
3 4 4 5 6 0374729 3
ORNLrrM-12234

Switchover Software Reliability Estimate
for Paducah Freezedsublimer

Computer Systems

April 1993

Deborah M . Flanagan
Statistics Group

Mathematical Sciences Section
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory

J. Neil Davis
Real Time Computer Applications Department
Instrument and Electrical Engineering Division

K-25 Site

Research sponsored by Instrument and
Electrical Engineering Division at the K-25
Site.

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
MARTIN MARIEITA ENERGY SYSTEMS, INC.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-84QR2 1400

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-840 1, FTS 626-8401.

Available to the public from the National Technical Information Service, US.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

r
This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for fhe accuracy, corn
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constii
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

0 R " M - 12234
' ? ,

Switchover Software Reliability Estimate
for Paducah Freezedsublimer

Computer Systems

April 1993

Deborah M. Flanagan
Statistics Group

Mathematical Sciences Section
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory

J . Neil Davis
Real Time Computer Applications Department
Instrument and Electrical Engineering Division

K-25 Site

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
U S . DEPARTMENT OF ENERGY

under Contract No. DE-AC05-840R2 1400

3 4 4 5 6 03716729 3

. .
iii

Table of Contents
Executive Summary . vii

1.0 Introduction . 1

2.0 Background . 2

3.1. Some Reliability Estimation Issues . 5

3.2. Musa’s Software Reliability Models . 8

3.3. Some Other Reliability Distributions . 9

3.4. Bayesian Methods . 11

Abstract . ix

3.0 Method . 5

3.4.1

3.4.2

3.4.3

Bayesian Uniform Prior for Estimating Reliability with
Binomial Trials . 12

Bayesian Truncated Uniform Prior for Estimating Reliability
with Binomial Trials . 13

Bayesian Beta Prior for Estimating Reliability with Binomial Trials 14
3.5. Reliability Growth Models for Hardware Studies 15

4.0 Results . 22

4.1. Switchover Software Reliability Estimate . 22

4.1.1 Binomial Liability Estimate . 22

3.6. Software Input Space and Testing Coverage Estimation Methods 17

4.1.2 Bayesian Liability Estimate with Unofrm Prior Distribution 24

4.1.3 Bayesian Reliability Estimate with a Truncated Uniform
Prior Distribution . 25

4.4.4 Bayesian Reliability Estimate with Beta Prior Distribution 28

4.4.5 Comparison of Software Reliabiltiy Estimates 29

4.2. Software Input Space . 31

4.3. Switchover Software Testing Summary . 38

4.4. Testing Coverage Estimate . 44

5.0 Summary and Conclusions . 47

6.0 References . 48

APPENDIX A Introduction to One Software Reliability Model by J . Musa 49

APPENDIX B Switchover Testing Summary . 52

.

V

List of Tables

Table 2.1

Table 3.1

Table 3.2

Table 3.3

Table 4.1

Table 4.2

Table 4.3

Table 4.4.a

Table 4.4.b

Table 4.5

Table 4.6

Table 4.7

Table 4.8.a

Table 4.8.b

Hardware Components and Vendor-Provided Reliability Data 4

Partitioned Input Space for Mutually Exclusive Inputs 19

Partitioned Input Space with a Completely Dependent Input 19

20

31

32

33

37

Input Space for the Freezer/Sublirner Switchover Capability 38

Code Segments for Condition Inputs . 39

Code Segments for Function Inputs . 40
41

Coverage Summary for the Freezer/Sublimer Switchover Capability 45

Coverage Summary for the Freezer/Sublimer Switchover Capability 46

Partitioned Input Space with a Partial Dependency
Comparison of Reliability Estimators .
Trip Conditions and Frequencies for the Freezer/Sublimer

Input Space for the Freezer/Sublimer Switchover Capability
Functions and Frequencies for the Freezer/Sublimer

Redundant Segments Testing Summary .

List of Figures

Figure 1 FaultTree . 4

vii

Executive Summary

Twenty four (24) Texas Instruments D3 Process control systems were purchased to monitor

the Paducah production line. Each D3 system consists of two redundant processing systems

connected by a utility board. For the purposes of this study, it is assumed that the computer

hardware will switch properly to the redundant central processing unit (CPU) at the failure of the

primary CPU and that the operating system software will perform its relevant functions correctly.

The switching from the primary CPU to the redundant CPU on failure is called switchover. It

is desirable to know that the software will continue to operate correctly regardless of the CPU

in operation.

This document summarizes the switchover software reliability study for the Paducah

Freezer/Sublimer (F/S) computer system developed by K-25 Engineering. Before testing began

on the system’s switchover capability, the application software had been tested on one CPU and

debugged until no failures occurred. The resulting software was then tested in switchover mode

by creating condition inputs on the process simulator and forcing the CPU to fail by pressing the

reset button.

The software reliability estimate is not required but is provided by K-25 Engineering as

supporting evidence of their confidence in the system. In the event that the operating

environment is different from (1) that expected and planned for by the simulator, or (2) the

specifications against which the software has been tested, more errors may occur when the new

system is placed in service. Additionally, the reliability and coverage estimates provided in this

report are valid only for the software in its existing form. If changes are made to the software,

new reiiability and coverage estimates must be determined.

The testing of the software in switchover mode consisted of 152 tests in which only one

failure occurred at test 43. After that failure, the software was debugged, and testing continued

with no additional failures for the remaining 109 tests. The estimated reliability R is .9954 with

a 95% probability interval of .9934 < R C .9998. Coverage estimates how well the testing

represented the expected operating environment. The coverage estimate for this reliability

estimate is .9948 or 99.48%, that is, almost all the inputs that are expected to occur have been

tested successfully in switchover mode. This is a good reliability estimate and a good coverage

estimate.

v i i i

In addition to the calculated results, the report provides an overview of the computer

hardware system, discussions on reliabiltiy and coverage estimation methods, and a complete

summary of switchover software testing activities.

ix

Abstract

K-25 Engineering Division purchased a series of redundant computer systems and developed

software for the purpose of providing continuous process monitoring and control for the

Freezedsublimer equipment in the gaseous diffusion process at the Paducah Gaseous Diffusion

Plant. The application software is loaded on two central processing units (CPU) so that in the

event of a failure of the primary unit, the processing can switch to the backup unit and continue

processing without error. It is the purpose of this document to demonstrate the reliability of this

system with respect to its ability to switch properly between redundant CPU. The total reliability

estimation problem - which considers the computer hardware, the operating system software,

and the application software - has been reduced to one that considers only the application

software directly involved in the switchover process. Estimates are provided for software

reliability and the testing coverage. Software and hardware reliability models and reliability

growth models are considered in addition to Bayesian approaches.

1

1. Introduction

This document summarizes the software reliability study for the Paducah Freezer/Sublimer

(F / S) computer system developed by K-25 Engineering. The initial reliability estimation problem

- which considered the computer hardware, the operating system software, and the application

software - has been reduced to one that considers only the application software directly involved

in the switchover process. For the purposes of this study, it is assumed that the computer

hardware will switch properly to the redundant central processing unit (CPU) at the failure of the

primary CPU and that the operating system software will perform its relevant functions correctly.

Before testing began on the system's switchover capability, the application software had been

tested on one CPU and debugged until no failures occurred. The resulting software was then

tested in switchover mode by creating alarm condition inputs on the process simulator and forcing

the CPU to fail by pressing the reset button on the CPU. The processing time is much faster

than the time required to force the manual switchover: therefore, it is difficult to force the CPU

to fail at the appropriate times to check (1) all alarm condition software segments and (2) any

software segments executing briefly. For this reason, Engineering elected to consider a software

reliability estimate based on the completed tests.

The software reliability estimate is not required but is provided by K-25 Engineering as

supporting evidence of their confidence in the system. In the event that the operating

environment is different from that expected and planned for by the simulator and the

specifications against which the software has been tested, more errors may occur when the new

system is put into operation.

This report provides (1) an overview of the hardware systems, (2) discussions of some

hardware and software reliability estimation methods, (3) a summary of the switchover software

testing, (4) software reliability and coverage estimates, and (5) a summary and conclusions. The

Background Section describes the hardware and software system. The Methods Section reviews

software reliability models studied by Musa (1987), some reliability distributions, hardware

reliability growth models, some Bayesian reliability methods, and the meaning of "input space"

and "coverage" estimates. The Results Section provides the switchover software reliability

estimate, the software input space explanation and estimate, a summary of the switchover

software testing, and the testing coverage estimate. Detailed testing results are found in

Appendix B.

2

2. Background

The reliability of the system switchover capability has three components: hardware

reliability, system software reliability, and application reliability. That is, all three components

must work properly for a switchover to be successfully completed. This study is concerned with

estimating the reliability of the applications software and assumes that the hardware and operating

software will operate properly. This section provides background information about the

redundant CPU system.

Twenty four (24) Texas Instruments D3 Process Control Systems were purchased to monitor

the Paducah production line. Similar systems are operating at other Department of Energy

(DOE) installations, such as the Y-12 Weapons Plant and Savannah River, and at various other

commercial sites.

The schematic in Figure 2.1 shows the organization of one redundant CPU system via a high-

level fault tree. The D3 computer system consists of two redundant systems connected by a

utility board. Each redundant system contains an Intel 8086 or 8386 central processing unit

(CPU) and memory with a micro power supply (Micro PS), process input/output (PIO),

multiplexor (MUX) input/output (MIO), R-link card, and Multibus Communications Control

(MCC) network boards. Identical system and application software resides on both systems. The

primary CPU accept.. input from the process stream, provides appropriate checks, and outputs

results to the process stream or to the operator's console. The R-link communications card keeps

the backup system synchronized with the primary system; that is, each time the primary system

updates a variable value, that information is sent to the secondary system. At the failure of the

primary system, the secondary system should have all the current variable values including the

program segment where processing should continue, Failed components in the primary system

will be replaced immediately. The backup CPU system will act as the primary system until it

fails. The two systems will thus alternately act as primary and backup systems.

A fault tree is developed specifically to determine the actions necessary to cause a specific

failure of a system. The reliability topic of this study is that of the ability of the system to switch

properly from the primary to the secondary CPU when the primary CPU fails. "Switching

properly" means that the switch will be accomplished electro-mechanically and the software will

resume processing in the program step. The following notes are background for the fault tree:

3

1.

2.

3.

4.

The TI system software transfers the principle CPU (PCPU) variable values and step

counters to the backup CPU (BCPU) via the R-link card as each variable changes value.

The R-link card is the paired communication between the CPUs.

Application software continually verifies correct, non-failed states for all pumps, valves,

etc., for the current process mode of operation. Any discrepancy causes a correction or

alarm.

The utility board (UB) routinely monitors a watchdog timer in the operating system. If

the timer runs out, the UB assumes the PCPU has failed.

Software in the PCPU detects any problem reading the multiplexer. If so, the software

tells the UB to switch over to the BCPU.

Figure 2.1 shows that a failure of any of four components will cause the system to switchover:

the micro PS, the CPU/memory, the PIO, or the MIO. If switchover occurs, the system should

continue operating unless the r-link fails or the software switch capability fails. Regardless of

this, the system will fail if the utility board fails or the MUX PS fails. Notice that the system

will switch properly without the MCC network boards.

The hardware components and vendor-provided reliability data are listed in Table 2.1. No

information is available from the vendor on the operating system reliability. The MMES

specifications required sufficient redundancy to meet 1 failure in 20 years. No specifications

were made on individual components. Assuming ail failed components will be replaced instead

of repaired, a failure for one year in 20 is approximately equivalent to a reliability of .95 or

95%. This also assumes that the operating period without downtime for maintenance is one year,

which seems too long for computer equipment. Therefore, with an operating period of less than

a year, a failure of once in 20 years indicates a reliability greater than 95%. That is, the

estimated probability that the system will continue to operate without total system failure for 20
years is at least .95. A study by Walraven (1986) was provided as evidence of the ability to meet

this specification.

4

Rgure 1. Fault Tree

I 1

NCC netwurk 1
I Rlinla. t

Fail-ova
Failure

Table 2.1. Hardware Components and Vendor-Provided Reliability Data

SystedComponent

Micro Power Supply

CPUMemory Board

PI0 Board

MI0 Board

Utility Board

MUX Power Supply

R-Link

MCC Network Board

Vendor-Provided Vendor-Provided
MTBF I M'ITR

25,876 hrs I l h r

39.500 I l h r

17.777 I unavailable

unavailable I unavailable
I

16.640 I unavailable

Faiiua

5

3. Method

Detailed switchover testing information was kept. Of the 152 tests, only one failure occurred

at test 43. The software was debugged and reviewed in order to correct other similar, potential

faults. No failures occurred in the remaining 109 tests. While this performance is good, the

single failure makes reliability estimation difficult. This section will describe the methods and

considerations for producing the reliability estimate for the switchover software. Reliability

definitions and some issues in reliability estimation are discussed in Section 3.1. Some software

reliability methods described by Musa (1987) are summarized in Section 3.2. Some other

distributions used in reliability analyses are described in Section 3.3, and Section 3.4 discusses

Bayesian reliability methods. Section 3.5 considers some reliability growth models used in

hardware reliability studies. Section 3.6 explains the importance of the input space "coverage"

concepts and describes how they can be estimated.

3.1 Some Reliability Estimation Issues

Reliability is defined as the probability that an item (software, equipment, etc) will operate

without failure under specific conditions for a stated length of time. Reliability is, therefore, 1-

Prvailure), where Pr(Fai1ure) is the probability of failure. Reliability changes with time: the

longer an item operates, the more likely it is that it will fail. Reliability and failure estimates are

always reported with respect to a point in time. The reliability distribution can be modeled in

different ways and needs to be chosen carefully because of the very different reliability estimates

that each can produce over time. Observed failures or other prior information are the means of

selecting the appropriate distribution.

Reliability estimates are statistics. Calculating accurate statistics requires obtaining data {that

is, failures) to verify assumptions and to provide reasonably narrow confidence intervals. The

performance of 1 failure in 152 makes selecting a reliability distribution more difficult. Routine

recommended practice in reliability estimation would be to request more testing so that more

failures might occur. However, for this study, the data collection was started when a higher level

of reliability had already been demonstrated. This means that the data collected represent the top

of a reliability growth curve, which is designed to monitor improvements in reliability based on

improvements made to equipment or software. If there are no data for the initial time frame of

the curve, then the initial time frame reliability cannot be estimated. Another important point is

6

that reliability testing that results in no failures produces a reliability estimate equal to one (1).

While this is a correct estimate from a testing and mathematics stand point, users of the software

may not consider it a credible estimate. Therefore, it is worthwhile to find a method that

correctly produces a reliability estimate that is not equal to one (1).

There are several ways of conducting reliability tests.

background for the F/S software reliability issues and methods:

The following cases provide a

1. Much reliability testing, especially for equipment, tests a group of homogeneous items
either until a certain number fail or until a certain amount of time elapses. The time that
each item fails and the nature of the failure are carefully recorded. This failure data is
analyzed to determine the reliability.

2. In some other cases, a single item may be tested repeatedly with the same or different
missions. Again, the failures and times of failure are recorded carefully and analyzed.

3. Usually, there is some target reliability that is required, so that reliability tests may
continue in stages with improvements made to each surviving unit at each stage. The
reliability is estimated for each stage of development.

In each of the above cases, the reliability is estimated for a group of like (homogeneous) units

that receive identical treatment over a specified period of time. Note that when the items are

adjusted, as in case 3, a new reliability estimate is needed for the improved items. Similarly, if

the testing conditions are changed in a way that might reduce or increase stress, then the

reliability must also be re-estimated using test data from the new environment or some other

means of adjusting the data. If it is necessary to estimate reliability for a point in time that is

beyond the planned testing period, then either the test period needs to be increased or accelerated

testing methods need to be used. Accelerated testing methods are discussed in detail by Nelson

(1991) and consider reducing the required test time by increasing test stress factors such as

temperature, pressure, weight, etc. These increases accelerate the wear and, therefore, the

failures on the tested item.

So, the reliability can be estimated at any of the following times: at each stage of

development, when expect4 operating conditions change, or only at the end of product

development. Of course, estimates can be made for design change considerations, too.

Software reliability models are a little different from hardware reliability models. Usually

one software program is tested repeatedly. Each time a failure occurs, the software fault that

caused the failure is fixed so that the failure cannot recur. A fault in the software may cause

7

multiple failures. The time and nature of the failures are recorded and analyzed. It is assumed

a priori that a certain number of faults exist in the code. A number of measures are made to

describe the software size and complexity. Models that predict reliability as a function of CPU
time have been shown to be good predictors of software reliability. Again, these models require

failure data. If lengthy testing produces no failures, it seems that the reliability must be good,

but it cannot be estimated very well since no failure has occurred.

An additional concern in software reliability is the testing itself. What inputs is the

program expected to receive and process and with what frequency, that is, what is the input

space? Which inputs will be tested? How well does the testing cover the variety of inputs

expected in the processing environment? The "coverage" is the estimate of how well the testing

represents the expected operating environment. Ideally, the inputs tested would represent the

operating environment, that is, the percentage of testing for each input would be the same as the

expected operating frequency for that inpkt. Thorough coverage gives more confidence and

credibility to the software reliability estimate.

The final statistical issue is confidence interval estimation. Confidence intervals attempt to

answer the question, "how good is that estimate?" Every statistical estimate is based on observed

data from testing homogeneous units. Homogeneous units themselves are not identical: there

is some variation in their makeup. This variation causes the testing and operating experiences

to vary from unit to unit, which causes variation in the statistical estimates of quantities like

reliability. This means that if an experiment is repeated, the result is expected to be different;

but, it should be close to the real value. The confidence interval is a range that the true value

might be in with a certain amount of confidence. For example, if a 95% confidence interval is

calculated, the true value should fall within the range calculated by this procedure 95% of the

time. Another

important factor in confidence interval width is the number of observations used to calculate the

estimate: the fewer observations, the wider the confidence interval.

The more confidence that is required, the wider the confidence interval.

With these concepts and issues in mind, the method for analyzing and estimating the

reliability of the alarm switchover software reliability is as follows:

1. Consider different models for estimating reliability and provide a software reliability
estimate.

2. Estimate the software input space.

8

3. Summarize the switchover testing experience,

4. Estimate the testing coverage.

3.2 Musa’s Software Reliability Models

The software reliability models developed by Musa, Imino, and Okumoto are documented

in their books (1987 and 1990) and numerous journals such as IEEE Transactions on Software

Engineering, IEEE Transactions on Reliability, Journal of Systems and Sofiware, and IEEE

Sopare . The models discussed by Musa et al (1990) develop estimates of the reliability at a

point in time. This reliability represents the accumulated reliability resulting from testing,

correction of failures, and continued testing and correction. In this manner, the growth or demise

of reliability can be tracked throughout the testing and development process. This capability can

help determine expected completion dates, additional manpower needs, and other important

concerns of software development. This section will explain why the Musa models were not used

for the F/S study and provide a very limited overview of the types of information needed to

estimate the models.

Even though the software reliability models described by Musa et al (1987, 1990) can provide

valuable information when applied properly, they were not used for the F/S study for four major

reasons:

1. Many assumptions were required, some of which were arbitrary and others required data
to estimate or verify. The single failure that occurred during the test period provided an
insufficient amount of data to verify the assumptions. If plans had been made in advance
to do a software reliability study, much of the needed data could have been collected.

2. The Musa models are intended for software development projects that might market or
otherwise put software into operation that is not completely debugged but whose carefully
analyzed debugging and testing history provides an acceptable failure rate. The
additional failures of such software products may be corrected in the next version. The
F/S software was tested to zero failures on one CPU and was tested with success for
almost all of the alarm conditions. It is not feasible to put a version of the F/S software
into operation with potential errors in the alarm software segments.

3. The Musa models are based on failures over time and do not take advantage of the large
number of successful trials.

4. Testing data for the F/S study was collected after most failures had been detected,
corrected, and retested. Only the upper portion of the reliability growth cuwe had been
recorded so that the total growth curve could not be predicted.

9

Appendix A contains introductory information about one of the Musa models. Many more

details and applications are found in Musa et al (1987, 1990).

3.3 Some Other ReliabiIity Distributions

A number of distributions are used in reliability estimation, and the use of each depends on

the application, that is, the behavior of the failure data. This section considers the applicability

of well-known parametric, non-parametric, and censored data techniques for reliability estimation.

The binomial distribution is chosen as the classical statistics technique most appropriate for this

study.

As already noted, there are too few failures in the F/S switchover software problem to use

well known distributions such as the Weibull, lognormal, exponential, gamma, etc. These

distributions all consider the reliability as a function of the failure time. Observed failure data

are used to perform statistical tests and decide which distribution the data most likely represent.

With too few failures, it is not possible to determine which of these distributions is the correct

one to use for predicting reliability. The behavior of these distributions over time can be very

different, so that it is important to choose the correct one. In the F/S study, only one failure has

occurred, and, therefore, it is not possible to use any of these distributions for reliability

estimation. Two good references in this area are Nelson (1991) and Keceglioru (1991).

Nonparametric reliability estimation techniques are appropriate when (1) it is not possible to

match the data to a particular distribution (whether due to fewer observed data points or just a

lack of fit) and (2) data are censored. The nonparametric methods are not the most appropriate

for the F/S study because the single failure will provide a reliability estimate with a very wide

confidence interval. Nelson (1991) is one of the many references in this area.

Another way to approach the F/S problem is to try to take advantage of the large number of

trials by considering the binomial distribution. The binomial distribution will be used in

estimating the switchover software reliability because of its ability to use the number of successful

tests in the analyses. To apply the binomial distribution to the F/S problem, we must assume that

each test can be considered an independent trial and that the probability that the trial is a success

is the same for every trial. This is reasonable because (1) no test must be preceded by any other

particular test and (2) every trial has the same expected probability of success (no failure is

expected because no failures occurred at the finish of the testing of all inputs on one CPU). The

10

single parameter to be estimated for the binomial distribution is the probability of success p,

which is estimated as fl = the number of successes + the number of tests. The estimate of p

is also the estimate of reliability, the probability of a success.

A confidence interval can be calculated as described by Henley and Kumamoto (1981). The

confidence intervals are calculated for a specified level of confidence, 100 x (1-a)%. For

example, for a 95% confidence level, a = .05. The upper confidence limit R, estimates that

for 100 x (1-a)% of the repetitions of this study, we do not expect the reliability to exceed R,.

The lower confidence limit RL estimates that for 100 x (1 -a)% ofthe repetitions of this study,

we do not expect the reliability to be lower than R, . The one-sided confidence interval considers

only the upper or lower limit. A two-sided confidence interval contains both the upper and lower

limits.

The upper confidence limit is

%N-y [I-RJ = a, fox y = o ,
N! N

c
y=r (N-y) !y!

(R,, = 1, for y=O) ,

where,

N = number of trials,

a = confidence level, and
Y = number of failures observed.

R,, RL = upper, lower reliability limits,

The lower confidence limit is

I?,"-' [l-RJY = a, for Y+N, N ! c
y-0 (N-y) !y!

(RL = 0, for y = N) .

Both equations can be solved for RL or R, by iterative methods.

If there are no failures, then a lower confidence limit can be calculated by

1
I

RL = (a)N .

(3.1)

11

An important note on using the binomial distribution is that the number of trials should be

specified in advance. In this study, the trials were stopped due to a failure or lack of time.

3.4. Bayesian Methods

This section contains a discussion of some Bayesian reliability methods. First a comparison

is made between classical and Bayesian statistical methods. Then, three Bayesian prior

distributions are described which can all be used with the binomial trials of the F/S study to

estimate the reliability, ie, the probability of success p from the binomial distribution.

Classical statistics attempt to estimate parameter values from a population by drawing a

sample from the population and calculating the appropriate statistic used to estimate the parameter

of interest. Then a calculated confidence interval provides the range of values that the parameter

can be expected to have with some level of confidence. The parameter estimate is fixed but

unknown and is estimated using data only from the current experiment or study.

Bayesian statistics use statistical relationships defined by Bayes’ law of conditional

probabilities. A parameter is assumed to have a known distribution instead of being fixed. This

distribution is estimated using prior data or other information that can be justified and quantified

with reasonable results. Then, using the conditional Bayes relationships, the data from the

current study or experiment is combined with the prior information about the distribution of the

parameter in order to provide an estimate of the parameter which includes as much usehl

information as possible. The new data from the current study or experiment can be thought of

as updating the prior information about the parameter. The prior distribution chosen to represent

the parameter must be justifiable.

A common use of Bayesian methods is when little current data is available. Classical

methods usually require more data to have the desired levels of confidence in the calculations.

Additional information about the philosophies and theories of the Bayesian methods can be found

in Berger (1985), and Martz and Waller (1991).

Bayesian methods are applicable to the FIS study for the following additional reasons:

1. Many binomial trials are needed to support a high classical probability of success
(reliability) with 95% confidence. In fact, 109 trials with no failures provide a classical
lower bound on reliability of only .973 with 95% confidence.

2. Bayesian methods incorporate the prior binomial trials and new binomial trials in the
calculations and produce a reliability estimate that is not equal to one (1).

12

3. Bayesian methods may produce smaller ranges of parameter estimates.

Three different prior distributions are calculated for the F/S study in order to show how the

results change depending on what kind of assumptions can validly be made about the prior

distribution. Each prior distribution and the final calculations that use both the prior and current

data are discussed in sections 3.4.1. through 3.4.3. The conditional relationships used to

determine the final calculations are the same throughout but are demonstrated only for the first

case, the uniform prior, because it is the simplest case.

Bayesian statistics are calculated based on a loss function L, which describes the difference

between the true parameter value and the calculated estimate. The squared- error loss function

is used for all the methods in this section. The Bayesian estimated ranges for the reliability

parameter are actual probability intervals instead of confidence intervals because the parameter

has a distribution. The confidence interval of classical statistics either contains the true value of

the parameter or does not, but is expected to contain it for 100(1-(~)% (the confidence level)

of the repetitions of the same experiment. The Bayesian estimate, therefore, is a stronger

statement about the potential range of the parameter.

3.4.1 Bayesian Uniform Prior for Estimating Reliability with Binomial Trials

Mendenhall and Schaeffer (1973) provide the method to find the Bayes estimator of p, the

probability of success in the binomial distribution (ie, the reliability), based on the observed

number of trials N and number of failures y. If we assume that we know nothing about the value

of p, then we can assume that any value of p i s equally likely. We can, therefore, assume that

the range of values that p can take on is uniformly distributed with probability density function

g @) = { 0, elsewhere .
1, 0 s p 5 1, (3.4)

Now, let us focus our attention on the observed number of failures Y in N trials. Y is a

binomial random variable for a fixed value of p and has conditional probability density function

f (Y I P) = (;)P’(l -P)”-y , y=o, 1, ..N. (3-5)

Then the joint distribution of y and p is

13

The marginal distribution of y is

, y = 0, 1, ..., n. 1
n+l

E-

Now, the conditional distribution ofp given the observed number of failures is

which is a beta function.

Finally, the Bayes estimator of p is the mean of the conditional distribution f (p l y)

Y+l
n+2 P = P f @ I Y) 49 = - *

(3.6)

(3.7)

(3-9)

In this example, it was assumed that there was no knowledge of the possible values of p . If

there is some knowledge, the uniform distribution used here will underestimate larger p and

overestimate smaller p.

3.4.2. Bayesian Truncated Uniform Prior for Estimating Reliability with Binomial Trials

Because reliability is a probability, it can only assume values from 0 to 1. Using the uniform

prior distribution assumes that nothing is known about the reliability, which is not usually the

case. Suppose that previous data and expert opinion show that the reliability is expected to lie

only within a certain range. Suppose further that it is not suspected that the reliability should be

any particular value within that range,’that is, any value in the range is equally likely. Then the

truncated uniform distribution VCP,, p,) is appropriate to use as the prior distribution for the

parameter p (reliability). The probability density function for this distribution is

(3.10)

14

where
po = the lower bound for p , and
p , = the upper bound for p .

The estimate of p from the failed group in the F/S study (ie, p = .975 and its confidence

intervals) can be used to set the bounds for the truncated uniform distribution. It is important

to note that the classical estimate of p and its confidence interval do not produce a range of

values for p that are equally likely. In fact, the classical estimator for p is the most likely value

of p with the likelihood dropping as one moves from p to either upper or lower bound. This

means that the truncated uniform distribution, while it bounds p better than the uniform

distribution, allows more extreme values of p to be just as likely as the center of the range, the

expected value p . Therefore, while the calculations are presented here for demonstration

purposes, the use of this prior distribution for p is not the most applicable.

The estimated probability of success j9 (ie, the reliability) is

1. x+l { x+2, n - x + l) -]bo; x+2, n - x + l) p = -
x+2 z(pl; x + l , n - x + l) - Zb0; x+l, n - x + l)

(3.11)

where

a, b) = (a+b) pi tn-l (1 dt, the standard incomplete beta function,
r (4 r (b) O

x = number of successes, and
n = number of trials.

The 95% two-sided lower probability bound pL is the solution to

a! a! ZbL; x + l , n - x + l) = (1--) I@,,; r+l, n - x + l) + - Z@];
2 2

The 95% two-sided upper probability bound puis the solution to

+1, n-

3.4.3. Bayesian Beta Prior for Estimating Reliability with Binomial Trials

This method assumes a specified range of possible reliability values but also assumes that

some values are more likely than others. In fact, this distribution allows the center of the

15

reliability range to have the highest probability, and the probabilities decrease as one moves from

the center to either extreme. This distribution pattern is similar to the confidence interval

described previously. It is frequently used as a prior distribution for binomial trials and is a

conjugate prior (that is, it has the same distribution as the posterior distribution).

The probabiiity density function for this distribution is

where

p = probability of success (reliability),
xo = number of successes, and
no = number of trials.

The estimated probability of success is

x+xo p = - ,
n +no

where

xo, no = as before,
x = number of additional successes, and
n = number of additional trials.

The lower 95% Bayesian probability bound pL is

The upper 95% Bayesian probability bound pu is

(3.14)

(3.15)

(3.17)

3.5 Reliability Growth Models for Hardware Studies

Reliability growth methods which are used for hardware systems were investigated.

Kececioglu (1991) summarizes these methods and provides additional references. These methods

can use the information from the successful tests. However, their application to the problem at

16

hand is limited because the testing represents the top of the reliability growth curve. The

following reliability growth methods were examind with these conclusions:

1. GomDertz: Reliability estimates from a previous study are required, and no such data is
available for the F/S study. This method estimates and predicts the reliability of future
tests. The reliability estimates are assumed to follow an increasing, concave, growth
curve. The tests for this study show an observed cumulative reliability (assuming a
binomial distribution) which starts at 1 and remains 1 until test 43, when it drops to
.97826. As additional tests are made and no additional failures occur, the reliability
increases to .99218. This observed pattern does not fit the Gompertz Type I growth
curve and seems to represent the top of a growth curve.

2. Llovd-LiDow: Reliability is calculated from observed stages of development. Each stage
contains a certain number of trials. For the F/S problem, each test is a stage consisting
of one trial. The results are similar to the observed cumulative reliability described
above. Another possible way to calculate reliability with this method is to assume two
stages with 43 and 109 trials for the pre-failure and post-failure periods, respectively.
This calculation, however, provided unreasonable results.

In studies with more reliability information in earlier stages of development, the
Lloyd-Lipow results may be used as inputs to the Gompertz model.

3. GomDertz Attribute Methods 1 and 2: These additional methods use attribute data (that
is, failures vs successes). Method 2 has (1) a particularly attractive failure discounting
feature and (2) the ability to track failure mode behavior. However, both seem to assume
the Type I reliability growth curve, as discussed earlier.

4. S-Shaped Gompertz: Instead of the Type I growth curve, this method allows a positive
inflection point. The value of the reliability has the same fixed value at the inflection
point. This method is appropriate for increasing reliability growth curves.

5. Logistic: This is an S-shaped growth curve which uses the logistic distribution. It also
fixes the reliability value at the inflection point and is appropriate for increasing
reliability growth curves.

6 . Modified Gompertz: This modification allows for any type of inflection point or no
inflection point. A short, FORTRAN computer program calculates the revised
parameters. This was not calculated because of the dearth of data.

7. U.S. Armv Material Svstems Analvsis Activity fAMSAA): This requires several
distributional assumptions, such as failures occurring in a nonhomogeneous Poisson
process (NHPP) and a Weibull failure rate. The Weibull failure rate and NHPP cannot
be verified with the limited data.

1 7

3.6 Software Input Space and Testing Coverage Estimation Methods

The software input space is defined as the list of all possible inputs and their respective

probabilities of occurrence in the operating environment. This input space is required to

determine the coverage of the software testing effort. The coverage is the estimate of how well

the testing represented the expected operating environment (also called the operating profile or

frequency). Ideally, the inputs tested would represent the operating environment, that is, the

percentage of testing for each input category would be the same as the expected operating

frequency for that input. Thorough coverage gives more confidence and credibility to the

software reliability estimate. For example, suppose a software reliability estimate of .99 is

produced from tests that cover only 50% of the input space. Then, the software is expected to

work well for 50% of the input space, and it is unknown how well it will work for the other 50%

of the input space.

Determining the input space can be time consuming, and most of this section is devoted to

explaining some of the mathematics of determining the input space. Once the input space is

determined, the coverage calculations are trivial as shown in the latter part of this section.

An input space may be made up of inputs which are partitioned, independent, or a

combination of the two. The goal is to create a partitioned input space. This section describes

each of these input types and how they effect the input space estimation. The discussion is

limited to discrete rather than continuous input values because the F/S system inputs can all be

classified as discrete.

A partitioned input space is the set of all possible inputs which has been divided into mutually

exclusive inputs or input combinations called partitions. For example, if inputs A and B are

mutually exclusive, they cannot occur at the same time. Since the occurrence of input A effects

the occurrence of B, we also say that A and B are dependent. This is expressed mathematically

as Pr(A I B) = Pr(AB)Pr(B) # Pr(A). This means that the probability that A occurs given that

B occurs, Pr(A I B), is not equal to the probability that A occurs, Pr(A). For mutudty exclusive

events, the probability that A and B occur, Pr(AB), is zero. The Pr(A I B), therefore, is zero

regardless of the probability of A or B when A and B are mutually exclusive. Another way to

consider this is by breaking down the probability of A, Pr(A),into its components. Still using

the simple example with two inputs A and B, the Pr(A) is equal to the probability that A and B

occur, Pr(AB), and the probability that A occurs but not B, Pr(A not B), or Pr(A) = Pr(AB) f

18

Pr(A not B). An additional feature of a partitioned input space is that the probability summed

over all partitions is one.

Independent inputs are not effected by the occurrence of any other inputs. Independence

is expressed mathematically as Pr(A I B) = Pr(AB)/Pr@) = Pr(A). The input space for a set of

independent inputs, then, is not a partition but a joint distribution of the inputs. This is

represented mathematically as Pr(A=a,B=b) = Pr(A=a) x Pr(B=b). This is read as, "the

probability that A has a particular value a, Pr(A=a), and that B has a particular value b,

Pr(B=b), is equal to the product of each of those individual probabilities." For discrete events,

in particular, the joint probability space can be transformed to a partitioned space by creating

partitions of each possible combination of inputs A and B: these partitions will then be mutually

exclusive.

A combination of partitioned inputs and independent inputs may occur if some inputs are

mutually exclusive and some are independent. If this occurs, then the inputs should be grouped

into the partitioned set and the independent sets. Since the independent sets are also independent

from the partitioned set, then the whole input space becomes a joint distribution in the same

manner as for a totally independent input space. The difference is that at least one of the

independent inputs is itself a partitioned set. As for the discrete independent space, this

combination space can also be transformed into a partitioned space by creating partitions of all

possible combinations.

The idea of estimating an input space, then, becomes one of determining dependencies or

independencies so as to create a partitioned input space. The discussion will continue with more

ideas and examples concerning dependent inputs and partitioned input spaces.

Some inputs are related, that is, dependent. Independent inputs are not related. These

relationships - or lack thereof - are important because they influence the structure of the input

space and its probabilities. If no dependencies exist, then the input space probability estimates

cap1 be derived directly from a list of all inputs and their expected frequency of occurrence. The

frequencies for any dependent inputs, however, need to be reduced by the amount they are

influenced by other inputs. This in turn reduces the total input space and changes the probability

of each input.

Some examples will help to show how this works. Suppose a software program has only

three possible inputs, A, B, and C, with expected frequencies of 4, 4, and 5 times a year. If all

19

three inputs are mutually exclusive, that is, no input can occur if either of the other two inputs

occurs, then the input space is as shown in Table 3.1. The input frequencies are summed for the

total number of inputs; then, the probability of each input is estimated by the input frequency

divided by the total number of inputs.

Table 3.1. Partitioned Input Space for Mutually Exclusive Inputs

Input F
E 11 Total Inputs 13 1 I

The problem changes when some inputs are dependent but not mutually exclusive. Suppose

that input A only occurs when input B occurs. This means that A is completely dependent on

B. These two inputs, then, should be combined to form one input for the purposes of

determining the input space and its probabilities as shown in Table 3.2. Input C is still mutually

exclusive of A and B. Notice how the dependency of A on B reduces the total number of

possible inputs and increases the probability of input C.

Table 3.2. Partitioned Input Space with a Completely Dependent Input

As a last example, perhaps inputs A and B are only partially dependent on each other. That

is, A and B can occur together or alone. An example input space is shown in Table 3.3. The

number of inputs and the total frequency have increased over those in Table 3.2. The probability

20

of input C has decreased. It is important to note that considering A and B as mutually exclusive

inputs - when they are not - allows double counting of those times when A occurs with B and

underestimates the true probability of C.

Table 3.3. Partitioned Tnput Space with a Partial Dependency

A without B

B without A

Total Inputs

Other input combinations can and do occur in input spaces, but these examples give the

reader an idea of the potential complexity of the input space estimation. Further discussions

related to input space determination can be found in probability texts such as Harris (1966). It

is important to emphasize that the input probability estimates for the F/S System use frequency

estimates which are expert opinions of Paducha staf f based on operating experience and some

reported data.

The final discussion in this section concerns the coverage estimate. The input probabilities

represented by the input space provide guidance for planning software testing. Those inputs that

are likely to occur most frequently should be tested more. Of course, any input with critical

impacts should be tested. If 100 tests are to be made on a system, the probabilities in the input

space tables can be used to show what percentage of the tests should include each input. This

helps to keep from over - or under - testing inputs. The coverage i s the estimate of how well the

testing "covered" or represented the input space. Coverage (C) is a simple calculation which

requires the input space

I

i= 1
c = c P i * b i ,

where,

21

P, = the probability tbat input i occurs in the input space,
I = the total number of inputs, and
ai = 1 (if input i is tested) or 0 (&mise).

The coverage estimate explains that C x 100% of the inputs that occur have been tested. A

reliability estimate of 99% with a coverage of 10% shows that the software worked very well

with very limited testing. A sofhware user should insist on better coverage. Musa (1990)

describes different ways to consider coverage and testing.

22

4. Results

4.1. Switchover Software Reliability Estimate

The switchover software reliability estimate was calculated for each method described in

Section 3.4 and the binomial method discussed in Section 3.3. Details of each of these

calculations are provide in Sections 4.1.1 through 4.1.4. Section 4.1.5 compares the estimates

and selects a preferred reliability estimate.

4.1.1 Binomial Reliability Estimate

The total number of 152 test is divided into two groups, the failure group and the post-failure

group. The failure group includes the 43 tests (N,) up to and including the failure. The post-

failure group includes the 109 tests (N,) after the failure. This division is necessary because the

improvements made in the software due to the failure are expected to improve the probability of

success in further trials. As noted previously, the probability of success p in the binomial setting

is the reliability estimate we seek. Binomial reliability estimates are calculated separtately for the

failure and post-failure groups.

The failure group reliability estimate R is calculated simply using the number of trialsN,

and the number of failures x

This means that the estimate of the probability that the software will operate properly is .9767.

The lower one-sided confidence limit, R,, is found by solving the equation

R 7 - x (1-RJ = a ,
Nl ! 6

x=o (N1-X)! (1) !

where

confidence percentage
100

a = l -

For 95% confidence, a = .05. Substituting the observed values for Nl and x and a = .05

yields

23

431 (1-RJ' = .05 ,
43! 01

which reduces to 43 RF - 42 R,"3 = -05 e

reasonable solution is RL = .894 and a = .0493, which is close to the desired a = .05.

This equation is solved iteratively for RL. A

The 95% confidence two-sided bounds, Le., upper and lower, are provided by Martz and

Waller (1991). The 95% confidence two-sided lower bound on R is

*

where

n = number of tests,
X = number of successes, and

F = the 1 - .!? value the F distribution with (2n - 2X + 2, 2X) degrees of freedom.
2

Substituting observed values yields

42 RL =
42+(43-42+1) '.!Y75 a(43)-2(42)+2, 2(42))

- 42 -
42+(2) (2.962)

= ,8764 ,

The 95% confidence two-sided upper bound on R is

(X+1) F*-5 (2x+x 2n-W
2

w+2, 2n-m
Rn = (n-x)+(X+l) F1-=

2

Substituting observed values yields

24

(42+1) F.975 a42)+2, 2(43)-2(42))

(43-42)+(42+ '1 *.St75 (2(42)+2, 2(43)-2(42))
R,, =

- - (43) F.975 (86.2)

+(43) F.975 (863)

- (43) (39.49) -
1 +(43) (39.49)

=.9994 .

Please note that the 95% confidence one-sided lower bound is to be used only if an upper bound

is not calculated.

In summary, the software reliabiltiy estimate for the failure group is .9767. If there is

interest only in a lower bound on the reliability, then the 95% confidence lower bound is .894.

If, however, upper and lower bounds are desired, the 95% confidence interval i s

.8764 R < .9994.

For the non-failure group, only an estimated lower bound on the reliability, RL, can be

calculated. This is calculated simply as

1 -
R, = (a)N2 .

Substituting a = .05 and the observed N2 = 109 yields

A -
RL = (.05)'09 = .9729 .

Then the 95% lower bound on the reliability for the non-failure group is .9729, a considerable

increase over the RL = -894 (one-sided) or RL = -876 (two-sided) lower bounds estimated for

the failure group. Because of the software improvements made, the appropriate reliability

estimate using classical binomial statistics is the 95% confidence lower bound of .9729.

4.1.2. Bayesian Reliability Estimate with Uniform Prior Distribution

As explained in Section 3.4, this calculation assumes that prior knowledge indicates that any

value of p, the probability of success, is equally likely. That is, the prior distribution of the

25

binomial parameter p is itself a random variable with uniform distribution. The calculations in

Section 3.4 result in the Bayesian estimator

p = - Y+ 1 ,
N2+2

where

Y = number of successes.

Substituting the observed values yields

From Section 3.4, the 95% confidence lower limit on the estimated reliability is

The Bayesian reliability estimate, then, using a uniform prior distribution for R is .991. The

95 % confidence interval for R is -9666 s R i -99977. The assumption of the uniform prior

distribution for R (that is, that value of R is likely) allows very high values of R to be just

as likely as the d = -9729 observed in the failure group. In fact, the "equally likely" assumption

does not use the information from the failure group. For this reason, the calculation may

overstate the true reliability.

4.13. Bayesian Reliability Estimate with a Truncated Uniform Prior Distribution

If we can put some bounds on the values of the probability of success R for a test, then

distributions other than the uniform can be used to represent prior information about R. One of

26

these is the truncated uniform prior distribution U @,, pl) which has probability density function

for R of

I 0, elswhere,

where

po = lower bound for R, and
p 1 = upper bound for R.

An additional restriction on the use of this prior distribution or "prior" is that we must

assume or have reason to believe that any value of R in that range is equally likely. This "prior"

will allow the use of information from the failed set of data. The lower 95% confidence bound

on R from the failed group (i.e., RL = -8764) can be assigned to po . The corresponding upper

95% confidence bound (R,, = .9994) can be assigned to pl. While this interval is based on an

estimate which covers only 95% of a probability space, it is a reasonable choice. The software

corrections made after the single failure will most likely provide a higher current reliability

estimate than that for the failed group so that the previous 95% lower confidence estimate may

be a valid lower bound on the current reliability estimate. The previous 95% upper confidence

estimate is high enough to consider as an upper bound on the current reliability estimate.

From Section 3.4 the estimated probability of success R is

+2, n-x+l) - z(po; x+2, n-x+l)
n-x+l) - Zb0; x + l , n-x+l)

where

the standard incomplete beta function ratio. Substituting observed data yields

* 1m+1 Z(.wW; 109+2, 109-109+1) - 1(.8764; 109+2, 109-109+1)
R = - {

109+2 Z(.9994; 109+1, 109-109+1) - (.8764; 109+1, 109-109+1)

- 110 Z(.9994; 111, 1) - 1(.8764; 111, I)}
- 111 {Z(.9994; 110, 1) - Z(.8764; 110, 1)

27

Using Splus statistical software to solve the incomplete beta functions yields

R = - 110 r3jS507 - ,000000436
111 9361123 - .000000498

=.m .

The 95% probability two-sided lower bound is the solution to

a a

2 2 I(RL; x+l, n-n+l) = (1--) I&; x+l, n-x+l) + (-) Z@; x+l, n-x+l) .

Substituting observed data yields

Z(RL; 109+1, 109-109+1) = Z(.8764; 109+1, 109-109+1)

+ (F) 1(.9994; 109+1, 109-109+1)

= (.975) (.000000498) + (.025) (-9361123)
= .000000486 +.023402808

Z(RL; 110, 1) = "02340329 .

The inverse beta function yields a RL = -96644.

The 95% probability two-sided upper bound is the solution to the equation

f(R; x+l , n-x+l) = 1-- I @ ; x+1, n-x+l) + I @ x+l, n-x+l) . (3 (-9
Substituting observed data yields

my; 109+1, 109-109+1) = 1-22] 1(.9994; 109+1, 109-109+1)
2

+ 191 1(.8764; 109+1, 109-109+1)

= (.975) (.9361123) + (.025) (.oOOOOO498)
= .9127095 .

The inverse beta function provides R, = -999170.

28

In summary, the Bayesian reliability estimate iff using a truncated uniform prior distribution

is .9904 with a 95% two-sided Bayesian probability interval of .9664 to ,9992.

4.1.4. Bayesian Reliability Estimate with Beta Prior Distribution

The last Bayesian reliability estimate presented is the binomial test using a beta prior

distribution. This method assumes a specified range of possible reliability values but also

assumes that some values are more likely than others.

The estimated reliability R is

where

xo= beta parameter from Martz and Waller,
no = beta parameter from Martz and Waller,
x = number of additional successes, and
n = number of additional tests.

Appendix C of Martz and Waller (1991) gives beta distribution parameters X, and nothat

correspond to estimates of the 50 percentile and either the 5 percentile or 95 percentile of the

parameter distribution. The percentile estimates may be based on data, judgment, or a

combination of data and judgment. For these calculations, the no = 58.52051 and

xo = 5’7.35010 estimates from Martz and Waller correspond to the expected reliability

l? = .9767 and 95% one-sided upper confidence bound of .9988 calculated from the binomial

trials of the failed group.

Substituting observed and tabled values yields

109+57.35010 = .99301
109 458 S205 1

I ? =

The lower 95% Bayesian probability estimate RL is

29

Substituting observed values yields

109+ 57.35010 RL =
109+57.35010+(109+58.52051-109-57.35010) F.ws4, 3a)

166.3501
166.3501 +(1.17041) (3.80)

- -

= .97396 .

The upper 95% Bayesian probability estimate R, is

Substituting the observed values yields

- (109+57.35010) F.915 (302.2)

Rv - 109+58.52051-109-57.35010+(109+57.35010) F.g15 (=, 2)

- (166.3501) (39.49) -
1.17041 +(166.3501) (39.49)

=.9998 .

Using the previous values of no = 43 and x, = 42 produces results very close to these.

In summary, the estimated Bayesian reliability using a beta prior distribution is .9934, and

the 95% Bayesian probability range on that estimate is -9754 to .9998.

4.1.5. Comparison of Software Reliability Estimates

The software reliability estimates are summarized in Table 4.1, which includes the

assumptions required for each calculation method. It is interesting that the reliability estimate

increases and the probability interval ranges decrease as more of the available information is used

in selecting the prior distribution of the reliability parameter €2 (ie, the binomial parameter p).

When selecting the appropriate calculation, it is important to consider the assumptions required

for the calculation, how well they can be applied to the problem at hand, and the reasonableness

of the results. All assumptions can be met for the classical binomial calculation for the non-failed

group as explained in Section 3.3.

30

Both of the Bayesian methods using the uniform and truncated uniform distributions as priors

can be eliminated. The uniform distribution prior for p is inappropriate because it assumes that

we know nothing about p, and, therefore, it is equally likely that p can take on any values

between 0 and 1. Because of the failed-group experience, we know that p should have values

above .9. The truncated uniform distribution allows us to restrict the values of p to the

confidence interval of the failed group. Allowing p to be equally likely within that range,

however, allows equal weight to be given to the lower end of the range of possiblep values.

This produces an expected reliability estimate of .966, which is even lower than the classical

estimate of .975 from the failed group and does not make sense. It seems that using a prior

distribution which allows both bounding p and applying heavier weights for the more likely

values of p is more appropriate. The beta distribution makes this possible. Martz and Waller

(1991) note that the beta distribution is frequently selected as a prior for the parameter p in

binomial trial situations, such as the F/S study. Because the software was improved after the

single failure, it is believed that the reliability of the improved software should be at least as good

- and maybe better - than that represented by the failed group. For this reason, using the failed

group estimates as boundaries of the success parameter p for the beta prior is appropriate.

The Bayesian reliability estimate using the beta prior distribution is R = .9934 with a 95%

probability interval of .9754 < R < .9998. This Bayesian result and the non-failed group

classical method provide essentially the same lower bounds. The Bayesian method additionally

provides an estimated reliability that is not equal to one and an upper bound. The result from

either the Bayesian method with the beta prior or the classical binomial method calculated from

the non-failed group can be quoted as the appropriate estimate. The author prefers the Bayesian

estimate because it provides an estimate of reliability that is not equal to 1.

31

Group

Table 4.1 Comparison of Retiability Estimators

Method IT

11 Failed I Classical: Binomial

Assumptions & A"

-
Non-Failed

Non-Failed

Non-Failed

-~ ~-

Classical: Binomial

Bayesian: Uniform
prior with Binomial
trials

Bayesian: Truncated
Uniform prior with
Binomial trials

.975 I .8764 I .9994 I p is fixed and unknown

-- .9729 -- I p is fixed and unknown
I I I

.99m

.9904 -9664 .9992 t p has a uniform
distribution

I
I

p has a truncated uniform
distribution which uses the
classical binomial
confidence interval from
the failed group as its
bounds.

.9934
which uses the classical
binomial parameters from
the failed group as its
parameters.

4.2. Software Input Space

This section will describe the following: (1) the software inputs and their potential annual

frequency, (2) the independence or dependence of the inputs, and (3) the resulting partitioned

input space and probabilities. The results will proceed using these steps:

1. List and describe the inputs to the software and their estimated annual frequency of
occurrence.

2. Determine dependencies among the inputs, that is, determine whether the occurrence of
one input influences the occurrence of another input.

3. Based on steps 1 and 2, reduce the input space to its final partitioned form.

The F/S software has two categories of inputs, those initiated by the hardware or software

and those initiated by the operator. Actions (called trips) initiated by the hardware and software

are listed in Table 4.2. These trips are the result of checks by the software or hardware that

result in an incorrect state or situation. Each trip signals an alarm condition or warning and

changes to a safer state. Actions initiated by the operator are listed in Table 4.3. These operator

actions cause the hardware or software to reset or otherwise change the state of the

32

Table 4.2. Trip Conditions and Frequencies for the FreezedSublirner

Frequency I Number of Inputs to
Trip Condition I (per F/S per Yr) Initiate the Alarm

Safety System RCW/Freon DP
(trip to criticality mode)b

criticality mode)”

Any one of 4 analog

Any one of 4 analog

Any one of 4 digital

Any one of 4 digital

1 analog

Any one of 2 digital

1 analog and 2 digital

‘ software trip
Hardware trip.

33

I

Frequency Number of Inputs to
Function (per FIS per yr) Initiate the Function

I 1. Operator changes the mode from 730 4 Operator-Initiated
1 theDPCS console inputs by device or

1 2. Operator changes the mode from 24 5 Operator-Initiated
1 the F/S cabinet buttons

skid panel

Table 4.3. Functions and Frequencies for the Freezer/Sublimer

3. Software Trip Reset 93 Operator Initiated

4. Hardware Trip Reset 45 Operator Initiated

5. Set the Freezer/Sublimer (F / S) to 200 Operator Initiated
1 Available

9. Cancel Weight Test 4 Operator Initiated
- .

7. Set the F/S to Maintenance Mode

8. Weight Test

I 1

24 Operator Initiated

8 Operator Initiated

24 I Operator Initiated 6. Set the F/S to Unavailable I

Freezer/Sublimer (F / S) . Each digital input in Table 4.2 has two values (for example, open or

closed), and each analog input has a numeric range of values. The operator inputs in Table 4.3

represent a single digital input for each function.

The estimated frequencies per year per F/S for each software or hardware trip are listed in

Table 4.2. Table 4.3 lists the estimated frequencies for the operator-initiated actions. These

estimated frequencies are based on judgments made by Paducah staff who are responsible for the

system. These estimates are best guesses at the frequencies. Monitoring the operating process

will provide improved estimates which will be useful for updating this study and for other

engineering and operations studies.

Some trip conditions and functions are related, that is, dependent. Independent inputs are not

related. These relationships - or lack thereof - are important because they influence the structure

of the input space and its probabilities. Each trip and function is discussed with respect to its

independence or dependence. If no dependencies exist, then the input space probability estimates

can be derived directly from Tables 4.2 and 4.3. The frequencies for any dependent inputs,

34

however, need to be reduced by the amount they are influenced by other inputs as described in

Section 3.6. Each input is discussed - with respect to its purpose and dependencies - in the

remainder of this section.

Trip Conditions 1 through 4 all initiate weight alarms. The same analog inputs are used for

Conditions 1 and 2; but, Condition 2 is triggered only for higher analog weight values. For

Condition 3, (Safety System High Weight), the four analog inputs create four corresponding

digital inputs for even higher analog weight values. If a higher condition is triggered, the lower

condition may or may not have been triggered. Condition 4, Safety System Low Weight, can

be triggered only if Conditions 1 through 3 are not triggered, so that it is mutually exclusive of

the high weight alarms. In a hardware common cause failure analysis, the use of the same analog

inputs for the different alarms would represent a common cause failure for these inputs. We can

ignore this because we are assuming that the hardware will operate correctly, and so we will

study only the software dependencies. While inputs 1 through 3 all initiate high weight alarms

and can be related, they will be considered mutually exclusive inputs because of the definition

used in the analysis. The frequencies and high weight conditions in Table 4.2 should be

interpreted as follows:

1. Condition 1 (High Weight) will occur without escalating to higher weight conditions
about 25 times a year.

2. Condition 2 (High-High Weight) will occur without escalating to Condition 3 about 17
times a year. This condition definition includes those times when (1) only Condition 2
occurs or (2) Condition 1 occurs and escalates no higher than Condition 2.

3. Condition 3 (Safety System High Weight) will occur about 16 times a year. This
condition definition includes those times when (1) only condition 3 occurs or (2)
Conditions 1 or 2 occur and escalate to Condition 3.

The Recirculating Cooling Water (RCW) / Freon Differential Pressure (DP) inputs can trigger

Conditions 5 through 7. The single analog pressure input for Condition 5 is also used for

Condition 7. Condition 5 is triggered for low analog pressure values. Condition 6, Safety

System RCWIFreon DP, occurs when an even lower pressure value is detected by two digital

inputs. Condition 7, RCW/Freon DP, occurs if the safety system (condition 6) does not trip and

if an even lower pressure is input from Condition 6. Condition 6 and 7 pressure inputs are

considered mutually exclusive; Condition 5 is not mutually exclusive. All three differential

pressure inputs, however, will be considered mutually exclusive because of the definitions for the

35

condition events used in the analyses. The frequencies and differential pressure conditions in

Table 4.2 should be interpreted as follows:

1. Condition 5 (RCWFreon DP trip to hot standby) will occur without escalating to a more
severe low temperature about 41 times a year.

2. Condition 6 (Safety System RCW/Freon DP) will occur without escalating to Condition
7 about 6 times a year. This condition definition includes those times when (1) only
Condition 6 occurs or (2) Condition 5 occurs and escalates no higher than Condition 6.

3. Condition 7 (RCWFreon DP trip to criticality mode) will occur about 6 times a year.
This condition definition includes those times when (1) only Condition 7 occurs or (2)
Conditions 5 or 6 occur and escalate to Condition 7.

Conditions 10 and 11 have two different analog temperature inputs but are related by their

function in the process. The RCW heats and cools the fieon. There is a possibility that one

condition causes the other; but, other conditions may cause both to occur. It is not known for

sure whether the occurrence of one guarantees the occurrence of the other, but they are closely

related. Each of these inputs is expected to happen only once a year. Considering the large total

number of annual inputs, the dependency of these two inputs should be negligible and will be

considered mutually exclusive at this time. These two inputs, however, should be included in

any process monitoring to verify the assumption.

The following trip conditions are not known to be related to each other or to any other trip

conditions: Safety System Power Failure (Condition S), UF6 High Pressure (Condition 9), and

State error or mode failure (Condition 12).

Functions 1 and 2 both involve mode changes made by the operator. The same changes can

be made fiom either the DPCS console (Function 1) or the F/S cabinet (Function 2). These two

need separate entries because there are two separate software paths. Function 1 has the following

digital operator inputs which are asserted via device or skid panel:

1. "CSB" changes the system to cold standby.

2. "HSB" changes the system to hot standby.

3. "FREEZE" initiates the freeze mode of the F/S.

4. "SUBLIME" initiates the sublime mode of the F/S.

Function 2 has all the inputs of Function 1 plus an additional input: "DPC" turns control

over to the software. All Function 2 inputs are digital operator-initiated buttons.

36

Functions 3 and 4 are the Software and Hardware Trip Resets, respectively. These two

functions are related in the same manner as the corresponding trip conditions discussed

previously. These resets are completed only if the alarms have been triggered and must be

resolved and reset before the system is allowed to operate normally. For this reason, the alarm

trigger and the trip reset will be considered one event, and the inputs will be the condition trip

inputs paired with the operator-initiated reset. It is assumed that the operator will always reset

any alarm because the system is not allowed to operate normally until the alarm has been reset.

Functions 5 (Set F/S to Available), 6 (Set F/S to Unavailable), and 7 (Set F/S to Maintenance

Mode) form a mutually exclusive group defining the availability status of the F/S.

Functions 8 and 9, the Weight Test and its cancellation, are not related to the weight

conditions in Trip Conditions 1 through 4. Function 9 occurs only if there is a weight test. Each

year there must be 4 weight tests per F/S system. The weight test cannot occur with any other

input; therefore, if a weight test is underway and an alarm occurs, the weight test must be

cancelld. In addition, if a weight test is in progress during a switchover, the weight test is

cancelled after the switchover occurs. It is assumed that as many as 4 weight tests may be

interrupted in this way so that the total number of weight tests is the required 4 plus an estimated

4 interruptions for a total of 8 tests. Because the tests and cancellations are directly dependent,

the partial weight test and cancellation (Function 9) will be considered one input with an annual

frequency of 4, and the required, complete weight test (Function 8) will be a mutually exclusive

test with an annual frequency of 4. Table 4.4.b exhibits these results.

These additional assumptions are made for the inputs:

1. In those cases where multiple analog inputs may initiate the same alarm, it is assumed
that each of the inputs is equally likely.

2. In those cases where the input is analog and a single threshold value of the analog input
will trigger the trip condition, such analog inputs will be treated as digital inputs. This
excludes Trip Conditions 1, 2, 5 , and 7.

3. The availability functions (5 , 6, and 7), the alarm conditionsheset functions (Table 4.2
and Functions 3 and 4 from Table 4.3), and the cancellation of the weight test (Function
9) are all mutually exclusive.

The final estimated input space appears in Tables 4.4.a and 4.4.b.

37

7. RCW/Freon DP (trip to criticality mode) and
trip reset"

fail mode) and trip reset

9. UF6 High Pressure (trip to cold standby with
the vent valve open) and trip res&

8. Safety System Power Failure (trip to power

Table 4.4.a. Input Space for the Freezer/Sublimer Switchover Capability

6 .0052

5 .ow4

1 .0008

I
Frequency

(per F/S per Yr) Trip Condition and Reset

1. High Weight (trip to cold standby) and trip 25
reset"

10. Low Freon Temperature (trip to hot

Low Freon RCW Temperature (trip to

standby) and trip reset'

hot standby) and trip res&
11.

Input Space
Probability

.02 18

1

1

2. High-High Weight (trip to moderate hot 17 .0148

3. Safety System High Weight and trip resetb 16 .0139

standby) and trip reset"

4, Safety System Low Weight (trip to hot
standby) and trip resetb

18 I .O 157

5. RCWIFreon Differential Pressure (DP) (trip 41 .0357
to hot standby) and trip reset"

6. Safety System RCW/Freon DP (trip to
criticality mode) and trip res&

.0052 6 1

' software trip
Hardwarc trip

38

Table 4.4.b. Input Space for the Freezer/Sublimer Switchover Capability

Frequency Input Space
Function (per F/S per yr) Probability

1. Operator changes the mode from the 730 .6359
DPCS console

2. Operator changes the mode from the 24 .0209
F/S cabinet

5. Set the Freezer/Sublimer (F / S) to

4.3. Switchover Software Testing Summary

The requirements for the software specifications and testing are contained in document SD-

KIE-17204-FSD-A. All testing and debugging were completed on a single CPU until no failures

occurred. Then, the software testing in switchover mode was started. T h i s section summarizes

the testing for the switchover capability only. Tables 4.5 and 4.6 show the F/S software code

segments that are executed for each of the inputs. In the tables, "DALMXX 1" means "segment

1 of the DALMXX program." Table 4.7 lists the following information for each program and

segment: the number of lines of code in the segment ("code count"), estimated execution time

in milliseconds (based on the number of lines multiplied by the CPU speed), an asterisk if the

segment is critical with respect to safety, the number of tests performed on that segment, and any

additional comments.

39

Trip Condition and Reset

1. High Weight (trip to cold standby)’

2. High-High Weight (trip to moderate
hot standbyy

Table 4.5. Code Segments for Condition Inputs

Code Segments

DALMXX 1; DALMXX 10; MDTXXX 1, 2
(no reset)

DALMXX 1; DALMXX 5; MDTXXX 1, 2
(no reset)

3. Safety System High Weight and trip
resetb

4. Safety System Low Weight (trip to
hot standby) and trip resetb

5. RCW/Freon Differential Pressure
(DP) (trip to hot standby) and trip
Wr

HALMXX 1; HALMXX 4; MDTXXX 1 , 2
(reset: HALMXX 1. HALMXX 8: MDTXX 1.2)

HALMXX 1; HALMXX 5; MDTXXX 1 , 2
(reset: HALMXX 1; HALMXX 9; MDTXX 1, 2)

DALMXX 1; DALMXX 7; MDTXXX 1 , 2
(reset: STSXX 1, 2, 21, 27)

6. Safety System RCW/Frwn DP (trip
to criticality mode) and trip resetb

RCW/Freon DP (trip to criticality
mode) and triu reset?

7.

8. Safety System Power Failure (trip to
power fail mode) and trip resetb

UF6 High Pressure (trip to cold
standby with the vent valve open)
and trip reser

standbv) and triD reset?

9.

10. Low Freon Temperature (trip to hot

11. Low RCW Temperature (trip to hot
standby) and trip reser

hot standby) and trip resetb
12. State error or mode failure (trip to

HALMXX 1; HALMXX 2; MDTXXX 1 , 2
(reset: HALMXX 1; HALMXX 7; MDTXX 1 ,2)

DALMXX 1; DALMXX 3; MDTXXX 1 , 2
(reset: STSXXX 1, 2, 21, 23)

HALMXX 1; HALMXX 2; MDTXXX 1 , 2
(reset: HALMXX 1; HALMXX 6; MDTXX 1.2)

DALMXX 1; DALMXX 6; MDTXXX 1 , 2
(reset: STSXXX 1, 2, 21, 25)

DALMXX 1; DALMXX 8; MDTXXX 1 , 2
(reset: STSXXX 1, 2, 21, 28)

DALMXX 1; DALMXX 9; MDTXXX 1 , 2
(reset: STSXXX 1, 2, 21. 29)

DALMXX 1; DALMXX 4; MDTXXX 1 , 2
(reset: STSXXX 1, 2, 21, 24)

Sothvarctrip ’ Hardwaretrip

Table 4.6. Code Segments for Function Inputs

Function Code Segments

1. Operator changes OCM30 1 , 2; IMTXXX 1, 2, 3; MDTXXX 1 , 2
the mode from
the DPCS console

2. Operator changes
the mode from
the FIS cabinet

5. Set the
Freezer/Sublimer
(F/S) to Available

6. Set the F/S to
Unavailable

IMTXXX 1 , 2, 3;LMODXX 1; LMODXX 2 or 21 (if DPC button was pushed then a mode button pushed);
3, 31, or 32 (if mode button was pushed then DPC button pushed);
4 or 41 (if mode button was pushed then mode button pushed);
5 or 51 (if mode button bypass existed then DPC button pushed);

(to assert all preexisting alarm conditions: MDTXXX 1 , 2; DALMXX 3, 4, 5, 6, 10)

STSXXX 1 , 3; (if in maintenance mode, also IMTXXX 1 , 2, 3); MDTXXX 1 , 2

STSXXX 1 , 4; (if in maintenance mode, also IMTXXX 1 , 2. 3); MDTXXX 1 , 2

7. Set the FIS to
Maintenance
Mode

STSXXX 5, 51;

5 72 4 Omrator Oueries

51 25 13.8

c-
W

44

4.4 Testing Coverage Estimate

Tables 4.8.a and 4.8.b provide the number of tests for each input and include the percentage

testing for each input. The test log and some summary tables appear in Appendix B. It is

important to note that while some tests involved activating a new input in the presence of other

potential inputs, each test is counted only for the new input. For example, if Conditions 11 and

10 were present when Condition 2 was activated in switchover mode, the test counted only for

Condition 2. It is physically possible to handle multiple inputs because the F/S system is a

timeshared system that processes concurrent programs.

As discussed in Section 3.6, the coverage estimate is the sum of the input probabilities for

each input tested. In Table 4.8, each tested input is marked with an asterisk in the "Input Space

Probability" column. The coverage estimate is the sum of all the probabilities which are marked

with an asterisk. This shows that the coverage estimate for this set of tests is .9948 or 99.48 % .,
that is, almost all the inputs that are expected to occur have been tested successfully. Only two

inputs, Condition 7 (RCW/Freon DP trip to criticality mode) and Function 9 (Cancel Weight

Test) were not tested.

Table 4.8 shows that using the input space probabilities to design the testing plan would have

reduced a number of tests. The "Input Space Probability" column is multiplied by 100 to provide

the ideal percentage total testing for each input. Less testing could have been done for several

inputs, especially the weight test and its cancellation. The weight test, however, is different in

that it is a long section of code that could have been interrupted in several places during

switchover.

45

8. Safety System Power Failure (trip to

UF6 High Pressure (trip to cold

power fail mode) and trip resetb

9.
standby with the vent valve open)
and trip reme

10. Low Freon Temperature (trip to hot

11. Low Freon RCW Temperature (trip

12. State error or mode failure (trip to

standby) and trip reset0

to hot standby) and trip reset'

hot standby) and trip resetb -

Table 4.8.a. Coverage Summary for the Freezer/Sublimer Switchover Capability

15 9.87% .0044'

1 .66 % .oO09*

3 1.97% .ooo9*

6 3.95% .o009*

4 2.63 96 .ooo9*

N U m k Percent of Input Space
Trip Condition and Reset of Tests Total Testing Probabitity

1. High Weight (trip to cold standby) 1 .66% .0218'
and trip reser

2. High-High Weight (trip to moderate 7 4.61 5% .0148'
hot standby) and trip re9ets

resetb
3. Safety System High Weight and trip 9 5.92% .0139'

4. Safety System Low Weight (trip to 14 9.21% .0157*
hot standby) and trip resetb

5. RCWFreon Differential Pressure 16 10.53 % .0357*

I I I
(DP) (trip to hot standby) and trip
reseP

46

Table 4.8.b. Coverage Summary for the Freezer/Sublimer Switchover Capability

Function

1. Operator changes the mode from
the DPCS console

2. Operator changes the mode from
the F/S cabinet

5. Set the Freezer/Sublimer (F / S) to
Available

6. Set the F/S to Unavailable

7. Set the F/S to Maintenance Mode

8. Weight Test

9. Weight Test Cancellation

TOTAL

Number
of Tests

8

8

7

4

6

29

0

152

I ' ,0209"

4.61 % 1 .1742*

I

2.63% .0209*

3.95% .0209*

19.08% I .0034'

0% I .0034

100 I .994

*Include probability in input space coverage estimate.

47

5. Summary and Conclusions

K-25 Engineering Division purchased a series of redundant computer systems and developed

software for the. purpose of providing continuous process monitoring and control for the

Freezer/Sublimer equipment in the gaseous diffusion process at the Paducah Gaseous Diffusion

Plant. The application software is loaded on two central processing units (CPU) so that in the

event of a failure of the primary unit, the processing can switch to the backup unit and continue

processing without error. It is the purpose of this document to demonstrate the reliability of this

system with respect to its ability to switch between redundant CPU. The total reliability

estimation problem - which considers the hardware, operating system software, and application

software - has been reduced to one that considers only the application software directly involved

in the switchover process.

The switchover software reliability estimate R is .9934 with a 95% Bayesian probability

interval of .9754 < R < .9998. This is a high reliability estimate, as it needs to be because

the software reacts to alarm conditions. The estimate was calculated from 152 tests with a single

failure occurring at test 43. After the failure, the software was corrected, and the remaining 109

tests were completed without failures. The coverage of the reliability estimate is 99.48%.

Therefore, the estimate of the probability that the software will continue to work is .9934 as

determined by testing 99.48% of the inputs.

It is important to understand that the reliability estimate can be quoted only for the existing

software. If changes are made in the software, then new reliability and coverage estimates must

be made. It will also be important to monitor the F/S process to validate whether or not the

process has the expected number of alarms. This information will be helpful for any new

software or changes in the existing software which may be made in the future.

48

6. References

Berger, James O., (1985), StatisticalDecision Theory and Bayesian Analysis, Second Edition,
Springer-Verlag, New York, New York.

Davis, J. N., and Devan, W. R., (1990), "F/S Functional System Design for Process
Inventory Control System Distributed Process Control," K-25 Site, Report SD-KIE-17204-
FSD-A.

Harris, Bernard, 7heory of Probability, Addison-Wesley, Reading, Massachusetts, pp. 6-20.

Henley, Ernest J., and Kumamoto, Hiromitsu, (1981), Reliability Engineering and Risk
Assessment, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 254-256.

Keceglioulu, Dimitri, (1991), Reliability Engineering Handbook, Volumes 1 and 2, Prentice
Hall, Englewood Cliffs, New Jersey, Volume 2 pp. 401-465.

Martz, Harry, F., and Waller, Ray A., (1991), Bayesian Reliability Analysis, Krieger
Publishing Company, Malabar, Florida.

Mendenhall and Schaeffer (1973), Mathematical Statistics with Applications, Wadsworth
Publishing Company, Inc., Belmont, California, pp. 315-317.

Musa, John D., (1975), "A Theory of Software Reliability ancl its Application," IEEE
Transactions on Sofnare Engineering, SE1(3), pp. 3 12-327.

Musa, John D., (1985), "Software Engineering:
Sofiware, 2(1), pp. 55-62.

The Future of a Profession," IEEE

Musa, John D., and Okumoto, K., (1984a), "A Comparison of Time Domains for Software
Reliability Models," Journal of Systems and Sofnare, 4(4), pp. 277-287.

Musa, John D., Iannino, Anthony, and Okumoto, Kazuhira, (1990), Sofnare Reliability
Measurement, Prediction, Application Professional Edition, McGraw-Hill Publishing
Company, New York, New York.

Musa, John D., Iannino, Anthony, and Okumoto, Kazuhira, (1987), Sofnare ReZiabiliry
Measurement, Prediction, Application, McGraw-Hill Book Company, New York, New York.

Musa, John D., (1979d), "Validity of Execution Time Theory of Software Reliability," ZEEE
Transactions on Reliability, R-28(3), pp. 181-191.

Nelson, Wayne, (1991), Accelerated Testing, John Wiley ancl Sons, New York, New York.

Walraven, Ing. W. M., (1986), "Emcon D/3 Integrated Process Control System,"
Organization for Applied Scientific Research (TNO-IWECO), Evaluation Report E2500 T86.

49

APPENDIX A

50

APPENDIX A Introduction to one Musa Model

The software reliability models developed by Musa, lanino, and Okumoto are documented

in their books (1987 and 1990) and numerous journals, such as IEEE Transactions on Sofhvare

Engineering, IEEE Transactions on Reliabilty, Journal of Systems ana' Sofnare, and IEEE

Somare. The models discussed by Musa et al (1990) develop estimates of the reliability at a

point in time. This reliability represents the accumulated reliability resulting from testing,

correction of failures, and continued testing and correction. In this manner, the growth or demise

of reliability can be tracked throughout the testing and development process. This capability can

help determine expected completion dates, additional manpower needs, and other important

concerns of software development.

Accurate software reliability estimation requires up front planning in order to be able to

record all the data required and monitor progress. The models require failure times or failures

per time interval (grouped data). Additionally, the Musa models require an estimated number

of faults in the software (w,) and an estimated initial failure intensity (A,). Musa et a1 (1987 and

1990) discuss both of these as follows.

- -

A fault is defined as an error in the software that may cause multiple failures, ie, multiple

inputs may fail in the same or different ways when encountering the software fault. Before

testing starts, an initial estimate i s needed for a,, the total number of faults (inherent faults) in

the software.

-

The estimated initial failure intensity A, is defined as

A, = f x K x a,,

-

where,

f = linear execution frequency,
K = fault exposure ratio, and
a, = inherent faults.

Further, f is the number of times the program would be executed per unit time without branches

or loops and is estimated by

f = r/l 9

51

where,
r = instruction execution rate, and
I = executable object instructions.

The number of inherent faults is
w, = w; x I , -

where,
wi = inherent faults per developed source instructions (or fault density), and
f = developed executable source instructions.

For details on values of K, see Musa (1979).

Musa et al (1990) discuss and provide applications for two types of models, the basic

execution time model and the logarithmic Poisson model. Briefly, the basic execution time model

is used for a uniform operating profile and has

where,

p = average number of failures per CPU hour expected at a given time, and
Vo = total number of failures in infinite time.

The logarithmic Poisson model is used for highly non-uniform profiles and has

A@) = A, - eXP(-W,

where,

8 = failure intensity decay parameter.

The additional parameter 0 is found by plotting two observed values: the natural log of the

failure intensity against the mean failures experienced. The slope of this line is the parameter

e .
Many more details and applications are found in Musa et al (1987, 1991). While these

models require detailed information, they can provide valuable information when applied

properly.

5 2

APPENDIX B

53

7. RCW/Freon DP (trip to criticality mode) and trip
reseP

Safety System Power Failure (trip to power fail 8.
I mode) and trip resetb

APPENDIX B Redundancy Testing Log and Summary Tables

: 9.
' 10.

UF6 High Pressure (trip to cold standby with the

Low Freon Temperature (trip to hot standby) and
trip reset'

I vent valve open) and trip reset'

Table B.l. Condition Codes

.1

[I
-

Code Condition

1.

2.

3.

4.

High Weight (trip to cold standby) and trip reset"

High-High Weight (trip to moderate hot standby)
and trip reset"

Safety System High Weight and trip reset"

Safety System Low Weight (trip to hot standby)
and trip reset"

11. Low RCW Temperature (trip to hot standby) and
triD reset"

12. State error or mode failure (trip to hot standby)
and trip resetb

I'

asoftware trip
bHardwam trip

54

Table B.2 Function Codes

Code Function

1 . Operator changes the mode from the DPCS
console

2. Operator changes the mode from the F/S

5 . Set the Freezer/Sublimer VIS) to Available

6. Set the F/S to Unavailable

cabinet

11 7. Set the F/S to Maintenance Mode

8. Weight Test

TOTAL FREQUENCY

55

Note for Table B3.a Redundancy Testing Img:

All tests for switchover mode are recorded in this table, including test 24 which had no alarm

conditions present and is not included in the count for the number of successes in the failed group

or the total number of tests. For this reason, the failed test is number 44 in this table, and the

total number of test entries is 153.

56

Table B.3.a. Redundancy Testing Log

11 Function or HALM 7.0

Condition Program

Tested

1. Cond. 4 1

2. Cond. 4 1

3. Reset

4. Cond. 4

DALM 9.0 MDT 3.0 STS 5.0 LMOD 8.0

Program Program Program Program

2 2 1 1

2 2 1 1

I 2 l 1 I 1
2 I 2 l 1 I 1

l z I 1 l 1

I 2 l 1 I 1

Date Tested

1/22/92

113 1 I92

2/3/92

57

31. Cond. 5

32. Reset

Function or HALM 7.0 DALM 9.0 MDT 3.0

Condition Prognm Program Program
Tested

21. Cond. 6 1 2 2

22. Reset 1 2 1

1 2 2

1 1 1

23. Cond. 5 I 1 I 2 1 2

33. Cond. 1

34. Cond. 2

35. Reset

36. Cond. 2

24. No alarm 1 2 1

conditions

present

25. Reset 1 2 1

Cond. 5

26. Cond. 5 1 2 2

1 1 1

1 2 1

1 2 2

1 2 1

27. Reset 1 2 2

28. Cond. 5 1 7 2

29. Reset 1 2 1

30. Reset b I 2 b

37. Reset

39. Reset 1 2 1

40. Cond. 11 I

STS 5.0 LMOD 8.0 Date Tested

Program Program

1 1

1 1

1 1

1 1 1 1

,--A+-+- *

58

Conds. 1 1 &

Cond. 5 with

Cond. 5 with

Cond. 5 with

Cond. 10 with

Cond. 12 with

HALM 7.0

Program

1

1

1

1

1

1

1

1

1

STS 5.0

Program

I

1

1

27

1

27

1

2

2

LMOD 8.0

Program

~

Date Tested

1

I

FAILURE:

Did not

assert Conds.

1 0 o r 11

2/4/92

59

LMOD 8.0 Date Tested Z T HALM 7.0

Propram

DALM 9.0

Program

MDT 3.0

Rogrnm

STS 5.0

Program

Funetion or

Condition

Tgted

50. Reset

Cond. 12with

Cond. 11

51. Rcsct

Cond. 12 with

Cond. 11

52. Reset

Cond. 11 with

Cond. 1

53. Reset

Cond. 11 with

Cond. 1

54. Reset

Cond. 5 with

Conds. 11 & 1

55. Reset

f Cond. 8 with

Conds. 11 & 1

56. Cond. 8

with Conds. 2,

11, & 10

57. Reset

58. Re-

Cond. 2 with

Conds. 11 &

2 1 1 1 1

I 1 1 1

1 1 1 2

1 1 1 2

1 1 9 I

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

60

Cond. 10 with

with Cond. 11

Cond. 12 with

Conds. 10 &

Cond. 8 with

Conds. 6 & 4

Program Program

MDT 3.0

Program

2

1

2

1

1

2

1

1

1

STS 5.0

Program

1

2

1

1

1

1

1

1

61

-
HALM 7.0

~~

D U M 9.0 I MDT 3. STS 5.0
Program

LMOD 8.0

Program I -ran

I 6 1 1

1 1 1

1 1 1

8 1 1

1 1

Cond. 11 with

74. Funct. 2

(HSB)

75. Funct. 2

@W

76. Funct. 2 1

tCS3)

77. Funct. 2 1

(HSW
a.

32 1 1

1 1 21

1 32 1

4

1

62

HALM 7.0

Program

DALM 9.0

Program

MDT 3.0

Program

STS 5.0

Program

LMOD 8.0

Program

Date Tested

1 1 32 1 1

1 1 1 1 4

1 7

1 1

with Funct. 2

1 41 1

1 4 1

9 1 2/6/92 1 1 1

1 2 I 1 1

2 1 1 1 7

63

DALM 9.0

Program

1

1

1

7

1

1

MDT 3.0

Program

1

1

1

1

2

1 1

STS 5.0
Program

1

1

1

1

1

1

1

64

alarm reached

HALM 7.0

Program

9

1

1

1

1

1

1

I

DALM 9.0

Program

I

1

1

1

1

1

1

MDT 3.0

Program

1

1

1

2

1

1

1

2

Date Teated

65

8z rcsct when

110. Funct. 8

just prior to

second trip

111. Funct.8

just after

operator

response to

continue

message

-
HUM 7.0

Program

1

1

1

A

1

1

1

1

1

7

LMOD 8.0

-ram

1

1

1

1

1

1

1

-
Date Tested

66

DALM 9.0

Program

1

1

1

1

1

1

1

67

"
Function or

Condition

Tested

121. Funct. 8

while regetting

first trip

122. Funct. 8

while awaiting

operator

response to

disable 1A

message

123. Funct. 8

just prior to

second trip

124. Funct. 8

just after

second trip

125. Same

126. Funct. 8

before first

trip (PB FIS

127. Funct. 8

before third

trip (PB F/S

128. Funct. 8

before fourth

trip (PB FIS

HALM 7.0

Program

1

1

1

1

1

1

1

DALM 9.0

Program

1

1

1

1

1

1

1

1

I

~

LMOD 8.0
Program

1

1

1

1

1

1

1

1

Date Teste-d

68

Table B.3.b. A Redundancy Testing Log

69

70

Table B.4. Summaries of Tests for Coverage Determination

Conds. 5 , 10, & 11

Cond. 9

Cond. 11

7 1

Conds. 11 & 1

Conds. 2, 11, & 10

Cond 6

Conds. 6 & 4

Funct. 2 (CSB)

Funct. 2 (CSB) &

Conds. 5, 10, & 11

none
~- -

Cond. 11

Cond. 7

0 1

1 1

0 1

0 2

1 0

1 1 15

0 1 1

1 2 3
- - ~ - ~~ -

Cond. 8

Cond. 9

Cond. 10

Cond. 11

Cond. 12

Funct. 1 (device DPC
PREEZE)

Funct. 1 (skid panel

DPC FREEZE)

Funct. 1 (device CSB)

72

Nuniber of Tests

Initiating Input

Coaditions/Functions Existing Conditions

or Functions

Number of Tests Total Tests

Resetting Input for the Input

1) Funct. 1 (skid panel none 1

NtA I 1 none

none 1 I
none 1 I NIA

1 none NIA 8

none 2 NIA I
1 -+ Funct. 2 (CSB)

Conds. 5, 10, & 11 1

-,c Funct. 2 (CSB) &

Cond. 9

NIA

I NIA

NIA

NIA

N/A 8

152 Total Tesb

73

OR"-12234

1.
2.

3-7.
8.

9-13.
14.
15.
16.

43.

44.

45.

46.

47.

48.

49.

INTERNAL DISTRIBUTION

B. R. Appleton 17-21. S. Raby
T. Darland 22-26. R. F. Sincovec
Mathematical Sciences Lib. 27. J. N. Sumner

D. J. Downing 33. Central Research Library
D. M. Flanagan 34. K-25 Applied Technology Library
A. Geist 35. ORNL Patent Office
L. J. Gray 36. Y-12 Technical Library
C. E. Oliver 37-41. Laboratory Records Department

J. N. Davis 28-32. R. C. Ward

42. Laboratory Records Depart. - RC

EXTERNAL DISTRIBUTION

Professor Roger W. Brockett (EPMD Advisory Committee), Wang Professor of
Electrical Engineering and Computer Science, Division of Applied Sciences, Harvard
University, Cambridge, MA 02138.

Siddhartha Chatterjee, RIACS, Mail Stop TO4.5-1, NASA Ames Research Center,
MofYett Field, California 94035-1000.

Dr. Donald J. Dudziak (EPMD Advisory Committee)
Department of Nuclear Engineering
11OB Burlington Engineering Labs
North Carolina State University
Raleigh, NC 27695-7909

Dr. Jerome Friedman, Department of Statistics, Sequoia Hall, Stanford University,
Stanford, CA 94305.

Dr. Dan Hitchcock, M i c e of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585.

Dr. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585.

Dr. James E. Leks (EPMD Advisory Committee), Rt. 2, Box 142C, Broadway, VA
228 15.

74

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60-61.

Professor Neville Moray (EPMD Advisory Committee), Department of Mechanical
and Industrial Engineering, University of Illinois, 1206 West Green Street, Urbana,
IL 61801.

Dr. Vijayan Nair, Statistics Research, AT&T Bell Labs, Murray Hill, New Jersey
07974.

Dr. David Nelson, Scientific Computing Staff, Applied Mathematical Sciences,
Office of Energy Research, U.S. Department of Energy, Washington, D.C. 20585.

Dr. Jerome Sacks, NISS, P. 0. Box 14162, Research Triangle Park, North
Carolina, 27709-4162

Dr. L. R. Shenton, Office of Computing and Information Services, Boyd Graduate
Studies Building, University of Georgia, Athens, Georgia 30602.

Dr. Daniel L. Solomon, Department of Statistics, North Carolina State University,
P. 0. Box 5457, Raleigh, North Carolina 27650.

Dr. Werner Stuetzle, Department of Statistics, GN-22, University of Washington,
Seattle, Washington 98195.

Dr. Ray A. Waller, S-1, Statistics, Los Alamos National Laboratory, P. 0. Box
1663, Los Alamos, NM 87545.

Professor Mary F. Wheeler (EPMD Advisory Committee), Rice University,
Department of Mathmatical Sciences, P.O. Box 1892, Houston, TX 77251.

Office of Assistant Manager for Energy Research and Development, U.S.
Department of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge,
TeMesSe 3783 1-8600.

Office of Scientific and Technical Information, P. 0. Box 62, Oak Ridge, Tennessee
3783 1-0062.

