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A SHARP UPPER BOUND FOR DEPARTURE FROM NORMALITY 

Steven L. Lee 

Abstract 

The departure from normality of a matrix is a real scalar that is impractical to 

compute if a matrix is large and its eigenvalues are unknown. A simple formula 

is presented for computing an upper bound for departure from normality in the 

Frobenius norm. This new upper bound is cheaper to  compute than the upper 

bound derived by Henrici [Numer. Math., 4 (1962), pp. 24 - 401. Moreover, the 

new bound is sharp for Hermitian matrices, skew-Hermitian matrices and, in gen- 

eral, any matrix with eigenvalues that are horizontally or vertically aligned in the 
complex plane. In terms of applications, the new bound can be used in computing 

bounds for the spectral norm of matrix functions or bounds for the sensitivity of 
eigenvalues to matrix perturbations. 
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1. Introduction 

The departure from normality of a matrix, like the condition number of a matrix, is a 

real scalar that c m  be used to compute bounds for various matrix computations. For 

example, departure from normality can be used to bound the powers, inverses, spectral 

variation, and fields of values of nonnormal matrices [5]  or bound the spectral norm 

of matrix functions [l]. Unfortunately, the departure from normality of a matrix is 

impractical t o  compute if a matrix is large and its eigenvalues are unknown. The main 

result of this paper is a simple formula for computing an upper bound for the departure 

from normality of a matrix in the Frobenius norm. This new upper bound is cheaper 

to  compute than the upper bound derived by Henrici [ 5 ] ,  and it is sharp for any matrix 

with eigenvalues that are horizontally or vertically aligned in the complex plane. The 

practical significance is that the new upper bound can be used in computing bounds 

for many of the matrix computations described in [l,5]. 

The outline of this paper is as follows. In $2, we establish notation, motivate the 

definition of the departure from normality of a matrix, and give Henrici's upper bound 

for departure from normality [5] .  In 53, we derive a new upper bound for departure 

from normality and prove that it is sharp for certain classes of matrices. In $4, we 

conclude with some numerical results that compare the tightness of Henrici's bound 

and the new bound. 

2. Preliminaries 

Let A = (c6;j) denote an n x n complex matrix and let A" = (a j ; )  denote the conjugate 

transpose of A .  (Herein, all matrices are square matrices of order n with r e d  or complex 

entries.) Several important classes of matrices are defined in terms of their conjugate 

transpose: for example, A is a Hermitian matrix if and only if (iff) AH = A ,  A is a skew- 

Hermitian matrix iff AH = - A ,  and A is a unitary matrix iff A H A  = AAH = I. Let M 
and N denote the Hermitian part of A and the skew-Hermitian part of A ,  respectively. 

Indeed, let the functions R(.) and S(. )  be the Hermitian part and skew-Hermitian part 

of any square matrix. Then, for 

1 

2 
%(A)  := - ( A  + A H )  z M 

and 
1 
2 

S ( A )  := - ( A H  - A )  G N ,  

A has the splitting 

A = M - N  (3) 
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Let R denote an upper triangular matrix, T denote a strictly upper triangular matrix, 

and A denote a diagonal matrix whose entries are the eigenvalues, A,, of A .  Let Re(A) 

and Im(A) denote diagonal matrices whose entries are the real parts and imaginary 

parts of the eigenvalues of A, respectively. Finally, recall that the sum of the eigenvalues 

of a matrix is equal t o  the trace of the matrix, where 

n 

trace(A) = aii. 

i=l 
(4) 

The Schur decomposition states that every square matrix A is unitarily similar to 

an upper triangular matrix R. 

Theorem 2.1 (Schur decomposition). Given a square matrix A, there is a unitary 

matrix U such that 

UHAU = R. ( 5 )  

The matrix U is not unique and may be chosen so that the eigenvalues of A appear on 

the diagonal of R in any order. 

If U = [ul,. . . , u,] is a column partitioning of the unitary matrix U in ( 5 ) ,  then the u; 

are referred to  as Schur vectors [4]. For concreteness, let U denote a particular unitary 

matrix whose columns are Schur vectors so that R is 

R = A + T .  

We now show the connection between the Schur 

matrix norms of A. 

Definition 2.2. Let 

IlAllF = p G  

unique and has the splitting 

(6) 

decomposition of A and certain 

(7) 

and 

llAll2 = &ZG. (8) 

The Frobeniiis norm I /  - I I F  and the spectral norm 1 1  * 112 are invariant under unitary 

similarity transformations; that is, 

and 
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The Frobenius norm and the Schur decomposition play an important role in the 

definition of normal matrices. 

Definition 2.3. [6] The matrix A is normal if and orily if any of the following equiv- 

alent statements hold: 

(a)  A has a complete, unitary set of eigenvectors, 

(b)  IlAllF = ll4lF7 or 

(c) A H A  = A A ~ .  

Normal matrices include Hermitian matrices, skew-Hermitian matrices, unitary matri- 

ces and, in general, any matrix that is unitarily similar to a diagonal matrix. Hence, 

any Schur decomposition of a normal matrix gives 

where T = 0. For a matrix that is not normal, it is convenient to  quantify its departure 

from normality in terms of a norm of T .  Any matrix norm can be used; however, the 

Frobenius norm of T is a natural choice since it is easy to  compute and its value is the 

same for a l l  Schur decompositions. 

Definition 2.4 (Depar tu re  f rom Normality). [5] For any n x n matrix A ,  

This definition of departure from normality, depF(A), follows from the Schur decom- 

position of A and equation (9) via 

so that 

(14) 
112 

dePF(A) := IlTlIF = (IlAIl$ - ll̂n;) 
is independent of the choice of U .  It is also easy to prove that depF(A) is independent 

of complex shifts and unitary scalings (i.e., rotations). For example, in the Schur 

decomposition of A - 01, where 

U ~ ( A  - ~ I ) U  = R -  OI = A + T  - QI, (15) 

note that the shift only alters the diagonal elements of R and that depF(A) := l lTll~ 

is unchanged. Hence, 

depF(A) = depF(ePie(A - d)) (16) 
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for the complex scalar a and 0 5 8 < 27r. Later, we show the significance of this 

observation. 

For normal matrices, depF(A) = 0 via Definition 2.3(b). For nonnormd matrices, 

depF(A) is the nonzero quantity defined by (12). To be clear, a small example helps 

to summarize the main ideas up to  this point. 

Example 1. Consider two different Schur decompositions of 

where U1 and tJ2 are unitary matrices such that 

The Schur decompositions in (18) show that A has eigenvalues X(A) = {1,2,3} and 

that A is nonnormd since R1 and R2 are not diagonal matrices. Moreover, the strictly 

upper triangular parts of the decompositions show that depF(A) := IlTll~ = a. 
The value of depF(A) is impractical to compute if A is large and its eigenvalues are 

unknown. Lower bounds for depF(A) have been derived by Eberlein [3] 

and Loizou [7, Theorem 21 

where 

1 p = llAllg - ; Jtrace(A)I2 and A # 0. 

The following upper bound has been derived by Henrici. 

Theorem 2.5. [5, Theorem 11 For any n x n matrix A, 
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The bounds (19), (20) and (22) reduce to  zero when A is a normal matrix. Unfor- 

tunately, such bounds involve the matrix-matrix computation A H A  - A A H ,  which 

generally requires O(n3)  multiplications to  obtain. 

3. A Sharp Upper Bound 

In deriving an upper bound for depF(A), a trivial bound comes from its definition: 

We can obtain better upper bounds for depF(A) by manipulating expressions that arise 

after splitting A into its Hermitian part M and skew-Hermitian part N .  

Lemma 3.1. If A = M - N has the Schur decomposition UHAU = A + T ,  then 

PPOO~: 
Frobenius norm, and the functions a(-) and S(.): 

The following chain of equalities follows directly from the definitions of the 

Equations (26) and (27) show that depF(A) can be defined in two different, but equiv- 

alent, ways: 

(28) 

or 

(29) 

A simple upper bound for depF(A) follows directly from these equalities. 
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Lemma 3.2. If A = M -- N ,  where M is the Hermitian part of A and N is the 

skew-Hermitian part  of A ,  then 

Proof: By breaking the equalities (28) and (as), we obtain 

We now consider the use of the complex shift a1 for improving the bound (30).  

As in Lemma 3.1, we can split A - a1 into its Hermitian part M - Re(a) I  and skew- 

Hermitian part N - Im(a)l and rearrange terms to obtain 

and 

112 
depF(A) I= depF(A - c r l )  = & ( [ IN - Im(a)Ill$ - IIIm(A) - Irn(a)lll$) . (35) 

A tighter bound can be obtained by minimizing the terms 

before dropping them from equations (34) and (35),  respectively. In particular, 

fl(Re(a)) = IIRe(A) - Re(cr)lll$ = (Re(X;) - Re(a)j2 (37) 
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are quadratic functions that can be minimized using standard calculus techniques. By 

solving fi = 0 and fi = 0, we find that 

These values minimize equations (37) and (38), respectively, since f; and f! are posi- 

tive. Hence, both terms of equation (36) are minimized by choosing 

(40)  
Re(&) + Im(A;) - C A; - trace(A) a = Re(a) + h ( a )  = - -- 
n n n n 

Theorem 3.3. If A = M - N ,  where M is the Hermitian part of A and N is the 

skew-Hermitian part of A, then 

where the upper bound is minimized for 

trace( A )  
n 

a =  

Moreover, the bound is sharp (i.e., equality holds) if and only if the eigenvalues of A 

are horizontally or vertically aligned in the complex plane. 

Proof: The upper bound is obtained from equations (34) and (35 )  by dropping the 

terms [JRe(h) - Re(a)Ill& and IIIm(A) - T.m(a)J\I$ , respectively. The bound is sharp 

iff 

IIRe(A) - Re(cu)lll$ = 0 or (43) 

The first condition (43) says that the real parts of the eigenvalues of A are constant 

(i.e., vertically aligned). The second condition (44) says that the imaginary parts of 

the eigenvalues of A are constant (i.e., horizontally aligned). 

Equations (34) and (35) also show that 

iff 
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Hence, the new bound (41) is a good approximation when the eigenvalues of A are 

relatively close to  being horizontally or vertically aligned; otherwise, the bound is weak. 

Example 2. Let's compare the Henrici bound (22) and the new bound (41) for the 

matrix A in Exa.mple 1, in which depF(A) = a. Using the intermediate quantities 

the Benrici bound gives 

depF(A) 5 (J996)1/2 = ( d m ) ' / 2  z d44.6318 (49) 

and the new bound gives 

depF(A) 5 h min {a, J21/2) = 6. 

In this example, the new bound is tighter than the Henrici bound. The new bound i s  

sharp since the eigenvalues of A are strictly real. 

Numerous examples can be contrived for which the new bound is tighter than the 

Henrici bound or vice versa. In general, the new bound is preferable since the Henrici 

bound is an O(n3)  computation and the new bound is an O ( n 2 )  computation. It is 

sometimes possible to further improve the new bound by rotating A - a1. For complex 

matrices, the eigenvalues of A - a1 can be arbitrarily distributed and the best rotation 

6 can not be determined a priori. For real matrices, the eigenvalues of A - a1 occur 

in complex-conjugate pairs and the new bound is minimized for 6 E (0, T, T, ?I>.  Note 

that the implicit use of 0 = 0 has the advantage that the new bound reduces to zero 

for Hermitian and skew-Hermitian matrices. Unfortunately, for normal matrices whose 

eigenvalues are not horizontally or vertically aligned, the new bound does not reduce 

to  zero. 

In contrast t o  the improvements for the new bound, the Henrici bound is unaffected 

by complex shifts and rotations of A. This is so because, for complex shifts of A ,  

The same simplification (51)-(53) also occurs for the more general case of e-is(A- d). 

'For completeness, the Eberlein (19) and Loizou (20) lower bounds are 2.1778 and 2.4240, respec- 
tively. 
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4. Numerical Results 

Table 1 compares the upper bounds (22) and (41) for the nonnormal test matrices given 

by Eberlein in [2]. Loizou in [7] used this set of matrices to compare the two lower 

bound formulas (19) and (20). Table 1 shows the new upper bound is tighter than the 

Henrici upper bound for all 17 examples. Moreover, the new bound is sharp for test 

matrix 4, 6, 7, 9, 11 and 17. 

Table 2 compares the upper bounds for some of the 32 x 32 nonnormal test ma- 

trices studied by Trefethen in [9]. In each case, the new upper bound is tighter than 

the Henrici upper bound. Moreover, the new bound is sharp for the matrices entitled: 

Jordan block, Limason, Wilkinson, Frank, Kahan, Demmel, Lenferink-Spijker, Com- 

panion, and Gauss-Seidel. Such good results are predicted by Theorem 3.3 since the 

aforementioned matrices have strictly real eigenvalues and the other matrices (Grcar, 

Chebyshev spectral) have eigenvalues that are almost vertically aligned. 

Table 1: Departure from normality results for Eberlein [2] nonnorrnal test matrices. 
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Test matrix 
Jordan block 
Limacon 
Grcar 

)I Henrici bound 1 new bound I depc(A) 11 ratio I -. , 

(22) I (41) (12) (22)/(12) (41)/(12) 1 
8.594 1 5.568 ~ . _ _ _ _ _ _  5.568 1.54 1. ~ 

13.980 7.810 7.810 1.79 
18.398 7.681 6.007 3.06 

Wilkinson 
Frank 

8.659 5.568 5.568 1.56 1. 
1.821e+3 2.772e+2 2.772e+2 6.57 1. 

Table 2: Departure from normality results for Trefethen [9] nonnormal test matrices. 
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