31  41 51  61 71  81  920  

A 
2 
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5 
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8 
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Show 
Card 

1 0  

Fig. 2. Silberstang strategy for soft blackjack hands. 

The network is maximally connected from 
connection between each pair of nodes has a weight 
weights are given initial random weights which are 
learns .  

Hit 

u Stand 

Double 

layer to layer. The 
associated with it. The 
adjusted as the network 

Each pattern is presented to the network, in turn, during training. A 
presentation can be separated into three steps: propagation of activity, 
computation of error and weight adjustment. 

The pattern is encoded as a binary number and the activity of each 
node of the input layer is assigned one bit of the number. This input layer 
activity is propagated forward through the layers of the network using the 
formula:  

where aj is the activity of the receiving node, the ai's are the activities of the 
nodes  in the sending layer and Wij is the weight on the connection between 
nodes i and j .  This formula generates an output from the network at the final 
layer. The propagation of activity can be used exclusively to generate a 
response from a given input in a non-learning mode. 

After propagation, an error term is computed for each n'on-input node 
in the network. The error associated with each output node is given by 
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where di is the desired output for node i. The output node errors are 
propagated back to interior level nodes 

ei = ai(1 - ai) C(ek - Wik) 
k 

Lastly, the weights are adjusted by the following term such that 
another presentation of the given pattern will yield outputs closer to those 
desired 

where is a constant that controls the speed of learning, Awi j (n)  is the 

change in weight on the nth iteration of training, and W is a momentum 
constant. The momentum term inhibits forgetting of patterns that have been 
previously presented. 

Normally, this presentation of patterns and adjustment of weights 
continues until the outputs derived from propagation of all patterns are 
within some threshold, Z,  of the desired outputs. 

4. APPLICATION OF THE NETWORK TO BLACKJACK 

All possible situations and responses in the game of casino blackjack 
must be represented by the network. An input node will be created for each 
possible value of each decision variable. This creates 17 nodes for the 
possible player hand values, 4 through 20, 10 nodes for the possible show 
cards (ace through 10) and 2 nodes to represent the status of the player hand 
as being soft or hard. There are 260 possible inputs that may be presented to 
the network. Hands with hard values make up 170 of these scenarios and 
hands with soft values make up the other 90 (since there are no soft hands 
with values from 4 through 11). SimiIarly, there are 3 output nodes, one for 
each possible decision of hit, stand and double. Figure 3 shows the 
architecture of the network used in the experiments to follow. As described 
above, there are 29 input layer nodes and 3 output layer nodes that were 
dictated by the problem. There will also be one interior layer that consists of 
40 hidden nodes. 

All programming experiments that follow were written in C and run 
on a DECstation 5000 Model 200 running ULTRIX V4.2. 

4.1 AN EXPERIMENT IN SUPERVISED LEARNING 

The first experiment to be performed has the network learning the 
Siiberstang strategy using the traditional backpropagation technique. All 
possible input patterns are cycled during training in a given order. The 
learning is supervised since the network is supplied with the desired output 
for each input pattern. The network is doing active experimentation in the 
sense that it is requesting the strategy to give its responses for specified 
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v a l u e s  below i n  epoches f o r  100  t r i a l s  

mean median min max s t d  dev f a i l s  

91 .96  8 9  72  173 1 5 . 7 8  0 

situations. The outputs supplied are consistent and correct as compared to the 
given strategy. 

Hold Cards Show Card Sof t  
t 1 - n  

Interior Level 
of 40 Nodes 

Hit Stand Double 
Fig. 3. A neural network architecture representing a casino blackjack 
s t ra tegy.  

The algorithm was trained 100 times with different initial random 
weight assignments in the range (0.0 ... 1.0). The speed of learning constant, 
q, and the momentum constant, v, from the weight change formula were set 
to values of 0.2 and 0.8, respectively. The value of the convergence 
threshold, T, was set at 0.1. A training epoch is defined as one presentation of 
each of the 260 input patterns to the network. The results of the experiments 
are summarized in Figure 4. 

q =  0.2 1 yr= 0 .8  I T =  0 . 1 1 2 6 0  i n p u t  p a t t e r n s  

I n e t w o r k  a r c h i t e c t u r e  : 29 -> 40 -> 3 I 

Fig. 4. Results of experiments training an artificial neural network on an 
expert casino blackjack strategy using the standard backpropagation regime. 

The experiments show that the backpropagation algorithm was highly 
successful in learning the given strategy. The 260 patterns were learned in 
all tests and the number of epoches needed for training was small. These 
results are not surprising given the fact that strategy acquisition problem 
has been translated into one of binary pattern recognition. The 
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q- 0.2 1 w= 0 . 8  I m a j o r i t y  convergence  

v a l u e s  below i n  hands p l a y e d  fo r  10 t r i a l s  

mean median min max s t d  d e v  f a i l s  

28137 20655 11820 83180 22373 0 

network a r c h i t e c t u r e  : 2 9  -> 40  -> 3 

* 

backpropagation algorithm has been shown to work well for problems of this 
type-  

4.2 SUPERVISED LEARNING IN A NATURAL ENVIRONMENT 

The next experiment puts the network into a passive mode of operation 
while learning the strategy. Instead of following the typical pattern of 
repeatedly cycling through all possible inputs, the network will view a 
sequence of blackjack hands that would occur during the normal play of the 
game. The training will still use the backpropagation algorithm and will 
essentially be supervised. It is analogous to the network watching a player 
who utilizes the Silberstang strategy play the game at a casino blackjack 
table. The network will once again see a consistent, correct strategy. 

The test for convergence to the optimum strategy will be changed for 
practical reasons. The actual outputs will not be within a certain threshold T 
for all patterns. Some patterns will occur much less frequently (for instance, 
those representing soft hands and small hard totals like 4) due to the 
probabilistic nature of the game. The difference in frequency of 
presentation of patterns to the network makes reaching a specified tolerance 
for all patterns difficult. Convergence to the given strategy will be said to be 
reached when the output node representing the desired action (hit, stand or 
double) has a greater activity than the other output nodes for every pattern. 
That is, if majority rule was used, the correct action would be chosen in all 
cases.  

There were 10 tests run in this passive mode of operation with 
different initial random weight assignments in the range (0.0 ... 1.0). The 
results of the experiments are shown in Figure 5 .  , 

Fig. 5. Results of experiments training a backpropagation neural network on 
an expert casino blackjack strategy using a sequence of normally occurring 
hands.  

All tests reached majority convergence in less than 100,000 hands of 
play. These results are quite encouraging. Even though the number of 
hands seems quite large, the speed of learning compares favorably to the 
results in the active experimentation mode. Each epoch represents 260 
decisions which roughly translates into 130 hands using the assumption that 
two decisions are made each hand. The convergence was thus reached after 
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the equivalent of approximately 90 epoches for the minimum trial and 640 
epoches for the maximum trial. 

Additionally, the network learns a large portion of the strategy very 
quickly. A majority of the iterations needed to reach convergence are 
associated with correcting the last few erroneous decisions. Figure 6 
illustrates this for a typical run from the experiments. It graphs the number 
of incorrect decisions, those that do not agree with the strategy being 
modeled, versus the number of hands viewed. The number of incorrect 
decisions was computed every 100 hands played. The data points did not all 
monotonically decrease as shown in the graph. Only the values that showed 
decreases in the number of incorrect decisions were shown to give a general 
idea of the trend in improvement. Note that once a strategy did reach 0 
incorrect decisions, it never degraded to more than 1 incorrect decision and 
after several hundred extra iterations would move back to and remain at 0. It 
can be seen from the graph that all but 5 decisions were learned in the first 
4100 iterations. The final three quarters of the hands viewed merely 
corrected the last 2 percent of the decisions. 

Incorrect Decisions vs. Hands Viewed 
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Fig. 6. Graph showing the decrease in the number of incorrect decisions 
prescribed by the backpropagation network as a it passively observes an 
optimum strategy. 
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One of the major advantages of artificial neural networks is that they 
more closely mimic human learning than more traditional techniques. This 
experiment illustrates this nicely. The network learns much as a human 
would in that i t  observes a strategy working in the normal environment, 
quickly learns the basics of the strategy, displays forgetting (as stated above, 
at times the performance degrades) and finally learns the entire strategy 
(note that it may outperform, in this case, because a human may never 
master the decisions for all situations). 

4.3 UNSUPERVISED LEARNING BY PERFORMANCE EVALUATION 

The final experiment is the most challenging. The network will learn 
to play the game without observing an expert but by playing the sequence of 
games itself. The network will not be supervised in the standard sense. It 
will be informed whether it won a hand or not but will not be informed of the 
proper decision(s) for the hand. 

Thus, the network will sometimes be given incorrect information and 
will often be given inconsistent feedback as compared with information that 
it has previously received. The infomation can be incorrect in several 
ways. First, the network will be told that it lost a hand when in fact the 
decisions that it made were correct. Since the game of casino blackjack is 
ultimately a losing one for the player, this will happen often. Conversely, 
there is the possibility that an incorrect decision will lead to a winning hand. 
Finally, if the network makes several decisions during a hand, some may be 
correct and some may be incorrect and we have a good example of the credit 
assignment problem. Regardless of the outcome in this case, the feedback 
will be in some way erroneous. The feedback will be inconsistent because the 
network will sometimes be told that a decision in a certain situation is correct 
and at other times told it is incorrect. The hope in running the experiment is 
that the network will filter through the noise to generate an appropriate 
s t ra tegy  . 

The game will be slightly simplified for this experiment by disallowing 
the double action. This removes the need for an extra variable that would be 
necessary to indicate the number of cards in the player's hand (since 
doubling down can only be performed when two cards are held) and will 
accommodate the feedback rule which will be used. 

The backpropagation network and learning algorithm are once again 
used. The network will be the same as in Figure 3 except that only two output 
nodes, hit and stand, are now necessary. Decisions will be rewarded and 
penalized very simply. If the network wins or has a draw for a given hand, 
each decision made during the playing of the hand will be presented to the 
network for one training cycle. If the network loses a hand, the opposite of 
each decision made during the playing of the hand will be presented to the 
network for one training cycle. This is analogous to a person playing the 
game without being told the rules. The only information provided is that 
there is a choice of two actions and after a hand that the player has won or 
lost. 

Three experiments were performed with different initial weights in 
the network, varied in the range (-1.0 ... 1.0). Each experiment consisted of 
1,000.000 hands. The number of incorrect actions for all 250 decisions when 
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v a l u e s  below i n  i n c o r r e c t  d e c i s i o n s  
(minimum followed by i t e r a t i o n  number)  

min ( i t#) m a  x mean median 

T r i a l  1 6 ( 9 7 0 0 0 0 )  1 6 0  4 1 . 8 5  3 9  

Trial 2 1 2  ( 8 7 0 0 0 0 )  1 6 6  3 9 . 5 0  3 6  

' T r i a l  3 9 ( 9 4 7 0 0 0 )  150  3 9 . 0 5  3 6  

compared to the Silberstang strategy was recorded every 1000 hands. Figure 
7 displays these results. 

q =  0 . 2  I w= 0 . 8  I convergence  n o t  reached 

network a r c h i t e c t u r e  : 2 9  -> 4 0  -> 2 

Fig. 7. Results of experiments training a backpropagation network to play 
blackjack using a normal sequence of hands and a performance based reward 
system. 

The strategies generated were quite volatile. Even though they 
reached their minimum values for incorrect decisions late in training, the 
strategies did not stabilize at these low values. The strategies did not at any 
point mimic the optimal strategy with no incorrect decisions (although they 
were only compared every 1000 hands and could have matched at a point 
between tests). 

However, there were some promising results. Although there was a 
great variance from test point to test point, averaging the number of 
incorrect decisions over 50 test points shows a gradual improvement. Figure 
8 shows this graphically for values from Trial 1. The average number of 
incorrect decisions approaches a value of about 34 for all three trials. 

Next, consider the strategies that are generated after hand 1,000,000. 
The number of incorrect decisions for the three trials at this point were 11, 
45 and 17, respectively. Although there were a number of incorrect 
decisions in each strategy, many of them were on the borderline of 
c h a n g i n g .  

The incorrect decisions came in two categories. The first is associated 
with situations that occur infrequently (such as a hard 4). Several 
occurrences of incorrectly rewarded decisions, due to chance, in recent 
history can incorrectly swing the action for these situations. The second 
category is that of statistically tough decisions. The question of whether to 
hit a hard 15 or 16 given a show card of 8, 9 or 10 is not clear cut. In general 
these are losing hands for the player. The difference between the activation 
of the chosen action and the opposing action when a situation is presented to 
the network gives a rough level of confidence in the decision. A portion of 
the decision space for Trial 1 is given in Figure 9. The results show that the 
network has discovered to some extent which of the choices are obvious and 
which are difficult. 
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Fig. 8. Graph showing the average number of incorrect decisions prescribed 
by the performance supervised backpropagation network every 50.000 
hands.  

- 

Show Card 
0 9 10  

15 Value 
0.0007 h i t  I 0.0015 h i t  1 0.0002 h i t  

0.011 stand 
0.57 stand ~ 

Hand 0.0063 stand 1 0.0016 stand 
0.0046 stand 0.001 stand 

19 0.85 stand 0.61 stand 
20 0.89 stand 0.91 stand 

0.058 stand 
0.8 stand 
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strategies in the three trials can be combined by taking the majority choice 
for each decision. The strategy in Figures 10 and 1 1  is obtained. 

Value in Hand 
4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0  

Show 
Card 

Hi t  Stand H i t  Stand 
(incorrect) (incor *rect) 

Fig. 10. Hard hand meta-strategy with differences from Silberstang strategy 
indicated. 

Value in Hand 
121 31 41 51 61 7 1  81 920 

A 
2 
3 

5 
6 
7 
8 
9 
1 0  

Show 
Card 

H i t  

0 Stand 

Stand 
(incorrect) 

Fig. 1 1 .  Soft hand meta-strategy with differences from Silberstang strategy 
indicated. 
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1 Wins I Losses Draws Loss% 
i 

Silber 1 432805 1 474980 92215 4.22 

There are 11 discrepancies with the hit and stand strategy from 
Silberstang. Although there are 11 incorrect choices by majority, at least 
one of the trial strategies had the correct action for every decision except 
one (a soft hand with show card 7 and value in hand 17). 

Finally, the performance of the learned strategies will be considered. 
They will be compared to the Silberstang strategy, two intuitive strategies, n o 
b u s t  and d e a l e r ,  and a random strategy. A no bust strategy always hits 
hard hands below 12 and stands on all other hard hands. It hits on all softs 
hands below 17 and stands on all others. The dealer  strategy uses the same 
hitting and standing rules as the dealer. Table 1 shows the results for 
1,000,000 hands played with each comparison strategy and the meta-strategy. 
Only the last 500,000 hands of the trial strategies are used (recorded while 
learning) to discount early random behavior. 

Table 1. Comparison of Blackjack Strategies 

t Meta I 427908 I 481224 I 90868 I 5.33 1 

The last column in the table gives the difference between the number 
of losses and wins as a percentage of the number of hands played. The best 
strategies will minimize this percentage. The strategies created in the trial 
runs were of the same order as the intuitive strategies. The meta-strategy 
was an improvement over all but the Silberstang strategy which has slightly 
better performance. 

5. CONCLUSIONS 

A series of experiments has demonstrated that a backpropagation 
neural network can be adapted for use in representing strategies for the 
game of casino blackjack. The network can learn an expert strategy quickly 
and without failures when allowed to work in  a mode of active 
experimentation. This is the normal mode of operation for backpropagation 
t r a i n i n g .  
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The network is also able to model an expert strategy when working in 
a passive mode of operation. That is, it learns the strategy by observing an 
expert who is presented with a normal sequence of hands. In doing so, the 
network exhibits many characteristics of human learning such as fast 
learning of the basics of the strategy, occasional forgetting of portions of the 
strategy and a lengthy period of fine tuning. The network eventually 
mastered the observed strategy in all tests. 

Lastly, the network developed a strategy not by observing an expert 
but by learning from its own experience in playing. It rewarded actions that 
led to victories and penalized those which led to defeats. This type of 
learning introduced contradictory feedback to the system due to  the 
stochastic nature of the game. The strategies created in this manner had 
roughly the same level of performance as some intuitive human strategies. A 
meta-strategy built from the end products of several trials approached the 
performance level of an expert strategy. 
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ABSTRACT 

Object-oriented modeling is a powerful and natural knowledge 
representation mechanism for many real-life applications. However, 
there are situations when the traditional object-oriented modeling and 
inheritance lattices are not sufficient. We introduce a dynamic 
viewpoint mechanism with selective inheritance for building models in 
the context of software engineering and for viewing the models from 
multiple perspectives. Furthermore, we describe a set of inter-object 
relationships which can be used to enhance the traditional object- 
oriented and frame-based modeling mechanisms. These methods and 
techniques have been implemented in a prototype system and they have 
been used ta model various software engineering activities and 
elements. 

1. INTRODUCTION 

The way we perceive concrete or abstract objects depends on our viewpoint. A 
chemist, a broker on the Amsterdam oil spot market, a car driver and an automobile 
engine all have a different viewpoint to oil. They all see some common properties of oil 
but they also attach very different properties to the same object. Having all the 
attributes attached to the same object all the time would be unnecessary and confusing 
for any of them. Similarly, objects in software engineering can be viewed from different 
viewpoints. A software module may have different attributes when viewed from 
developer's, tester's, manager's or customer's viewpoint. Certainly there are, and there 
should be many common attributes as well, but having all the attributes visible for 
everyone would make the object overwhelmingly complicated and difficult to 
comprehend, Hence, we need a mechanism for looking at objects from different 
viewpoints. 

Object-oriented modeling is a powerful and natural knowledge representation 
mechanism for many real-life applications. It yields itself naturally into taxonomic 
classification and the inheritance mechanism makes it easy to incrementally define 
features for objects. However, there are situations when the traditional object-oriented 
modeling and inheritance lattices are not sufficient. 
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We may want to create an object as an instance of a class and then at some point 
continue developing both the ancestor and the descendant independently, i.e., changes 
in the parent class should not be inherited into the child anymore. Consider the task of 
creating and maintaining reusable components in software engineering. An object may 
have been initially created as a part of a class hierarchy. When we store it into a reuse 
repository we may not want to store the whole chain of its ancestors in the class 
hierarchy. Instead, we could take all the inherited attributes with the object and store 
the objects as a self sufficient element into the repository. Later the original class 
hierarchy may be changed and classes may be modified but we may want to keep the 
original version of the object in the repository. 

The above mentioned examples require an object-oriented system to support: 

consistent internal representation of the objects 
traditional object oriented modeling with both single and multiple inheritance 
selective inheritance of attributes from multiple sources 
dynamic changing of viewpoints and consequently attributes and behavior of an 
object based the user's current interest 

In this paper we propose a viewpoint mechanism with selective inheritance which 
will address these problems. It is possible to implement these mechanisms on top of 
many of the object-oriented as well as frame-based systems but a truly efficient system 
requires these features to be implemented in the underlying system. Our method does 
not replace or exclude neither single nor multiple inheritance. It is an addition to the 
traditional object-oriented and frame-based classification and inheritance mechanisms. 
We have implemented a prototype system (ES-TAME) which fulfills the key features of 
the viewpoint mechanism with selective inheritance. ES-TAME is built in PC 
environment using Kappa, ToolBook and Excel tools in Windows environment. it has 
been developed and used in the context of top down goal oriented characterization of 
software engineering activities. We are using reusable and tailorable object-oriented 
models to represent software engineering elements. Our methods are especially useful 
in the analysis and design activities of software development. 

2. MODELING 

Naturally, the basic object-oriented modeling methods and Is-A hierarchies are 
used extensively when building models of software engineering artifacts. In addition, 
we provide a set of predefined inter-object relationships and a dynamic viewpoint 
mechanism with a highly selective inheritance for building various model hierarchies 
and networks. By offering a limited collection of relationships we can maintain 
consistent models and provide automated support for managing the models. On the 
other hand, if we would simply use attributes to store relationships without a rigorous 
set of rules we could easily end up to a spaghetti-like relationship network which is 
very difficult to maintain in a large modeling application. With a well-defined set of 
relationships we can build models which are flexible and yet manageable. In this paper 
we concentrate on the dynamic viewpoints and selective inheritance and we will 
describe the inter-object relationships only briefly in this paper. An extensive 
discussion of the inter-object relationships can be found in I123. 
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2.1. DYNAMIC HIERARCHIES 

The viewpoint mechanism is based on dynamic hierarchies concept, which is 
realized with the dynamic manipulation of inheritance hierarchies. Basically, our Is-A I 
Children and Insface-Of I Instances relationships are similar t o  the standard 
clasdsubclass and clasdinstance relationship offered by most object-oriented and 
frame-based systems 131, [4], 153, 1111, 181, [18]. They are the only relationships which 
employ the conventional inheritance in ES-TAME. However, we do not currently 
provide traditional multiple inheritance. Instead, we provide dynamic linking of the Is- 
A relationships which considerably enhances the capabilities of the traditional 
inheritance. Each object can have a potential Is-A relationship, or more precisely 
inheritance link, to several super classes but only one of them is active at any point in 
time. AU the attributes of the active super class are inherited, whereas inheritance via 
the other inheritance links is highly selective and must be explicitly defined. The 
purpose of the children relationship is to catalogue all the subclasses or instances of a 
given class. 

Despite the rather novel approach to inheritance we still consider our system a 
class based system as opposed to prototypical and object based systems. In prototypical 
systems the traditional inheritance is replaced by linking a new object to a prototype 
object. A message can be delegated to the prototype if the new object has an identical 
response to that particular message. On the other hand, the behavior of the prototype 
can be redefined or new features can be added simply by defining a method in the new 
object. Our approach can offer a similar functionality as delegation on attribute level 
but normally we do not use it on class or object level. An object may use the method or 
attribute of another object but normally we do not use a full object as a prototype, we 
simply inherit selected attributes from one or more classes. We always have a parent 
class (which can be changed dynamically) from which we inherit all the methods and 
attributes. Additional functionalities and attributes can be inherited selectively from 
other objects. 

A well known object based system Self has the notion of prototype metaphor 
instead of classes and variables [19]. It  searches values for slots using parent pointers 
instead of inheriting according to a class hierarchy. Self does not use classes or 
variables. In ES-TAME each class or instance always has an active parent class and 
inherits all the attributes of that parent, If we did not have the dynamic linking 
mechanism, our strategy could be considered a single inheritance approach similar to 
what is used in systems like Smalltalk, KEE, and Eiffel. However, the dynamic linking 
mechanism of the inheritance links provides multiple viewpoints to object models. 
Furthermore, it facilitates context sensitive behavior for objects by changing 
relationships on the fly and inheriting new attributes and functionalities from the new 
parent. The old relationships can be restored without any loss of information due to the 
dynamic relationship manipulation. 

The fact that we do not currently use multiple inheritance does not mean that we 
would argue that it is useless in the context of software modeling and construction. On 
the contrary, it is easy to identify numerous cases where objects are conceptually 
related to more than one parent and multiple inheritance is useful. The multiple 
viewpoints and selective inheritance offer many of the benefits of multiple inheritance. 
We can avoid the well known name collision and repeated inheritance problems 
involved in multiple inheritance [31, 1173, 1203 because we have only one parent link or 
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FOR EACH a t t r i b u t e  i n h e r i t e d  from t h e  O l d - P a r e n t  i n  t h e  O b j e c t  

IF a t t r i b u t e  has a local  v a l u e  i n  t h e  Object 
OR a t t r i b u t e  i s  selected by t h e  u s e r  t o  be i n h e r i t e d  THEN 

Make a t t r i b u t e  local i n  O b j e c t  and m a i n t a i n  
t h e  loca l  values 

~ ELSE 
I Remove attribute f r o m  O b j e c t  

Change IS-A l i n k  of O b j e c t  t o  t h e  N e w - P a r e n t  

viewpoint active at any point of time. Consequently, we can avoid the problem of 
having several possible methods in multiple parent classes with the same name when 
forwarding a message to upwards in the inheritance lattice. However, we would still 
gain from having both the multiple inheritance and the dynamic viewpoints with 
selective inheritance in our toolbox. 

During a link change, all the application level local values of an  object, i.e. 
instance values which are not inherited from the old parent, must be maintained in the 
object in order to  be accessible also under the new parent. Furthermore, all the 
attributes selected by the user to be inherited and ported under the new parent must 
also be maintained. We can recover these values if the old parent becomes the current 
parent again. Even if' the old parent is deleted or is otherwise not accessible anymore, 
we can maintain the attributes which were initially inherited from the deleted parent 
before the link change. This is useful for reusing objects in new systems where the 
parent may not be included in the new systems. Attributes without a local value and 
which are not explicitly defined to be maintained by the user can be removed in the 
object level. If the inheritance link is changed to point back to the old parent the 
attributes are automatically inherited again from the old parent. Consequently, there is 
no need to maintain these attributes while the inheritance link points to a new parent. 

This mechanism avoids the problem of information maintenance involved in 
coercion in  schema evolution for object-oriented databases [151. I n  schema evolution the 
coercion mechanism discards information during type changes if their definition is not 
included in the new type. In the dynamic linking of the inheritance link ES-TAME 
maintains all the information even if the definition of the attribute is not included in 
the new parent. On the other hand, dynamic linking of the inheritance link is most 
often used as a run-time feature and the relationship can also be changed back to any 
of the previous parents, as opposed to the one way evolution of versions in object- 
oriented databases [El .  The following algorithm describes the principle of the attribute 
manipulation of a n  object Object during dynamic changing of an Is-A link from Old- 
Parent to New-Parent (figure 1). 

Fig. 1. Principle of attribute manipulation. 
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2.2. RELATIONSHIP NETWORKS 

In addition to the basic Is-A relationship we need a set of pre-defined relationships, 
which can be used as basis for the model building tools and graphical browsers in a 
similar manner as the basic Is-A relationship. We have defined all the relationships in 
pairs because of the emphasis of using ES-TAME to build reusable objects. Each object 
can be taken out of its original hierarchy and subsequently be stored into the reuse 
repository for future use. It must retain knowledge not only of its descendants in the 
hierarchy but also of its possible ancestors, parts if i t  is a composite object, to which 
context it belongs and information on how its relationships can be used in new 
applications. It is a reusable object with relationships as connectors which can plug into 
other objects both upwards and downwards in any of the relationship hierarchies. 

The relationships offered by ES-TAME are Is-MChildren, Instance-Ofhnstances, 
Part-mas-Parts, Compatible-Objects, Dynamic-Attribute and a Counterpart 
relationship: 

The Part-Of i Has-Parts relationship pair is used to  describe compound objects. A 
composite object is a collection of objects which can be managed as a single entity. 
Our composite object is roughly comparable to  the related concepts of some other 
object-oriented languages and object-oriented database systems [91, 1173. However, 
it is important to notice that we do not require a composite object to be instantiated 
in a top down fashion starting from the compound object and then instantiating the 
components [ll,  1173. Due to the emphasis on reusable components and parallel 
design in large projects, we don't have any restrictions on the order in which 
compound objects are built and instantiated. 

The Compatible-Oty'ects relationship is used to describe objects which can be used 
together, e.g. the function point method might be compatible with MIS projects but 
not with real-time projects. 

The Counterpart relationships are provided for creating various domain specific 
relationships and links between objects. They are normally used to  define 
relationships between objects which are used in the same context to build a larger 
scheme. The counterpart relationship has some similarities with Booch's 
association relationship which denotes a semantic connection among otherwise 
unrelated classes 131. Using counterpart relationships the user can create, edit and 
browse any kind of application specific hierarchies. Naturally, each object can also 
be viewed from all the standard viewpoints provided by ES-TAME. These 
relationships are used to manage the interconnections and interactions between the 
related objects, including message passing, constraint reasoning and value 
propagation. 

The Dynamic-Attribute provides a way of associating an object's attribute with 
the attribute of another object 191; e.g. if we have estimated the number of source 
lines (SLOC) in the product characterization and given it as an attribute to the 
product model, we can link the corresponding SLOC attributes of the resource 
estimation and defect slippage models to the product model's SLOC attribute. Thus 
we maintain the SLOC estimate in one place only and changing the estimate can be 
automatically updated in the other models. 
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3. USING DYNAMIC VIEWPOINTS AND S E L E C T m  
INHERITANCE 

CLASS: TestablaUnit 
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We provide a mechanism for attaching a generic viewpoint mechanism to any of 
the models or model components and their relationships. The objects and models are 
always internally defined by a single internal representation. Normally each user has a 
default viewpoint to the system. For example, the tester is mainly interested in the 
errors, faults, and various quality models. On the other hand, management is more 
interested in budgets, resources, cost, project schedule, etc., and can have models 
tailored according to the management perspective. The manager may impose a 
schedule for the whole project using the project model and estimations of the size and 
effort needed to implement the system. When the system reaches the testing phase the 
tester takes a totally Weren t  viewpoint to the software. The tester performs the pre- 
defined testing procedures and records the results. The information recorded in the 
model of the software is available also for the tester. 
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Fig. 2. Internal structure of objects during changing viewpoints. 



76  

Each model or component of a model is defined as an object. Each object is defined 
with attributes which are relevant to itself as a class or as an instance of a class. For 
example, a data flow diagram is defined with its relevant attributes in the context of 
structured analysis and design. However, because it is defined as a model which can be 
viewed from multiple perspectives it has the capability of having several viewpoints. If 
the user wants to examine the quality aspects of a particular data flow diagram, hdshe 
would change the viewpoint of that  object to a particular quality model. As a result, the 
data flow diagram would be dynamically linked to that quality model and inherit its 
features and functionality. Note that  this is different from multiple inheritance. 
Linking is dynamic and inheritance is applied only while the object is linked to the 
viewpoint. When changing the viewpoint again, only those attributes which are 
instantiated during the old viewpoint, i.e. those that have been modified or given local 
values, are ported into the new viewpoint. 

CLASS: SystemViewpoints 
CLASS: T e s t i n g  
CLASS: ResourceEst imat ion 

CLASS: S t a t i c  
CLASS: Funct ionpoin t  
CLASS: SLOC 

CLASS: COCOMO 
CLASS: Basic 
CLASS: I n t e r m e d i a t e  

CLASS: Advanced 
CLASS: 1BM.FSD 
CLASS: Doty 
CLASS: B a i l e y B a s i l i  

CLASS: Dynamic 
CLASS: Qual i tyModels  

CLASS: Cohesion 
CLASS: Coupling 
CLASS: DefectModels 

CLASS: Defects 
CLASS: F a u l t s  
CLASS: F a i l u r e s  
CLASS: Errors 

CLASS: Defectviewpoint  

Fig. 3. A sample collection of potential viewpoints of a software sub-system. 

One of the advantages of the dynamic viewpoint mechanism and selective 
inheritance is it limits the amount of information in each object. Because most of the 
objects can be viewed from a variety of predefined perspectives (quality models, cost 
estimation, testing, design, implementation etc.), use of straightforward multiple 
inheritance or implementing the attributes and functions as part of the objects would 
yield excessive information and obscure the user's understanding of the object itself 
and its conceptual relationships to other objects. With dynamic viewpoints we can focus 
our attention on the features which are relevant to our current interest. 

Our approach differs from the multiple interfaces defined in some object-oriented 
languages. For example, Snyder proposes two different interfaces to classes, one for 
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public use and one for subclasses [IS]. Others have proposed restricted subsets of 
operations for different users to facilitate multiple views to the same object [?I. 
Dynamic viewpoints and selective inheritance are primarily a means for changing run- 
time behavior, object attributes, or even class hierarchies. Changing a viewpoint adds 
new methods and attributes to an object and may remove old ones if they are no longer 
needed. This is a basic difference from controlling visibility in TrellidOwl [141 or 
accessing an object in [71 and C161. 

4. CONCLUSIONS 

We have presented a method for enhancing the traditional object-oriented 
techniques to better support the modeling of software engineering related artifacts and 
activities. For example, we should have different perspectives to a software module 
when viewed from developer's, tester's, manager's or customer's viewpoint. In addition 
to the basic object-oriented techniques we provide a dynamic viewpoint mechanism 
with selective inheritance and a set of predefined inter-object relationships. These 
techniques have been demonstrated in a prototype system which has been used to 
model various software engineering elements. The knowledge representation 
mechanisms have proven to offer better modeling tools for the user. "he dynamic 
viewpoint mechanism offers a convenient way of having multiple perspectives to the 
models. It is also a useful tool for incrementally building object-oriented models. 
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ABSTRACT 

Symbolic Machine Learning algorithms like decision tree or rule 
induction programs must discretize continuous attributes. This symboliza- 
tion of continuous values is usually done in an univariate way. That means 
that the attributes are transformed from continuous to discrete space inde- 
pendently from each other. For each attribute the infinite range of its possi- 
ble values is discretized to a finite number of values which from there 
onwards are considered as symbolic. 

In this paper we propose multivariate discretization of continuous 
attributes as a preprocessing step of symbolic induction. The generated 
symbolic values represent not only a single continuous attribute, but a mul- 
tidimensional discretization of many continuous attributes. The novel 
approach is to merge several continuous attributes in order to discretize 
them and to use this multivariate discretization as a preprocessor for the 
symbolization of continuous attributes in inductive learning. 

Furthermore we propose the Q* algorithm which is capable of learning 
multivariate prototypes in an Euclidean space. It is a self-organizing super- 
vised learning method which condenses the raw sample data to a represen- 
tative set of prototypes. The algorithm can be used for the multivariate 
quantization philosophy that is proposed in this text. 

Experimental results are presented for a classification task. Instead of 
the normally univariate quantization, multivariate quantization using Q* is 
employed. 

1. INTRODUCTION 

In inductive learning the type of an attribute can be continuous, discrete ordered or 
totally unordered (symbolic, nominal, categorical). Difficulties arise in the generation of 
decision structures when the objects are described by a mixed set of attributes. Consider 
the example set of Table 1. We modified the original training set for decision tree induc- 
tion that Quinlan [2] used to illustrate the effect of his ID3 [l]. Originally 14 samples char- 
acterize 2 weather classes. Outlook, temperature, humidity and windy were the four 

* ICPE, Research Institute for Electrotechn~logy, Bucharest, Romania 
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CI 

AITRIBUTES 
Sample Outlook Temperature Humidity Windy 

1 sunny 33.2 (hot) 89.9 (high) false 
2 sunny 31.1 (hot) 92.2 (high) true 

symbolic attributes that described the classespositive ( P )  and negative (N) .  We substituted 
the symbolic values of the two attributes temperature and humidity by continuous values 
to obtain a mixed attribute set. It was assumed that the temperature is cool between 5OC 
and ISOC, mild between 15OC and 25'G and hot between 25OC and 35OC. Humidity is 
normal below 80% and high above 80%. The original symbolic values are indicated in 
parenthesis, 

What are the alternatives for the attribute model in the mixed attribute case if a classi- 
fier has to be induced? 

Class 

N 
N 

1.1 SYMBOLIC NUMERlC 

3 
4 
5 

overcast 28.3 (hot) 98.2 (high) false P 

rain 19.9 (mild) 88.1 (high) false P 
rain 10.1 (cool) 71.2 (no&) false P 

6 
7 

rain 6.3 (cool) 63.2 (normal) true N 

overcast 8.4 (cool) 752 (normal) true P 
8 
9 

The symbolic attributes (outlook, windy) are encoded to numeric attributes. Then a 
purely numeric learning task is performed. This could be for instance a supervised cluster- 
ing in a multidimensional Euclidean space, a connectionist (neural network) approach, a 
Bayesian classifier in a multidimensional continuous space etc. The problem with this 
technique is the eventual creation of a non-existing order that is imposed on the values of 
the unordered variable, see e.g. Utgoff and Brodley [3] for a discussion on encoding sym- 
bolic attributes. In the weather example the windy attribute can still be handled relatively 
easy, since it has only a binary range. The value true could be encoded to 0.5,false to -0.5 
and even an unknown value finds a place in this model with 0.0. The outlook attribute has 
mcm than two possible values. One method to encode multi-value categorical attributes is 
the introduction of new attributes, one for each possible value, and then proceed like for 
the binary case. Here we would obtain three new binary attributes out of one multi-value 
discrete attribute: outlook-overcast, outlook-rain and outlook-sunny. One drawback of 
this method is obvious. Attributes with many values cause an enormous multiplication of 
the size of the attribute set. 

sunny 18.2 (mild) 92.3 (high) false N 

S U M Y  9.3 (cool) 78.2 (normal) false P 
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Many induction programs have to go the way from symbolic to numeric attributes, e.g. 
all those which rely on a geometric relationship among the attribute values. Kohonen’s 
Learning Vector Quantization [4], [5 ] ,  Utgoff and Brodley’s PT2 decision tree induction 
[3] or multilayer perceptrons are examples of such learning programs. 

1.2 NUMERIC -+ SYMBOLIC 
Symbolic induction algorithms that work on symbolic attributes are for instance Quin- 

lan’s ID3 decision tree induction algorithm [ l ]  from which the ASSITANT program for 
medical diagnosis of Kononenko et al. was derived [6]. Michalski’s AQ-Family which 
was successfully applied with AQ11 [7] for soybean disease diagnosis is another example 
of symbolic induction. Generalization of the data is expressed as rule sets. The CN2 algo- 
rithm of Clark and Niblett [SI uses a hybrid form for the decision structure. The so called 
decision lists are a intermediate concept between trees and rules. 

The numeric attributes (temperature, humidity) are quantized. In Quinlan’s original 
sample set this was certainly done in order to obtain the symbolic values. The infinite 
range of continuous attributes is discretized to a finite set of symbolic values. Usually, 
also the still existing order relation of the discrete values is discarded during the induction 
process. This is the case for ID3. 

The discretization of the variables is done however in an univariafe manner. Tempera- 
ture is discretized without taking into account humidity and vice versa. An independence 
of the class conditional probability distributions for the attributes is assumed: 

p ( (temp, humid) I Class) = p (temp/ Class) p (humid1 Class) 

or generally for attribute values xi and classes C. 

n 

P ( (‘1, ..., xn) 1 c) = np (xi1 C) 
i =  1 

The assumption of the independence of the attribute values facilitates the induction 
process in general. The quality of an attribute can be expressed without respecting the cor- 
relation that it eventually has to another attribute. Univariate quantization was investigated 
by Catlett [9]. His discretizing algorithm calculates cutting thresholds “for each attribute 
without reference to the others”. We aim at taking into consideration the interdependence 
of the attributes when a discretization has to be done, not independence. 

2. MULTIVARIATE DISCRETIZATION 

2.1 GENEICAL IDEA 

Instead of discretizing attributes univariately one by one, we merge several continuous 
attributes to a multidimensional vector and discretize in the resulting Euclidean space. The 
symbolic values are then geometric bounded entities, formed like hyperspheres, hyper- 
rectangles, hyperpolygons, open halfspaces etc. 

Let us join the two attributes temperature and humidity to a multidimensional superaf- 
tribute. The resulting 2-dimensional points are plotted in Fig. 1. 
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We consider these prototypes as the multivariate symbolic values for several continu- 
ous attributes. Any unknown multidimensional value has the symbolic value if the proto- 
type is nearer to it than any other prototype in terms of a distance function. The bivariate 
symbolization of the two attributes temperature and hurnidiry is now done as follows: For 
each of the 14 samples search the prototype which is most similar (next to) to the sample; 
then exchange the bivariate continuous value by the symbolic value of the prototype. 
From now onwards there are only symbolic values that describe the classes. Proceed with 
symbolic induction as usual, e. g. generate rules or decision trees. In the ID3 decision tree 
induction algorithm the gain for the superattribute could be calculated for instance since it 
is a symbolic attribute. 

For our example we obtain then a purely symbolic description like in Table 2. The 
bivariate continuous values for temperarure and humidity have been substituted by the 
symbolic values of the superattribute. 

But not only prototype-based multidimensional learning of continuous attributes fits 
into this philosophy, but also other geometric shapes that define a multidimensional sym- 
bolic value, like hyperrectangles. 

Table 2: Multivariate symbolization of the continuous attributes temperature and humidity 

2.2 BENEFITS AND DISADVANTAGES OF MULTIVARXATE DISCRETIZATION 

What benefits can be expected from the merging of several numeric attributes during 
discretization? The general tendency in Machine Learning seems to corroborate the need 
for multivariate instead of univariate approaches. Decision trees that test on several 
attributes are proposed as a more sophisticated evolution of decision trees that test only on 
a single attribute. Utgoff and Brodley [3] illustrate the limitations of univariate splits in 
decision trees with an example of a linear function that has to be learned. The univariate 
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splits are only optimal if a projection of an attribute on its respective coordinate axis pre- 
serves the class separation. Their PT2 decision tree induction algorithm uses multivariate 
tests in a single tree node. Also Clark and Niblett’s CN2 [8] employs a multivariate test 
with the concept of the decision lists, although the quantization of continuous attributes is 
done in the usual univariate way. With multivariate tests, decision trees become eventu- 
ally less complex because class boundaries may not be described exactly by an univariate 
approach, only approximations to the class concepts could be done. If hyperrectangles are 
used for instance to define the classes and the probability distributions of the classes realIy 
have rectangular forms, a multivariate description is surely preferential. 

As a drawback of multivariate discretization we can mention several facts: In a classi- 
fication system with a high degree of human interaction its becomes more difficult to 
understand a multivariate test. Decisions made by the system become less transparent. A 
human being can easily trace the decision making of a tree classifier if only one attribute is 
allowed in a node, but it gets harder to understand the combination of several attributes in 
a single step. 

3. RELATED RELEVANT WORK 

h this section we will point out research that has been done in order to solve problems 
that are related in many different aspects to our approach of multivariate discretization of 
continuous attributes. We do not claim any completeness of this overview. The objective 
is to relate the principles that are used in the different learning algorithms to our general 
approach of multivariate discretization. 

3.1 MULWARIATE CLUSTERING AS DISCRIMlNANT ANALYSIS 

Rendell investigated the problem of selective induction in a general framework that 
highlights the expression of discriminant analysis [lo]. Class formation and multivariate 
quantization are basically put on the same level. Three different types for symbolic values 
of multidimensional ordered numerical attributes are mentioned: 
i.) Hyperrectangular class clusters. This form of class formation expresses a concept or 

class as a bounded multidimensional box in which the members of the class are stored. 
The symbolization process in this case would state e.g. that an example has the sym- 
bolic value “box-1” if its first attribute may vary in the interval [3,6], its second 
attribute may vary in the interval [1,5] etc. 

ii.) Open hyperspaces. A line with the equation y = x in the 2-dimensional Euclidean 
space is an example of a boundary between two different classes. The symbolic value 
of a sample becomes then “upper halfspace” or “iower halfspace”. 

iii.) Prototype based methods. This class representation schema is exactly the same as for 
the hyperrectangles, differing only in the shape of the discriminating boundary. A pro- 
totype is the centroid of a hypersphere. The symbolic value is associated with the 
sphere. A sample is labelled with this symbolic value if its multidimensional numeri- 
cal value falls e.g. into “sphere-1”. The Q* uses a prototype-based model. 
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3.2 HYPERRECTANGLES 

Salzberg [l 11 developed the idea of rectangular shaped class delimiters to a learning 
algorithm that is able to model multimodal, nested class distributions. His NGE-algorithm 
dynamically learns by reshaping existing rectangles or creating new rectangles. The learn- 
ing is supervised and the outcome of a classification during training is the source of feed- 
back for the learning mechanism. The nearest hyperrectangle learning algorithm uses the 
way from symbolic to numeric attributes. Symbolic attributes are encoded like described 
in section 1.1. Experiments in two medical domains and for Fisher’s iris flowers data set 
[12] are described. 

The Q*-algorithm that will be presented later shares some concepts with the hyperrect- 
angle learning. A feedback about how the actual state of the induction system performs is 
used to dynamically reorganize the prototype based class representation. Differently how- 
ever Q* is conceived only as a preprocessing step for numerical attributes in order to trans- 
form them to symbolic values. The proper induction is performed by a symbolic approach, 
like ID3 for instance, whereas the NGE approach works in a geometric space. 

3 3  SELF-ORGANIZING MAPS, LEARNING VECTOR QUANTIZATION 

A learning method generally categorized as a neural network approach is the self- 
organizing map conceived by Kohonen [4]. This method is based on the principle of com- 
petitive learning. A set of codebook vectors represent a multidimensional abstraction of 
the raw data that are supplied by the examples. The algorithm works on a multidimen- 
sional Euclidean space. The basic idea is to tune the structure of the codebooks conform- 
ing the signals that appear in discrete time steps. The closest codebook mi = mi (t) to a 
signal (sample) xi = xi (t) is updated following the rule: 

with 0 < a ( t) c 1 being some gain coefficient, whereas the other codebooks that were not 
close to the sample remain the same: 

m i ( t + l )  = m , ( t )  

In its supervised form the codebooks are learned by the so called Vector Quantization 
(VQ) [5] .  In this case competitive learning is done with the known class membership of 
the samples. Several variants are proposed by Kohonen (LVQ1, LVQ2, LVQ3). A fixed 
number of initial codebooks is chosen. These codebooks are then updated using the com- 
petitive learning above. The codebooks are modified in the sense that they minimize an 
error criterion for the distance between the samples and their associated codebooks. 

Q* shares some concepts with the VQ. From a set of raw samples a representative set 
of prototypes is generated. Prototype samples are dynamically updated, taking into con- 
sideration if the actual state of the system is capable to classify correctly. The difference 
however is that in VQ the number of the codebook vectors is fixed, where for Q* represen- 
tative prototypes are dynamically created. 
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3.4 M"LmARIATE ATTRIBUTE NODES IN DECISION TREES 

Utgoff and Brodley showed with the PT2 algorithm [3] that it makes sense to test sev- 
eral attributes in a decision tree together. It is pointed out that eventually more compact 
trees are found compared to the conventional, univariate quantization method. The authors 
use linear threshold units (LTU) to separate classes. Symbolic attribute values are conse- 
quently half-spaces divided by hyperplanes. The trees for PT2 are always binary which 
implies a successive division of samples that could otherwise be divided directly if the 
separating boundary were not a hyperplane. Only two classes can be characterized. 

The paper also points out the major drawback of multivariate splits mentioned before: 
decisions made by the system become less transparent. The trade-off between complex 
trees on one hand or complex tests on the other hand was described. 

4. THE Q* QUANTIZATION ALGORITM 

i.) 

.. 
u. 

In this section we will specify in detail a technique that is conceived for the multivari- 
ate quantization of ordered numerical attributes. It should be understood as a possibility to 
implement the generation of symbolic attributes from a set of several continuous 
attributes. Other learning algorithms like Kohonen's LVQ or Salzberg's NGE could be 
used interchangeably for this purpose. 
Q* has the following properties: 

[t is non-parametric which is especially advantageous if the number of available train- 
ing examples is small. For instance the number of prototypes for each class has not to 
be specified a priori. 
It handles multimodal class distributions. Classes m y  be nested inside other classes in 
the multivariate continuous attribute space. This property is not true if e.g. a prototype 
is always calculated as the centroid of all samples that belong to a certain class. 

iii.) It is self-organizing. No parameters have to specified by the user. Class concepts in 
the multidimensional Continuous space are discovered automatically. 

iv.) For the purpose of a preprocessor for symbolic Machine Learning algorithms, it 
reduces the dimension of the class description vector. Several continuous attributes are 
merged into one superattribute. 

The subset of attributes that are numerical and continuous are represented by a set of 
prototypes (cluster centers) that are associated with the classes. The prototypes are created 
without any information about the other, symbolic attributes of the classes. The basic idea 
is to create a new prototype for a class whenever the actual set of prototypes is not capable 
of classifying the training set satisfactorily. This means hat if a sample is mis-classified, 
we assume that it is not covered sufficiently by the prototypes of the true class of the sam- 
ple. On the other hand if a sample is correctly classified by a prototype, it will influence 
the prototype itself. We use the method of updating a prototype by the mean of all samples 
which were correctly classifled by the prototype. The mean is a multidimensional vector 
that is calculated by the individual means of the components of the vector. These compo- 
nents are the values of a certain continuous attribute. Ln the example of Fig. 1 for instance 
the mean of the three vectors for the positive class in the lower left corner of the graph 
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(10.loC, 71.2%), (8.4’C, 75.2%) and (9.3’C, 78.2%) are represented by the mean vector 
(9.27’C, 74.87%) in Fig. 2. 

This process of updating is repeated as long as the system commits errors in classifica- 
tion and as long as it dynamically changes the location of the prototypes. 

The expectation for such a system is that it converges to a stable state in which the pro- 
totypes represent the classes. Multimodal class distributions should also be learned by the 
system without any prior specification by the user. The prototypes should adapt them- 
selves to complex class distributions in the n-dimensional Euclidean space. Nested class 
clusters inside other class clusters must be detected. The system must also be determinis- 
tic, i.e. it must not cycle infinitely through its adaptation loop. 

Table 3 gives the functional definition of the Q* quantization algorithm. Initially one 
arbitrary prototype represents one class. The whole sample set is presented to the system 
in one discrete time cycle. The feedback to the system is given by the classification of a 
sample. If the sample was correctly classified, join it to the list of positive examples of the 
nearest prototype. In the updating phase the mean value of this list will substitute the pro- 
totype. Hence the prototypes will gradually move to the centers of the local sample cluster 
that they should represent. Speaking in terms of probability distribution, the prototypes 
become the centroids of one mode of a multimodal class probability distribution. 

On the other hand if a sample was “recognized” by a strange prototype (a prototype of 
another class than the correct class of the sample), then the algorithm concludes that the 
class of the sample is not sufficiently represented. Consequently the sample is declared to 
be a new prototype for the class that was not recognized correctly. This mechanism 
ensures that new prototypes are created as seeds for new clusters. 

A highlight of the algorithm is that it needs no initial system parameter specifications 
like K-means or the similar ISODATA algorithm [13]. It adapts the prototype representa- 
tion of the classes by trying to approximate the respective class regions in the multidimen- 
sional space. 

One aspect of the clustering must be taken into consideration. The generation of the 
prototypes creates so called outliers, Le. samples that are isolated from a cluster are 
always considered as a new cluster center. This should however be avoided in order not to 
overfit the clustering to noise, similar to the problem of the “pure” ID3 algorithm. 

We therefore pass over the whole set of prototypes and delete those who never had any 
positive samples in their neighborhood. This procedure has the effect that outliers are 
purged and in overlapping areas of several classes the prototype occurrence is kept low. 

5. EXPERIMENTAL RESULTS 

The Q*-algorithm will be used for experiments in inductive classification. First we 
will feed the quantization mechanism with the iris flower data set of Fisher [ 121 using a 
attribute vector reduced to 2 dimensions for the purpose of better visualization. This 
experiment serves for the illustration of the effects of Q*. The second series of experi- 
ments will focus on the intentional conception of the algorithm, namely to be a preproces- 
sor of numerical attributes for symbolic induction algorithms. 
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Table 3: The Q* quantization algorithm 

Let {SI be all labelled examples of the training set and (S,) be the samples of 
class c. 

Let (P}  be the set of all prototypes and {Pc} be the set of all prototypes for 
class c. 

Let {S+,,} be a list of positive examples that were correctly classified by Pc,. 

Procedure Q* (S ) 
Initialization. For each class c pick one aleatory sample S, of that class as 
the first prototype P,, for that class c .  Reset discrete time step: t t 0. 

Repeat 
c t first class; 
while ((c c= Nr. of classes) and (no mis-classification occurred)) 

for (all samples S, of  class c) 
measure the Euclidean distance between S, and all prototypes Plj  of 

update the minimum distance (special case: do not update if minimum 

i f  (the closest prototype Pi3 to S, belongs to class c, i.e. i=c) 

else 

all classes i, inclusively t h e  class c; 

distance is equal to measured distance and i is different f r o m  c); 

join the sample S, to the positive samples of Pc,: 

a mis-classification occurred; 
the prototype Pkj with the minimum distance to S, belongs to 

create a new prototype for class c: {P,}+(P,}uS,; 
update all classes a by now visited: UPDATE-PROMTYPES (a) with 

cs+,, }+IS+,, }us,; 

another class k; 

a€ {l ... cl ; 
increment c; 

for (all classes c )  
i f  (no mis-classification occurred) 

UPDATE-PROTOTYPES ( C) ; 
test if prototypes change during the updating of class c 

next discrete time step t: t C- t+l; 
Until (the prototypes do not change anymore); 

Purge outliers. Delete all P, which IS+,,) was always empty. 

for (a11 prototypes P, of class c) 
Procedure UPDATE_PRO”YPES(c) 

if (list for positive examples (S+,j) of prototype P,, is not empty) 
replace P, by the mean of all S+,j; 
if (new value of P, is different from old value of P,) 

reset the list of positive examples for  P,: ( S + , j } t { ]  
prototypes have changed; 

The ID3 decision tree generator program of Quinlan [ 11 will be the frame in which 
classification experiments will be carried out. Data from three real world domains is ana- 
lyzed: i.) car imports ii.) hepatitis diagnosis and iii.) credit screening. The databases were 
downloaded Erom a repository €or machine learning databases from the University of Cal- 
ifornia at bine*.  The databases were chosen in respect to the suitability for the quantiza- 
tion algorithm. The attributes are mixed, i.e. nominal and numerical. The experiments will 
compare the estimated classification error rate for the univariate (no multivariate quantiza- 
tion) to the error for multivariate quantization with Q*. 
Beforehand we will define a set of conventions that were made at this stage of the system: 
I.) The zD3 decision tree algorithm is used in its pure form. No pruning or soft thresholds 

* directory: puWmachine-leaming-databases at server: ics.uci.edu 
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like described in [ 141 were applied to the decision tree. This constraint does not influ- 
ence the comparison of univariate to multivariate quantization. ID3 is one of several 
possible frameworks for the symbolic induction. 

11.) Examples with unknown values in one or more of their attributes were not used. The 
subset of the examples with only known attributes was used for training. The estima- 
tion of unknown attribute values lies outside the scope of this paper. 

III.) Contradictions were discarded in the training set. If an identical attribute vector was 
representing two or more classes, it was deleted from the training set. 
A few considerations about the time complexity of the algorithm: it is very hard to 

determine the analytic complexity of the Q*-algorithm, because it depends on the topol- 
ogy of the data. Experimentally however even for large data sets it runs in a reasonable 
amount of time. The duration lies in the same dimensions as the ID3 tree induction. The 
example mentioned below of credit screening needs for 6 continuous attributes and 653 
samples about 16 seconds on an IBM Risc/6000-32H workstation. 

5.1 IRIS FLOWERS 
The classical data set consists of 150 samples with 4 continuous valued attributed and 

3 classes of flowers each being equally represented by 50 samples. We use this data set in 
order to permit a visual comparison of the learning algorithm with the method of the 
hyperrectangles proposed by Salzberg [ 111. In his paper the author uses the 4th and 2nd 
attribute of the whole possible set of 4 continuous attributes. Figure 5 of his paper illus- 
trate the effect of the hyperrectangle learning on the 3 classes. The “setosa” class is lin- 
early separable from the other two classes using a linear decision boundary orthogonal to 
the “petal width” attribute. This fact is reflected by a single rectangle that defines the “set- 
osas”. For the other two classes “versicolor” and “virginica” the linear separation is 
impossible. The samples for the two classes overlap in attribute space. They must be 
approximated by several rectangles which also overlap partially. 

Q* is submitted to the same data as in the hyperrectangle algorithm. Fig. 3 shows the 
result after the prototypes have been learned. For this illustration no outlier purging was 
performed. It is interesting to note that the easily separable “setosa” is represented by only 
2 prototypes. The lower of the two prototypes would be deleted as an outlier if this part of 
the algorithm was executed. The hyperrectangle learning copes also easily with this class, 
because only one rectangle is needed to represent “setosa”. The other two classes are 
harder to distinguish. Consequently more prototypes are generated were the two classes 
approximate. It can be observed that the prototypes align themselves to the regions which 
are formed by the raw data of the two classes “versicolor” and “virginica”. 

Q* learned 2, 18 and 11 prototypes, of these being 1, 1, and 3 outliers for the 3 classes 
“setosa”, “versicolor” and “virginica” respectively. The induced ID3 tree consequently 
has 26 leaves with the multivariate attribute being the tested attribute in the root node. 

5.2 CAR IMPORTS 
This database is the number 4 of the repository of the University of California at h i n e  

mentioned above. It contains samples of imported cars and their specification. It was first 
used in [15]. The first attribute is the class attribute. It is called “symboling” and consists 
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node of the ID3 is 17 times the superattribute and 143 times the second (nominal) 
attribute. The gain in the root node varies between 1.92 and 2.18. Univariate: the attribute 
with the highest gain in the root node is always the attribute 10 with a gain between 1.18 
and 1.22. For this database the multivariate quantization has a lower error rate only for one 
case of the univariate quantization. The high gain of the superattribute can be explained by 
the fact that almost each class has an exclusive set of values for the superattribute. 

L, 30.00% \ z a Error rate for Q = 22.0% t: 

0.00% 
0 1 2 3 4 5 101520253035404550 

Interval coarseness 

Fig. 4. Estimated error by the leave-one-out method of the ID3 classification tree for the car import*&tabase 
with univariate quantization of continuous attributes and multivariate quantization using Q . 

53 HEPATITIS DATABASE 
This data set was used in [16] and [17]. After deleting the samples with one or more 

unknown attribute values, 80 of the originally 155 samples remained. Attributes 2 and 15- 
19 were merged into the superattribute. 

Error rate for Q = 22.5% 

l ! l : # , l , : l ; l l  
0 1 2 3 4 5 10 1520253035404550 

0.00% , I ,  

Interval coarseness 

Fig. 5. Estimated error for the hepatitis database. Analogous case like in Fig. 4. 

The error for the multivariate quantization is 22.5%, whereas the lowest univariate 
error is 12.5% for the size 4 of the discretization interval. For 10 out of the 15 different 
univariate coarseness intervals Q* classifies better, see Fig. 5.  

The gain for the multivariate case falls between 0.35 and 0.51, with the superattribute 
always being the winner at the root node. The number of leaves varies between 29 and 37. 

In the best univariate case attribute nr. 20 (histology) wins once with a gain of 0.22, 
attribute 19 (protime) wins two times in the root node of ID3 with a gain of 0.17 and 0.19. 
The Emaining 77 times attribute 18 (albumin) wins with a gain between 0.16 and 0.24. 
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5.4 CREDIT SCREENING 
It depends on several conditions whether a person is granted a credit card or not. In 

this database provided by Quinlan {18],{19] a history of credit card allowance decisions 
was recorded. The original data set of 690 was reduced to 653, deleting unknown samples. 
Continuous attributes are 2,3,8,  11,14 and 15. The error estimation was not done by the 
leave-one-out. Instead the average of 5 test runs with a split of 70 to 30 for training and 
test was taken to estimate the error rate. 

Observing the graph in Fig. 6 we can conclude a very interesting property of this data 
set. The lowest univariate error appears for the discrete interval step 0. This means without 
the use of any numerical attribute it is possible to decide best if a person can be granted a 
credit card or not. Any additional numerical attribute is more confusing than helpful in the 
decision making process. This emphasizes the necessity of an essential preprocessing step 
in classification: feature (attribute) selection. 

As soon as a numerical attribute is included, the error rate starts to raise. Logically one 
cannot expect from the Q* algorithm that it classifies better than an univariate technique 
for this database. 

The average multivariate error is 32.4% with a gain of 0.83 to 0.94 always for the 
superattribute as the root node winner and the number of leaves between 317 and 330. 

In all cases of the univariate version the attribute number 9 (binary with values t, f) is 
the winner of the root with gain values between 0.4 and 0.52. The number of leaves is with 
values between 94 and 257 always smaller than for the multivariate case. 

.E 10.00% 
3 

0.00% 
0 1 2 3 4 5 10 15202530354045sO 

Interval coafseness 

Fig. 6. Estimated error for the credit card granting database by splitting the data set into 70% training samples 
and 30% test samples using the average of 5 test runs. 

6. DLSCUSSION AND CONCLUSIONS 

We have presented a method for the multivariate quantization of ordered numerical 
attributes. The quantized values serve as symbolic values for Machine Learning induction 
algorithms. The Q* algorithm clusters the samples of a data set in the subspace of the 
numerical attributes. It prevents the user from dividing the ordered attribute scales into 
discrete steps. Its advantage is the parameter free nature of the approach. It is self organiz- 
ing and can be used as a straightforward preprocessor for Machine Learning algorithms. 

The drawback of such a multivariate method is that decision structures become less 
transparent. 

The results show higher recognition rates in some cases but do not yet satisfy. One 
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would expect a greater impact on the accuracy of the classifier. Perhaps other symbolic 
induction algorithms than ID3 are fitter for the method. Future research will try to focus 
on that question. 

It also seems that the gain for the superattribute is always to high in the root node, so 
that other attributes never have a chance to win in the root node. By further reduction of 
the number of prototypes for the samples it can eventually be achieved that the gains for 
the superattribute and the other symbolic attributes approximate in order to permit a fairer 
competition. The gain also favors attributes with many different values. These facts are 
open questions which have to be investigated in future work. 
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Case-based reasoning allows t o  r e s o l v e  problems 
b y  comparison wi th  a l r e a d y  r e so lved  ones .  This  
technique  i s  be ing  u t i l i z e d  f o r  domains i n  which 
l i t t l e  knowledge i s  c o r r e c t l y  formal ized .  
B u t  a minimum of knowledge has t o  be a v a i l a b l e  
t o  r ep resen t  cases s t o r e d  i n  memory by p e r t i n e n t  
f e a t u r e s .  B u t  t h i s  one does not  always e x i s t ,  as 
w e  s h a l l  see. 
T h e  method w e  use makes sma l l e r  t h i s  n e c e s s i t y .  
I n  t h i s  paper  w e  d e s c r i b e  t h e  system conceived.  
Thanks t o  t he  d e f i n i t i o n  of viewpoints,  t h i s  one 
p e r m i t s  t o  p r e d i c t  an  e v o l u t i o n  from a g iven  
d a t e .  

INTRODUCTION 

Case-based r e a s o n i n g  is  a t e c h n i q u e  of r e s o l u t i o n  used 
when the  knowledge r equ i r ed  f o r  r e s o l u t i o n  i s  i n s u f f i c i e n t  
o r  i m p r e c i s e .  It c o n s i s t s  i n  u s i n g  s i m i l a r  problem(s) 
a l r e a d y  r e so lved .  It avoids  r ebu i ld ing  a s o l u t i o n  when a 
s i m i l a r  problem has  a l r e a d y  been handled.  I n  t h i s  k ind  of 
r e a s o n i n g ,  t h e  e n t i t y  m a n i p u l a t e d  is named "case" ,  
a s s o c i a t i n g  t h e  s t a t e m e n t  of t h e  problem with i t s  
s o l u t i o n .  Cases are s t o r e d  i n  a memory, called c a s e  base  
[I1 - 
The p rocess  of case-based reasoning  b reaks  down i n t o  t h e  
following steps : 
1- d e f i n i t i o n  of t h e  problem by its r e p r e s e n t a t i o n  i n  a 
form adapted t o  t h e  reasoning, 
2- search of t h e  p e r t i n e n t  cases i n  t h e  case memory f o r  
t h e  r e s o l u t i o n  of  t h a t  problem. T h i s  p h a s i s  i s  g e n e r a l l y  
c a r r i e d  ou t  i n  t w o  s t e p s  : t h e  f i rs t  consis ts  i n  s e l e c t i n g  
i n  memory a set of cases susceptible of be ing  i n t e r e s t i n g  
, t h e n  among those t o  choose t h e  b e s t ( s )  f o r  t h e  
r e s o l u t i o n  t o  c a r r y  o u t .  They are t h e  source  cases, 
3-  b u i l d i n g  of t h e  s o l u t i o n  : 
The q u e s t i o n  i s  t o  t r a n s f e r  t h e  s o l u t i o n  from t h e  chosen 
case t o  t h e  case t o  fill up, t h e  t a r g e t  case. But ve ry  
o f t e n ,  there 's  no i d e n t i t y  relation between both and t he  
t r a n s f e r  i s  then  followed by an a d a p t a t i o n  s t e p .  
4- v a l i d a t i o n  : 



Once t h e  s o l u t i o n  i s  worked o u t ,  the  q u e s t i o n  i s  t o  t e s t  
i t .  T h i s  s t e p  i s  performed when t h e  r e s o l u t i o n  i s  t u r n e d  
on to  a p r e c i s e  o b j e c t i v e ,  a g o a l  s a t i s f a c t i o n  f o r  example. 
When t h e  r eason ing  has f a i l e d ,  it can be fo l lowed by  t h e  
c o r r e c t i o n  of t h e  knowledge be ing  used [ Z ] .  

T h e  CBR s i n e  q u a  non cond i t ion  i s  t h e n  t h e  p o s s i b i l i t y  of 
d e f i n i n g  a case e n t i t y  made up of  t h e  t e r m s  problem a n d  
i t s  s o l u t i o n .  I t  has  been  shown t h a t  t h i s  k i n d  o f  
r eason ing  could  be used i n  many areas : cookery 121, [ 3 ] ,  
l a w  141,  p l a n i f i c a t i o n  151, [ 6 1 ,  [21, e t c .  
W e  have used case-based reasoning  f o r  t h e  de t e rmina t ion  of 
e v o l u t i o n s  from a g iven  d a t e ,  f o r  areas  i n  which v e r y  
l i t t l e  knowledge i s  a v a i l a b l e .  O u r  approach i s  new f o r  two 
reasons  : 

- o u r  case-based reasoning  manipula tes  temporal  d a t a ,  
- o u r  case-based reasoning  d o e s n ' t  r e q u i r e  t h e  u s e  of 

impor tan t  f e a t u r e s  t o  i d e n t i f y  t h e  cases. 

W e  w i l l  d e s c r i b e  i n  s e c t i o n  I more p r e c i s e l y  t h e  problem 
p roposed .  I n  s e c t i o n  I1 w e  s h a l l  d e t a i l  t h e  r e a s o n i n g  
s t e p s .  W e  w i l l  p roceed  i n  t h e  t h i r d  p a r t  by a n  a rea  
d e s c r i p t i o n  which h a s  been t h e  s u b j e c t - m a t t e r  o f  a n  
a p p l i c a t i o n ,  and i n  s e c t i o n  I V  by t h e  p r e s e n t a t i o n  of  t h e  
system conceived,  i l l u s t r a t e d  by t h e  d e s c r i p t i o n  of one of 
i t s  components and w e ' l l  conclude.  

1. THE PROBLEM PROPOSED 

W e  wish t o  be able t o  d e t e r m i n e  t h e  fo l low-up of a n  
e v o l u t i o n .  An e v o l u t i o n  can  be d e s c r i b e d  t h i s  way : a n  
even t  which t r i g g e r s  it and o t h e r  e v e n t s  t h a t  f o l l o w  it .  
An even t  can r e s u l t  f u r t h e r  t o  one or several others .  B u t  
a n  e v e n t  can  happen r e g a r d l e s s  of t h e  o t h e r s  t o o .  Our 
d e f i n i t i o n  of  an event  i s  t h e  fo l lowing  : a p a r t  change of 
s i t u a t i o n  a t  a g iven  i n s t a n t ,  w i thou t  i n f o r m a t i o n  abou t  
i t s  l i f e  t i m e .  

W e  have e s p e c i a l l y  i n t e r e s t e d  o u r s e l v e s  i n  e v o l u t i o n s  f o r  
which w e  have no knowledge abou t  t h e  l i n k s  between t h e  
d i v e r s e  e v e n t s  which make  it up .  The u s e  o f  "classic1' 
r e a s o n i n g  methods as w e l l  as e x p e r t  sys tems w a s  t h e n  n o t  
c o n s i d e r a b l e .  T h e r e f o r e  w e  have chosen  t h e  case -based  
r eason ing  method. 

From a n  e v o l u t i o n  described by a set  of e v e n t s  which 
occured  between an i n s t a n t  to and an  i n s t a n t  t ,  w e  wish t o  
know which e v e n t s  are  g o i n g  t o  t a k e  p l a c e  a f t e r w a r d s .  
Hence, w e  s e a r c h  f o r  a s i m i l a r  e v o l u t i o n ,  t h a t  i s  t o  s a y  
an  e v o l u t i o n  w h i c h  has expe r i enced  t h e  s a m e  e v e n t s  a t  a 
g i v e n  t i m e .  Then w e  u t i l i z e  t h o s e  which fo l lowed  it t o  
work o u t  t h e  searched  e v o l u t i o n .  

The f ac t  of i g n o r i n g  t h e  c a u s a l  l i n k s  between e v e n t s  
d o e s n ' t  p e r m i t  u s  t o  " a b s t r a c t "  from t h e  set o f  e v e n t s  
d e s c r i b i n g  a n  e v o l u t i o n  a se t  of f e a t u r e s ,  as it i s  
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t r a d i t i o n a l  y done i n  case-based r eason ing .  W e  a r e  t h u s  
compelled t o  match c a s e s  p e r  t h e  c o n s i d e r a t i o n  of t h e  
t o t a l i t y  of events  t h a t  have occured. 

2 .  THE REASONING STEPS 

The " impor tan t  f ea tu re ' '  concept  i s  fundamental  i n  case-  
based  r eason ing .  T h a t ' s  t h o s e  f e a t u r e s  which pe rmi t  t o  
r e p r e s e n t ,  s t o r e ,  and r e t r i e v e  cases. 
Case-based reasoning  i s  q u i t e  o f t e n  opposed t o  rule-based 
r eason ing .  W e  blame t h i s  one for be ing  not  t h e  p e r f e c t  
r e f l e c t  of t h e  e x p e r t  knowledge. T h e  u se  o f  problem 
r e s o l u t i o n  expe r i ences  p e r m i t s  i ndeed  t o  p a l l i a t e  t h i s  
drawback [ 7 ] .  . , on the  fo l lowing  s i n g l e  c o n d i t i o n  : t h e  
f e a t u r e s  i d e n t i f y i n g  them are t h e  reflect of t he  important  
elements e f f e c t i v e l y  c h a r a c t e r i z i n g  t h e  exper iences .  

There e x i s t s  indeed domains i n  which t h e  exper iences  only  
c a n  be used.  T h a t ' s  t h e  case w i t h  the  areas i n  which w e  
have i n t e r e s t e d .  The e x p e r t i s e  i s  so l i t t l e  known tha t  w e  
d o n ' t  have even t h e  means of a s s o c i a t i n g  those  exper iences  
w i t h  a set of important f e a t u r e s  . 
The broad  l i n e s  of ou r  case-based r eason ing  s t e p s  are 
consequent ly  t h e  fo l lowing .  

2.1. CASE SELECTION 

S e v e r a l  s y s t e m s  select a l l  cases i n  memory, t h i s  i s  t h e  
case w i t h  PROXIMITY, GROWTH and SHRINK (81 .  

But most of t h e  t i m e ,  a few cases only  are s e l e c t e d  : t h e  
s e l e c t i o n  of p o t e n t i a l y  i n t e r e s t i n g  cases i s  t h e n  fol lowed 
by t h e  c h o i c e  of t h e  m o s t  i n t e r e s t i n g  c a s e s ,  by a 
c o n s t r a i n t  s a t i s f a c t i o n  a lgo r i thm f o r  example (91 or t h e  
u s e  of a model [IO]. I n  HYPO [ 4 ] ,  t h e  method b e i n g  
u t i l i z e d  is q u i t e  d i f f e r e n t  : i n s t e a d  of reducing t h e  se t  
o f  s e l e c t e d  cases, t h e  sys tem widens i t .  I t  d o e s n ' t  
a t t empt  t o  select t h e  m o s t  i n t e r e s t i n g  c a s e s  b u t  t o  f i n d  
a l l  cases having a l i n k  w i t h  t h e  t a r g e t  case. 

O u r  approach  c o n s i s t s  i n  r e d u c i n g  t h e  s e t  of t h e  
p o t e n t i a l y  c a n d i d a t e  cases t o  a s i n g l e t o n  : t h e  one i n  
which w e  could l o c a t e  a given follow-up of even t s .  

2 .2 .  MATCHING OF CASES 

Given t h a t  w e  do not  have a t  our d i s p o s a l  t h e  s u f f i c i e n t  
knowledge t o  abstract  t h e  i m p o r t a n t  e v e n t s  f r o m  an 
e v o l u t i o n ,  which would f a c i l i t a t e  t h e  compar ison  o f  
evo lu t ions ,  we cons ider  t h e  t o t a l i t y  of those  e v e n t s .  

Moreover, there  may have d i f f e r e n t  k inds  of e v e n t s .  For 
example, l e t ' s  cons ide r  t h e  case of a person  who i s  ill. 
The e v o l u t i o n  of h e r  s ta te  r e s u l t s  from t h e  v a l u e  o f  
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s e v e r a l  f a c t o r s ,  s p e c i a l l y  t h e i r  r e s p e c t i v e  e v o l u t i o n s .  To 
secc le  a d i a g n o s t i c ,  it may be i n t e r e s t i n g  b r i n g i n g  
t o g e t h e r  t h e  e v o l u t i o n  of t h e  s t a t e  of t h e  ill person  and 
t h e  e v o l u t i o n  of well-known i l l n e s s e s .  Now, t h e  comparison 
of two i l l n e s s e s  e v o l u t i o n s  i s  h a r d l y  c o n c e i v a b l e  by 
c o n s i d e r i n g  them i n  t h e i r  whole : how can w e  c o n s i d e r  t h e  
e v o l u t i o n  of t h e  b lood  p r e s s u r e  of t h e  p a t i e n t  w i t h  t h e  
one of i t s  sed imen ta t ion  speed ? 

T h i s  r e m a r k  a p p l i e s  e q u a l l y  t o  n a t u r a l  c a t a s t r o p h e s ,  
chosen a rea ,  and more g e n e r a l l y  t o  e v e r y  phenomenon i n  
w h i c h  a g l o b a l  s t a t e  r e s u l t s  of a l a r g e  number of 
p a r a m e t e r s .  These t h o u g h t s  have l e d  u s  t o  c o n s i d e r  t h e  
e v o l u t i o n  a c c o r d i n g  t o  a v i e w p o i n t ,  t h i s  one b e i n g  
a s s o c i a t e d  wi th  a g iven  t y p e  of e v e n t s .  

Two e v o l u t i o n s  are t h u s  s i m i l a r  i f f  : 
For a given follow-up of events r e l a t i v e  t o  the  evolut ion 
E and the  viewpoint P ,  which occured between i n s t a n t s  t o  
and ti, t here  e x i s t s  t w o  i n s t a n t s  t ' 1  and t ' 2 ,  between 
which events  t h a t  occured according t o  t h e  viewpoint P i n  
the  evolut ion E ' ,  are s i m i l a r  t o  E between t o  and t .  

2 . 3 .  EVOLUTION DETERMINATION AND ADAPTATION 

The e v o l u t i o n  produced by o u r  sys tem c o n s i s t s  i n  e v e n t s  
coming from t h e  s o u r c e  case, t h a t  i s  t o  s a y  t h e  chosen 
e v o l u t i o n .  The a d a p t a t i o n  s t e p  c o n s i s t s  i n  a d a p t i n g  t h e  
e v e n t s  t o  t h e  t a r g e t  case. That w i l l  be described more 
p r e c i s e l y  i n  t h e  follow-up. 

To r e a l i z e  t h e s e  s t e p s ,  a l l  t h e  e v e n t s  have  been  
c l a s s i f i e d  a c c o r d i n g  t o  t h e i r  n a t u r e  a n d  have  been  
a s s o c i a t e d  w i t h  d i f f e r e n t  v i e w p o i n t s .  But w e  have  t o  
choose which k i n d ( s )  of e v e n t s ( s )  is  ( r e s p .  a re )  going  t o  
be used  t o  t r a n s l a t e  t h e  hypotheses  about  t h e  e v o l u t i o n .  
Hence, w e  have  proceeded  t o  an  o t h e r  c a t e g o r i z a t i o n  of 
e v e n t s  acco rd ing  t o  t h e  kind of l i n k s  which a s s o c i a t e  them 
t o  o t h e r s .  Hence, w e  d i s t i n g u i s h  : 
- even t s  which r e s u l t  of t h e  i n f l u e n c e  of o t h e r  e v e n t s ,  
- even t s  which i n f l u e n c e  o t h e r  e v e n t s .  

That  i s  t o  say w e  suppose t h a t  w e  know among a l l  t h e  
e v e n t s  which occur ,  t h o s e  who i n d i c a t e  t h e  i n f l u e n c e  of  
some other  e v e n t s ,  and t h o s e  who i n f l u e n c e  o t h e r s .  T h a t ' s  
t h e  minimal knowledge t h a t  w e  u s e  i n  o u r  r e a s o n i n g .  W e  
r e p r e s e n t  t h e n  ou r  hypotheses  i n  t e r m s  of e v e n t s  which are 
s u b j e c t  t o  t h e  i n f l u e n c e  of  o t h e r s .  In  medica l  d i a g n o s i s ,  
such an  h y p o t h e s i s  may be " the  p a t i e n t  w i l l  have a cr is is  
at t e n " ,  t h i s  one r e s u l t i n g  of e v e n t s  l i k e  a drop  of t he  
blood p r e s s u r e .  

W e  have c o n s i d e r e d  t h i s  approach i n  t h e  f r a m e  of a r e a l  
t i m e  system. A t  any moment of t h e  e v o l u t i o n ,  it c o n t a i n s  
t h e  fo l lowing  in fo rma t ion  about  t h e  e v o l u t i o n  : 
- t h e  d e s c r i p t i o n  of  t h e  e v o l u t i o n  which i s  occur ing ,  
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- t h e  h y p o t h e s e s  r e a l i z e d  a b o u t  i t s  f u t u r e ,  e a c h  
hypo thes i s  be ing  l i nked  t o  a viewpoint ,  t h a t  i s  t o  say a 
kind of parameter .  

W e  have d e f i n e d  a mul t i -exper t  d i s t r i b u t e d  a r c h i t e c t u r e ,  
composed of modules a s s o c i a t e d  t o  a k ind  of even t s ,  t h e s e  
e v e n t s  hav ing  an  i n f l u e n c e  on o t h e r s  ; and a d a t a b a s e  
c o n t a i n i n g  on t h e  one hand t h e  i n fo rma t ion  r ece ived  about 
t h e  e v o l u t i o n  c o n s i d e r e d ,  and on t h e  o t h e r  hand t h e  
hypo theses  r e s u l t i n g  from t h e  r e a s o n i n g s  done by each  
module.  These l a t e s t  are t h u s  t r a n s l a t e d  i n  t e r m s  of 
"events  which a r e  inf luenced  by" o t h e r  e v e n t s .  Each module 
r e a s o n s  p e r  case to b u i l d  hypo theses  r e l a t i v e  t o  t h e  
f u t u r e  e v o l u t i o n ,  a c c o r d i n g  t o  t h e  v i ewpo in t  which 
i n t e r e s t s  i t .  

T h a t ' s  t h e  a r e a  of f o r e s t  f i r e s  which  has made up t h e  
p o i n t  of d e p a r t u r e  of ou r  work . W e  d e s c r i b e  below t h e  
a r e a  and how w e  have implemented t h e  proposed method. 

3 .  THE DOMAIN 

T h e  p r o p a g a t i o n  of a f o r e s t  f i r e  is a c o m p l i c a t e d  
phenomenon. I t  depends on a high  number of environmental  
f a c t o r s  : wind, r e l i e f ,  vege ta t ion ,  dryness ,  etc. 

A f o r e s t  f i r e  is  desc r ibed  b y  o v e r a l l  in format ion  such as 
: " the  r i s k  of f i r e  s ta r t  i n  t h e  day of t h e  15 july w a s  
ve ry  s t r o n g " .  Information can be much more p r e c i s e  as "an 
a t t a c k  group a r r i v e d  on t h e  S t e  V i c t o i r e  mountain a t  4:12 
pm l l .  Precise informat ion  correspond t o  what w e  des igned  
above as even t s .  

The set o f  pa rame te r s ,  l i k e  re l ief  and  v e g e t a t i o n  run  
a long ,  t h e  a r r i v a l  of eng ins  c o n s t i t u t e  a l so  e v e n t s .  In  
o u r  o b j e c t  r e p r e s e n t a t i o n  of a case, t h e  re l ief  and t h e  
v e g e t a t i o n  are y e t  i n fo rma t ion  independent  of t i m e .  But 
t h i s  i s  n o t  t h e  case w i t h  t h e i r  i n t e r p r e t a t i o n .  Each 
r e l i e f  o b j e c t ,  d e s c r i b i n g  a p o i n t  l o c a t e d  a t  a g iven  
a l t i t u d e ,  i s  indeed r ep resen ted  i n  t h e  case because a t  a 
g i v e n  moment, f i r e  went across it. Our r e p r e s e n t a t i o n  
pe rmi t s  do ing  the  l i n k  between t h e s e  "timeless" p i e c e s  of 
in fo rma t ion  and  t i m e  (see append ix ) .  The re fo re  w e  will 
expand o u r  d e f i n i t i o n  of an event  t o  eve ry  change l i n k e d  
d i r e c t l y  or i n d i r e c t l y  t o  t h i s  one. 

These parameters are  going  t o  have an  i n f l u e n c e  on t h e  
f i r e  propagat ion  and then  on t h e  d e s c r i p t i o n  of t he  f i r e  
e v o l u t i o n ,  i n  t e r m s  of e v e n t s  d e s c r i b i n g  i t s  sp read .  B u t  
t h e  l i n k  between parameters  and t h e  p ropaga t ion  i s  fa r  
away from be ing  e x p l i c i t .  

T h e r e f o r e ,  w e  have chosen  t o  compare f o r e s t  f i r e s  
v iewpoin t  per v iewpoin t .  I n  fact ,  i n  order t o  de te rmine  
t h e  f i r e  p ropaga t ion  which is occur ing ,  w e  are going  t o  
s e a r c h  f o r  s i m i l a r  f i r e s  according t o  t h e  t h r e e  viewpoints  
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d e s c r i b e d  above : wind, r e l i e f  and v e g e t a t i o n .  More 
p r e c i s e l y ,  under t h e  wind viewpoint,  we a r e  going t o  f i n d  
t h e  f i r e  which has known t h e  same wind changes : . d i r e c t i o n  
and speed .  For t h e  r e l i e f ,  we a r e  going t o  sea rch  f o r  a 
f i r e  which has spread over a r e l i e f  i d e n t i c a l  t o  t h e  f i r e  
which is  occuring,  i t  i s  t h e  same f o r  t h e  vege ta t ion .  And 
t h e  e s t a b l i s h e d  evo lu t ion  w i l l  be t r a n s l a t e d  i n  terms of 
events  desc r ib ing  t h e  propagat ion.  

4 .  THE SYSTEM 

I t s  o b j e c t i v e  i s  then  being a b l e  t o  p r e d i c t  t h e  evo lu t ion  
of  a r u n n i n g  f i r e .  T h i s  s y s t e m  has  a d i s t r i b u t e d  
a r c h i t e c t u r e  a s  f i g u r e  1 below shows i t .  Each of t h e  
module reasons  p e r  case  accord ing  t o  a f i r e  parameter  : 
r e l i e f ,  vege ta t ion ,  o r  wind. The hypotheses,  generated by 
each of t h e  modules a r e  added t o  t h e  da t abase .  Hypotheses 
are  r e p r e s e n t e d  by e v e n t s  d e s c r i b i n g  t h e  p r o p a g a t i o n .  
Tha t ’ s  indeed t h i s  kind of event t h a t  i n t e r e s t s  u s .  

The s y s t e m  i s  a real-time system which r e a c t s  t o  new 
informat ion  t h a t  it r e c e i v e s ,  among o t h e r s ,  on t h e  f i r e  
p r o g r e s s i o n .  Af te rwards ,  t h e s e s  ones a l l o w  g e n e r a t i n g  
hypotheses  on i t s  f u t u r e  p ropaga t ion .  The r e l i e f  module 
f o r  example, is going t o  s e a r c h  € o r  a f i r e  having  run 
along t h e  same r e l i e f  i n  t h e  memory of cases ,  and i s  going 
t o  gene ra t e  hypotheses on t h e  f u t u r e  f i r e  propagat ion .  I t  
i s  l ikewise  f o r  t h e  o t h e r  parameters .  

Fig. 1 : System architecture 

The da tabase  con ta ins  d a t a  t h a t  can be : 
- deduced by t h e  modules a s s o c i a t e d  with t h e  d i v e r s e  

parameters .  They a r e  t h e  hypotheses  on t h e  propagat ion  : 
“ f i r e  w i l l  be a t  t h e  farm Cazeneuve a t  4:30 pmrt, 

- e n t e r e d  by the  u s e r  : changes  o f  wind which 
happened, i n fo rma t ion  r e c e i v e d  on t h e  a c t u a l  s p r e a d  of 
f i r e ,  

- deduced from t h e  da t a  provided by t h e  u s e r  : r e l i e f  
and vege ta t ion  run along.  
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We cons ide r  indeed t h a t  t h e s e  l a t e s t  data can be deduced 
from the i n f o r m a t i o n  on t h e  f i r e  advance ,  b y  t h e  
examination of a ground map. T h a t ' s  tne r o l e  of t h e  module 
" c a r t  o g r ap h y . 

W e  d e s c r i b e  now t h e  working of t h e  r e l i e f  module, which 
m a k e s  up i t s e l f  a case-based reasoning system. 

Relief module : 

From a piece of i n f o r m a t i o n  c o n c e r n i n g  t h e  f i r e  
p ropaga t ion ,  t h i s  module sea rches  f o r  a f i r e  i n  memory 
which a t  a given moment, has run along t h e  same relief a s  
t h e  one run a long  b y  t he  t a r g e t  f i r e  s i n c e  i t s  ou tb reak .  
B u t  t h a t ' s  not enough. 

The r e l i e f  t h a t  t h e  f i r e  r u n s  a long  can indeed have long  
te rm e f f e c t s  on i t s  propagat ion .  For example, it may have 
a c c e l e r a t e d  i t .  But i t s  e f f e c t s  can be i m m e d i a t e  : a 
propagat ion  s t o p  caused by the  descent of a s t r o n g  s lope ,  
€o r  example. 

I f  w e  wish t o  g e n e r a t e  hypotheses  about t h e  f u t u r e  f i r e  
behavior ,  w e  don ' t  have t o  cons ider  a l l  t h e  re l ief  t h a t  it 
ran  a long  only,  bu t  a l s o  t h e  relief t h a t  i t ' s  going t o  run 
a long .  Therefore ,  we have t o  a n t i c i p a t e  t h e  r e l i e f  t h a t  
w i l l  be run along.  

F i g u r e  2 p r e s e n t s  t h e  informat ion  u t i l i z e d  t o  c a l c u l a t e  
t h e  propagat ion  of t h e  target  f i r e .  Ef and Es are e v e n t s  
d e s c r i b i n g  the  f i r e  propagat ion .  The " t a r g e t  f i r e "  i s  t h e  
f i r e  which i s  o c c u r i n g .  W e  have d e s c r i b e d  above t h e  
p r o f i l e  of  t h e  r e l i e f  t h a t  it r a n  a l o n g  s i n c e  i t s  
outbreak,  t h a t  is t o  s ay  u n t i l  t h e  t i n s t a n t .  

W e  have  r e p r e s e n t e d  t h e  " a n t i c i p a t e d  r e l i e f "  t o o ,  
r ep resen ted  a f t e r  t h e  t i n s t a n t  here .  W e  have a s s o c i a t e d  
t o  t h e  t i m e  a x i s  e v e n t s  cor responding  t o  t h e  piece of 
in fo rma t ion  t h a t  w e  have on t h e  f i r e  p ropaga t ion .  Ef is  
t h e  l a t e s t  even t .  I n  our r e p r e s e n t a t i o n ,  w e  s e p a r a t e  t h e  
d i f f e r e n t  k inds  of  i n fo rma t ion .  As it is  shown i n  t h e  
diagram, t h e  t i m e  a x i s  permits  yet t o  l i n k  them (see 
appendix) .  

The p r i n c i p l e  of  our method i s  t o  r e t r i e v e  a f i r e  i n  
memory which, under  t h e  relief viewpoint ,  i s  s imi l a r  t o  
t h e  t a r g e t  f i r e .  W e  s ea rch  then  f o r  a f i re  which has a t  a 
g iven  moment run  a long  t h e  same relief : t h e  sou rce  f i r e  
above has  w e l l  went a c r o s s  a s imilar  re l ie f ,  between t h e  
i n s t a n t s  t ' l  and t ' 2 .  The even t  ES has occured  when t h e  
f i r e  has gone across the r e l i e f  w e  have a n t i c i p a t e d  : it 
r e s u l t s  t h e r e f o r e  of a l l  t h e  r e l i e f  run along and a t  t h a t  
moment. These are t h e  e v e n t s  w e  are going t o  u t i l i z e  t o  
describe t h e  hypotheses  about t he  target f i r e  propagat ion .  
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Fig. 2 : Evolution prediction according to the relief viewpoint 

We descrive below the reasoning s teps  : - transformation of the r e l i e f  under a su i ted  shape, - r e t r i eva l  of a f i r e  having run  along the same r e l i e f ,  - r e t r i eva l  of information about i t s  propagation, - t r a n s f e r  and adaptation of t h i s  piece of information 
towards the t a rge t  f i r e ,  - adding of the  hypotheses carr ied out t o  the database. 

4.1. RELIEF TRANSFORMATION 

The r e l i e f  ca l led  up i n  the f i r e s  i s  represented under the 
form of a curve.  I n  our system, by con t r a s t  w i t h  t he  
descr ip t ion  of f i r e s  as  it i s  done by the  experts ,  it 
cons i s t s  i n t o  a succession of po in ts  faraway from each 
o the r  of a c e r t a i n  d is tance  and loca ted  a t  a given 
a l t i t u d e .  The r e l i e f  module i s  going t o  t r y  t o  re t r ieve  a 
f i r e  which has  spread over t h e  same r e l i e f .  The 
mathematical methods grounded on curves d i f fe rences  a r e  
not useful  here : theses ones consider a p ixe l  follow-up. 
Hence, we t r y  t o  compare slope successions.  The l ikeness 
c r i t e r ion  of two prof i les  i s  indeed the sense of the slope 
(ascendant, descendant), the  order i n  which they have been 
went across ,  and too the eventual passing over of more 
complicated r e l i e f  accidents too : such as a pass ,  a 
valley,  e t c .  

From t h e  numerical r e l i e f  representation under a numerical 
form, we b u i l d  a symbolic r e p r e s e n t a t i o n .  T h i s  i s  
equivalent  t o  s l i pp ing  the  curve i n t o  a succession of 
segments, t o  associate  those w i t h  a slope and i f  possible,  
replacing a slope follow-up by a "shape" : fo r  example, a 
val ley.  
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We dispose then of two representation l eve l s  : slopes and 
shapes. The transformed r e l i e f  w i l l  be represented thanks 
t o  both l eve l s .  

I n  t h e  expert  language, we speak about "weak slope",  
" s t rong  s lope" ,  e t c .  T h i s  vocabulary has l e d  u s  t o  
c l a s s i f y  the  s e t  of slopes : t o  each group of slopes,  we 
a s s o c i a t e  a r e p r e s e n r a t i v e ,  a pro to type  i n  form 
recognition [123. We dispose t h e n  of slope models, e i t h e r  
ascendant, o r  descendant. The degree associated w i t h  each 
i s  symbolic. Indeed we have used t h e  multi-set theory i l l 1  
according t o  which an element belongs t o  a s e t  t o  a 
cer ta in  degree. 

A f i r s t  transformation from a s e t  of points  cons is t s  then 
i n  generating slopes i n  the  form of symbols with which we 
assoc ia te  a degree. From these symbolic slopes,  we t r y  t o  
generate forms, associated w i t h  a degree too.  T h i s  l a t e s t  
i s  a vector const i tuted of degrees associated w i t h  slopes 
cons t i tu t ing  the generated form. 

4 . 2 .  RETRIEVAL OF A F I R E  HAVING RUN ALONG THE SAME RELIEF 

Tradi t ionaly i n  CBR, the  se lec t ion  of t h e  most comparable 
case t o  t h e  source t a r g e t  i s  c a r r i e d  out  by t h e  
determination of a s e t  of "candidate" cases,  t h e n  among 
those t h e  se l ec t ion  of t h e  b e s t .  We consider t h a t  a l l  
cases  a r e  candidates i n  t h e  beginning. W e  evaluate  the  
l ikeness  w i t h  t he  t a rge t  case and only t h e n  we choose the  
best  one. 

O u r  matching algorithm is hence put i n  charge of matching 
l i s t s  of symbols representing slopes o r  forms, associated 
w i t h  a membership degree which can be a symbol, o r  a 
vector of symbols. 
For example : (ascendant slope,  strong) -(descendant slope, 
weak)-(descendant s lope ,  very weak), (va l l ey ,  (weak, 
strong) 1 . 
The matching s t e p  compares then two symbol €allow-up 
assoc ia ted  with a membership degree. Two follow-up look 
l i k e  each other  i f  : - they a r e  const i tuted of the same elements, - the  e lements  follow each other  i n  the  same order. 

These  two matching c r i t e r i o n s  c o n s t i t u t e  two d i f f e r e n t  
methods, two viewpoints, which a r e  going t o  me mutually 
u t i l i z e d  t o  evaluate  t h i s  one. From a matching r e s u l t s  
then a couple of cos t s  : t h e  f i r s t  value comes from t h e  
comparison between successions as s e t s  of symbols. If t he  
s e t s  a r e  composed w i t h  t h e  same elements, t he  matching 
cos t  i s  n u l l .  The second considers t h e  posi t ioning of the  
elements i n  both success ions  r e s p e c t i v e l y .  F igure  3 
describes the  corresponding algorithm. 
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ltarget - symbol list describing the relief stemming from the target case. 
lsource - symbol list describing the relief stemming from the source 
case. 
cpt - 0. 
while ltarget and lsource are not empty do 

ftarget - first (Itarget). ltarget - rest (Itarget). 
fsource - firsts (Isource). lsource - rest (Isource). 
if ftarget and fsource describe the same kind of slope (ascendant 
or descendant) or the same kind of form then 

else 
cost - 0 

search for a kind of slope or the kind of form the most like fsource 
and such that it is in Itarget. 

The found object is aux. We take it off from Itarget. 
cost - the distance, in number of positions, from the aux position 

in ltarget to the ftarget position in ltarget + the "virtual distance" which 
exists between fsource and aux. 

end if 
end while 
result - cpt. 

Fig. 3. Matching algorithm between two relief descriptions 

The determination of the  most s imilar  slope or shape i s  
r ea l i zed  from a graph whose values a r e  symbols. Each 
value i s  re la ted  t o  the "most proximate" symbols per bow 
stamped w i t h  a "v i r tua l  distance" which separate  them. We 
have defined the  proximity between two symbols by the  
s imil i tude of t h e i r  e f f ec t s  on the f i r e .  

We dispose a t  t h i s  s tage of a l i s t  of cos t  couples. As 
theses  measures a r e  done f o r  each case i n  memory, there  
are as many as there  a re  cases i n  memory. The best  case i s  
the  one whose two cos ts  a r e  lower than those of a l l  the 
o thers .  I n  the absence of a case presenting t h i s  feature ,  
we ' l l  take the  one whose one of cos ts  i s  lower than all 
the  others,  independently of the couple it belongs t o .  

4 . 3 .  SEARCH OF INFORKATION ABOUT THE PROPAGATION 

The best  case being chosen, w e  can proceed t o  the calculus 
of t h e  f i r e  e v o l u t i o n .  T h i s  one i s  r e a l i z e d  from 
information about the propagation of t he  source f i r e  which 
has been se lec ted .  Events i n  a case being c l a s s i f i e d  i n  
chronological order, w e  ex t rac t  from a case t h e  following 
events : the  event Es i n  f igure 2 .  

4 . 4 .  TRANSFER AND ADAPTATION OF EVENTS TO THE TARGET CASE 

Once these  events have been se lec ted ,  w e  have t o  adapt 
them t o  the  t a r g e t  case.  We consider t h a t  each event i s  
represented i n  a plan guided by a time axis  and a distance 
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a x i s ,  whose o r i g i n  co r re sponds  t o  t h e  l o c a t i o n  and 
s t a r t i n g  d a t e  of t h e  f i r e .  The t r a n s f e r  and a d a p t a t i o n  of 
an event  c o n s i s t  then  i n  a t r a n s p o s i t i o n  of a guiding i n t o  
another  one.  

4 . 5 .  A D D I N G  OF THE GENERATED HYPOTHESES TO THE DATABASE 

T h e  h y p o t h e t i c a l  e v e n t s  c a r r i e d  o u t  d e s c r i b e  t h e  
success ion  of t he  running e v o l u t i o n .  A l l  t h e  d a t a  on t h e  
d a t a b a s e  a re  o r g a n i z e d  a long  t h e  s t r u c t u r e  of  a c a s e  
de f ined  i n  appendix.  A t  every moment of t h e  reasoning,  t h e  
d a t a  base  i s  then  q u i t e  readable .  W e  on ly  have t o  suppress  
a l l  the  h y p o t h e t i c a l  da t a  t o  s t o r e  t h e  new case i n  memory. 

There i s  ano the r  s t e p  i n  case-based reasoning  systems t h a t  
doesn ' t  e x i s t  i n  a l l  systems. I t  is t h e  e v a l u a t i o n  phas i s .  
T h i s  one depends indeed  on t h e  a v a i l a b l e  knowledge t o  
v a l i d a t e  t h e  ye ld  r e s u l t s .  When the  reasoning  i s  d i r e c t e d  
towards a s i n g l e ,  or several goa l s ,  it s u f f i c e s  t o  v e r i f y  
t h a t  t h o s e  a r e  reached [ 2 ] .  In  a l l  o t h e r  cases, i f  it was 
p o s s i b l e  t o  e v a l u a t e  t h e  r e s u l t ,  t he  reasoning  would have 
no sense  anymore, a t  least  i n  t h e  frame of a reasoning use 
t o  p a l l i a t e  t h e  l a c k  of  e x p e r t i s e .  I n  our case ,  e x p e r t s  
t h e m s e l v e s  c a n ' t  e v a l u a t e  t h e  r e s u l t s  y e l d .  Only a 
comparison with t h e  a c t u a l  evo lu t ion  has  s o m e  sense .  

CONCLUSION 

The de te rmina t ion  of t he  evolu t ion  of a running process  i s  
a new problem, a t  l eas t  i n  case-based r e a s o n i n g .  The 
problem o f  t h e  d e t e r m i n a t i o n  of a fol low-up h a s  been 
handled,  b u t  for wel l -def ined  data between which w e  c a n  
f i n d  a r e l a t ion  [13]. 

. 

The d e t e r m i n a t i o n  of e v o l u t i o n s ,  much more g e n e r a l ,  has  
c o n s t i t u t e d  t h e  t a r g e t  of o u r  r e s e a r c h .  Our a i m  w a s  t o  
conceive a system being able t o  determine i ts  " fu tu re" .  An 
e v o l u t i o n  i s  d e s c r i b e d  thanks  t o  a set of e v e n t s  about 
which w e  have l i t t l e  information : w e  d o n ' t  know how t h e y  
i n t e r a c t  and t h e n  how t h e y  i n f l u e n c e  t h e  e v o l u t i o n .  W e  
o n l y  know t h a t  t h e y  are of d i f f e r e n t  k i n d s  a n d  t h a t ,  
i n s i d e  each  group,  e v e n t s  e i t h e r  have an  a c t i o n  on t h e  
even t s  of other event  c a t e g o r i e s ,  t h a t  i s  t o  say  t h a t  t h e  
second ones  r e s u l t  f r o m  t h e  f i r s t  ones ,  or by c o n t r a s t  
undergo t h e  other  even t s .  

W e  have in t roduced  the  no t ion  of viewpoint on an evo lu t ion  
: w e  do hypotheses  on i t s  f u t u r e  a long  an event  ca t egory .  
Hence, w e  have de f ined  a d i s t r i b u t e d  a r c h i t e c t u r e  i n  which 
each module reasons  per case according t o  a viewpoint .  

Our a p p r o a c h  i s  o r i g i n a l  because  e a c h  of o u r  cases 
c o n s t i t u t e s  a direct and i n t e g r a l  t r a n s c r i p t i o n  of t h e  
e v o l u t i o n  r e p r e s e n t a t i o n s  on which w e  have based  o u r  
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sys t em.  O u r  matching method f u r t h e r m o r e  i s  v e r y  l i t t l e  
domain dependant ,  

O u r  a p p r o a c h  has  y e t  an  i n c o n v e n i e n t  which is t h e  
n e c e s s i t y  of cons ide r ing  a l l  t h e  cases.  B u t  t h e  u s e  of an 
index r e q u i r e s  a case i n t e r p r e t a t i o n  i n  t e r m s  o f  f e a t u r e s .  
Given t h e  l a c k  o f  knowledge about  t h e  c o n s i d e r e d  a rea ,  
t h i s  one would have a l l  t h e  chances  t o  be e r r o n e o u s .  
T h a t ' s  what w e  f i r m l y  wanted t o  avo id .  

W e  s t u d y  now t h e  f e a s a b i l i t y  of  t h e  combina t ion  of 
hypo theses  g e n e r a t e d  by each  of  t h e  modules.  T h a t ' s  a 
d i f f i c u l t  problem because t h e  e v e n t s  w e  u s e  t o  b u i l d  
e vo  1 u t  i on o f t h e 
i n f l u e n c e  of a l l  t h e  k inds  of e v e n t s .  Moreover w e  ob ta ined  
them by c o n s i d e r i n g  only  one of them. I n  s h o r t ,  w e  shou ld  
r e t i r e  from hypotheses  carr ied o u t  a l l  t h e  i n f l u e n c e  of 
e v e n t s  which d o n ' t  have been v o l u n t a r i l y  c o n s i d e r e d .  An 
o t h e r  s o l u t i o n ,  much more r e a s o n a b l e ,  would c o n s i s t  i n  
c o n t r o l i n g  t h e  c h o i c e  of cases by each  module : i f  w e  
succeed i n  f i n d i n g  a case which i s  t h e  b e s t  a long  a l l  t h e  
v iewpoin ts ,  t h e  problem i s  a c t u a l l y  r e so lved .  

hypo t he s e s re s u 1 t " i n  t r i n s  i ca 1 1 y '' 
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Appendix 

CASE REPRESENTATION 

A c a s e  i s  d e s c r i b e d  by much i n f o r m a t i o n  : g e n e r a l  
comments, such a s  f o r  example, the  e c l o s i o n  r i s k  t h e  day 
of the c a t a s t r o p h e  and i n f o r m a t i o n  r e l a t i v e  t o  t h e  
p r o p a g a t i o n  of t h e  f i r e  t o o .  T h a t ' s  t h e s e  ones t h a t  
i n t e r e s t  u s .  We have represented  t h e m  i n  f i g u r e  4 .  

wind 

1 
relief time vegetatior 

Fig. 4. Structure of a case 

They a re  c l a s s i f i e d  a c c o r d i n g  t o  t h e i r  n a t u r e  and  
c o n s t i t u t e  t h u s  t h e  d i f f e r e n t  viewpoints  described b e f o r e  
: wind, r e l i e f ,  v e g e t a t i o n .  I n s i d e  each  of  them, some 
e v e n t s  have happened. Each event  is  an o b j e c t  re la ted t o  
t h e  o b j e c t  which f o l l o w s  it  i n  t i m e  and t h e  one which 
p r e c e d e s  i t .  But t h e  ob jec t  c o n t a i n s  no t e m p o r a l  
i n f o r m a t i o n .  I n s i d e  each  v iewpoin t ,  w e  have an e v e n t  
cha in ing .  

T o  be ab le  t o  do t h e  link between t h e  d i f f e r e n t  
v iewpoin ts ,  as it is necessa ry  f o r  t h e  c o n s t r u c t i o n  of 
hypotheses,  ou r  cases con ta in  a temporal a x i s  m a t e r i a l i z e d  
by an i n s t a n t  cha in ing ,  each i n s t a n t  be ing  l i n k e d  t o  a l l  
even t s  which happened a t  t h i s  date. 

However, a l l  t h e  e v e n t s  can n o t  be associated w i t h  an 
i n s t a n t .  f o r  t h e  relief f o r  example, an even t  describes a 
passed over  p o i n t  : the d i s t a n c e  which separates it f r o m  
t h e  f i r e  d e p a r t u r e ,  i t s  a l t i t u d e .  11 i s  h a r d l y  
cons ide rab le  t o  know a t  each moment t w o  p o i n t s ,  separated 
from each o t h e r  of a few meters have been reached ! 

We p a l l i a t e  t o  t h a t  i n f o r m a t i o n  incomple t eness  by t h e  
d e s c r i p t i o n  of a f i r e  the  fo l lowing  way : 
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for e a c h  e v e n t  E ,  w h a t e v e r  t h e  c o n s i d e r e d  v i e w p o i n t ,  
o u r  case r e p r e s e n t a t i o n  e n s u r e s  u s  t h a t  t h e r e  are a t  l ea s t  
t w o  e v e n t s  E l  a n d  E2 s u c h  as : 

- E1 i s  a predecessor of E a n d  E2 i s  a s u c c e s s o r  of 

- E1 a n d  E2 are associated t o  a n  i n s t a n t  o n  t h e  t i m e  
E, 

a x i s .  

T h i s  manner ,  a n  i n f o r m a t i o n ,  described i n d e p e n d a n t l y  of 
t i m e ,  c a n  be associated w i t h  i t .  
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ABSTRACT 

Recently, the term “ontology” has become popular in the field of A However, 
often confusion arises when one is attempting to relate an ontology to existing AI 
subjects. We argue that an ontology (i) is situated within the conceptualization stage 
of knowledge-based system (KBS) development methods, (ii) specifies the domain on 
which logic-based knowledge representation (KR) languages are defined semantically, 
and (iii) represents the terminological/description (and not the assertional) component. 

We have actually developed an ontology for a subdomain of materials science, 
called ceramic science. We have formalized and implemented it in the CLASSIC KR 
language to allow use of this ontology within the Plinius project. (The aim of the Plinius 
project, currently undertaken by our group, is to build a system which is able to semi- 
automatically extract knowledge from natural-language texts concerning ceramics.) 

In this paper, we first concentrate on the integration of the three previously mentioned 
AI subjects and the face of an ontology in this integrated whole. Then, we focus on both 
the syntactical and sernantical formalization of the Plinius ontology in the CLASSIC KR 
language. We argue that the semantics of the formulae need to be defined in order to 
guarantee the correctness of these formulae with respect to a model which includes the 
Plinius ontology. 

1. INTRODUCTION 

In the last two decades, many expert systems and knowledge-based systems (KBSs) have been 
built. However, these KBSs are task dependent and rather small. In order to build KBSs which 
cover a realistic complex domain (which results in a large KB) or which contain more than one KB, 
an ontology might be used. Examples of projects in which an ontology is used are LlLOG [l], UMLS 
[2] and Cyc [3]. 

Briefly, an ontology consists of a conceptual vocabulary of a particular domain together with a 
general framework in which the dependencies between the concepts of the vocabulary are explicated. 
In this paper, we concentrate on a method to formalize an ontology. A formalized ontology is called 
ontology KB in the remainder of this paper. We do not concentrate on the design of an ontology 
which has been discussed in [ M I .  

This paper is organized as follows. In 52, we give an overview of AI subjects which are relevant 
for the formalization of an ontology. We integrate the relevant parts of these subjects and place the 
ontology and ontology KB within the integrated whole. Then, we apply the resulting method to the 
Plinius project which is briefly described in 53. In 54, we discuss a part of the Plinius ontology and 
in $5, we describe a part of the CLASSIC KR language. In this language, we have formalized the 
Plinius ontology, which we present in $6. The implementation of the Plinius ontology KB and the 
application of the Plinius ontology to the other Plinius domain specific KBs is given in [7]. 
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2. RELEVANT AI SUBJECTS FOR THE DEVELOPMENT OF AN ONTOLOGY KB 

In this section, our objective is to give a brief overview of the AI subjects which are relevant 
for building an ontology KB for a particular domain. In $2.1, the stages within ICBS development 
methods are introduced and the relevant stages are selected. In 52.2 and $2.3, we discuss the syntax 
and semantics of logic-based knowledge representation (KR) languages. In addition, we relate the 
syntax and semantics to two relevant stages introduced in $2.1. In 52.4, we describe the subdivision 
of domain knowledge into a terminological and an assertional component. Then, in $2.5, we describe 
the term “ontology” and we relate it to the relevant issues of the previously discussed AI subjects. 

2.1 KBS DEVELOPMENT FOR BUILDING AN ONTOLOGY KB 

Within AI, research has been done in developing methods for building KBSs or expert systems. 
Usually, such development methods contain a fixed sequence of stages (81. The relevant stages for 
building an ontology KB for a particular domain are elicitation, conceptualization, formalization, 
implementation, and testing. At the elicitation stage, the knowledge of the domain is elicitated 
in an informal, usually verbal, form. At the conceptualization or analysis stage, the elicitated 
data is interpreted, which means that the concepts are analysed and their implicit relationships are 
made explicit. This results in the construction of a precise description of a conceptual base. The 
formalization stage involves the translation of the conceptual base into a formal representation in a 
KR language. Examples of such languages are order-sorted logics and descendents of the KL-ONE 
family of KR languages 191. The structure of this formal representation should be manageable and 
maintainable. In addition, it shouid be possible to use the inference mechanism of the KR language 
effectively and efficiently. At the implementation stage, the formal representation is implemented 
in a language which is executable by a computer. Finally, at the testing stage, the KB obtained is 
evaluated to determine whether the current granularify and coverage of the KB is appropriate for the 
domain-specific tasks. In the course of building a domain specific KB, revisions may occur. 

2.2 SYNTAX AND SEMANTICS OF LOGIC-BASED KR LANGUAGES 

Logic-based KR languages are defined by giving a syntax and a semantics. In the syntax, the 
formulae which can be formed in the language are defined. Formulae are usually defined recursively, 
Le., initially, an alphabet is specified and, then, with the use of syntax rules formulae are defined 
recursively out of symbols from the alphabet. See 55.1, for example, for the syntax definition of a 
part of the CLASSIC KR language. 

In order to define the meaning, or semantics, of formulae which represent domain knowledge, a 
domain’ description needs to be constructed. A domain is defined by a universe of discourse, which 
is the set of objects, and by the object-tuples which form the relationships between the objects. 

The denotational Tarskian semanticsz of formulae can be specified in two steps. First, the 
nonlogical symbols which are used in the formulae are associated with parts of the domain of interest 
D. These associations are specified by an interpretation function. Second, the formulae can be 
evaluated (Le., the truth value is assigned) in accordance with these associations. Here, we make 

‘The domain of interest may consist of one or more consistent concrete or fictional worlds. 
*Semantics of formulae can be defined in other ways. An alternative way, which is not used in this report, is to state a 

set of axioms r and define a formula Cp to be true if and only if this formula is logically implied by this set of axioms, Le., 
I? #. We have not chosen this alternative since we want the formulae to apply to the domain of interest. 
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use of semantic rules for logical symbols within the formulae. A formula is true if and only if i t  
accurately describes the domain. 

More formally, the semantics of formulae can be determined by the evaluation of the formulae 
with respect to a certain model. A model M can be defined as M = (D, 1) where the interpretation 
furictiori 1 is a mapping between the nonlogical symbols of the language and elements of the domain 
of interest 'D. See 55.2, for example, for the semantic definition of a part of the CLASSIC KR 
language. 

Genesereth & Nilsson [ 101 have related the conceptualization and formalization stages of KBS 
development methods to the syntax and semantics of first-order logic. This has resulted in the 
following integration. At the conceptualization stage, the conceptual base is equated with the domain 
description. This conceptual domain description is verbalized in terms of objects and object-tuples. 
Thus, at the conceptualization stage the relevant objects and object-tuples of the domain of interest 
are selected. Then, at the formalization stage, the output of the conceptualization phase should be 
represented in first-order logic. (We propose to possibly use another appropriate logic-based KR 
language.) In addition, it is possible to clearly specify the interface between the conceptualization 
stage and the formalization stage by assigning semantics to the formulae at the formalization stage 
in terms of objects and object-tuples at the conceptualization stage. 

23 EXPRESSING KNOWLEDGE AT THE CONCEPTUALIZATION LEVEL 

In evaluating the approach of 82.2, we make two remarks. First, the conceptualization stage and 
formalization stage have to be demarcated. In $2.1, we have argued that these stages have different 
objectives. In addition to this argument, the conceptualization stage can now be used to define the 
semantics of the formulae at the formalization stage. We illustrate this for our application in $6.3. 

Second, practical problems arise at the conceptualization stage when it is tried to express the 
knowledge of a complex domain in terms of objects and object-tuples. We give three examples. 
(1) Within a realistic domain, it is very hard or even impossible to explicitly enumerate all objects 
and tuples. (2) In a dynamic domain, like most realistic domains, new objects and tuples are added 
regularly. (3) It is very difficult to express complex descriptions, such as properties of classes of 
objects. 

We illustrate these problems for the Plinius domain, Le., ceramic science. (1) Quantitative 
values are used for describing most properties of a material. It would be impossible or at least very 
unpractical to list all values that might occur as objects. (2) New materials are reported regularly. In 
fact, it is one of the main goals of ceramics research to design new materials. (3)  All materials have 
a bending strength, a fracture toughness, a melting point, and so on. It would be very unpractical to 
express this in the form of tuples consisting of a particular material and the property in question. It 
would take n - p tuples to do this, with n the number of materials and p the number of properties. 

We have resolved these problems by introducing extra building blocks which refine the language 
consisting of only objects and object-tuples. For the problems described above, the following 
refinements may be carried through. First, atomic concepts are introduced which stand for classes 
of objects. Using atomic concepts, it is possible to implicitly describe infinitely many objects. This 
means that an object does not have to be contained in the universe of discourse extensionally if an 
atomic concept exists which describes this object intensionally. 

In addition, concepts are introduced. A concept can be used to intensionally (or prototypically 
when not all necessary and sufficient properties are known) describe sets of objects, object-tuples, 
atomic concepts or concepts (Le., a concept is defined recursively). Therefore, an extensional 
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enumeration of all items which satisfy the intensional (or prototypical) specification is not needed. 
Concepts are defined by a description or structure which consists of the enumeration of the objects, 
object-tuples, atomic concepts and concepts which play a role together with their interdependencies. 

The domain of interest can now, for example, be analysed by constructing a set of atomic concepts 
and, using this as a basis, more complex concepts can be constructed. For example, concepts may 
be constructed, which over-generalize a part of the domain of interest. Using these over-generalized 
concepts, the domain description anticipates on "new" sub-concepts in the domain. We have used 
this approach in the medical domain [ 111 and the domain of ceramic science (see $4). 

We want to make the remark that the intention here is to show that the construction of a domain 
description for a realistic domain only in terms of objects and object-tuples is practically impossible. 
We have given a refinement in order to precisely express a domain description for a realistic domain. 
Other expressions, such as constraints [ 121, may also be added for this objective. 

2.4 SUBDIVISION INTO TERMINOLOGY AND ASSERTIONS 

Collecting, defining, structuring and representing knowledge about a complex domain is a 
difficult task. Brachman & Levesque [13] have proposed to separate the technical vocabulary of a 
domain from the facts in that domain.3i4 

The technical vocabulary consists of descriptions which are atomic or more complex structures 
forming concepts. The descriptions of the concepts of the technical vocabulary are be stored in 
the terminological or description component. Structures that are used to express factual knowledge 
are said to be assertional. These assertions of the domain of interest are expressed in terms of the 
concepts of the terminological component. The assertions of the domain are stored in the assertional 
component. 

With this subdivision, the modularity is increased as a result of which one hopes the domain looks 
more transparent and therefore is easier to understand. Due to this separation, special languages 
have been developed which aim at representing knowledge of one distinguished component, such as 
terminologicaildescription logics [ 15,161. 

Although a clear subdivision between terminology and assertions can be made on an abstract 
level, this is not the case for the implementation of this separation [17]. One of the reasons is that in 
order to define concepts in the terminological component, assertions are used. 

In relating the segmentation introduced in this subsection with the development stages for 
building an ontology KB for a particular domain, we propose to carry out this segmentation through 
the conceptualization, formalization and implementation stages. 

2.5 ONTOLOGY ANI) ONTOLOGY I(B 

In the literature [5,18,19], an ontology has become known as a systematic vocabulary of concepts 
and relations of a particular domain. An ontology is language-independent in the sense that a single 
concept in an ontology as a rule corresponds to different words and phrases, both within a single 
natural language and in different natural languages. In addition, the interdependencies between the 
concepts and relations of an ontology need to be specified which lead to a kind of framework. Often 
these interdependencies are used to define the concepts and relations. Since a systematic vocabulary 

'Within the field of AI, the wish to separate these notions was firstly introduced in [14] in order to clarify the informal 

*This subdivision corresponds to the separation of a database scheme from their occurrences in the database world. 
semantic networks of that time. 
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Figure 1 : A development method for building an ontology KB for a particular domain. The conceptualization 
stage is preceded by the elicitation stage and the implementation stage is followed by the testing stage. The 
interface between the conceptualization and formalization stage is specified by a semantical, representational 
relation. The different stages are subdivided into a terminological and an assertional component. The 
assertions of the assertional component are expressed in terms of concepts of the terminological component. 

In the field of knowledge representation ( is . ,  at the formalization stage), it has been proposed 
to separate the terminological knowledge from assertional knowledge within a particular domain 
(52.4). Since the terminology of a particular domain is expressed within the systematic vocabulary 
of the domain, we argue that an ontology should be placed within the terminological component. 
Thus, we argue that an ontology represents the terminological component at the conceptualization 
stage (see Figure 1). In the remainder of this paper we call the concepts at this stage C-concepts. 
The ontology KB at the formalization stage consists of F-concepts. 

The major advantage of incorporating an ontology within the development of a KBS which cover 
a realistic complex domain (which results in a large KB) is that the domain knowledge is structured 
according to the framework of the ontology [20]. For a KBS which contains more than one KB, the 
different KBs are tuned due to the joint use of the same terminology [21,22]. 

3. AN OVERVIEW OF THE PLINIUS PROJECT 

In this section, we give a brief description of the Plinius project (for a more detailed description, 
we refer to [23]). The Plinius project is aimed at developing a system which is able to semi- 
automatically extract domain-specific knowledge from title and abstract of scientific papers in the 
field of ceramic science. The course of the documents through the Plinius processes and the 
knowledge sources these processes use are shown in Figure 2. 

At the beginning, document descriptions consisting of identifier, titie and abstract are prepared 
for natural language processing. This process of mainly syntactical manipulation is called the Plinius 
preprocess. The first version of this preprocess has been implemented [24]. 

Then, in the Plinius language dependent process a syntactic and semantic analysis is carried 
out on the preprocessed documents which leads to representations of the documents in a formal 
language. These formal representations are stored in the interim KB. This process (mainly the 
semantic analysis) is currently under consideration. The Plinius language-dependent process makes 
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Figure 2: The Plinius processes and knowledge sources. 

use of two kinds of knowledge sources. The first kind consists of a sublanguage grammar and 
a lexicon with syntactical information. These knowledge sources are natural-language (English) 
dependent? The second kind consists of the background KB, the ontology KB and the part of the 
lexicon with semantic translations. These knowledge sources are domain dependent and natural- 
language independent. In addition, the background KB and the semantic part of the lexicon (and the 
integrated lexicon) contain the concepts and structures of the ontology KB. 

Finally, in the Plinius language-independent process the separated representations per document 
of the interim KB are integrated. The result of this process is stored in the integrated KB (which 
of course is domain-specific as well). The process makes only use of domain-specific knowledge 
sources, which include the background KB and the ontology KB. The Plinius language-independent 
process is being explored. 

Plinius does not aim at a fully automatic system. All three processes can communicate with a 
human operator who deals with ambiguities and other problems the system cannot solve automati- 
cally. 

The interim KB and the integrated KB are the products of the Plinius project and can be used for 
several applications. The interim KJ3 might be used in a system for semi-automatic indexing [l  11. 
The integrated KB is meant to be a general purpose domain-specific KB and might be used to answer 
user queries directly (in the ideal case all user queries which can be answered by reading EMA can 
also be answered with the integrated KB). In addition, the integrated KB might also be used as KB 
within domain-specific KBSs. 

4. AN ONTOLOGY OF CERAMICS: THE PLINIUS ONTOLOGY 

The Plinius ontology has been formulated manually using several handbooks of ceramics and 
materials science. We refer to [25] for a detailed, complete description and motivation. In this 
section, we only discuss (due to lack of space) the definitions for properties of materials and for 

'These knowledge sources are domain dependent since sublanguage is domain dependent. 
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processes. The definition for material is treated as a black box' (and so does the definition for phase, 
which is needed in the process characterization). 

Properties of materials are expressed as quantities in the physical sense, Le., as comprising a name 
to identify the kind of quantity involved, a numerical value, a measure of the accuracy (normally 
the standard deviation), and a unit. A complication arises because certain values are observed under 
particular conditions. For example, the material's property of displaying an elongation niay be 
qualified by specifying the temperature range. These conditions, to be called property conditions 
here, can be expressed as quantities. Conceptually, property conditions may be called second-order 
properties or properties of properties. 

For the conceptualisation of processes, the so-called process triangle is an important notion. 
A process is fully characterised by three groups of specifications: (1) the input materials; (2) the 
product; and ( 3 )  the conditions under which the process is performed. Theoretically, any of these 
three can be derived if the other two are known. In practice the necessary theory for performing 
these derivations is lacking. 

The way out proposed in the Plinius ontology is the following. Since theoretically two vertices 
suffice, the C-concept for a process can be defined as comprising two vertices while the third vertex 
is added but is considered to be non-defining. The choice of the two vertices is arbitrary from a 
theoretical point of view. Choosing (1) and (2), is . ,  the input and output materials, has certain 
advantages such as allowing easy concatenation of processes. The conditions under which a process 
is performed are specified by the atmosphere of the process and a set of additional process properties. 
A process type name, which is a kind of summary of many relevant process conditions, is also added 
to combat the severe underspecification encountered in the texts. 

The part of the Plinius ontology which is needed to introduce the previously described atomic 
concepts and C-concepts  contain^:^ 

The atomic concept R stands for the class of real numbers. 
The atomic concept Q stands for the class of quantity-names consisting of the objects: grain-size, 

porosity, bending-strength, size, mass, temperature, duration, tensile-stress, frequency, 

The atomic concept U stands for the class of measurement units consisting of the objects: meter, 
kilogram, second, ampere, kelvin, mol, candela, per-second, pascal, meter-3, fraction, . . .. 

The atomic concept P stands for the class of process type names consisting of the objects: slipcasting, 
reaction sintering, molten particle deposition, hot isostatic pressing, . . .. 

. . .. 

The C-concept Quantity q stands for a tuple 

q = (n, v,  d ,  u) where n E Q, w ,  d E R, and u E LJ 

where n is a quantity-name, 21 is a value or value range, d a standard deviation, and u a unit. 

In this paper, the C-concept Material m is defined as a black box. 
The C-concept Material property mp stands for the C-concept: 

mp = (m, 9 )  

'In [25], material is defined as a C-concept which is constructed out of several C-concepts and atomic concepts. 
71n this paper, we use the following orthographical conventions: objects are notated with lower case letters in sans 

serif font (e.g., temperature), atomic concepts by upper case letters in the so-called blackboard bold font, (e.g., a), and 
C-concepts by an upper case letter followed by lower case letters in sans serif font (e.g., Process). 
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. . .. .... _. 

: where m stands for a Material and s stands for a set of Quantities. 

The C-concept Property condition pc  stands for the C-concept: 

PC = (% s) 

where q stands for a Quantity expressing a property and s stands for a set of Quantities expressing the 
conditions. 

The C-concept Process p stands for the C-concept: 

P = (m1, m2, ptn, Ph, s) 

where rnl stands for the input Material, m2 stands for the output Material, p t n  E P, p h  stands for the 
atmosphere expressed with a Phase (where Phase, similar to material, in this paper is considered as 
a black box) and s stands for a set of process Quantities. 

5. THE CLASSIC KNOWLEDGE REPRESENTATION LANGUAGE 

In this section, we concentrate on the representation of an ontology at the formalization stage. 
One group of KR systems, which is suitable for this purpose is the KL-ONE family of KR systems [9]. 
These KLONE style systems can be used very well for the representation of an ontology because 
of their ability to represent a conceptual vocabulary separately from the assertional knowledge, 
their ability to define the terms of the conceptual vocabulary intensionally, their logical foundation 
and their general purpose approach. A descendent of the KL-ONE family of KR systems which is 
developed at AT&T Bell laboratories is called CLASSIC [26-281. We have chosen to use the language 
of this system for the Plinius application since the expressiveness of this language is restricted in 
order to increase the computational performance. In this section, we give a brief description of the 
syntax and semantics of a part of the CLASSIC KR language. 

5.1 SYNTAX OF THE CLASSIC KR LANGUAGE 

Following the syntax definition of logic-based KR languages, as discussed in 32.2, we give the 
syntax of a part of the CLASSIC KR language. Using this syntax the Plinius ontology is represented 
in 56.2. The alphabet consists of the following sets of symbols:* 

Nonlogical symbols: subdivided in individualname (which denotes an object), rolename (which 

Auxiliary symbols: "(" and ")"; 
Fixed set of function constants: INDIVIDUAL, AND, ALL, ONE-OF and FILLS; and 
The predicate symbol "=". 

denotes a class of 2-tuples), and J=-conceptnanze (which denotes a class of objects); 

Now, using the sets of symbols of the alphabet, construction rules can be formulated in order to define 
the sets of individuals, roles and P-concepts (rules 1-8) and formulae are defined (rules 9-10): 

( 1 )  individual ::= individualname 

(3) role 
1 (INDIVIDUAL F-concept) 

::= rolename 
(2) 

'In this paper, we use the following orthographical conventions: Individualname: lower case, with first letter 
uppercase; rolename: lower case; F-CONCEPTNAME: small caps; FUNCTIONXONSTANT: small caps, boldface font. 
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::= 3-coticeptname I (AW) 3-conceptl 1 

1 (ONE-OF individual1 . . .  individual,). for n 2 0 
1 (FILLS role individuall individual,), for n 2 1 ~ 

. . .  F-concept,), for n 2 1 
I I (ALL role F-concept) , 
I 

. . .  
::= 3-concept-name = 3-concept 

I individualname = individual ! ......... _______ 

5.2 SEMANTICS OF THE CLASSIC KR LANGUAGE 

In this subsection, the semantics of the previously described parts of the CLASSIC KR language 
is defined (according to the model discussed in $2.2). In $6.3, we use this semantics to determine 
the correctness of the Plinius ontology KB formulae with respect to a model including the Plinius 
ontology. 

The interpretation function Z maps the CLASSIC constants rolename on a set of 2-tuples, F-  
concept-name on a class of objects and individual-name on an object of the universe of discourse. 
The CLASSIC function constant INDIMDU.4L used in the syntax definition of individual is mapped 
on an object and the other CLASSIC function constants are mapped on classes of objects. Finally, the 
model-theoretic semantics of the CLASSIC formulae can be specified. This leads to the following 
rules (individual and concept are abbreviated): 

.. 

(1) Z[indnnme] E V  
( 2 )   INDIVIDUAL T-co~c)] 
(3) Z[rolexame] c v x v  
(4) Z[ F-conc-name] c.p 

(6) Z[(ALL role F-conc)] = ( z E C I V y ( ( t , y )  EZ [ ro le ]  =+ y E Z [ F - c o t t c ] ) }  
(7) T[(ONE-OF indl ... in&)] = {T[indl],  ,X[ind,]} 
(8) T[(HL,LS role indl . . .  ind,)] 

E I[ T-conc] 

( 5 )  T[(AND F-concl . . .  T-conc,)] = {z E D I 2 E I[ F-concl] A . . .  A 5 E Z[ F-conc,]} 

. . .  
= {X E c I (z,I[indl]) E Z[role]  A . . .  

A (z,Z[ind,]) E r[role]}  
(9) kM 3-concname F-cotzc iff T [  F-conc-name] = Z[ 7-conc] 
(10) b~ indname = ind iff Z[indname] = Z[ind] 

_- ~ 

6. THE PLINIUS ONTOLOGY KB IN CLASSIC 

The C-concepts of the Plinius ontology are mainly expressed by complex tuples, complex sets, 
constraints, conjunctions and disjunctions [25]. In 56.1, we show how tuples can be represented 
in the CLASSIC KR language. Representations for complex sets, constraints, conjunctions and 
disjunctions are given in [7]. Then, in 56.2, the part of the Plinius ontology as defined in 54 can be 
represented within in the CLASSIC part as defined in $5.1. Finally, in 56.3, we discuss the semantics 
of the formulae of the Plinius ontology KI3. 

6.1 THE REPRESENTATION OF (COMPLEX) TUPLES IN CLASSIC 

For the representation of C-concepts like Quantity in the CLASSIC KR language, a problem 
arises. C-concepts sometimes stand for (complex) tuples. In order to represent these (complex) 
tuples in the CLASSIC KR language, we need constructions which denote sets of tuples. However, 
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the CLASSIC KR language only contains individuals, 3-concepts and roles. An individual denotes 
an object, an 3-concept denotes a set of objects or a set of (atomic) C-concepts, and a role denotes 
a set of 2-tuples (where the arguments of the 2-tuples may be objects or (atomic) C-concepts). 
Although a role seems to fulfil the conditions described above, it is not possible to use a role for 
the representation of (complex) tuples, since a role cannot occur independently in CLASSIC, i t  only 
occurs within an 3-concept. This means that it is not possible to represent a (complex) tuple directly 
in the CLASSIC KR language. which is in harmony with [ 2 7 ] ,  page 416: 

“[. . .] CLASSIC is likely to be cumbersome to use in cases where mathematical entities 
such as tuples, sequences, geometric entities, etc. are the center of attention.” 

Schmolze [29] has developed an extension of KR systems like CLASSIC in order to represent 
(complex) tuples (which he calls n-ary relations, with n > 1. However, due to the increasing 
expressiveness, the complexity for reasoning (such as subsumption) decreases. Therefore, we try to 
represent (complex) tuples in the CLASSIC KR language. 

In order to represent (complex) tuples in the CLASSIC KR language, we look at these tuples 
as C-concepts where each argument of the (complex) tuple is specified by a relation with exactly 
one filler. This means that (complex) tuples can be represented by F-concepts consisting of an 
AND construction where each conjunct represents an argument and where each conjunct consists of 
an ALL construction where the name of the attributeg specifies the argument name and the value 
restriction specifies what 3-conceptlindividual should be filled in in the argument. 

For example, if we look at a simplified definition of the C-concept Quantity which stands for a tuple 

q = .(n, v, u) where n E Q, v E R, and 21 E UJ 

we may represent this by the formula 

QUANTITY = (ANI) (ALL has-quantityname QUANTITYNAME) 
(ALL has-value NUMBER) 
(ALL has a n i  t UNIT)) 

where the 3-concept name QUANTITY represents the C-concept Quantity which is defined by an 
3-concept consisting of an AND construction which conjuncts three ALL constructions where the 
roles has-quantity-name, has-value and has-unit specify the argument names quantity name, value 
and unit respectively, and the value restrictions QUANTITY-NAME, NUMBER and UNIT specify 
what individual should be filled in in these arguments. 

6.2 THE SYNTAX OF THE PLINIUS ONTOLOGY KB IN CLASSIC 

The CLASSIC representation for the Plinius ontology as described in $4 is the following: 

QUANTITY NAME 

UNIT 

PROCESS -TYPE..NAME 

= (ONE-OF Grainsize Porosity Bending-strength Size Mass 
Temperature Duration Tensilestress Frequency) 

=(ONE-OF Meter Kilogram Second Ampere Kelvin Mol 
Candela Persecond Pascal Meter3 Fraction) 

&( ONE-OF Slipcasting Reactionsintering 

‘An attribute is a role which has at least one and at most one role filler. 
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.. . . .. .. . . .. . . . . . . . . . . . . ......... .~ ......- . . . . . . . . . . 

Molten-particle deposition Hot isostatic .pressing) 
QUANTITY = ( Ah’D (ALL has _quantity name  QUANTITY NAME) 

(ALL has-value NUMBER) 
(ALL has standard .deviation NUMBER) 
(ALL has-unit UNIT)) 

-(AND (ALL has  material MATERIAL) 

=(AND ( A I L  has-quantity QUANTITY) 

~ 

, MATERIAL A. 
’ MATERIAL-PROPERTY 
~ (ALL has-property QUANTITY)) 

(ALL has~condition QUANTITY)) 
PROPERTY .CONDITION 

PHASE 
PROCESS 

A. 

=(AND (ALL has-startingrnaterial MATERIAL) 
(ALL has-end-material MATERLAL) 
(ALL has-type PROCESS-TYPENAME) 
(ALL has.process_atrnosphere PHASE) 
(ALL has-property QUANTITY)) 

where all roles except for ‘has-condition’ and ‘has-property’ are defined to have exactly one filler 
(these roles are attributes) and where the roles ‘hascondition’ and ‘has..property’ are defined to have 
one or more fillers. 

-. ..-. .. . . .-... . . . . . . . . . . .. .. 

For the representation of the atomic C-concept W, the built-in 3-concept.name NUMBER is used. 
For the representation of the atomic C-concepts Q, U, and P, respectively the F-concept-names 
QUANTITY-NAME, UNIT and PROCESS-TYPE-NAME are introduced which are defined as sets of 
individuals. The C-concepts Property condition, Material property and Process are represented 
by MATERIAL-PROPERTY, PROPERTY-CONDITION and PROCESS. Finally, the C-concepts Phase 
and Material are represented by MATERIAL and PHASE. 

6.3 THE SEMANTICS OF THE PLINIUS ONTOLOGY KB IN CLASSIC 

I n  this section we discuss the semantics of the formulae of the Plinius ontology KB. Due to these 
semantics the interface between the conceptualization stage, which resulted in the Plinius ontology, 
and the formalization stage, which resulted in the Plinius ontology KB, is clarified and the correctness 
of the formulae is determined with respect to a model which includes the Plinius ontology. 

In giving the semantics of the formulae of the Plinius ontology KB, per formula the following 
phases should be followed. (1) The F-concept name (the left hand side of the formula) needs to 
be mapped on the corresponding (atomic) C-concept of the Plinius ontology. (2) The F-concept 
(the right hand side of the formula), which syntactically define the F-concept name, need to be 
mapped on objects, object-tuples, (atomic) F-concepts of the Plinius ontology. (3) The truth of the 
formula of the Plinius ontology KB is proven if the denotation of the F-concept name is equal to the 
denotation of the corresponding 3-concept. 

We illustrate this by giving the semantics of the QUANTITY-formula. In order to show that this 
formula has the right meaning with respect to a certain model M ,  we give the interpretations of the 
F-concept name and the 3-concept and determine whether the formula is correct with respect to 
this model. 
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In order to show that the previously given formula has the right meaning with respect to a certain 
model M ,  we give the interpretations of the F-concept name and the 3-concept and determine 
whether the formula is correct with respect to this model. 

The 3-concept name QUANTITY denotes the class of all Quantities, i.e.," 

Z[QUANTrrY] = the class of all Quantities 
= { q I q =  (n,z) ,u)  A n € Q  A v € R  A ? L E U }  
= { q  I q = (has quantity name: n, has value: v, has unit: u )  

A ~ E ~ A A € ~ W A € ~ }  

The F-concept used to define QUANTITY has the following formal meaning, according to rules 5 
and 6 of $5.2: 

Z[(AND (ALL has-quantityaame QUANTITY-NAME) 
(ALL hasva lue  NUMBER) 
(ALL has-unit UNIT ))] = 

{ q  E I q E z[(ALL has-quantity-name QUANTITYNAME)] 
A q f r[(ALL has-value NUMBER)] 
A q E x[(AtL has-unit UNIT)]} 

where (since has-quantity -name is an attribute) 

I[(& has-quantityname QUANTITr'NAME)] = 
{q  E C I V n  ((4, n) E Z[has-quantity .name] 3 n E 0) 

A card({?& E 7Y I (q,n) E Z[has-quantityaame]}) = 1) 

In addition, since (1) attribute has-quantity-name specifies the argument name of the first argument 
of q = (n,v,u) and attributes has-value and has-unit specify the argument names of the second 
and third argument of q = (n, v ,  u), (2) the first argument of q = (n, z), u) may only be filled by 
a quantity name, the second argument by a number and the third argument by a unit, and (3) the 
arguments have exactly one role filler, the following equation can be stated: 

r[(AND (ALL has-quantitymame QUANTITY NAME) 
(ALL has-value NUMBER ) 
(ALL has-unit UNIT ))] zz 

{ q  E C 1 V n  ((q,n) E Z[has-quantityname] =+ n E Q) 

A Vu ( (q ,  v )  E Z[has-value] s 2, E R) 

A Vu ( ( q ,  u) E Z[has-unit] =+ u E U) 

A card((n E I) 1 (9, n) E Z[has-quantityname]}) = 1 

A card({v E D I (q,  v )  E Z[has-value]}) = 1 

A card({u E V 1 (q,  u)  E Z[has-unit]}) = 1) = 

{ q  E C 1 q = (Z[has-quantity-name] : n, Z[has_value] : 21, Z[has-unit] : u )  
A ~ E Q A v E R A ~ E O ] } =  

{ q I q = ( n , v , u )  A n € Q  A v € R  A u E U )  

and thus we condude that the denotation of F-concept name QUANTITY is equal to the denotation 
of its defining F-concept. This means, by rule 9 of 55.2: 

notation (has quantity name: n, has value: v, has unit: u) in the last line. 
"Since the argument names of the tuple (n, v ,  u) are not specified within the notation, we introduce the alternative 
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+M QUANTITY = ( A I D  (ALL has-quantityname QUANTlI'YNAME) 
(ALL has-value NUMBER) 
(AIL has-unit UNIT))  

Thus, the QUANTITY formula is correct with respect to model M where D is the Plinius ontology 
and Z the interpretations given above. 

In [7], the semantics of all Plinius formulae are given by specifying a complete model which includes 
the Plinius ontology and the interpretation functions for all 3-concept names, 3-concepts, roles, 
individual names and individuals. 

7. CONCLUSIONS 

Using and integrating existing AI subjects, we have constructed a development method for 
building and implementing an ontology KE3 for a particular domain. This method consists of the 
elicitation, conceptualization, formalization, implementation, and testing stages. The formalization 
stage is coupled with a logic-based KR language, the conceptualization stage is coupled with 
a domain description and the interface between the conceptualization and formalization stage is 
specified as a semantical, representational relation. This means that the conceptualization stage is 
used for both the analysis of the domain of interest and the specification of the meaning (semantics) 
of the symbols at the formalization stage. This is in contrast to the approach used by applications 
for the KL-ONE style KR languages where the conceptualization and formalization stages have 
not been distinguished. Finally, the conceptualization, formalization, and implementation stages 
are subdivided into a terminological and an assertional component. An ontology represents the 
terminological component at the conceptualization stage. 

This proposed method has been applied to the Plinius project for which an ontology for ceramic 
science had been developed [25]. This ontology, which makes use of tuple, set and disjunction 
expressions, has been formalized and represented within the CLASSIC KR language. For the repre- 
sentation of complex tuples and complex sets, special complex constructions have been developed 
within CLASSIC. Disjunctions can only be represented under certain conditions. This means that 
it is possible to represent the Plinius ontology in CLASSIC, however, the restricted expressiveness 
takes its toll. 

In contrast to most represented KBs, we have explicitly specified the semantics of the formulae. 
Due to this semantics, the correctness of the formulae with respect to the ontology is guaranteed. This 
means that the task of constructing a formalized ontology can be formally divided into two subtasks, 
(1) the design of an ontology, independent of representational aspects, and (2) the representation of 
the ontology, independent of concerns whether a right ontology of the domain of interest has been 
developed. Although empirical justifications are absent, the method as described in this paper seems 
to be useful, at least for the different domain specific KBs within the Plinius project, 
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ABSTRACT 

The objective of the research considered in this paper is to develop 
formal linguistic tools for the representation of large-scale hierarchical 
complex systems, the so-called Linguistic Geometry. The research relies on 
the formalization of heuristics of high-skilled human experts which have 
resulted in the development of successful decision support systems. This 
approach is based on a broad application of the theory of formal languages 
and grammars as well as theories of formal problem-solving and planning 
on the basis of the first-order predicate calculus. This paper reports new 
results in the investigation of geometrical properties of the first-level 
subsystems (paths of elements) unified as One-Dimensional Linguistic 
Geometry. 

1. INTRODUCTION 

Many important practical problems can be considered as optimization problems for 
complex systems. The difficulties we meet trying to find optimal operation for real-world 
complex systems are well known. While the formalization of the problem, as a rule, is not 
difficult, an algorithm that finds its solution usually results in the search of many 
variations. For small-dimensional "toy" problems a solution can be obtained; however, for 
most real-world problems the dimension increases and the number of variations increases 
significantly, sometimes exponentially, as a function of dimension [ 11. Thus most real- 
world search problems are not solvable employing exact algorithms in a reasonable amount 
of time. 

A development of approximate algorithms for such problems is a necessity. There 
have been many attempts to design different approximate algorithms. One of the basic ideas 
is to decrease the dimension of the real-world system following the approach of a human 
expert in a certain field, by breaking this system down into subsystems, to study these 
subsystems separately or in combinations, malung appropriate searches, and eventually 
combining optimal solutions for the subsystems as an approximately optimal solution for 
the whole system C2-41. These ideas have been implemented for many problems with 
varying degrees of success, but each implementation was unique. There was no general 
approach for such implementations. Each new problem must be carefully studied and 
previous experience usually can not be applied. On the other hand, every attempt to 
evaluate the computational complexity and quality of a pilot solution requires implementing 
its program, which in itself is a unique task for each problem. 

Here we consider a formal, general approach for a certain class of search problems 
that involves breaking down a system into dynamic subsystems. This approach does nut 
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immediately give us powerful tools for reducing the search in different complex problems. 
It does give us a set of tools to be used for the formal description of problems where 
successful results have already been achieved due to the informal, plausible reasoning of 
some human expert. This reasoning should involve the decomposition of a complex system 
into a hierarchy of dynamic interacting subsystems. The proposed approach permits us to 
study the secondary multi-level system formally, evaluate the complexity and quality of 
solutions, improve them, if necessary, and generate computer programs for applications. 
This approach provides us with an opportunity to transfer formal properties and 
constructions discovered in one problem to a new one and to apply the same tools to the 
new problem domain. It actually looks like an application of the methods of a chess expert 
to a maintenance scheduling problem and vice versa. But what about guaranties of success? 
The guaranties reside in deeper studies of these methods, in the discovery of inner 
properties which brought us to a success in a certain class of complex systems. 

The main idea of the approach considered in this paper is as follows. A set of 
dynamic subsystems might be represented as a hierarchy of formal languages where each 
"sentence" (a group of "words" or symbols) of the lower level language corresponds to the 
"word" of the higher level one. This is a routine procedure in our native language. For 
example, the phrase "A man who teaches students" creates a hierarchy of languages. A 
lower level language is a native language without the word ''professor." The symbols of 
this language are all the English words (except "professor"). A higher level language might 
be the same language with one extra word "A-man-who-teaches-students". Instead, we can 
use the word "professor" which is simply a short designation of this long word. 

In the 1960's a formal syntactic approach to the investigation of properties of natural 
language resulted in the fast development of a theory of formal languages by Chomslcy [5], 
Ginsburg [6], and others [7,8]. This development provided an interesting opportunity for 
dissemination of this approach to different areas. We refer to the ideas of syntactic methods 
of pattern recognition developed by Fu [9, 101, Narasimhan [ 1 13, and Pavlidis [ 121, and 
picture description languages by Shaw [13], Feder [14], and Phaltz [15]. We have 
transformed the idea of linguistic representation of complex real-world and artificial images 
into the idea of similar representation of complex hierarchical systems. However, the 
appropriate languages should possess more sophisticated attributes than languages usually 
used for pattern description. They should describe mathematically all of the essential 
syntactic and semantic features of the system and search and be easily generated by certain 
controlled grammars. An origin of such languages can be traced back to the origin of 
SNOBOL-4 and the research on programmed formal grammars and languages by Knuth 
[7], Rozenkrantz [8], and Volchenkov [16]. A mathematical environment for the formal 
implementation of this approach was developed following the theories of formal problem 
solving and planning by Nilsson, Fikes [17], Sacerdoti [18], and McCarthy, Hayes [19] 
on the basis of the first order predicate calculus. To show the power of this approach it is 
important that the chosen model of the hierarchical system be sufficiently complex, poorly 
formalized, and has successful applications in different areas. The chosen informal model 
was developed and applied to scheduling, planning, and computer chess by Botvinnik, 
Stilman, and others [4]. 

An application of the hierarchy of languages to the chess model was implemented in 
full as program PIONEER [4]. For power equipment maintenance the hierarchy was 
implemented in a number of computer programs being used for maintenance scheduling in 
the USSR [21, 221. 

2. EXPERIMENTAL RESULTS 

In order justify the following theoretical results we present here a brief discussion 
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about search algorithms and applications of the considered approach. We look for 
approximate algorithms that reduce B, the branching factor [ZO], especially, those 
algorithms which make B close to 1. Such algorithms should be considered as extremely 
goal-driven with minimal branching tu diflerent directions. 

Different search algorithms were designed in order to reduce the branching factor. 
They are dynamic programming, various types of branch-and-bound algorithms, etc. For 
opposing games like chess the most popular algorithms are various search algorithms with 
alpha-beta pruning [20]. They are impiemented in the most powerful computer chess 
programs, e g ,  in all the programs which are current and former World Computer Chess 
Champions. It was proved that these algorithms, in the best case, theoretically can reduce 
the branching factor to BO.s[2O]. Supposing that an arbitrary chess position in average 
contains about 40 moves permitted according to the chess rules, alpha-beta pruning can 
reduce this number to approximately 6. Still we have an exponential growth with a very 
high base (high branching factor). Thus chess problems that require a deep search, e.g., 
the search to the depth of 20 or more plies, would require enormous amounts of processing 
time to be solved. We encounter the same problem but in a greater scope when we apply 
search algorithms with alpha-beta pruning (or branch-and-bound algorithms) to real-world 
problems, e.g., when we look for an optimal operation of complex systems. In such 
problems the number of possibilities in each state usually is far more than 40, so an alpha- 
beta or branch-and-bound reduction of the branching factor does not provide a solution in a 
reasonable processing time. 

Returning to the discussion of experiments with the PIONEER chess program, let us 
consider the values of branching factor as well as some other parameters of the search [4]. 
The search tree generated by PIONEER while solving the R. Reti endgame contained 54 
nodes (T = 54), hence, taking into account that the length of the solution L = 6 here, we 
have B-1.65. In the Botvinnik-Kaminer endgame the total number of nodes generated by 
the program was equal to 145, maximum length L =12, hence 23-1.34. Although both 
endgames are solvable by conventional chess programs, these results are very interesting in 
the framework of substantial reduction of the branching factor. 

Among the variety of complex problems solved by the PIONEER, we shall consider 
two. Both are not solved yet by the conventional chess programs: alpha-beta pruning failed 
to provide a substantial reduction of the branching factor, and so the expected processing 
time would exceed a reasonable amount. 

The fust problem is the G-Nadareishvili endgame [4]. The total number of nodes 
generated was T = 200, while the depth of the search required to find a solution is equal to 
25! Consequently, B-1.14. At the initial position of this endgame there are 10 pieces, and 
the unreduced branching factor might be estimated as B-15. The second complex problem 
we would like to consider is the middle-game position in a game by Botvinnik-Capablanca. 
This position contains 19 pieces and the unreduced branching factor might be estimated as 
B-20! The depth of the search should not be less than 23. The PIONEER generated a 
search tree of 40 nodes with the branching factor B-1.05. 

Let us consider experiments with maintenance scheduling programs. The program for 
munthZy scheduling generated different search trees depending on the number of demands 
in each month and a list of other constraints [Zl, 221. The number of demands varied from 
118 to 405 in different months. The total number of nodes never exceeded 165. With 3 1 as 
the maximum length of the solution, a reduced branching factor in these problems never 
exceeded 1.06. (To understand these results we should take into account that the program 
aggregated some of the demands. In spite of this the unreduced branching factor varied 
from50 to 100.) 

The experiments with the program for annual maintenance scheduling showed that 
even this higher dimensional problem can be solved employing the proposed approach. The 
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power equipment maintenance plan for the USSR United Power System was computed for 
1 12 1 demands. Each demand contained 12 parameters, including resources requirements 
and different types of constraints. Two types of resources were considered: the power 
reserve and the maintenance personnel. The last one was broken into different specialties. 
Obviously for the annual plan the length of the solution was 365! The reduced branching 
factor never exceeded 1.005. 

Evaluation of the quality of a solution for the chess problems is not hard. The variant- 
solution (or subtree) is known. A computer should find it and prove it is optimum. For 
maintenance scheduling problems the optimal plan is unknown but the results achieved can 
be evaluated according to the optimum criterion: maximum total demanded power of the 
units being actually maintained. For monthly scheduling the total demanded power of the 
solutions varied from 9 1 % to 99% of the theoretical optimum value. For annual scheduling 
the total demanded power of the solutions was equal to 83% of the total demand while a 
theoretical optimum was unknown. 

The comparison with analogous scheduling programs based on branch-and-bound (or 
dynamic programming) search strategies showed the advantage of our approach for 
monthly planning; the quality of the plan was about the same, but the computation time in 
our case was essentially shorter. In all experiments the branching factor of the trees 
generated by conventional programs was substantially higher. For yearly planning 
problems the competition could not even happen, because conventional programs could not 
overcome in a reasonable time the “combinatorial explosion” for such a higher-dimensional 
problem. 

The results shown by these programs in solving complex chess and scheduling 
problems indicate that implementations of the hierarchy of languages resulted in the 
extremely goal-driven algorithms generating search trees with a branching factor close to 1 
In order to discover the inner DroDerties of human exmrt heuristics. which were successful 
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in a certain class of complex systems, we develop a f&mal theory, the Linguistic Geometry 
[ 2 1-28]. 

3. INFORMAL REVIEW 

The idea of a hierarchy of formal languages has been implemented in full for the 
problems which can be stated as problems of optimal functioning of a Complex System, a 
twin-set of elements and points where elements are units moving from one point to another. 
The elements are divided into two opposite sides: the goal of each side is to maximize a 
gain, the total value of opposite elements withdrawn from the system. Such a withdrawal 
happens if an element comes to the point where there is already an element of the opposite 
side: in this case opposite element should be withdrawn, e.g., as in the game of chess. 

According to [16], a one-goal, one-level system should be substituted for a multi-goal 
multi-level system by introducing intermediate goals and breaking it down into subsystems 
striving to attain these goals. The goals of the subsystems are individual but coordinated 
with the main mutual goal. Each subsystem includes elements of both sides; the goal of one 
side is to attack and gain some element (a target), while the other side tries to protect it. 
Thus, a subsystem called a Zone is the set of elements of both sides with their trajectories 
(paths). The pruning criteria for the search and evaluation function are coordinated with the 
intermediate subsystem’s goals and the main goal of the system. Obviously, problems 
studied in [16] are not the only class of problems eligible for creating a hierarchy of formal 
languages. 

Let us review the linguistic representation. Lower level subsystems are called the 
trajectories of points for moving elements along these points to achieve certain local goals. 
Trajectories are strings of a lower level formal language, the Language of Trajectories. 
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Higher level subsystems are well-organized networks of trajectories for moving elements 
along them to achieve cooperative goals, specific for each network. These networks, called 
Zones, are represented as strings of a yet higher level language, the Language of Zones; 
each symbol of the string represents a trajectory, i.e., the smng of a lower level language. 

The system functions by moving from one state to another; that is, the movement of 
an element from one point to another causes an adjustment of the hierarchy of languages. 
This adjustment can be represented as a mapping (translating) to some other hierarchy. 
Thus, the functioning of the system, in a process of the search, generates a tree of 
translations of the hierarchy of languages. This tree is represented as a string of the highest 
level formal language, the Language of Translations, which itself is a member of the family 
of languages corresponding to various well-known search algorithms: depth-first search, 
breadth-first search, alpha-beta and others. Every string of the Language of Translations 
(corresponhng to some search tree) contains a solution to the specific search problem. 

Next we consider a formal theory and report some results for the lower level 
subsystems, the so-called trajectories. 

4. COMPLEX SYSTEMS 

A Complex System is the following eight-tuple: 
< X, P, Rpt {ON), v, Si, St, TR>, 

where X=(xi} is a finite set of points; P={pi} is a finite set of elements; P is a union of 
two nonintersecting subsets P, and P,; Rp(x,y) is a set of binary relations of reachability in 
X ( x and y of X, p of P); ON(p)=x, where ON is a partial function of phcement from P 
into X; v is a function on P with positive integer values; it describes the vulws of elements; 
The Complex System searches a space of states, hence, it should have initial and target 
states. Si and St are the descriptions of the initial and furget states in the language of the 
first order predicate calculus, that matches with each relation a certain Well-Formed 
Formula (WFF). Thus, each state from Si or St is described by a certain collection of WFF 
of the form {ON(pj)=xk}; TR is a set of operators TRANSITION(p, x, y) of transition of 
the System from one state to another one. These operators describe the transition in terms 
of two lists of WFF (to be removed and added to the description of the state), and of WFF 
of applicability of the transition. Here, 

Remove list: ON(p)=x, ON(q)=y; 
Add list: ON(p)=y; 
Applicability: (ON(p)=x)"Rp(x,y), 

where p belongs to PI and q belongs to P2 or vice versa. The transitions are carried out in 
turn with participation of elements p from P, and P2 respectively; omission of a turn is 
permitted. 

According to definition of the set P, the elements of the System are divided into two 
subsets PI and P,. They might be considered as units moving along the reachable points. 
Element p can move from point x to point y if these points are reachable, Le., Rp(x,y) 
holds. The current location of each element is described by the equation ON(p)=x. Thus, 
the description of each state of the System ION(pj)=Xk) is the set of descriptions of the 
locations of the elements. The operator TRANSITION(p, x, y) describes the change of the 
state of the System caused by the move of the element p from the point x to the point y. The 
element q from the point y must be withdrawn (eliminated) if p and q belong to the different 
subsets PI and P,. 

The problem of the optimal operation of the System is considered as a search for the 
optimal variant of transitions leading from one of the initial states to a target state. 
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With such a problem statement for search for the optimal sequence of transitions into 
the target state, we could use formal methods like those in the problem-solving system 
STRIPS [17], nonlinear planner NOAH [18], or in subsequent planning systems. 
However the search would have to be made in a space of a huge dimension (for nontrivial 
examples), i.e., in practice no solution would be obtained. We, thus, devote ourselves to 
search for an approximate solution of a reformulated problem considering our Complex 
System in some sense as nearly decomposable [2]. 

It is easy to show that positional games such as chess and checkers might be 
considered as Complex Systems [21, 24-27]. But it is more interesting that this specific 
model of the formal linguistic approach is applicable to representing and solving a wide 
class of practical problems such as power maintenance scheduling, long-range planning, 
operations planning, VLSI layout, and various operations research problems [2 1, 22, 26, 
271. The idea is that the optimal variant of operation of these real-world systems may be 
artificially reduced to a two-sides game where one side strives to achieve some goal and the 
other is responsible for the provision of resources. 

5. GEOMETRICAL PROPERTIES OF THE COMPLEX SYSTEM 

To create and study a hierarchy of dynamic subsystems we have to investigate 
geometrical properties of the Complex System. 

Fig. 1. An interpretation of the family of reachability areas 

A map of the set X relative to the point x and element p for the Complex System 
is the mapping: 

(where x is from X, p is from P), which is constructed as follows. We consider a family 
of reachability areas from the point x, i.e., a finite set of the following nonempty subsets 
of X {Mkx,p} (Fig. 1): 

MAP,,+,: X -> Z+, 

k=l: Mkx,p is a set of points m reachable in one step from x: Rp(x,m)=T; 
k>l: Mkx,p is a set of points reachable in k steps and not reachable in k-1 steps, 

i.e., points m reachable from points of Mk-lx,p and not included in any Mix,p 
with numbers i less than k. 

Let MAPx,p(y)=k, for y from Mkx,p (number of stepsfrom x to y). 
In the remamder points let 

MAPX,.,(y)=2n, if y#x , and 
MAPx,p(y)=O, if y=x. 

defines an asymmetric distance function on X: 
It is easy to verify that the map of the set X for the specified element p from P 
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3. MAP,, (y)=MAPy,p(x>, 
In this case eaci of the elements p from P specifies on X its own metric. 

6.  CONTROLLED GRAMMARS 

In pattern recognition problems, a linguistic approach was proposed [9-151 for 
representation of hierarchic structured information contained by each pattern, i,e,, for 
describing patterns by means of simpler subpatterns. This approach brings to light an 
analogy between the hierarchic structure of patterns and the syntax of languages. The rules 
controlling the merging of subpatterns into patterns are usually given by the so-called 
pattern description grammars, with the power of such description being explained by the 
recursive nature of the grammars. Using s i d a r  approach for generating of the hierarchy of 
formal languages, we make use of the theory of formal grammars in the form developed in 
[7,8, 161. We begin with the definition of the class of grammars to be used. 

A controlled grammar G is the following eight-tuple: 

G=(VT,  V,, v p ~ ,  E, H, parm, L, R ) ,  
where 

V, 
VN 
VpR is the alphabet of thefirst orderpredicate calculus PR: 

is the alphabet of terminal symbols; 
is the alphabet of nonterminal symbols, S (from VN) is the start symbol; 

VpR=Truth UCun UVar UFunc UPred U {  symbols of logical operations} ,where 
Truth are truth symbols T and F (these are reserved symbols); 
Con are constant symbols; 
Var are variable symbols; 
Func are functional symbols (Func =Fcon UFvar ). Functions have an 

attached non-negative integer referred to as arity indicating the 
number of elements of the domain mapped onto each element of 
the range. A term is either a constant, variable or function 
expression. Afinction expression is given by a functional symbol 
of arity k ,  followed by k terns, t l ,  tZ, ..., tk, enclosed in 
parentheses and separated by commas; 

Prcd are predicate symbols. Predicates have an associated positive 
integer referred to as arity or “argument number” for the 
predicate. Predicates with the same name but different arities are 
considered distinct. An atom is a predicate constant of arity n, 
followed by n terms, t,, t2,..., t,, enclosed in parentheses and 
separated by commas. The truth values, T and F, are also atoms. 
Well-fomed formulas (or WFF) are atoms and combinations of 
atoms using logical operations; 

E is an enumerable set called the subject domain; 
H is an interpretation of PR calculus on the set E, i.e., a certain assignment of the 

- constant from Con is assigned to an element of E; - variable from Var is assigned to a nonempty subset of E; these 

- predicate Q from Pred of arity n is assigned to a relation on the 

following form. Each 

are allowable substitutions for that variable; 

set E of arity n, Le., to a mapping from En into {T, F}; 
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- functionfof arity k is assigned to a mapping IzV)from D into E, 
where D belongs to E k .  Iff is from Fvar, then D and the 
mapping h(n vary in the process of derivation in the grammar. 

Thus, the interpretation H allows us to calculate the value of any function (it lies 
in and any predicate (F or T ), if the values of all variables contained by them 
are specified. 

Parm is a mapping from V,UV, in 2Var matching with each symbol of the 
alphabet V,UV, a set of formal parameters, with Parm(S)=Var; 

L is a finite set called the set of labels; 
R is a finite set of productions, i.e., a finite set of the following seven-tuples: 

(1, Q, A-->B, nn, FT, FF) .  
Here, I (from L )  is the label of a production; the labels of different 

productions are different, and subsequently sets of labels will be 
made identical to the sets of productions labeled by them; 

Q is a WFF of the predicate calculus PR , the condition of applicability 
of productions; Q contains only variables from Var which belong 
to Parm(A); 

A->B is an expression called the kernel of production, where 
A is from V,; B is from (VTU V,)* is a string in the alphabet of 
the grammar G; 

is a sequence of functional formulas corresponding to all formal 
parameters of each entry of symbols from VT UV, into the strings 
A and B (kernel actual parameters); 

n,, is a sequence of functional formulas corresponding to all formal 
parameters of each functional symbol from Fvar (non-kernel actual 
parameters); 

F, is a subset of L of labels of the productions permitted on the next 
step of derivation if Q=T (“true”); it is called a permissible set in 
case of success; 

FF is a subset of L of labels of the productions permitted on the next 
step of derivation if Q=F(“false”); it is called a permissible set in 
case of failure. 

A finite set of strings from VT* and formulas from nn , in which each formal 
parameter (for every entry of a terrninal symbol into a string) is attributed with a value from 
E and each symbol f from Fvar is matched with a mapping h w ,  serves as a derivation 
result. 

Derivation in controlled grammar takes place as follows. A symbol S serves as the 
start of derivation, where its formal parameters are provided with initial mappings ha are 
specified for all f from Fvar. In the role of the initial permissible set of productions we take 
the entire set L .  To a current string we apply each of the productions of the current 
permissible set, the symbol A for which enters into the string. As a result of applying a 
production, a new string and a new permissible set are formed. Later on derivation for each 
of the strings obtained from a given one takes place independently. 

If none of the productions from permissible set can be applied, then derivation of the 
given string is discontinued. If this string consists only of terminal symbols, then it goes 
into the set of derivation results, otherwise it is discarded. 

The application of a production takes place as follows. We choose the leftmost entry 
of the symbol A in the string. We compute the value of the predicate Q. If Q=F, the FF 
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becomes the permissible set, and the application of the production is ended. If Q=T, then 
the symbol A is replaced by the string B ;  we carry out computation of the values of all 
formulas from q corresponding to the parameters of the symbols, and the parameters 
assume new values thus computed. New mappings hV) Or from Fvar) are specified by 
means of formulas from IT,; the permissible set is furnished by F ,  and application of the 
production is ended. (In the record of the production the formulas from n, leaving h(f)  
unaltered are omitted.) 

In constructions with which the controlled grammar is provided, it is easy to observe 
analogies with the programming language SNOBOL-4. 

A language L[G] generated by the controlled grammar G is the union of 
all the sets which are the derivation results in this grammar. 

7. ONE-DIMENSIONAL LINGUISTIC GEOMETRY 

Here, we define the lowest level language of the hierarchy of languages. It serves as 
a building block to create the upper-level. languages [26,27]. The lowest level language 
actually formalizes a notion of a path between two points for the certain element of the 
System. An element might follow this path to achieve the goal connected with the ending 
point. 

A trajectory for an element p of P with the beginning at x of X and the end at the y 
of X (xgy) with a length I is a following string of symbols with parameters, points of X: 

where each successive point xi+l is reachable from the previous point xi: Rp(xi, xi+l) holds 
for i = O,l,..., 2-1; element p stands at the point x: ON(p)=x. We denote tp(x, y, I> the set 

of trajectories in which p, x, y, and E coincide. P(to)=(x, x l ,  ..., xl} is the set of 
parametric values of the trajectory to. 

to-"(x)a(x1). * . d X l > ,  

Fig. 2. An interpretation of shortest and admissible trajectories. 

8 
7 

6 

5 
4 

3 
2 

1 
a b c d e f g h  

In order to illustrate this definition we consider the example from the robot control 
model (Fig. 2). Here the set of X (from Section 4) corresponds to the set of squares with 
coordinates: al ,  b l ,  cl ,  ..., h8 excluding squares in the shaded area, which represent a 
restricted district. WFF ON(p)=x designate squares x were robots p stand in given state. 
Relations R,(x, y) designate moving capabilities of different robots, i.e., this relation holds 
for all squares y which are reachable from x in one step. For example for the robot C on h8 
squares gS and h7 are reachable; it has moving capabilities similar to King from the game 
of chess. The second robot S can move like Queen from the chess. Three trajectories of the 
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robot C leading from point h8 to c6 are shown in Fig. 2 .  Robot S has two trajectories 
leading from a1 to f3. Arrows mark points (squares) where robots have to stop during the 
motion along these trajectories. These points correspond to the values of parametric 
symbols for each trajectory. 

A shortest trajectory t of tp(x, y, I) is the trajectory of minimum length for the 
given beginning x, end y and element p. 

In Fig. 2, the two trajectories of robot C, a(h8)a(g8)a(f8)a(e8)a(d7)a(c6) and 
a(h8)a(gS)a(f8)a(e7)a(d7)~(~6) ,  are the shortest trajectories. All the trajectories of the 
robot S shown in Fig. 2 are the shortest trajectories: a(al)a(fl)a(f3) and a(al)a(hl)a(f3). 
Reasoning informally, an analogy can be set up: the shortest trajectory is an analogous to a 
straight line segment connecting two points in a plane. Let us consider an analogy to a k- 
element segmented line connecting these points. 

An admissible trajectory of degree k is the trajectory which can be divided 
into k shortest trajectories; more precisely there exists a subset { Xil, Xi*, . . . , Xi,, } of P(to), 
il<i2<. . .cik-l, &I, such that corresponding substrings a(xo). . .a(Xi,), a(xi1). . .a(xi*), . . ., 
a(xik-I). . .a(xl) are the shortest trajectories. 

Shortest and admissible trajectories of degree 2 play a special role in many problems. 
Obviously, every shortest trajectory is an admissible trajectory at the same time, but of 
course, converse statement is not true. There exist admissible trajectories, e.g., of degree 
2 ,  which are not shortest. An example of such a trajectory 
a(h8)a(h7)a(g6)a(f6)a(e7)a(d7)a(c6) is shown in Fig. 2.  As a rule, elements of the 
System should move along the shortest paths. In case of an obstacle, the element should 
move around this obstacle by tracing some intermediate point aside (e.g. point h7 in Fig. 2) 
and going to and from this point to the end along the shortest trajectories. Thus, in this 
case, an element should move along the admissible trajectory of degree 2. 

A Language of Trajectories L&S) for the Complex System in a state S is the 
set of all the shortest and admissible (degree 2) trajectories of the length less or equal H. 
This language also includes the empty trajectory e (of the length 0). 

Properties of the Complex System permit to define (in general form) and study 
formal grammars for generating the Language of Trajectories as a whole along with its 
subsets: shortest and admissible (degree 2) trajectories. 

8. GENERATION OF TRAJECTORIES 

Consider the following controlled grammar for the Complex System with symmetric 
relation of reachability Rp (Table 1): 

ar of Shortest Tra iectories G4 (1) 

L Q Kernel, Xk Xn FT F F  
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Q1(x3 Y, 1) = (MAPx,p(~)=I) (0 I < n) 
Q2(0 = ( I  2 1 )  
Q 3 = T  

Var= {x, y, I} 
F =Fcon UFvar, 

Fcon= If,nextl ,.. . ,nextn } (n=IXl), 
fil)=l-l, D(fl=Z+\{O} 
(next, is defined below) 

F v a 4  xo,yo,lo,pl 
E =z+u x u P 
Parm: S ->Var, A ->Var, a ->( x}  
L= { 1,3} U two, t ~ 0 = ( 2 , , 2 ,  ,..., 2,) 
At the beginning of derivation: 

Function nexti is defined as follows: 

D(nexti)= x x Z, x ~2 x Z+ x P 
SUM=(v I v from X, MAPx,,p(v)+MAPy,,p(v)=fo}, 
STk(x)={ Y 1 v from X, MAPx,p(v)=k}, 
MOVE&x) is an intersection of the following sets: 

If MOVE&x)=(ml, m2, ..., mr)# @ then 

x=xo, y=yo, l=lo, xo from X, yo from X, lo from Z,, p from P. 

STl(x), STlo-l+l(xo) and SUM. 

nexti(x, l)=mi for i<r and 
nexti(x, l)=m, for r<i<n, 

nexti(x, l)=x. 
otherwise 

Fig. 3. An interpretation of the algorithm for nexti for the grammar G,(l). 

I 

'"-"\MAq ,(Y) = k x O  

d 
THEOREM. The shortest trajectories from point x to point y of the length 2, for the 
element p on x (i.e., ON(p)=x) exist if and only if the distance of these points is equal Io: 

where Zoc2n, n is the number of points%%. If the relation Rp is symmetric, i.e., for all x 
from X, y from X and p from P Rp(x, y)=R (yy x) ,  then all the shortest trajectories $(x0, 

MAP (Yo)=l*, (8.1) 

yo, Io) can be generated by the grammar Gt K ("able 1 Fig. 3). 
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Proof. We assume that to from tp(xo. yo, Io )  exists and is shortest. We shall prove (8.1). 
The proof is carried out by induction with respect to I,. 

In the case of lo=l the statement is easily verified. 
We assume that for 1,- the statement is true. 
Let Zo=m and t,?, from t (xo, yo, m )  be the shortest. We shall prove that 

MAPxo,p(yo)=rn. Let's consider t ie shortened trajectory t,-l from b(xo, x,-~, m-l), 
tnZ- I=a(xo)a(xl)...a(x,,-~), which is obtained from t, after discarding the last symbol. If t,, 
from tp!xo, x,,, m) is the shortest (x,=yo), then t,n-l is also shortest. But from the 
assumption it follows that MAPxo,p(xm-l)=m-l. From definition of MAP (see Section 5) 
it follows that x,-l belongs to 

Mx0,p. Since Rp(Xm-l, yo) is true, yo belongs to (U MJxo,p) u Mmxo,p. If yo is from 
m- 1 j=l 
U MJxo,p, then the trajectory t, is not the shortest one, since there exists a trajectory t' 

from $(x0, yo, j) of length jlnz-1. We have a contradiction. Thus, yo belongs to M"'xo,p, 
i.e., MAPxo,p(yo)=m. 

Conversely, let (8.1) be true. Let's show that there exists a trajectory belonging to 
$,(xo, yo, Zo), and that it is the shortest trajectory. 

The proof will be carried out by induction. For Zo=l the statement is obvious. Let it 
be true for loon. 

Let now Zo=m and MAP,, p(yo)=m. The shortest trajectory if exists can not be 
shorter then m, otherwise there exists ko<m such that MAP,, p(yo)=ko (from the direct 
statement proved above), and we have a contradiction. 

Let us construct the shortest trajectory belonging to $,(xo, yo, m). By definition of 
MAP there exists xm-1 from 

Mxo such that Rp(x,-l, yo)=T. But from the fact that xm-1 belongs to Mxo,p, we have 
MA~xo,p(xm-l)=m- 1. Consequently, according to the induction hypothesis, there exists 
the shortest trajectory a(x,)a(xl) ... a(x,_,) of length rn-1. In such a case the trajectory 
a(x,)a(xl) ... a(xm-l)a(yo) of length m will also be the shortest one. 

$,(xo, yo, Zo) are generated by the grammar G$l) from Table 1, if Rp is symmetric. This 
grammar, in accordance with definition of controlled grammars (Section 6) ,  belongs to the 
class of controlled grammars. Note that the set of functional symbols Fvar in it is a set of 
four zero-arity functions p, xo, yo, lo, Le., G$l)=G(p, x,, yo, lo). It is obvious that each of 
the strings generated by GJ1) is a trajectory from $,(xo, yo, lo). Indeed, for each string 
a(xo)a(xl) ... a(yo) thus generated, the elements xi belong to S T ~ ( X ~ ) = M ~ ~ , , ~  (see Fig. 3)' 
consequently, this string is the shortest trajectory. 

To prove that all the shortest trajectories are generated by GJ1) let us conduct the 
following preliminary discussion. As was already mentioned above, all substrings of the 
shortest trajectory are the shortest trajectories with the beginning at x, and ending at xi 
(i=l, 29..., lo). Taking into account the symmetry of the relation Rp, all reversed substrings 
with the beginning at yo and ending at xi (i =lo-1, lo-2, ..., 1, 0) will also be the shortest 
trajectories. Consequently, xi belongs to 

MyOlp. This means that for any shortest trajectory a(x,)a(xl) ... a(yo) from $,(xo,yo,Zo) 

m- 1 m-1 . 

j= 1 

m-1 111- 1 

To complete the proof of the theorem it remains for us to show that all trajectories 

lo-i 
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I lo-i . 
xi belongs to the intersection of Mxo,p and Myo,p, i.e., MAP,+(xi)=i and 

MAPyo,p(xi)=Zo-i, and, consequently, 

MAP,,,p(xij~MAPy,,p(xi)=l,. (8.2) 

Conversely, if for a certain x from X (8.2) takes place, then x necessarily enters 
into the set P(ti) parametric values of at least one shortest trajectory ti from t (xo, yo, lo). 
This follows from the fact that MAPxo,p(~)20 and MAPyo,p(x)20, while tleir sum is 
equal to Io .  That is to say, there exists j (05j_<Zo), such that MAPxo,p(x)=j, 
MAPyo,p(x)=Io-j. Then there exist two shortest trajectories t l  from tp(xo, x, j) and t* from 
tp(yo, x, lo-j). The trajectory t3 from tp(x, yo, Zo-j) constructed of the same symbols as t2, 
but in the reversed order, will also be the shortest trajectory. The concatenation of tl and t2 
gives the sought shortest trajectory containing x. 

Thus, any element of the set X enters into the set of parametric values UP(ti) 

for all the shortest trajectories ti from tp(xo, yo: lo) if and only if (8.2) is true. These 
arguments lay a basis for the algorithm for calculatmg the function nexti(x, E )  (Fig. 3). 

Next we shall use induction again. Obviously, the grammar of trajectories generates 
the first symbol a(x,) of all shortest trajectories from tp(xo, yo, 1,). Assume that it 
generates the rn first symbols of any shortest trajectory from tp(&,, yo, I,). We shall show 
that it generates also the (m+l)st symbol a(x,). 

t,(x,, yo, I,) are the shortest trajectories, x, belongs to ST,(X,)=M~~,,~.  But x, also 
belongs to SUM, because of (8.2), and x, belongs to STl(~,-l)=Mlx,,,p since Rp(x,-~, 
x,)=T by definition of trajectory. Thus, x, belongs to MOVE(x,_l), i.e., the (m+l)st 
symbol is generated by the grammar Gt(I). 

ti 

We have: MOVE(x,-l) is an intersection of STl(x,-l), ST,(%) and SUM. Since 

The theorem is proved. 

9. DISCUSSION OF RESULTS 

This paper reports the results on investigation of geometrical properties of complex 
systems. It explores properties of the first-level subsystems, paths of elements, the so- 
called trajectories. These results are considered as contribution to the One-Dimensional 
Linguistic Geometry. 

The investigation resulted in definition of a distance function between two points of 
the system as a “length of the shortest path between these points”. It is interesting that 
distances between the same two points are different for different elements of the system. It 
takes place because usually paths for different elements are different, i.e., moving 
capabilities of different robots as well as maintainability characteristics of different power 
units are different. 

The distance measurement allowed us to build the general formal grammar 
generating all the shortest paths between two points for the given element of the system, the 
shortest trajectories. There was proved the theorem (Section 8) which gives necessary and 
sufficient conditions for existence of a path (trajectory) between two points (for the given 
element); if such path does exist the theorem shows the actual length of the shortest path 
and confms that grammar GJlI generates all the shortest paths. Analogous results were 
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obtained in case of obstacles: visible and invisible. In this case the so-called “admissible 
trajectories of degree 2”, i.e., constructed of two shortest ones, can be generated by the 
Gt(2) grammar to go around the obstacles [ZS, 261. The application of the Linguistic 
Geometry to the game of chess, robot control, and maintenance scheduling allowed for 
efficient implementation of the Language of Trajectories in these models [26]. 

The same generating tools can be used to generate higher level subsystems, the 
networks of paths, i.e., the Language of Trajectory Networks [27]. Even the Language of 
Translations [27,28] describing the process of search can be generated by a sinlilar type of 
grammars. Consequently, the investigation of the control of the search for an optimal 
operation of the complex system can be reduced to the investigation of properties of the 
specific formal grammars. 
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Abstract 

In this paper, we consider the fundamental issues in knowledge verifica- 
tion and synthesis by focusing on a special type of rule-based systems, which 
consists of a set of deterministic and non-deterministic decision rules. A set 
of sound and complete inference axioms is suggested. Based on these axioms, 
an efficient algorithm is developed for computing the closure and testing the 
consistency of the input rules. 

1 INTRODUCTION 

Knowledge verification and synthesis are two important processes in the design 
and implementation of intelligent systems as it is often necessary to validate and 
consolidate the input knowledge [3, 6, 8, 9, 181. 

Many approaches for verification (validation) of knowledge in the rule-based 
systems were proposed [7]. In fact, many systems have been developed to identify 
inconsistent, redundant or missing rules in a knowledge base (7, 8, 91. However, 
research on knowledge verification tends to be fragmentary in nature and unclear in 
scope and methodology [7]. 

In this paper, by adopting an axiomatic approach we analyze some of the issues 
in knowledge verification and synthesis. Our approach is similar to the method 
used for analyzing functional dependencies in relational databases [5].  Our study 
will focus on the knowledge base consisting of deterministic and non-deterministic 
rules [lo, 11, 12, 15). Based on the notion of logical implication, we introduce a 

set of inference axioms for deriving new rules from the input rules. This process of 

'Currently at Department of Mathematical Sciences, Lakehead University, Thunder Bay, On- 
tario, Canada P7B 5El 
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synthesis is similar to inferring new functional dependencies in a relational database. 
The proposed set of axioms is related to that suggested by Bundy [l, 21 for incidence 
calculus. In particular, we show that our inference axioms are both sound and 
complete. Using these axioms, we also develop an algorithm to synthesize the input 
rules. 

2 ROUGH SETS AND DECISION RULES 

In this section, we extend the notion of rough sets based on a compatibility 
relation between the elements of two sets. The lower and upper approximations of 
a concept suggest two kinds of decision rules for uncertain reasoning. 

2.1 ROUGH SETS INDUCED BY A COMPATIBILITY 
RELATION 

Let W = {wl ,  w2 , .  . . , wm} and 0 = {el, 8 2 , .  . . , e,) denote two finite non-empty sets 
of interest. The set W may be regarded as a frame for representing evidence [13], 
whose elements are descriptions or situations [15]. On the other hand, the set 0 
may be interpreted as a frame for representing propositions, whose elements are 
elementary hypotheses. The relationship between the elements of these two frames 
can be described by a compatibility relation between W and 0, a subset of the 
Cartesian product W x 8. A description or situation w f W is said to be compatible 
with a hypothesis 8 E 8, written w 92 8, if w does not contradict 0. Semantically 
speaking, compatibility is symmetric: w is compatible with 0 if and only if 8 is 
compatible with w.  Without lose of generality, we may assume that for any w f W 
there exists at least one 8 E 0 such that w iR B ,  and vice versa. For example, 
consider a diagnostic system, in which W denotes a set of symptoms, and 0 a set 
of diseases. In this case, a symptom w E W is said to be compatible with a disease 
9 f 0, if a patient who suffers from the disease 8 has symptom w. Another example 
can be found in incidence calculus [17], where a situation w E W is compatible with 
a hypothesis 6 E 0 if w does not rule out the possibility that 9 is true. 

Suppose we want to characterize a subset A C 0 in terms of the elements in 
W .  Given a compatibility relation 8, one can define a mapping I's which assigns a 
subset ra (w)  C 8 to every w E W as: 
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Conversely, for any subset A C 0, one can define the lower preimage B ( A )  and the 
upper preimage %(A) of A as: 

The set %(A) consists of all those w’s compatible with only the elements in A. 
The set %(A) contains all those w’s, each of which is compatible with at least one 

element in A. Obviously, %(A) R(A)  for any A C 0. The pair (9?(A),%(A)) can 
be viewed its a rough set of A induced by the compatibility relation 92 [lo]. B(A)  is 
referred to as the lower approximation (the greatest lower bound) of A,  and %(A) 
is called the upper approximation (the smallest upper bound) of A .  

It can be verified that for any subsets A,  B 5 0,  the following properties hold [lo,  
131: 

Note that these properties are not independent. In fact, ( P l ) ,  $(0) = W and g(0) = 
0 are independent and sufficient for describing the lower approximations. Likewise, 
(P4), a(@) = W and R(0) = 0 axe independent and sufficient for describing the 
upper approximations. 

Instead of using equations (2) and (3), the lower and upper approximations can 
be equivalently defined by the following formulas: 

$(A)  = u j R ( B ) ,  

W) = u jL(% 
B C A  - 

AnB#0 

where the mapping, j a  : 2* -+ 2w, is called the basic set assignment defined by 

(4) 

( 5 )  
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The basic set assignment j, satisfies the following properties: 

2.2 DECISION RULES INDUCED BY ROUGH SETS 
Based on the lower and upper approximations of a proposition A 5 0, one can 

define two kinds of decision rules [12]. For every w f ?R(A), A contains all the 
8’s that are compatible with w .  Thus, whenever w E g ( A ) ,  we can conclude that 
the proposition represented by A is true, namely, the proposition { w )  implies A, 
written { w )  --f A. That is, the lower preimage of A defines a deterministic decision 
rule, ‘‘%(A) definitely implies A”, written %(A) 3 A. On the other hand, whenever 
w E %(A), proposition A is possibly true, namely, ( w }  possibly implies A, written 
{ w )  -.+ A. This means that the upper preimage of A defines a non-deterministic 
decision rule, “%(A) possibly implies A”, written a ( A )  13 A.  

When the Compatibility relation is given, it is a straightforward task to con- 
struct the deterministic and non-deterministic decision rules as described above. 
Alternatively, one may use an inductive method to learn these rules from a number 
of examples which implicitly define the compatibility relationships between the ele- 
ments of two frames 1121. The decision rules obtained by these methods are always 
consistent, and no synthesis is required. However, in many practical situations the 
decision rules are neither learned from the examples nor derived from a compatibility 
relation. Instead, the rules are given by the experts. Since these rules are specified 
separateZy for the individual propositions, inconsistency may occur. That is, there 
may exist contradictions among the input rules. Consider the following rules, for 

example, r1 : {q, zuz) -+ (8,) and ~2 : {wl, w3) --+ {el}. Obviously, these two 
rules contradict each other because rule rl says that if the description is w2, 6, is 
true, whereas rule r 2  says that if the description is w2, 61 is not true. Therefore, we 
need a method for testing the consistency of the rules provided by the experts. 

It is also important to note that new rules can be logically inferred from a given 
set of rules. For instance, from ( w l }  4 {4, &}, we know that if the description is 
wl,  either 81 or 82 is true. On the other hand, from ( w l }  3 {O,,  &}, we can conclude 
that if the description is w1, either 81 or 63 is true. These two rules implicitly imply 
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that { w l }  --+ (0,) holds. Thus, an inference mechanism for synthesizing the input 
rules are required. 

3 KNOWLEDGE SYNTHESIS 

Before presenting a method for the verification and synthesis of input rules, we 
first define the notions of logical implication and consistency in our approach. 

3.1 LOGICAL IMPLICATION AND CONSISTENCY 

Let F(A) and F ( A )  denote subsets of W. A set of decision rules F = {$'(A) 4 

A,F(A)  ̂r) AIA E 2'} given by the experts can be viewed as a pair of mappings, 
and F,  from 2' to 2w. Without loss of generality, we may assume that E ( @ )  = W 
holds. Also, if there is no information about proposition A,  we assume that F ( A )  = 0 
and F ( A )  = W. We call F an assignment. In F ,  each F ( A )  --+ A represents a 
deterministic rule, and each F(A)  - A represents a non-deterministic rule. The 
deterministic rule, $'(A) + A, indicates that for every w E E ( A ) ,  A contains all 
the 6's that are compatible with w. However, E(A) does not necessarily contain all 
the tu's that are compatible with only the 6's in A. The non-deterministic decision 
rule, F ( A )  -+ A, says that only those descriptions in F ( A )  may imply A. That is, 
whenever w 4 F(A) ,  w is not compatible with any 0 in A. However, there may exist 
some w's in F(A)  not compatible with any 6 in A. 

Let R denote the t w e  compatibility relation that defines the relationships be- 
tween the individual elements of 0 and W. Given an assignment F, suppose 
- F(A)  C F(A) for all A E 2'. Then, by the definitions of %(A) and %(A), F ( A )  5 
- R(A) C R(A)  C_ F(A)  holds for all A E 2e. Also, there may exist a number of com- 
patibility relations $,'s satisfying the condition: F(A)  2 - %;(A) C x ( A )  5 P ( A )  
for all A E 2'. Clearly, any of these 32;'s could be the true compatibility relation. 

For convenience, we will use X, Y, 2 to denote subsets of W and A,  B, C to 
denote subsets of 0 in subsequent discussions. 

Definition 1. A compatibility relation R satisfies a deterministic decision rule, 
X -+ A, if X C B(A); R satisfies a non-deterministic decision rule, X r̂) A,  if 
%(A) C X. A compatibility relation 32 satisfies an assignment F ,  if R satisfies every 
decision rule in F .  

- 

Definition 2. 
X + A,  written F 

An assignment F logically implies a deterministic decision rule, 
{X + A } ,  if for every compatibility relation R satisfying 
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F ,  92 also satisfies X + A. Similarly, F logically implies a non-deterministic rule 
X cv) A, written F + ( X  --A A}, if for every compatibility relation 9? satisfying F, 
R also satisfies X -A A. We use F" to denote the set of all the decision rules that 
are logically implied by an assignment F .  

Example 1. Let 0 = {aly 8 2 y  d3} and W = { w l ,  w2, w g } .  Consider an assignment 
F given below: 

There are only two compatibility relations 8 1  and 33322 satisfying the above assign- 
ment, namely: 

R1 : Wl 321 81, w2 R1 92, w3 8 1  93; 

3t2 : w1 s2 el, w2 x2 e2, w3 s2 e3, w3 3t2 02. 

Note that, both 3tl and SE2 satisfy the decision rules, { w l ,  w2) -+ {el, 82)  and 
{wl, w3) w {el, &}. By definition, these two rules are therefore logically implied 
by F .  

Definition 3. 
satisfying F ,  then F is consistent; otherwise F is inconsistent. 

Let F be an assignment. If there exists a compatibility relation 

Example 2 Let 0 = {61,&,&} and W = {wl,w2,wg}. Suppose the assignment 
F is defined by: 
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From E ( { & ) )  = {w} ,  we obtain w2 32 02. On the other hand, F({dI,0*}) = 
{wl ,  w3) implies that ~ ( w 2  91 0,) and i ( w 2  91 8 , ) .  This means that no compatibility 
relation would satisfy this assignment. That is, this assignment is inconsistent. 

3.2 COMPUTATION OF THE CLOSURE 

Let F' denote the set of all decision rules that can be logically implied by a given 
assignment F. Our objective is compute F" by using a set of inference axioms. Our 
approach is similar to that for finding the closure of a set of functional dependencies 
in a relational database [5 ] .  

For our purpose, the inference axioms can be expressed as: 

(11) 

(13) 

(14) 

(Is) 

(L) 
(I,) 

X 23 A and Y -+ 7 A  X - Y cv) A. 

(12) X- -A  and Y -+ A ==+ Y U (W-X) A. 

X ?-) A,Y - B and 2 ?-) A n  B + X n Y n 2 ?A A n  B. 
X + A,Y -+ B and 2 --+ A n B  =+ (X n Y) uZ --+ A n B .  
X -+ A n B  and Y 3 A==+ X U Y  + A. 
X 3 A + Y --+ A for any Y X. 
X -A A ==+ Y -t A for any Y 2 X. 

Although these axioms (I1)-(I5) are similar to those introduced by [l], we express 
them here as inference rules. 

Definition 4. Let I denote a set of inference axioms. With respect to I ,  the closure 
of an assignment F ,  written F:, is the smallest set containing F such that the no 
axiom cannot be applied to the set to yield an decision rule not in the set. 

Definition 5. We say that a set of inference axioms I is sound if any decision 
rule X + A or X - A in Flf is in F', i.e., Flf 5 F'. We say that I is complete if 

F' F:. 
It can be proved that the above set of axioms Io  = {11,12,13, 14, Is, Is, 17) is both 

sound and complete [16]. 
Let F$ denote the closure of F with respect to Io .  For every A in 2°, there may 

exist many deterministic and non-deterministic decision rules in FS with A at the 
right-hand side. Based on (I4), we know that if XI -+ A and X2 --+ A are in F$, 
XI U X2 -+ A is in F s .  Similarly, (13) implies that if - A and yZ ?A A are in 
F$, Yi f l  yZ -+ A is in F$. Therefore, for any A in 2e, there exist a deterministic 



decision rule inf ( A )  
such that whenever 
sup(A) c x. 

3 A and a non-deterministic decision rule sup(A) -G A in F,$ 
X -+ A is in F,$, X C inf(A), and whenever X -+ A is in F:, 

Definition 6. For any A in 2e,  inf(A) 4 A is called the muz deterministic 
decision rule of A,  if for any X 4 A in F:, X E inf(A); sup(A) A is called the 
min non-deterministic decision rule of A, if for any X A in F;, sup(A) C X. 
The set of dl the m u  deterministic and min non-deterministic decision rules, Fo = 
{inf(A) 4 A,sup(A) w AIA f 2@}, is called the mm-min assignment of F .  

Based on the notion of ma-min  assignments, there is a simple way for checking 
An assignment is inconsistent if and only if the consistency of an assignment. 

- Fo(A) e E(A) for some A in 2’ 1161. 

3.3 CONSTRUCTION OF THE MAX-MIN COVER 

The process of synthesis is to derive a new set of decision rules which have desirable 
properties and cover the original set of rules. 

Definition 7. Consider two sets of decision rules (assignments) G and F. G is 
equivalent to F if G‘ = F*. G is a cover of F with respect to a sound and complete 
set I of inference axioms, if Gf = F’. 

Based on the above definition, the max-min assignment F’ is obviously a cover 
of the original assignment F. We call FO a max-rnin cover. Moreover, such a cover 
satisfies the properties (Pl)-(P8), if one replaces 2 by I Fo, and 3 by E. Recall 
that one can equivalent define the lower and upper approximations in terms of the 
basic set assignment. This suggests that it may be easier to compute the basic set 
assignment jFo than to compute 150 directly from the inference axioms. Given below 
is an algorithm for constructing the max-min cover. 

Input: 

1. for each rule F(A)  -A A in F do 

2. for each %#k E w do 

F = {F(A) 3 A, F(A) w A I 
A E 2’$ E(A) # 0 and F(A)  # W } ;  

- F’(7A) = K(1A)  U (W - F(A));  

Find all the A’s wbere F‘(A) # 0 such that 

w E F’(A), say, Ai, A2, --,A; 
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if AI n A2 n . . . n AI = 0 then 

else 
exits to inconsistent; 

j(AI fl A2 n ... n Ai) = j (A1 n A2 n ... n Ai) U { ~ k } ;  

(Initially, j (A1 n A2 n ... n A I )  = 0.) 
3. output: j .  

Note that if .F(-A) is not assigned a value in the input, we may assume F ( A )  = 
0. This procedure exits to inconsistent if and only if the input assignment F is 
inconsistent; otherwise it outputs the basic set assignment of the max-min cover. 
The desired decision rules can be easily constructed from formulas (4) and ( 5 ) .  

4 CONCLUSION 

In this paper, we have taken an axiomatic approach to investigate the funda- 
mental issues in knowledge verification and synthesis. Our approach shares many 
salient features of the methods for analyzing functional dependencies in a relational 
database. A set of sound and complete inference axioms has been suggested. Based 
on these axioms, an efficient algorithm has been developed for computing the closure 
and testing the consistency of the input decision rules. 

Although our discussion has focused on a special type of deterministic and non- 
deterministic decision rules, the proposed method can be applied to other rule-based 
systems. 
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A RELATIONAL MODEL FOR IMPRECISE QUERIES' 

Weining Zhang, Clement Yu, 
Gaoming Wang, Tracy Pham and Hiroshi Nakajima' 

ABSTRACT 

In this paper, we propose a fuzzy relational data model that enables a database system 
to answer imprecise queries often found in decision-making applications. The model is 
based on a fuzzy relation in which values of attributes are atomic and precise, while 
the membership of tuples may be fuzzy. A fuzzy tuple relational calculus and a fuzzy 
relational algebra, both provide new features, are defined and shown to be equivalent on 
their expressive power. The use of these query languages are illustrated by examples. 
Techniques that allow an implementation of the model on top of a standard relational 
databases system are discussed. 

1 INTRODUCTION 

The database support to  decision-making applications in business, engineering, and science has 
become increasingly important. Such a support requires the database system to store and to process 
imprecise information that is inherent in human decision-making. The imprecision arises for several 
reasons. First, the natural language used in the decision-making process is itself imprecise. Second. 
the complexity of the real world and the lack of a complete knowledge of the data  in the system 
make it too difficult, if not impossible, for a decision maker to  describe precisely what he or she is 
interested in. Third, decisions are often made based on subjective and qualitative criteria which are 
inherently imprecise. Conventional database management systems assume precise data  in databases 
and can only answer queries whose query conditions must be matched precisely by data in the 
answer. Therefore, they do not readily support decision-making applications. 

Recently, the research on fuzzy databases combines the fuzzy sets theory, possibility theory, and 
fuzzy logic [18, 19Jwith the relational database technology to  handle imprecise data  and queries. Two 
approaches have been followed. The first approach [ 2 , 3 , 4 ,  5,12,14,  201 is to  include in the database 
domain fuzzy values such as the null value, disjunctive values, and linguistic values represented by 
possibility distributions. Query languages including fuzzy relational algebra, calculus, and fuzzy SQL 
were proposed to model and to  manipulate imprecise data. The resulting systems are integrated and 
the fuzziness of the data  can be represented both a t  attribute level (that is, the domain of an attribute 
can contain fuzzy values) and a t  tuple level (that is, the membership of a tuple with respect to  a 
relation can also be fuzzy). However, it usually requires the reconstruction of database management 
system, which is often too costly. Research followed this approach remains mainly theoretical. Issues 
of efficient implementation have not been adequately studied. For instance, in [12], although many 
theoretical aspects of a fuzzy database are discussed, the implementation is based on a fuzzy prolog 
language which is inherently tuple oriented and is not efficient in processing large volume of data. 
Recently, some attempt has been made I131 to  implement a fuzzy database system on top of a 

'This ~ e a r c h  b rupported in part by NSERC of Canada, O m n  Corporation, and Omton Management Center 
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relational database system. However. the system current.ly provides only a programming interface 
to a fuzzy function library to perform limited fuzzy operations on data retrieved from the relational 
databa3e. As such, the system represents a loosely coupled fuzzy data dictionary and a conventional 
relational database, and provides a less expressive query language as compared with the languages 
in  this and other papers. The efficiency of query processing in this system is yet unknown. 

'The second approach [l, 6, 9, 10, 8, 151 is to extend current relational databas? management 
systems to support imprecise queries against precise data. The basic idea is t.0 build front-end 
systems that allow users to express queries using imprecise conditions, involving fuzzy set,s, while 
the data within the databases reniain precise. Since such systems are based on the existing database 
management systems and their efficient implementations, they are easier to build and are more 
cost. effective than the first approach. Some prototype systems following this approach are reported 
recently [l, 9, 81. However, the extensions made by these systems are rather ad hoc. For example, In 
[8], a query system that supports fuzzy queries involving linguistic quantifiers and its implementation 
on top of dBase I11 Plus were described. The system was  considered as adding additional commands 
to the dBase 111 Plus. But the data model based on which the system works is not defined formally. 
Especially, the linguistic quantifiers were not defined in terms of any formal language. The theory 
behind the implementation was unclear as well. We feel that a more systematic method to the 
problem is needed. 

In this paper, we follow the second approach and propose a fuzzy relational data model that 
not only provides a theoretic foundation for imprecise (or fuzzy) query against precise data, but 
also allows implementation on top of existing relational database management systems. The data 
model is based on the fuzzy relation in which components of tuples have precise values, but each 
tuple belongs to  the fuzzy relation to  a certain degree. Two formal query languages, a fuzzy tuple 
relational calculus and a fuzzy relational algebra, are defined based on the fuzzy relation and provide 
stronger expressive power than those given in the literature. We also extend the notion of a safe 
calculus expression, which was not previously addressed in fuzzy databases literatures. Intuitively, 
a safe calculus expression denotes a finite relation whose tuples are constructed using symbols in 
the given fuzzy database and the given query. We prove that the the algebra and the calculus are 
equivalent, that is, any query expressible in one language is also expressible in the other. To our 
knowledge, such a result has not been previously reported3. The use of the query languages are 
illustrated through examples. Techniques that enable the implementation of the model on top of a 
standard relational database management system are also discussed. 

The remainder of the paper is organized as follows. In Section 2,  some background on fuzzy sets 
and imprecise queries is provided. In Section 3, the fuzzy relation is defined. In Section 4, we define a 
fuzzy tuple relational calculus. In Section 5 ,  a fuzzy relational algebra is given. The theoretic results 
on the equivalence of the two formal query languages are given in Section 6 .  The discussions of the 
techniques for implementing a fuzzy relational database system on a standard relational DBMS is 
in Section 7. Section 8 concludes the paper. 

2 FUZZY SETS AND IMPRECISE QUERIES 

In this section, we briefly present concepts of fuzzy sets and imprecise queries. 

2.1 FUZZY SETS 

A fuzz3 set  F in domain D is a collection of elements of D such that each element d E D is associated 
with a degree p ~ ( d )  with which d is a member of F .  The degrees of the membership for the set F 
is defined by a membership function p~ : D - [0,1], which maps each element in the domain into 
a value in [0, 11, where 1 indicates a complete membership, 0 indicates a complete non-membership, 

'Although in [12], it WM mentioned that the equivalence of their fumy relational algebraic and calculus languages 
clln be proved, neither a proof nor any reference on the issue waa provided. 
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and other values indicate partial membership. For example. let the domain be the age spanning 
from 0 to 200. A fuzzy set, Young. map be defined by the function 

Thus, the age 25 is definitely young; the age 27 is young to a degree of 0.86; and the age 60 is young 
t.o a degree of 0.02. 

Standard (or crisp) sets are special fuzzy sets whose niembership function maps every element 
in the set to degree 1 and all others to degree 0. Set operations. such as union, intersection, etc., 
are also extended to fuzzy sets. For esarnple, if an element, a is i n  fuzzy  sets 5‘1 with degree 0.4 and 
in $52 with degree 0.75, then a is in SluS? with a degree mat.(0.4,0.7.3) = 0.75 aud in SI n Sa with 
a degree n~in(0.4,0.75) = 0.4. Readers interested in the fuzzy sets theory may refer to  [18, 19). 

2.2 IMPRECISE QUERY 

An imprecise (or  fuzzy) query is formulated using linguistic terms whose meaning is imprecise. 
Consider a corporation database containing information about employees, departments, etc. Some 
imprecise queries may be the following. 

“List names of employees who are young and weil--paid.” 

“List names of departments in which most employees are young.” 

In these queries, “young”, “well-paid”, and “most” are linguistic terms, and have the following 
characteristics, 

1. They are imprecise. For example, it may not be clear whether the age 32 is young or not 
young. 

2. They are subjective and context dependent. For example, for employees, the age 19 may be 
definitely young, for children of employees, the age 19 may be definitely not young. 

Linguistic terms used in imprecise queries can be defined using fuzzy sets and may be classified 
into four types. 

1. Simple fuzzy concepts, such as, “young” , “well-paid”, “about 25” , etc. 

2. Fuzzy modifiers, such as, “very”, “much”, “more or less”, “a little bit”, etc. 

3. Fuzzy relationships, such as, “likes”, “similar to”,  “close to”, “far apart”, etc. 

4. f izzy  quantifiers, such as, “most”, “almost”, ‘La few”, etc. 

The formal query languages €or fuzzy databases that appeared in the literature support the first 
three types of linguistic terms, but not fuzzy quantifiers. The languages in this paper will support 
all four types. 

3 FUZZY RELATIONS 

In this section, we define the fuzzy relation which is an extension of a standard relation [7, 11, 171 
using the concept of fuzzy sets. In our presentation, the standard terminology of relational database 
as defined in [16] is used. 



1 5 4  

Defini t ion 3.1 X fuzzy relation scheme F = ( A l . .  . . , A , )  is a set of n distinct attributes. The 
domain of A , ,  denoted by D O M ( A , ) .  is a set of atomic. precise values. The d o m a i n  of F .  denoted 
by D O M ( F ) .  is the set {< a1 . . .  a, >I a ,  E DOhf(,4i)}. A fuzzy relation r wi th  scheme F ,  
denoted by r ( F )  (or simply r when the scheme is understood), is a (sub)set of DOXf(E.’) defined 
by a membership function pT : D O M ( F )  - [0, 11. such that a tuple t i n  D O J I ( F )  is in r ( F )  iff 
p,.(t) > 0,  where p T ( t )  is the degree o f t  wrt r .  A fuzzy database is a finite set of fuzzy relations 
each of which is with a fuzzy relation scheme. 0 

By this definition, a standard (or crisp) relation is a special fuzzy relation whose me~nbersliip 
fullstion assigns a degree 1 to every tuple in the relation and a degree 0 to every tuple not in the 
relation. Similarly, a standard relational database is a special fuzzy relational database i n  which 
every relation is crisp. Unlike the standard relations, for two fuzzy relations with the same scheme 
to be the same, the two fuzzy relations not only must have the same set of tuples, but also must 
have the same membership functions. 

Our definition of fuzzy relations differs from those in [2, 3, 4, 5, 12, 14, 201 in that the domains 
of attributes in our definition contain only atomic, precise values while the domains of attributes 
in their definitions may contain fuzzy linguistic values, represented by possibility distributions, and 
the null value. 

As an example, Figure 1 contains a scheme of a fuzzy relational database that will be referenced 
in examples appearing in this paper. 

Employee  = ( E i d ,  N a m e ,  A d d r ,  A g e ,  t i t l e ,  Spec ia l ty ,  S a l ,  D N o )  
D e p a r t m e n t  = ( D # ,  N a m e ,  Addr., C h a i r )  
L i k e s  = (Subj, Obj) 
C l o s e T o  = ( A d d r l , A d d r 2 )  
Young = ( A g e )  
W e f l P a i d  = (Sal )  
M o s t  = ( D e g r e e )  
V e r y  = ( D e g r e e )  

Figure 1: An Example Fuzzy Relational Database Scheme. 

4 A FUZZY TUPLE RELATIONAL CALCULUS 

In this section, we present a fuzzy tuple relational calculus based on the fuzzy relations. 

4.1 THE SYNTAX 

A fuzzy tuple relational calculus expression is defined by R = { t  I +( t ) } ,  where t is a tuple variable, 
arid +(t)  is a fuzzy logic formula. The expression denotes the set of tuples that satisfy formula +( t )  
with a degree in [0,1]. 

The fuzzy logic formula is similar to  the standard one with two extensions. First, the membership 
degree of tuples wrt fuzzy relations can be used to  select (see case 4 of the basis in Definition 4.1) 
and to  connect (see case 5 of the basis in Definition 4.1) tuple variables. This allows a variable 
degree of fuzziness t o  be specified when selecting tuples from relations, and allows the fuzziness of 
tuples in a fuzzy relation t o  be modified by the fuzziness of tuples in another fuzzy relation. The 
latter feature is useful for representing the modification of a linguistic term by another linguistic 
term, as in “very young” (see Example 4.2 for more details). Second, two types of fuzzy quantifiers 
are allowed. The first quantifier allows the specification of sentences such as “most (almost all, a 
few, . . .) oft’s  that  satisfy condition 1 (with a degree greater than 0) satisfy the condition 2 (with 
a degree greater than 0)” (see case 6 of the induction in Definition 4.1). For example, the sentence 
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‘‘Most tall men are not very fat” is of this type, where “tall men” is the condit.ion 1 ,  and “not very 
fat (men)“ is the condition 2. The second quantifier allows the specification of sentences such as 
“most (almost all! a few, , . .) of the following ( C )  conditions are satisfied (with degrees greater than 
0)” (see case 7 of the induction in Definition 4.1). Fuzzy quantifiers are linguistic ternis representing 
unary fuzzy relations whose only attribute has the domain [U, 11. In the sequel, t[A] denotes the 
component of a tuple variable t under attribute A .  

Definit iou 4.1 Let T be a fuzzy relation; 1 and t i  be tuple variables; -4 and B he at,tributes; c and 
k be constants, where IC is in [0, 11; p, . ( t )  be the degree of 1 wrt r ;  and B E {=, #, <, 5,  >, 2 )  be a 
comparison operator. 

Basis: Any one of the following is a f u x y  logic form.ula (or simply a formula):  

1. t E T .  

2. t[A] B c (or c 0 t [A] ) .  

3. t [ A ]  B v[Bf. 

4. pp(2) B k. 

5 .  pr(t) 0 v[B] ,  where v[B] E [0,1]. 

Induction: Let E l ,  Ez, . . . , E k  be fuzzy logic formulas. Then, the following are also fuzzy logic 
formulas. 

1. -El, where 7 is logic negation. 

2. El A Ez,  where A is logic AM). 

3. $1 v Ez, where v is the logic oft. 

4. (Vt ) (El ( t ) ) ,  where V is a universal quantifier. 

5. (3 t ) (E l ( t ) ) ,  where 3 is an existential quantifier. 

6 .  ( F  t : E l ( t ) ) ( E ~ ( t ) ) ,  where F is a fuzzy quantifier. 

7 .  ( F  ( E l , .  . . , Ek)) ,  where F is a fuzzy quantifier. 

8. ( E ) ,  where () is used to change the priority of evaluating a sub-formula. The priority of the 
connectives is given by 7, A, V, in that order. 

9. Nothing else is a formula. 0 

Similar to the standard tuple relational calcuius, the subset containing operators -E, E1 A El ,  
( E ) ,  (3t)(E(t)) ,  ( F  i : E l ( t ) ) ( E z ( t ) ) ,  and F ( E l , .  . .Ek) is sufficient for formulating any expressions 
in the calculus. The remaining operators can be obtained as follows. 

1. El V E2 ZG 7(1El A 1EZ). 

2. Vt(E) zz -3t(-E). 
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4.2 THE SEMANTICS 

The (fuzzy) truth value of a fuzzy logic formulais a real value in [0, 11, where 0 representing “definitely 
false”, 1 representing “definitely true”. and other values representing various degree of “part.ially 
true”. To define the truth value of a formula. let T r u t h ( )  be a function that maps a fuzzy logic 
formula to its truth value. FVe also define two operators4, @ and a! on the set of real numbers 
in [O. 11 for computing the fuzzy truth values of conjunctive and disjunctive forniulas. respectively. 
These operators have the following properties. 

1. a @ O = O , a @ l = a ;  

2 .  O < a n b < l ;  

3. a @ b = b @ a ;  

4. a @ b @ c = a @ ( b @ c ) = ( a @ b ) @ c .  

5 .  a @  b 2 c @ d  if a = c and b 2 d ,  or a 2 c and b = d .  

6 .  a @ l = l , a @ O = a ;  

7 .  O s a @ b < l ;  

8. a @ b = h @ u ;  

9. a @ b @ c = a @ ( b @ c )  = ( a $ b ) $ c .  

10. u @ b >_ c 

11. a @  b r  1 - ( ( 1  - a ) @ ( l  - 6 ) ) .  

12. u @ b ~ l - ( ( l - - a ) @ ( l - b ) ) .  

d if a 2 rnax(c, d )  or b 2 rnaz(c,  d) .  

A popular choice of these two operators is tha t  8 E inin and @ E mar. 

following rules. 
The  t ru th  value of a given fuzzy logic formula is obtained from tha t  of sub-formulas based on 

1.  For any instantiation o f t ,  Truth(t E r )  = / d p ( t ) .  

2. For any instantiation o f t  and any constant c, Truth(t[A] 8 c) = 1 if the  condition t [A]  B c 
holds, and 0 otherwise. T h e  truth value of t [ A ]  B v[B] ,  pr(t) t9 I C ,  and p r ( t )  8 v[B] are defined 
similarly. T h a t  is, the t ru th  values of these basic formulas are binary. 

3. For any formula E ,  Truth(7E) = 1 - Truth(E).  

4. For any two formulas E1 and Eal Truth(E1 V E2) = Truth(El)@Truth(Ea); and Truth(E1 A 
Ez) = Truth(E1) @ Truth(E2). 

5. for any formula E ,  Truth((E))  = Truth(E).  

6. For any formula E ,  Truth((Vt ) (E( t ) ) )  = Truth(E(t1)) @ . . . @ Truth(E(t,)), where t i ,  . . . , t ,  
are all possible instantiations oft .  

7. For any formula E ,  Truth((3t)(E(t)))  = Truth(E(t1)) @ e - .  @ Truth(E(t,)), where t l ,  . . . , t ,  
are all possible instantiations o f t .  

‘In the literature, @ is &o called the t-norm; @ is ale0 called the t-conorm or tht s-norm. 
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8 .  For any fuzzy quantifier F and atiy formula E1 and E?, 

k 
where 4 = Tru th (E l ( t i )  A E?( t i ) ) ) / ( x := l  T ~ ’ u t h ( E ~ ( t j ) ) ) ;  t l , .  . . , t k  are all possible 
instantiations of t for which Tru th (E l ( t i ) )  > 0; and l i p  is the membership function of the 
fuzzy quantifier F .  Intuitively, d, indicates the average possibility for t z  to satisfy both El and 
Ez, given that t i  satisfies E l ,  where the satisfactioti is in  terms of a degree. We assume that 
(b = 0 is Tru lh (E l ( t ; ) )  = 0 for all i. Example 4.4 provides further explanat,ion about, t,ltis txpe 
of quantification. 

9. For any fuzzy quantifier F and any k formulas E l , .  . .Ek, 

where p~ is the membership function of the fuzzy quantifier F .  Intuitively, the truth value of 
F(E1 , .  . . , E k )  is the membership degree of the average truth value of E, with respect to the 
fuzzy quantifier F .  More explanations are given in Example 4.5. 

If all relations are crisp, the truth values will become binary, and rules 1 through 7 are exactly 
the same as that in  the standard tuple relational calculus. On the other hand, rules 8 and 9 are 
unconventional. 

4.3 SPECIFY QUERIES IN THE CALCULUS 

Following examples illustrates the use of the fuzzy tuple relational calculus. 

Example 4.1 “Find names of employees who are young with a degree greater than 0.75”. 

Answer  = { t  I ( l e ,  y ) ( e  E Employee A y E Young A t [ N s m e ]  = e[Narne] 

Ae[&e] = y[Age] A pyWng(y) > 0.75)) 

This example shows the use of simple fuzzy concepts Employee5 and Young ,  and the use of the 
membership degree as a threshold to  select tuples for the answer. For any tuple e in Employee 
and any tuple y in Young ,  the truth value of the formula is 0 if any one of the conjuncts has truth 
value 0. Otherwise the truth value is determined only by pEmptoyee(e) @ pyoung(y), since all other 
conjuncts would have had the truth value 1. If fdEmp[oyee(e) = 1, then the degree for t to  be in 
the answer is the degree for t to  be the name of a employee whose age is considered young with a 
certainty higher than 0.75. c1 

Example 4.2 “Find names and titles of all employees who are very young and well-paid” . 

Answer  = { t  I (3e, v ,  y, w)(e E Employee A y E Young A w f WcllPaidA 

v E V e r y  A t[Narne] = e[l\rame] A t [Ti t le ]  = e[Tille] A 

e[Agel = y[Age] A pyoung(y) =  degree] A e[Sal] = w [ S a l ] ) }  

This example illustrates the use of fuzzy modifiers such as the term “very”. For a given set of 
tuples e ,  PI, y, and w, the truth value of the conjunction in the formula is determined as follows. 
If any conjunct has a truth value 0, the truth value of the conjunction is also 0. If all conjuncts 
have truth values greater than 0, the truth value of the conjunction is computed by pEmp,oyec(e) @ 
/woung(y) 8 pvevy(v)  @ pWeltPoid(w).  If the term “very” does not appear in the query, the truth 
value would be computed by pEmpioyee(e) @ ~ Y ~ ~ ~ ~ ( Y )  QD pWellPnid(w) which evaluates to  a higher 

‘As a special cm~e, Employee msy be a crisp dation. 
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truth value. This is natural since “very young“ is a stronger condition than “young” and therefore 
is more difficult to satisfy. Terms such as  “very” can be used to modify many other terms such 
as “large”. “beautiful”, etc., and the content i n  their fuzzy relations are determined based on 0 
operator. For example, if @ is the operator min, a common choice of the membership function of 
“very” is p\rery(z) = x2. Threshold values can be used in this query to fine-tune the fuzziness. For 
example, the query can be “Find names and titles of individuals who satisfy the following criteria a 
a degree higher than 0.73: they are employees who are very young to a degree higher than 0.55 and 
well-paid to a degree higher than 0.85”. The threshold values can be incorporated into the query 
hy adding p ~ ~ ~ ~ ~ ~ ( t )  > 0.73 A pvery(u) > 0.55 A , u I . ~ / ~ ~ , P ~ ~ ~ ( u J )  > 0.85 into the fuzzy logic forniula. 
The higher threshold value for W e l l - p a z d  implies that being well-paid is a stronger condition than 
being very young. 0 

Example 4.3 “Find names of employees who live close to work”. 

Answer = { t  I (3, c ,  l ) ( e  E Enzployee A d E Departnient A 1 E C ~ O S C T O A  

t[Narne] = e[Narne] A e[Addr] = I[..lddrl] A d[Addr] = l [Addr2] ) }  

This example illustrates the use of a fuzzy relationship “close to”.  The fuzzy relation CloseTo 
describes the similarity between pairs of addresses, thus is used to connect employees with depart- 
ments. In fact, the degree of a tuple in CloseTo can be thought as the degree of similarity of the 
two components of the tuple. 0 

Example 4.4 “Find names of departments in which most employees are young.” 

Answer = { t  1 ( 3 d ) ( d  E Department A t [ N a m e ]  = d [ N a m e ] A  

(Most  e : ( e  E Employee A e[Dno] = d [ D # ] ) ) ( ( j y ) ( y  E Young A e[Age] = y [ A g e ] ) ) ) }  

Here, we illustrate the use of the first of the two types of fuzzy quantifiers. In this query, the fuzzy 
quantifier “most” is associated with a subset of employees - those who are in the same department 
- rather than all possible tuples under the scheme of Employee, as in the cases of “forall” and 
“exists”. Conceptually, for each department, we consider each employee in that department to 
determine his/her degree of being young, and then measure the department wrt the “most” based 
on the departmental average degree of being “young”. Notice that by the definition of the truth 
value, for an employee to  be considered, he/she must be in the given department with a degree 
greater than 0, but his/her degree of being young is allowed to be 0. 0 

Example 4.5 “Find the name of employees who meet most of the following criteria: young, well- 
paid, and interested in traveling.” 

Answer = {t I ( 3 e ) ( e  E Employee A t[Narne] = e[Name]A  

(Most ( ( 3 Y N Y  E Young A e[AseI = y[Agel) ,  
(3w)(w E WellPaid A e[Sal] = w [ S a q ) ,  

(31)(1 E Likes A I[Subj] = e[Eid] A I[Obj] = ”Travel ing”))))  

This example illustrates the use of the second type of the fuzzy quantifiers. There are three conditions 
to  be qualified by tuples in the answer, but not all three must be satisfied to 100 percent. For each 
employee, the average degree with which all three conditions are satisfied is measured against the 
quantifier “most”. 0 

5 A FUZZY RELATIONAL ALGEBRA 

In this section, we define a fuzzy relational algebra based on the fuzzy relations. Like the standard 
relational algebra, the fuzzy relational algebra consists of a set of operations on fuzzy relations. 
These operations can be divided into two groups, the basic ones and the additional ones. 
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5.1 BASIC OPERATIONS 

The set of basic operations in the  fuzzy relational algebra are defined below. In the following. let 
r ( R )  and s ( S )  be two fuzzy relations. 

The Cartesian product of r and s denoted by r x s, is a fuzzy relation e(RS) ,  where RS is the 
concatenation of R and S. The relation e contains the set of tuples obtained by pairing each tuple 
in r with each tuple in s For each tuple t in e ,  suppose that 1 is obtained from t l  in r and 1 2  in s ,  
then the degree o f t  in  e is p e ( t )  = p r ( t l )  @ p , ( t Z )  

We say that r and s are u n m i  cornpatzbk if R = ( A I ,  . . . , An) and S = (B1 , .. . , B,,), and for 
each 1 5 i 5 R ,  DOrtl(A,) = DOM(B, ) .  

Let r arid s bp union compatible fuzzy relations. The union of r and s, denoted by r U s, is a 
fuzzy relation e (R)  (or e(S))  which contains all tuples that are either in T or in s. For each tuple t 
in e ,  the membership degree o f t  wrt e is pe(t) = pr(t) @ p s ( t )  

The interseclzon of r and s ,  denoted by r n s ,  is a fuzzy relation e ( R )  (or e(S)) which contains 
all tuples that are in both r and s. For each tuple f in e ,  the membership degree of t wrt c is 

~ e ( t >  = pr(t) 9 ~ s ( t ) .  
The sei-dzflerenct of r and s ,  denoted by r - s, is a fuzzy relation e ( R )  which contains all tuples 

that are in  r but are not in s with degree 1. For each tuple t in e ,  the membership degree o f t  wrt 

The selection operation is based on a condataoiial formula which is either an atomic formula 
or a more complex formula formed from simpler conditional formula using and (A) and o r  (V). 
The atomic conditional formulas are of the following form: r.A B c ,  r .A 0 5.3, pr() 0 k, and 
pr() B s .B ,  where r.A denotes the attribute A of fuzzy relation r ;  c and E E [0,1] are constants; 
6' E {= . f, <, 2,  >, 2) ;  and pr() denotes the membership function of fuzzy relation r .  Notice that 
conditional formulas are ordinary logic formulas, that is their truth values are binary. 

The selectton of r based on a conditional formula Q, denoted by aQ(r) ,  is a fuzzy relation e(R) 
which contains all tuples in r that satisfy Q. For each tuple t in e ( E ) ,  the membership degree oft 
wrt e is pe( t )  = /A,.($). 

Let L be a sequence of attributes of scheme R. The projertiun of r on L ,  denoted by I I L ( r ) ,  is a 
fuzzy relation e(L) .  There is a tuple t in e if there are k 2 1 tuples t l ,  . . . , t h  in r with membership 
degrees p r ( t l ) ,  . . . , p , . ( t k ) ,  respectively, such that for every attribute A in L ,  t [A]  = t l[A] = .. = 
t k [ A ] .  The degree o f t  in e is p e ( t )  = p,.(t l )  @ .  e .  @ pr(tk). Intuitively, the projection is the same as 
that  in the standard relational algebra except that the duplicate elimination process must also take 
care of the calculation of the membership degree. That is, before removing duplicate tuples, each 
tuple carries over the membership degree of its original tuple in the operand relation r ,  and when 
the duplicate is removed, the membership degrees of all tuples that are the same on all attributes 
in I, are used to  compute the membership degree wrt the resulting relation. 

The renaming of a relation r (R)  to e ( E ) ,  denoted by e(E)  + r ,  is the same relation as that of 
r ,  except that  the name of the relation, and maybe the names of the attributes, are changed. 

The above algebraic operations will reduce to those in the standard relational algebra when all 
operands are crisp relations. The next two operations are special to  the fuzzy relational algebra 
and are motivated to match directly the two types of fuzzy quantifiers of the fuzzy tuple relational 
calculus. 

Let r and s be union-compatible fuzzy relations, L be a subset of attributes in scheme R, and 
F be a unary fuzzy relation whose oniy attribute has the domain [0,1]. The Q-mappang of r and s 
with respect to  L and F ,  denoted by r bf s, is a fuzzy relation e ( L )  which is obtained as follows. 

e is pe( t )  = p r ( t >  @ (1 - p S ( t ) ) .  

1.  Group the tuples in r by attributes L .  

2. Compute r n s and group tuples in T n s by attributes L .  

3. Compute a fuzzy relation e l ( L )  as follows. For each group in r n s, let the value (sub-tuple) 
for the attributes L be 4. Then e l  contains a tuple I ,  with a membership degree equals the 
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sum of the membership degrees of the group I ,  in r n s divided by the sum of the membership 
degrees of the group I ,  in T .  

4.  Let E be the same as e1 except for each tuple I ,  in e l ,  p e ( I i )  = p ~ ( p ~ ~ ( I i ) ) .  

The Example 5.4 in Section 5.3 illustrates the use of this operation. 
Let r l (R1) ,  . . . , r k ( R k )  be I; 1 1 unioo-compatible fuzzy relations and F be a unary fuzzy 

relation whose only attribute h a s  the domain [0,1]. The C-znierseclmn of r l ,  . . . , with  respect 
to F ,  denoted by CF(r1,. . . , ~ k ) !  is a fuzzy relation t ( R l )  (or e ( K ) ,  1 5 i 5 k). There is a t'uple 
t in e if t is in at least one ri ,  for 1 5 i 5 k. For each t in E ,  the membership degree of t is 
p e ( t )  = p ~ ( ( p , . , ( t )  + . . .  + p T k ( t ) ) / k ) .  The use of this operation is illustrated by Example 5.5 in 
Section 5.3. 

'The formal definition of the fuzzy relational algebra is given below. 

Definition 5.1 An expression in fuzzy relational algebra is defined inductively as follows. 

1. A fuzzy relational variable is a fuzzy relational expression. 

2. If E l ,  . . . ! Ek are fuzzy relational expressions. Then, so are 

(a) El x Ez. 

(b) E1 u E 2 .  

(c) E1 n E2. 

(d) E1 - E2. 

(e) U d E l ) .  

(f) I J L ( & ) .  

(g) El bf E2- 

(h) CF(EI, .  . ., Ek). 
(i) r ( R )  - El ,  where r (R)  is a fuzzy relation with scheme R. 0 

5.2 ADDITIONAL OPERATIONS 

The set of basic fuzzy algebraic operations are sufficient for specifying any expression in the fuzzy 
relational algebra. But it is more convenient to define additional operations, as in the standard 
relational algebra. 

Let r and s be fuzzy relations as defined before, and Q be a conditional formula. The 6-join of 
r and s, denoted by r W Q  s ,  is a fuzzy relation e(RS)  where RS is the concatenation of R and S.  A 
tuple t is in e if there is a tuple tl in r and a tuple t2 in s, such that t[R] = 11[R], i[Sl = t 2 [ 5 7 ,  and 
tl and t2 together satisfy Q.  The degree o f t  in e is p e ( t )  = p r ( t l )  @ p 8 ( t 2 ) .  

It is obvious that the 0-join can be obtained by Cartesian product followed by a selection, that 
is, T WQ s = uQ(r x s ) .  

The equzjoin of r and s is the same as the &-join of T and s except that  Q contains only equalities. 
The natural join of r and s, denoted by T W s, is also the same as its counterpart in the standard 
relational algebra except that each tuple in the result has a membership degree computed as in the 
&join. 

Notice that unlike the standard relational algebra, the operation r n s may not be equivalent to  
r - ( r  - s). To see this, assume that the membership degree of a tuple t wrt r is a and that wrt s 
is b .  By definition, the membership degree oft  wrt r n s is a @ b ,  and that of t wrt r - ( r  - s) is 
a @I (1 - (a @ (1 - b ) ) ) .  Thus the two expressions are equivalent iff a @ b = u @ (1 - ( u  @ (1  - b ) ) ) .  If 
@I E min, the two expressions are equivalent. But if @ E x, they are not equivalent. 
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5.3 

iVe now express the set of queries appeared in examples i i i  Section 4.3. using the fuzzy relational 
algebra. 

Example 5.1 “Find names of employees who are young wi th  a degree greater than 0.75”. 

SPECIFY QUERIES IN THE ALGEBRA 

nNu,,(Emyloyrc- W ( q J , . o . ” q ( ) > n  75 1 ’ o w ) )  

In this example, the natural join is on the attribute Agr in both Ernpfoyee and Yozmg The 
thrwhold valup 0.75 is used first to select the ages from the fuzzy relation f’01171g. The nienibership 
degree of tuple t in  the answer is computed by p ~ ~ ~ , ~ ~ ~ ~ ( t )  $1 plroplng(t.Age). 0 

Example 5.2 “Find names and titles of all etrrployees who are very young and well-paid” . 

n ~ a r n e ,  ~zt~e(Cmployee W (Young Wpyoyng()=\ /ery Degree Very)  W bt’ellpaid) 

Notice that the modification of Young by V e r y  is obtained by an equijoiti where one side of the 
join condition involves the membership function of 3‘oting. Again, various threshold values can be 
used to select tuples from the operand fuzzy relations that participate the joins. For example, the 
query “Find names and titles of individuals who satisfy the following criteria to a degree higher than 
0.73: they are employees who are very young to  a degree higher than 0.55 and well-paid to a degree 
higher than 0.85” can be expressed as 

u p ~ ( ) > O  73(R @Name,  T*tle((Young Wpyorng()=Very Degree (gpv,,,()>0.55Very) 

E mgIoyee ( u p  wall pa ,d  ( )> 0 85 Well Paid) 1) c1 
Example 5.3 “Find names of employees who live close to work”. 

nN,me(EmPioyee MEmployee Addr=CloseTo Addrl  CIoseTo 
WDepurtment Addr=CloseTo Addr2 Department)o 

Example 5.4 “Find names of departments in which most employees are young.” 

ITDepartment N a m e ( D e p a r t m e n t  WEmployee DnoZDeportment D #  

(Employee b ~ ~ ~ o y e e  Dno (Employee W Young))) 

the sub-expression involving the R-mapping is computed as the follows. 

1 .  For each department number in E m p l o y e e ,  the sum of the membership degree of all employees 

2. For each department number in Employee W Young, the sum of the membership degree of all 

3. For each department number in Employee W Young, the ratio of the sum obtained in step 2 

4. The resulting fuzzy relation contains distinct department numbers in Employee cu Young,  
and for each department number, the membership degree is that of the corresponding ratio 
computed in step 3 with respect tQ the fuzzy relation Most. 0 

in that department is computed. 

young employees in that department is computed. 

to  that obtained in step 1 is obtained. 

Example 5.5 “Find names of employees who meet most of the following criteria: young, well-paid, 
and interested in traveling.” 

xMost((nfIEmployee N a r n e ( E m d 0 y e e  Young)), 
@Employee N a m e ( E m p l o y e e  W e W a i d ) ) ,  

@Employee N a m e  (Empk!ee WEmployee.Etd=Likcs Subj  ( g h k e s  O ~ ~ = ” T r a u e l i n g ” L i k e S ) ) ) )  
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The three sub-expressions compute the young employees, the welkpaid employees, and the travel- 
liking employees, respectively. The resulting fuzzy relation contains the name of every employee who 
is in any one of the three categories. For each eniployee name in the result, the membership degree 
is computed by first find the average membership degree with which the employee falls into all t.hree 
categories, and then find the membership degree of this average wrt the fuzzy relation M o s t .  0 

6 SAFETY AND EQUIVALENCE 

Like in the standard tuple relational calculus, not every fuzzy tuple relational expression is useful. 
For example. if a fuzzy tuple calculus expression denotes an infinite fuzzy relation, there is no way 
to  obtain all tuples in the fuzzy relation, and there may be no way to finitely represent the fuzzy 
relation, neither. In the following, an expression is said to be tnfinzte if it denotes an infinite fuzzy 
relation. In the fuzzy tuple relational calculus, there are two situations in which an expression may 
be infinite. In the first situation, the formula involves infinite fuzzy relations, but does not restrict 
them. For example, consider a unary fuzzy relation, say EhrAway with an attribute Dzstunce whose 
domain is the set of integers greater than or equal to  0 (representing kilometers). Assume that the 
membership function of FurAwny is defined by 

Then, the expression {t  I t E F a r A w a y }  represents the query “List all tuples in FurAwaf and 
denotes an infinite fuzzy relation. In the second situation, the operators such as 7 and V may force 
the tuples to be formed using symbols that are neither in the database nor in the given query. For 
example, { t  I ~ ( t  E r A p r ( t )  = 1)) may be infinite. In the standard tuple relational calculus, a 
notion of safety was defined, and only safe expressions are of practical interests. Intuitively, a safe 
tuple calculus expression denotes a finite relation in which each tuple is formed using only those 
symbols that are either in the database relevant to the query or in the query itself. In the following, 
we extend the notion of safety to fuzzy tuple relational calculus expression. 

Definition 6.1 Given a fuzzy logic formula $. Let SYM(+)  be the set of symbols that either 
appear explicitly in 4 or are components of some tuples that are in some fuzzy relation mentioned 
in .IL. 0 

Intuitively, S Y M ( $ )  is the set of symbols that are in the relevant portion of the database and in 
the given query. Since fuzzy relations may be infinite, S Y M ( $ )  may also be infinite. In the following, 
we say that a variable is bounded if it is associated with a quantifier, and i t  is f ree ,  otherwise. 

Definitioii 6.2 Let R = {t 1 + ( t ) }  be a fuzzy tuple relational calculus expression. The  formula $( t )  
is said to  be range res t r ic ted  if 

1. Whenever t satisfies +(t)  with a non-zero degree, each component o f t  is in S Y M ( + ) .  

2. For each sub-formula of +(t )  of the form (3u)(w(u)) ,  if u satisfies W ( U )  with a non-zero degree 
for any free variable in w(u) ,  then each component of ZL is in SY M ( w ) .  

3. For each sub-formula of $ of the form (Vu) (w(u) ) ,  if any component of u is not in S Y M ( w ) ,  
then u satisfies w with the degree 1.  Intuitively, the quantifier “forall” requires checking of 
every tuple in the domain of u for the satisfaction of w .  But by this definition, tuples with 
components formed using symbols outside of S Y M ( w )  need not be checked, since they will 
never affect the truth value of the sub-formula. 

4. For each sub-formula of rC, of the form ( F  I I  : w ~ ( u ) ) ( w ~ ( u ) ) ,  if any component of u is not in 
S Y M ( w 1 )  then u satisfies w1 with the degree 0. Since only those u’s that  satisfy w1 with a 
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non-zero degree will contribute to the truth value of this sub-fortnula, lliis definition simply 
says that tliere is no need to check tuples which have at least one component. with a symbol 
outside of , 517hr (~1) .  since such a tuple is automatically out  of t,lie consideration. 

The fuzzy tuple relational calculus expression is rangr  restricted if the forniula d ( l )  is range 
restricted. 0 

Intuitively, if a fuzzy tuple relational calculus expression is range restricted, every component. of 
every tuple in the answer is a symbol in the database or in the query. Therefore, one only needs to 
search for the answer within the set of tuples that can be constructed using symbols in S’l.~M(+). In 
the standard tuple relational calculus, the range restriction alone is sufficient in defining the safety 
of the expressions. But in the fuzzy tuple relational calculus, a range restricted expression may still 
not necessarily denote a finite fuzzy relation since SUM($) may be infinite. Thus, we need the 
following more general definition of the safety. 

Definition 6.3 An expression in the fuzzy tuple relational calculus is f i n i f e  if it denotes a finite 
fuzzy relation and it is safe if it is range restricted and finite. fl 

For the fuzzy relational algebra, we define a finite expression to be the one that evaluates to a 
finite fuzzy relation. 

The following two theorems together state that the fuzzy tuple relational calculus and the fuzzy 
relational algebra are equivalent in terms of their expressive power. Due to the space limitation, 
these theorems are provided without proof. Readers who are interested may refer to [21]. 

Theorem 6.1 If E is a expression in the fuzzy relational algebra, there is a range restricted expres- 
sion in the fuzzy tuple relational calculus equivalent to E .  Furthermore, if E is finite, the equivalent 
expression in the fuzzy tuple relational calculus is safe. fl 

Theorem 6.2 Each range restricted expression in the fuzzy tuple relational calculus has an equiv- 
alent expression in the fuzzy relational algebra. Furthermore, if the fuzzy tuple relational calculus 
expression is safe, the equivalent algebraic expression is finite. 0 

7 IMPLEMENTATION CONSIDERATIONS 

In this section, we briefly discuss techniques that allow an implementation of the proposed data 
model. More specifically, we discuss the implementation of fuzzy relations in a standard relational 
database, the user interface, and the structure of a front-end system. 

In the fuzzy relational database, there are two types of fuzzy relations: the finite ones and the 
infinite ones. The implementation of these two types of fuzzy relations is naturally different. 

Each finite fuzzy relation can be represented by a standard relation which contains a designated 
attribute for the membership degree. This attribute can be made accessible to the user so that 
the user may inspect or change the membership degree of any tuple. This allows a fuzzy relation 
to  represent the personal viewpoints of the user about the fuzzy concept represented by the fuzzy 
relation. 

There may be several ways to implement infinite fuzzy relations depending on the types of their 
membership functions. For instance, a single attribute fuzzy relation with a membership function 
pp(z) = z2 over integers is probably best implemented as an ordinary function. A fuzzy data 
dictionary (or library) can be maintained and used by a front-end system to provide the mapping 
between the fuzzy relation and the function that implements its membership function. The fuzzy 
data dictionary itself may partially be stored in the standard relational database as well. For 
example, if several infinite fuzzy relations have similar membership functions. There is no need 
to implement a distinct function for each of these fuzzy relations. instead, a generic €unction can 
be implemented which when supplied with appropriate values of parameters can implement the 
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membership function of any one of these fuzzy relations. The set of values of the parameters for 
different fuzzy relations must be in the fuzzy dat,a dictionary. and can be stored in a standard 
relation. 

The fuzzy relational algebraic operations can be implemented in two steps. In the first step. 
the standard relational algebraic operations are called for to perform the set-oriented retrieval 
operations. In the second step. a post processing is required to perform operations that can not 
be accomplished by the standard relational operations, such as joining with infinite fuzzy relations 
and calculating the membership degrees of the resulting tuples. For esample, to compute the 
answer to the query in Example 5.3 ,  the standard relational joins can be performed t.0 obtain the 
joiii of Employee, C‘loseTo, and Departmeri t .  The resulting intermediat,e relation is necessary to 
have three designated attributes for p ~ ~ ~ i ~ ~ ~ ~  (), p C l o s e r o ( ) ,  and p ~ ~ ~ ~ ~ ~ ~ ~ ~ , , ~ ( ) ,  respectively. Then, 
the intermediate relation can be scanned to  generate the final answer, and during this step, the 
membership degree of each tuple in the final answer is computed using values in the three designated 
attributes. 

The user interface provides facilities to allow a user to query the database and to manipulate the 
fuzzy relations. The fuzzy tuple relational calculus and the fuzzy relational algebra do not provide 
all functionalities that  are provided by the standard relational database languages, such as SQL. A 
fuzzy SQL can be provided as the user interface to the fuzzy relational database which is based on 
our model. This fuzzy SQL can allow linguistic terms, such as Young, Wellpaid, to be used in the 
where-clause as a constant. For example, the query in Example 4.2 can be expressed a s  

SELECT Name, T i t l e  
FROM Employee 
WHERE Age = Very Young AHD Sal = WellPaid 

The basic structure of a fuzzy database system consists of a fuzzy SQL based user interface, 
a fuzzy data (function) library, a front-end system that performs the two-step implementation of 
fuzzy relational algebraic operations, and a standard relational database. 

8 CONCLUSION 

In this paper, we propose a fuzzy relational data model for answering imprecise query against 
precise data. We define the fuzzy relation which is an extension of the standard relation. Two 
formal languages, a fuzzy tuple relational calculus and a fuzzy relational algebra, are provided for 
specifying the imprecise queries. Examples are given to  show the wide range of imprecise queries 
expressible by the given languages. The equivalence of the two formal languages has been proved. 
We also discuss the techniques that can be used to implement a fuzzy database system based on the 
proposed fuzzy relational model. 

We are currently developing a fuzzy relational database system based on the ideas presented in 
this paper. An interesting issue for future study is the query optimization that involves many fuzzy 
relations, both infinite and finite. Another research issue is to build tools to  help users to  define 
fuzzy relations that best suits their needs. We are also interested in further extending our model to 
include various fuzzy data, 
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