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RARE ATTRIBUTES IN FINITE UNIVERSES: 
HYPOTHESES TESTING SPECIFICATION AND 

EXACT RANDOMIZED UPPER CONFIDENCE BOUNDS 

Tommy Wright 

ABSTRACT 

When attributes are rare and few or none are observed in the selected sample 
from a finite universe, sampling statisticians are increasingly being challenged to 
use whatever methods are available to declare with high probability or confidence 
that the universe is near or completely attribute-free. This is especially true when 
the attribute is undesirable. Approximations such as those based on normal theory 
are frequently inadequate with rare attributes. For simple random sampling with- 
out replacement, an appropriate probability distribution for statistical inference is 
the hypergeometric distribution. But even with the hypergeometric distribution, 
the investigator is limited from making claims of attribute-free with high confi- 
dence unless the sample size is quite large using nonrandomized techniques. In the 
hypergeometric setting with rare attributes, exact randomized tests of hypothesis 
are investigated to determine the effect on power of how one specifies the null hy- 
pothesis. In particular, specifying the null hypothesis as zero attributes does not 
always yield maximum possible power. We also consider the hypothesis specifica- 
tion question under complex sampling designs including stratified random sampling 
and two-stage cluster sampling (one case involves random selection at first stage 
and another case involves probability proportional to size without replacement se- 
lection at first stage). Also under simple random sampling, this article defines and 
presents a simple algorithm for the construction of exact “randomized” upper con- 
fidence bounds which permit one to possibly report tighter bounds than those exact 
bounds obtained using “nonrandomi~ed” methods. 

KEY WORDS: Exact randomized a-level tests; Exact randomized upper confi- 
dence bounds; Hypergeometric; Neyman-Pearson Lemma; Power. 
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1. INTRODUCTION 

Applications abound for sampling from a finite universe of size N to make infer- 

ences about the number A with a specific attribute in the universe (Cochran 1977; 

HajGk 1981; Hald 1981; Hansen, Hurwitz, and Madow 1953; Schilling 1982). Under 

simple random sampling without replacement , especially in small universes where A 

is assumed near zero, e.g., sampling inspection and sampling for audit applications, 

the hypergeometric probability distribution is the appropriate sampling distribu- 

tion for exact statistical inferences (Johnson and Kotz 1977; Liebermann and Owen 

1961; Odeh and Owen 1983; Wright 1991). For any N and when A is at or near 

zero, e.g. A = 0, 1, or 2, we say that the associated attribute is a rure attribute. 

Increasingly for applications with certain finite universes, investigators are asked 

to take necessary steps to eventually report with high probability or confidence 

that A is near or equal to zero without 100% inspection. Examples of sampling 

where attributes are rare and where high assurance is required that A = 0 include: 

sampling to assure that all welds on a nuclear reactor are properly formed, sampling 

to assure that all houses in a certain area are below a threshold radon reading, 

sampling to assure that all valuable materials and parts can be accounted for, and 

sampling to assure that all drums of waste materials being treated have readings 

which permit treatment. Most important are those cases where the attribute is a 

defective OS some other undesirable trait. A recent overview of statistical concerns 

with annotated bibliography when auditing populations assumed to contain rare 

errors is given in a report of the Panel on Nonstandard Mixtures of Distributions 

(1989). Hwang (1972) provides a simple group testing method for detecting all 

defectives in a universe when there is an upper bound on the number of defectives 

A. However, group testing methods have limited applications. Wright (1990) shows 

under simple random sampling without replacement that if one is to be 100( 1 -a)% 

confident that there are no defective units in the universe given that no defectives 

were observed in the sample, then the sampling fraction must be at least 1 - a,  

i.e., we must have n / N  2 1 - a. When 1 - a is near 1, the required sampling 

fractions and costs are high, and alternative methods are needed. When there 

is strong prior information, Wright (1992) provides an alternative which gives an 

explicit decision rule in a Bayesian context for answering the question: “What is 

the maximum number of units in the universe that need not be inspected, if the 



2 

posterior probability that none of these are defective must be greater than or equal 

to 1 - E for 0 < < l?” With this Bayesian method and depending on the value of 

N ,  the savings in terms of a sampling effort rather than a census can be significant. 

In a hypothesis testing approach for rare attributes, one wants to test whether 

or not A = 0. Indeed, the decision is often between only two values A = 0 and 

A = A1 where 0 < A1 5 N .  When the choice is between two values, the null 

hypothesis is often taken as 

H o :  A = O  (1) 

and the alternative hypothesis is stated as 

(The more familiar form in practice is HO : A = 0 vs. H1 : A 2 A1 .) However, it 

is worth noting that taking the null hypothesis to be A = 0 when A = 0 is desired 

to be supported by the sample data is contrary to the usual practice of stating the 

desired value(s) of the parameter to be supported by the data under the alternative 

hypothesis. 

If one knows that the true value of A is either 0 or A1 and not both, an answer 

of yes to the question, “Is it true that A = O?” is correct if and only if the correct 

answer is no to the question “Is it true that A = AI?” and vice versa. However, and 

contrary to the intuition of many, testing A = 0 against A = A1 is not equivalent to 

the specification of testing A = A1 against A = 0. While this fact that testing with 

one specified order is not equivalent to testing with another specified order is noted 

and accepted by statisticians without any apparent feeling of discomfort (see e.g., 

Bunt and Barton, 1967, pp. 128-9), the same cannot be said of nonstatisticians who 

are the majority users of statistical methodology which purports to being useful in 

dealing with uncertainty (Barabba, 1991). 

Desiring that the probabilities of Type I and Type I1 errors be as small as 

possible given the serious consequences of error and the budget constraints, the 

investigator will want to maximize the power when specifying which of A = 0 or 

A = A1 should be the null hypothesis and which should be the alternative hypoth- 

esis. This article investigates and presents exact results using the hypergeometric 

distribution for testing one simple hypothesis against another simple hypothesis 

demonstrating explicitly the effect that specification of hypotheses has on power. 

For completeness, Section 2 reviews the basic theory of Neymaa and Pearson (1933) 
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for testing two simple hypotheses in the finite universe context with exact signifi- 

cance level a. In Section 3, we consider the effect on power of order specification 

when testing A = 0 against A = A1 where A1 is a particular positive integer; a 

special case of interest is A1 = 1. In Section 4, we present conditions for a test 

of power 1 under the alternative and a general result when specification order has 

no effect on power. The problem of testing for rare attributes when A1 = 1 is 

considered under more complex sampling strategies including: stratified random 

sampling, two-stage cluster sampling, and probability proportional to size sampling 

without replacement in Section 5. Exact randomized upper confidence bounds are 

defined and constructed in Section 6. Concluding remarks are given in Section 7. 

2. BACKGROUND 

For a finite universe of size N with an unknown number of units A having a 

particular attribute, let Ao and A1 be two different specified integers (i.e. either 

A" < A1 or A0 > A I )  such that 0 5 Ao, A1 < N .  Assume that a simple random 

sample without replacement of size n is to be selected to test at stated significance 

level a(0 < cy < 1) the hypotheses 

If f i ~  is the set of feasible values of A, (3) implies that Q A  = {Ao, AI} .  Let a be 

the random variable representing the number of sample units with the attribute. 

The sampling distribution of a under simple random sampling without replacement 

is hypergeometric as given in (4) 

For simplicity, we declare the support of a to be {0,1,2, ..., n}  and assign zero 

probabilities for those values of a where appropriate. With rare attributes, we will 

always have A being much smaller than n in practice. 

The critical region C consists of those values of a which lead to rejection of Ho, 

while C' consists of those values of a which lead to nonrejection of HO. The set C 
is often referred to as the test of Ho against HI.  The probability of rejecting H,-, 
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given a specific value of A by using the critical region C, written P ( C J A ) ,  is called 

the power of the test C for the value A. Clearly, 

Most interest is in evaluating ( 5 )  when A is a d u e  specified under the alterna- 

tive hypothesis. Because HI : A = A1 is a simple hypothesis, the power of the test 

in (3) is given by P(C(A1).  The power under HO : A = A0 is P(CJAo) = a, the 

significance level of the test where 0 < a < 1. To reject Ho when Ho is true is called 

a Type I error, while not rejecting Ho when Ho is not true is called a Type I1 error. 

Thus, P(Type I error) = P(CIA0) = a, and P(Type I1 error) = 1 - P(CIA1) = p, 
where 0 < p < 1 for testing (3). 

A set C is a most powerful test (equivalently a most powerful critical region) 

for testing the hypotheses in (3) at significance level a if (i) P( CIAO) = Q and (ii) if 

D is any other subset of {0,1,2, ..., n} such that P(DIA0) 5 a, then P(C1-41) 2 

P(DIA1). The following lemma, which is a special case of the Neyman-Pearson 

Lemma, gives conditions under which a most powerful test (critical region) can 

always be found when testing the hypotheses in (3). 

N-P Lemma f l933) .  Let a be the random variable representing the number of 

units with a particular attribute in a simple random sample without replacement 

of size n selected from a b i t e  universe of N units. Let A0 and Al be two different 

specified integers where 0 5 Ao, AI 5 N. Let 0 < cr < 1 be fixed. Let k be a 

positive real number and C be a subset of the sample space {0,1,3, ..., n }  where E 

and C satisfy: 

Then C is a most powerful test of significance level a for testing HO : A = A0 

against HI : A = A I .  

The N-P Lemma makes it clear that values of a with high ratio values 

p(alAl)/p(alAo) favor rejection of HO where high is expressed in terms of k. For 
implementation of this lemma in practice, the following results are helpful. In each 

case, we assume simple random sampling without replacement from a finite universe 

of size N where (I is the number of attributes in the sample of size n. 
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Lemma I. For given values a, I;, and Ao(> 0), there exists k* such that 

p(uIA0 - l)/p(alAo) 2 k iff a 5 k* 

where IC* depends on E .  

Proof 

Ao(N - A0 + 1) - I;Ao(N - A0 + 1 - T Z )  

( N  - A0 + 1 + E & )  
iff a 5 

iff a 5 E* 

A ~ ( N - A O S l ) - k A ~ ( N - A O + I - n )  
where IC* = ( N - A o - t - l + t A o )  

W 

The importance of Lemma 1 is that for testing HO : A = A0 vs. H I  : A = A0 -1, 

the most powerful test C for given Q which (by the N-P Lemma) rejects Ho for all 

a such that p(a(A0 - l)/p(alAo) 2 E is equivalent to the most powerful test which 

rejects HO for all a such that a 5 k*, Le., rejects HO for small values of a. The 

obvious advantage is that k* can be easily found to satisfy P ( a  5 k*IAo) = a by 

making use of (4). Lemma 1 leads to the following important corollary. 

Corollaru I. For given values a and k and A0 > AI, a most powerful test of 

significance level Q! for testing HO : A = A0 vs. H I  : A = A1 is to reject Ho in 

favor of H1 if a 5 E* where k* is chosen to satisfy P ( a  5 k*/Ao) = a. (When 

A1 = A0 - 1, k* is given explicitly as noted in the proof of Lemma 1.) 

vs. N1 : A = 
A0 + 1, a most powerful test C which rejects HO for all a such that p(alA0 + 
l)/p(alAo) 2 E is equivalent to the most powerful test which rejects Ho for all a 

such that a 2 IC**, i.e., rejects Ho for large values of a. 

In a similar way, Lemma 2 implies that for testing HO : A = 

Lemma 2. For given values a, k, and A*, there exists E** such that 

p(uIA0 + l)/p(alAo) 2 I; iff a 2 E** 

where k** depends on k (Lehmann 1959; p. 70). 
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Thus, Corollary 2 follows as did Corollary 1. 

Corollaw 2. For given values a and k and A0 < AI, a most powerful test of 

significance level Q for testing HO : A = A0 vs. H1 : A = A1 is to reject Ho in 

favor of HI if a 2 k** where k** is chosen to satisfy P ( o  2 k**IAo) = a. 

Comment. Because the sampling distribution of a is discrete, it is not always 

possible to find a k > 0 and critical region C which satisfy the assumptions of the 

N-P Lemma exactly for a given value of a. In practice, two options are considered. 

Option I. Change the value of Q to &. Take ti to be some number less (or more) 

exists which gives a critical region than the originally stated Q so that for &, a 

with significance level equal to &. 
While Option I is the option chosen most often in practice, Option I1 is presented 

next to demonstrate how one can construct a (most powerful) test where the level 

of significance is exactly Q and to serve as a reference throughout the remainder of 

this paper. 

Option II. Use a randomized test 4. The tests discussed thus far in this paper 

are nonrandomized tests because each a is clearly specified to either belong to C or 
C‘. Sometimes, the assignment of a particular value of a to C or C’ is unclear or 

not as sharp as desired. One such case occurs with randomized tests. 

Let $ ( u )  be the probability of rejecting Ho if a is observed. To test Ho : A = A0 

vs. HI : A = AI where A1 > Ao, the randomized test (or critical function) is 

given by (subscript “U” refers to upper tail critical region) 

f 1  if a = au + 1 , a U  + 2  ,..., n, - l , n  

l o  if a = 0 , 1 , 2  ,..., a v - 1 .  

where a v  is such that C ! Z , , + l p ( a l A ~ )  5 a and C%,,p(alAo) > a. The sig- 

nificance level of h~ is E A o [ q b ( a ) ]  = ~ , “ = o # w ( a ) p ( a l A o )  = a, and the power of 

$v under Ai is  EA^ [ h ( a ) ]  = du(a)p(alAl). The critical region Cv corre- 
sponding to the randomized test &I can be viewed as a fuzzy set (Zadeh 1965) 

Cv = (au ,  av + 1, ..., n - 1, n} where each of au + 1, au + 2, ..., n - 1, n belongs to 

CLJ with degree $ v ( a )  = 1, while a~ belongs to Cu with degree $u(au) < 1. Here 
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the function &J is viewed as the degree of membership function. In the context of 

fuzzy sets and only if uu units with the attribute are observed in the sample, the 

sample evidence is indecisive and randomization (ie. a Bernoulli trial) is employed 

to reach a final decision to either reject Ho with probability ~ V ( U U )  or not to reject 

Ho with probability 1 - ~ u ( u u ) .  
Similarly, to test HO : A = A0 vs. H1 : A = A1 where AI < Ao, the randomized 

test (or critical function) 4~ is given by (subscript "L7, refers to lower tail critical 

region) 

if a = 0,1,2, ..., U L  - 1 

where U L  is such that C,"4i1p(ulAo) 5 a and C ~ ~ o p ( u l A o )  > a. The significance 

level of q 5 ~  is E A , [ # L ( ~ ) ]  = a, and the power of 4~ under AI is E A ~ [ $ L ( U ) ] .  As 

for Cu, the critical region CL = {0,1,2, ..., UL - 1, U L }  corresponding to q 5 ~  can be 

viewed as a fuzzy set. 

To demonstrate the explicit effect on power due to the specification of hypothe- 

ses, randomized tests are essential to ensure the existence of exact a-level tests 

under the two specifications of the null hypothesis, i.e., for Ho : A = A0 and for 

H o :  A = A 1 .  

3. TESTING FOR RARE ATTRIBUTES: A = 0 

3.1. Against A = AI(> 0). 

Particularly in applications where efforts have been undertaken to ensure that 

A = 0 for a given finite universe, the null hypothesis and alternative hypothesis are 

often taken as 

H o :  A Z O  VS. Hi : A = A 1  (8) 

which we will denote by the ordered pair ( 0 , A l ) .  Alternatively, the ordered pair 

( A I ,  0) will denote 

H o :  A = A l  VS. H I :  A = O .  (9) 

In general, the first position of the ordered pair specifies the null hypothesis, while 

the second position specifies the alternative hypothesis. Here, O ; ~ A  = (0, A I } .  
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More importantly than rejecting HO : A = 0 in (8) or rejecting HO : A = AI in 

(9), the experimenter wants to know which one of the two values in f i ~  is the truth. 

It is desirable that the order (0, AI) or ( A I ,  0) should not matter; but it is well known 

that order,does matter in the usual statistical approach and Lemmas 3, 4, and 5 

illustrate just how explicitly. Let POWER(A1,O) and POWER(0, AI) represent the 

power under the alternatives for testing ( A I ,  0) and (0, A I ) ,  respectively. 

Lemma 3. Let 0 < cr < 1, 1 5 A1 < N ,  and 0 < p ( a  = OIA1) 5 a. Then 

(i) testing with order (A1,O) has POWER(A1,O) = 1, and (ii) testing with order 

( 0 , A i )  h a  POWER(0,Al) < 1. 

Proof: (i) Testing with order (A1,0), the randomized test 4~ is given by 

if a = 0,1, ..., aL - 1 

where a ~ ( >  1) is such that CZLi'p(alA1) 5 Q and C:40p(a1.41) > a. For +L, 

P(CLIA = A I )  = E A ~ [ + L ( ~ ) ]  = a, and the power under A = 0 is 

POWEFt(A1,O) = P ( C t J A  = 0 )  = Eo[+~(a)] 
a L - 1  

a=O 

= 1 + $ L ( U L )  (0) = 1 . 

Comment. If p ( a  = OIA1) < Q ,  then + t ( a ~ )  > 0 for some a~ 2 1. Thus, when 

p ( a  = OIA1) < Q and because any observed value of a > 0 cannot logically support 

HI : A = 0, we should take a new significance level as suggested under Option I, 
say ii, such that ii = p ( a  = OlAl). This will ensure that a revised test 4~ will have 

$ L ( Q L )  = 0 for U L  2 1 and that 4~ is a nonrandomized test. The proof of (ii) is 

next. 

(ii) Testing with order (O,Al), the randomized test +u is given by 

1 

a! if a = O .  

if a = 1,2, ..., n 
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From Lemma 3 and if p(u  = OIA1) < a, the significance level should be reduced 

to a new level 6 = p(u = OIA1). Secondly, for p(u = OIA1) = a, testing with order 

(AI ,  0) where A1 is specified as the null hypothesis yields power equal to 1, and it 

will always be superior to testing with order (0, AI) where 0 is specified as the null 

hypothesis and the power is less than 1. In Lemma 4, we consider (0, AI )  compared 

with (A1,O) when p(u = OJAl) > a. 

Lemma 4. Let 0 < CY < 1, 1 5 A1 < N ,  and p(a = OIA1) > cy. 
(i) If a > p ( a  = OIAl)/{l + p ( a  = OIAI)}, then POWER(A1,O) > POWER(0,  AI).  

(ii) If CY < p ( a  = OIAl)/{l +&a = O(Al)), then POWER(A1,O) < POWER(0, -41). 
(iii) If cy = p ( u  = OIAl)/{l + p ( u  = OIAI)}, then POWER(A1,O) = POWER(0,Al) .  

Proof: (i) Testing with order (A1,0), the randomized test is 

a / p ( u = O ] A l )  if a =  0 

if a = 1,2 ,..., n . 4 L ( 4  = 

where P(CLIA = AI) = d ~ ( O ) p ( u  = OIA1) = a and POWER(A1,O) = P(CLIA = 
0) = $ ~ ( O ) p ( a  = OIA = 0) = a/p(a = OIAl). Also, testing with order (O,Al), the 

randomized test is 

{ cy if a = O .  

where P(CvIA = 0) = qlu(O)p(u = OIA = 0) = cy and POWER(0,AI) = P(CuIA = 
AI)  = c:=o #v(a )p (a lA~)  = 1 - p(u = O[A1) + p ( a  = OIA1)a. Now if 

1 if a = 1,2,3,  ..., n 
4 U ( 4  = 

CY{I - IP(u = 0 I A l ) ] ' } / p ( ~  = OIAi) > 1 - p ( a  = 01-41) , 
C X / ~ ( U  = OIA1) > 1 - P(U = OIA,) + p ( ~  = OIA1)a , 

POWER(A1 , 0) > POWER(0,  AI)  ) 

and (i) follows. Proofs for (ii) and (iii) are similar. m 

Comment. It is worth noting that when a 5 p(a = OIAl), ~ L ( u )  = 0 and 

+v(u) = 1 for a = 1,2, ,.., n while 0 < q5~(0) < qh~(0) < 1. Thus, both tests cause 
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the experimenter to come to similar conclusions if a = 1,2,  ..., n and to randomize 

if a = 0. This characteristic is desirable. 

3.2. Against A = AI(= 1) 
Of particular interest is the case when AI = 1. (In practice, this often appears 

in the equivalent [for testing] form Ho : A = 0 vs. Hi : A > 0.) When A 1  = 1, 

p(a = OIA = 1) = ( N  - n ) / N ;  and as observed from Lemmas 3 and 4, it is enough 

to consider the cases where CY 5 ( N  - n ) / N .  
When Q = ( N  - n ) / N ,  Lemma 3 reveals that testing with specified order (1,O) 

has power 1 and is superior to testing with order (0,l). The cost of this test with 

power 1 can be expensive, i.e., it requires that n / N  2 1 -a which is the same cost if 

one wants to declare with confidence 1 - (Y that 0 is an upper confidence bound for 

A having observed 0 attributes in the sample (Wright 1990). This same cost also 

follows from a sequential sampling plan of Wallenius (1967). It has also been noted 

in a Bayesian setting with a uniform prior on A, that the conditional probability 

that A = 0 given a = 0 attributes are observed in the sample is ( n  + l ) / (N  + I), 

(Benedict 1990; Wright 1992). Note from (10) that testing with specified order 

( 0 , l )  has power 1 when n = N ,  i.e., when there is 100% sampling. 

When Q < ( N - n ) / N ,  p(a = OIA = l ) /{ l+p(a = OIA = 1)) = ( N - n ) / ( 2 N - n )  
and the results of Lemma 4 follow by comparing Q to ( N  - n ) / ( 2 N  - n). 

More generally, and when CY 5 ( N  - n ) / N ,  to achieve a minimum power of 1 - P 
for testing (0 , l )  requires that 

n > ( I - J - ) N ,  1 - C r  

while to achieve a minimum power of 1 - P for testing ( 1 , O )  requires that 

Lemma 5. Let P = (Y I ( N  - n ) / N .  If n = (1 - &) N ,  then POWER(0,l) = 
POWER( 1,O). 

Proof: The result follows by noting that POWER(0,l) = a + (1 - a)% and that 

POWER(1,O) = N o / ( N  - n). m 
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3.3. Definition of An Optimal Sampling Design When Testing for Rare 
Attributes. 

Thus far in this article, the sampling design has been simple random sampling 

without replacement. In a finite universe with rare attributes, Le., A is at or near 0, 

the desire is to use a best sampling design to select a sample without replacement 

of size n to test either ( 0 , l )  or (1,O). Assuming $ 2 ~  = (0, l}, what sampling design 

should be used? In this subsection, it is argued why simple random sampling with- 

out replacement is an example of what will be considered as an optimal sampling 

design in a context with rare attributes. 

Let a be the number of attributes in the sample, however chosen. If A = 0, then 

p(u = OIA = 0) = 1 for any sampling design. Note here that p ( . ) ,  which depends 

on the sampling design, is not necessarily the same as given in (4). If A = 1, then 

p ( a  = OIA = 1) + p ( a  = 1IA = 1) = 1, where p ( a  = OIA = 1) depends on the 

sampling design. When testing (0, l), POWER(0,l) = a + (1 - a)p(a = 1IA = 1); 

while testing (1,O) gives POWER(1,O) = C Y / ~ ( U  = O(A = 1) where CY 5 p(u = OIA = 

1)- 
With regard to power and for given CY, the question is how should one se- 

lect the sample in order to maximize the power of either (0 , l )  or (1, O)? In view 

of POWER(O,l), one should sample so that p(u = 1IA = 1) is large; and from 

POWER(l,O), one should sample so that p(u  = OlA = 1) is small. Both are consis- 

tent with intuition. But, with the restriction CY 5 p ( a  = OIA = 1), p(a = OIA = 1) 

can be no smaller than cy. Thus, one should sample so that p(a = OIA = 1) = a,  

and the best power values are POWER(1,O) = 1 and POWER(0,l) = 1 - CY + 2. 
As implied earlier, the power is influenced by p ( a  = 1IA = 1) which depends 

on the sampling design. When one further assumes that the experimenter has 

absolutely no idea which one of the N units would have the attribute if A = 1, 

then clearly there is no reason to favor one particular unit’s inclusion in the sample 

over that of another. In such cases, it is appropriate “to assign roughly the same 

probability to every possible (unit)” for inclusion in the sample (Raiffa and Schlaifer, 

1961, p. 63). Thus, an optimal sampling design when testing for rare attributes with 

no prior knowledge concerning which unit, if any, might have the attribute would be 

a nonknfornativc sampling design (Cassel, Sk-ndal, and Wretman 1977; Chaudhuri 

and Vos 1988). Because without replacement sampling requires E;”=, P( Vi selected) 

= n and probability sampling requires that P(U; selected) > 0 for each i, it follows 

that an optimal sampling design must be one such that P(Ui selected) = n / N  for 
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each i. Clearly, simple random sampling without replacement is one example of an 

optimal sampling design. Thus, when 5 2 ~  = (0, l}, any sampling design with P( Ui 

selected) = p(a = 1IA = 1) = n / N  is optimal. 

4. SOME GENERAL RESULTS 

The next lemma is a generalization of Lemma 3. Note that the case 

xfzop(alA1) < a should not be considered. The sampling design throughout 

this section is simple random sampling without replacement. 

Lemma 6. If 0 < a < 1, 0 5 A0 < A1 < N - A0 5 N ,  and xf-!op(alAl) = a, 
then POWER(A1,Ao) = 1. 

Proofr Testing with specified order (AI,  Ao), a most powerful nonrandomized 

where CL = {0,1,2, ..., Ao}. Clearly, P(CLIAI) = a, and the power of # L  for A = 
A0 is POWER(A1,Ao) = P(CLIAO) = +t(a)p(alAo) = Ctzop(alAo) = 1. = 

In addition to Lemma 4(iii) and Lemma 5 ,  the next result gives conditions 

where the order specification of the hypotheses makes no difference in power- 

independently of the value of Q and the value of n. 

Lemma 7. POWER(A0, N - Ao) = POWER(N - Ao,Ao). 

Proof: Without loss of generality, assume that A0 < N - Ao. Let Q be given. A 
most powerful a-level test for (Ao, N - Ao) is given by 

if a = a U  +- 1, aU -I- 2, ..., n 

if a = 0,1,2 ,..., au - 1 , l o  
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where au is such that C:=aa+lp (alAo) 5 CY and ~ ~ = a u p ( u l A ~ )  > a,  and $U has 

power for A = N - A0 of 

POWER(A0, N - Ao) = P(CU/N - Ao) 

A most powerful a-level test for ( N  - Ao, Ao) is given by 

f 1  if a = 0,1,2, ..., U L  - 1 

Because p(a1&) = p ( n  - alN - Ao) for the hypergeometric family, we have 

a r  - 1  n 

Thus, POWER(A0, N -  Ao) = POWER(N-Ao, Ao), and ordering of the hypotheses 

makes no difference. H 

Comment. A result analogous to Lemma 7 holds for testing the Bernoulli pa- 

rameter p against l - p ,  or equivalently for testing A0 against N - A 0  under simple 

random sampling with replacement. The utility of Lemma 7 relates particularly 

to those important problems where one wants to know if evidence supports either 

A < or A > $. This could very often translate into testing (4  - 1, $ + 1) or 
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(g + 1, 
case. 

- 1); from Lemma 7, we are assured that the power is the same in either 

5. TESTING (0,l) OR (1,O) UNDER 

COMPLEX SAMPLING DESIGNS 

5.1. Testing (0,l) or (1,O) Under Stratified Random Sampling. 

When a finite universe is assumed to be almost or completely attribute-free 

(i.e., A x 0), any practical stratification of the universe will also yield separate 

strata, each of which is almost or completely attribute-free. In such cases, stratifi- 

cation is done mainly for sampling administrative convenience or to ensure inclusion 

of units in the sample from certain subuniverses or domains. 

As background, assume that the h i t e  universe of N units has been partitioned 

into L strata with Ni units in stratum z(i = 1,2, ..., L) .  Let A(i)  be the number 

of units with the attribute in stratum i; then A = E:=, A(*) .  For testing (0,l) or 

(1,0), a stratified random sample of size n is to be selected with ni being the size of 

the simple random sample from stratum i. To assure an optimal sampling design 

as defined in Section 3.3, assume proportional allocation of n ,  i.e., ni = n ( N i / N )  

for i = 1,2, ..., L. Let a; be the number of units out of the ni sample units from 

stratum i which have the attribute. The key statistic for inference is 

L 

i = l  

(Note that the usual unbiased estimator of A (Cochran 1977) in this case is ist = 

C;=1 (Ni/ni)ai = ( N / n ) a ~ . )  
L 

L If A = xi=, A ( * )  = 0 ,  the sampling distribution of UT is 

1 if U T = O  

o (13) 
L 

if aT = 1,2 ,..., n = E n , .  
:=I 

 UT = UTJA = 0) = 

If A = E:., A(,)  = 1, for some specific j ,  A(j )  = 1 and A ( [ )  = 0 for I # j .  Thus, 

the sampling distribution for UT is given by p ( a ~  = U T ~ A  = 1) where 
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L 

p ( a ~  = UTlA = 1) = 0 for UT = 2,3,4, ..., n = cni . 
i= l  

Assuming a 5 ( N  - n ) / N  and using (13), (14), and the general form of the N-P 
Lemma, for testing (0,1), we have 

I L 

and for testing (1)0), we have 

N a / ( N - n )  if a T = O  

I. ~ L ( U T )  = 

i= 1 

The tests in (15) and (16) under stratified random sampling with proportional 

allocation are the same, including in terms of power, as the corresponding tests 

in Section 3 under simple random sampling. Hence, the results of Section 3 for 

testing (0,l) or (1 ,O)  apply for stratified random sampling as described. Note that 

stratified random sampling with proportional allocation is an optimal sampling 

design because P(Ui selected) = n / N  for each i. 

5.2. Testing (0,l) or ( 1 , O )  Under Two-Stage Cluster Sampling. 

Sometimes and due to the subject matter, units in a finite universe are grouped 

for convenience, e.g. people living in a city are grouped by households; tires in use 

are grouped by vehicles; and rooms are grouped by buildings. In such cases, it is 

often convenient to first select a sample of the groups followed by a subselection of 

units from the selected groups. 111 this subsection, these two-stage sampling designs 

are considered when testing (0, 1) or (1, 0) .  

5.2.1 Testing with Random Selection at Both Stages. Assume that the 

finite universe of N units has been partitioned into M clusters with Nk units in 
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cluster i(i = 1, ..., M ) .  Let Aii) be the number of units with the attribute in cluster 

i; then A = Atil .  To test (0,l) or ( l , O ) ,  on the first stage a simple random 

sample without replacement of m clusters is selected from the M clusters. At the 

second stage and from the ith sample cluster, a simple random sample without 

replacement of n: units is selected where n: = n(N,!/N) and n = n: is the 

overall sample size. Let tz: be the number of units with the attribute out of the n! 

sample units. Here the key statistic for inference is 

M 

m 

:= 1 

(Note that the usual unbiased estimator of A (Cochran 1977) in this case is .& = 
C z l ( M / m ) ( N , ! / n : ) u :  = (M/m) (N/n )a$  .) 

If A = C z ,  Atil = 0, then the sampling distribution for uk is 

M If A = xi=* Atil = 1, then for some specific j ,  Atj, = 1 and A;,) = 0 for 1 # j. 
Moreover, 

j t h  cluster is selected at stage one and the one 
attribute is selected for its second stage sample 

p(u;  = 1IA = 1) = P 

= P(c1uster j selected) P(attribute selected I cluster j selected) 

m n> - mn 

M Nj M N '  
=-.-  - - 

Thus, for A = 1, the sampling distribution of ai- is 

mn 

M N  
1-- if a;. = O  

mn 
if aT = 1 I 

p(a$ = aklA = 1) = 
m 

if a ; = 2 , 3  ,..., ,=En:. 
i= l  

Assuming cy 5 ( M N  - rnn)/MN and using (18), (19), and the general form of 

the N-P Lemma, for testing (O,l) ,  we have 



17 

C a if  ab=^ 
with power P(C.yIA = 1) = E:, - lp(ablA = 1) +dv(O)p(OlA = 1) = a + (1 - 
a)%; and for testing (1,0), we have 

T- 

M N a  with power P(CLIA = 0) = q5~(O)p(OlA = 0 )  = M N - m n .  

Under two-stage cluster sampling with random selection at both stages and 

proportional allocation of n at the second stage (n: = n ( N I / N ) ) ,  P(Ui selected) 

= m n / M N  # n / N  for each i; hence the design is not an optimal sampling design 

for testing (O,I) or (1,O) unless m = M .  

5.2.2 Testing with Probability Proportional to Size (xps) Sampling 
at Stage One. It is possible, however, to define a two-stage cluster sampling 

design such that its power for testing either (0,l) or (1,O) is the same as the cor- 

responding tests under simple random sampling or stratified random sampling as 

follows. On the first stage, select the ith cluster without replacement with proba- 

bility proportional to its size, i.e., with probability mN,/N for i = 1 ,2 ,  ..., M .  At 

the second stage, and for the ith cluster selected at the first stage, select a simple 

random sample where n, = n/m for i = 1, ..., m. Here for each Vi, P(Ut selected) 

= ( r n N i / N ) ( n ; / N i )  = n / N ;  hence, the design is optimal. 

Table 1 compares the power of the tests (0,l) and (1 ,O)  under the four different 

sampling plans described in this article. 

6. EXACT RANDOMIZED UPPER CONFIDENCE BOUNDS 

Instead of testing a hypothesis as has been considered thus far in this paper, 

an investigator may desire to report upper confidence bounds for A. An observed 

statistic Au is called a l O O ( 1  -a)% upper confidence bound for A if for each possible 

value of A, P ( A  5 A.ylA) 2 1 - a. Under simple random sampling, exact upper 
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Table 1. Power Comparisons for Testing (0,l)  or (1,O). 

Power 

Sampling Design Testing (0,l) Testing (1 ,O)  
fi 

Simple Random Sampling CY + (1 -a)$ N - n  

(Optimal) 

Stratified Random Sampling 

- Proportional Allocation 

(Optimal) 

CY + (1 -a)+ N O  
N-n 

Two-Stage Cluster Sampling 

- Random Selection Both M N a  
MN-mn a + (1 - CY)% 

Stages/Proportional Allocation 

at Stage Two 

- r p s  Selection at Stage 

One/Random Selection a + (1 - CY)% N-n 

and Equal Allocation 

at Stage Two (Optimal) 

bounds based on nonrandomized tests make use of the hypergeometric distribution; 

however, these upper bounds tend to be conservative and true coverage probabilities 

tend to exceed 1 - CY for all values of A. Even when zero defectives are observed 

in the sample, current exact upper bounds based on nonrandomized tests can be 

surprisingly high (Wright 1990). In this section, we examine the construction of 

exact upper confidence bounds under simple random sampling based on randomized 

tests and note that these can lead to lower upper bounds. An important assumption 

throughout Section 6 is that CY 5 P(u 5 A - 1IA) for each A > 0. This very mild 

restriction on a which is very unlikely to be violated in practice, is stated here to 

ensure that the reported exact randomized upper confidence bound on A (to be 

defined) is never lower than the observed value of a. (See Lemma 9(ii).) 
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6.1. Definition and Construction Algorithm. 

meant by an exact randomized upper confidence bound. 

In this subsection, we give an algorithm which leads to and defines what is 

Step I .  Select a simple random sample without replacement of size n from N 
units and observe a units with the attribute of interest. 

Step 2. From Katz (1953), Konijn (1973), Buonaccorsi (1987), and Wright 

(1990, 1991),an exact nonrandomized l O O ( 1  - a)% upper confidence bound for A 

correspondang t o  observed a is given by 

&(a)  = the largest value of A such that P ( u  5 alA) > a . (22) 

Step 9. (a) For A0 2 1 and testing HO : A = A0 vs. H I  : A < A0 at level a,  let 

# L , A ~  be the exact a-level randomized test defined on the set {-I, 0,1,2, ..., n, n+l}; 

note the inclusion of -1 and n + 1. Specifically 

c 1  if a = --I,(), 1, ..., aL - 1 

where a~ is such that p(alA0) 5 a and C:Lop(a lAo)  > a.  
(b) For Ao = 0, take # ~ , o ( - l )  = 1, $ ~ , 0 ( 0 )  = a,  and d ~ , o ( a )  = 0 for 

(c) For A0 = -1, take ~ L , - I ( u )  = 0 for a = -1, 0, ..., n, n + 1. 

From (a), (b), and (c), for given N ,  n, and a, each row of the display in Figure 1 

gives the randomized test # L , A  for a particular value of A; note the inclusion of 

A = -1 which is done only to facilitate the presentation of this algorithm. 

a = 1,2,  ..., n, n + 1. 

Step 4. Thus, for observed a and Au(a), compute: 

It is important to note that for a = 0,1,2, ..., n, 
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0 

-1 

... 
... 
... 
... 
... 

.- dL,0( - -1)  4L,O(O) + L , 0 ( 1 )  ... 4 L , O ( U )  ... & L , O ( n )  4L,0(?7 + 1) 

-- d L 7 d - 1 )  4 L , - l ( O )  4 L , - l ( 1 )  4 L , - l ( U )  - e -  + L , - l ( n )  f$L,-1(72 + 1) 
I I I I I I 

Step 5. Randomly generate a value T from [0,1]. 

Substep 5.1. If T f ( $ L , ~ U ( n ) ( a ) ,  11, take ARU(U)  = A u ( a )  and go to Step 6 ;  

otherwise, go to Substep 5.2. 

Substep 5 . 2  If 7- E (4L,Au(n) - * (a ) ,  4L,Au(u)  (a)], take A ~ u ( u )  = A v ( a )  - 1 and 
go to Step 6; otherwise, go to Substep 5.3. 

S u b ~ t e p  5.2. If r E (0, q5L,Au(a)-(j-2)(u)],  take h ~ , ( a )  = A,(.) - ( j  - 1) and 

go to Step 6. If a = 0 and T E (0, 4L,~v ( , , )+ -2 ) ]  = (0, a], then A ~ u ( 0 )  = 
&(O) - ( j  - 1) = -1, which we take, in practice, to mean h ~ ~ ( 0 )  E 0 if T E (0, a]. 

Note that 5.j is the substep at which we first get an interval containing T where 

the lower limit of the interval is 0. 
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Step 6. We sa that a n  exact randomized l O O ( 1  - a)% up er confidence bound 

for  A corresponding to  observed a is given by i ~ u ( a ) .  Clearly, ARu(a) 5 &(a).  

Also from Step 5, we see that the reported value of A ~ u ( a )  depends on the observed 

value of T as well as the observed value of a.  

In the remainder of this section, we further discuss the sense in which we think 

of A ~ u ( a )  as an exact randomized l O O ( 1  - a)% upper confidence bound for A 

corresponding to observed a. In the spirit similar to that of Neyman (1934) relating 

to confidence intervals and discussed recently in a finite universe setting by Wright 

(1991), consider the set of all possible ordered pairs (a ,  A )  in the set { - 1 , O ,  ..., 12, n+ 

1) x { - l , O ,  1, ..., N }  as given in Figure 2 in the a, A plane. There are ( n + 3 ) ( N  +2) 

such ordered pairs. 

Let A0 be a particular value of A. On the straight line A = Ao, the values 

U L , U L ;  + 1, U L  + 2, ..., n - 1,n,n + 1 are such that P(Ci) 2 1 - a ,  where Ci = 
{ala 2 a ~ } .  Note that ah depends on Ao. It is important to note that for A = Ao, 

the set Ci is the acceptance (nonrejection) region of the a-level test Ho : A = A0 

vs. H I  : A < A0 where + L , A ~ ( c A )  = 0 for a = a~ + l , a ~  + 2, ..., n,n + 1 while 

0 5 ~ L , A ~ ( U L )  < 1. Thus, U L  may lead to rejection of H o .  Referring to Figure 2 for 

A = Ao, we also note that # ~ , ~ 4 , ( u )  = 1 for a = - l , O ,  1, ..., nL; - 1. 
For the different values of Ao, connect the a~ - 1 values and call this dotted 

curve I; connect the QL values and call this dotted curve 11; and connect the CLL + 1 

values and call this dotted curve 111. In general, the ordered pairs on and above 

curve I have + L , A ( u )  = 1; those on and below curve I11 have ~ L , A ( u )  = 0; while the 

ordered pairs on curve I1 have 0 5 # L , A ( u )  < 1. Note that some points on curves 

I1 and I11 of Figure 2 might coincide. This occurs when p(alA0) = a. 

Definit ion 6.1. The set of ordered pairs formed by the union of the ordered 

pairs on curve I1 with those on and below curve 111 is called a 1 - cy randomized 

confidence belt, RCB. 

As noted earlier, the values on and below curve I11 do not lead to rejection of 

H o ,  while the values on curve I1 may or may not lead to rejection of Ho. 
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Figure 2. Curves I, II, and III 
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L e m m a  8. The probability that RCB does not reject HO is 1 - a. 

Proof: For each (Y and given A,  E A [ $ L , A ( a ) ]  = cy. Hence, the probability that 

RCB does not reject Ho is 

P(RCB does not reject H o )  = E[1- $ L , A ( a ) ]  

= E { E A [ l  - d-’L,A(a) ] }  

= - E A [ 4 L , A ( a ) ] }  

Lemma 8 makes it possible to justify the construction of A R ~ T ( ~ ) .  For given 

N ,  n, and 1 - a ,  construct a randomized confidence belt RCB as described above 

and note that the probability that RCB does not reject Ho is 1 - Q. before the se- 

lection of the simple random sample. A f t e r  the sample is selected and we observe 

a = a, then this additional certain information leads us to focus only on those 

points in the intersection of the set of points on the line a = a with the set RCB 

as shown in Figure 3. The intersection obtained for the specific value a is the set 

of points { (a ,  0), (a, l), (a ,  2), ...,( a ,  Ar; (a)  - l), ( a ,  Au(a ) ) } .  Note that &(a) is the 

usual exact nonrandomized 100( 1 - a)% upper confidence bound (22). Esact upper 

confidence bounds defined in the usual manner are conservative in that the coverage 

probabilities are very likely to be larger than 1 - a (Wright 1991, pp. 46-51). How- 

ever, when we randomize as described in steps 1-6 and obtain i ~ u ( a ) ,  we obtain the 

possibly reduced set { ( a ,  0), (a, l), (a,  2), ...,( a,  A ~ u ( a ) ) }  where A ~ u ( a )  5 &J(u) 

and coverage probabilities for A R ~ ( u )  a m  exactly 1 - a. (See the remark after 

Lemma 9.) 

Combining Lemma 8 and the fact that we know a = a ,  we say that possible 

values for A are given in the set { 0 , 1 , 2 , . . . , A ~ . ~ ~ ( a ) }  and call i ~ u ( a )  an esact 

randomized l O O ( 1  - a)% upper confidence bound for A corresponding to  observed a 

because for each possible value of A(> 0), 

L e m m a  9 (i) Au(a) 2 a for all a and a. 

(ii) A ~ u ( a )  2 a if a > 0 and a 5 P(a 5 A - 1IA) for A > 0. 
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Proof: (i) Let 0 < cy < 1. By (22), Au(a) = the largest value of A such that 

P(a  5 alA) > a for observed a. For A = a ,  P(a  5 alA = a )  = 1 > a. Thus 

(ii) For a 5 P(a  5 A - 1IA) and A > 0, i ~ n ( a )  is defined by the 

algorithm in this subsection. Because cy _< P(a 5 A - lIA), whenever 0 < a = A,  

we have $L,A(A)  = 0. Thus by Step 5 and its substeps, especially 5.j, A ~ , y ( a )  2 a 

Remark on Lemma 9/ii) .  As noted in Substep 5.j, if a = 0 and r E ( O , o ] ,  we 

report A ~ u ( 0 )  = 0, even though the algorithm tells us that A ~ ( i ( 0 )  = -1. The 

effect of this action, in practice, is to define $ ~ , 0 ( 0 )  E 0 instead of q5~,0(0) = a. 

This affects Lemma 8 in that the probability that RCB does not reject Ho is “at 

least” 1 - a. Thus strict equality will hold in (26) for all A except A = 0 where 

P(0 5 A ~ u ( a ) l A  = 0) 2 1 - a. An example of these coverage probabilities is given 

in the following example. 

Au(u)  2 a. 

for a > 0. 8 

6.2. Example. 

Let N = 10, n = 4, and 1 - a = .975. Figure 4 shows the possible values of 

# L , A  in a layout similar to that in Figure 1 with curves I, 11, and 111 as defined in 

Figure 2. 

Thus the row for A = 6 corresponds to the a = .025 randomized test # ~ , 6  of 

A < 6. We reject HO if a = 0; reject HO if a = 1 with HO : 
probability q 5 ~ , 6 ( 1 )  = .1771; and do not reject Ho if a = 2,3,4.  

A == 6 vs. HI  : 

Assume that the desire is to provide a 97.5% upper confidence bound for A .  

Assume further that the realized value from the sample is a = 1. Then an exact 

nonrandomized 97.5% upper confidence bound for A is given by &r( l )  = 7. If 

we randomize and observe r = .1329, by Step 5 an exact randomized 97.5% upper 

confidence bound for A is given by A R ~ (  1) = 5.  Note that the coverage probabilities 

for &(a) can exceed 97.5%, while the coverage probabilities for A R u ( a )  are exactly 

97.5% for all A except A = 0 as noted below. Recall that Figure 4 shows # ~ , 0 ( 0 )  = 
.0250, which would lead to a coverage probability of .975 for A = 0 if we take 

A = -1. However, in practice we would proceed as though $ ~ , 0 ( 0 )  = 0 because A 

is logically never -1, and it is this value of $ t , o ( O )  which is used below to obtain 

the coverage probability of 1 for A = 0 in the last column of Table 2. 
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Figure 4. Values of $L,A for N = 10,n = 4, and 1 - (Y = .975. 
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Table 2. Comparison of Coverage Probabilities for &(-) and ~ E U ( - ) .  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
1 
1 
1 
1 

.9762 

.9952 
1 
1 
1 
1 

1 
.9750 
.9750 
.9750 
.9750 
.9750 
.9750 
.9750 
.9750 
.9750 
.9750 

7. CONCLUSIONS 

In a continuing effort using exact methods to declare with high confidence that 

a universe is free of certain attributes, often referred to as defectives or errors, this 

article considered the question of the effect on power for specifying A = 0 under the 

null hypothesis or under the alternative hypothesis where -4 is the number of units 

with the attribute in a finite universe of N units. Also considered is the question 

of constructing exact randomized upper confidence bounds on A which are as tight 

as the usual (22) exact nonrmdornized upper confidence bounds on A .  

Under hypothesis testing and when the choice is between A = 0 or A = 1, it 

was argued that any sampling design without replacement giving equal probability 

of sample inclusion 72/N to each universe unit is optimal. 

When the choice is between A = 0 and A = AI where AI is a fixed integer 

0 < AI < N and 0 < a 5 p ( u  = O[Al)  where u is the total number of units with the 
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attribute in the sample of size n, the tests with the higher power are given below: 

(i) if 0 < Q < p ( u  = OIAl)/{l +p(a = OIAl)}, test (0 ,Al)  for maximum power; 

(zi) if Q = p(a = OIAI)/{ 1 + p(u = OIAl)}, testing (0, AI )  has the same power 

as testing (AI, 0); and 

(iii) if p(a = OIAl)/{l +p(a = OIAl)) < cy 5 p(u = OlAl), test (A1,O) 

for maximum power. 

When testing (A1,O) where cy = p(a = OlAl), the power of the test is one. 

Lemma 6 also gives conditions for the power of the test to be one when testing the 

more general case (A1,Ao). For any cy and n, testing (Ao, N - Ao) has the same 

power as testing ( N  - Ao, Ao). 

Most importantly, and contrary to current practice, this article urges that power 

be a major consideration when specifying the null hypothesis and the alternative 

hypothesis. In particular, it is clear that one may not always want to state A = 0 

as the null hypothesis. The wide availability of improved computing power makes 

this an easy factor to consider in practice. 

On a related and important topic, we defined and presented a simple algorithm 

for the construction of exact randomized upper confidence bounds under simple ran- 
dom sampling without replacement. The clear advantage and desirable property of 

these randomized upper confidence bounds is that they tend to yield “tighter” upper 

bounds than those that we have called nonrandomized upper confidence bounds. 

This is especially desirable when the number in the sample with the attribute is 

zero. Finally, these randomized bounds have coverage probabilities exactly equal 

to 1 - Q for all A > 0. 
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