
i

n

.

b- _.--_-,~____

. ...-..._..._ ~ __

I .
4.

ORNL/l?M-12359
.f (, 6

1' '
I t
* Engineering Physics and Mathematics Division

THE TORSED METHOD FOR CONSTRUCTION
OF TORT BOUNDARY SOURCES FROM

EXTERNAL DORT FLUX FILES

W. A. Rhoades

DATE PUBLISHED - AUGUST, 1993

Prepared by
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

MARTIN MARIETTA ENERGY SYSTEMS. INC.
for the

U. S. Department of Energy Systems, hc.
under Contract No DE-AC05-840R21400

3 4 4 5 6 0 3 7 b 5 2 4 5

. _.

Page

LISTOFFIGURES ... v

ABSTRACT .. vii

SECTION I (THE TORSED CODE) ... 1

1 . INTRODUCTION .. 2

2 TWEORETICALINFORMATlON ... 3
2.1 Basic TORSED Method ... 3
2 2 Accuracy Considerations ... 3
2 3 Alternate Formulations .. The "Look-Forward" Method 4
2.4 Alternate Formulations - The DOTTOR Method 4

3 . PROGRAMMER'S INFORMATION .. - 9
3.1 Input Output. and Common Blocks 9
3.2 General Code Structure ... 10
3 3 Supporting SeMce Routines ... 11

4 . INSTALLATION AND ENVIRONMENT INFORMATION 14
4.1 Installation .. 14
4.2 DataFiles ... 14
4.3 System Requirements .. 15

5 . USERLMFORMATION ... 16
5.1 Input Requirements .. 16
5.2 Printed Output ... 16
5.3 Error Messages ... 17

6 . DEMONSTFUTION PROBLEMS .. 18

APPENDIX A . TORSED INPUT REQUIREMENTs 20

APPENDIX B . COMMON BLOCK STRUCIZTRE 22

APPENDIX C . PRINCIPAL DATA ARRAYS 23

APPENDIX D . DISCUSSION OF THE 3-D D I S C O " U 0 U S MESH TECHNIQUE ... 25

APPENDIX E . TORT BOUNDARY FLUX F?IE FORMAT 31
.

iii

S E ~ O N I I (T H E V I S A C 0 D E) .. 35

1 . INTRODUCTION ... 36

2 . THEORETICALINFORMATION .. 37

3 . PROGRAMMER'S INFORMATION .. 38
3.1 Input. Output. and Common Blocks 38
3.2 General Code Structure ... 38
3.3 Supporting Service Routines ... 39

4 . INSTALLATION AND ENVIRONMENT INFORMATION 40
4.1 Installation .. 40
4.2 Data Files ... 40
4.3 System Requirements .. 40

5 . USERINFORMATION ... 41
5.1 Input Requirements .. 41
5.2 VISA Without GRTUNCLE Data or With GRTUNCL Data Only 42
5.3 Special Group Options ... 42
5.4 Syntheticflux .. 42
5.5 PrintedOutput ... 42
5.6 Error Messages ... 43

APPENDIX A . VISA INPUT REQUIREMENTS 44

APPENDIX B . COMMON BLOCK C O W S 45

APPENDIX C . VISA OUTPUT FLLE FORMAT 47

APPENDIX D . DORT FLUX MOMENT FILE FORMAT 50

APPENDIX E . DORT SOURCE MOMENT FILE FORMAT 53

APPENDIX F . "DOT ANGULAR FLUX TAPE" FORMAT AS USED BY DORT 56

SECTION XI1 (REFERENCES) .. 60

REFERENCES .. 61

iV

c

2.1 Transformation From an RZ DORT to an XYZ TORT 6

22 Spatial Interpolation to a Point on the TORT Surface 7

2.3 DO'XTOR Method of Direction Mapping. 8

3.1 Radial Location of TORT Surface Point in DORT Cyiindrical
Coordinates ... 13

D-1 The Discontinuous Mesh Feature Allows the Mesh to be Locally Dense
Where Required to Detail Problem Features 26

c

V

r

The TORSED method provides a means of coupling cylindrical two-dimensional
DORT fluxes or fluences to a threedimensional TORT calculation in Cartesian geometry
through construction of external boundary sources for TORT. This can be important for
several reasons. The two-dimensional environment may be too large for TORT simulation.
The twodimensional environment may be truly cylindrical in nature, and thus, better treated
in that geometry. It may be desired to use a single environment calculation to study
numerous local perturbations.

In Section I, the TORSED code is described in detail, and the diverse demonstration
problems that accompany the code distribution are discussed. In Section Il, an updated
discussion of the VISA code is given. VISA is required to preprocess the DORT files for use
in TORSED. In Section III, the references are listed.

v i i

p

................ ~

SECTION I

THE TORSED CODE

1

1. INTRODUCI'ION

The purpose of TORSED is to provide a quick, reliable coupling between 2-
Dimensional (2-D) DORT [rh88] calculations in cylindrical (RZ) geometry and 3-Dimensional
(3-D) TORT [rh9lb,rh9la,rh87] calculations in Cartesian (X Y Z) geometry. There can be
several motivations for such a coupling. In some cases, the entire environment is too large
for 3-D simulation. An example is a building located on the ground a kilometer from a
weapon source. In other cases, a portion of the problem is cylindrical in nature, but 3-D
geometry is required for local detail. An example is a fixture at the surface of a reactor
pressure vessel. In still other cases, fine mesh spacing or a special directional quadrature is
required in the 3-D case that is not required in the 2-D environmental calculation. It may
also be desired to study numerous local configurations with a single environment calculation.

An earlier code, DOTTOR, [th86] was constructed more or less concurrently with
TORT to perform the mapping of the aidground environment fluence from a weapon source
to the surface. of a concrete building. This was used successfully in a detailed study of
radiation received inside the building. [rh92b,rh89] DOTTOR was also used in a study of
detailed flux patterns near beam tubes in the High Flux Isotope Reactor (HFIR).
[ch88b,ch88a]

The details of DOTTORs construction made it relatively expensive to use, however,
and extending it to problems using one or two million mesh cells and discontinuous-mesh
geometry was not feasible. In addition, questions about the reliability of DOTTOR have
arisen over the years. By comparing DO'ITOR results with results from the new TORSED
code, certain malfunction modes have been identified, and error stops have been put in place
to prevent them. With these changes, DO'TTOR can apparently be used reliably, within its
scope of applicability, and it was valuable in checking the early TORSED results.

TORSED uses a much simpler procedure to map fluxes or fluences from one
direction set and geometry to another, and it is constructed to run very large problems in
minimal time and computer memory. It is fully compatible with the discontinuous-mesh
features of TORT. Its straightforward construction facilitates checking and maintenance.. Its
simple procedure has proven adequate for cases where the same quadrature is used in 2-D
and 3-D calculations. A few special cases could, theoretically, prove inaccurate, and those will
be discussed later.

At this time, TORSED is compatible with all TORT features except the option to
vary directional quadrature by energy group. If that should prove valuable, it can be added
at a later date. Alternate procedures for performing the directional remapping are discussed
in a later section. The early applications have been quite successful, however, and the
demand for considering alternatives is not urgent.

2

21 BasicToRsEDMethod

The task accomplished by TORSED is quite straightforward. It is to read the 5uence
files from an RZ DORT calculation and to prepare an external boundary source file for a
TORT X Y Z calculation (Eigure 2.1). As indicated in the figure, the DORT direction set
rotates with the azimuthal variable, rather than remaining fixed in space. The vertical plane
in the illustration indicates the RZ grid of the DORT problem. In 2-D cylindrical geometry,
there is no azimuthal grid, of course, and the same fluence applies at eveiy azimuth. The
TORT geometry is located with respect to the DORT geometry by the radius and height of
its origin, and by the rotation of its X axis counterclockwise fkom the DORT R axis. The 2
axes of the trLo problems are assumed to remain parallel. The TORT direction set is fixed
in space throughout the entire TORT geometry, but, in general, none of the directions match
DORT directions exactIy.

The spatial interpolation is straightfoward. The average DORT flux for each volume
cell is assumed to be the flux value for the geometric center of the cell, and the flux at the
geometric center of each surface cell on the TORT geometry is assumed to apply to that
entire TORT 4. Accordingly, the radius and height in DORT coordinates of each center
on the TORT surface is obtained, and the flux at that point €or each DORT direction is
obtained by linear spatial interpolation between the nearest-neighbor DORT cell-center flux
values (Figure 2.2). Linear interpolation of the logarithm of DORT flux is also an available
option. It may be noted that either interpolation requires that the DORT mesh be large
enough that its mesh centers completely enclose the TORT geometry. Extrapolation can lead
to serious errors, and it is not allowed.

The spatial interpolation establishes a value for the flux in each of the DORT
directions at each cell center on the TORT surface. Some type of directional remapping must
be used to obtain the flux in each TORT direction. TORSED presently uses a look-
backward" method in which the flux in each TORT direction is set equal to the DORT flux
in the nearest DORT direction.

The spatial interpolation requires a grid sufficiently fine near the TORT surface that
linear interpolation of the flux is valid When a cylindrical surface is modeled, it must be
remembered that the Cartesian representation of this surface will be jagged.

The look-backward method used in directional interpolation is at its best when
matching direction sets are used in DORT and TORT, and when the DORT flux varies
smoothly over the direction space. Examples of cases not properly treated by this method are
the collapse of a fine DORT quadrature into a cOarSe TORT quadrature and the case where
a single DORT ray such as the ray containing the unmllided component in an air transport
environment has a large value. In the case of a single large value, it is also important that
the DORT directions have equal weight, since no correction for weight mismatch is available.

3

A less obvious limitation can arise when the contents of the enclosed TORT volume
do not have the same reflection and transmission properties as the corresponding space in the
original DORT problem. If the flux entering the surface is perturbed significantly by changes
within the volume, then the result may not be correct. This can happen, for example, if a
large volume of air in the DORT geometry is replaced with a scattering medium that would
reflect particles. If those reflected particles are able to leave the enclosed volume and then
reenter it, the incoming DORT flux would not be correct for that case. Similarly, if particles
would normally have passed through the volume and would have scattered back into it, new
material in the volume might prevent that. Removing material can also cause perturbation.
For example, replacing water with a beam tube removes reflection that would have taken
place, and both outgoing and incoming flux may be altered.

Several situations can mitigate this problem, however. If the enclosed volume is small
with respect to a mean-free-path in the surrounding medium, a particle is unlikely to enter,
leave, and then re-enter the volume. Backscatter of transmitted flux is rarely important due
to the low probabilities involved. In the beam tube example, an unperturbed surface can be
selected several mean-free-paths away from the perturbation in the water. If a small
perturbation is described, selecting a surface distant with respect to the largest dimension of
the perturbation may result in an unperturbed surface. It may be noted that perturbation of
the outgoing flux is not important, since TORSED deals only with the incoming flux.

2 3 Alternate Formulatiam - The Tnok-Fonmrd" Method

One alternative to the "look-backward" method would be a "look-forward" approach.
In this method, each incoming DORT ray would be apportioned among several nearest-
neighbor TORT rays according to the relative nearness and weight of the neighbors. This
method would account for a large discrete ray correctly, and it would allow a fine quadrature
to be mapped into a coarse. It would be fairly tolerant of mismatched direction sets and
uneven direction weights. It would always preserve flux and, if the direction sets were
sufficiently fine, it would approximately preserve current. In certain special cases, however,
it might provide no flux at all in some of the TORT directions. It would fail badly if a coarse
DORT direction set were mapped into a fine TORT set. It would probably require the
calculation and storage of additional information to be used in the mapping. Its use in other
codes has not been so common as use of the "look-backward" method.

2 4 Alternate Formulations - The DoTIylR Method

We will descnk briefly, for the purpose of comparison, the method used by
DO'ITOR. Full details can be found in the reference. DOTI'OR establishes sectors of
direction space corresponding to each DORT and each TORT direction (Figure 23).
Although the basic discrete ordinates formulation does not guarantee that this is always valid,
it is a workable plan with the direction sets in common use with DORT and TORT. The
DORT flux is assumed to be constant over its sector. Since the coordinates of the sectors
are the azimuthal angle and the cosine of the polar angle, then summing each DORT flux
times the area of its intersection with a given TORT sector approximates the integral of

4

DORT flux over the sector. Dividing by the TORT sector area gives the remapped flux to
be used as a source in the TORT problem.

This method generally has all of the desirable traits of the look-forward and look-
backward methods except simplicity. It proved to be quite tedious to program and debug.
The number of remapping constants is potentially huge; potentially, there would be a
different set of coupling coefficients at each surface cell of the TORT geometry. Accordingly,
the constants were calculated each time they were used, causing very large problems to
require undesirable amounts of computer time. Still, the method performed well with all
combinations of quadratures, treated discrete rays correctly, provided non-zero source in all
directions, and preserved fla It was a valuable basis for comparison in the present work.

5

Figure 2.1 -- Transformation From an RZ DORT to an XYZ TORT

2

I

R

RD = radius
HD = height

of TORT origin i n DORT geometry
of TORT o r i g i n i n DORT geometry

= r o t a t i o n of TORT origin in DORT geometry
4

Figure 2.2 -- Spatial Interpolation to a Point on the TORT Surface

DORT mesh cell

Hidpoints used
fox spatial
interpolation

TORT mesh cell

7

........ - ..-

Figure 2.3 -- DOTTOR Hethod of Direction Happing

DORT quadrature

Overlap illustration
(not to scale)

I

I
I
I
I

I

- -

I
I

- - - - -

TORT quadrature

8

3. PROGRAMMER'S INFORMATION

3.1 Input Output, and Common BIocks

F

The task of TORSED, from a programmer's point of view? is to transform an input
file containing DORT flux values as processed by the VISA [rh74a] code into an output file
for use as a boundary source by TORT. The format of the input file is that produced by the
VISA code with the N"PE parameter set to 1. A description of the VISA code should be
consulted for detailed specifications. The output file is produced in the VARBND format
used as input by the TORT code. The VARBND format is described in Appendix E.

Certain parameters and data arrays are required as input, as specified in Appendix A.
In addition to the job title and data required to control the execution, descriptions of the
space mesh and directional quadrature are required. The input parameters are read directly
into common block COMSED described in Appendix B. The arrays are read into a single
large "container" whose location is determined by calls to DORT support subroutines.

The relative location of each individual array in the container is defined by a pointer
stored in the common block The pointer for array ?? is always named L??, etc. For
example, the array NAL begins at a location in the container array specified by the pointer
LWAL In general, the pointers are stored in common in ascending order, so that the
difference between the values of suocessive pointers indicates each array length. The
container, once located, is called I). Then, to use array WAX, in a subroutine, the argument
D(LIVAL) is included in the call statement, and the name N A L is used in that position in
the subroutine statement. This method of data storage is sometimes called "flexible
dimensioning". It is similar in concept to the pointer feature of Cray FORTRAN, but it is
not machine dependent. Since compilers do not require a special treatment of the flexiiile
dimensioning array, there is no loss of efficiency comparable to that experienced with the
Cray pointers.

Additional input parameters are obtained from the input files as indicated in the first
section of Appendix B. The appendix also indicates a number of parameters generated
internally by the code as noted.

TORSED uses several common arrays h m DORT in order to communicate with
DORT support subroutines. These blocks are:

COMIN - general job status information
COMIO -- VO unit status information
COMBLK - reference address for the container

The general ordering of data arrays in the container is indicated in Appendix C.
Several arrays there are listed as originating from the user input or from the VISA input file.
In certain special cases, data arrays may overlay each other, if they are not used concurrently,
of course, The source Listing is the final word on those details.

. .. . ,,,. . .,. .-_^ ...

If IMTI.gt.0, the source arrays numbered 7? are not supplied, and only the 't"
terminating that block is to be input. In that case, a conventional continuous mesh source
is constructed for TORT. If IMTI.lt.0, a discontinuous mesh source will be constructed, and
the 7? arrays are required as described in Appendix k A detailed discussion of the
discontinuous mesh technique is given in Appendix D. Briefly the number of space cells is
allowed to vary from row to row in a plane, and the number of rows is allowed to vary from
plane to plane. This feature allows the computational work to be concentrated where it is
needed to detail special features, and it is possible to define very complex geometric
structures in this way. An important advantage of the feature is that it does not require the
abandonment of the mathematical solution procedures developed for continuous mesh
problems.

3 2 GeneralcodeStructure

A walkthrough of the main structural subroutines serves to describe the code
structure.

MAIN -- the main program reads the input data, obtains computer memory for the container,
and calls SEDIN.

SEDIN -- SEDIN calls DOPC to initialize the UO process and then sets up the pointers
required for data array storage. It calls INPA twice, reads the remainder of the arrays, and
continues the problem solution by a call to SEDUM. At the conclusion, a final call to DOPC
disposes of all open data files properly.

INPA -- the first call to INPA counts the total number of rows in the TORT mesh. In a
continuous-mesh problem, this is simply JM*KM. The second call to INPA fills arrays needed
to support the discontinuous mesh process, and then identifies K-sets. A K-set is a set of
planes having identical space mesh specifications. The first plane belongs to the first K-set
by default, as do all planes like it. The next plane to have a different space mesh begins K-
set 2, and so on. The K-mate of a plane is K for the first plane having the same space mesh,
i.e. the first plane having the same K-set value as the plane in question.

SEDUM -- SEDUM calls the TORT quadrature and geometry routines, reads the description
of the DORT quadrature and geometry from the VISA input file, calls the DORT quadrature
and geometry routines, and then calls FLUXRZ to complete the execution.

QUADT -- the TORT quadrature routine supplies the missing cosine, XZIT, and performs
consistency checks to assure that the quadrature set is valid.

GEOMT -- the TORT geometry routine finds the width and midpoint of each mesh interval
and performs consistency checks on the mesh.

QUADD -- the DORT quadrature routine supplies the missing cosine, XZI, calculates the
cylindrical coordinates, RAD and PHI, of the projection of each direction in the plane
perpendicular to Z, and calculates a "double-DORT' quadrature set in which the outward and
inward directions are separated. It then uses subroutine ROTATE to find the double-DORT

10

direction matching each TORT direction at the position of the TORT origin and to convert
the double-DORT direction index to a standard DORT direction index This index, MATCH,
is listed in the standard edit of input data

GEOMRZ -- the DORT geometry routine obtains the cylindrical DORT coordinates of each
cell center on the surface of the TORT geometry. The arrays are called RZ? and THZ?,
where ? takes on the values L, R, I, 0, B, and T denoting the TORT left, right, inside,
outside, bottom, and top faces. Considerable reliance is placed on the built-in trigonometric
functions in order to simplifj the work Figure 3.1 illustrates the logic used in the
transformation. The special function ATANX is simply a call to the built-in function ATANZ
with special provision made for the case where both arguments are 0. Some machines handle
this case gracefully, providing 0 as the value, and others do not. ATANZ always provides the
azimuth in the proper quadrant for use with other Eunctions, which is a considerable
convenience. A degenerate case occurs when the position being converted is much farther
away from the TORT axis than the TORT axis is distant from the DORT axis. In that case,
the DORT cylindrical coordinates are taken to be equal to the TORT coordinates with little
error. This procedure was tested extensively for various inputs, and it proved quite robust
in spite of the double application of the law of cosines.

33 Supporting Service R o u h

TORSED draws extensively from the collection of service routines from the DORT
distriiution. A brief discussion of the routines follows. In general, the source listing of each
routiqe provides more detailed information as to the use and proper calling sequence. In
some cases, the routines call other routines not discussed here, but those have the same
function as in DORT.

BLKIO -- controls the reading and writing of random (direct) access scratch arrays.

CLEARX - sets a string of data locations to 0.

CSEIT -- sets a string of data locations to a value supplied by the user.

DLOCAL -- after initialization, acquires a memory area from the system for the container
array, and later, returns it,

DOPC -- controls the opening, and closing of random (direct) access scratch files.

ERR0 -- writes error message, records highest error code reached, and provides termination
if error code is too large.

FIDOS -- implements the F’IDO data input format shared with DORT and TORT.

HEADER -- writes a heading for the job.

NDXR -- assembles the pivot arrays for discontinuous mesh problems.

11

SEQIO -- manages the opening, reading, writing, and closing of sequential disk aes.

TIMEX -- provides summary of incremental and cumulative computer usage charge.

TIMSET -- initializes the timing function performed by TIMEX

WANDRl -- performs special UO tasks in reading the VISA input file.

WOTlO -- provides edit of parallel columns of data, where the columns may not be of the
same length.

WOT4 -- provides edit of multidimensional arrays.
t

12

Figure 3.1 -- Radial Location of TORT Surface Point in DORT Cylindrical
Coordinates

(Illustration depicts an xy surface; dort z location = tort z t zzero)

.
,

DORT
origin

rzero TORT
origin

thxy = thzero t atan2(ymax, xtm) tl TORT azimuth
rzero2 = rzero*rzero
rt2 = xtm*xtm t ymax*ymax
rt = sqrt(rt2) X TORT radius
rzxy2
rzo = sqrt(rzxy2) X DORT radius
thzxcs = (rzero2 t rzxy2 - r t 2) / (2*rzero*rrzo)
thzo = sign(aces(thzxcs), sin(thxy) 1 # DORT azimuth

= rzero2 t rt2 t 2*rzero*rt*cos(thxy) ti law of cosines

cosines again

R

13

4. INrnALLATION AND E"MENT INFORMATION

4.1 Installation

The installation is assumed to be on a computer using a UNIX system. The reason
for this is that UNIX is the only system available to the developer. Both DORT and TORT
are installed using C-shell scripts contained as a part of the distribution material. The user
designates the machine to be used, and the unloading procedure selects the appropriate
installation scripts, in addition to making minor adjustments to the source material as
required. The adjustments involve selecting alternate paths to use special features such as
vector loops and selecting alternate subroutines to perform machine-specific system tasks such
as timing.

The materials required for both VISA and TORSED are made available as DORT
is unloaded. After installing DORT and before installing TORT, VISA and TORSED can
be installed with the following command:

a h -x -S jcldor visa

This also creates a c-shell script "JSED" to be used later.

After installing TORT using the JCLTOR script, standard test problems can be run by
executing:

a h -x -S jsed run xxx

where xxx is the name of a problem set chosen from:

The output will appear on a file named OXXK

4.2 DataFiles

Standard uND[naming conventions are followed, in that the file associated with
logical unit ?? is named fort.??. The standard input is assumed to be unit 5, and the standard
output is unit 6. Those files are assumed to be opened by the system without explicit action
by the program. The two sequential data fila containing the VISA flux input and the TORT
source output may be any number between 1 and 80 except 5 and 6.

14

The code opens scratch fles on 81,82,83, and 84. These are normally opened as
random (direct) access files, but sequential files could probably be substituted with some loss
of efficiency. The size of each file is:

name number words use
NTmxD 81 MM*IM*2 DORTfluxhrtwoadpcentrows
NTMIK 82 MMTVVfPKSM MI0 array (if IMTLlt.0)
NTUTK 83 MMTfIMTcKSM MJO array (if IMTLlt.0)
NTMU 84 MMT*IMT*JMT MKO array

The codes are intended to be operable on any system on which DORT can be
installed. The TORSED routines are all written in FOR" 77, and they are in frequent
use on both Cray mainframes and IBM workstations. The DORT routines make use of
certain systemdependent features to provide special capability such as run-time memory
allocation and timing data. Some C language is used in that area. Generic routines are
provided with DORT that should allow operation with somewhat reduced capability on
systems for which no specific compatibility package exists.

The memory and CPU usage have been minimized by the use of scratch fila. A very
large test problem generated 20 groups of source for a lo0,OOO mesh cell problem on a Cray
Y-MP while using only 36,584 words of memory and 0.2 minutes of CPU+SYSTEM time.
The delay produced by the scratch file usage was not measurable.

15

5. USERINFORMATION

5.1 Input Requirements

The input data requirements are detailed in Appendix k With the exception of the
alphameric title, all data are input using the FIDO format also used by DORT and TORT.
The user may refer to the corresponding documents for a specification of that format.

The unit numbers of two files are required:

NVISA -- file produced by VISA on unit NDATA

"TORT -- boundary source prepared €or use by TORT on unit NTBSI

The default memory allocation is suficient €or all but the largest problems. If more
is required, it can be requested by supplying a value for LOCOBJ.

The default value of E D I T is adequate for most uses. If a programmer requires
more output for diagnostic purposes, one of the sample problem illustrates that procedure,
and the resulting output is discussed later. This is never required in normal use.

The TORSED title and integer input parameters are edited first, followed by titles
and parameters from the VISA file. Next, the TORT quadrature, and space mesh are edited,
together with J-set, K-set, and K-mate data needed when the discontinuous mesh option is
used. This is followed by the DORT quadrature and space mesh data. It may be noted that
the R and 2 midpoints listed are only those for which fluxes have been transferred to
TORSED. An array of integers relates the R midpoints to the corresponding DORT
intervals. The meaning of PHI and RAD is explained in the earlier discussion of subroutine
QUADD.

This is followed by a listing of the full double-DORT quadrature, followed by the
azimuthal angle and cosines of the DORT directions with respect to the TORT coordinate
set at the location of the TORT origin. A column of integers gives the DORT direction
corresponding to each TORT direction at that location.

After each group is processed, a message containing the group index and the last
upward flux value for the last four intervals in the last row of that group are given as a rough
indication of the results.

If NEDIT-gt-0, a large amount of diagnostic print is given, largely useful far debugging
the program. Briefly, this consists of the DORT coordinates of each TORT surface cell and
the DORT direction matching each TORT direction at each location. If N*10 is added to
nedit, the value of each flux that becomes the source for TORT for groups 1 through N will
be printed. Further details can be found by inspecting the program source,

16

53 ErrorMessages

c
Certain conditions can produce error warnings and, if severe enough, a halt to

execution. Those from SEDIN, QUADT, GEOMT, GEOMRZ, and INTEFW are self-
explanatory. Certain other error messages can arise from the DORT service routines, and
these have the same meaning as in DORT.

17

r._

6. DEMONSIRATION PROBLEMS

Several demonstration problems have been developed to illustrate the use of VISA
and TORSED to link DORT to TORT. The input streams for the problems are available
in the TORT distribution material. Each of the problems uses the JDOS driver procedure
as used with certain of the DORT and TORT problem sets. Instructions can be found in the
distniution material for DORT. A discussion of each of the VISA-TORSED demonstration
problems follows.

ODOG2 --
A "metric doghouse" 2m x lm x lm high, with 5cm walls and lOcm roof of an

absorbing material, is situated on the ground at a ground range of 205cm from a point source.
This range was chosen so that the doghouse subtends roughly a 9Odegree azimuthal angle
in the horizontal plane, a severe test of the directional remapping. The source is located at
a height of 3OOm. Fictitious 2-group cross sections are used. The TORT solution is done
with P1 scattering and S2 symmetrical quadrature.

A continuous-mesh 2-group source for the doghouse is obtained from TORSED, and
then, a discontinuous-mesh source is obtained. Two TORT problems demonstrate the use
of the continuous- and discontinuous-mesh sources in turn. The results have been studied
in considerable detail. The key responses shown indicate some differences in pointwise
results, partly due to the fact that the midpoint locations have shifted, but the region integrals
agree quite closely. These and other comparisons indicate correct functioning of the
discontinuous mesh feature.

ODOGAG --
The cross sections used in TORT problem set 6 are used to give a 20-group air-

ground environment for the metric doghouse. The doghouse was moved to a ground range
of 468m and rotated 270 degrees so that radiation could stream directly in through the
doorway. An S6P3 treatment was used for both DORT and TORT. The source was
processed in 2 groups, but only the first group was solved with TORT. It may be noted that
using the "alternate s8 quadrature from Jvp" in the DORT portion of this problem will result
in relatively poor results due to a mismatch in the weight and direction cosines applicable to
the ray containing the uncollided flux. This difficulty could also occur in a shield with
streaming ducts. In that case, a single ray or a few adjacent rays may carry a large fraction
of the total flux. In such a case, it is important that the quadratures used in DORT and
TORT match, and that the weights be uniform.

OAG --
Ail groups of the 20-group air/ground problem are solved on the Cray by DORT and

TORSED. The TORT problem models an actual concrete building roughly 17m by 70m by
15m high. More than 100,OOO mesh cells are required. On a Cray Y-MP, TORSED uses 0.18
minutes for 20 groups. The memory requirement is less than 37,000 words.

18

OAREAC -
A reactor problem demonstrating the detailing in XYZ geometry of a sector of a

pressure vessel is solved. After DORT uses an s6p3 solution to establish the fluxes in R2;
geometry, TORSED and TORT calculate the fluxes in an XYZ sector of the geometry just
outside of the core. The agreement with DORT at the inner boundaries is within 7%, while
12% agreement is obtained at the outer boundary, where the curved surface of the core and
container are represented by a jagged surface in XYZ. Mesh refinement near the coupling
surface has been shown to produce an even closer match.

.
19

APPENDIX A - - TORSED INPUT FSQUIREMENTS

A.1 Title

A single line of identifying information (72 characters).

A.2 Parameter Input Block

61$$ - - Integer Parameters

nvisa = visa input unit number
ntort = tort output unit number
imti = no. tort i intervals; (neg=discont. mesh)
j m t = no. tort j intervals
k m t = no. tort k intervals

mmt = no. tort directions
nedit = edit control (use 0)
locobj= memory objective, words*1000
ispl = spare; enter 0
isp2 = spare; enter 0

[finish this array with "e"]

62** - - Real Parameters

rzero = dort radius of tort coordinate origin
zzero = dort height of tort coordinate origin
thzero= ccw rotation of tort coordinates (degrees)
flxmin= minimum flux for log interpolation (0: use linear interpolation)

[finish this array with 'e']

[follow these arrays with 't'l

A.3 Discontinuous Mesh Block

'9i$$ iset [jmt*kmt entries] i set by row and plane
92$$ imbis [jmtfkmt entries] # of cells by i set
73$$ j set [kmt entries] j set by plane
74$$ jmbjs [kmt entries] # of rows by j set
75$$ mset [igm entries] m set by energy group
76$$ mmbms [igm entries] # of directions by m set

[follow these arrays with 't'l

Notes :
. Fill unused portions of arrays with 0.
. Arrays 71-74 are to be entered if and only if imti.lt.0.
. Arrays 75-76 have not been implemented yet.

A.4 Directional Quadrature Block

81** wt [mmt entries] weight by direction
82)' emut [mmt entries] cosine of angle with x axis
83** etat [mmt entries] cosine of angle with z axis

20

[follow these arrays with ’t’l

A . 5 General Data Array Block

1** xt [entries: sum of imbis+l over all i setsl x mesh boundaries
2** yt [entries: sum of jmbjs+l over all j setsl y mesh boundaries
3** zt [entries : kmt+ll z mesh boundaries

[follow these arrays with ‘t’l

Notes :
- iabs(imti) must be the length of the longest i set.
. jmt must be the length of the longest j set.

21

APPENDIX B - - COMMON BLOCK STRUCTURE

B . l Parameters From VISA File

mm = number of directions in DORT quadrature
igm = number of energy groups
nip = number of radial points on VISA file
njp = number of axial points on VISA files

B . 2 TORSED Input Parameters

[integer, then real parameters as listed in Appendix A]

B . 3 Array Pointers

[pointers for each array in the data container; principal arrays are
explained in Appendix Cl

B . 4 TORSED Control Parameters

ITEM
mm2
mdn
im
jm
mmdnt

ksm
imt
ims i sm
jms j sm
msmsm

ism
j sm
msm
ims jrn
mmdut

ntf lxd
ntm j k
ntmik
ntmi j
ifmi j

jphold
title
tdot

SET BY DESCRIPTION
main 2 * m , number of double-DORT directions
quadd number of downward DORT directions
main =nip, number of DORT i points

quadt number of TORT downward directions for an m-set

inpa number of k-sets
main iabs (imti) , max number of tort i intervals
sedin sum of im over i-sets
II sum of jm over j-sets

sum of mm over m-sets

11 =njp, number of DORT j points

II

11 number of i-sets
number of j -sets
number of m-sets

I 1

It

I 1 max number of ij cells in any plane
quadt max number of directions in any hemisphere, any m-set

sedin scratch file for DORT flux
11 scratch file for mio array
11 scratch file for mjo array
11 scratch file for mko array
main =O: mjk, mik, mij stored on disk; =1: internally

interp j of DORT plane previously read in
input title of this torsed job or input VISA job
visa file title of original DORT job

22

APPENDIX C - - PRINCIPAL DATA ARRAYS
ITEM
ival

emu
eta
xz i

phi
rad
fw
f emu
fxzi

f eta
fphi
f rad
rphi
remu

rxz i
match

W

rm
zm

iset
imbi s
jset
jmbjs
mset

&S
kset
hate

ibis
jbjs
ibj k
ijbk
jbk

wt
emut
etat
xzit

xt
Yt
zt
xtm
Ytm . ztm
xtd

ztd
Ytd

SET BY
VISA file
I 1

11

I1

quadd

11

II

II

II

II

II

II

VISA file
n

input
I1

n
II

11

inpa
I1

I 1

I1

It

input
I t

I1

quadt

n
II

I1

geomt
11

DESCRIPTION
DORT i index of radial points
DORT direction weight
DORT cosine with r axis
DORT cosine with z axis
DORT cosine with theta axis

DORT cylindrical geometry azimuth of direction m
DORT cylindrical geometry radius of direction m
double-DORT quadrature weight
II cosine with r axis
11 cosine with theta axis

11 cosine with z axis
I 1 cylindrical azimuth of direction m
It cylindrical radius of direction m
I 1 cylindrical azimuth of m in TORT system
cosine of double-DORT direction with TORT x axis

cosine of double-DORT direction with TORT y axis
index o f DORT direction matching TORT direction mt

DORT radial position
DORT axial position

i set by j and k, padded with 0
im by i set
j set by k, padded with 0
jm by j s
m set by ig

mmt by m set
k set by k
first k in k set ks

sum of imbis over is
sum of jmbjs over js
sum of ims(j’k) over j and k
sum of cells per plane over k
sum of j m s (k) over k

TORT direction weight
cosine of TORT direction
cosine of TORT direction
cosine of TORT direction

TORT interval boundaries
11 interval boundaries
11 interval boundaries
I1 midpoint on x axis

midpoint on y axis

midpoint on z axis
11 interval width on x
11 interval width on y
11 interval width on z

with x axis
with y axis
with z axis

on x axis
on y axis
on z axis

axis
axis
axi s
23

. _.

rzl
thz 1
rzr
thzr
rzi

thzi
rzo
thzo
rzb
thzb

rzt
thzt

ener
f luxd
f io
mi o
mjo

mk0

geomrz radius of TORT point in DORT system, left surface
azimuth of TORT point in DORT system, left surface
radius of TORT point in DORT system, right surface

radius of TORT point in DORT system, inside surface

I 1

I 1

I 1 azimuth of TORT point in DORT system, right surface

II azimuth of TORT point in DORT system, inside surface

I1 azimuth of TORT point in DORT system, outside surface
I 1 radius of TORT point in DORT system, bottom surface

11

I1 radius of TORT point in DORT system, outside surface

I1 azimuth of TORT point in DORT system, bottom surface

I 1 radius of TORT point in DORT system, top surface
I 1 azimuth of TORT point in DORT system, top surface

energy group boundaries
VISA file dort directional flux input
fluxrz tort directional source output
geomth m of DORT direction matching TORT mt, le€t/right surface
I1 m of DORT direction matching TORT mt, in/outside surface

11 m of DORT direction matching TORT mt, bottom/top surface

24

APPENDIX D - DISCUSSION OF TME 3-D DIXONTINUOUS
MEsNTECFINIQUE

In a conventional continuous-mesh problem, a computational mesh is defined by mesh
interval boundaries along each of the coordinate axes. Planes passing through these interval
boundaries, perpendicular to the respective coordinate axes, define the surfaces of each cell.
Opposite cell surfaces are always parallel, and they always meet adjacent surfaces at right
angles. The cell surfaces run continuously through the mesh.

In such a mesh, let us call the first, second, and third coordinate axes the i, j, and k
axes. The mesh cells lie in ordered rows parallel to the i axis, and the rows lie in planes
perpendicular to the k axis. The vertical boundaries of each cell match the boundaries of
adjacent cells.

In a discontinuous mesh, as the term is used here, the requirements are relaxed
slightly. Mesh cells are still bounded by parallel planes, each perpendicular to one of the
coordinate axes, and the planes meet at right angles. The new flsolility is that only the k
boundaries, i.e. the boundary planes perpendicular to the k axis, are required to run
continuously through the mesh. Thus, the other boundary planes may be discontinuous at
intersections. The mesh cells lie in rows having common j boundaries, but their i boundaries
need not match. Rows lie in planes sharing common k boundaries, but neither i nor j
boundaries of adjacent planes need match (except as required to allow acceleration and at
the outer boundaries of the problem space).

The advantage is that the mesh can be locally dense in areas where detail is needed
most, thus using computational work more efficiently. An illustration is provided in Figure
D.1. Since the transport within each cell is unperturbed by the irregularities, conventional
evaluation procedures such as weighted difference, nodal, or characteristics methods can be
used. Many years of research have gone into these methods, and they would not be
relinquished easily.

Figure D.l -- The Discontinuous Mesh Feature Allows the Mesh to be Locally
Dense Where Required to Detail Problem Features

26

The conventional partial current acceleration already in widespread use in DORT and
TORT is applicable in this instance, with the restriction that a coarse mesh be supplied? and
that the coarse-mesh boundaries lie in each of the fine-mesh sets. (This last restriction could
possibly be removed by reprogramming? but that has not been tried.)

The programming is significantly more complicated with the discontinuous mesh, but
a system of pre4alculated "pivot arrays" allows data items to be located and used without
measurable loss of efficiency. The pivot arrays will be discussed later. Since all of the mesh
cells lie in rows, the computational sweeps performed by the conventional TORTDORT
subroutines can be used without modification, and they wii run at the traditional speeds.
Some computational work is required, of course, to perform the "remeshing", i.e. the
remapping of boundary flaws where adjacent rows and planes do not match.

An important advantage is that the system can be imbedded into a conventional code
without disturbing the conventional operation significantly. Like DOT 4 and DORT before
it, discontinuous mesh TORT can produce the expected results to a conventional problem,
and at the expected cost.

Probably the most important disadvantage of the discontinuous mesh concept in two
dimensions is that, although it can help in describing curved surfaces, it is not as powerful as
general triangles or general quadrilaterals in this respect. Wes using the latter two concepts
in discrete ordinates calculations exist, although none appear to have reached widespread use.
It is not clear when they wiil be extended to three dimensions in a production code, or what
the computational efficiency would be.

27

MACHINE IMPLEMENTATION

We must necessarily ask the reader to pardon a mix of FORTRAN and algebra in that
which follows. We will try to be clear.

First, we define:

IS
surfaces;

index of an i-set, i.e. a set of x or r boundaries defining mesh cell
IS = 1, ..., ISM

JS 5 index of a j-set, i.e. a set of y or theta boundaries d e f i i g mesh
cell surfaces; JS= 1, ... JSM

For j-sets, input arrays consist of:

JMBJS(JS) E # of mesh Ceus in j-set JS
JSET(K) E j-set number €or plane K; K=1, ...,KM

From these, we can always obtain:

JS = JSET(K), index of the j-set for plane K
JMS = JMBJS(JS), number of intervals for j-set JS

With regular indexing, where all JMBJS(JS) = JM, we (or the compiler) can locate
a function of J and JS by a simple integer computation:

F(JJS) = F(J +JM* (JS-1))

but, since JMaTS is not necessarily constant in a $iscontinuous mesh, we now define a "pivot
array":

JBJS(1) E 0
JBJS(JS+l) = JBJS(JS) f JMBJS(JS); JS=1, ... JSM

and we denote the "irregular indexing" by (J'JS) rather than (J,JS). The item corresponding
to J and JS can be found by:

F(J'JS) = F(J+JBJS(JS))

In general, this is as computationally efficient as the conventional method of indexing. It
requires additional storage, but generally not enough to present difficulty.

In the case of variables such as y or theta, JMS rows are bounded by JMS+ 1 interval
boundaries, and the use of the pivot array is slightly different. For example, the larger of the
two Y's bounding interval J in j-set JS is located by:

Y(J'JS) = Y(J+JBJS(JS)+JS)

28

Now, we define a new pivot array that will be a bit more indirect in definition, but
much more useful:

JBK(1) 0
JBK(K+l) JBK(K) + JMBJS(JSET(K)); K=1, ...,KM

From this a function of J and K can be obtained immediately:

G(J’K) = G(J+JBK(K))

and it is convenient to note that JMS can be obtained in several ways, depending upon which
data happen to be at hand:

JMS = JMBJS(JSET(K))
=
= JBK(K+l) - JBK(K)

JBJS(JSET(K) + 1) - JBJS(JSET(K))

and the overall number of rows is given by:

1oQ

JMKM = JMBJS(JSET(K))

= JBK(KM+l)
K-1

This indexing scheme is the same method used in DOT 4 and DORT up to this point.
The treatment of the I meshes follows the Same plan, but it is a bit messier, since it is nested
one layer deeper. We use input arrays:

IMBISQS)
ISET(JX) *

of mesh cells in the ISth i-set
of the mesh set in the Jth r o w of the Kth plane

Once again, we can obtain.

IS =
IMS =

ISET(J’K), the index of the i-set in row J of plane K
IMBIS(IS), the length of i-set IS

Now, we define:

IBIS(1) 0
IBIS(IS+l) E IBIS(IS) + IMBIS(E3); IS=l, ..., ISM

so that a function of I and IS can be located:
H(I’IS) = H(I+IBIS(IS))

For variables such as r or x, IMS cells are bounded by M S + 1 interval boundaries. For
example, the larger of the two R’s bounding interval I in i-set IS is located by:

R(I’1S) = R(I + IBIS(1S) + IS)
29

Now, we define a new pivot array in terms of a linear variable, JK, that runs through
each value of J for a plane, then through each plane in turn, plus a final terminating value;
i.e.

JK= 1 ,... ,JMBJS(JSET(l)),JMBJS(JSET(1)) + 1 ,..., JMKM,JMKM + 1

In terms of this variable, we now define:

IBJK(1) 3 0
IBJK(JK+l) z IBJK(JK) + IMBIS(ISET(JK))

From this, a function of I, J, and K that would be, with regular mesh:

P(I, J,K) = P(I +IM* ((J-1) +JM* (K-1)))

becomes, with irregular indexing:

P(I'J'K) = P(I+lBJK(J+JBK(K)))

We also define:

UBK(1) E 0

IJBK(K+l) E UBK(K) + I M B T s (= m m)

IMBIS(ISET(J+JBK(K))); K=1, ...,KM
J=l

This is needed for indexing things that vary by I and J, but not K:

Q(I'J) = Q(I+IBJK(J+JBK(K))-IJBK(K)); K=constant

We also note that IMS can be obtained variously by

IMS = IMBIS(ISET(K))
= IBIS(ISET(J+JBK(K))+ 1) - IBIS(ISET(J+JBK(K)))
= IBJK(J+JBK(K)+l) - UBK(J+JBK(K))

and the overall number of mesh cells is:

IMJMKME c
K=1 J-1

IhRBIS(ISET(J+JBK(K)))

= I&TK(JMKM+l]
= UBK(K+l)

30

- name:
- date:
- purpose:
- notes:

i is the
j is the
k is the
m is the

varbnd

03 march 1993

boundry source and associated interpretation data

order of energy groups is by decreasing energy - -
neutrons, then photons.

first -dimension index.
second-dimension index.
third -dimension index.
direction index.

zero is a word set to zero used in padding to full length

mult=l if word length is 8 bytes; mult=2 if 4 bytes.

when im.gt.O, the mesh is a regular (continuous) mesh with im cells
in each row and jm rows in each plane. ism=jsm=ksm=l. ims=im.
jms=jm- ima=im.

when im.lt.0, the mesh is discontinuous. each plane contains
jms rows, where jms=jmbjs (jset (k) 1 . each row contains ims cells,
where ims=imbis (iset (j'k) 1 . (j 'k) denotes j + sum of jms (kk)
over kkd, k-1. ima=iabs(im). ism is the number of i-sets.
jms is the number of j-sets.

when m.gt.0, mm directions are used in the directional quadrature of
flux in each energy group. msm-1. mms=mma.

when mm.lt.0, the number of directions in the directional quadrature
varies by group. ms=mmbms(mset(ig)) is the number of directions
used in group ig. mma=iabs(mm). m6m is the number of direction
sets.

mmsdu(ig) is the larger of the number of downward or upward
directions for the rn-set used in ig. mmdnup is the largest mmsdu
for any ig.

special note:
by torsed and torset at this time.

mmbms and mset are not on the output file produced

- record type
- - - - _ - - - - - -
file identification
file label
integer parameters
indexing arrays
real arrays

. do ig=l,igm

. do k=l,km

present if

always
always
always
always
always

- - - - _ - _ _ _ _

31

.. _- - -

- . . i-boundary directional data if ifbfxi.eq.O
. enddo on k
. do k=l,km
- . .]-boundary directional data if ifbfxj.eq.O
. enddo on k

. do j=l,jm
- . . k-boundary source, top if ifbfxk.eq.O
. enddo on j

. do -j=l,jm
- . . k-boundary source, bottom
- enddo on j

if ifbfxk.eq.0

. enddo on ig

number of

hname
huse (i)
ivers
- - - - - - - - -

4 *mu1 t

file name
user file identification
file version number

_ _ _ - _

date, user , charge, case , time , (titl (i) , i=1,9)

number of words= 14*mult

date
user
charge
case
time
titl (i)

as provided by timer option 4 - (a81
as provided by timer option 5 - (a81
as provided by timer option 6 - (a8)
as provided by timer option 7 - (a8)
as provided by timer option 8 - (a81
title provided by user - (a81

.
- integer parameters:

igm, im, jm, km,mm, mmdnup, ism, j s m , imsism, j m s j s m , jmskm,msm,mmsmsm
, ifbfxi,ifbfxj, ifbfxk, (idum(n) ,n=1,9)

number of words= 25

igm number of energy groups
irn + / - maximum number of cells in any i-set
jm maximum number of rows in any j-set
km number of planes
mm + / - maximum number of directions in any m-set

32

mdnup

ism
j sm
ims i sm
jms j sm

j mskm
mmsmsm
msm
ifbfxi
ifbfxj

ifbfxk
idum

maximum number of directions down or up
in any m-set

number of i-sets
number of j-sets
sum of ims over is
sum of jms over js

sum of jms over km
sum of mmbms over ms
number of m-sets
.eq.O if i-boundary flux is included, else 1
.eq.O if j-boundary flux is included, else 1

.eq.O if k-boundary flux is included, else 1
array set to 0

imbi s
jmbjs
iset
j set
mmbmS
mset

number of cells in i-set is
number of cells in j-set js
i-set assigned to row j in plane k
j-set assigned to plane k
number of directions in m-set ms
m-set assigned to energy group ig

.
- real arrays:

((x (i I is) I i=1, ims+l) , is=1, ism) , ((y (j , js) , j= l , jms+l) , j s = l , j s m)
, (z(k) ,k=l,km+l) , (ener(ig1 ,ig=l,igm) ,emin,eneut, (dumrl(i) ,i=1,8)
number of words = imsism+ism+jmsjsm+~sm+km+l+~gm+2+8

X i-interval boundaries by i-set
Y j-interval boundaries by j-set
z k-interval boundaries

ener top energy boundary of group ig
emin bottom energy boundary of group igm
eneut bottom energy boundary of group neut

(0 if neut=O)
dumrl array set to 0.

.

.
- j-boundary source:

((fjo(m,i) ,m=~,mms) ,i=~,ims), (zer0,1=~+mms*ims,mms*ima)

number of words = mms*ima

fjo j-boundary directional source

_ I _ _ _ _ _ _ _ _ _ _ _ -

.
- k-boundary source (top or bottom) :

((f k o (m , i) ,m=~,mmsdu) ,i=l,ims), (zero,l=l+mmsdu*ims,mmsdu*ima)

number of words = mmsdu*ima

fko k-boundary directional source, downward or upward
(for j.gt.jms, fko is filled with zero.)

_ -

end

34

...

SECTION I1

THE VISA CODE

35

.,.- ,....., , _..----

1. INTRoDucrl[ON

Upon request, the DORT code [rh88] produces a very large file containing directional
fluxes for selected space mesh cells. It is the job of the Variable Input Source Assembly
Code (VISA) to process those fies into a form suitable for use in other d e s . The task is
complicated by several factors. First, it is necessary for DORT to write the data to the output
file in the order in which they are generated, and this is not suitable for further use. Second,
it is not practical for DORT to apply the results of the acceleration step on the last iteration.
Because of this, the directional fluxes do not obey particle balance, and they do not match
the scalar flux results. Third, the directional flux file generally contains more data than is
required or can be conveniently processed by other codes, and VISA selects a more compact
subset of that data. Finally, solving these difficulties requires the use of as many as three
input files from two different codes, not convenient for the typical processing code.

VISA unscrambles this mess and prepares output in a format suitable for Monte Carlo
adjoint folding in the Vehicle Code System (VCS) [rh74a,rh74b] or for continued 3-
dimensional discrete ordinates calculations by TORSED, reported elsewhere in this document.
VISA is not a highly polished code, and error checking, in particular, is fairly sparse. A
number of options have been added over the years to take care of particular needs, and these
make the input seem complicated to the uninitiated. Even so, the code has proven robust
and reliable in two decades of application.

VISA was Eirst reported in 1974, together with VCS. That reporting was quite brief,
however, and this broader treatment is needed to meet modem requirements. The roots of
VISA go back even farther, to the mid-lWs, and to an undocumented code called LIMBO.
The identity of the authors of LIMBO is also undocumented, although it is suspected that
early pioneers such as R.D.Rodgers, F-RMynatt, and/or M.L.Gritzner were responsible.
Recognition for the preservation of LIMBO after the original authors moved on is due to
J.V.Pace,IIL Although the coding has been replaced and the function has been expanded,
some of that basic idea survives in the modem product.

36

VISA uses input files containing directional flux and scalar flux data from DORT.
First, VISA assembles the various components of the flux in each space cell into a suitably
ordered array. Then, the weighted sum of the directional flux in each space cell over all
directions is formed and compared with the conresponding scalar flux The directional flux
is renormalized so that the sums match.

If the DORT problem is started using a first collision source file such as that
produced by the GRTUNCL code, that file is also required as input to VISA (GRTUNCL
is an undocumented code commonly distributed with DORT.) In addition to the source, the
GRTUNCL €ile contains the magnitude of the uncollided flux for each cell The magnitude
of that flux is added to the DORT result in the direction nearest the ray extending from the
GRTUNCL point source to the mesh cell. That result represents the total flux for the mesh
cell.

It may be noted that the output of MSA is €hence, rather than f i q if the source
used in GRTUNCL and/or DORT is a time integral. The term flux is used in the discussion
as a convenience.

37

3. PROGRAMMER'S INFORMATION

3.1 Input, Output, and Common Blocks

The task of VISA, from a programmer's point of view, is to combine scattered
information from two DORT files and one GRTUNCL file into a composite usable with the
VCS code system or with the TORSED and TORT [rh91b,rh91a,rh87] codes. The DORT
scalar flux file is produced in the VARnM format described in Appendix D. The directional
flux is produced in the 'DOT Angular Flux Tape" format described in Appendix E This
format simulates a very old file format produced by DOT 111 [rh73] insofar as possible. The
GRTUNCL file uses the VARSOR format used for distributed source input in DORT and
described in Appendix E. The output file is prepared in the VISA2 format described in
Appendix C.

Certain integer input parameters, specified in Appendix A, are required to control the
execution. These data are read directly into common block COMVIS, described in Appendix
B. In addition, a small array of real parameters and an array indicating which DORT radial
intervals are to be included in the output are required, as listed in Appendix A. These are
read into a single large "container" whose location is determined by calls to DORT support
subroutines. The arrays are located in the container by the use of pointers as explained in
the TORSED description. Additional input parameters and arrays are obtained from the
input data files as indicated in Appendix B.

The general ordering of data arrays in the container is indicated by the order of the
pointers in Appendix B. In certain special cases, data arrays may overlay each other if they
are not used concurrently. The source listing is the final word on those details.

VISA uses several common arrays fiom DORT in order to communicate with DORT
support subroutines, These blocks are:

COMIN - general job status information
COMIO -- I/O unit status information
COMBLK -- reference address for the container

32 Generalcodestructure:

The functioning of the code is illustrated by a summary of the main structural
subroutines. In the order of occurrence, they are:

MAIN -- the main program reads the integer parameter data, obtains computer memory for
the data container, sets pointer values for arrays in the container, and calls VISUS.

VISUS -- this routine calls DOPC to initialize the UO process, reads the real parameter data,
and couples arrays to the working subroutines according to the process chosen by the control
parameters. At the conclusion, a final call to DOPC disposes all open data files properly.

38

WRVCS - this routine reads the input files and merges the information as d e s c r i i earlier.
The output is in a format suitable for use with VCS. For this application, the input flux is
reorganized into records ordered by direction (M), then by axial interval (J). The records are
written onto a random (direct) access scratch file according to radial interval (I), and then by
energy group (IG). The records are then read in the order IG, then I, for writing to the final
output. The subroutine is able to process input and output concurrently if the supporting
DORT routines allow that.

WRTOR -- in this case, the input is processed as in WRVCS, but the output is produced for
TORSED. The flux in each record is ordered by M, then I. The output records are ordered
by J, then IG. No random access files are required.

UNTOR -- this special option allows a VISA file on unit NFLSV to be copied to unit
NDATA Data from a second VISA file on unit “ C L can be added to the data from
NFlLsV. Data from each mput llle can be multiplied by a separate constant.

VCSTOR - this allows data from a VISA file prepared for VCS and supplied on NFLSV to
be re-sorted for use with TORSED and written to NDATA

3 3 Supporting SeMce Routines

VISA draws extensively from the collection of service routines in the DORT
distriiution. A brief discussion of the routines is given in the TORSFD description. In
general, the source listing of each routine provides more detailed information as to the use
and proper calling sequence. In some cases, these routines call other routines, and those
have the same function as in DORT.

39

4. INSTALLATION AND ENvIR0"T INJ?OR.MATION

4.1 Installation

The installation of VISA is accomplished as TORSED is installed, and no further user
action is required. VISA is tested and demonstrated in each of the problem sets supplied
with TORSED.

4.2 DataFiles

Standard UNIX naming conventions are followed, in that the file associated with
logical unit ?? is named fort.??. The standard input is assumed to be unit 5, and the standard
output is unit 6. Those files are assumed to be opened by the system without explicit action
by the program. The sequential data files containing the input from DORT and GRTUNCL,
as well as the VISA output, may be any number between 1 and 80 except 5 and 6.

The code opens a scratch file on 91 if an output is being produced for VCS or if a
VCS output is being converted to TORSED format. The size of the scratch file is:

variable number words use
NT9l 91 MM*NIP*NJP*IGM sorting of VCS data

VISA is intended to be operable on any system on which DORT can be installed.
The VISA routines are all written in FORTRAN 77, and they are in frequent use on both
Cray mainframes and IBM workstations. The DORT routines make use of certain system-
dependent features to provide special capability such as run-time memory allocation and
timing data. Some C language is used in that area. The appropriate routines are provided
in compatibility packages selected by the installation procedure. Generic routines are
provided with DORT that should allow operation with somewhat reduced capability on
systems for which no specific compatibility package exists.

The memory and CPU usage for VISA are quite nominal. A very large test problem
produced a VCS-format output with MM=240, NIp=llO, NJP=22, and IGM=212 on an
IF3M RS/6000 Model 320h workstation while using only 313,259 words of memory and 5
minutes of CPU+SYSTEM time. The elapsed time was 21 minutes. That file was later
copied from an unformatted file to a formatted file in 53 minutes of CPU+SYSTEM time
and 62 minutes of elapsed time.

5. USERINFORMATION

The input data requirements are detailed in Appendix A. With the exception of the
alphameric title, all data are input using the FIDO format also used by DORT and TORT.
The user may refer to the corresponding documents €or a specification of that format.

In the most general case, three input data fifes are a b required on units specified in
the parameter input:

NFLSV -- flux moment file produced by DORT on unit NTFOG.

NAFT - "angular flux tape" produced by DORT on unit NTDIR.

NUNCL -- first collision source file produced by GRTUNCL on unit NPSO.

The output is written on:

NDATA -- output from VISA for use in VCS or TORSED.

The NAFT file DORT contains data for all I intervals and for all J between NJ1 and
NJM. VISA restricts the output to NIP I intervals and NJP=NPU-NPL+1 J intervals. Of
course, NPL and NPU may be equal to NJ1 and NJM. The I intervals to be output are
selected by entering N I P DORT I values in the input array NAL.

If the NED parameter is set to a number of groups, the output flux for groups
1, ...,NED will be edited. This produces an excessive amount of print for a large case. It is
generally used only for testing. If N O W is set to 1, the normalization of the directional flux
to agree with the scalar flux is defeated -- again, useful mostly for testing. If ISGRI is set to
N, it is expected that "CL contains only N groups of data. This would be used, for
exampIe, if a coupled neutron-gamma problem were run using an NUNCL problem produced
for neutrons only.

If DORT does not perform iterations on certain groups, those groups will be missing
from the NAFT file. This can happen if the user decides to bypass calculation of certain
groups, such as the neutron groups in a coupled problem, or if DORT decides not to iterate
on some groups because of a 0 source in that group I€ n initial groups of data are missing,
setting N-=n will produce a correct result. It may be noted that, if groups are missed
after the first group of actual output, this condition is not repairable. IfNTYPE.ge.10, NAFI'
is not required, and it may be 0.

The value of NTYPE controis the type of problem. Values of 0 or 1 produce the
standard calculation as described above. Values of 10 or 11 copy a VCS or TORSED file
previously produced by VISA from unit NFLSV to unit NDATA A value of 21 produces
a conversion from VCS to TORSED. If 30 or 31 is used, VCS or TORSED files on NFLSV

41

. , , -.

and N"CL are added. Each is multiplied by a constant given in the real parameter input.
The NEUI and NGAMX are needed only for special options discussed later. In all of the
copy operations, the title from NFLSV replaces the title from the input stream.

If NFLSV, NAFT, NUNC& and/or NDATA are set negative, the input or output
corresponding to that file is expected to be formatted ASCII text, rather than an unformatted
binary file. This option is useful largely in shipping data between unlike machines. The
ASCII text can then be returned to unformatted using the copy option discussed above. The
exact format can be deduced by comparing WANDRl with the corresponding calling
statements, although it is seldom necessary to do this.

5.2 VISA Without GRTUNCL Data or With GRTUNCL Data Ody

If VISA is used to couple a reactor calculation to another calculation, for example,
the DORT calculation may not have used GRTUNCL In that case, NUNCL and ISGFU
should be set to 0.

If ISGRI=O, the uncollided flux on NUNCL will be ignored, and only collided flux
will be used. If ISGRI is set to negative, the uncollided flux will be used without the collided
flux These options are valuable for testing only.

53 s ~ G r o u p o p t i o n s

The parameters NEUI and NGAMX control some truly obscure options. If
NTYPE=30 or 31, then NGAMX indicates the number of groups that are missing on
NUNCL, but not on NFLSV. This can be used, for example, to add a gamma-only file to a
coupled neutron-gamma file. If NTYPE=O or 1, then NGAMX indicates the number of
groups of 0 to be added between the last neutron group on NAFT and the first gamma group.
In the latter m e , the last neutron group must be indicated by NEUI.

If NEUI is set to -1*the number of neutron groups, then the VISA output will
contain only gamma groups.

5.4 SyntheticHux

If NAFI'I is set to -1 +N, where N is a group number, the normal determination of flux
is bypassed. Instead, fluxes in groups from 1 to N are set to 1.0, and the remainder of the
fluxes are set to 0.0. This can be useful for testing.

The title and integer input parameters are edited first, followed by parameters from
NAFT, some internally derived parameters, and then the real input parameters. If NED.gt.0,

42

the index of the direction matching the uncollided flux ray in each mesh cell is edited. In
parallel columns, the input quadrature data are edited. This edit ais0 includes the edit of the
IVAL array, i s . the I intervals selected for output, together with the R and 2 interval
midpoints chosen for the output.

As each group is assembled, a maximum scale convergence is edited, together with the
first and last four words of each record. The scale convergence is the largest deviation of the
renormalization factor from unity. If it is not small, on the order of the flux convergence in
the DORT problem, there is a high likelihood of trouble with the input data. Mter this h e ,
an edit of the total source moved to the output is given for groups indicated by the value of
NED.

5.6 Error Messages

Certain conditions can produce error warnings and, if severe enough, a halt to
execution. Certain other error
messages can arise from the DORT service routines, and these have the same meaning as in
DORT.

Those from MAIN and VISUS are self-explanatory.

43

. - -- .

APPENDIX A - - VISA INPUT REQUIREMENTS

A.l Title

A single line of identifying information (72 characters).

A.2 Control Parameter Input Block

1$$ - - Integer Parameters
nip =
jpl =
jpu =
ned =
norm =

isgri =

nflsv =

naft =

nuncl =

ndata =

- n5 -
n6 -
njl =
njm =
nafti =

-

ntype =

neui =

ngamx =

no. of i intervals in visa output
first j interval in visa output
last j interval in visa output
edit ned source groups
0: normalize to scalar flux; 1: do not

no. of groups on nuncl (0: use collided flux only)
(negative: use uncollided only - - for testing)
logical no. scalar flux input default = 1
(old visa output if ntype .ge -10)
logical no. directional flux input default=2
(may be 0 if ntype.ge.10)
logical no. uncollided flux input default=3
(may be 0)
logical no. source output def ault=4

logical no. standard input default =5
logical no. standard output de f aul t=6
first axial interval input; 0 implies=l
last axial interval input; 0 implies=jm
no. groups missing at beginning of naft
(negative: first n groups=l, others 0 - - for testing)
0/1: create vcs/torsed file; 10/11: copy vcs/torsed on nflsv;
21: vcs to torsed; 30/31: nuncl+nflsv
last neutron group (rqd if ngamx.gt.O and ntype=0,1)
(negative: delete neutron output groups)
no. gamma groups added to group structure (ntype=O,l);
initial groups missing on nuncl (ntype=30,31)

[finish this array with 'e']

[terminate this block with 't'l

A.3 Additional Array Block

2** - - Real Parameters

sh = height of point source (ntype. It. 10)
hsa = not used (enter 0)
xneut= nflsv multiplier (ntype=30or31, dflt=l)
xgam = nuncl multiplier (ntype=30or31, dflt=l)

[finish this array with 'e']

4 $ $ ival [nip entries] radial intervals to be included in output

[terminate this block with 't'l 44

APPENDIX B - - COMMON BLOCK COMVIS

B . I Parameter Input Pointers

la dummy array
lima length of common block
lfxt pointer for integer parameter input
lflt pointer for real parameter input
lend termination marker

B . 2 Data Array Pointers

name array set by use

lival input data dort i index corresponding to each visa output i
lwt naf t file quadrature weight
1 emu 11 cosine of direction with r axis
leta cosine of direction with z axis
lrl I1 midpoint of radial interval

- - - - - - - - _ _ - - - - - - - - -

II

If 121 midpoint of axial interval
lphi wrvcs, wrtor azimuthal angle in plane perpendicular to r axis

liang
ltheta II cosine of angle with r axis

II m of direction containing uncollided flux
laf n output flux

laf lux
lan2
lunclf
ldum

11

II

It

directional flux input from naft
scalar flux input from nflxsv
uncollided flux input from nuncl
dummy array

B . 3 Internal Working Parameters

name set by use

nerr
igi
igm
igP
neut

main, visus error flag
naft file no. of energy groups in DORT problem
main no. of energy groups processed by VISA

naft file no. of neutron groups in DORT problem
I1 igm+l

i sgrp main
naf tm 11

tdum

no. of VISA source groups obtained from nuncl
no. of VISA source groups missing from naft
dummy array

B . 4 Title Arrays Transferred To VISA Output File

name set by use

title input data VISA job title
tdot naf t file DORT job title

- _ _ - - - - - _ _ - _ -

B . 5 Internal Integers Parameters Transferred To VISA Output File

set by

naft file
- - - _ - -
I!

use

no. of quadrature directions in DORT problem
no. of i intervals in DORT problem

_ - -

45

. -.....- ~-

I1 no. of j in te rva ls i n DORT problem

I 1 igoi-1

jm

igop
igo main no. of energy groups in VISA output

wrvcs, wrtor number of downward direct ions i n DORT quadrature
I 1

visus
II

B16 Integer Input Parameters

number of j in te rva ls i n VISA output
GRTUNCL point source height
not used

The 18 integer input parameters l i s t e d i n Appendix A are stored here,
by :

set by
- - - - - -

use

not used
not used

- - -

B . 7 R e a l Input Parameters

The 4 real input parameters l i s t e d i n Appendix A a re stored here.

B . 8 F i l e Input Scratch Array

name
- - - -
xdum
t inp main

followed

use

dummy array
scratch array f o r input from naf t or nf l sv

- - -

- name:

- date:
- purpose:

- notes:

- i is the
- j is the
- m is the

visa2

17 march 1993

boundary flux for forward/adjoint folding in vcs or for
remapping by torsed and input to tort

order of energy groups is by decreasing energy - -
neutrons, then photons.

first -dimension index (r axis).
second-dimension index (z axis) .
direction index

- output is either vcs format or torsed format. the flux records
- depend upon this choice.

- if the source used to generate the input to visa is a time-integral,
- then the output is fluence, rather than flux.

- - - - _ _ _ - c - - _ _ _ _ - - - - - - ~ - - ~ - - - - - - - - - - ~ - - - ~ - - - - - - - - - - - - - ~ - ~ - - - - - - - - - - - - ~ - - -

file structure:

record type

job titles
integer parameters
integer array
directional quadrature
space mesh

- - - - - - - - - - -

............ do i=l,nip

. do ig=l,igm

. . boundary directional flux

. enddo

.enddo

. do ig=l,igm

.do j=1, njp - . boundary directional flux

.enddo

........... .enddo

present if

always
always
always
always
always

_ - - - - - - - - -

vcs format

torsed format

(title (1) ,1=1,18), tdot (1) I 1=1,18)

number of words = 36

- title title of the visa job (a4 format)
tdot title of the dort job input to the visa job (a4 format)

47

ti t 1-(i title provided by user - (a81

mm,im,jm,igm,igp, mmdn,njp,ish,isha,nip, jp1,jpu
, (junk(1) ,l=l,ll)

number of words = 23

mm no. of quadrature directions in dort problem
im no. of i interval midpoints in dort problem
jm no. of j interval midpoints in dort problem
igo no. of energy groups in visa output
igop i go+ 1

mmdn no. of downward directions in dort quadrature
nj P no. of j intervals in visa output
ish grtuncl point source height
isha not used
nip no. of i intervals in visa output

jpl index of First j interval in visa output
jpu index of last j interval in visa output
junk array of undefined integers to fill out length

.
- directional quadrature:

(wt (m) ,m=l,mm), emu(m) ,m=l,mm), eta(m) ,m=l,mm)

number of words = 3*m

wt quadrature weight
emu cosine of direction with r axis
eta cosine of direction with z axis

rl
21

radial mesh interval midpoint
axial mesh interval midpoint

49

APPENDIX D - - DORT FLUX MOMENT FILE FORMAT

C***

C revised 10 nov 76

cf varf lm
Ce variable mesh flux moment data with boundary fluxes

.

C

C

cd
cd
cd
cd

order of groups is by decreasing energy
i is the first-dimension index
j is the second-dimension index
jm=l for 1-dimensional geometry

cs
c s
cs

file structure

record type present if

cs
cs

file identification
file label

cs file control
cs file integer parameters
cs file real parameters

cs **************(repeat over all groups)
cs * flux moments
cs * boundary directional flux
cs ***************

cs

always
always
always
always
always

always
always

C

cr

cl
C

C
cw
C

cd
cd
cd
cd
cd
cd
C

file identification

hname, (huse (i) , i=1,2), ivers

1+3*mult=number of words

hname
huse (i)
ivers
mult

hollerith file name - varflm - (a61
hollerith user identification - (a6)
file version number
double precision parameter

1- a6 word is single word
2- a6 word is double precision word

c- -
C

cr

cl
C

C
cw
C
cd
cd
cd
cd

.

file label

date,user,charge,case,time, (titl(i) @i=1,12)

17*mult=number of words

date as provided by timer option 4 - (a61
user as provided by timer option 5 - (a61
charge as provided by timer option 6 - (a6)
case as provided by timer option 7 - (a6)

50

c -
cr file control

cd igm,neut,jm,lm,ima,mma,ism,ims~smlisbt,~ter, (idum(n) ,n=1,15)

cw 25=number of words -

cd igm number of energy groups
cd neut l a s t neutron group
cd (igm if all neutrons, 0 if a11 gammas)
cd j r n number of second-dimension (j) intervals
cd lm maximum length of moment expansion
cd ima maximum number of first-dimension intervals
cd m a number of boundary directions
cd ism number of i-boundary sets -
cd imsism t o t a l number of i-intervals, a l l i-sets
cd isbt i-set for system boundaries
cd iter outer iteration number at which flux was
cd writ ten -
cd idum(i) array set to 0

C

C

C

C

cr file integer parameters

cl (lmbig (ig) , ig=1 , igm) I
cl *(imbis(is),is=i,ism), (iset(j),j=l,jrn)

cw igm+ism+jm=number of words

cd lmbig(ig) length of moment expansion for group
cd imbis(is) number of intervals in iset is
cd iset(j) i-set assigned to interval j

C

C

C

C

cr

cl
cl
cl

C

C
cw
C
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd

file real parameters

(z (j) , j=i, jml) , ((r(i,is) ,i=l,iml) ,is=l,ism),
*(ener(ig),ig=l,igm),emin,eneut,ev,dev~,effk,power,
* (dumrl (i) ,i=l, 13)

jm+imsism+ism+igm+20=number of words

z (j)
r(i,is)
ener (ig)
emin
eneut

ev
devdk
effk
power

j-interval boundaries
i-interval boundaries for i-set i
top energy boundary of group ig
bottom energy boundary of group igm
bottom energy boundary of group neut

eigenvalue
derivative of ev vs. effk
effective multiplication factor
power (watts) to which flux is normalized

(0 if neut=O)

51

cd dumrl
cd jml
ca iml
C

array set to 0
jm+l
imbis (is) +1

c - " -
cr boundary directional flux
c
Cl ((fio(m, j) ,m=l,mma), j=1, jm), ((fjo(m,i) ,m=l,mma) ,i=a,imb)

cw m a * (jm+imb) =number of words

cd €io directional flux outgoing by direction and
cd j -interval
cd fjo directional flux outgoing by direction and
cd i-interval. fjo=0 for a 1-d geometry
cd imb imbis(is) for is corresponding to isbt

C

C

C
c -

end

52

APPENDIX E - - DORT SOURCE MOMENT FILE FORMAT

C *

C revised 04 jan 8 2

cf varsor
ce variable mesh source moment data
C
.

C

cd
cd
cd
cd
cd

order of groups is by decreasing energy
i is the first-dimension index
j is the second-dimension index
jm=l for 1-dimensional geometry
if isop.gt.0, source is first-collision type

c---

cs .

cs

cs file structure

cs record type present if

CS file identification always
cs file label always
cs file control always -
cs file integer parameters always

cs **************(repeat over a l l groups)
cs * source moments always
c. ***************

cs **************(repeat over all groups)
cs * scalar uncollided flux isop. gt - 0
cs ***************
C
c---

_ - - - _ - - - _ " - _ - - _ - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

cs

C

cd
cd
cd
cd
cd
C
C- -

user
charge
case
time
tit1 (i)

as provided by
as provided by
as provided by
as provided by
title provided

timer option 5 p

timer option 6 -
timer option 7 -
timer option 8 -
by user

cr file control

cd igm,neut, jm,lm,ima,mma,ism,ims~sm,isop, (idum(n) ,n=l,16)

cw 25=number of words

C

C

C
cd igm
cd neut
cd
cd jm
cd lm
cd ima

number of energy groups
last neutron group

number of second-dimension (j) intervals
maximum length of moment expansion
maximum number of first-dimension intervals
number of boundary directions
number of i-boundary sets
total number of i-intervals, all i-sets
uncollided flux flag

(igm if all neutrons, 0 if all gammas)

0 - no uncollided flux records present
1 - uncollided flux records present

array set to 0

cd
cd
cd
cd
cd
cd
cd
C
C- -

m a
i sm
imsism
i sop

idum (i)

cr file integer parameters
C
cl
cl
C
cw
C
cd
cd
cd
C

(lmbig (ig) , ig=1 , igm) ,
*(imbis(is),is=l,ism), (iset(j),j=l,jrn)

igrn+ism+jm=number of words

lmbig (ig) length of moment expansion for group ig
imbis (is) number of intervals in iset is
iset (j) i-set assigned to interval j

CT
C
cl
C

cw
C
C
c 1
C
cd
C

scalar uncollided flux

(f lum (1) I i=1, ims 1

ims=number of words

do 1 - j = l / - j m
read(n) *list as above*

flux uncollided flux by interval

end

r

55

APPENDIX F - - "DOT ANGULAR FLUX TAPE" FORMAT AS USED BY DORT

_ I _ _ _ _ _ _ _ _ _ _ _ _ -

- name: "dot angular flux tape"

- date: 22 jun 1993

- purpose: simulate traditional dot iii directional flux output file

- notes: order of energy groups is by decreasing energy - -
neutrons, then photons.

- i is the first -dimension index, i=l,,,im
- j is the second-dimension index, j=l,,,jm
- m is the overall direction index, m=l,,,mm
- ig is the energy group index, ig=l,igm

- this format i s not usable with discontinuous mesh, i.e. im.lt.0.

- the simulation is not perfect in every detail; for example,
- niszn and njszn did not appear in dot iii.

- items listed as dummy have undefined values and should not be used.

- fuller details may be found in the dot iv document, ornl-5851.

- - - - - - - - - - - _ - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ - - - - - - - - - - - - - - - ~ - ~ - - - - - - - - - - - - - -

.
- file structure:

record type present if

control parameters a1 ways
material by zone always
zone number by mesh cell always
fission spectrum a1 ways
quadrature & input mesh boundaries always
quadrature mates always

. repeat for ig=l,igm
- . cross sections always
. end ig loop

- _ _ - - - - - - - - - - - - - - - - - -

. repeat for ig=l,igm
. repeat all j=jm,l,-I
. downward directional flux
.end j loop
........ repeat all j=l,jm
. upward directional flux
. end j loop

. end ig loop
final radial mesh boundaries
II axial 11

always

always

always II

iduml,iadj,isctma,mma,ingeom, izm,ima,jm,ktype,ev
, evm,eps,nbcl,nbcr,nbct, nbcb,inpfxm,mode,mtm,mixl
, idum2,rntp,niszn,njszn,idum3, id~m4~igm,iht,ihs~ihm
, xnf,idum5,inpsrm,ifmi,idumG, ifxnf,trnax,jdirf,jdirl
, (dumary(i) ,i=l, 18)

number of words = 57

iduml
i ad] forward/adjoint control
isctma iabs(isctm); order of cross section expansion
iabs (nun) no. of quadrature directions
ingeom geometry option

i zm
ima

ktype
ev

jm

evm
ePs
nbcl
nbcr
nbct

nbcb
inpfxm
mode
mtm
mix1

idum2
mtP
niszn
njszn
idm3

idm4

iht
ihs
ihm

igm

xnf
idum5
inpsnn
ifxmi
i dum6

ifxmf
tmax
j dirf
j dirl

no. of material zones
iabs (im) ; no. of radial mesh intervals
no. of axial mesh intervals
calculation type
eigenvalue

eigenvalue modifier
convergence criterion
left boundary condition
right It I1

top

bottom 11

flux input option
flux recursion option
total no. of cross section sets
length of mixing table

dummy
no. of cross section sets from unit ntsig
no. of I super zones
no. of J super zones
d-Y

d W Y
no. of energy groups
position of total cross section
position of self-scatter cross section
no. of cross sections per group

source normalizer
durrmry
distributed source input control
initial inner iteration maximum per group
dunmry

final inner iteration maximum per group
problem time limit
first j for directional flux output
last 1 1 1 1 I1 II 11

11 I1

izmt
i zm

material number by zone
total number of materials

_ _ L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L _ _ _ L _ _ _ _ _ _ _ _ _ _ _ _ _ -

- quadrature & input mesh boundaries:

(w(m) ,m=l,mm), (emu(rn) ,m=l,mm), (eta(m) ,m=l,mm)
- * (rin(i),i=~lim+I),zin(j)fj=l,jm+L)

number of words = 3*mm + im + j m + 2

W
emu
eta
rin
zin

quadrature weight
II cosine with r axis

initial radial mesh boundaries
11 axial 11

II 11 II z 'I

.
- quadrature mates:

(mtemu(m) ,m=l,mm), (mteta(m) ,m=l,mm) , (mtlvl(m) , r n = l , m m)

number of words = 3*m

mtemu quadrature emu mate
mteta II eta mate 58

.
- cross sections:

(sig(ih) ,mx=l,mtm)

number of words = mtm

sig
mtm

dummy array
number of materials

2 final axial mesh boundaries

end

59

SECTION III

REFERENCES

ch88b. RLChilds, W.ARhoades, and LRWilliams, "Thre-Dimensional Calculations of
Neutron Streaming in the Beam Tubes of the ORNL "IR Reactor," Proc. 7th Internat.
Cod. on Radiation Shielding (Bournemouth, UK, September 1988).

ch88a. R.L.Childs, F.B.K.Kzim, RE.Maerker, WARhoades, LRWilliams, and CABaldwin,
"Neutron Dosimetry Analysis," Appendix E in "Evaluation of HFIR Pressure-Vessel Integrity
Considering Radiation Embrittlement," R.D.Cheverton, J.G.MerWe, and R.K.Nanstad,
Editors, O R W - 1 0 4 4 4 (April 1988).

rh92b. W.ARhoades, R.LChilds, and D.T.IngemU, "Radiation Exposure Inside Reinforced
Concrete Buildings at Nagasaki," Health Physics 63,5,510-521 (November 1992).

rh92a. WARhoades, RALillie, and M.B.Emmett, 'Transmission Factors for the Penetration
of Neutron and Photon Fluence into Wood-Frame Dwellings, 1990 (TF90)," ORNL6Iu-
12021 (May 1992).

rh9lb. WARhoades and RLChilds, T O R T - Three-Dimensional Discrete Ordinates
NeutrodPhoton Transport We," Proceedings of the Am. NucL Soc. Topical Mtg.: Advances
in Mathematics, Computations, and Reactor Physics, pp. 30.3.1.1-30.3.1.4 (Pittsburgh, April
1991)

rh9la. W.ARhoades and R.LChilds, TORT A Three-Dimensional Discrete Ordinates
Neutroflhoton Transport Code," Nucl. Sci & Engr. 107,4, pp. 397-398 (April 1991).

rh89. WARhoades, R. L. Childs, and D. T. Ingersoll, "Radiation Exposure Inside Reinforced
Concrete Buildings at Nagasaki," Oak Ridge National Laboratory, Oak Ridge, TN,
0--10999 (May 1989).

rh88. W.kRhoades and R.LChilds, ""he DORT Two-Dimensional Discrete Ordinates
Transport Code," NucL Sci. i% Engr. 99,1,88-89 (May 1988).

rh87. WARhoades and R.LChilds, The TORT Three-Dimensional Discrete Ordinates
NeutroalPhoton Transport Code," ORNU3268 (November 1987).

rh74b.
Protection of b o r e d Vehicles (The VCS Code)," ORNLTM-4664 (October 1974).

WARhoades, "Development of A Code System For Determining Radiation

rh74a. WARhoades, M.B.Emmett, G.W.Morrison, J.V.Pace, ID, and LKPetrie, "Vehicle
Code System (VCS) User's Manual," ORNLTM-4648 (August 1974).

rh73. WARhoades and ERMynatt, "The DOT III Two-Dimensional Discrete Ordinates
Transport Code," ORNL-"M-4280 (September 1973).

61

.-. -

th86. J.L.Thompson, M.B.Emmett, and HLDodds, Jr., "Development and Evaluation of
DO'ITOR, A Computer Code to Couple Two-Dimensional to Three-Dimensional Discrete
Ordinates Calculations," ORNL/IhI-9!219 (April 1986).

62

ORNL/TM-l2359

1. B. R Appleton
2. B. L. Broadhead

34. R. L. Childs
5. D. T. Ingersoll
6. R k L i l i i e
7. J. 3. Manneschmidt
8. J. V. Pace, III
9. C. V. Parks
10. J. P. Renier

11-15. W. A. Rhoades
16-20. R T. Santoro
21. C. 0. Slater
23. R C Ward
24. R. M. WestfalI

24. L. R. Williams
25. B. A. Worley
26. EPMDReportoffice
27. Laboratory Records

28. Laboratory Records

29. Document Reference

30. Central Research

31. ORNL Patent Section

Department

ORNZrRC

Section

Liirary

32-36. D. A. Barnett, Knolls Atomic Power Laboratory, P. 0. &Ix 1072, Schenectady, New
York 12301

37. Prof. Roger W. Brockett, Haward University, Pierce Hall, 29 Oxford Street,
Cambridge, MA 02138

38. C. k Burre, Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady,
New York 12301

39. Roy Casklli, Knolls Atomic Power Laboratory, P. 0. Box 1072, Schenectady, New
York 12301

40. Prof. Donald J. Dudziak, Depart, of Nuclear Engineering, llOB Burlington
Engineering Labs, North Carolina State University, Raleigh, NC 276957909

41. Dr. James E. Lei- Rt 2, Box 142C, Broadway, VA 22815
4 2 Prof. Neville Moray, Dept. of Mechanical and Industrial Engineering, University of

43. Prof. Mary F. Wheeler, Dept. of Mathematics, Rice University, P.O. Box 1892,

44. Office of the Assistant Manager for Energy Research and Development,

Illinois, 1206 West Green Street, Urbana, IL 61801

Houston, 'IX 77251

Department of Energy, Oak Ridge Operations, P.O. Box 2001, Oak Ridge, TN
3783 1

37830
45-46. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, Tennessee

63

