
-‘\ ’
3 4 4 5 b 0 3 7 6 5 4 2 3

,

,.... ~ ~ _ _ __ __

.

ORNL/TM-12439

11 46
Engineering Physics and Mathematics Division

AN EVALUATION OF INTEGRATION OF THE
TRACE ASSERTION METHOD WITH THE BOX
STRUCTURE METHOD FOR CODING IN C++

k

Alex L. Bangs

DATE PUBLISHED - August 1993

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6364
managed by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R21400

3 4 4 5 6 0 3 7 6 5 4 2 3

Dedication

In Memory of Laura M. Bangs, a.k.a. Marg.

iii

Table of Contents

1 Introduction .. 1
3
7
9

1.1 An Introduction to the Trace Assertion Method ..
1.2 An Introduction to Object-Oriented Design ...
1.3 An Introduction to the Box Structure Method ...
1.4 Other Object-Oriented Specification Systems ... 10

2 Adapting the Trace Assertion Method ...
2.1 Specifying Object Inputs and Outputs ...
2.2 Class Functions ..
2.3 Constructors/Destructors ..
2.4 Inheritance ..
2.5 Understanding Canonical Traces ...

3 The Specification Process ..
3.1 Background ..
3.2 Design Process Steps ...
3.3 Trace Assertion Method Verification Details ..
3.4 C++ Verification Details ..

4 Case Studies: Classes from Westworld

11
11
15
17
18
19
21
21
22
23
24
25

4.1 PopupMapSize ... 25
4.2 Mapobject Hierarchy ... 35

5 Conclusion-............................. ... 48

Bibliography".. 50
Appendices ...- 53

Appendix A: An Example Specification 54
....

Appendix €3: The Requirements Document 58

Appendix C: The First Increment Specification .. 83
Top Level Black Box ... 84
Class Design and Class BB Specifications .. 87
TAM Specifications for Classes .. 93
Clear Boxes .. 113

Top Level Black Box ... 117
Class Design and Class BB Specifications .. 122
TAM Specifications for Classes .. 132
Clear Boxes .. 171
Class Design and Class BB Specifications (Second Level) 172
TAM Specifications for Classes (Second Level) 176

VI1 . Clear Boxes (Second Level) .. 192
Vita*..-....**...... ".. 196

I .
I1 .
III .
N .

I .
II .
III .
IV .
V .
VI .

Appendix D: The Second Increment Specification-.. 116

V

Preface

There were a number of goals that I had set out to accomplish with this work. The

overall goals were to learn something about cooperating robots and software

engineering, and to construct a sirnulator in the process of doing both. On the software

side specifically, I wanted to experiment with specification methods for designing a real

system. I also wanted to experiment with object-oriented design and see how this

meshed with the specification methods being explored. Finally, I wanted to work in C++

and X windows, to gain experience with both.

I chose the Trace Assertion Method as the specification method for this work for three

reasons. First, I was familiar with it following a seminar at the University of Tennessee

in the Spring of 1992. Second, it appeared to be a good candidate for object-oriented

specifications, because it grouped functions together in modules in a manner that seemed

to mesh well with object-oriented concepts. Third, Professor Poore and I were curious as
to how the trace method would apply to real systems.

The work began in the Fall of 1992, with an attempt to build a simulator for cooperating

mobile robots. I built a concept prototype of a simulator in January of 1992, but this ran
in Smalltalk on a Macintosh and was very slow. In the Summer of 1992, I started to

work on a prototype interface using X Windows and C t t under the SunOS environment.

This prototype was a good learning experience, and a number of lessons learned from

that are included in the requirements specification document for the simulator interface,

which was written as the next step (this document is included in Appendix B).

Once the requirements had been established, the hardest work was in trying to adapt the

specification method to the software being designed. The first increment is relatively

simple-three major objects with some supporting objects. It proved to be more difficult

to specify than anticipated, and extensions to the Trace Assertion Method were required

to allow true object-oriented designs to be specified. Specifically, notations for handling

module YO and module interactions needed to be more fully developed. In addition, the

v i i

method, which was created for module specification, had to be adapted to'fit into a full

system design.

One of the most helpful ideas came in a brief conversation with Neil Erskine. a student

of David Parnas. I was struggling with module interactions, and Neil suggested a new

method that I had not considered. While the idea that he gave me required some

development to be useful, it nevertheless allowed me to progress significantly.

This thesis documents the work done to adapt the method for object-oriented/C++

design, and gives examples from the increments developed.

v i i i

Acknowledgments

I owe a great debt to Professor Jesse Poore for allowing me to work with him on

software engineering and for getting me interested in the subject in the first place. I want

to thank Professor Bradley Vander Zanden for serving on my committee and providing

useful comments on object-oriented systems. I also am very thankful to Reinhold Mann

and FranCois Pin for allowing me the opportunity to study at the University of

Tennessee, being flexible with my work and hours, and giving me the opportunity to

pursue research at Oak Ridge National Laboratory. I also thank Professor Roger

Brockett for giving me my first research opportunity, and for his encouragement to do

graduate studies.

A special thanks is in order for the people in the software engineering seminar who

discussed the trace assertion method extensively and helped me understand it well

enough to accomplish this work: Stacey Prowell, Ken Sharpe, Hailong Mao, and Steven

Jones. I'd also like the thank others at U T that have been helpful throughout my research,

including Ethel Wittenberg and Dorsey Bottoms.

My parents have been a continual source of encouragement, especially with respect to

fmishing my thesis. I appreciate the support they have given me over the years and the

emphasis they placed on a good education.

Finally, I'd like to thank Becky, who has been helpful, encouraging, and patient through

the many weekend and evening hours I have worked on this project.

This research was sponsored by the Engineering Research Program of the Office of

Basic Energy Sciences, U.S. Department of Energy, under Contract DE-ACOS-

840R2 1400 with Martin Marietta Energy Systems, Inc.

ix

Abstract

The Trace Assertion Method, originated by David Parnas, is a method for developing

specifications for software modules. The nature of the method allows verification of

consistency and completeness of the specification, and provides a rigid structure to the

designer. This method is extended to work with object-oriented designs for a C++

system involving a user interface. A number of object-oriented concepts which are not

present in the original Trace Assertion Method are incorporated into the method and

demonstrated on two completely specified increments of the system being developed. In

addition, the method is incorporated into a system wide view beyond the original

modular scope of the method. Advantages of the adapted method and its problems are

discussed.

xi

1 Introduction

This work discusses adaptations to the Trace Assertion Method (TAM) [Parnas89] to

handle the specification of C++ programs using object-oriented designs. The examples

given are specifications of C+t objects for a user interface being developed under the X

Window System, as part of Westworld, a simulation system for experiments with

cooperating robots.

Simulators represent an important part of research in robotics, allowing robot navigation

and other tasks to be tested in an environment that is more forgiving of mistakes and

allows experiments not possible in the real world. A simulation is typically made up of a

number of components that manage both the display for the operator as well as the actual

pieces of the robots being simulated. Use of object-oriented systems for designing and

implementing simulators is common since the object model allows simulator

components and data representations to be more easily and naturally designed.

As a simulation becomes more complex, however, it presents a problem for the designer.

A large number of interacting components can be difficult to design and maintain. This

is where specification methods are useful. By using specifications for the various

components in the system, components can be designed in parallel, without knowledge

of the internals of other components, and in the confidence that the interfaces for each

component are complete.

The specification method chosen for this development effort was the Trace Assertion

Method, as defmed by David Parnas and Yabo Wang. Unfortunately, the TAM report

leaves many questions unanswered, and does not give very complex examples of the

application of the method. Given the method's orientation toward modular design, it was

chosen as the method for specifying the object-oriented design of the user interface. In

addition, some elements of the box structure design method [Mills881 are utilized as

well.

1

In Chapter 2, adaptations to TAM are discussed. TAM, like many other-specification

methods, works well for parameterized input and output, but deals poorly with classes

that manage user interface tasks, where the input and output are not easily

parameterized. In addition, TAM handles input and output as variables, but some forms

of input and output may be more in the form of events or functions, rather than variables.

This is crucial, since peer interaction between classes through functions is an important

part of object-oriented systems. Notational additions to TAM are presented that allow

the designer to deal with user interface input and output, and to handle peer interactions

between objects. In addition, other object-oriented elements such as class functions,

constructors/destructors, and inheritance are discussed and notation for using these

elements with TAM is presented.

In Chapter 3, a few example classes from the system being developed are discussed at

length, including the adaptations required to allow their specification. TAM was

intended for specification of individual modules, not an entire system. A process has

been developed to incorporate the TAM-specified classes into a larger, single unit, and

to handle interelass operations. This is discussed in Chapter 4.

After development of a prototype for the interface, a requirements specification was

written to document the interface functions and responses. This document is contained in

Appendix B.

The first increment developed for the interface involves three classes: Map,

PopupMapSize, and WinMap. The Map class contains the core data structure for the

application, holding the map dimensions (width, length) and number of pixels per meter

(scale) for the map to be represented on the screen. It also controls the X paint window

created by WinMap. The PopupMapSize class creates a pop-up window for modifying

the Map fields of width, length, and scale. The WinMap class controls the main window

for the application, including an X paint window for displaying the map rectangle and

menus for controlling the program functions. It acts as the routing point for all menus in

the window, and calls functions from other classes based on user actions. This increment

was developed in C - u using XView, an X-windows library, and Devguide, an XView

graphical user interface (GUI) builder tool. The specification for this increment is

contained in Appendix C.

2

The second increment adds new classes to the first increment to allow the Map to load

and save objects in files, and to draw those objects on the screen. Therefore, the Map

object was significantly enhanced and objects were added to manage loadsave popup

windows as well as the data structure for the items in the map. This specification is

contained in Appendix D.

lal An Introduction to the Trace Assertion Method

The Trace Assertion Method is a system for specification of software modules, as

defined in [Parnas89]. It was initially developed by David Parnas [Pamas721 and has

been further developed in [Bartussek78; Hoffman88; Hoffman89; McLean841; note that

[Parnas72] and [Bartussek78] also appear in [Gehani86]. [Pamas891 was an attempt to

define the method for practical use. In addition, [Erskine92] contains some further

refinements.

For the purposes of trace specification, a module is a set of functions designed to work

together. Pamas uses the term access programs to refer to the set of functions that can be

accessed from outside the module. An event is typically an access program call (there

may be other types of events), and an event class is all the possible calls of a particular

access program given its set of parameters. A trace of the module is a sequence of input

events and their corresponding outputs. For deterministic objects, the trace is usually

written with the events only, since the outputs are uniquely determined from an event

sequence. A trace can be considered to be similar to a stimulus history for a black box, in

that through providing the history of access to the module or box, the outputs of the box

can be determined.

A trace can be reduced to contain only those elements which are necessary to produce

the required outputs from the module and to maintain the proper sequencing of events.

This reduced trace is called the canonical trace, and the reduction is accomplished

through equivalences.

An actual trace specification consists of the following parts, some of which may not

always be used for all module definitions. First, in the SYNTAX section, the external

interface to a module is defined. This consists of tables of input variables, output

3

variables, and access programs. Second is the CANONICAL TRACES section, which '

defines the canonical traces for the module. In addition, a DICTIONARY subsection

may be included, which defines external types and auxiliary functions. The latter are

useful for simplifying trace parsing in the following sections.

The third and typically largest section is the EQUIVALENCES section, consisting of

tables of conditions and equivalences for each event class (there is one event class for

each access program; there may be multiple events for each class based on parameters to

the programs). The form of this section has the left-hand side of the equivalence with a

canonical trace T appended with the event class. On the right-hand side is the table of

conditions and equivalences. The set of conditions presented in the left-hand column of

the table must form a complete partition, and the equivalences in the right-hand column

must result in canonical traces, or errors if the event is not aIIowed under certain

conditions. Through the use of these equivalence tables, a trace of the module must be

reducible to a canonical trace. Therefore, the equivalences section must correspond with

the canonical traces defined.

The fourth section is the VALUES section, with two parts: OUTPUT VALUES and

RETURN VALUES. The output values subsection consists of tables of conditions and

values. If traces are used in the conditions column, they must be canonical. This means

that for unique output values to result from a module, the information required for that

output must be present in a canonical trace. This is an important consideration when

selecting the canonical traces. The return values subsection details which output values

correspond to which access program arguments or return values as defined in the first

section.

Once the specification is complete, it must be verified. As Parnas notes, "a principal

advantage of this method is that systematic validation of the design is simplified."

[Parnas89]. The verification steps are contained in section XVIII of the TAM report,

"Assuring completeness and consistency". This section is as follows:

A specification is complete if the values of the output vector are specsled for every legal trace. To
check for completeness, one must verify that:
(1) There is one equivalence function for each event class.
(2) There is one output function that specities each output value.
(3) The predicates in the left-hand column of each table partition the intended domain of the relation.
(4) The predicates in the right-hand column are defined whenever the corresponding predicate in the left-

hand column is 'me'.

4

A specification is consistent if one cannot derive two contmdictory statements about the output vector
values. Consistency is assured by verifying that:
(1) The canonical form fulfills the requirements of section XI.
(2) All traces specified in the right-hand column of the equivalence section are canonical.
(3) For function definitions, all right-hand sides specify a unique value.

These checks can be canied out systematically and, often, mechanically.

Section XI, mentioned above, notes that “the canonical form must have the property that

every legal trace is equivalent ... to exactly one trace in that form.” The actual

specification verification steps, including canonical trace verification, are detailed in

Chapter 4 below.

An Example: The Savings Account Tracker

As an example, consider a simple system to track a savings account balance. This system

has three basic functions: DEPOSIT, WITHDRAW, and BALANCE. The DEPOSIT

function, given a parameter with the amount to deposit, deposits the money in the

account. The WITHDRAW function, given a parameter with the amount to withdraw,

withdraws the requested amount or gives an error if not enough money is available.

Finally, the BALANCE function reports the current balance, which is the net of the

deposits minus the withdrawals. The full specification is contained in Appendix A.

The first step is to specify the syntax for the module. For output variables, there is only

one-the balance variable which is returned by the BALANCE function. For access

programs, there are three, WITHDRAW, DEPOSIT, and BALANCE.

Second, specify the canonical trace for the system. Since the canonical trace determines

the state of the system, i t is necessary to consider what functions will need to be

remembered in order to achieve the proper functionality. Since the BALANCE function

reports the state but does not change it, BALANCE will not be in the canonical trace.

WITHDRAW and DEPOSIT both modify the state, so they should be in the trace.

Therefore, the canonical trace will be:

canonicalfl) e--> (T =

This can be interpreted as meaning that T is canonical if and only if T is a string of

events with zero or more DEPOSIT events followed by zero or more WITHDRAW

5

events. The ”.” character is the concatenate operator for traces. Note that. the ordering

that is imposed in the canonical trace does not necessarily represent the actual order of

events arriving at the module. This is addressed below.

’

As part of the canonical trace section, an auxiliary parse() function can be defined which

will simplify the equivalences to follow. The function

is defined to return me if and only if T = D.W and D = [DEPOSIT(Xi)$O and W =

<boolean> parse(<trace> T, <trace> D, <trace> W)

Third is the equivalences section. In this section, there must be one equivalence for each

input event to the module. The results of the equivalences must be canonical traces or

errors. For DEPOSIT, the equivalence is simple. A trace of T.DEPOSIT(x), where T is

canonical, is equivalent to a trace with DEPOSIT(x) added into the appropriate place in

T. For WITHDRAW, the equivalence is more complex-there are two cases, based on

whether there is enough money for the withdrawal or not. Given a trace of

T.WITHDRAW(y) and given that the sum of the deposits in T minus the withdrawals in

T is greater than or equal to y, this is equivalent to T.WITHDRAW(y). Otherwise the

equivalence results in an error of %insufficient funds%. Finally, the equivalence for

BALANCE is the simplest. T-BALANCE is equivalent to T, since it is not in the

canonical trace.

The final section is the values section. For output values, there is one item, the variable

balance. Given a canonical trace T, the value of this variable is the sum of the deposits in

the trace minus the withdrawals. If the trace is empty, the value is zero. For return

values, there is one, which is the value from the BALANCE access program, which is

mapped to the balance output variable.

At this point, the specification must be verified. For each table, a set of verification items

must be checked. In addition, the canonical trace must be verified against the rest of the

specification. These verification questions are documented in the example in Appendix

A.

6

1.2 An Introduction to Object-Oriented Design

There are three basic types of systems based on the object model: object-based, class-

based, and object-oriented pegner90]. Object-based systems are the simplest of the

three systems. The key element of object-based systems is the concept of collecting state

data and functions which operate on that data together into a single module. Ada is an

object-based language.

In class-based systems the data and function collection forms the definition of a class,

which can then have multiple instances or objects, which may differ in their state data.

This has great advantages when working with a system that may have many replicated

components which have common functions to handle their data-such as elements in a

linked list, transactions for a financial database, or objects in a robot world map. A

typical class-based programming language will eliminate the need to make special

references within object functions to act on object data, thus simplifying the

programming task.

Object-oriented systems are defined as those which add inheritance to the object model.

Inheritance allows objects with common functionality or data to be grouped together in a

hierarchy. For example, consider the objects in a robot world map. These objects may be

boxes, cylinders, or complex polygonal shapes. Nevertheless, they all share some

common functions, such as draw(), which directs the object to draw itself on the screen.

In addition, they may share some common variables, such as locationx and locationy.

Therefore, it is best to first define a superclass called Mapobject which has all the

common functions, and then define the subclasses, such as MapBox and Mapcylinder.

The hierarchy can be carried to multiple levels, for example, there could be special

versions of MapBox. In some cases, specialization is better handled through the object's

variables rather than creating a new class; this issue is discussed in numerous object-

oriented texts. C++ and Smalltalk are examples of object-oriented languages.

In C++, there is a special concept called an abstract base class, or an abstract superclass.

In this kind of class, there cannot be any instantiations because some functions are

undefined for that class. For example, in Mapobject, load(), save(), and draw() are all

7

undefined for MapObject. Therefore, C t t will give a compile error if there is an attempt

in the code to create a MapObject. The purpose of this is to define some functions in this

superclass, and then force the subclasses to implement certain functions-if they do not,

a compile error will occur.

A few other terms should be presented to complete the description of object-oriented

systems. Constructors are used in C++ to initialize objects when they are first created. A
constructor is a special function which can be defined by the programmer that is

automatically called when the object is created. This allows default variable values, for

example, to be set automatically. A destructor is a separate function that also can be

defined that is called whenever the object is destroyed. This allows, for example, special

memory which was allocated by the object to be deallocated. A similar functionality can

be achieved in other object-oriented languages, such as Smalltalk, by specializing the

calls that create a new object.

Another important concept is the difference between class and instance functions and

variables. In some object-oriented languages, including C++, special functions and

variables can be defined at the class level. The functions are available to instances, but

do not have any special pointers to instance data as rn instance would. Class functions

do, however, have access to class level variables. There is only one copy of these

variables for the entire class and instances. These variables are typically used for

maintaining data such as counting the number of instances which are active.

One feature available in C++ that was not used in this project is overloading. This means

having multiple definitions of a function which differ in the arguments they handle. For

example, in the MapObject hierarchy, there exists a public variable called next and a

function called set-next(). Another way to handle this would be to have a function called

next() which, when called with an argument, would set the next variable to that

argument. If called without an argument, it would simply return the current value of the

next variable. Overloading can in some ways clarify notation, but it can also be

confusing. It may introduce a burden on the verification of a system which is

undesirable, so it was decided that overloading would deliberately be avoided in C++

specifications.

8

While the concepts used in object-oriented languages are generally the same, some

differences may exist in notation. The notation presented above will be used throughout

this thesis. Note that while C++ is the target language for this work, there may be some

differences between notation used for C++ and that used here. For example, superclasses

and subclasses are called, respectively, base and derived classes in C++. For details on

features of particular object languages, see the Appendix in [Boochg 11.

1.3 An Introduction to the Box Structure Method

The Box Structure Method (BSM) [Mills86; Mills87b; Mills881 was developed by

Harlan Mills as part of the Cleanroom development process [Mills87a]. The first step in

a box structure specification is a black box. The black box describes the possible stimuli

to the system, the possible responses, and the transition from stimulus histories to

responses. The transitions must use only current stimuli or the stimulus history; no state

information can be considered. The stimulus history is then used to develop a state box,

from which a procedural clear box is derived. From this point, blocks are identified in

the clear box which should be further refined as new black boxes, and the procedure is

repeated with these new boxes.

An important part of BSM is the verification steps. At each step, the current box is

verified against the box it was created from. Each state box is verified against the black

box, and each clear box is verified against the state box. In addition, there are a few

further concepts that are examined during verification and design. First, the boxes should

be referentially transparent, meaning that each box is independent and does not require

knowledge about the design of other boxes. State migration is the process of moving

state data into lower-level boxes when it is only used in the lower level box. Of course,

referential transparency must be maintained. Third, transaction closure should be

verified to show that the stimuli to a box are necessary and sufficient to produce the

required responses. Finally, common services should be identified where possible to

prevent duplication of code and simplify the design.

In fHevner931, the BSM model is discussed with respect to object-oriented systems, and

object-oriented concepts are compared to box structured concepts. Notational difficulties

that are involved in developing object-oriented systems are not directly addressed in the

9

paper. In particular, only object-based systems, which do not include inheritance, are

addressed. In addition, the concept of class versus instance is not addressed.

'

The method presented here makes two modifications to using BSM to specify a system.

First, notational changes are made to the boxes to address object-oriented concepts, and

to match better with the trace specifications. Second, the trace specifications are used in

place of a state box. The process for combining the two is discussed further in Chapter 4.

1.4 Other Object-Oriented Specification Systems

A number of specification systems have already been developed for object-oriented

systems, many of which are extensions to existing specification systems, including

Object-Z [Duke9 1 ; Rose921, Moo2 [MeiragO; Meira921, Larch/C++ [Leavens92), and

others. Several Z-based object-oriented systems, including [Rose92], are presented in

[Stepney92]. A few languages were designed with structures which permit more format

specification, the most notable being Eiffel [Meyer90]. Using specifications with

Smalltallc is presented in [cook92). A good overview of a number of methods as well as
general concepts of formal methods for object-oriented systems and an extensive

bibliography is presented in [Casais93].

10

2 Adapting the Trace Assertion Method

The Trace Assertion Method, with its emphasis on specification of a group of access

programs in a module and on verification, appears to hold great promise for specifying

object-oriented designs, since the object method is also based on grouping related

functions together. In practice, however, there are a number of problems. First, it is not

clear how to handle the distinction between instance and class functions in TAM.

Second, module interactions and user interface input/output require notation that is not

defined by TAM. Finally, constructors, destructors, and inheritance require some

notational changes.

The specifications for two increments developed using the notational changes discussed

below are contained in Appendix C and Appendix D.

2.1 Specifying Object Inputs and Outputs

To understand the original TAM limitations with specifications, it is necessary to

examine exactly what are the types of input and output that a module/clasdobject would

have to accommodate, and how they would be handled (or not) under TAM.

The following types of output would be typical for a module: (a) publicly accessible

variables, (b) access program return values, (c) user interfacdextemal world output, and

(d) calls to outside objects (state modifying). Note that (c) is basically a subset of (d).

The following types of input would be typical: (a) publicly accessible variables of other

objects, (b) access program parameter values, (c) user interfacdextemal world input, and

(d) return values from calls to outside objects.

Examining the TAM document reveals the following two items. First, in [Parnas89],

section X N "The syntax section" (p.8), Parnas defines the following1:

'There is no discussion of input tables or event tables, and there are no cases of them in the examples

given in Parnas' paper. Input tables and input variables events are, however, covered briefly in [Mills86].

11

The syntax section consists of an input table, an output table, an access-program table, and an
event table.

The input and output tables list the input and output variables and specify their types,
.. .

The event tables define parameterized classes of events as relations on values of the input
variables. Only events in these classes may appear in traces.

Second, in section VI "Communication with objects" (p.3), three modes of

communication between the object and the outside world are presented: input variables,

output variables, and access programs for sending and receiving information.

Given this information, for outputs, it is apparent that case (a), publicly accessible

variables, is handled via output variables and specified via the output table, and case (b),

access program return values, is handled by access programs and specified by the access

program table and output table. Cases (c) and (d) are more difficult.

For inputs, case (a), publicly accessible variables of other objects, is handled by input

variables and specified via the input table, and case (b), access program parameter

values, is handled via the access programs and specified via the access program table

(and perhaps the input value table, although this is not directly addressed in the TAM

report). Again, cases (c) and (d) are more difficult.

In general, directly accessible input and output variables from a module violates normal

black box specifications, which normally assume all access to a box is via some function

or stimulus. Under TAM, however, input and output variables in class definitions

without using access functions, such as public variables in C++, are allowed. This

simplifies the specification and design of classes by not requiring an access function for

each output variable. It is important, however, that when access functions are not used to

access variables, that there be a rigid set of criteria for these variables. These criteria

have been defined as follows:
* a variable must be initialized by a constructor or a one-time initialization functicn;

* following initialization, a variable value must always be defined;

* access to a variable from outside must be read-only, i.e. all state modifications of an

object must come from function calls.

12

The more difficult cases can also be handled, through some adjustments to the TAM

notation. First, output case (c), user interface output, can be handled through the use of a

special output variable for the interface. External world output, such as writing to

devices, can also be handled with special variables. In the Map class, an output variable

"(output screen)" was added, and in the output values section, the value for the variable

was a description of what the output should look like based on the current trace. In

addition, drawings of the expected output can be included.

Case (c) for user input is handled differently. This is a problem because the user input

that an object is responsible for (Le. data input to the fields of a dialog box, which then

must be processed by the object that created that dialog box) appears to be an integral

part of its state, and therefort: must be included in some form as part of the event trace

for the object. For example, the class PopupMapSize is responsible for a dialog box that

has three input fields (width, length, scale) and a Change button. When the Change

button is pressed, the data from these fields (the result of user input) must be sent to a

different class, Map, which returns a value indicating if the values were acceptable or

not.

Access functions for PopupMapSize objects are needed to initialize the object (i-e.

creating the dialog via window manager calls), display the dialog, and take action when

the Change button has been pressed. The input fields are not handled directly by the

object. Instead, they are handled by the window manager and can be retrieved at any

time. Therefore, the reasonable logic is that when the Change button is pressed, the field

values are retrieved and passed onto the Map object. If the Map object accepts the

values, they should be redrawn on the screen to represent the new Map values.

In this case, however, the user input is not really part of the object's state. It is part of the

window manager's state, and it should be considered an input variable to the program

which can be retrieved at will. The state maintained by the object is a pointer to the

window manager-maintained input field.

In another case, however, the input is again not directly handled by the object, but input

directly affects the state of the object. This happens when an XView Notice is displayed

by an object. There is some sequence of events that leads up to this notice being

displayed, and nothing else can occur until this notice is dismissed. Therefore, the

13

program must wait on the user to press the Confirm button, making this'an important

input to the system. However, since the notice box and input are handled by XView, the

notice output is instead treated as a user interface output from the object, and the confirm

input is treated as an input variable event which is part of the trace.

The final cases are input and output cases (d), which involve access calls to external

objects which may return values. These calls are the basis of peer interactions between

objects and are an integral part of object-oriented designs. In addition, this also includes

calls to "common services" where those services maintain some state for the object-Le.

XView, a file manager, etc. Calls to outside objects should be considered as important

for specification purposes only if they modify the state or report on the state of some

outside object. This excludes, therefore, many external utility calls such as string and

math functions.

As an example, consider the change() function in PopupMapSize. It takes the user input

values in the dialog box and passes those along to the Map object, via the change-size()

function. In addition, it must receive a variable back indicating the success of the

Map::change-size() function. In effect, the call to Mapxchange-size() is a form of

output. In addition, the return value of the function is an important input.

The first solution to this problem that was considered is as follows. First, the parameters

passed to Map may be considered as output variables. Therefore, those parameters

should be included in the output variable tables. The return values from such a function

should be included in the input variables table. To show when an output function call

would occur, appropriate sequencing information must be included in the canonical trace

to allow the outputs to occur at exactly the correct moment. This complicates the module

specification significantly.

The solution chosen instead involves adding new notation to the equivalence tables. The

solution, proposed in part by Neil Erskine [Erskine93], was expanded to allow objects to

call functions in other objects and receive return values by adding notation to the

equivalence section of a trace specification. For example, in the change()/change-size()

example given above, the equivalence for change() should include an ADD-TO-
TFUCE(Tp, change-size()) , where change has some pointer p to the appropriate Map

object. In addition, in the left-hand column (conditions), where the value returned from

14

change-size must be considered, the function is written there as well.'Obviously, if the

change-size function is included in the conditions section, a corresponding ADD-TO-

TRACE must appear in the right-hand column. This method has also been adapted to

clasdinstance function interactions, discussed below.

2.2 Class Functions

Class functions are functions which do not require an instance to be run, and do not have

a set of instance variables associated with them. Instead, these are used to handle overall

class operations, such as counting the number of instances or maintaining common

variables for all instances. There may be a set of class variables for use by the class or

instance functions, but unlike instance variables, there is only one copy of class

variables. For XView programming, class functions are required for user interface

callbacks, and are therefore an important part of the development of the interface.

When developing a trace specification, the class and instance function specifications

should be included in the same module. The reason for this is that class functions and

variables are used for tasks directly related to the module and its instances. For example,

class variables can be used to store common variables which will be used by the class or

instance functions.

For the purposes of XView programming, callbacks must be made to functions in the

program to allow the user interface to pass infomation and actions to the program.

Callbacks cannot be made to instance functions. XView is, however, capable of storing a

pointer to an instance. When a callback is made, information passed with the parameters

allows the instance responsible for the interface component to be determined.

The best way to handle callbacks under C++ is as follows. When a graphical component

is being created, a pointer to the instance creating the component is passed to XView. In

addition, a class function is passed to XView as the callback function for the component.

When the callback occurs, XView passes this pointer back to the callback function. The

callback function is then able to call the proper instance function with this pointer. For

example, in PopupMapSize, the class function cfChange(), activated by the Change

15

button on the popup window, gets a pointer to the instance of PopupMapSize to be

called, and calls the change() function for that instance.

To handle class level functionality within a module, the access programs for class

functions appear in a separate section called CLASS ACCESS PROGRAMS, and any

appropriate output variables in CLASS OUTPUT VARIABLES. A separate canonical

trace is shown for the class functions, if any are defined.

Within the access program equivalences for class or instance functions, if a class

function is required to interact with an instance function, or visa-versa, the following

notations developed for module interaction apply:

Ti = trace for instance i of a module

Tc = trace for class functions/variables of the module being detlned

ADD-TO-TRACE(Tx, function(pararneters)) = add function() to the trace for TX with

the given parameters, where x is determined through some pointer to the object
to be called, or where Tx denotes the class function trace for some class (such as

the Utds class, which only has class functions and no instances).

Note that ADD-TO-TRACE does not affect the equivalence for the calling function.

ADD-TO-TRACE is not, however, guaranteed to call a function in the canonical trace of

the called object; this would limit module interactions. Rather, it must call an access

function in the object being called, and it is up to the called object to handle the function.

This is important since the calling function therefore only needs to know the external

interface for the called object, and does mot need to know the canonical trace of the

called object.

Also note that an instance can modify the TC trace without having any specific pointer to

the trace, since there is no concept of specific instance for a class. This even holds true

for functions outside the class calling public class functions. However, for a class
function to modify a specific instance trace Ti, it must have some means of determining

i.

As with module interactions, if a class-instance interaction requires that a return value

from the external function be considered, then these values should be considered in the

16

left-hand column of the equivalence section where the ADD-TO-TRACE macro is to 'be

used.

One final comment on notation: if classlinstance functions were to be translated into

Parnas' notation, it would seem that the instance functions are akin to the "named"

modules, i.e. have a pointer to a specific instance, while class functions do not have this

pointer. This is actually what C++ does, via providing a pointer called "this" which

points to the instance and its variables, but the passing of "this" to the instance function

is hidden from the programmer. Using Parnas' named notation for all the instance

function calls would be cumbersome, since they are far more common than the class

functions. Therefore, all functions are assumed to be instance functions unless noted

otherwise. In order to distinguish class functions from instance functions, class functions

begin with a lower-case "cf', i.e. cfChange0.

2.3 Const ruc tors/Des tructo rs

The Map class uses a constructor, which is a function that is run anytime an instance of

the class is created. This allows, for example, variables in the instance to be initialized to

some value. Therefore, €or such a class, the constructor must be added as an access

function, and be shown in the canonical trace if necessary. If the constructor is present in

the canonical trace, then an empty canonical trace is not possible, since when a new

instance is created, the constructor function is run, and therefore the trace will, at

minimum. include this function.

Destructors are functions that, when defined, run automatically when an object is

destroyed or scoped out of existence. For example, given a class with a destructor, if an
instance is created with a 'new' call and then destroyed with a 'delete' call, at the moment

that 'delete' is called, the destructor function will be called. When an object is scoped out

of existence, such as when an object declared as a local variable is destroyed when the

function returns, the destructor will also be called.

Destructors may or may not be part of the canonical trace for a class. This depends on

whether they affect the outputs from the class. Typically, it will not affect the canonical

trace since after the destructor has been called, the object has been scoped out of

17

existence and its canonical trace no longer has any meaning. If, however, the destructor

results in a change in the user interface output, it should be part of the canonical trace. A

destructor function has no arguments or return values. A destructor was used in the

Map() class to eliminate objects created over the lifetime of the Map object, such as

Mapobject subclasses.

Every class responds to a class access program called 'new' which returns a pointer to an

instance of the object that is created at run-time. The object can then be deleted via

'delete'. These functions are automatically handled by C++, although they can be

redesigned by the programmer if desired. Therefore, new will be specified for a class

only when it will be specially designed. Otherwise, it is assumed to be a part of the class

interface.

2.4 Inheritance

Inheritance allows classes to be defined as subclasses of some superclass, inheriting

functions and variables from the superclass. In specifying the subclass under TAM, a

balance must be maintained between repeating information and providing enough

information to properly specify the subclass.

In the external interface portion of a trace specification of a subclass, any functions that

are inherited must be shown but should also be noted as inherited. If any of these

functions are to be overridden, that should also be noted. In the equivalences and outputs

section of the trace specification, a function or output should only be included if its

behavior will be different in the subclass due to being overridden or interaction with

newly defined functions.

One problem with inheritance that can be seen in the Mapobject hierarchy is that the

trace equivalence specification for a function may change, even though the function is

inherited without change from the superclass. For example, the set-next() function has a

very simple trace equivalence in the Mapobject class since the canonical trace is so

simple:

T.set-next(n) = set-next(n)

18

In the subclasses, however, it must be redefined to show its interaction with the new

canonical trace:

T.set-next(n) = set-next(n).LD where parse(?: I. L, D)

In this case, we can see that the equivalence must preserve the information in the

canonical trace, represented by L and D, which was not present in the canonical trace for

the superclass. Despite the difference in equivalences, the function itself does not have to

be reimplemented in these subclasses since the actual program code is the same.

2.5 Understanding Canonical Traces

The canonical trace section of a TAM specification contains a predicate that defines

which trace sequences are to be considered canonical. The information held in a

canonical trace represents the state data required by a module in order to function. The

form of the canonical trace is not unlike that of a piece of stimulus history used by a

black box.

Where the canonical trace is really used by a module is in the output variables section of

a TAM specification. The cases considered for an output value must be based on

canonical traces. Therefore, any values reported from a module must be represented in

some form in the canonical trace. Consideration of output requirements for modules

required for the Westworld design led to the realization that the state represented in a

canonical trace is more complex than just simple variable state.

For example, several of the objects in the system use XView Notify boxes to put a

message on the screen until it is dismissed by the user by clicking on a Confirm button.

The display of this notice on the screen must be considered an output of the Utils module

which creates it. Therefore, it must be represented in the output values section for this

module, and something must be present in the canonical trace to show when this notice

should appear versus when it should not. In other words, the error condition that led to

the notice appearing must be in the canonical trace. In a black box specification, this

could be handled by a simple stimulus-response pairing, not requiring any state data.

Under TAM, the canonical trace is holding information related to the sequencing of the

functions, a more complex form of state than simple variables.

19

Another case where state information beyond simple variables is required in the

canonical trace arises when dealing with functions that return a value. This is considered

an output from a module, but it is not necessarily representative of the simple state of the

module. For example, there is a load() function in the Map class which given a file

name, loads objects listed in that file into the Map. If there is a problem with the load

process, then the load function must return a FALSE value, otherwise it returns a TRUE

value. Since this is an output of the module, it must be calculable from the canonical

trace. However, this information is not important to the functioning of the Map module

following this function call. Nevertheless, this information remains in the trace, making

it more complicated to develop and maintain.

Under TAM, the canonical trace does represent the state of the module, but more than

just the values of stored variables. It represents the state of the program, state such as

that in a finite state machine. When discovering the canonical trace, it is important to

remember that this is true. Unfortunately, this also means that for an object with

complex outputs or sequencing requirements, the canonical trace may be quite complex,

and may require parsing functions to simplify the equivalence and output sections.

20

3 The Specification Process

3.1 Background

TAM is a method for specification of individual modules or classes, not entire systems.

Therefore, a bridge is required between the specification of the system as a whole and

the specification of the classes which will make up the system. Initially, a traditional box

structure method process was considered for specifying and designing the top level

system, but this has a number of problems. First, it is desirable to avoid specifying the

state data for the system until it has been divided into classes. Then, once these modules

have been specified without consideration of state, the state discovery process could

proceed for each module. Going through a top level state box would require doing state

discovery, and then throwing this state out when the individual modules are specified

using TAM.

Another problem with going from a top level system to TAM descriptions of modules is

that it is hard to go directly into a TAM specification. While the black box approach is

not as complete as a TAM description, and lacks the concept of state that is present in

the canonical trace, it does allow a simple view of the responsibilities of a class.

Therefore, it would be best to perform a black box specification for each class, then a

TAM specification, and finally a clear box.

The final step is to connect the top level black box with the individual black boxes for

each class. The goal is to take the stimuli from the top level box, and split this stimuli

among a set of discovered classes for the system. In addition, class interactions should

be considered at this step. This process is in the realm of object-oriented design, and any

object-oriented design process will do, as long as it is focused on the responsibilities of

each individual object, rather than the state of the objects. An example of such an

approach is that proposed in mirfs-Brock90j. The output of this step must be black box
definitions for each class in the system, including the top level main() program.

In the interface system developed, main() and global variables were grouped into a
pseudo-class called Main, and utility functions were grouped into a class called Utils.

21

Each X window had a class which was responsible for its creation, maintenance, and

callbacks. Finally, classes were defined for data representation-the Map and

Mapobject hierarchy.

3.2 Design Process Steps

The process steps are as follows:
e

e

0

e

e

e

e

e

0

Create a black box for the entire increment, showing the stimuli to the system and

the appropriate responses.

Verify black box versus the requirements for the increment.

Identify possible classes/objects in the system (including main()), assign stimuli to

these classes, identify inter-class stimuli, and create black box descriptions for the

classes.

Verify that all top-level black box stimuli are assigned to classes and that the

lower-level black boxes perform all the top-level operations.

Verify that all inter-class stimuli used in black boxes match receiving boxes'

specifications.

Create TAM specifications for the classes

- use black box header to create syntax section

- create canonical trace(s) using access programs and input events

- create equivalences based on canonical trace and output requirements; create

- create outputs based on canonical trace

- verify specification using Parnas Verification Checklist (see below).

Verify TAM specification to black boxes for each class.

Write C++ header for each object using TAM specification and verify to

specification.

Create Ci-t objects and main()

- write using C++ header and TAM specification

- verify versus TAM specification and Ci-t header

- verify cross-object access is correct.

Any lower-level C++ classes "discovered" should be developed by creating a black

box definition for the class and then designing as described above.

auxiliary functions and dictionary entries as needed

22

3.3 Trace Assertion Method Verification Details

The method used for verification of trace specifications grew out of seminar discussions

over the TAM document [Parnas89]. The rules are divided into completeness and

consistency sections.

Completeness
(1) There is one equivalence for each event class.

(2) There is one output functionhelation tha specifies each output value.

(3) The predicates in the left-hand column (LHC) of each table partition the intended

[applies to EQUIVALENCES section]

[applies to OUTPUT VALUES section]

domain of the relation.

[applies to any table with conditions in the specification]

(4) The predicates in the right-hand column (RHC) are defined whenever the

corresponding predicate in the LHC is 'true'.

[applies to any table with conditions in the specification]

istenc y

(1) The canonical form fulfills the requirements of section XI in [Parnas89], namely

that (a) no two traces in the set are equivalent and (b) every legal trace is equivalent

to exactly one trace in the set.

(2) All traces specified in the RHC of the equivalence section are canonical.

(3) All RHC values are unique.

[applies to canonical traces]

[applies to tables in the equivalence and output section]

[applies to any table with conditions in the specification]

Canonical trace verification, embodied in consistency rule (I), is quite difficult. Proving

(a) requires simply showing that no traces in the set are further reducible via the

equivalences defined and that none of these traces are exactly equal. Proving (b) is not

really possible since it requires looking at every Iegal trace or type of trace. Instead, it is

up to the designer to bear in mind the requirements of (b) when developing the

equivalences and canonical trace. In addition, consistency rule (2) constrains the

23

canonical trace and assists in its design and verification. In practice, the ciinonical trace

is developed based on an idea of what state will be required to gain the proper outputs

and sequencing for the system. If an error is made in the canonical trace, it will be

discovered when the equivalences and values sections are written. Once these sections

are complete, the canonical trace must be re-examined to verify that it is exactly what is

required to produce the appropriate equivalences and values.

'

3.4 C++ Verification Details

When writing the C++ code based on the trace specification, it is important to keep a few

rules in mind which are detailed below. In addition, there are a number of sources which

detail rules to bear in mind when designing C and C++ code which may also be

applicable to the C++ verification process [Henricson92; Koenig89; Trammell931. The

following is a list of items that are specific to this implementation of TAM for C++ and

should be incorporated into the existing TAM and C verification methods:

Verification of C++ code versus the TAM specification:

0

All C++ class headers match TAM tables

Access functions implement inputs, outputs, and equivalences properly

External function accesses match tables.

C++ Coding:
*
0

0

0

0

Proper headers included in file-including project as well as system headers.

All functions prototyped in class definition or separately in a header.

All functions used in file match prototype.

All functions defined in file match prototype,

All copiedre-used code has variables that are declared.

All non-obvious code blocks are commented.

24

4 Case Studies: Classes from Westworld

In this chapter, the process described above is applied to two class groups, the

PopupMapSize class and the Mapobject hierarchy. The process steps are listed in italics,

with the action that was taken for those steps. It is assumed that at this point, the top

level black box has already been specified and the separate classes have been identified,

as well as their inter-class stimuli. The complete specification for these classes is

contained in Appendix D.

4.1 PopupMapSize

Identify possible classedobjects in the system (including main()), assign stimuli to these

classes, identify inter-class stimuli, and create black box descriptions for the classes.

This class was identified as necessary to manage the popup window which will allow a

user to input changes in the map size and scaling (see Figure 1). The stimuli for

PopupMapSize were identified from the top level black box as well as requirements for

interactions with other classes in the system. For the top level, this class must respond to

the XView callback for the Change button that is part of the popup window. For class

interactions, it must display the popup window when called by WinMap, which handles

the "Change Map Size" menu callback. In addition, when the Change button is pressed,

the user-entered data must be passed to the Map object for acceptance or rejection.

Finally, it must have some sort of initialization function which will create the popup so it

is ready to be displayed when the "Change Map Size" menu item is selected.

-0 Map Size

Width: cf1%.2f> Length: cf1%.2fz

Figure 1. PopupMapSize Popup Window

25

The PopupMapSize class is relatively difficult to specify, because of its user interface

interaction and its interaction with another class. In the popup window it manages, the

user can type in fields, dismiss the window, or press the Change button to register the

changes made. Only the latter action, pressing the Change button, causes the program to

act. All other handling, such as the dismissing or basic keyboard events, are handled

internally by XView. When a change is made, it has to be handed off to another class,

Map, that handles the actual values. Therefore, it uses a pointer to an instance of this

class, and when the Change button is pressed, the entered values are passed along. In

addition, the Change button cannot call the instance that created the window directly.

Instead, it must call a class function which in turn will call the appropriate instance

function.

The next step is to define a black box for this class, with a header structure that 6 similar

to the header for the trace specification. The sections of the header include: access

programs, output variables, output, class access programs, class output variables, class

output, input variables, and external access programs. The construction of a black box,

and especially its header, is typically an iterative process, with some items not being

included until the transitions are being written and one can see that, for example, certain

external inputs or program accesses are required for the class. In addition, some of the

specific information required in program arguments, such as the format of the

cfChange() callback, requires some knowledge about XView programming. Such

knowledge is best obtained through implementing a previous system or through

performing experiments to better understand the package that will be used.

This is the header for the black box PopupMapSize:

access programs
void init(Xv-opaque owner-frame, Map* pMap)
void show0
void change(Pane1jtem)

output
popup window

class access programs
static void cfChange(Panel-item, Event)

input variables
Atqattribute Main::INSTANE.

26

x v s e t variables FRAME-CMD-PUSHPINJN, XV-KEY-D ATA, entered-width,
entered-length, entered-scale

external access
int Map::change-size(Xv-opaque frame, double new-width,

double Map::widtb
double Map::length
double Map::scale

double new-length, in1 new-scale)

Note that any functions are specified using C++ notation, and that all data types are C++

types, although some m a y be defined by this program or by XView. For example,

Xv-opaque is a special type for XView which may contain any of a number of different

types of pointers to XView data. Another C++ notation uses the :: operator, as in

Map::width; this expression references the width member of the Map object.

After the header comes the transition section of the black box, which specifies how the

class responds, given a stimulus history and a current stimulus. The transition for this

black box is as follows:

Si = init(o, p) -> no response.
Si = &OW() -->

display popup screen with owner 0, with values in widWIengWscale fields
from p->width, p->length, p->scale, where (3Sj I < i) A (Sj = inir(o,p)> A

notask I (i 4 k4 i) A (Sk = init(o,p))))

S j = change(item) -->
given pointer to popup input fields for width/length/scale and popup frame "f'
created by init (3Sj I (i < i) A (Sj = init(o,p))), call p>change-size(f, entered
width, entered length, entered scale); if change-size returns 1 and x v j e t
parameter FRAMFi-CMD-PUSHPIN-IN from f is 1, then call show(); if
change-size0 returns 0, send an error to XView via item to hold the popup on
the screen.

Si = cfChange(item, ev) -->
call PopupMapSize* p->change(item) where p = xv_get(item,
XV-KEY-DATA, INSTANCE) [xv_getO is an XView function to get the
value of a variable maintained by XView]

Verify that all top-level black box stimuli are assigned to classes and that the lower-level

black boxes perform all the top-level operations.

27

The only top-level stimulus assigned to this box is the Change button callback, which

was implemented in cfChange(). In addition, the box displays the PopupMapSize dialog,

which is required in the top-level box.

Verify that all inter-class stimuli used in black boxes match receiving boxes'

specifications.

This requires checking other classes to ensure they reference the class being specified

correctly, and that any external accesses from this class are done correctly. For external

accesses, the change-size call to Map as well as the direct variable accesses must be

verified to ensure that types match.

Create TAM specifications for the classes

- use black box header to create syntax section

This is perhaps the most time consuming step of the specification process. The first step

is to take the black box header above and create the syntax section of the trace

specification. This should be a direct mapping. In the process of developing a trace

specification, it is possible that some extra items might be needed in this section that

would not normally be part of the black box.

The tables for the syntax section are shown below. Note that some additional

information is added beyond that included in the black box. Specifically, an access

column has been added to input variable and output items to indicate how the variable is

accessed by this class or may be accessed by other classes. In addition, the

entered-widtldentered-lengwentered-scale variables, which were mentioned in the

black box but not really carefully defined are enumerated here. They probably should be

added into the black box header; it is up to the designer to make these backward

compatible steps. The rigor is more important at this step than in the black box.

Finally, a new variable change-error has been added. This variable is equivalent to the

result from the Map::change-size() function. This variable has an important effect on the

output from the class, so it has been specified specially as a separate item so it can be

included in the canonical trace.

28

ev-opaqu-
owner frame

init <void>

show <voicb

Variable Name Type Access
(popup window) 1 (XView Popup window) I N/A i I

<Map*> pMap

change <voi&

EXTERNAL ACCESS PROGRAMS

<Panel-item item

Map:: c i n e <Xv-opaque> <double> <double>

- create canonical truce using access programs and input events

CinD

The canonical trace is built by examining the stimuli to the class and determining what

events will be needed to produce the required outputs or meet any sequencing

requirements for the stimuli. Examining the use of stimulus history in the black box may

be useful. for this step. For items that have both class functions as well as instance

functions, there are two canonical traces, one for each.

change-size change-em pop up-frame

The instance canonical trace for PopupMapSize is:

new-width new-length new-scale

29

canonical(Ti) <--> (Ti = 3 v (Ti = init(o,p)) v (Ti = init(o,p).show()) v (Ti = init(o,p).show().change(it))

(Ti = init(o,p).show().change(it).cfiange-error)
V

This canonical trace has five basic forms representing five basic states for the class. It

can be empty; initialized; initialized and displayed; initialized, displayed, and have a

valid change; and initialized, displayed, and have an invalid change. The change-error

variable is a function result rather than a direct stimulus to the class, but it must be

included here to ensure that the output is correct.

The show() function isincluded in the trace since it must be called before a change() call

can be made. While a change() call before show() would not have any ill program effects

as long as init() had been called, it is not really possible for this to occur since it can only

be called after the Change button has been pressed, and this button will not appear until

show() has been called at least once. The change() function will not be called if the user

dismisses the popup (something beyond the control of the program) without show()

being called again.

The class canonical trace is:
canonical(Tc) <--> (Tc = _>

The canonical trace is empty, which indicates that the class-level operations will not

require any state data.

- create equivalences based on canonical trace and output requirements; create

auxiliary functions and dictionary entries as needed

In the equivalences section, there is an equivalence for each access program and input

event. The equivalences are responsible for resolving any trace into a canonical trace,

and therefore are largely verified against the canonical trace. Since the canonical trace is

somewhat complicated, it can be more easily referenced in a parsed form, giving rise to

the need for a parse function to be defined. This is defined as an auxiliary function as

follows:

30

The following tables are the equivalences for this class:

T =
else

T.init(o,p) =
conditions equivalences

T = - I init(o,p)
Tf- 1 %already-initialized%

%uninitialized%
I.show()

T = %uninitialized%
-T = init(o,p) %undisplayed%
parse(T, I, S, C, (3E) A equivalence = IS.change(it);

PXhange-SiZeO = TRUE cfiange-size(€, atof(entered-width), atof(enteredJength), entered-scale))
where f is frame created by init()

else equivalence = I.S.change(it).change-ee_error,

S f: - A I=init(o,p) A ADD-TO-TRACE(Tp,

ADD-TO-TRACE(Tp,
change-size(f, atof(entered-width), atof(entered-length), entered-scale))
where parse(T, I, S, C, CE) A I=init(o,p) A change-error = change-size()
A f is frame created by init0

T = init(o,p).show().change(it) 1 T.change error
, else 1 %undefined%

Tc.cfCbange(item,e) = Tc; ADD-TO-TRACECTp, change(item))
where PopMapSize* p = xv,get(item, XV-KEY-DATA, INSTANCE);

- create outputs based on canonical trace

For each item listed as an output or output variable for the class, there must be an output

table. Since the conditions side of an output table may only use canonical traces, the

31

information required to derive an output must be contained in the canonicd trace. At this

stage, the process is checking that the canonical trace has this information.

The values section has two parts. The first part contains a table for each item in the

outputs. The second part maps those outputs to access function parameters or return

values. For this object, since no access function returns a value, there are no return

values listed.

V[popup-framel(T) =
conditions values

T = . 1 %undefined%
else 1 frame created via init function

In the table for V[(popup-window)](T), the else case represents the case where the

change-error function is in the canonical trace in order to indicate when an error has

been returned from Map::change-size() and therefore when the popup should be left on

the screen until corrected by the user or dismissed.

- verify specification using Parnas Verification Checklist.

The verification for the trace specification is done in two ways, First, the canonical trace

is verified through the creation of the equivalences and outputs sections, which will

show if the canonical trace is insufficient to provide the required information for output

and sequencing, Unfortunately, there is not really a good method to verify whether a

32

canonical trace contains too much information, except through careful examination and

use in the specification.

Second, for each table used in the specification, a series of questions regarding

completeness and consistency must be answered to ensure that the table is correct. These

questions and answers, mentioned in Chapter 3, are written in the specification directly

following each table. See Appendix D for the verification of PopupMapSize.

VeriB TAM specification to black boxes for each class.

First, the trace syntax section should be compared to the header for the black box to

verify that all information is the same. Second, the output section of the trace

specification should be verified against the responses from the black box to ensure that

they are the same and are given under the same conditions.

Write C++ header for each object using TAM specification and verifjl to specification.

The C++ declaration of the PopupMapSize class looks like (note that // is a comment

marker in C++):

class PopupMapSize (
Xv-opaque frame;
Xv-opaque controls;
Xv-opaque map-width-field;
Xv-opaque map-length-field;
Xvppaque map-seale_field;
Xv-opaq ue change-but ton;

/I holds XView pointer to main structure for popup
// holds XView pointer to controls area on popup
I / holds XView pointer to field for entered width
// holds XView pointer to fieid for entered length
/I bids XView pointer to field for entered scale
// holds XView pointer to Change button

Map* pMap; 11 holds pointer to Map object
void update(); /I update numbers in the window (private, for internal use only)

public:
void initflv-opaque owner, Map* pTheMap);
void &ow(); // redisplay the box, and do an update
void change(PaneI-item); // change button pressed; send values to pMap

11 class functions
static void cfChange(Pane1-item item, Event *event);

I / XView button callback for Change
1:

33

The first part of the class declaration defines the items private to the class; i.e. variables

and functions that are not available to functions outside the class. The section following

public: defines what is available to outside functions. The private variables are

discovered in the process of developing the C++ code. The public interface can be

verified easily against the trace syntax given above.

Create C+ + objects and muin()

- write using C++ header and TAM specification

The C++ code is not contained in this document, but it is available on request. The

functions perform the following tasks:

init() creates the window but does not show it on the screen (should only happen

once in lifetime of instance).

show() displays the window on the screen and displays the current values from the

Map object (Map::width, Map::length, Map::scale) in the input fields; show() is

called via a menu item which causes the window to "pop up"

change() takes the values of input fields, converts them to numbers, and calls the

Map::change-size() function with the new values. If the change is successful and the

window is still displayed, the fields on the screen are updated to show the values

changed to, via show(). This is required to get rid of any spurious non-numeric

characters that might be entered but ignored by the numerical conversion routines. If

the change is not successful, the popup window is forced to remain on the screen.

update() is a private function and therefore only available to functions for this class.

It updates the fields on the popup from the Map object values.

cfChange() is a class function which looks up the instance that the button pressed

belongs to, and calls change() for that instance. The only output from this function is

via change(), but it does not return a value; rather, it calls another function and via

this method passes the information to the other object. This output is dependent on

user input, which is not shown in the class definition.

- verifr versus TAM specification and C++ header

- verifr cross-object access is correct.

Verification of the C++ code against the specification takes two forms. First, the code

must be examined to ensure that it has been written to implement the class as defined by

34

its own header, i.e. check the syntax of the functions and type of the‘ variables that are

contained in the class definition. Second, the code must implement the TAM

specification, in that sequencing and output conditions are met by the C++ code. Finally,

any external access made by the class being developed must be checked to ensure that

calls match external functions or classes accessed.

Any lower-level C++ classes “discovered” should be developed by creating a black box

definition for the class and then designing as described above.

None were discovered for this class.

4.2 Mapobject Hierarchy

(From the Map class) Any lower-level C++ classes “discovered” shouk ,e developel

creating a black box definition for the class and then designing as described above.
’Y

The interface requires the Map class to store information on the individual items in the

Map. These items may be of varying types, but they will have some common features.

For example, they will all have to have a draw() call through which they will draw

themselves on the screen. A case like this is best managed through inheritance, where a

single root class is defined that has common functions that will be the same for the

subclasses defined, and has stubs for functions that must be defined by the superclass. In

the second increment, there are only two types of items that can appear in the map-
boxes and cylinders. Therefore, the class hierarchy looks like:

MapBox MapCylinder - c

Figure 2: Mapobject Hierarchy

35

The functions and data that will be necessary for both classes must be identified and

placed in Mapobject. The functions that will be exactly the same for both should also be

fully defined by Mapobject. Functions that are not defined in Mapobject should have

some error associated with their response in Mapobject.

Each object will require a draw function to draw itself on the screen, a load function to

set its internal values according to a string from a file, a save function to return such a

string for saving to a file, and a mechanism for allowing the objects to be placed in a

linked list. In addition to these instance functions, a class function is required for each

subclass to examine a string and indicate whether it is possibly a string that defines an
object of that type. At the Mapobject level, a class function is also needed to handle the

process of selecting a subclass to define a new object being loaded.

The black box header for Mapobject is as follows:

access programs
MapObj ec tO
Mapobject* set-next(MapObject* nextobj)
virtual int load(Xv-opaque f m e , int lineno, char* line)
virtual void save(char *buffer, int bufsize)
virtual void draw(Disp1ay *display, Window xid, int scale)

output variables
Mapobject* next

class access programs
static MapObject* cfSelectAndLoad(Xv-opaque frame, int lineno, char* line)

external access
int MapBox::cfIsMe(char* 1)
int MapCylinder::cfIsMe(char* 1)
void Uti1s::cfNotice-OK(char *message)
MapBox* MapBox::new()
Mapcylinder* MapCy1inder::newO
void MapBox::delete(MapBox*)
void MapC ylinder::delete(MapCylinder*)

The transition section is as follows. Note that the load(), save(), and draw() functions are

not defined for Mapobject. They will be specialized by each subclass.

Si = Mapobject() --> no response
Si = next --> returns value from last set-next(n) call, otherwise returns NULL
Si = set-next(p) --> p
Si = load(f,n,l) --> not implemented in this class

36

Si = save(b, bs) --> not implemented in this cfass
S j = dmw(d,xw,s) --> not implemented in this class
Si = cfSelectAndload(f,n,l) A MapBox::cfIsMe(l) = TRUE A

(p = new MapBox)->load(€,n,l) = TRUE --> p
Si E cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = TRUE A

(p = new MapBox)->load(f,n,l) = FALSE --> NULL
Si = cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = FALSE A

MapCylinder::cfIsMe(l) = TRUE

Si = cfSelectAndLoad(f,n,I) A MapBox::cfIsMe(l) = FALSE A

MapCylinder::cfIsMe(l) = TRUE

Si = cfSelectAndL.oad(f,n,l) A MapBox::cfIsMe(l) = FALSE A

MapCylinderxfIsMeO) = FALSE -->

(p E new MapCylinder)->load(f,n,l) = TRUE --> p

(p = new Mapcylinder)-rload(f,n,l) = FALSE --> NULL

Utifs::cfNotice-OK(f, "Map file format error: unknown object 8 line a>");

For MapBox, the black box header is as foltlows (throughout this section, MapBox will

be used to show the subclass specification process; Mapcylinder is nearly identicd):

access programs
Mapobject() <inherited>
Mapobject' set-next(MapObject*) <inherited>
virtual int bad(Xv-opaque frame, int lineno, char* line) <inherited>, <overridden>
virtual void save(char *buffer, int bufsize) <inherited>, <overridden>
virtual void draw(Display *display, Window xid, int scale) <inherited>, <overridden>

output variables
Mapobject* next cinheriteb

class access programs
static void cfSelectAndLoad(Xv-opaque frame, int lineno, char* line) <inherite&
static int cflsMe(char* line)

external access
void Utils::cfNotice-OK(chat *message)

Note that certain functions are inherited but not overridden. In this case, these functions

do not need to be redefined in the black box. The transition is as follows:

Si = load(f.n.1) A legai-box(1) --> TRUE
Si = load(f,n,l) A not(legal-box(1)) -->

Utils::cMotice-OK(f, "Map file format error: bad box definition @ line a'')
return FALSE

copy information from load() into "box clocx> <lacy> <width> d e n g t b
cheigho" with default height if none specified by load() and limited to length
of bs.

draw rectangle at <locx>*s ,<loc~*s+deng~*s of size

Si = save@, bs) -->

Si = draw(d.xw,s) -->

cwidtb*s,<length> *s

37

Si = cfIsMe(1) A stmcmp(1, "box". 3) = 0 --> TRUE
Si = cfIsMe(1) A smcmp(1, "box", 3) f 0 --> FALSE

Verifi that all top-level black box stimuli are assigned to classes and that the lower-level

black boxes per$orm all the top-level operations.

There is no top-level box for the Mapobject classes, but they are constrained by the

requirements set by the Map class. Therefore, it must be verified that the required

functions have been included and that the syntax for these functions matches that used in

the Map class.

Verifjt that all inter-class stimuli used in black boxes match receiving boxes'

specifications.

This class hierarchy has no interactions with classes other than the creating class.

Create TAM specifications for the classes

- use black box header to create syntax section

The syntax tables for Mapobject are as follows. Note that some input and output

variables listed were not present in the input or output sections of the black box above.

In the trace table, outputs which are returned from access program calls, or inputs that

result from external function calls must be documented in the input and output tables.

For example, buffer is listed in the output variables table, but maps to the buffer

parameter returned from the save() access program.

ACCESS PROGRAMS

38

next I <Mapobject*> public
load ok < i n 0 fn return
buffer <Char*> fn param return

cfSelectAndLoad &lapobject*> -Sv-opaque> frame &U lineno
created

<char*> line

Variable Name Type Access

I boxnew 1 <MapBox*> I ext En return
cylnew <Mapcylinder*> ext fn return 1

EXTERNAL ACCESS PROGRAMS

(9 (constructor)
MapObject
(i) set-next <MapObject*> <Mapobject*>

nextobj

frame
(i) load 4110 load-ok <Xvppaque> 4x10 hneno

(i) save <void> <char*> buffer <inP bufsizc

(i) draw <void> <Display*> <Window> xid
display

For MapBox, the syntax tables are as follows (note that items marked with (i) are

inherited) :

<char*> line virtual.
overridden

Virtual,
overridden

< m u scale vlrtual,
overridden

ACCESS PROGRAMS

39

OUTPUT VARIABLES

(i) cfSelectAndLoad <Mapobject*>
created

cfIsMe <kit, isMe

CLASS ACCESS P R O G W S

<Xv-opaque> frame cinb lineno <char*> line

<char *> line

CLASS OUTPUT VARIABIES

Func Name Value &g#l k p # 2
I Uti1s::cMotice OK I <void> I cxv opaque>frame I <char*> message

- create canonical trace using access programs and input events

For the Mapobject class, the only real output is the next variable. Therefore, the only

information that needs to be included in the canonical trace is the information required to

give the value for this variable. For the class trace, the output needed is the pointer to a

new object created from the cfSelectAndLoad() function. This value will actually come

from an external function call, so this information had to be included in the input

variables table for the class so it could be included in the class canonical trace. The

canonical traces for Mapobject are:

monical(Ti) <--> (Ti = Mapobject()) v (Ti = set-next(n))

monid(TC) <--> (Tc = 3 v (Tc = boxnew) v (Tc = cylnew)

The MapBox object adds the load(), save() and draw() functions. The save() function

does not affect the output of the class and does not have to be included in the canonical

trace. The load() function must be included since its parameters determine the details of

the item's form. The draw() function must be included to ensure that the screen output is

handled correctly. On the class side, there is a new output for the cfIsMe function, based

on its parameters, so it must be included in the class canonical trace. The canonical

traces for this class are:

canonical(Ti) <--> (Ti = MapObjectO v set-next(n)) v
(Ti = wapObject() v set-next(n>l.load(f,In,l)) v

(Ti E [MapObjectO v set_next~n)I.load(f,ln,l).draw(dxw,s))

w o n i d (T c) <--> (Tc = v (Tc = boxnew) v (Tc = cylnew) v (Tc = cffsMe(1))

- create equivalences based on canonical trace and output requirements; create

auxiliary functions and dictionary entries as needed

The equivalences for Mapobject are relatively simple, with the exception of the

equivalence for cfSelectAndLoad(), which is complex because of its interaction with

functions of the subclasses. The equivalences are:

T.Mapobject() = MapObjectO

T.set-next(@ = set-next(n)

T.load(f, In, 1) = %undefined for this class%

T.save(b, bs) = %undefined for this class%

T.draw(d, xw, s) = %undefined for this class%

41

Tc.cfSelectAndLoad(f, In, 1) =
conditions

MapBox::IsMe(l)=TRUE A

(boinew = new MapBox)->load(f, In, I)=TRUE

MapBox::IsMe(l)=TRUE A

(boxnew = new MapBox)->load(f, In, I)=FALSE

MapBox::IsMe(l)=FALSE A

MapCyl::IsMe(l)=TRUE A

(cylnew = new MapBox)->load(f, In, l)=TRUE

MapBox::IsMe(l)=FALSE A

MapCyl::IsMe(l)=TRUE A

(cylnew = new MapBox)->load(f, In, l)=FALSE

else

equivalences
equiv = boxnew;
ADD-TO-TRACE(Tab, IsMe(1));
ADD-TO-TRACE(Tmb, new);
ADD-TO-TRACE(Tbomew, load(f, In, I)),
where T m h is the class trace for MapBox
equiv = -;
ADD-TO-TRACE(Tab, IsMe(1));
ADD-TO-TRACE(Tmb, new);
ADD-TO-TRACE(Tbxnew, load(f, In, 1));
ADD-TO-TRACE(Tab, delete),
where Tab is the class trace for MapBox
equiv = cylnew;
ADD-TO-TRACE(Tmb, IsMe(1));
ADD-TO-TRACE(Tac, IsMe(1));
ADD-TO-TRACE(Tmc, new);
ADD-TO-TRACE(Tcylnew, load(f, In, l)),
where Tab is the class trace for MapBox and
Tcmc is the class trace for Mapcylinder
equiv = -;
ADD-TO-TRACE(Tmb, IsMe(1));
ADD-TO-TRACE(Tmc. IsMe(1));
ADD-TO-TRACE(Tmc, new);
ADD-TO-TRACE(Tcylnew, load(f, In, 1));
ADD-TO-TRACE(Tmc, delete(cylnew)),
where Tab is the class trace for MapBox and
Tcmc is the class trace for Mapcylinder
equiv = -;
ADD-TO-TRACE(Tmb, IsMe(1));
ADD-TO-TRACE(Tac, IsMe(1));
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file
format error: unknown object 63 line a>"),
where TU is the class trace for Utils, Tcmb i s the
class trace for MapBox and T m c is the class
mce for Mapcylinder

Tc.boxnew = boxnew

Tc.cylnew = cylnew

For MapBox, the equivalences are also relatively simple. Note that the equivalence for

set-nexto is included although it is not being overridden. This is because the

equivalence in Mapobject does not make sense for the subclasses, and it seemed to

make sense to include a new equivalence for it in this subclass to make clear its effect on

the canonical trace.

An auxiliary function is defined to assist in parsing the MapBox trace:

42

1 (s = Sl.%!.s3.!%) A true
(S1 = [MapObjectO v set-next(n)]) A

(~ 2 = [load(f.~n,l)]$) A

(S3 = ~draw(d,xw.s)l,',) . else false

The equivalences for MapBox are as follows:

legal box(1)
else

T.set-next(n) = setgext(n).L.D where parse(T, I, L, D)

I.load(f, In, 1) where parse(T, I, L, 0)
equiv = I.load(f, In, 1) where parse(T, I, L, D);
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file
format mor. bad box definition @ line <inn>")
where Tu is the class trace for Utils

T.savetb, bs) = T

T.draw(d, xw, s) =
conditions equivalences

parsen, I, L, D) A L r: load(f, ln, 1) A legal-box(1) 1 I.L.draw(d, xw, s)
else 1 %cannot draw without legal load0 frst%

Tc.cfIsMe(1) E cfIsMe(1)

- create outputs based on canonical trace

As mentioned above, for Mapobject, the only current instance output is the next

variable, which is NULL or the value from the set-next() call in the canonical trace.

Other instance outputs, while mentioned in Mapobject, are undefined in the superclass.

The class output from cfSelectAndLoad is set according to the canonical trace as shown.

43

V[load-ok](T) = %undefined%

Tc = boxnew
Tc = cylnew

value of boxnew
value of cylnew

V[buffer](T) = %undefined%

parse(T, I. L, D) A

L=load(f,ln,l) A
legalJox(1)

"box <locx> <lacy> <width>
<length> <height>" from load()

witb default height if none
specified

l2ETuRN VALUES

1111

parse(T, I, L, D) A

L=load(f,ln,l) A legal-box(1) A

draw rectangle parsed from 1 in
window defined by d, xw with

D-=draw(dxw,s) scale s
else %undefined% 4

For MapBox, as noted, V[next] and V[created] are unchanged from the superclass. Note

that while load-ok is a simple boolean result from a function to indicate its success or

failure, information must be contained in the canonical trace for this output to be valid.

This is true even if the infomation required in the canonical trace would have no

meaning beyond the scope of this function.

OUTPUT VALUES

V

44

V[isMelCTc) =

stmmp("box", 1.3) = 0
Tc = cfisMe(1) A

stmcmp("box", 1,3) # 0
else

FALSE (0)

%undefined%

(i) load Value
(i) save ArHl

(i) cfSelectAndLoad Value
cff sMe Value

load-ok (ovemdden)
buffer (ovenidden)

created
isMe

- verifr specification using Pumas Verification Checklist.

Veri& TAN specification to black boxes for each class.

The verification is as mentioned for the example given in the previous section. The

verification information accompanies the specification contained in Appendix D.

Write C+ + header for each object using TAM specification and veri& to specification.

The C++ header is created first from the TAM specification. Private and protected items

for storage by the object may be added as the code is being developed. Protected means

that the items are visible to subclasses but not to externai classes.

The Ctt- header for Mapobject is as follows:

class MapObject {
protected:

double Iocx, locy, height;

public:
MapObjectO;
Mapobject* set-next(MapObject* nextobj);
virtual int
virtual void
virtual void

load(Xv-opaque frame, int lineno, char* line) = 0;
save(char* buffer, int bufsize) = 0
dxaw(Diiplay* display. Window xid, int scale) = 0;

N class functions
static Mapobject* cfSeIectAndLoad(Xv-opaque frame, int lineno,

char* line);
1;

45

The load(), save(), and draw() are not implemented and are therefore written as 'pure

virtual functions', in C++ terminology, meaning that they are not implemented in the

abstract base class.

For MapBox, the C++ header is as follows:

class MapBox : public MapObject (
11 private

double width, length;

public:
11 class functions

1;
static int cfIsMe(char* line);

The 'public Mapobject' line means that it is inheriting from Mapobject and keeping the

public members of Mapobject public in this subclass. MapBox is largely empty since

the public interface for the subclass was mostly defined by the superclass. The private

entries differ due to the information that must be stored to represent a box (length and

width). Note that the information common to both boxes and cylinders, namely location

and height, are contained in the Mapobject definition.

Create C+ + objects and main()

- write using C+ + header and TAM specification

The operation of the C++ functions is as mentioned in the original requirements for

MapObjec t.

- verih versus TAM specification and C++ header

- verify cross-object access is correct.

Verification is as mentioned in the previous example.

Any lower-level C++ classes "discovered" should be developed by creating a black box

definition for the class and then designing as described above.

46

One additional function was identified in developing the C++ code, called nextfield(),

which assists in parsing the lines read in from a file. Its specification is not included

here.

5 Conclusion

This project was undertaken to better understand the Trace Assertion Method and to see

if it was a useful specification method for working with object-oriented design.

Notational changes have been added to the method to handle specific elements of object-

oriented systems, including class versus instance, constructors/destructors, and

inheritance. In addition, the method, which is designed for module specification, has

been integrated into a larger process for complete system specification, development,

and verification.

The results are mixed. TAM provides some useful representations for dealing with

modular code, and adapting it for object-oriented design was not extremely difficult, but

our interpretation of it does produce a voluminous amount of specification material, and

can lead to convoluted specifications in order to meet the TAM requirements.

TAM provides a body of important information for the designer in a well organized

format, including a clear idea of the input and output variables and their types, access

programs and their syntax, events of interest-i.e. state-via the canonical trace, and

values and window of validity for outputs. The organization of this information into

tables and the use of a specific structure makes it easy for the designer to find the

appropriate information in a TAM specification. The information maps directly into a

C++ header definition for a class. In addition, there are specific steps for verification of

the tables which allow a designer to immediately check whether a table is complete and
consistent with other pieces of the specification.

On the other hand, while TAM gives a good idea of how the various functions of the

module/class interact-such as the equivalences and the canonical trace-it does not

give a clear view of what each access program actually does. A black box description

seems superior in that regard. The concern is whether the TAM description

communicates information to the implementor in a useful form. It seems more oriented

toward assisting the designerkpecifier to ensure the Specification is complete, and less

toward helping the programmer understand how the code must perform. Nevertheless, it

48

is the responsibility of the programmer to learn to read these specifications in order,to

make this process easier.

Another problem is that simple stimulus-response pairs for an object can result in a

tangled canonical trace in order to hold certain program state information, For example,

to display XView Notice outputs, a new event must be in the canonical trace to indicate

exactly when such a notice appears. In addition, to represent simple return values from

functions requires that information appear in the canonical trace which is otherwise

unnecessary. In effect, putting this information in the canonical trace makes it more

difficult to decipher and develop, and makes it more complicated than the clear box that

will follow.

Finally, the method developed here produces large amounts of specification material for

a simple system. A good example of this is the equivalence for the save() function in

Map. The equivalence table for this is long, since it is completely non-procedural. The
code itself is much simpler since handling the cases is simpler when considered

procedurally. While some might argue that more is better, this creates problems in terms

of keeping a large body of material under proper revision control and insuring that

verification between various steps is completed properly.

The modified method and process presented here may be applicable for critical systems,

for those requiring more care and documentation, or for those involving a large number

of interacting objects. In these cases, the additional steps required under this method will

be worth the effort in order to better understand and document the system being

developed.

49

Bibliography

50

[Bartussek78] Bartussek, W. and D.L. Parnas, "Using Assertions about Trac'es to Write Absmct
Specifications for Software Modules," Proceedings of Second Conference of European Cooperation in
Informatics, tecture Notes in Computer Science, 1978.65, Springer Verlag, p. 211-236.

[Booch91] Booch, G., Object Oriented Design: Wifh Applications. 1991, Benjarnin/Cummings.

[Casais93]
Versailles, France, 1993.

Casais, E., et al., "Formal Methods and Object-Orientation," Tutorial at TOOLS Europe,

[Cook921
Proceedings of OOPSLA '92, Vancouver, BC, 1992.

Duke911 Duke, R., et a!., "The Object-Z Specification Language: Version 1," Technical Report
No. 91-1, Software Verification Research Cenue, Dept. of Computer Science, Tbe Univ. of Queensiand,
May 1991.

Cook, W.R., "Interfaces and Specifications for the Smalltalk-80 Collection Classes,"

[Erskine92] Erskine, N.S., "The Usefulness of the Trace Assertion Method for Specifying Device
Module Interfaces," CRL Report No. 258, Telecommunications Research Institute of Ontario, McMaster
University, August 1992.

[Erskine93] Erskine, N., Personal Communication, April 19,1993.

[Gehani86]
Wesley.

IHenricson92]
Document No. M 90 0118 Uen, Ellemtel Telecommunication Systems Laboratories, Oct. 10,1992.

[Hevne193]
Objects," IBM Systems Journal, 1993. (To Appear).

IHoffman881
Transactions on Software Engineering, 1988.14(9): p. 1243-1252.

IHoffman891

Gehani, N. and A. McGettrick, ed. Software Specification Techniques. 1986, Addison-

Henricson, M. and E. Nyquist, "Programming in C++: Rules and Recommendations,"

Hewer, A.R. and H. Mills D., "Box Structured Methods for Systems Development with

Hoffman, D. and R. Snodgrass, "Trace Specifications: Metholodogy and Modeis," IEEE

Hoffman, D., "Practical Interface Specification," Software-Practice and Experience,
1989.19(2): p. 127-148.

Koenig891 Koenig. A., C Traps and Pigalls. 1989, Addison-Wesley.

mavens921
Wing ed.. First International Workshop on Lclrch, July 1992.

IMcLw841
the Association for Computing Machinery, 1984.31(3): p. 600-627.

FIeira901
Nicholls ed., Z User Workshop: Proceedings of the Founh Annual Z User Meeting, Oxford, 1990.

[Meira92] Meira, S.R.L. and A.L.C. Cvalcanti, "The Moo2 Specification Language Version 0.4,"
Relamriao Tecnico l31.92, Universidade Federal de Pernambuco, Departamento de Infonnatica, Recife-
PE. January 1992.

Leavens, G.T. and Y. Cheon, "Preliminary Design of Larch/C++," U. Martin and J.M.

McLean, J., "A Formal Method for the Abstract Specification of Software," Journal of

Meira, S . R L and A.L.C. Cavalcanti, "Modular Object Oriented 2 Specifications," J.E.

Fleyer901

FIills86]
&Design. 1986, Academic Press, Inc.

Meyer, B., Object-Oriented Sofrware Construction. 1990, Prentice Hall

Mills, H.D., R.C. Liger, and A.R. Hewer, Principles of Information System Analysis

51

Mills87al
Sofhvare. September 1987, p. 19-24.

Mills, H.D., M. Dyer, and R.C. Linger, "Cleanroom Software Engineering", IEEE

Wills87bI
Systems Journal, 1987.26(4): p. 395-413.

Mills, HD., R.C. Linger, and A.R. Hewer, "Box structured information systems," IBM

Wills881
Computer. June 1988, p. 23-26.

Mills, H.D., "Stepwise Refinement and Verification in box-suuctured systems", !E€'.!?

[Pamas72] Parnas, D.L., "A Technique for Software Specification with Examples," Comm. of the
ACM, 1972. 15(5): p. 330-336.

[Pamas891
Specification," Technical Report 89-261, TRIO, Queens University, Kingston, Ontario, 1989.

[Rose921
Editor. 1992, Springer-Verlag. p. 59-77.

(Stepney921
Computing, 1992, Springer-Verlag.

[Trammell931

Parnas, D.L. and Y. Wang, "The Trace Assertion Method of Module Interface

Rose, G., "Object-Z", in Object Orienration in Z S . Stepney, R. Barden, andD. Cooper,

Stepney, S., R. Barden, and D. Cooper, ed. Object Orienfation in Z . Workshops in

Trammell, C.. SQRL Verification Questions, 1993.

Wegne1901
Oriented Messenger. September 1990.

Wegner, P., "Concepts and Paradigms of Object-Oriented Programming", Object-

[Wirfs-Brock90] Wirfs-Brock, R., B. Wilerson, and L. Wiener, Designing Object-Oriented Software.
1990, Prentice Hall.

52

Appendices

53

Appendix A: An Example Specification

54

SAVINGS TRACKER MODULE

-
DEPOSIT

WITHDRAW
BALANCE <floab

TYPE IMPLEMENTED: <Savings>

(1) SYNTAX

OUTPUT VARIABLES

CfloaD
<float>

ACCESS PROGRAMS

Consitency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

Func Name Value k g # 1 k g # 2 Arp#3
parse I <boolean> I <trace> 1 <trace> 1 <trace> E

ParSe(S,S 1,S2) =
conditions equivalences

true 1

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

Consitency (3): AU RHC values are unique:

Else insures partitioning.

Constants, therefore always defined.

0 True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence function for each event class.
There is one each for DEPOSIT. WITHDRAW. and BALANCE.

55

T.DEPOSIT(x) E DDEPOSIT(x).W where parse(T, D, W)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LI-IC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:
One value, therefore unique.

nopartition.

T defined by LHS, D & W defined by T from parse().

D is string of deposits; D.DEPOS1T.W maintains canonical trace structure.

T.WITHDRAW(y) =

where parsen, D, W) A D = [DEPOSIT(xi)]:0 A

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): AU RHC values are unique:

else insures partition.

T defined by LHS

One value, one error.

T is canonical by definition.

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): 'Ihe predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'trw':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

nopartition.

T defined by LHS.

One value.

T is canonical by definition.

56

(4) VALUES

OUTPUT VALUES

where parse(?', D, W) A D = DEPOSIT(Xi) l~O - A W = [w I T H D R A W (~ j) l ~

Completeness (3) : The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

T defined by LHS, rest are defined from T according to canonical trace.
Consistency (2): All traces specified in the RHC of the equivalence sect~on are canonical:

NIA
Consitency (3): All RHC values are unique:

No partitioning, therefore unique.

Nopytitioning.

RETURN VALUES

57

Appendix B: The Requirements Document

58

WestWorld

0 WestWorld - filename

Fi(

O C I 0

Interface Requirements
Document

Alex L. Bangs
Oak Ridge National Laboratory

Center for Enpineering Systems Advanced Research

59

Table of Contents

I . Introduction and Overview .. 61
A . A Simulation of Cooperating Mobile Robots .. 61

C . Mapper: A Prototype for the Interface .. 63
D . Overview: Interface Requirements .. 64

I1 . The Interface Requirements Specification ... 66
A . User Interaction and GUI Specification ...

1 . Program Invocation .. 66
2 . Initial Program Actions .. 66
3 . Program Menus and Actions .. 66

a. The File Menu .. 66
b . The Map Menu .. 69
c . The Robots Menu .. 71

4 . Mouse Actions ... 71
5 X EventsMrindow Manager Actions 73

B . HELIX Interface and Interactions .. 73
1 . HELIX Events .. 73
2 . HELIX SharedMemory ... 74

a. RobodSimulator Interface .. 74
b . Add-on Interface ... 75

C . Supporting Specifications .. 75
1 . Map Format .. 75
2 . System Interfaces ... 76

a. File System (FS) .. 76

B . An Examination of Other Simulation Systems .. 62

. ...

b . Memory Management (MM) ... 76
D . Summary of GUI ELEMENTS ... 77

Subappendix B: Glossary .. 81

III . Incremental Development Plan ... 78
Subappendix A: The XView Toolkit .. 79

Subappendix C: References .. 82

I. Introduction and Overview

A. A SIMULATION OF COOPERATING MOBILE ROBOTS

Tbe reasons for constructing a simulator for conducting experiments in cooperation are multi-fold. Firsi a
simulator will allow more agents to be simulated than would be practical in a laboratory environment; at
least 10-20 robots is desired. Currently in CESAR we have three robots, and may purchase more in the
near future, but having as many as 10 or more robots is not realistic. Second, it allows testing of some
elements of cooperation, such as communications protocols and task planning algorithms without dealing
with "real" robot problems. These problems include operating multiple sets of sonar sensors in the same
room, setup time for getting all software loaded on robots, locating robots at desired starting positions,
having operators on band to monitor each robot, etc. While experimentation with real robots is essential, it
can be done in a later phase once the basic infrastructure and algorithms for cooperation have been
developed.

?he basic architecture of the simulator is to be based on HELIX. HELIX is a system developed in CESAR
to provide a communications system for processes running on a heterogeneous network of systems
[Jones9%, Jones92bl. This system allows both shared-memory and message-passing communications.
Since our current base of robot code runs under HELIX, it makes sense to base the simulator and the
experimental element of the work on HELIX since it will allow use of current code as well as make the
integration of our system easier.

The main process of the simulator will be a graphical user interface that will show tbe progress of the
various robots in the environment via animation, and will display related data (sensor sweeps, confidence
maps, communicated data, etc.). The simulation will be linked into the simulations of the various robots
via €EL=. Using HELIX wili allow the use of both simulated and real robots during a simulation run.
This ability to display real robot status will make the interface useful as a console for a multirobot
opefation.

The simulation of each individual robot simulator could vary according to the complexity of the
simulation. The g a d design of a robot simulator using HELIX would use a separate process to handle
the cooperative aspects of control, while other processes would handle the other functions of robot control.
In a simple simulation, these processes could all be rolled into one process. For a more complex robot, a
large number of processes might be required.

61

Interface Y
t

Robot Sim llat or Cooperation
Coordinator

HELIX Network

HELIX Network

I A A A A +, Sirnuator $=l* Simulator +I-.
I

Fig.1: Interface and Simulation Components

Since each of these separate robots is represented by a cooperation process, the view of the whole system
as seen by each robot or the interface is basically a collection of cooperation processes. Figure 1 shows
one possible simulation setup. Note that also a component could be a real robot rather than a simulation.
The HELIX network inside each component is separate from the network between components. This will
be handled by a special version of HELIX called N-HELIX, to be developed.

Construction of the complete simulation system will involve not only building the user interface, but also
the simulated robots (including simulations for actuators and sensors), simulated “worlds”. and the
processes required for cooperation. This document focusses specifically on the requirements for the
interface portion of the simulation. ”be contents include a discussion of prototypes of the interface already
developed, the role of the interface in the system, a breakdown of requirements between the interface and
add-on components, and the requirements specification of the interface, and an incremental development
Plan.

B. AN EXAMINATION OF OTHER SIMULATION SYSTEMS

Several other simulation systems have been examined, both to determine if they were up to the rask of
cooperating robot simulations as well as to note features for possible inclusion into the simulator being
developed.

Fust, a few simulations capable of working with multiple robots have been constructed. A simulator is
being developed at RIKEN specifically to support work there in multirobot cooperation [Habib92]. It
currently consists of a simple system capable of displaying an environment map and the robot movements.
The system runs on a Silicon Graphics machine and uses IPC to communicate between the display process
and the robot simulation processes. As of 7/92, a separate ultrasonic simulation had been completed, but
was still to be integrated into the full simulation [Asama92].

62

Another simulation capable of supporting multiple robots is one being used by Lynne Parker at MITT. This
simulator, originally developed by Yasuo Kagawa of Mazda while visiting MIT, runs in Common Lisp on
a Macintosh, and has been extended by Ms. Parker. Due to running on a Macintosh and under lisp, its
operation is slow rParker92b; Parker92cl.

Commercial simulation packages, such as IGRIP, are undesireable because of their cost and limitations
(such as the local limitation that it can only be run on one machine).

Several simulations that have been examined might be capable of multirobot work with some adaptation.
EDDIE, from CMU, is purported to be capable of multirobot simulation, but a workstation is required for
each robot to be simulated, thus limiting its ability to scale to large populations of robots [Gowdy91;
ParkeB2bl .

Yutaka Watanabe has developed a sophisticated simulation system at ORNL which is specially designed
to work with an omnidirectional platform also developed at O m . He is planning to extend this simulator
to be capable of handling more than one robot at a time. The simulation is feature-packed, with a large
number of display options available. These include the usual ability to monitor the position and orientation
of the robot as well as the wheel orientations on the platform; a map display with a grid; fuzzy rule
evaluation; vision, which shows a 3D perspective view of the robot based on the world model; sonar,
which shows the sonar beacons scanning on the map; and an option to display the simulation's "real"
position for the robot vs. the estimated position kept by the user program running on the robot. He also has
a tool that allows the map to be dumped out and edited by idraw for printing or inclusion into other
documents Watanabe931.

Another simulator is the one that has been developed for use in the robotics lab at Tsukuba University with
their small robots called Yamabico. This simulator is for single robots only [Kimoto92a]. A large amount
of time was invested in developing the sonar simulation for this system, including two basic types of
reflection which can be chosen-a simple model and a more complex model using diffusion. A good
feature of this simulator is that is was developed to run programs written for the robot without
modification [Kiioto92bl.

Finally, a simulation bas been developed at the University of Michigan for experimenting with disuibuted
AI problems. This simulation is Common Lisp based Mont903. Having this Lisp-based makes it more
difficult to integrate with CESAR systems.

porrance929 provides a useful discussion of simulation problems and benefits.

c. MAPPER: A PROTOTYPE FOR THE INTERFACE

A very simple prototype of an interface was initially written in Smalltalk. While this prototype was not
very sophisticated, it did give some ideas on object-oriented programming and interface elements.

A second prototype called "mapper" was written, using C++ and HELIX. It is a very simple program for
loading object maps and displaying robots moving in the map environment. The robots are controlled by
separate processes which give their position to the mapper program via HELIX shared memory, and send
and receive events from the mappr.

The GUI was built using a Sun tool cailed "GUIDE" which allows interactive building of an interface, and
dumps out XView graphics code and call-back stubs (C++ in this case) whicb on then be modified by the
programmer.

Some observations about the mapper interface:

63

mapper allows only one map to be loaded at a time. If a new map is loaded, it destroys all the robots
currently in the map, but does not ask the user if this is ok, nor does it send quit messages to the affected
robot simulators.

mapper only allows one coordinate system, i.e. the current map, to be worked on; it does not handle
multiple spaces or multiple windows. This is probably sufficient for most simulations. If a large complex
space needs to be simulated, it can be done all in one map.

mapper creates an event menu for each new robot to allow individual control of that robot. This is does
not scale well to many robots, however, since there is not enough menu-bar space. Therefore individual
robot actions will have to be handled both or either through a click-on-the-robot type interface to pop up a
menu, or through a command-line/dialog box interface where the robot number is specified. While the
current version has a menu to send messages to all robots, this is also probably not good for many robots.
Thus a grouping scheme for robots would be useful, and then use a dialog interface to send an event to all
members of a specific group.

when a robot is created, the user locates and orients the robot with the mouse. This will have to be made
optional, to be selected by the simulator. For large numbers of robots in a simulation, manual placement
may be unwieldy.

mapper adjusts the map to fit the window size; this should be improved to first adjust the map to the
window, then adjust the window to fit exactly to the map. This will look better.

when a map is large enough that it scaling it will go beyond the minimum size for map magnification,
then the mapper window should be scalable to accommodate the larger size.

Some internallcoding observations:
XView objects as built by GUIDE are awkward and basically smcts
The mapper was not very object-oriented; a new object was added later, RobotX, which made the design

more object-oriented. Some effort was made to design this object with box structures.

D. OVERVIEW: INTERFACE REQUIREMENTS

The interface has two primary roles: display and control. For display, the user should be able to see the
locations of the robots and the objects in the simulated world. The user should also be able to focus on
specific items of a robot’s status, including position, velocity, sensor status, and internal representation
information. For control, the user should be able to (a) create new simulated robots and place them the
environment, (b) delete robots from the environment, (c) start and stop robots in the environment, (d) have
some teleoperaion capabilities, Le. directing a robot toward a new goal, etc.

In addition to manipulating robots, the user should be able to manipulate the virtual world in which the
robots exist. The user should be capable of creating, changing, moving, and deleting objects in the map as
well as changing the dimensions of the map. In addition, loading and saving map files (which are text files
using a special object description language), and allowing maps to be loaded on top of one another, as well
as allowing certain maps to be known a-priori by the robots, while other maps are not known are dl
desired.

The interface will have two primary modes of interaction: with the user via the GUI, and with the
cooperating components. The GUI will be done in XView (an X windows toolkit), and the graphics code
should be as isolated as possible to permit porting to another window system (see Subappendix A for an
explanation of why XView was chosen). The system will use HELIX as its communications system for
cooperation, in order to allow connectivity to existing robot code.

In addition, the interface will probably need to be spIif into multiple processes to allow new simulation-
specific components (“add-ons”) to be added later without changing the interface internals. For example, if
we want to add a capability to the simulator to display a sensor map in a window, it makes the most sense
to put this into a separate process that maintains its own window and communicates directly with the
sensing process. Therefore, the interface will have to have yet another mode of communication, to add-on
elements. Communication between interface elements should be done via HELIX.

64

Given this ability to extend the interface with add-ons, the primary interface element should include the
basics from above. This includes the basic control functions, Le. create/delete/start/stop/relocate/restart,
and basic display functions, i.e. display map, robots, basic status info (position, velocity). Abilities beyond
this should be developed in add-ons. This includes displays such as internal and sensor information and
special control functions. Where possible, the interface should be designed to easily accomodate new
robots or simulators with little or no modifications to the core interface.

A X-Windows

e

Components

I ’

Add-Oris

Fig. 2: Connections to the Interface

Not all the functions desired of the interface have to be provided in the first increment. In fact, the add-ons
are perfect for later increments, as are some of the advanced map handling and event passing features
described above. An increment plan is presented at the end of this document.

65

II. The Interface Requirements Specification

A. USER INTEFUCTION AND GUI SPECIFICATION

J. Prwram Invocation

On invocation, the user can optionally give a filename of an initial map to the program. Any errors on
loading this initial map are reported as below. Other than this, the program does not have any specific
command line options. It should, however, accept and pass to XView any X or XView options from the
command line. See the xview man page [Sun911 for a list of XView options.

2. Initial Promam Actions

The initial screen presented by the program looks like this (see Subappendix A for an explanation of
XView graphical elements):

[WinMap-EmptyI
This screen should be sized so that the default map size, 12.8 x 12.8m, fits the canvas exactly using a pre-
selected d e (see below for information on map size and scale).

"be <NONE> indicates that no map tile has been loaded. If there is a problem setting up X, then an
iqpmpriate emt is written on the invoking terminal and the program terminates.

3. fi-

a. T h e File Menu
The File menu consists of the following options:

Load...
Save ...
Quit [default]

Selection of the Load... option presents Ihe following popup box:

66

-0 WestWorld: Load Map

Filename: <string>

1 I
lPopupL-dMapl

Filename is set to the last file loaded or the last file saved (whichever is most recent) or blank.

The sideways (unpinned) pin in the header means that the box will disappear when the Load button is
pressed, unless the pin is pressed, in which case it will stay on the screen. If the pin is pressed again, the
box will disappear, effectively canceling the Load... command.

If the file cannot be opened, then the following notice appears:

The file could not be opened.

[NoticeOK-FUeOpenErr]
Other filesystem errors that will be reported are "An error occurred reading the file", "An error occurred
writing the frle", and "An emr occurred closing the file". If the file can be opened but there is an error the
data format of the file, this error is reported as verbosely &$ possible, to allow the user to correct the e m r
in the file.

Map file format error: <error>

fNoticeOK-FjieFormat Err]
See "Map Format" for details on the correct format for the map files. For either of these errors, the Load
box remains on the screen again to allow tbe user another try.

If the file i s correctly loaded, the new map objects plus any previously loaded are drawn on the SCreen to
scale. Note that the map origin is its lower left-hand comer. The objects are scaled (to the integer part of a
fiatCtional scale) based on a default scale which can be changed by the user (see below). Invisible objects
are drawn with dashed borders. The header is updated to show the filename (last component of path only)
of the latest map file loaded. Finally, once the scale has been determined by the current screen size, the
screen is re-sized to fit the map outline exactly. This gives us a window as below.

67

[WinMap-WithObj]

Selection of Save ... brings up a box as with the Load ... command. Again, this box can be disposed of by
pressing on the pin. The filename is set to the last file saved or the last file accessed via load (whichever is
most recent) or blank.

~opupSnveMap]
When the Save button i s pressed, the file is checked to see if it already exists. If so, she notice box shown
is displayed.

File Exists. Overwrite it?

[NoticeYN-FUeOverwrlte]
If Save is selected, the file is overwritten. If Cancel is selected, the Notice disappears and the Save Map
window remains on the Screen for the user to enter a different file name. If an error occurs during save, a
notice appears detailing tBe emor (either "File could not be opened for write." or "Error writing file.");
when dismissed, the Save box is put back on the screen to try again.

Once Save has successfully been selected, a file is written out with a comment at the top with the filename,
current dace and time, a note that it was automatically written by the named program, and

Selection of Quit terminates the program. If any map objects have been modified or added, then the
following notice appears:

The map has been modified. Quit anyway?

Iy.;l pq
[NoticeOK-MapModQuit]

68

If No is selected, then the program continues operation. Otherwise, if Yes was selected or no map objects
were modified or added, then QUIT events are sen1 via HELIX to all simulation processes that are
registered with the program, and the program terminates.

b

New Map Object

Box Cylinder Polyline

F l

b. The Map Menu
The Map menu consists of the following options:

Redraw [default]
<blank line>
Update HELIX Map
Clear Map
Change Map Size ...
New Map Object ...

Selection of Redraw causes all objects (robots or map objects) in the main window to be redrawn. This
also occurs if the window is resized via the window manager.

Selection of Update HEWX Map causes the bitmap representation of the map in
HELIX memory to be cleared and then rescanned. Once this is complete, a MAPUPDATED message is
sent to all registered clients.

If the user selects Clear Map and h e map is currently empty, then nothing happens. If, however, the user
select Clear and there are objects in the map, then the following notice appears:

Are your sure you want to clear the map?

f NoticeYN-ClearMap J
If the user answers Yes, then the map is cleared of all objects but the map size remains the same: the
screen is also redrawn to reflect the new blank map. If the user answers No, then there is no change.

The Change Map Sue ... selection causes the following window to appear:

Width: d1%.2f> Length: <f1%.2f>
Scale: -4ntz-

[PopupMapSize]
If Change is then selected, the values of the width and length fields are checked. If they are less than 1 .O or
not legal numbers, then a notice box appears with an OK button and one of the following messages:
"Width and Length must be at least 1 m." or "Width and Length must be floating point numbers."
Otherwise, the map size is changed, and the map is redrawn with objects and robots to scale.

69

The three top items are an exclusive choice list, with Box being the default choice when'the box appears
for the fmt time. If the pin is pressed or the box ignored, then nothing happens. If the New button is
pressed, the New Map Object box disappears and one of the following windows appears, depending on the
selection made:

'

0 Map Object: Box

Map File: <string>

Position x: <fI %2f> y: dl %.a>
Width: <fl%.2fs Length: <f1%.2f> Height: <f1%.2f>

$visible IAddl F l Fl I [PopupMapObjBox]

I 0 Map Object: Cylinder

Map File: <string>

Positionx: d1%.2f> y: d1%.2f>

Radius: <f1%.2f> Height: d1%.2f> I

[PopupMnpObJCylinder]

Map Object: Polyline l o
Map File: <string>

Position x: d1%.2f> y: cf1%.2f>

Height: <f1%.2f>

Point List:

dl%.2f>,<f1%.2f> ,...

[PopupMapObjPolyline]

For a new object, Map File: has "<new>" in it, and all other values are 0.0. If the user pushes the pin, the
new item is not created. If Change or Delete is pressed and Add has not yet been pressed, then the
following notice appears:

The object has not been added.

~~

[NoticeOK-ObjNotAdded]
If Add is pressed and any of the Length, Width, or Height parameters are zero or less, then a notice with
an OK button and the following message appears: "LengtNWidWeight must be greater than zero". If the
object has been placed so all or part of it is outside the c m n t map size, then the following notice appears:

70

Object outside map boundaries.

[NoticeOK-ObjOutside]
Otherwise, the item is added to the Map, and tbe map will be redrawn to show the object.

c The Robots Menu
The Robots menu consists of the following options:

Summon ... [defauit]
<blank line>
Start all
stop all
Quit all

Selection of Su mmon... causes the following box to appear on the screen:

I I -0 Robot Summon

[PopupRobotSummonl
The box can be dismissed via the Summon button or the pin. If the summon button is pressed and a valid
robot ID has been entered (range of l...lOOO), then the Robot Control box (below) appears. If the ID is
invalid, then a notice appears with the following message: "Invalid I.D.". The up/down arrows next to the
field allow the number to be incremented and decremented, but not below 1. The maximum is IOOO. Note
that this box can be handy if the robot has driven off screen and the mouse actions below Cannot be used.

Selection of Stan All sends START even& via HELIX to all simulation processes registered with the
program. Stop All sends STOP events similarly, and Quit All sends QUIT events similarly.

If the left mouse button is clicked while the pointer is inside a map object, a box from one of the three Map
Object boxes (above) appears, depending on the type of object. Changes a n be made to the object. If no
changes m made, then pressing the Add or Change button gives the following message:

The object has not been modified.

[NoticeOK-ObjNotMod]
Otherwise, the Add acts as given above, and replaces the Map File srring wirh caddeb. Change replaces
the current object with rhe given modifications, and replaces the Map File field with <changed>. If Delete
is pressed, then the object is removed from the map. If any of Add, Change, or Delete are successfully
done, then the Map is redrawn to show the object change.

If the middle mouse button is clicked inside an object, the Map Object box appears and then the object
tracks the mouse moving around the screen. When the mouse button is released, the equivalent of the
Change button is done, i.e. the map is updated and redisplayed.

71

If the left mouse button is clicked while the pointer is inside a robot (or within some reasonable bounding
box, since robots may be round or rectangular but not oriented with the XY axes), the following window
appears:

0 Robot Control

Robot ID: -<int>- e9621
Position x: <fl%.2f>

Robot Type: cstring/ro> <reaVsim>

y: cfl %.a> a: <fl %.a> Speed: 41 %.2f/readonly>

Status: <stringhead-only>

-1 Cont. Update: [m -1

[PopupRobotControl]
This box provides not only basic status information on the robot retrieved from HELIX memory. It can be
dismissed as the with the map object box. This box also features two pull-down menus and a special row
of buttons, discussed below. If the middle button is pressed inside a robot, then the window also appears.
In this case, however, the interface sends a REQUEST-PLACEMENT message to the robot. If the robot
returns PLACE-OK, then the robot moves around the screen and follows the mouse for location and az (as
with initial placement); once the placement is finished, the new position is set in HELIX memory and
PLACE-SET is sent to the robot. If the robot returns PLACE-REFUSE, then the following notice
appeZUs:

The robot has refused the update.

[NoticeOK-UpdnteRefused]

Tbe Events menu has the following items:
Start
stop
Ping [default]
Quit

Ea& of these send a corresponding HELIX event to the robot.

The Add-ons menu is initially empty, but can be added to via events sent from add-on programs.

The Single Update button reads the latest data from the robot in the HELIX memory and displays that in
the box. If the Cont Update/Start button is seleckd, then the display is periodically updated from WELIX
memory, not necessarily as fast as other graphics updates on h e screen. When the Cont Update/Stop
button is selected, the screen is not updated unless Single Update is chosen. If the Send Change button is
pressed, the interface sends a REQUEST-PLACEMENT message to the robot. If the robot returns
PLACE-OK, the new position is set in HELIX memory and PLACE-SET is sent to the robot.. If the robot
returns PLACE-REFUSE then the notice shown above appears.

If the Robot JD value is changed, then the screen is updated for that robot If Cont Update/Start button is
selected, then continuous updates are displayed for the newly selected robot. If the Robot ID value is not
valid for a registered robot, then <invalid ID> is displayed in the Status field.

72

5. X E v e n W indow Manager Actions

There are some events that have to be monitored by the program that are a result of user actions but come
from the window manager rather from the progmm's direct interactions. These can usually be monitored
via call-backs and could therefore be considered stimuli rather than conditions; this will depend on h e
specifiers preference. See "System Interfaces" below for information on more system conditions.

These conditions fHeiler921 and their cooresponding actions:
X:Destroy(stams) where status =

DEs~OY-C€iECKING ->
if map needs saving, ask if ok to quit; if not, veto destroy; otherwise send QUIT
messages to all registered simulation components and allow destroy.

ignore

prepare for death; should clean up memory

prepare for death; no need to clean up memory

DESTROY-SAvE_YOURSELF -->

DESTROY-CLEANUP -->

DESTROY -PROCES S -DEATH -->

X:Repaint -> redraw map and robot objects

B. HELIX INTERFACE AND INTERACTIONS

Once the program has been invoked and the initial screen drawn, the program can respond to the basic set
of HELIX events. These are NULL-EVENT, QUIT. EPING, ACK, QUIET, START. and STOP. The
actions for these are the following:

NULL --> 110 response
QUIT --> terminate program; send QUIT to registered simulation processes
EPING --> return ACK event to sending process
QUIET --> no response
START --> no response
STOP -+ no response
ACK -> no response

In addition. a set of events has been defined especially for interfacing with simulation components. These
are: ROBOT-STAR'I", ROBOT-SHUTDOWN, PLACE-REQUEST, PLACE-OK, PLACELRERJSE,
PLACE-SET. ROBOT-STARTUP is sent by an initializing sirnulation component to register itself with
the interface. ROBOT-SHUTDOWN is sent by a robot when it is shutting down to let the interface know
that it should dispose of the robot. Robots send this when they have received a QUIT, usually from the
interface.

When ROBOT-STARTUP i s received, the interface will have to register the robot that the message was
received from. If the robot wishes to place tbe robot in the environment it also sends a PLACE-REQUST
message. With this message, the interface goes into a special mode for user interaction. The robot image is
drawn on the screen at the mouse position, and follows the mouse around. If the middle mouse button is
pressed, the robot rotates its az value counterslockwise. If the right mouse button is pressed, the robot
rotates its az value clockwise. If the left mouse button is pressed, the robot is placed at that point, and a
PLACE-SET message is Sent back to the robot simulation component. Note that there is no way to abort
the robot placement sequence. HELIX events received during this sequence are queued. If the
PLACE-REQUEST message is not received, it is assumed that the robot simulator has selectec the
position of the robot before sending ROBOT-STARTUP, and the robot is drawn at the coordinates given
in the HELIX shared memory.

73

The other HELIX interface is with Add-on components. At this time, this feature will not be included.

The following table illustrates the HELIX communications that takes place under certain specific activities
of the simulations and the interface:

send <- ROBOT-SHUTDOWN
send <-- ROBOT-SHUTDOWN

send PLACE-OK if placement ok
send PLACE-REFUSE if not

write robot oosition to HELIX rnemorv

a. RobotiSimuiator Interface
This section discusses the PostIts in shared memory which will be required. The interface will have to
determine the current robot status and position. Therefore the following PostIt will be needed for each
robot:

struct robot-corn (
float x;
float y ;
float az ;
float speed;
char status[80];
int time;
short type;
short global-ID;
short intype-ID;

short flags ;

/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *

/ *

x in meters * /
y in meters * /
az in radians * /
speed in m/sec * /
string holding robot status info * /
time stamp to indicate update * /
robot type * /
ID of the robot vs. all others * /
number of this robot among those
with the same type * /
flags
bit0 = 1 if real robot, 0 if sim * /

74

Also, the map of visible and invisible objects has to be placed in memory. The visLob j s-map contains
only the visible objects; a1 1-ob j s-map confains both visible and invisible objects. The maps are
currently fixed size, and sized to fit into 3% based on an OS-9 HELIX limitation. If a map is smaller than
12.8m x 12.8m, then the space beyond that size is considered empty and is cleared by the interface. If a
map is larger than 12.8m x 12.8m, it wiIl be cropped at the 12.8m x 12.8m border for HELIX
representation. This may be fixed in a future version.

struct vis-objs-map {

I
char grid[1281 [128] [32];

struct all-objs-map {

1
char grid[1281 (1281 [321;

b. Add-on Interface
A PostIt will be needed for the interface to communicate certain information with Add-ons. For now, this
infomation is nil.

struct add-on-interface {
I

c. SUPPORTING SPECIFICATIONS

Format

The map file consists of lines of interpretable dau. Each line is considered a separate entity. Each map line
can be nil (blank line), start with a ## (comment), or have a map command, one of "map", "cyI[inderj", or
"box". The a w s > (non-white space) after the command means &at the rest of the command name is
ignored if the fmt three letters are matched, i.e. cylinder, cyl. or cylfoo are all legal for cylinder. The
<vis> parameter, which is optional, indicates whether an object is visible (Le. a priori known to the robot)
or invisible (only can be found via sensors). The default condition is visible. The <height> parameter, if
not present, defaults to 2m.

Maps may be overlayed with one another, Le. multiple map files may be loaded to make a single complex
map in the simulation memory. If, however, separate maps are loaded and have different map sizes, the
largest map size is assumed. The map sue defaults to 12.8m x 12.8m and to a scale of 40; the default is
used if no map command is encountered.

75

line-list := clocxg>,<ws><locyg><middle><locxg>,<ws>clocyg>
middle := (<I~X~>,CWS><~~Y~><WS>] ' I <WS>

NOTE that the first coordinate must be repeated to close the polyline
ws := <fab>Icspace>
nws := any character not cws> or <CR> (including nil)
vis := * ~ i ~ " ~ n w s z c w s > I ~ i n v i s ' ~ n w s ~ c w s ~ I ~ w s ~
nil := empty string

2. Svstem Interfaces

a. File System (F S)
The fde system will present several conditions to the system which will have to be dealt with. These are
already dealt with in the requirements above. Errors include: FS:FileExists, FS:FileDoesNoExist,
FS:WriteError, FS:ReadError.

b. Memory Management (MM)
This system is not dealt with in the requirements above. If a memory allocation (object constructor,
malloc, etc) returns an error, program should put up a notice that memory is low. A QUIT event is send to
all registered simulation components. The program then checks to see if a save is needed; if so, brings up
the save box to save the current map. After a save is complete, the program quits automatically. All menu
items except Quit and Save are disabled during this procedure. If a second memory error occurs during
this shutdown procedure. the program terminates immediately.

76

D. SUMMARY OF GUI ELEMENTS

W indows/PopupslNotices
WinMap

PopupLoadMap
PopupS aveMap
PopupMapSize
PopupNewMapObj
PopupMapObjBox
PopupMapObjC ylinder
PopupMapObjPol yline
PopupRobotS uaunon
PopupRobotCon trol

NoticeOK
NoticeYN

Menus
Window Menu Item
MapWin File Load .. .

Save ...
Quit

Update HELIX Map
Clear Map
Change Map Size ...
New Map Object ...

Robots Summon .._ [default]

Map Redraw [default]

start All
Stop All
Quit All

PopupRobotConrrol Events Start
stop
Ping [default]
Quit

Add-Ons enone>

Misc. Stimuli

XVIRepaint
xv/Destroy

77

HI. Incremental Development Plan

This section describes the incremental development plan. This plan roughly states which features will be
included into each increment as the software is developed. Each increment will be specified, coded,
verified, and tested individually. Each increment also must a functional, runnable program or group of
programs.

If functions have buttons or menus in an early increment but are not yet implemented, the following notice
appears if they are selected:

Increment 1

This function has not been implemented.

IConfirml
[NoticeOK-FuncNotImp]

Initial window with menus and all menu items present. All menu items are stubs, except Redraw and
PopupMapSize will be available.

Increment 2
Map loading, saving, clearing, and drawing on screen available; only box and cylinder objects allowed
(NOTE: polylines not included until increment 7).

Increment 3
@-screen editing of map objects allowed via mouse clicks. New map objects may be created. Visible and
invisible objecbs, map size information in file.

Increment 4
Initial robot/HELIX interface. Basic event interface + robotsatus interface as defined in this document.
Object map from interface not yet available.

Increment 5
Addition of robot control via mouse clicks on screen, Robot control box and submenus added. Robot
Summon available.

Increment 6
HELIX shared memory object map supported by interface.

Increment 7
Polyline objects added.

78

Subappendix A: The XView Toolkit

A Note on XView Interface Elements

Figure 3 shows some of the graphical elements used in the sample screen displays below [Sun89].

Control areas, as shown in Fig 3, are required for certain interface elements such as buttons, menus, slides,
tex t input, etc. Another type of area on a window is a Pane. This area is typically a text or graphics area
(the latter k ing called a Canvas).

Control
area

Window menu button

Header aka Title bar

/ Pull-down menu

Pane I
Pin (on pinable pop-up windows) re
Pin, in unpinned position v

Figure 3: XView Interface Elements

Pins appear on certain windows which may be designed to stay on the window if the user chooses. If a
window comes up with the pin already stuck in, then the window will stay in place unless the user
explicitly dismisses it or pushes on the pin. If the pin comes up unpinned, then the window will disappear
after it is used unless the user pins it in place. If the window is made to disappear by unpinning it, this is
equivalent to cancelling any function the window was to perform. Note that actions using the pins do not
send a specific stimulus to the program. Thus, if a box is cancelled by pushing its pin, the program does
not note that the box bas disappeared, but will never receive any other stimuli from the box.

Note that using pin-able pop-up windows allows for non-modal operations, i.e. it is possible to bring up
these windows, but then continue working with other windows. There are also modal windows, that must
be acted upon before other work can be done with the program. In XView, these are called Notices, and
tbey are used for some functions in the program below.

Menus are implemented via burtons that, when clicked on via the right mouse button, present a pull-down
menu. If the left mouse button is pressed, a default selection (if set by the programmer) is highlighted
automatically.

Why XView?
The graphical user interface will be built using the XView toolkit. This toolkit has been chosen because (a)
we have an interface builder for this toolkit and (b) it is the basis for the window tools we use in our
laboratory (Sun's Openwindows). Writing programs for basic X windows is more universal, but also much

79

harder. Using a tookit such as XView or Motif will save a considerable amount of tiine. XView was
selected over Motif because it is better supported in our laboratory, and I have. been told tbat it is easier
and more logical to program than Motif. One final note: XView libraries are available free, which should
allow Ws to run on any X windows-based system.

80

Subappendix B: Glossary

Add-ons-new interface elements added to provide information from a specific simulation.

Cmponent -a process or group of processes that represent a significant part of the simulation-i.e. a
robot or the interface.

Cooperation Prcxess--the process in a component that is responsible for communicating with the other
components in the system, including other simulation components and the interface.

Element- part of a component, i.e. a process that is part of a single robot simulator, or a process that is
part of the interface.

GUIIIE-A Sun-based tool for developing XView interfaces. GUIDE stands for Graphical User Interface
Development Tool.

HELIX-a system for communications between processes, including message passing (events in HELIX
terminology) and shared memory (PostIts in HELIX terminology). N-HELIX is an extension to HELIX
tbat supports a hierarchy of HELIX networks.

Interface--fers to the component of the simulation that presents the graphical user interface to the user.
This component is also called the “Master Simulator” since it conuols the actions of the other components

Registered Process/Robot/Simulator-a robot simulator is “registered” with the interface if it has sent a
ROBOT-STARTUP event to the interface, indicating that its position should be tracked.

Robot-a component of the simulation system, possibly consisting of multiple processes, and either
controlling a real robot or a simulated robot.

XView-a Sun-developed X-based graphical user interface library which is comparable to Motif. The
system will use this library as it is available on ail our Suns.

81

Subappendix C: References

[Asama921
July 28, 1992.

Asama, M.. Conversations with Dr. Asama and lab personnel during visit to RIKEN,

[Gowdy91]
Robots,'' Robotics Institute, Carnegie Mellon, February 8, 1991.

Gowdy, J. and C. Thorpe, "The EDDIE System: An Architectural Toolkit for Mobile

W i b 9 2 1 Habib, M.K., et al., "Simulation Environment for An Autonomous and
Decentralized Multi-Agent Robotic System," Proceedings of the I992 IEEE/RSJ International
Conference on Intelligent Robots and System Raleigh, NC, July 7-10,1992.

[Heller92]
OReilly & Associates.

[Jones92a] Jones, J.P.. AL. Bangs, and P.L. Butler, "A System for Simulating Shared Memory
in Heterogeneous Distributed-Memory Networks with Specialization for Robotics Applications,"
Proceedings of the IEEE Infernarional Conference on Robotics and Automation, Nice, France, May 12-14,
1992.

Heller, D., XView Progrutnming Manual. 3rd ed. The X Window System, Vol. 7. 1992,

LJones92bl
heterogeneous distributed networks," Robotics and Autonomous Systems, 1992. 10(4).

Jones, J.P.. el al., "Hetero Helix: Synchronous and asynchronous control systems in

[Kimoto92a] Kimoto, K. and S. Yuta, "A Simulator for Programming the Behavior of an Autonomous
Sensor-Based Mobile Robot," Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent
Robots andSysrem, Raleigh, NC, July 7-10,1992.

IKunot092bl Kimoto, K., Personal Communication, August 12,1992.

Flont901 Montgomery, T.A. and E.H. Durfee, "Using MICE to study intelligent dynamic
coordination," Proceedings of the Second Computer Society International Conference on Tools for
Artificial Intelligence. November 1990.

Parker92bI Parker, LE., Personal Communication, October 22,1992.

Padcer92cl
the Second International Conference on Simulation of Adapzive Behavior, MIT F'ress, November 1992.

[Sun891 Sun Microsystems Inc., Open Lookm Graphical User Interface Functional
Specification. 1989, Addison-Wesley.

[Sun911

Parker, L.E., "Adaptive Action Selection for Cooperative Agent Teams," Proceedings of

Sun Microsystems Inc., xview(3) man page, 1991.

[Torrance92]
on Applicafions of Artificial Intelligence to Real- World Autolsomous Mobile Robots, Cambridge, MA.

[Wamab&3]

Torrance, M.C., T h e Case for a Realistic Mobile Robot Simulator," AAAl Symposium

Wamabe, Y., Personal Communication, Jan 28,1993.

82

Appendix C: The First fncrernent Specification

83

Wes tW orld
Increment 1 Specification

6. Tou Level Black Box

define-BB void Westworld
input

output

Invocation
XCB 1:MenuEiIeLoad
XCB :Menu/File/Save
XCB:Menu/File/Quit
XCB :MenulMafledraw
XCB:Menu/MaflpdateHelix
XCB :Menu/Map/Clear
XCB :MenulMap/ChangeS ize
XCB :Menu/Map/NewObj
XCB :Menu/Robots/S ummon
XCB:Menu/Robots/Start
XCB:Menu/Robots/Stop
XCB :MenuRotmtslQuit
XCB:B uaon/MapSizeChange
XCB:XV/Destroy
XCB :XV/Repaint

window WinMap
popup PopupMapSize
notice NoticeOK

transition
Invocation ->

-WinMapInit()
XCB:Menflile/Load -->

-Unimplemented(WinMap frame created at Invocation);
XCB:Menflile/Save -->

-Unimplemented(WhMap frame created at Invocation);
XCB :Menu/File/Q ui t -->

xv-destroy-safe(WinMap frame created at Invosation)
XCB:Menu/Map/Redraw -->

-Re paint()
XCB :Menu/MaflpdateHeEx -->

-Unimplemented(WinMap frame created at Invocation);
XCB:MenulMap/Clear -->

-Unimplemented(WinMap frame created at Invocation);
XCB:Menu/Map/ChangeSize -->

PopupMapSizeS how0
XCB:Me&Viap/NewObj ->

Unimplemented(WinMap € m e created at Invocation);
XCB:Me&Robots/Summon -->

UnimplementedOVinMap f m e created at Invocation);
XCB:Me&RobotslStart -->

- Unimplemented(WinMap frame created at Invocation);

IXCB = X Call Back

84

XCB:MenulRobotslStop -->

XCB :MekFZobots/Quit -->

XCB:Bu~on/MapSizeChange -->

XCB:XV/Destroy(client, status) -->

XCB:XV/Repaint -->

Unimplemented(WinMap frame created at Invocation);

Unimplemented(WinMap frame created at Invocation);

-PopupMapSizeChangeO

-Desfroy(client, status)

-Repaint0
end-BB

0 WestWorM - <NONE>

1- Wl p z i l

1

Black Box Specification Functions:

85

-0 Map Size

Width: <fl%.2f> Length: <f1%.2b

Scale: -<int>- EYEJ

[-PopupMapSizeChange() I =
[(atof2(entered width) < 1 I atof(entered length) -c 1) -->

NoticeOK(PopupMapSize frame,

I (entered scale < 1) I (entered scale > 100)
NoticeOK(PopupMapSize frame,

"Width and Length must be at least 1.b.")

"Scale must be in the range of 1 to 100.")
I (PopupMapSize pushpin is in) -->

redisplay values in PopupMapSize;
-Repaint()

-Repaint()
I true -->

1

[-Repaint() 1 =
[clear WinMap paint window created at Invocation and
draw map border using X Display+Window params for paint window
given width, length, s a l e from
default or XCB:PopupMapSizeChange

1

I -Unimplemented(Xv-opaque owner) 1 =
[-NoticeOK(owner, "This function has not been implemented.")]

[-NoticeOK(Xv-opaque owner, char *message)] =
display notice for owner
with Confum button and given message string:

1

2atof0 is a C function which converts a suing to a floating point number, ignoring any alphanumeric
CharaCtefS.

86

Class Des im and Class BB Spec ificatiom

(1) Choose candidate objects

Tbe first candidates for objectdclasses are those that represent an interactive window under X; this is the
way the code is automatically generated by the Devguide mol. Tberefore, there needs to be an object for
the main window and its menus (WinMap) as well as the "Change Map Size" popup CPopupMapSize).
There does not need to be one for the Notify boxes since they do not have any notion of complex
interaction or permanence. In addition, there needs to be an object to hold the map data and associated
functions (Map). A ciass should be created to group all the miscellaneous functions, such as Notice-OK
(vas). The final object is that which controls all the others, or at least initiates their actions via the main0
function (Main).

(2) Assign top-level stimuli to objects

Main
Invocation

PopupMapSize
XCB :Button/MapSizeChange

WlnMap
XCB :Menu/EieLoad
XCB :Menu/FIe/Save
XCB Menfli leQuit
XCB:Menu/Nap/Redraw
XCB :Menu/Map/UpdateHelix
XCB :Menu/Map/Clear
XCB :Menu/Map/ChangeSize
XCB :Menu/Map/NewObj
XCBMendRobotslSummon
XCBMendRobotdSm
XCB :Menu/Robots/Stop
XCB:Menu/RoboMQuit
XCB:XV/Deswy
XCB:XV/Repaint

utils
<none>

(3) Identify inter-class stimuli

Main, via the main() function, will have to hitialize/Cmte all the other objects, through either init d s M

constNctors.

Map will draw the map info in the paint window of WinMap, based on window information passed from
WinMap. i t will assume a default map size until a map size change is sent from another object. It should
have the basic map parameters publicly available.

PopupMapSize will draw the Change Map Size popup and handle the button callback for that popup. It
will have to be able to display the popup on command when the appropriate menu item is selected via
WinMap, and it will have to pass the change size parameters u, Map when the Change button i s pressed.

87

WinMap will be responsible for drawing the main window. It will accept all menu callbacks, but will only
handle those directly related to what it COR~IO~S. Since Map will handle the drawing of the map in a
subpane of WinMap, data referencing that subpane will have to be passed to Map, as will the actual draw
calls. The menu item that causes the Change Map Size popup to appear will have to be passed to
PopupMapSize.

utils w rill handle the Notice-OK call. r - l Main

I show() 1 PopupMapSize b-1 WinMap

I I

BB Format Notes:
(1) access programs includes any access to class via function calls; if a return or YO parameter is
involved, this must be handled in the response section of the transition for this access program,
(2) output variables shows variables maintained by the box which are publicly accessible; access to these
variables is to be considered a stimuli for the purpose of determining the value of the output
(3) outpur contains output not handled by access program p m e t e r s or return values -- Le. user interface
outputs
(4) class access. class output variables. and class output provide a similar interface as described above,
but for the class functions.

88

(5) input variables lists external inputs required by this class.
(6) extemul access lists e x t d funcum calls required by this ciass

defmeBB Main
class access programs

&vocation>
main0

output variables

input variables

At@-atuibute INSTANCE

WinMap::frame

external access
Map::MapO
void PopupMapSize::init(Xv-opaque owner-frame, Map* pMap)
void WinMap::init(Xv-opaque owner-frame, Map* pMap,

PopupMapSize *pPopupMapSize)

txansition
Si = <Invocation> -->

create Map [invokes Map()], PopupMapSize, WinMap

call init for PopupMapSize + WinMap object crated by Invocation
Si = main() -->

endBB

define-BB Map
access programs

Map0
void init-draw@isplay *display, Window xid)
int change-size(Xv,opaque frame, double new-width, double new-length,

int new-scale)

output variables
double width
double length
double scale

output
X display window

external access
void Utils::cMotice-OK(Xv-opaque owner, char* message)

transition
Si = Map() -> No response.
Si = init-draw(display, xid) -->

(Si = change-sizdframe, W, l, s)) A ((w <1) v (I < 1)) -->
draw map border (rectangle) of 12*40 x 12*40, using display + xid parameters.

Utils::NoticeOK(frame, "Width and Length must be at least 1 .Om.");
return FALSE value from change-size

Utils:floticeOK(frame, "Scale must be in &e range of 1 to 100.")
return FALSE value from change-size

(Si = change,size(frame, w, l, s)) A ((s < 1) v (s > 100)) -->

89

(Si = change-size(frame, w, 1, s)) A change-valid(w, 1, s) -->
draw map border (rectangle) of new-width*new-scale x new-width*new-scale
using display + xid parameters from previous init-draw() call;
return TRUE value from change-size

Si = width A (3Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) A

notdSk I (i < k < i) A (Sk = change_size(f,w',l',s')) A change-valid(w',l',s')) --> w
Si = width A not(3Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) --> 12
Si = length A (3Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) A

not@Sk I (j < k < i) A (Sk = change-size(f,w',l',s')) A change-valid(w',l',s')) --> 1
Si = length A not@Sj I (j < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) --> 12
Si = scale A @Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) A

notask I (i < k < i) A (Sk = change-size(f,w',l',s')) A change-valid(w',l',s')) --> s
Si = scale A not@Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) --> 40

endBB

Spec Function
[change-valid(w.1.s)] =

[((1 5 S 5 100) A (W 2 1) A (1 2 1))]

NOTES:
(1) assumption i s made that init-draw comes before any change-size; no error checking for this
(2) Map0 must be first stimuli, by default, since it is a constructor

defme-BB PopupMapSize
access programs

void init(Xv-opaque owner-frame, Map* pMap)
void show()
void change(Pane1-item)

output
popup window

class access programs
static void cfChange(Pane1-item, Event)

input variables
Attr-attribute INSTANCE;
x v s e t variables FRAhE-CMD-PUSHPIN-IN, XV-KEY-DATA, entered-width,

entered-length, entered-scale

external access
Map::change-size()
Map::width, Map::length, Map::scale

transition
Si = init(o, p) --> no response.
Si = Show() -->

display popup screen with owner 0, with values in width/length/scale fields
from p->width, p>lenglh. p->scale. where (3Sj I (j < i) A (Sj = init(o,p)) A

nOt(3Sk I (i < k< i) A (sk = bit(0.p))))

Si = change(item) -->
given pointer to popup input fields for widtMengWscale and popup frame "f'
created by init a S j I (i < i) A (Sj = init(o,p))), call p>change-size(f. entered
width, entered length, entered scale); if change-size returns 1 and xv-get

90

parameter FRAME_CMD_PUSHPIN,IN from f is 1, then call show{); if
change-size0 returns 0, send an error to XView via item to hold the popup on
the screen.

.

Si = cfChange(item, ev) ->
call PopupMapSize' p->chge(item) where p = xv_get(item,
XV-KEY-DATA, INSTANCE)

end-BB

NOTES:
(1) assumption is made that init0 comes before any other calls

defmeBB WinMap
access programs

init(Xv-opaque owner, Map* pMap, PopupMapSize' pPopupMapSize)
void unimplemented0
void quit()

output variables
Xv-opaque frame

output
XView main window

class access programs
static Menu-item cfMenuFileQuit(Menu,itea Menujenerate)
static Menujtem cfMenuMapRedraw(Menu-item, Menujenerate)
static Menu-item cfMenuMapChangeSi~(Menu-item. Menudenerate)
static Menujtem cMenuUnirnplemented(M4enu-item, Menusenerate)
static void cfRepaint(Canvas, Xv-window, Display, Window, Xv-xrectlist)
static void cfDesuoy (Xvppaque, Destroy-status)

class output variables
Notify-value notify-value

At@-attribute INSTANCE
x v s e t variable XV-KEY-DATA

input variables

external access
pOpupMapSize::show()
Map: :mit-draw()
Utils::cfNotice,OK~)

transition
Si = init(0, pl , p2) -->

Si = unimplemented0 -->
create WinMap window with owner 0, call pl->init-draw with display and xid

Utils::cfNotice,OK(f, "This function has not been implemented.")
where f is frame created from Sj, where (3Sj I Q c i) A <Sj = init(o,p)))

call xv-destroy-safe(frame created from Sj), where (3Sj I
Si = quit() -->

< i) A (Sj =
init(o,p)))

Si = cfMenuFiieQuit(item, op) -->

91

call WinMap* p->quit() where p = xv_get(item, XV-KEY-DATA,
INSTANCE)

call Map* p->drawO where p = xv_get(item, XV-KEY-DATA, INSTANCE)

call PopupMapSize* p->show0 where p = xv_get(item, XV-KEYDATA.
INSTANCE)

call WinMap* p->unimplemented() where p = xv_get(item, XV-KEY-DATA,
INSTANCE)

Si = cfRepaint(c, PW, d, W, X) ->
call Map* p->draw() where p = xv_get(pw, XV-KEY-DATA, INSTANCE)

Si = cfDestroy(client, status) -->
-Destroy(client, status)

Si = cfMenuMapRedraw(item, op) -->

Si = cfMenuMapChangeSize(item, op) ->

Si = cfMenuUnimplemented(item, op) -->

endBB

NOTES:
(1) assumption is made that init0 comes before any other calls

d e f i e B B Utils
class access programs

static void cfNotice-OK(Xv-opaque owner, char *message)

uansition
cMotice-OK(o, m) -->

display XView notice with owner 0, message, and Confm button; wait until
Confi i is pressed.

endBB

92

m. TAMSpec ifications for C lasses

CLASS: MAIN

INSTANCE <At@ .attribute>

TYPE IMPLEMENTED: <Main>

publiclv accessible

Map::Map() (constructor)
PopupMapSize::init() <void> <xv opaque> <Map*>

WinMap::init() - v o i d , <xv opaque> <Map% <PopupMapSize*>

(2) CANONICAL TRACES

canonical(Tc) c--> (Tc = <Invocation>) v (Tc = main(>)

Consitency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for eacb event class.
9 There is one each for dnvocatiom and main().

Tc.~Invocari0n> E <Invocation>;
ADD-TO-TRAcEcTm, MapO) wbere Tm is trace for Map object created by d n v o c a t i w

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

dnvocation> is canonical.
Consitency (3): AU RHC values are unique:

Onevalue.

nopartition.

93

Tc .m

T = main0

in()
conditions

Tc = <Invocation>

xv-unique-key0

else

equivalences
main();
ADD-TO-TRACE(T-, init(NULL, M, mms));
ADD-TO-TRACE(Tpm, init(pm->frame, pm));
where T m is trace for WinMap object created by main0 and pm is
pointer to that object, Tpms is a trace for PopupMapSize object
created by main0 and mms is pointer to that object, and Pm is
pointer to Map obiect created by <Invocation>
%main already called%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

event defined by LHC; traces and pointers used in RHC are specified by event in Tc
[cInvocation>] or the current event [main()]

else insures partition.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:
main() is canonical.

One value. one error.

(4)VALUES

OUTPUTVALUES

Completeness (3): The predicates in the LHC af each table partition the intended domain of the
relation:

Since T is canonical. the conditions partition the canonical trace and therefore give a full
partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

NIA

NIA

One value. one error.

<none>

94

CLASS: MAP

r Map3 (constructor) 1

init-draw <void, cDiplay *> <Window> xid
display

draw ovoid>
change-sue tint> <xv-opaque> <double> <double> cinv

fnme new, width new-lenEth new scale

(1) SYNTAX

widtb <double> public
length <double> public

-

ACCESS PROGRAMS

scale
channe ok

(output screen)

<in0 public
< i n 0 function return

(X displav window) N/A

Utils: :NoticeOK <void> Gv-opaque>
owner

Consistency (1): The canonical form fulfills the requirements of section XI.
0

*
The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

<char *>
message

AUXILIARY FUNCTIONS

bad-values <boolean> d o u b l e <double> <inP
new-width new length new scale

PXSe <boolean> <trace> . mace <trace> <trace>

3Map() is a constructor, and herefore will automatically be called anytime an instance of the class is
mated. Map0 defines default values for the values width, length, and scale until redefined by
change-size. Map0 cannot be called explicitly.

95

(w<l) v (1 > 1) v
(s < 1) v (s > loo)
else

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): ?he predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

Consitency (3): All RHC values are unique:

Else insures partitioning.

Constants, therefore always defied.

True.

true

false

parSe(S,S 1,s2,s3) =
conditions equivalences

(s = sl.s2.sa) A

(S1= Map.[init-draw(d.xw)I~=,,,) A

(S2 = [change-size(f,w.l,s) A not(bad_values(w,l,s)],!,) A

(S3 = [changesize(f ,w',I',s') A bad_values(w',l',s')l~~)

I true

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consitency (3): All RHC values are unique:

Else insures partitioning.

Constants, therefore always defined.

True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for access programs Map, init-draw, draw, and change-ske.

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): AU RHC values are unique:
No partitioning, therefore unique.

No partitioning of domain, therefore complete

No partitioning of domain, tberefore complete

Map0 is a canonical trace

T.init-draw(&xw) E MapO.init-draw(d,xw).C.CE, where parse(T. I. C, CE)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

No partitioning.

96

Completeness (4): "he predicates in the RHC are defied whenever the comespondirlg predicate in
the LHC is 'true':

The predicates in RHC are comprised of canonical trace elements from LHC or the
stimulus itself, and are therefore all defined.

The trace given is canoncical.
Consistency (2): AI1 traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:
Only one value.

T = Map0 %uninitialized%
(W < l) V O < l) equiv = I.C.change,size(f,w,l,s);

ADD-TO-TRACE(Tu, cf?Wice-OK(f, "Width and Lengtb must be at
least 1 .om.")
where parsev, I, C, CE) and Tu is the class access trace for Utils
equiv = I.C.change_size(f,w,l,s);
ADD-TO-TRACE(TU, cfNotice-OK(f. "Scale must be in the range of 1 to
100.")
where parsefl, I, C, CE) and TU is the class access trace for Utils
I .change-size(f, w ,Is)
where parse(?: I, C, CE)

(W 2 1) A (I 2 1) A

((s < 1) v (s > loo)

else
I

T.draw() =
conditions equivalences

T = Map() I %uninitialized%
else I T

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): 'Ihe predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical

Consitency (3): Ail RHC values are unique:

else insures partition.

One value, one error.

T i s defined by other side of equivalence.

T is canonical by definition.

97

(4) VALUES

parse(T, I, C, CE) A C f - 1 where
: C = change size(f,w,l,s) i

OUTPUT VALUES

..

conditions values
I parse(T, I, C, CE) A C f - I w where I

Completeness (3): The predicates in the LHC of each table partition the intended domain of tbe
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
tbe LHC is 'true':

first case is defined since change-size() must be defined if C # -; second case is
constant.

else insures partitioning.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:
NIA

The first case value may be the sane as the constant, but not always, requiring
partitioning.

V[length]O =

ConsistencyICompleteness: Same LXS above.

conditions values
I patse(T, I, C. CE) A C # - I s where I
I I C = change size(f,w,l,s)

else 40

ConsistencylCompleteness: Same as above.

V[change-ok]O =
conditions values

Completeness (3): ' h e predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

cases one and two are distinguished by C test; else insures partitioning.

NIA

true.

all outputs are constant or e m r and therefore defined.

98

T = Map()
1, c, CE N) A

I = MapO.init-draw(d,xw) A
C =

parsen, I, C , CE, N) A
I = Map().init-draw(d,xw> A

C = change size(f.w,l,s)

RETURNVALUES

%no output%
rect of size 12*40 x 12'40 drawn

in window with Display *d,
Window xw

rect of size w*s x l*s drawn in
window with Display *d,

Window xw

Completeness (2): There is one output functionlrelation that specifies each output value:
There is one output value V[cbange-size] defined above for the one value in the table.

99

CLASS: POPUPMAPSIZE

FuncName I Value

TYPE IMPLEMENTED: <PopupMapSize>

(1) SYNTAX

Arg# 1 A r R # 2

ACCESS PROGRAMS

cfChange 1 <void>

OUTPUT VARIABLES

<Panel-item> <Events

Variable Name Tm Access
(popup window) 1 (XView Popup window) I 1 I N/A

Map: :
change-size

u n o cXv-opaque> <double> <double> <inD
change-error pop up-frame new-width new-length new-scale

(2) CANONICAL TRACES

caonicd(Ti) <--> (Ti = J v (Ti = init(0.p)) v (Ti = init(o,p).show()) v (Ti = init(o,p).show().change(it))

(Ti = init(o.p).showO.chanange(it).change-error)
V

Consitency (1): The canonical form fuMls the requirements of section XI.

- The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

(s = s l.s2.S3.s4) A
(S 1 = [init(o,p)&,) A

(S2 = A

(~ 3 = [change(it)],',) A

(S4 = [change-errorI,'d
else

true

false

(3) EQUIVALENCES

, T = I init(o,p)
, T # I %already initialized%

completeness (1): Tbere i s one equivalence for each event class.
0 There is one each for init show, change, change-error, and cKhange

, T = %uninitiaIized%
else i.show()

1

where parsen. I. S, C, CE)

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever tbe corresponding predicate in
the LHC is 'true':

init(0.p) is defined by event itself, 0th- RHC item is error message.
Consistency (2): All tram specified in the RHC of the equivalence section are canonical:

Only one is specified, init(), and it is canonical.
Consitemy (3): All RHC values axe unique:

One is value, one is error.

- If one LHC condition is true, the other must be false. and tbey therefore partition.

101

Consitency (3): All RHC values are unique:
True.

T.change(it) =
conditions

S * - A I=init(o,p) A

p->change-size() = TRUE

equivalences
%uninitialized%
%undisplayed%
equivalence = I.S.change(it);

change-size(f. atof(entered-width), atof(entered1ength). entered-scale))
where f is frame created by init()
equivalence = I.S.change(it).change-error;

change-size(f, atof(entered-width), atof(entered-length), entered-scale))
where parse(T, I, S, C, CE) A I=init(o,p) A change-error = change-sizeO
A f is frame created by init0

ADD-TO-TRACE(Tp

ADD-TO-TRACE(Tp,

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

I and S defined for traces in 3rd4th cases; p, change-error defined as given; entered*
values defined if popup has been created (since init must be in trace, that is true).

init().show().change() and init().show().change().change-emor are canonical

3rd + 4th cases differ in equivalence

First two are obviously differenf third has show() in T, else separates third from fourth.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

T.change-error =
conditions equivalences

T = init(o,p).show().change(it) I Txhange-error
else 1 %undefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Compieteness (4): m e predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

elseinsures.

T defined by LHC.

One value, one error.

T.change-error canonical ifT is as defmed by LHC

Tc.cfCha,nge(item,e) = Tc; ADD-TO-TRACE(Tp, chmge(item))
where PopMapSize* p = xv_get(item, XV-KEY-DATA, INSTANCE):

Completeness (3): "be predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

If change occurs. the PopupMapSize object must have already been created, and p will
be valid.

No partitioning.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
Tc canonical by definition.

102

Consitency (3): All RHC values are unique:
Onlyonevalue.

T =

(4)VALUES

OUTPUT VALUES

%undefined%

T=
T = init(0.p)

T = init(o,p).show()

T = init(o,p).showO.change(it) A
xv_get(frame created by init(),

FRAME CMD PUSHPIN IN)=TRUE
T = Tl.change(it) A

xv_get(frame created by initO,
FRAME CMD PUSHPIN IN) =FALSE

else

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

else insures partitioning.

NotracesinRHC

Either frame or error.

frame is defined by inif which must be part of any non-empty trace.

%undefined%
%undisplayed%

popup window displayed on screen;
Width field = p->width fonnatted "%.2f';

Lengtb field = p>lengtb formatted "%2f';
Scale field = p->scaie; values may be modified by

popup fields set to values from p-> as given
above

popup window disappears from screen

user

popup forced to remain on screen,with values as
modified by user

-0 Map Sue

Width: cf1%.2f> Length: cf1%.2f>

Scale: -<intz- e3621

[PopupMapSize]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
dation:

LHC partitions the entire canonical trace.

103

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
tbe LHC is 'true':

window and fields are created by init, which is included in RHC trace
Consistency (2): AU traces specified in tbe RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:
NotraceshRHC

Either has constant (default) appeance or one modified by user input.

RETURN VALUES

(none)

104

CLASS: WINMAP

frame cXv-oDaque> publicly accessible
k (main window) (XView window) N/A

TYPE IMP-: <WinMap>

(1) SYNTAX

PopupMapSiLe::show
Map::init-draw

Utiis: :cMotice-OK

ACCESS PROGRAMS

<void>
cvoid> <Display> <Window> xid

display
<void> a v - o p a q u u <char *>

message owner

OUTPUT VARIABLES

Variable Name Access

I XV KEY DATA <xvppaque> I XView xv qet value
INSTANCE <At tr-attribu tei direct access

EXTERNAL ACCESS PROGRAMS

105

Consistency (1): The canonical form fulfills the requirements of section XI. -

The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

T = -

else

(3) EQUIVALENCES

equivalence= init(o,pl,p2);
ADD-TO-TRACE(Tpl, init-draw(disp, xid))
where disp + xid are defined by XView calls to
create the window
%already-initialized%

Completeness (1): There is one equivalence for each event class.
There is one each for access functions init, unimplemented. quit, cfMenuFileQuit,
CfMenuMapRedraw, CfMenuMapChangeSize. cfRepaint, and cfDestroy

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

init(0.p) is defined by event itself, other RHC item is error message.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Only one is specified, init(), and it is canonical.
Consitency (3): All RHC values are unique:

else insures partition.

One value, one error.

T.unimplemented0 =

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): AH RHC values are unique:

else insures partition.

T defined by equivalence.

One value, one error.

T is canonical by definition.

conditions equivalences
I %uninitidized% I

CompletenesdConsistency 5ame as above.

106

xv get(item, XV KEY-DATA, INSTANCE) = 0
op = MEN'U-NOTIFY A
xv_get(item, XV-KEY-DATA, INSTANCE1 f 0

%invalid item%
equivalence = T,;
ADD-TO-TRACE(Tp, quit())
where WinMap* p =

xv aet(item, XV KEY DATA, INSTANCE);

Completeness (3): The predicates in the LHC of each table partiuon the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the correspondkg predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are Canonical:

Consitency (3): All RHC values are unique:

first two differentiated by =/*; else insure partition

Tc defined by LHS; if fn called then item must be created and therefore p will be valid.

Tc is canonical by definition.

emor + one has ADD-TO-TRACE. other does not.

xv get(item, XV KEY DATA, INSTANCE) = 0 %invalid item%
Op = W - N o T I E T A equivalence = Tc;
xv_get(item, XV-KEY-DATA, INSTANCE) f 0 ADD-TO-TRACEpp, draw())

where Map* p =
xv get(itern, XV KEY DATA, INSTANCE); ~

xv get(item, XV KEY DATA. INSTANCE) = 0
Op = = - N o m A

xv_get(item, XV-KEY-DATA, INSTANCE) # 0

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
dation:

Completeness (4): The predicates in the RHC are def ied whenever the corresponding predicate in
the LHC is 'true':

first two differentiated by =&; else insure partition

Tc def ied by LHS; if fn called then item must be created and therefore p will be valid.

Binvdid item%
equivalence = T,;
ADD-TO-TRACE(Tp, showo)
where PopupMapSize* p =

xv get(item, XV KEY DATA, INSTANCE);

107

Consistency (2) : All traces specified in the RHC of the equivalence section are canonical: .

Consitency (3): AU RHC values are unique:
Tc is canonical by definition.

emor -t one has ADD-TO-TRACE. other does not.

Tc.cfMenuUnimplemented(item, op) E

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the conesponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

fust two differentiated by =/#; else insure partition

Tc defined by U S ; if fn called then item must be created and therefore p will be valid.

Tc is canonical by definition.

error + one has ADD-TO-TRACE, other does not.

Tc.cfRepaint(canvas, pw, display, xid, rects) =

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

first two differentiated by =/#; else insure partition

Tc defined by LHS; if fn called then item must be created and therefore p will be valid.

Tc is canonical by definition.

error + one has ADD-TO-TRACE, other does not.

Tc.cfDestroy(client, status) = cfDestroy(client, status)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): AU RHC values are unique:

nopartition

def ied byLHS

cfDestroy() is canonical

one value only

108

(4)VALUES

T=-

OUTPUT VALUES

%undefined%

T=
T = init(o,pl,p2)

~~

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): ?he predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

LHC paritions the canonical h o e .

NotracesinRHC.

EIther frame or error.

frame is defined by init.

values
%undefined%

display WinMap on screen, with canvas exactly
encompassing default map size, with title
"WestWorld -- &one>", with border fitting map
size (Map::init-draw), with menus as follows:
- File: Load ..., Save ..., Quit - Map: Redraw cdefaulo, <blank>, Update

HELIX Map, Clear Map, Change Map Size ...,
New Map Object ... - Robots: Summon ... cdefaub, < b W , Start
All. Stop All, Quit All

WestWorM - <NONG

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

LHC paritions the canonical trace.

window is defined by init. .

109

Consistency (2) : All traces specified in the RHC of the equivalence section are canonical: '

Consitency (3): All RHC values are unique:
No traces in RHC.

EIther window or error.

T c = -
TC = cfDesuoy(client, status) A

V[notify-value](Tc) =

%undefined%
notify-next-destroy-func(client, status)

status = DESTROY-CLEANUP

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LMC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): AI1 RHC values are unique:

fust two differ, else insures partition.

- N/A

constant error, or clienthtatus defined by LHC

%or, constant, or fn call return

REIZTRN VALUES

110

CLASS: UTILS

cfNotice-OK (notice) + <Xv-opaque>
<void> owner

TYPE IMPLEMENTED: <Utils>

<char *>
messare

(1) SYNTAX

CLASS ACCESS PROGRAMS

INPUT VARIABLES

(2) CANONICAL TRACES

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for cfNotiw-OK and notice-confirm.

Tc.cfNotice-OK(o,m) =
conditions equivalences

Tc = cfNotice-OK(o,m) 1 %waiting%
else I cfPJotice-OK(o,m)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

event defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

cfNoticx-OK is canonical.
Consitency (3): AU RHC values are unique:

One value, one error.

else insures partition.

Tc.notice-confm =
conditions equivalences

Tc = cfNotice-OK(o.m) -
else I %nonotice%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

else insures partition.

111

Completeness (4): The predicates in the RHC are defied whenever tbe conesponding predicate in
the L.HC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consitency (3): ~ l l RHC values are unique:

constants.

is canonical.

One value, one error.

(4)VALUES

0mUT VALUES

V[(not idlf l) =
conditions values

0, message m, an

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Since T is canonical, the conditions patition the canonical trace and therefore give a full
partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical:

Consitency (3): All RHC values are unique:

def ied by LHC

NIA

One value. one error.

RETURN VALUES

<none,

112

Clear Boxes

The clear boxes consist of the following files, which are attached:
ww-ui.H - header fie containing class, constant, and mix. definitions
Main.C - file with main0 loop and global variables
Map.C - class implementation for Map
WinMap.C - class implementation for WinMap
P0pupMapSize.C - class implementation for PopupMapSize
Utils.C - midutility routines

Increment 1 C++ Header Definitions

/ / ww-ui.H
/ /
/ / Westworld
/ /
/ / Alex L. Bangs. 2/10/93
/ / -
/ / Modification History:
/ / 2/10/93 ALB Increment 1

#ifndef WW-UI-HEADER
#define WW-UI-HEADER

#include <math. h>

/ / Map constants

- - - -

const double default-width = 12.0;
const double default-length = 12.0;
const int default-scale = 40;
const int min-scale = 1;
const int max-scale = 100;
const double min-width = 1.0;
const double min-length = 1.0;
const int panel-text-size = 8 0 ;

/ / simple #define functions

#define min(a,b) ((a) < (b) ? (a) : (b))
#define scaleIt(coord) (irint((coord) * scale))

/ / Main descriptor
/ / (note no real class for Main, but has function + globals
/ / class Main
/ / void main(int argc, char **argv);
extern Attr-attribute INSTANCE ;

/ / Other class descriptors
class Map {

Display *display;
Window xid;
GC gc;

public :
double width, length;
int scale;

MapO;
void init-draw(Display*, Window);

113

void draw() ;
int change-size(Xv-opaque frame,

double new-width, double new-length, int new-scale);
1 ;

class PopupMapSize {
Xv-opaque frame;
Xv-opaque controls;
Xv-op aque
Xv-opaque map-length-field;
Xv-opaque
Xv-opaque change-button;

map-w idt h- f i e 1 d ;

ma p-sc a 1 e- f i el d ;

Map* pMap;
void update () ; / / update numbers in the window

public:
void init(Xv-opaque owner, Map* pTheMap);
void show(); / / redisplay the box, and do sn update
void change(Pane1-item); / / change button pressed; send values to pMap

/ / class functions
static void cfChange(Pane1-item item, Event *event);

/ / XView button callback for Change
1;

class WinMap (
Xv-opaque
Xv-opaque
Xv-opaque
Xv-opaque
Xv-opaque
Xv-window
Display'
Window xid;

Xv-op aqu e
Xv-opaque
Xv-opaque

Map*

controls;
file-menu-button;
map-menu-button;
robots-menu-button;
canvas ;
canvasgaint;
display ;

file-menu-create(caddr-t * , Xv-opaque);
map-menu-create(caddrt *, Xv-opaque);
robots-menu-create(caddr-t * , Xv-opaque) ;

pMap ;
PopupMapSize*pPopupMapSize;

public :
Xv-opaque frame;

void init (Xv-opaque owner, Map*, PopupMapSize') ;
void unimplemented () ;
void quit();

static Menu-item cfMenuFileQuit1Menu-item item, Menu-generate op);
static Menu-item cfMenuMapRedraw(Menu-item item, Menusenerate op);
static Menu-item cfMenuMapChangeSize(Menu-item item, Menugenerate op);
static Menu-item cfMenuUnimplemented(Menu-item item, Menugenerate op);

/ / general XView callbacks
static Notify-value cfDestroy(Xv-opaque client, Destroy-status status);
static void cfRepaint(Canvas canvas, Xv-window paint-window,

Display *display, Window xid,
Xv-xrectlist *rects);

114

c l a s s U t i l s (
pub l i c :

1;
static void cfNoticepK(Xv-opaque owner, char* message);

#endif

115

Appendix D: The Second Increment Specification

116

Westworld
Increment 2 Specification

L TOD Level Black Box

define-BB void Westworld

Invocation
XCB :Menu/File/Load
XCB :MenulFile/Save
XCB :Menu/File/Quit
XCB :Menu/MaplRedraw
XCB%lenu/Map/UpdateHelix
XCB :Menu/Map/Clear
XCB :Menu/Map/ChangeSize
X C 3 : M e n ~ a f l e ~ b J
XCB :Menu/RoWSummon
XCB:Menu/RobotdStart
XCBMenuiRobotdStop
XCB :Menu/Robots/Quit
XCB :B uttonflvIapLoad
XCB :B uaon/MapSave
XCB :Buaon/MapSizeChange
XCB:XV/Desmy
XCBXVRepaint

input

output
window WinMap
POPUP P O P U P L ~ ~ a P
POPUP PopupSaveMap
POPUP PopupMapSke
notice Notice-OK
notice Notice-YN

transition
Invocation ->

XCB:Menu/File/Load -->

XCB:Menu/File/Save -->

XCB:Menu/File/Quit -->

XCB:MenulMap/Redraw -->
-Repaint0

XCB:Menu/Map/UpdateHelix -->

XCB:Me~u/Map/Clear -->
-Repaint();

XCB :MenuRvlaplChangeS ize -->
-PopupMapSizeS how0

XCB:Menu/Map/NewObj ->

XCB:Me&Robots/Summon ->

-WinMapInit()

,PopupLoadMapShow ()

JopupSaveMapS how0

xv-desmy-safe(WinMap frame mated at Invocation)

Unimplemented(WinMap frame created at Invocation);

Unimplemented(WinMap frame created at Invocation);

117

UnimplementedWinMap frame created at Invocation);

-Unimplemented(WinMap frame created at Invocation);

UnimplementedWinMap f m e created at Invocation);

-Unimplemented(WinMap frame created at Invocation);

XCB:Me&tobots/Start -->

XCB:Menu/Robots/Stop ->

XCB:Me&Robots/Quit -->

XCB:Button/MapSizeChange -->
PopupMapSizeChange()

PopupLoadMapLoad()

PopupSaveMapSave()

Desuoy(c1ient status)

XCB:Buion/MapLoad -->

XCB :B utton/MapSave -->

XCB:XV/Destroy(client, status) -->

XCB :XVkepaint -->
-Repain tO

end-B B

Black Box Specification Functions:

[-WinMapInit()] =

display WinMap on screen, with canvas exactly encompassing default map size
with title "WestWorld -- <None>"
with menus as follows:

File: Load Save ..., Quit
Map: Rednw <default>, cb larb , Update WELIX Map,

Robots: Summon ... Cdefaulo, <blank>, Start All,

[

Clear Map, Change Map Size ..., New Map Object..

Stop All, Quit All
with border fitting map size (-Repaint)

I

[-Repaint()] E
[clear WinMap paint window m t e d at Invocation and draw map border using X

Display+Window params for paint window given width, length, scale from default or
XCB:PopupMapSizeChange; draw map objects since last successful load, if not clear since
last load

1

118

[-Desmy(Xv-opaque client, Destroy-status status) I =
[status = DESTROY-CHECKING --> NOTIFY-DONE
I SWUS = DESTROY-SAVE-YOURSELF --> NOTIFY-DONE
I status = DESTROY-CLEANUP --> notify-next-desuoy-func(client status)
I Status = DESTROY-PROCESSDEATH --> NOTIFY-DONE
1

[-PopupLoadMapSbowO] =
[display PopupLoadMap witb either last file loaded or saved (whichever was most recent) or

blank

-0 Westworld: Load Map

Filename: <string>

[-PopupLmdMapLoadO I =
[

I

if open file on filename from PopupLoadMap results in error

for each line in file
--> -Notice-OK(PopupLoadMap frame, "The file could not be opened.")

if in correct format, add object to map
else -Notice-OK(PopupLoadMap frame, "Map file format emr: <erroh @ line

<line>")
where error is the form of the error (possible errors are "bad box definition",
"bad cylinder definition:, and "unknown object") and <line> is the iine where it
Occured

change title on window created by -WinMapInit() to include last component of filename
-Repaint

1
[-PapupSaveMapShowO 1 =

[display PopupSaveMap witb either last file loaded or saved (whichever was most recent) or
blank

-0 Westworld: Save Map

filename: <string>

[_PopupSaveMapSaw()] e
[((fde already exists A -Notice-YN(PopupSaveMap frame, "File exists. Overwrite it?")) v

file doesn't exist) A no file writdopen errors ->
write comment line to file witb f ie name and datdtime of write;
for each object in map from load process since clear, write line to file

-Notice-OK(PopupSaveMap frame, "File could not be opened for write. ")

-Notice-OK(PopupSaveMap frame, "An error occurred writing the file.")

I file open error -->

I file write error -->

1

119

[-PopupMqSizeShow()] E

[display PopupMapSize with map width (using %.2f format) of default of 12 m or last width
set by successful XCB:Button/MapSizeChange and length (using %.2f format) of 12m or last
height set by XCB:Button/MapSizeChange and scale of default 40 or last d e set by
XCB :Bu tton/MapSizeChimge

Map Size I -
Width: 4%.% Length: <fI%.Zf>

Scale: -<int>-

1

[-PopupMapSizeChangeO I =
[(atof(entered width) < 1 I atof(entered length) < 1) -->

I (entered scale < 1) I (entered scale > 100)

No tice-OK(PopupMapSize frame,
"Width and Length must be at least 1.0m.")

Notice-OK(PopupMapSize frame,
"Scale must be in the range of 1 to 100.")

I (PopupMapSize pushpin is in) -->
redisplay values in PopupMapSize;
-Repaint()

-Repain t()
I true -->

1

[-Notice-OK(owner, "This function has not been implemented.") 1
[-Unimplemented(Xv-opaque owner)] =

[-Notice-OK(Xv-opaque owner, char *message) I =
display notice for owner
with Confirm button and given message strkg:

<message>

1

[
[-Notice-YN(Xvppaque owner, char *message) 1 =

display notice for owner
with Yes/No buttons and given message string;
return TRUE (1) if Yes pressed, FALSE (0) olherwise

<message>

1

120

121

r€* c: lass Design and Class BB SDec ifications

(1) Choose candidate objects

The WinMap, PopupMapSize, Map, Utils, and Main classes were already defined in increment 1.
Increment 2 adds two new popup windows, so PopupLoadMap and PopupSaveMap classes need to be
defined. Consideration of an abstract base class called Popup to hold the common interface and data for all
tbe popup objects may be in order. Handling files could be pushed into a new class, but it is best at tlus
point to use basic functions from UNIX (fopen, etc) and have Map be responsible for the filename.

(2) Assign top-level stimuli to objects

Main
Invocation

PopupLoadMap
XCB:B utton/h.lapLoad

PopupS aveMap
XCB:B utton/MapSave

PopupMapS ize
XCB :B uuon/MapSizeChange

WinMap
XCB :Menu/File/L.oad
XCB :MenulFile/Save
XCB :Menu/File/Quit
XCB :Menu/Map/Red.raw
XCB :Menu/Map/UpdateMelix
XCB :Menu/Map/Clear
XCBMenu/Map/ChangeSize
XCB:MenulMap/NewObj
XCB :Menu/Robots/Swnmon
XCB:Menu/Robots/Start
XCB :Menu/Robots/Stop
XCB :Menu/Robots/Quit
XCB :XV/Destroy
XCB:XV/Repaint

utils
<none>

(3) Identify inter-class stimuli

Main, via the main() function, will have to initializelcreate all the other objects, through either h i t calls or
mnsuuctors (same as increment 1).

Map will draw the map info in the paint window of WinMap, based on window information passed from
WinMap. It will assume a default map size until a map sue change is sent from another object. It should
have the basic map parameters publicly available. For increment 2, the filename must be available, and
functions called load(Xvppaque frame, char *filename) and save(Xv-opaque frame, char *filename)

122

which return TRUE if successful and 0 if not. If successful, they set the title bar of tJie WinMap window to
reflect the current filename loaded. clear() clears out the map. load0 will read in lines from the data file
and call itself via loadline() for each line in the Map. The loadline0 function is responsible for intepreting
the file data as objects or comments or errors. Eventually, loadline will have to have some data structure
for storing this data for the Map, but this must be discovered at the clear-box level.

PopupLoadMap wil draw the Load Map popup and handle the button callback for that popup. It will
display the current value of the filename held by the Map when show() is called. It will call Map::loadO
when the Load button is pressed. PopupSaveMap is basically the same.

P0pupMapSiz.e will draw the Change Map Size popup and handle the button callback for that popup. It
will have to be able to display the popup on command when the appropriate menu item is selected via
WinMap, and it will have to pass the change size parameters to Map when the Change button is pressed
(same as increment 1).

Since the popup objects all share some common traits, including functions for show0 and init(), an
abstract superclass called Popup might be considered to define the common interface and functions that
must be defined by the subclasses. However, the init0 functions may be different for each, and the
composition of popup windows may be significantly different, so a superclass will not be considered at
this time.

WinMap will be responsible for drawing the main window. It will accept ail menu callbacks, but will only
handle those directly related to what it controls. Since Map will handle the drawing of the map in a
subpane of WinMap, data referencing that subpane will have to be passed to Map, as will the actual draw
calls. The menu item that causes the Change Map Size popup to appear wiIl have to be passed to
PopupMapSize. For incr 2, we have to pass show calls to PopupLoadMap and PopupSaveMap, and pass
the clear function to MapO. In addition, when Map::init-draw() is called, a reference to the WinMap
window is required which will allow Map to change the title of the window to reflect the latest
loadedfsaved filename.

Utils will handle the cfNotice-OK call. For increment 2, we add cfNotice-YN. It does not have any
instantiations.

123

Figure X: Second Insrement Object Interaction Diagram

(4) Black Box Definitions

define-BB Main
class access programs

cInvwtion>
main0
<Exit>

class output variables
At&-atuibute INSTANCE

input variables
Xv-opaque WinMap::frame

external access
Map::Map()
Map:: -Map0
void PopupLoadMap::init(Xv-opaque owner-frame, Map* pMap)
void PopupSaveMap::init(Xv-opaque owner-frame, Map* pMap)
void PopupMapS ize::init(Xv-opaque owner-frame, Map* pMap)
void WinMap::init(Xv-opaque owner-frame, Map* pMap,

PopupLoadMap* pPopupLOadMap,. PopupSaveMap* pPopupSaveMap,
PopupMapSize* pPopupMapSize)

wansition
Si = dnvocation> ->

124

mate Map [invokes Map()]. PopupLoadMap, PopupSaveMap, PopupMapSize,
WinMap

call init for PopupLoadMap, PopupSaveMap, PopupMapSize + WinMap object
created by Invocation

destroy Map [invokes -Map()]

Si = main() -->

Si = <Exit> -->

end-BB

defme-BB Map
access programs

fipo
-Map0
void init-draw(Display *display, Window xid, WinMap* pWinMap)
void draw0
void clear()
int change-size(Xv-opaque frame, double new-width,

int load(Xv-opaque frame, char *loadfile)
int save(Xv-opaque frame, char *savefile)
int loadline(Xv,opaque frame, int lineno, char *line)

double new-length, int new-scale)

output variables
double width
double length
double scale
char *fdename

output
X display window
XView notice

extemal access
void Utils::cfNotice-OK(Xv,opaque frame, char* message)
int Utils::cMotice_YN(Xv_opaque frame, char* message)
void WinMap::set-tiUe(char *)
fopen, fclose, fgets, fputs [stdio calls]

transition
Si = Map() --> NO response.
Si = -Map() --> NO response.
Si = ini t-draw(display, xid. pWinMap) -->

clear window and draw map border (rectangle) of 12*40 x 12*40 [call draw()],
using given display + xid parameters.

clear window and draw map border (rectangle) of w*s x l*s where w,l,s are
default or from last legal change-size(), using display + xid parameters from
previous iniLdraw0 call; for each object in a legal loadline0 call since last
Map0 or clear0 or load0, draw appropriate object with from init-draw
display+xid parameters;

Si = draw() ->

Si = clear() --> call draw0 fw self, set filename in title to <NONE>
(Si = change-size(frame, w, 1, s)) A ((w <1) v (1 < 1)) -->

Utils::cfNotice-OK(frame, "Width and Length must be at least 1.h.");
return FALSE value from change-size

Utils::cfNotice-OK(frame, "Scale must be in the range of 1 to 100.")
(Si = change-size(frame, w, 1, s)) A ((s c 1) v (s > 100)) -->

125

return FALSE value from cbange-size

call draw() for self:
return TRUE vaiue from change-size

Utils::cfNotice-OK(frame, "The file could not be opened.")
retum FALSE from load()

Utils::cfNotice-OK(frame, "An error occurred reading the file.")
return FALSE from load()

UtilsxfNotice-OK(frame, "An error occurred closing the file.")
retm FALSE from l a d ()

(Si = change-size(frame, w, 1, s)) A change-valid(w, 1, s) -->

(Si = load(frame, f)) A error opening f -->

(Si = load(frame, f)) A error reading f ->

(Si = load(frame. f)) A error closing f -->

(Si = load(frame, 0) A
(this->loadline(frame, tine #, line from f) = FALSE) -->

(Si = load(frame, f)) A

(this->loadline(frame, line #, line from f) = TRUE) -->

return FALSE from load0

call pWinMap->set-title(ff) where ff is the file component from the path f
for each line in file, call this->loadline(frame, line #, line)
return TRUE from load()

(Si = save(frame, f)) A f exists A

IJtils::cfNotice-YN(frame, "File exists. Overwrite it?") = TRUE A file create error -->
Uti1s::cfNotice-OK(fme, "File could not be opened for write.")
return FALSE from save

(Si = save(frame, f)) A f exists A

Utils::cfNotice-YN(frame, "File exists. Ovenvrite it?") = FALSE -->
return FALSE from save

(Si = save(frarne, 0) A error opening f -->
Utils::cfNotice-OK(frame, "File could not be opened for write.")
return FALSE from save

Utils::cMotice-OK(frame, "An e m r occurred writing the file.")
return FALSE from save

(Si = save(frame, f)) A no errors opening f A no error writing f -->
write file with heading of file name + date +- time of save,
one line for each legal loadline() in stim. hist since last Map(), clear() or load();
call pWinMap->set-title(ff) where ff is the file component from the path f
return TRUE from save

(Si = save(frame, f)) A no errors opening f A error writing f -->

Si = loadline(f,n,l) A ((1[01= '#') v (1[01= 'IO')) --> TRUE
Si = loadtine(f.n,l) A legaI-box(l) --> TRUE
Si = loadline(f,n,l) A (smcmp(1, "box", 3) = 0) A not(legal-box(1)) -->

Utils::cfNotice-OK(f, "Map file format error: bad box definition @ line <ID")
return FALSE

Si = loadtine(f,n,l) A legaLcylinder(1) --> TRUE
Si = loadline(f,n,l) A (stmcmp(1, "cyl", 3) = 0) A not(legal-cylinder(1)) -->

Utils::cfNotice-OK(f,

return FALSE
Si = loadline(f,n,l) A (suncmp(1, "box", 3) f 0) A (s~ncmp(1, "cyl", 3) f 0) A (1[0] f '#I)

--> Utils::cfNotice-OK(f, "Map file format emr: unknown object @ line
<ID");

return FALSE
(Si = filename) A (no successful load) A (no successful save) --> ""
(Si = filename) A d S j I (i < i) A

"Map file format error: bad cylinder definition @ line an>")

126

(((Sj = load(fr,f)) A 00ad Ok)) v ((Sj = save(fi,D) A (save &I)) A

notask I (i < k < i) A (((Sk = load(fr.0) A (load ok)) v ((Sk = save(fr,f)) A (save ok))) -
>
f

Si = width A @Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) A

not@Sk 1 (i .c k < i) A (Sk = change-size(f ,w',l',s')) A change-valid(w',l',s')) --> w
Si = width A not(3Sj I (i < i) A (Sj = change,size(f,w,l,s)) A change-valid(w,l,s)) --> 12
Si = length A (3Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change,valid(w,l,s)) A

not(3Sk I 0' < k < i) A (Sk = change-size(f,w',l',s')) A change-valid(w',l',s')) --> 1
Si = length A not(3Sj I (j c i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) --> 12
Si = scale A (3Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-vaIid(w,l,s)) A

not(3Sk I (i c k c i) A (Sk = change_size(f,w',l',s')) A change-valid(w',l',s')) --> s
Si = scale A not(3Sj I (i < i) A (Sj = change-size(f,w,l,s)) A change-valid(w,l,s)) --> 40

end-BB

Spec Function
[change-valid(w,ls) 3 =

[((1 5 S 5 100) A (W 2 1) A (1 2 1))]
legal-boxO) 1 =

[if 1 is of form "box <locx> <lacy> <width, <length> [<height>]" --> TRUE
else --> FALSE]

[if 1 is of form "cyl[inder] clocx> &cy> <radius> [<height>]" --> TRUE
else --> FALSE]

[legal-cylinder(1)] E

NOTES:
(1) assumption is made that init-draw comes before any change-size; no error checking for this
(2) Map0 must be f i t stimuli, by defauit, since it is a constructor

define_BB PopupLoadMap
access programs

void init(Xv-opaque owner-frame, Map* pMq)
void show()
void load(Pane1-item)

output
popup window

class access programs
static void cfLoad(Panel-imn, Event)

input variables
char *Map::filename;
Am-attribute Main::INSTANCE;
x v j e t variables FRAME-CMD-PUSHPINJN, XV-KEY-DATA

int Map::lmd(Xv-opaque frame, char *loadfile)
char *Map::filename

external access

transition
Si = init(o, p) --> no response.
Si = &OW() -->

display popup screen with owner 0, with values filename field from
p->filename, where (3Sj I (i c i) A (Sj = init(0.p)))

127

Si = ioad(item) -->
given pointer to popup input field for filename and popup frame "f' creased by
init (3Sj I Q < i) A (Sj = init(o,p))), call p->load(f, entered filename); if p-
>load() returns 1 and xvdet parameter FRAME-W-PUSHPM-IN from f is
1, then call show(); if p->load() returns 0, send an error to XView via item to
hold the popup on the screen.

S j = cfLoad(item, ev) -->
call PopupLoadMap* p->load(item) where p = xv_get(item, XV-KEYDATA.
INSTANCE)

end-BB

NOTE3
(1) assumption is made ahat init0 comes before any other calls

defmeBB PopupSaveMap
access programs

void init(Xv-opaque owner-frame, Map* pMap)
void show0
void savePanel-item)

output
popup window

class access programs
static void cfSave(Pane1-item, Event)

input variables
char *Map::fiiename;
Attr-attribute Main: :INSTANCE;
x v s e t variables FRAhE-CMD-PUSHPIN-IN, XV-KEY-DATA

external access
int Map::save(Xv-opaque frame. char *savefile)
char *Map::filename

transition
Si = init(o, p) --> no response.
Si = &OW() -->

display popup sereen with owner 0, with values filename field from
p>filename, where (3Sj I (i c i) A (Sj = init(o,p)))

Si = save(item)-->
given pointer to popup input field for filename and popup frame "f" created by
init @Sj I (i < i) A (Sj = init(o,p))), call p->save(f, entered filename); if P
>save0 returns 1 and xvse t parameter FW-Ch4D-PUSHPIN-IN from f
is 1, hen call showo; if p->save() returns 0, send an error to XView via item to
hold the popup on the screen.

Si = cfSave(item, ev) -->
call PopupSaveMap* p->save(item) where p = xv_get(item, XV-KEY-DATA,
INSTANCE)

e n d B B

128

NOTES:
(1) assumption is made that init0 comes before any other calls

defme-BB PopupMapSize
access programs

void init(Xv-opaque owner-frame, Map* pMap)
void show()
void change(Panel-item)

output
popup window

class access programs
static void cfChange(Pane1-item, Event)

input variables
At@-atuibu te Main: :INSTANCE;
x v s e t variables FRAME_CMD-PUSHPIN_TN, XV-KEY-DATA, entered-width,

entered-length. entered-scale

external access
int Map::change-sizernv-opaque frame, double new-width,

double Map::width
double Map::length
double Map::scale

double new-length, int new-scale)

m s i tion
Si = init(o, p) --> no response.
Si = &OW() -->

display popup screen with owner 0, with values in widlhllengWscale fields
from p->width, TAength, p->scale, where @Sj I (i < i) A (Sj = init(o,p>) A

notask I (j C k< i) A (sk = wt(0.p))))

Si = change(item) -->
given pointer to popup input fields for width/length/scale and popup frame "f'
created by hi t e S j I (i < i) A (Sj = initbp))), call p>change-size(f, entered
width, entered length, entered scale); if change-size returns 1 and x v s e t
parameter FRAME-CMD-PUSHPIN-IN from f is 1, then call show(); if
change-size0 returns 0, send an error to XView via item to hold the popup on
the screen.

Si = cfChange(item, ev) -->
call PopupMapSize* p->change(item) where p = xv_get(item,
XV-KEY-DATA, INSTANCE)

NOTES:
(1) assumption is made that init0 comes before any other calls

def i i eBB WinMap
access programs

void init(Xv-opaque owner-frame, Map* pMap,
PopupLoadMap* pPopupLoadMap, PopupSaveMap+ pPopupSaveMap,

129

PopupMapSize* pPopupMapSize)
void unimplernented()
void quit0
void set-title(char *new-title)

output variables
Xv-opaque frame

output
XView main window
XView Notice

class access programs
static Menujtem cfMenuFiieLoad(Menu-item, Menusenerate)
static Menu-item cfMenuFileSave(Menu-itern, Menusenerate)
static Menu-item cfMenuFileQuit(Menu-item, Menugenerate)
static Menujtem cMenuMapRedraw(Menujtem, Menusenerate)
static Menu-item cfMenuMapClearRrlenu-item, Menusenerate)
static Menu-item cfMenuMapChangeSizetMenu-item, Menujenerate)
static Menu-i tem cfMenuUnimplemented(Menu-item, Menusenerate)
static void cfRepaint(Canvas, Xv-window, Display, Window, Xv-xrectlist)
static void cfDestroy(Xvppaque, Destroy-status)

class output variables
Notify-value notify-value

input variables
Attr-attribute Main::INSTANCE;
x v j e t variable XV-KEY-DATA

external access
void PopupMapLoad::show()
void P0pupMapSave::sbowO
void PopupMapSize: :show()
void Mapxinit-draw@isplay *display, Window xid, WinMap* pWinMap)
void Map::clear()
void Uti1s::cfNotice-OK()

msition
Si = init(o, pl, p2) -->

Si = unimplemented() -->
create WinMay, window with owner o, call pl->init_draw(display,xid,~is)

Utils::cfNotice-OK(f, "This function has not been implemented.")
where f is frame created from Sj, where (3Sj I

call xv-destroy-safe(frame created from Sj). where @Sj I (i c i) A (Sj =

c i) A (Sj = init(0.p)))
Si = quit() -->

init(o,p)))
Si = se-title(new-tiUe) --> set window title to "Westworld -- anew-dtle>"
Si = cfMenuFiieLoad(item, op) -->

call PopupLoadMap* p->show() where p = xv_get(item, XV-KEY-DATA,
INSTANCE)

call PopupSaveMap* p->show() where p = xv_get(item, XV-KEY-DATA,
INSTANCE)

Si = cfMenuFiIeSave(item, op) -->

Si = cfMenuFileQuit(irem, op) -->

130

call WinMap* p->quitO where p = xv_get(item, XV-KEY-DATA,
INSTANCE)

call Map* p->dnw() where p = xv_get(item, XV-KEY-DATA, INSTANCE)

call Map* p->clear() where p = xv_get(item, XV-KEY-DATA, INSTANCE)

call PopupMapSize* p->show0 where p = xv_get(item, XV-KEY-DATA,
INSTANCE)

call WinMap* p->unimplementedO where p E xv_get(item, XV-KEY-DATA,
INSTANCE)

Si = cfRepamt(c, pw, d, W, X) ->
call Map* p->draw() where p = xv_get(pw, XV-KEY-DATA, INSTANCE)

Si = cfDesuoy(client, status) -->
-Desuoy(client, status)

Si = cfMenuMapRedraw(item. op) -->

Si = cfMenuMapClear(item, op) -->

Si = cfMenuMapChangeSize(item, op) -->

Si = cfMenuUnimplemented(item, op) -->

endBB

NOTES:
(1) assumption is made that init0 comes before any other calls

defie-BB U t i
class access programs

static void ctNouce-OOK(Xv-opaque owner, char *message)
static int cfNotice-YNO[v-opaque owner, char *message)

ed-BB

uansition
cfNotice-OK(o, m) -->

cfNotice-YN(o, m) -->

display XView notice with owner 0, message, and Confirm button; wait until

display XView notice with owner 0, message, and Yes/No buttons; wait until
button is pressed, return TRUE (1) if Yes. FALSE (0) if No.

confirm is pressed.

13 1

c$ I. TAM

CLASS: MAIN

<In voca tion>
main() < v o i b
<Exit>

TYPE IMPLEMENTED: <Main>

< inu arpc <char **> argv

(1) SYNTAX

INSTANCE <Atqatuibute>

CLASS ACCESS PROGRAMS

publicly accessible

CLASS OUTPUT VARIABLES

INPUT VARIABLES

EXTERNAL ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(Tc) <--> (Tc = dnvocation) v (Tc = <Invocation>.main())

Consistency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed througb the equivalences
The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for &vocation> and main().

Tc.<Invocation> = dnvocation>;
ADD-TO-TRACECr,, MapO) where Tm is trace for Map object crated by <Invocation>

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

nopartition.

132

Completeness (4): The predicates in the RHC are defined whenever the correspondiag predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

defmed by LHC.

dnvocation> is canonical.

Onevalue.

Tcmain() =
conditions

Tc = <in~ocat ior~

else

equivalences
main0;
ADD-TO-TFLACE(Tw, init(=L, pm, P p h , Ppsrn, ems)) ;
ADD-TO-TRACE(Tp~, init(pm->frame, pm));
ADD-TO-TRACE(Tp,, init(pW->frame, pm));
ADD-TO-TRACEITpms, init(pm->frame, pm));
where Twm is &ace for WinMap object created by main0 and p m is
pointer to that object, T p h is a trace for PopupLoadMap object
created by main() and p p h is pointer to that object, Tpsm is a trace
for PopupSaveMap object created by main(> and Ppsm is pointer to
that object, Tpm is a trace for PopupMapSize object created by
main() and mms is pointer to that object, and pm is pointer to Map
obiea created by <Invocation>
%main alreadv called%

completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

event defined by LHC; traces and pointers used in RHC are specified by event in Tc
[<invocation>] or the current event [main()]

else insures partition.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): AU RHC values are unique:
main() is canonical.

One value, one error.

Tc.<Exib = Tc;
ADD-TO-TRACEVn, -Map()) where Tm is trace for Map object mated by <Invocation>

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'kue':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values arc unique:

nopartition.

defrned by LHC.

Onevalue.

Tc is canonical by definition.

133

(4) VALUES

T = cInvocation>

0UTPuTvALms

%undefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Since T is canonical. the conditions partition the canonical trace and therefore give a full
partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

NIA

NIA

One value. one error.

RETURN VALUES

<none>

134

CLASS: MAP

TYPE IMPLEMENTED: <Map>

(1) SYNTAX

ACCESS PROGRAMS

Func Name

init-draw

clear
change-size

E loadline

Value AW#l &p#2 Arc#3 Arp#4
(constructor)
(destructor)

e o i b d i s p l a y *> <Window> xid <WinMap*>
display pWinMap

INPUTVARIABLES

Variable Name Type Access
I file-status 1 I pseudo I input pseudo-event 1

EXTERNAL ACCESS PROGRAMS

lThis variable does not necessarily exist, rather it is a placemarker for the results from calls to the
filesystem.

135

(2) CANONICAL TRACES

canonicalO <-->

(T = Map().init-draw(d,xw,wf).
[change-size(f, w, 1, s)],!,.[change-size(f, w', l', s')) A bad-value~(w',l',s')]~~.

[load(fr,fi) v save(ti,fi)]~~.[file-statusl,',.
((loadline(f,i,l) A bad-line(1)) v [loadline(f,i,li) A not(bad-line(li))J,$)

cr = M W) v

1 is of form "box doc^ clocp
<width> clengthr [cheigho] v
1 is of form "cyl[inder] <locx>
clocp <radius> [cbeighb] v

else
I[O] = v I~O] = 70'

Consistency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly &e information needed for the equivalences and outputs

false

true

AUXILIARY FUNCTIONS

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (3): All RHC values are unique:

Else insures partitioning.

Constants, therefore always defined.

True.

bad-line(1) =

136

Completeness (4): 'Ihe predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

Consistency (3): All RHC values are unique:
Constants, therefore always defined.

True.

par~e(S,S l,S2,S3,S4,SS,S6) =
conditions

(s = sl.s2.S3.s4) A

(Sl = Map.[init-draw(d,xw,wf)l.td I- A

(S2 = [change-size(f,w,l,s) A not(bad-value~(w,l,s)]~,~) A

(S3 = [change-size(f ,w',l'$) A bad_values(~',l',s')]~~) A

(s4 = [load(fr,fi) v save(fr$i)J;*) A

(S5 = [file-stat~s]~~) A

(S6 = (loadline(f,i,l) A bad-line(1)) v
[loadline(f,i,li) A not(bad-line(li))]&

1

1

1

equivalences
uue

false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (3): Ail RHC values are unique:

Else insures partitioning.

Constants, therefore always defined.

True.

(3) EQUIVALJ3NCES

Completeness (1): There is one equivalence for each event class.
There is one each for access programs Map, -Map(), init-draw, draw, clear,
change-size. load, save, and loadline as well as input event file-status.

T.Map0 = Map0

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
dation:

Completeness (4): The predicates in tbe RHC are defied whenever the corresponding predicate in
the LHC is 'true':

No partitioning of domain, therefore complete
Consistency (2): AU traces specified in the RHC of the equivalence secuon are canonical:

Map0 is a canonical trace
Consistency (3): All RHC values are unique:

No partitioning of domain. therefore complete

No partitioning, therefore unique.

T.-Map0 E T2

~~

2The destructor -Map0 wiIl probably result in state changes For the object, but since it is about to
disappear from scope, its effect on the trace does not matter since following -Map(), the object is
undefined.

137

Completeness (3): The predicates in the LHC of each table partition the intended domaih of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

No partitioning of domain, therefore complete
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Map() is a canonical trace
Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

No partitioning, therefore unique.

T.init-draw(d,xw,wf) = MapO.init_draw(d,xw,w~.C.CE.FN.FS.L, where p w (T , I, C, CE, FN, FS, L)

completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

The predicates in RHC are comprised of canonical trace elements from LHC or the
stimulus itself, and are therefore all defined.

The trace given is canoncical.

No partitioning.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique: - Only one value.

T.drawO =
conditions equivalences

T = Map0 1 %uninitialized% 1

Completeness (3): The predicates in the LHC of each table paitition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
Tis canonical by defmition.

Consistency (3): AH RHC values are unique:
One value. one error.

else insures partition.

T is defined by other side of equivalence.

Completeness (3): The predicates in the LHC of each table pabtition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
Map().init-draw() and MapO.init-draw().change-size() are canonical

Consistency (3): All RHC values are unique:

else insures partition.

Tis defied by LHS.

One value, one error.

138

T = Map0
(w < 1) v (1 < 1)

(W 2 1) A (1 2 1) A

((s c 1) v (s > loo)

else

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the
relation:

f i s t case has only constructor, others assume init-drawo in trace; second and third
separated by wfl comparisons, else insures full partition

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

RHC items defied by call and parsed trace.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

The traces shown are all canonical.
Consistency (3): All RHC values are unique:

Second and third cases are different by the cfNotice-OK calls; third replaces any error
present.

%uninitialized%
equiv = I.C.chaoge_size(f,w,Ls).FN~S~;
ADD-TO-TRACE(TU, cfNotice,OK(f, "Width and Length must be at
least 1 .Om.'')
where parsefl, I, C, CE, FN, FS, L) and Tu is the class access trace for
Utils
equiv = I.C.channge-size(f,w,l,s).FN.FS.L;
ADD-TO-TRACE(TU, cfNotice-OK(f, "Scale must be in the range of 1 to
loo.")
where parsec, I, C, CE, FN, FS, L) and Tu is the class access trace for
Utils
I.change-siz~f,w.l,s).FN.FS .L
where parsetT, I, C, CE, FW, FS, L)

T.load(fr,fi)

T = Map0
fopen(fi. "r") = NULL

conditions

(fOpWl(f& "f") f m) A

(loadline(fr, i, si) = FALSE)

equivalences
BuninitializedQ
equiv = I.C.(file-status = FILE_OPEN_ERR);
ADD-TO-TRAcE(this, clear());
ADD-TO-TRACEcTf, fopen& "f"));

ADD-TO-TRACECT,, cfNotice-OK(f, "The file could not be
0peIEd."));
where parsep, I, C. CE, FN, FS, L), Tu is the class access trace for
Utils, and Tf is the trace for the file system
equiv = I C ;
ADD-TaTRACE(this, clear());
ADD-TO-TRACE(this, [loadline(fr, i, si)]:&);

ADD-TU-TRAcEcTf, F=fopen(fi, "r"), [fgetsF, N. s;>lp=o, fclose0);
where parsen, I, C, CE, FN, FS, L) and Tf is the m e for Ihc file
system

ADD-TO-TRACE(this, cleafo);
ADD-TO-TRACE(this, [loadline(Fr, i, si)] :!);
ADD-TO-TRACE(Tf, F=fopen(fi, "f"), [fgersF, N, sj)1peo, fclose0);
ADD-TO-TRACE(TU, cfNotice-OK(f, "An error occurred reading
the file."));
where parse(T, I, C, CE, FN, FS, L) TU is the class access trace for
Utils. and Tr is the trace for the file svstern

equlv = 1.c;

139

F=fopen(fi, "r") # NULL) A

(loadlinelfr. i. si) = TRUE) A

else

equiv = I.C.(file-status = FILE-CLOSE-ERR);
ADD-TO-TR.ACE(this, clear());
ADD-TO-TRACE(this, [loadline(fr, i, si)]:'.);
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), [fgets(fi, N, si)&,, fclose0);
ADD-TO-TRACE(TU, cfNotice-OK(f, "An error accu-red closing
the file."));
where parsec, I, C, CE, FN, FS, L), TU is the class access trace for
Utils, and Tf is the trace for the file system
equiv = I.C.load(fr, fi).[loadline(fr, i, Si)lp=O

ADD-TO-TRACE(this, clear());
ADD-TO-TRACE(this, [loadline(fr, i, Si)] Pd);
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), [fgets(fi, N, si)],>, fclo%F));
ADD-TO-TRACE(Twf, set-.titJe(fi));
where parse(T. I, C, CE, FN, FS, L), I=init-draw(d, XW, wf). and
Tf is the trace for the file system

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in (he RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition.

T is defined by LHS.

1.C.filestatus. I C , I.C.load.loadline* are all canonical

Each different in either output tracc or modifica~ons to other traces.

conditions
T = Map0
fopen(fi, "r") f NULL A
cfNotice?'N(fr, "File exists.
Overwrite it?") = FALSE

equivalences
%uninitialized%
equiv = I.C.(file-status = FILE-0PEN-ERR)L;
ADD-TO-TRACECTf, F=fopen(fi, "r").fcloseO);
ADD-TO-TRACE(TU, cfNotice-YN(fr, "File exists. Overwrite it?'?):
where parseU, I, C, CE, FN, FS, L), Tu is the class access trace for

the class access trace for

140

(F=fopen(fi, "r") f NULL A

cfNoticeYN(fr, "File exists.
Overwrite it?") = TRUE) A

(F?sfopen(fi, "w") f NULL)

fciose(F2) # 0
A fpUtS(F2, Si) f 0 A

(F=fopen(fi, "r") f NULL A

cfNoticeYN(fr, "File exists.
Overwrite it?") = TRUE) A
n=fopen(fi, "w") f NULL)

fclose(F2) = 0
A fputS(F2, Si) f 0 A

(F=fopen(fi, "r") = NULL) A
w=fopen(fi, "w") = NULL)

(F=fopen(fi, "r") = NULL,) A
(F2=fopen(fi, "w") f NULL)
A fputscFz, si) #cl A
fclosecF2) f 0

else

equiv = I.C.(file-status = FXE-CLOSE-ERR).L;'
ADD-TU-TRACE(Tf, Tf, F=fopen(fi, "r"), fclose(F). F2=fopen(fi,

ADD-TO-TRACE(Tu, cfNotice-YN(fr, "File exists. Overwrite it?"),
cfNotice-OK(f, "An e m r occurred closing the fie."));
where parse(T, I, C, CE, FN, FS, L), Tu is the class access trace for
Utils, and Tf is the trace for the file system
equiv = I.C.save(fr, fi).L
ADD-TO-TRACE(this, clear());
ADD-TO-TRACE(T,, cfNotice-YN(fr, "File exists. Overwrite it?"));
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), fclose(Fl, =fopen(fi, "w")

ADD-TO-TRACE(Twf, set-title(fi));
where parse(", I, C, CE, FN, FS, L), I=init-draw(d, xw, wf), Tu is the
class access m e for Utils, and Tf is the trace for the file system
equiv = I.C.(file-status = FLE-OPEN-ERR)L;
ADD-TO-TRACE(this, clear());
ADD-TO-TRACE(Tf, fopen(fi, "r"));
ADD-TO-TKACE(T,, cfNotice-OK(f, "The file could not be
opened."));
where parsen, I, C, CE, FN, FS, L), TU is the class access trace for
Utils, and Tf is the trace for the file system
equiv = I.C.(filestatus = FLE-WRITE-ERR).L;
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), fclose0, F2=fopen(fi, "w")

ADD-TO-TRACE(Tu, cfIVotice-OK(f, "An error occurred writing
the file."));
where parse(T, I, C, CE, FN, FS, L), T,, is the class access trace for

"w") [fputscFz, si)]:!, fclox(F2));

[fpUts(F2, Si)Jp50, f c l o W 3) ;

[fPB(F2, si>lL* fclox(W);

Utils, Ad Tf is the trace for the file system
equiv = I.C.(file-status = FILE-CLOSE-ERR).L;
AbD-TO-TRACE(Tf, Tf, F=fopen(fi, "r"), fclose(F), F2=fopen(fi,

ADD-TO-TRACE(Tu, cfNotice-OK(f. "An error occurred closing
the file."));
where parse(T', I, C, CE, FN, FS, L), Tu is the class access trace for
Utils, and Tf is the trace for the file system
equiv E I.C.save(fr, fi)L
ADD-TO-TRACE(this, clear());
ADD-TO-TRACECrf, F=fopen(fi, "r"), fclosecF), F2=fopen(fi, "w")
IfpW% si>\'& fclose(F2));
ADD-TO-TRACE(Twf, set-title(fi));
where parse(T, I, C, CE, FW, FS, L), I=init-draw(d, xw, wf), and Tf
is the trace for the file system

"w") [f p ~ t s F Z si)l~~. fCloSe(F2));

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): "he predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

else insures partition.

T i s defined by LHS.

1.C.fiestatus. I.C, 1.C.save.L are all canonical

141

Consistency (3): All RHC values are unique:
Each different in either output tracc or modifications to other traces.

T.loadline(fr, n, 1) =
conditions equivalences

T

equiv = I.C.FN.FS.loadline()
ADD-TO-TRACE(Tu, cfNotice-OK(fr,
”Map file format error: bad box @ line
<ID“));
where parse(T, I, C, CE, FN, FS, L)
equiv = I.C.FN.FS.loadline0
ADD-TO-TRACE(TU, cmotice-OK(fr,
“Map file format error: bad cylinder @
line a>”));
where parsen, I, C, CE, FN, FS, L)
equiv = I.C.FN.FS.loadline0
ADD-TO-TRACE(TU, cMotice-OK(fr,
“Map fiie format error: unknown object (3
line a>”));
where parse(T, I, C, CE, FN, FS, L)
equiv = I.C.FN.FS.L.loadline0
where parse(T, I, C, E, FN, FS, L)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is ‘true’:

Consistency (2): All traces specified in the RHC of the equivalence section are canonical

Consistency (3): All RHC values are unique:

else insures partition, tests on 1 all different

I.C.FN.FS.loadline* is canonical

One value, one error.

T i s defined by LHS.

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true’:

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition.

1.C.CE.FN.file-statu.L is canonical

T is defiind by LHS.

One value, one error.

142

(4) VALUES

C #

OUTPUT VALUES

C = change. size(f,w,l,s)

conditions values

1 parse(T, I, C, CE, FN, FS, L) A I w where 1

parse(T, I, C, CE. FN, FS, L) A

C#
else

1 where
C = change size(f,w.J,s)

12

parsecT, I, C, CE, FN, FS, L) A

else

fi where FN = load(fr, fi) v
'

FN# FN = savdfr, fi) .. "

Consistency/Complekness: Same as above.

V[scale]O =
conditions values

I ~ar~e(T. I. C, CE. FN, FS, L) A I s where I . .
C # 1 C = change size(f,w,l,s)
else 40 I

ConsistencyKornpletcness: Same as above.

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'tfld:

fmt case is defined since load() or save() must be in trace if FN # -; second case is
c W S t a n t

else insures partitioning.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): AH RHC values are unique:
N/A

* One has real filename, other is blank.

V[changepk]O =

143

conditions values
I uarse(T, I, C, CE, FN, FS. L) A I %undefined% 1

parse(T. 1, C, CE, FN, FS, L) A
L = loadline(f, i, 1) A bad line(1)
m(T. I. C. CE. FN. FS. L9 A

C = ACE= 1
parse(T, I, C, CE, FN, FS, L) A 1 1

0

1

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): ?he predicates in the RHC are defied whenever the comesponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

cases one and two are distinguished by C test; else insures partitioning.

NIA

true.

all outputs are constant or e m r and therefore defined.

not(bad-line(1,)) I
else %undefined%

*

V[loadsave-oklO =
conditions values

I WseCT, I, C, CE, FN, FS. L) A I 0 1

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

logic in load() + save() equivalences prohibits having a value in FS when value in FN,
therefore these conditions are separate; else insures partition for other cases.

Completeness (4): I b e predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

*

N/A

true.

all outputs are constant or error and therefore defined.

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): ?he predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical:

Either L is defined and bad or it is defined and ok: else insures partition for other cases.

NIA

all outputs are constant or error and therefore defined.

144

Consistency (3): AI1 RHC values are unique:
true.

change size Value change ok
load Value loadsave ok
save Value loadsave ok

loadline Value loadline ok , L

V[(output-screen)JQ =
conditions
T = Map()

parseU, I, C, CE, FN, FS, L) A
I = bfapo.init-draw(d,xw,wf) A

C = -

pxse(T. I, C, CE, FN, FS, L) A

I = Map().init-draw(d,xw,wf) A

C = change-size(f,w,l,s)

%no output%
rect of size 12*40 x 12*40 with

objects defined by L (if not
bad-line) drawn in window with

Display *d, Window xw
rect of size w*s x I*s with objects

defined by L (if not bad-line)
drawn in window with Display

*d. Window xw

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

If trace does not have just Map(), then I will be equal to Mapoinit-draw combination,
and C cornpansion insures partition.

Completeness (4): ?%e predicates in the RHC are defined whenever the correspondlng predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:
NIA

values are either constant or defined from variables present in LHC, therefore defined.

case 3 may be same as constant values in case two, but not always, requiring
partitioning.

Completeness (2): There is one output functiodrelation that specifies each output value:
There are output values defined above for each value in the table: V[changepk],
V[loadsave-ok], and Vttoadline-ok]; the other values above are not return values.

145

CLASS: POPUPLOADMAP

c b a d <void> <Panel i t e m

TYPE IMPLEMENTED: <PopupLoadMap>

<Event,

(1) SYNTAX

ACCESS PROGRAMS

OUTPUT VARIABLES

Variable Name Type Access
(popup window) I (XView Popup window) I NJA I I

CLASS ACCESS PROGRAMS

EXTERNAL ACCESS PROGRAMS

(2) CANONICAL TRACES

canonicalfli) <--> (Ti = J v (Ti = init(o,p)) v (Ti = init(o,p).showO) v (Ti = init(o,p).sbow().load(it)) v
(Ti = init(o,p).show().load(it).load-exor)

Consistency (1): The canonical form fulfills the requirements of section XI.

*
The traces in the set are not further reducible when passed through the equivalences
The traces m n h exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

146

parse(S,Sl,S2,S3,S4) =

T =
else

conditions equivalences
(s = s l.s2.S3.s4) A I true 1

%uninitialized%
I.show()
where parsefl, I, S. L, LE)

(S 1 = [init(o,p>l,!,>
(S2 = A

(S3 = [load(it)]:d A

(S4 = [load-error],!,)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): ?he predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (3): All RHC values are unique:

Else insures partitioning.

Constants, therefore always defined.

True.

(3) EQUIVALENCES

Completeness (1): There is one equivalenw for each event class.
There is one each for init, show, load, load-error, and c f b a d

T.init(o,p) E
conditions equivalences

T= I init(o,p)
T# I %already-initialized%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

init(0.p) is defined by event itself, other RHC item is error message.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Only one is specified. init(). and it is canonical.
Consistency (3): All RHC values are unique:

One is value, one is error.

If one LHC condition i s true, the other must be false, and they therefore partition.

T.showO

Completeness (3): ' h e predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): Tbe predicates in the RHC are defied whenever the corresponding predicate in
the LfiC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

First case is empty trace, second has something in trace, third is else, insuring partition.

Tme.

First two cases are errors, in last I must be defined since T is not empty.

Trace init()show() fl.show()] is in the canonical trace.

147

T.ioad(it) E

T =
T = init(o,p)

rse(T, I. S, L, LE) A

%uninitialized%
%undisplayed%
equivalence = I.S.load(it);

S # - A I=init(o,p) A
p->load() = TRUE
else

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): n e predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

I and S defined for traces in 3rd/4th cases; p, load-error defined as given;
entered-filename and f defined if popup has been created (since init must be in trace,
that is true).

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
init().show().load() and init().show().load().load-emr are canonical

Consistency (3): All RHC values are unique:
3rd + 4th cases differ in equivalence

First two are obviously different, third has show() in T, else separates third from fourth.

AbD-TO-TRACE(Tp, ioad(f, entered-filename))
where f is frame created by init()
equivalence = I.S.load(it).load-err;
ADD-TO-TRACECTD, load(f, entered-filename))
wbere parse(T, I, S. L, LE) A I=init(o,p) A load-error = load0 A f is
frame created by init0

T.load-emr E
conditions equivalences

T = init(o,p).sbowO.load(it)
else [%undefined%

I T.load e m r

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

elseinsures.

T defined by LHC.

One value, one error.

T-load-error canonical if T is as defined by LHC

Tc.cfLoad(itern,e) = Tc; ADD-TO-TRACE(Tp, load(item))
where PopLOadMap* p = xv_get(item, XV-KEY-DATA, INSTANCE);

Completeness (3): The 'predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever tbe corresponding predicate in
the LHC is 'true':

If load occurs, the PopupLoadMap object must have already been created, and p will be
valid.

Nopartitioning.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:
Tc canonical by definition.

Only one value.

148

(4)VALUES

OUTWTVALUES

T = %undefined%

T=
T = init(o,p)

T = init(o.p).show()

T = init(o,p).show().load(it) A
xv_get(frame created by init0,

FRAME CMD-PUSHPIN W)=TRUE
T = Tl.Ioad(it) A

xv-get(frame created by init(),
FRAME CMD PUSHPIN IN)=FALSE

else

1-0 WestWotld Load Map

%undefined%
%undisplayed%

popup window displayed on screen;
Filename field = p>filename; value may be

modified by user
popup field set to value from p-> as given above

popup window disappears from screen

popup forced to remain on screen,witb values as
modified by user

I Filename: <string>

[PopupLoadMap]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

window and fields are created by init, which is included in RHC trace
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

LHC partitions the entire canonical trace.

NotracesinRHC

Either has constant (default) appeance or one modified by user input.

149

150

CLASS: POPUPSAVEMAP

inlt

show
save

TYPE IMPLEMENTED: cPopupSaveMap>

(1) SYNTAX

c v o i b <Xv-opaque> <Map*> pMap
owner-frame

<void,
<void> <Panel-itemz item ,

ACCESS PROGRAMS

Map::save c i n e <Xv-opnque> <char*>
save-error popup-fnme savefiie

Variable Name Type Access
I (POPUP window) I (XView Popup window) 1 NIA 1

CLASS ACCESS PROGRAMS

INPUTVARIABLES

EXTERNAL ACCESS PROGRAMS

Consistency (1): The canonical form fulfills tbe requirements of section XI.
The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

15 1

Parse(s,s1,s2,s3,s4) =
equivalences

true

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (3): All RHC values are unique:

Else insures partitioning.

Constants, therefore always defined.

True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for init, show, save, save-error, and cfSave

T.init(0.p) I

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

init(0.p) is defined by event itself, other RHC item is error message.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Only one is specified, init(), and it is canonical.
Consistency (3): All RHC values are unique:

One is value, one is emor.

If one LHC condition is true, the other must be false, and they therefore partition.

T.show() L

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): "he predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

Frst case is empty trace, second has something in Irace, third is elsee, insuring partition.

True.

First two cases are errors. in last I must be defined since T i s not empty.

Trace init().show() [I.show()] is in the canonical trace.

152

9

T =
T = init(o,p)
parsecf, I, S, L, LE) A
s # - A I=iI&(O,p) A
p->save() = TRUE
else

%uninitialized%
%undisplayed%
equivalence = I.S.save(it);
ADD-TO-ntACE(Tp, save(f, entered-filename))
where f is frame created by init()
equivalence = I.S.save(it).save-errorror,
ADD-TO-TRACECTp, save(f, entered-filename))
where parse(T, I, S, L, LE9 A I=init(o,p) A save-emr = save() A f is
frame created by init0

T.saw-error =
conditions equivalences

T = init(o,p).showO.save(it)
else 1 %undefined%

1 T.save error

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Compbteness (4): The prrdiates in the RHC are defined whenever the corresponding predicate in
the LHC is 'me':

Consistency (2): All &aces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

elseinsures.

T defined by LHC.

One value. one mor.

Tsave-mor canonical if T is as defined by LHC

Tc.cfSave(item,e) P T,; ADD-TO-TRACE(T, save(item))
where PopSaveMap* p = xv_get(item, XV-KEY-DATA, INSTANCE);

completeness (3): The predicates in the LHC of each table partition the intended domain of the
Elation:

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in
tbe LHC i s 'true':

If save occurs. the PopupSaveMap object must have already been created, and p will be
valid.

NopartitioNng.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
Tc canonical by definition.

Consistency (3): All RHC values are unique:
Onlyonevalue.

153

(4) VALUES

OUTPUT VALUES

1 T = - %undefined%
else I frame created via init function ~

T = init(o,o)
T = init(o.p).show()

T = init(o,p).show().save(it) A

xv_get(frame created by init(),
FRAME PUSHPIN IN)=TRUE

T = Tl.save(it) A
xv_get(frame created by init(),

FRAhE CMD PUSHPIN IN) =FALSE
else

values

-Q Westworld: Save Map

Filename: <string>

[PopupSaveMap]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

window and fields are created by inif which is included in RHC trace
Consistency (2) : All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

LHC partitions the entire canonical trace.

NotracesinRHC

Either has constant (default) appeance or one modified by user input.

154

155

CLASS: POPUPMAPSIZE

I init <void> cXv-opaque>

TYPE IMPLEMENTED: <PopupMapSize>

<Map*> pMap

(1) SYNTAX

show
change

ACCESS PROGRAMS

owner-frame
< v o i b
<void> <Panelwitem> item

Map:: <in0 cXv-opaque> <double> <double> < in0

OUTPUT VARIABLES

Variable Name Type Access
(popup window I (XView Popup window) I NiA 1 I

CLASS ACCESS PROGRAMS

chanpe-size change-error pop up-frame new-width new-length new-scale

INPUTVARIABLES

EXTEIWAL ACCESS PROGRAMS

Consistency (1): The canonical form fulfills the requirements of section XI.
The @aces in the set are not fusther reducible when passed through the equivalences

156

The traces contain exactly the information needed for the equivalences and outputs

(s = sl.s2.S3.s4) A

(SI = [init(o,p)lf,) A

(~ 3 = [change(it)I!d A

(~ 4 = [c~~inge_errorI>

(s2 = [ShOWo]:a,) A

else

AUXILJARY FUNCTIONS

parSe(S,S l,S2,S3,S4) =

m e

false

' T r
else

in of the

%uninitialized%
Ishow()
where rwrsecT, I, S, C, CE)

Else insures partitioning.
Completeness (4): "he predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

Consistency (3): All RHC values are unique:
Constants, therefore always defined.

True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for hit. show, change, change-emr, and cfChange

T.init(o,p) =
conditions equivalences

T = I init(o,p)
T # I %already-initialized%

Completeness (3): "he predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): "be prediiates in the RHC are defied whenever tbe corresponding predicate in
thc LHC is 'true':

init(o,p) is &fined by event itself, otber RHC item is ermr message.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Only one is specified, init(). and it is canonical.
Consistency (3): All RHC values are unique:

One is value. one is e m .

If one LHC condition is me, the other must be false, and they therefore partition.

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): n e predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

First case is empty trace, second has something in trace, third is else, insuring partition.

First two cases are errors. in last I must be &fined since Tis not empty.

Trace init().sbw() Q.sbow()] is in the canonical trace.

157

Consistency (3): All RHC values are unique:
True.

T.change(it) =
conditions

T =
T = init(o,p)

S # - A I=init(o,p) A

p-xhange-size() = TRUE

parseCT, 1, s, c, E) A

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

I and S defined for traces in 3rd4th cases; p. change-error defined as given; entered*
values defined if popup has been created (since hit must be in trace, that is true).

init().show().change() and init().show().change().change-error are canonical

3rd 4 4th cases differ in equivalena

First two are obviously different. third has show() in T, else separates third from fourth.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

T,change-mor
conditions equivalences

T = init(o,p).showO.chanpe(it) 1 T.change-error
else I %undefined% I

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical

Consistency (3): All RHC values are unique:

elseinsures.

Tdefined by LHC.

One value. one error.

T.change-error canonical if T is as defined by LHC

Tc.efChange(i&em,e) E Tc; ADD-TO-TRACE(Tp. cbange(itern))
where PopMapSize* p = xv_get(itern, XV-KEY-DATA, INSTANCE);

Completeness (3) : The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

If change occurs, the PopupMapSize object must have already been created. and p will
be valid.

9 No partitioning.

Consistency (2): All tram specified in tbe RHC of the equivalence section are canonical:
Tc canonical by definition.

158

Consistency (3): All RHC values are unique:
Onlyonevalue.

T = init(o,p).showO.change(it) A

xv_get(frame created by init(),
FRAME_cMD PUSHPIN IN)=TRUE

T = Tl.change(it) A

xvset(frame created by init0,
FRAME CMD PUSHPIN IN) = FALSE

else

(4) VALUES

user
popup fields set to values from p-> as given

above

popup window disappears from screen

popup forced to remain on screen,with values as
modified by user

OUTPUT VALUES

I Change I
J

V[popup-f=elO =
conditions values

I T = I %undefined%
else I frame created via init function

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section we canonical:

Consistency (3): All RHC values are unique:

else insures partitioning.

NotracesinRHC

Either frame or error.

frame is defined by init which must be part of any nonempty trace.

v[(pop~p-~ind~w)](T) =
conditions

T = init(o,p).show()

values

popup window displayed on screen;
Width field = p->width formatted "%.2f";

Length field = p-Aength formatted "%.2f';
Scale field = p-xcale; values may be modified by

-0 Map Size

Width: d1%.2f> Length: <fl%.Zf>

Scale: -.cinb- esSa

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

LHC partitions the entire canonical trace.

159

Completeness (4): "be predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

window and fields are created by init, which is included in RHC trace
Consistency (2): AU traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:
NotracesinRHC

Either has constant (default) appeance or one modified by user input.

160

CLASS: WINMAP

fmne I <xv opaque>

TYPE IMPLEMENTED: <WinMap>

publicly accessible

(1) SYNTAX

ACCESS PROGRAMS

0muT VARIABLES

c L A s s o m v A R I A B L E s

Variable Name Type Access
I notify value I <Notify value:, 1 func return 1

mvARIABLEs

Variable Name Access
<xv-opaque> XView xv get value XV KEY DATA

INSTANCE <Attr-attribute> direct access

EXTERNAL ACCESS PROGRAMS

161

Utils::cMotice-OK <void>

(2) CANONICAL TRACES

<Xv-opaque> <char *>.
owner message

Consistency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the infomation needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for access functions init, unimplemented, quit. cfMenuF'ileQuit,
cfMenuMapRedraw, CfMenuMapChangeSize, cfRepaint, and cfDestroy

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

init(0.p) is defined by event itself, other RHC item is error message.
Consistency (2): AU braces specified in the RHC of the equivalence section are canonical

Only one is specified, init(). and it is canonical.
Consistency (3): All RHC values are unique:

else insures partition.

One value, one exor.

T.unimplemented() =
conditions equivalences

%uninitialized%
equivalence = T;

ctNotice-OK(f, "Tbis function
has not ken implemented.")
where Tu is the class access trace

ADD-TO-TRACE(Tu,

1 1 forutils

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of b e equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition.

T defined by equivalence.

One value, one error.

T is canonical by defmition.

162

T.quit() E

T =
T = T1 .init(o,pl,pZ,p3,p4)
T = Tl.set-title(t?

conditions equivalences
[T' 1 %uninitialized% 1

%uninitialized%
T.set-title(t)
T1 .set-title(t)

CompletenesdConsistency same as above.

xv get(item, XV KEY-DATA, INSTANCE) = 0
op = M E N U - N O m A
xv_get(item, XV-KEY-DATA, INSTANCE) f 0

else

%invalid item%
equivalence = Tc;
ADD-TO-TRACECTp, draw())
where Map* p =

xv, eet(item, XV-KEY-DATA, INSTANCE);
TC

T&MenuFileQuit(itern, op) E

conditions

xv_get(item. XV-KEY-DATA, INSTANCE) f 0

%invalid item%

ADD-TO-TRACE(Tp, quit())
where WinUap* p =

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

first two differentiated by =/#: else insure partition

Tc defined by LHS; if fn called then item must be created and therefore p will be valid.

Tc is canonical by definition.

mor + one has ADD-TO-TRACE, other does not.

163

Completeness (3): The predicates in the LHC of each table partition the intended domah of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

first two differentiated by =/#; else insure partition

Tc defined by LHS; if fn called then item must be created and therefore p will be valid.

Tc is canonical by definition.

error + one has ADD-TO-TRACE, other does not

Tc.cfMenuMapChangeSize(item, op) =

ATA, INSTANCE) f 0

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

first two differentiated by ==h; else insure partition

Tc defined by LHS; if fn called then item must be created and therefore p will be valid.

Tc is canonical by definition.

emor + one has ADD-TO-TRACE. other does not.

Tc.cfMenuUnimplemented(item, op) E

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
d3tiOn:

Completeness (4): The predicates in the RHC are defined whenever the colresponding predicate in
the LHC is 'me':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

first two differentiated by =k: else inswe partition

Tc defined by LHS; if fn called then item must be created and therefore p will be valid.

Tc is canonical by definition.

error + one bas ADD-TO-TRACE, other does not.

T,.cfRepaint(cmvas, pw. display, xid, rects) =
conditions equivalences

1 xv qet(pw, XV-KEY DATA, INSTANCE) = 0 1 %invalid item% I

164

-
Op = M E N U - N o m A
xv_get(pw, XV-KEY-DATA, INSTANCE) f 0

else

T&Ikstroy(client status) = cfDestroy(dient, status)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

nopartition

def ied by LHS

cfDestroy() is canonical

one value only

equivalence = T,;
ADD-TO-TRACE(Tp draw[))
where Map* p =

xv eet(pw, XV- KEY^ DATA, INSTANCE);
Tc

(4) VALUES

OUrPuT VALUES

V[framelO =
conditions values

T = I %undefined%
T = init(o,pl,p2) 1 frame id for (main window)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

LHC paritions the canonical trace.

NotraccsinRHC.

EItherframeorerror.

hame is defined by init.

165

T = init(o,pl,p2,p3,p4)

T = T1 .set-title(t)

V [(main-window)] 0 =
conditions values

I T = %undefined%
display WinMap on screen, with canvas exactly
encompassing default map size, with title
”WestWorld -- <None>”, wirb border fitting map
size (Map::init-draw), with menus as follows: - File: Load ..., Save ..., Quit

HELIX Map, Clear Map, Change Map Si ze...,
New Map Object ...
- Robots: Summon ... <default>, <blank>, Start

All, Stop All, Quit All
same window as above, with title

- Map: R&w <defaUlO, <blanlo, Update

In WestWorld -<NONE>

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in
the LHC is ‘true’:

Consistency (2): All &aces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

LHC paritions the canonical trace.

NotracesinRHC.

Window titles differ.

window is defined by init.

V[notify-valuel(T~) =

conditions values

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

first two differ, else insures partition.

166

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:
NIA

constant m r . or clientktatus defined by LHC

Error, constant, or fn fall return

Program Name Argument No Value

1 CfDeStrOY I Value 1 notify-value I
Completeness (2): There is me output functiodrelation that specifies each output value:

There is one output value defined above for notify_value.

167

CLASS: UTILS

(notice) (XView Notice) I N/A
yn answer c inb func return

b -

TYPE IMPLEMENTED: <Utils>

notice Confirm button

(1) SYNTAX

pseudo-even t

CLASS ACCESS PROGRAh4S

notice-confirm

Func Name Value
<void> j <Xv-opaque>owner 1 <char *> message cfNotice-OK

cmotice-YN <in0 yn-answer <char *> messaee I
CLASS OUTPUT VARIABLES

Consistency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for cfNotice-OK cfNotice-YN, notice-confirm, and notice-yn.

Tc.cfNoti~~-OK(o,m)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values art: unique:

else insures partition.

event defined by LHC.

cfNotice-OK is canonical.

One value. one error.

168

Tc = cfNotice-OK(0.m) v
Tc = cfNoiice-YN(o,m)
else

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defured whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition.

event defined by LHC.

cfNotice-YN is canonical.

One value, one emor.

%waiting%

cfNotice-YN(o.m)

Tc.notice-confirm 5

Tc = cfT'4otice_OK(o,m)
conditions equivalences 4

-

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
rclation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition.

constants.

- is canonical.

One value, one error.

conditions equivalences
Tc = cfNotice-YN(o,m) 1 n o t i c e n
else 1 %no YN notice%

Completeness (3): The predicates in the LHC of each table pattition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition.

no t ice jn defined by U S .

noticejn is canonical.

One value, one error.

169

(4)VALUES

cfNNotice-YN

OUTPUT VALUES

Value yn - answer

V[(notice)JO =
conditions values

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Since T i s canonical, the conditions partition the canonical trace and therefore give a fuU
partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

defrned by LHC

NIA

One value, one error.

conditions values
I T = notice-yn A TRUE (1) I

Completeness (3): The predicates in the LMC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): AII traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition.

constants

oo t ice jn is canonical.

Two distinct values. one error.

Completeness (2): There is one output functiodrelation that specifies each output value:
There is one output value defined above for yn-answer.

170

Clear Boxes

The clear boxes consist of the following files, which are attached:
ww-ui.H - header file containing class, constant, and misc. definitions
A4ain.C - fie with main() loop and global variables
Map.C - class implementation for Map
PopupLoadSave.C - class implementations for PopupLoadMap + PopupSaveMap
P0pupMapSize.C - class implementation for PopupMapSize
Wid4ap.C - class implementation for WinMap
Utils.C - midutility routines

See below for increment 2 C++ headers.

171

v. c lass Desipn and Class BB SDec ifications (Seco nd Level)

This section deals with objects or functions that were "discovered" during the implementation of the first
level of clear boxes.

(I) Choose candidate objects

During the development of the Map object, it became apparent that there was a need for some additional
classes. First, the interaction with files appeared to be similar to dealing with an external object, and
therefore it appeared that it would be easier to encase these interactions into a File class, which i s defined
below. However, it was decided that since File would only be used by Map and would not significantly
improve the specification's readability, a separate class was not created. In the code above, fiesystem is
considered to be an external object with a set of function calls.

In addition, the Map object requires a data structure to hold the Map data. The structure must be able U,
represent multiple types of objects, specifically boxes and cylinders in this increment and perhaps others in
future increments. Therefore, a hierarchy with an absuact base class and subclasses which actually
implement the specific object types is appropriate. This results in the Mapobject hierarchy, with
subc~asses MapBox and MapCylinder. This hierarchy was at first included in the fvst level on this
increment, but it was realized that this was inappopriate, since the Mapobject hierarchy should only be
defined after its requirements are clear from developing the Map class.

(2) Assign top-level stimuli to objects

Not applicable at this level.

(3) Identify inter-class stimuli

Mapobject responds to cfSelectAndLoad() by selecting the appropriate Mapobject subclass via checking
&Me() for each subclass and then creates an instance of the class that has cflsMe()=TRUE and calls
load(Xv-opaque frame, char* line) for the new object. If there are problems with loading. a notice
explaining the problem is displayed using the passed frame. MapBox and Mapcylinder have to have
appropriate class function cfIsMe and instance functions load(), save(), and draw(). The save(char *line,
int limit) function takes the current data in the object and creates a loadable file line for the object to be
saved to a f i l e via the calling function. The set-next(MapObject*) function sets the next pointer for the
object to the given parameter and returns that pointer, next contains the value of the current next pointer.
An overloaded next0 function was considered to provide botb the set-next and next services, but this was
deemed unacceptable because of possible confusion during specification and design. Mapobject is an
abstract superclass, and therefore cannot be instantiated.

172

Figure Y: Second Increment Object Interaction Diagram (Final)

(4) Black Box Definitions

defure_BB Mapobject
access programs

Mapobject0
Mapobject* set-next(MapObject* nextobj)
virtual int load(Xv-opaque frame, int lineno, char* line)
virtual void save(char *buffer, int bufsize)
virtual void draw(Display *display, Window xid, int scale, int m y)

output variables
Mapobject* next

class access programs
static MapObject* cfSelectAndLoad(Xv_opaque frame, int lineno, char* line)

external access
int MapBox::cflsMe(char* 1)
int MapCylink:cflsMe(char* 1)
void Utils::cfNotice-OK(char *message)
MapBox* MapBox::new()
Mapcylinder* MapCy1inder::newO
void MapBox::deIeteOMapBox*)
void MapCylinderxdelete(MapCy1inderC)

transition

173

Si = Mapobject() --> no response
Si = next --> returns value from last set-next(n) call, otherwise returns NULL
Si = set-next(p) --> p
Si = load(f,n,l) --> not implemented in this class
Si = save@, bs) --> not implemented in this class
Si = draw(d,xw,s) --> not implemented in this class
Si = cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = TRUE A

(p = new MapBox)->load(f,n,l) = TRUE --> p
Si = cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = TRUE A

(p = new MapBox)->load(f,n,l) = FALSE --> NULL
Si = cfSelectAndLoad(f,n,l) A MapBox::cfisMe(l) = FALSE A

MapCy1inder::cff sMe(1) = TRUE

Si E: cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = FALSE A

MapCylinder::cfIsMe(l) = TRUE

Si = cfSelectAndLoad(f,n,I) A MapBox::cfIsMe(l) = FALSE A

MapCy1inder::cfI sMe(1) = FALSE -->

(p = new Mapcylinder)->load(f,n,l) = TRUE --> p

(p = new Mapcylinder)->load(f,n,l) = FALSE --> NULL

Utils::cfNotice-OK(f, "Map file format ~ITOT; unknown object @ line -'I);

return NULL
end-RB

defineBB MapBox
access programs

MapObj ea() <inherited>
Mapobject* set-next(MapObject*) <inherited,
virtual int load(Xv-opaque frame, int lineno, char* line) <inherited>, <overridden>
virtual void save(char *buffer, int bufsize) anherite&, <overridden>
virtual void draw@isplay *display. Window xid, int scale, int m y)

dnhesiteb, <overridden>

output variables
Mapobject* next <inherited>

class access programs
static void cfSelectAndLoad(Xv-opaque frame, int lineno, char* line) &herite&
static int cfIsMe(char* line)

external access
void Uti1s::cfNotice-OK(char *message)

transition
Si = load(f,n,l) A legal-box(1) --> TRUE
Si = load(f,n,l) A not(legalJox(1)) -->

Utils::ctNotice_OK(f, "Map file format error: bad box definition @ line a~")
return FALSE

copy information fiom load() into "box <locx> <lacy> <width> d e n g t b
<height>" with default height if none specified by laad() and limited to length
of bs.

draw rectangle at <locx>*s,docy>*s+<lengtb*s of size
cwidth>*s,<length>*s (origin in bottom LHC of map)

Si = save@, bs) -->

Si = draw(d,xw,S) -->

Si = cfIsMe(1) A stmcmp(1, "box", 3) = 0 --> TRUE
Si = cRsMe(1) A stmcmp(1, "box", 3) # 0 --> FALSE

174

e n d B B

Spec Function
legal-hx0) I =

[if 1 is of form "box docx> docp <width> <length> [<heighb]" --> TRUE
else --> FALSE]

NOTES:
(1) only new or over-ridden routines are redefined in a derived class (subclass).

derine-BB Mapcylinder
access programs

Mapobject() <inherited>
Mapobject* set-next(MapObject*) <inherited>
virtual in1 load(Xv-opaque frame, int lineno, char* line) <inherited>, <overridden>
virtual void save(char *buffer, int bufsize) <inherited>, <overridden>
virtual void draw@isplay *display, Window xid, int scale, int m y)

<inherited>, <overridden>

output variables
Mapobject* next <inherited>

class access programs
static void cfSelectAndLoad(Xv-opaque frame, int lineno, char* line) <inherited>
static int cfIsMe(char* line)

external access
void Utils::cfNotice-OK(chat *message)

Si = load(f,n,l) A legal-cylinder(1) -> TRUE
Si = load(f,n,l) A not(1egal-cylinder(1)) -->

transition

Utils::cMotice,OK(f,

retumFALSE

copy infonnation from load0 into "cylinder <locx> <lacy> aadius> &eight>"
with default height if none specified by load0 and limited to length of bs.

draw circle at clocx>*s,clocp*s of radius cradius>*s, origin in bottom LHC
of map

"Map file format error: bad cylinder definition @ line a>")

Si = save@, bs) -->

Si = draW(d,XW,S) -->

Si = cffsMe(1) A stmcmp(1, "cyl", 3) = 0 --> TRUE
Si = cfIsMe(1) A stmcmp(1, "cyl", 3) f 0 --> FALSE

end-BB

Spec Function
[IegaLcylinder(1) 3 =

[if 1 is of fom "cyl[inder] <loco & c y > cradius> [&eight>]" --> TRUE
else --> FALSE]

175

VI. TAMSpec ifications for Classes (Second Level)

cfSe.lectAndLoad <Mapobject*> <Xv-opque> frame 4110 lineno
created

CLASS: MAPOB JECT

<char*> line

TYPE IMPLEMENTED: cMapObjecb

cvlnew <Mapcylinder*:,

(1) SYNTAX

ext fn return

ACCESS PROGRAMS

OUTPUT VARIABLES

CLASS ACCESS PROGRAMS

CLASS OUTPUT VARIABLES

Variable Name T W Access
created <Mapobject*> fn return I I 1 I

INPUTVARIABLES

EXTERNAL ACCESS P R O G W S

176

canoniCal(Ti) e--> (Ti = MapObjectO) v (Ti = set-next(n))

canonical(Tc) <--> (Tc = 3 v (T, = boxnew) v Cr, = cylnew)

Consistency (1): The canonical form fulfills the requirements of section M. - The traces in the set are not further reducible when passed through the equivalences
Tbe traces contain exactly the informahon needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for Mapobject(), set-next(), load(). save(), draw(),
cfSelectAndLoad(), boxnew, cylnew

T.MapObject0 = MapObjectO

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

0

No partitioning, therefore unique.

No partitioning of domain, therefore complete

MapObjcct{) is a canonical trace

T.set-next(n) set-next(n)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

completeness (4): ?be predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

No partitioning of domain, tberefore complete

&-next() is canonical.

No partitioning, therefore unique.

set-nexq) defined by RHS. L & D defined by parsing T.

T.load(f, In, 1) E %undefined for this class%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): 'Ihe predicates in the RHC are d e f d whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All h;ices specitied in the RHC of the equivalence section are canonical

Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

e m

NIA

No partitioning, therefore unique.

T.save(b, bs) = %undefined for this class%

177

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): ' h e predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

error

N/A

No partitioning. therefore unique.

T.draw(d, xw, s, m) = %undefined for this class%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): 'Ibe predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): AI1 traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

error

NIA

No partitioning. therefore unique.

178

Tc.cfSelectAndLoad(f, ln, 1) E

conditions
MapBox::IsMe(l)=TRUE A
(boxnew = new MapBox)->ioad(f, In, l)=TRUE

MapBox::IsMe(l)=TRUE A
(boxnew = new MapBox)->load(f, In, I)=FALSE

MapBox::IsMe(l)=FALSE A
MapCyl::lsMeO)=TRUE A
(cylnew = new MapBox)->load(f, In, l)=TRUE

MapBox::IsMe(l)=FALSE A

MapCyl::IsMeO)=TRUE A
(cylnew E new MapBox)->load(f, In, IbFALSE

else

equivalences
equiv = boxnew;

ADD-TO-TRACE(Tmb, new);
ADD-TO-TRACE(Twxnew. load(f, In, l)),
where T m b is the class trace for MapBox
equiv = -;

ADD-TO-TRACEVmb, new);

ADD-TO-TRACEflmb, IsMe(1));

ADD-TO-TRACE(Tmb, IsMe(1));

ADD-TO-TRACE(Tbxnew, lOad(f, In, I));

where Tab is the class trace for MapBox
equiv = cylnew;

ADD-TO-TRAWTac, IsMe(1));

ADD-TO-TRACE(Tcylnew, load(f, In, I)),
where Tcmb is the class tram for MapBox and
Tcmc is the class m e for MapCylinder
equiv = -;
ADD-TO-TRACE(Tmb, IsMe(1));
ADD-TO-TRACE(Tmc, IsMe(1));

ADD-TO-TRACEfTcylnew, load(f, In, 1));
ADD-TO-TRACE(Tmc, delete(cylnew)),
where Tab is the class mce for MapBox and
Tcmc is the class trace for MapCylinder
equiv = -;
ADD-TO-lRACECTmb, IsMe(1));
ADD-TO-TRACE(Tmc, IsMe(1));
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file
format mor unknown object 0 line <n>"),

class trace for MapBox and T m c is the class
trace for Mapcylinder

ADD-TO-TRACE(Tcmb, delete),

ADD-TO-TRACECTQnb, IsMe(1));

ADD-TO-TRACE(Tcmc, new);

ADD-TO-TRACE(Tac, WW);

W h e r e Tu iS the Class trace for Ut&, T a b iS the

Completeness (3): The predicates in the LHC of each table partition tbe intended domain of the
dation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC i s 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical

Consistency (3): All RHC values are unique:

else insum parititioning

values defmed by LHC or LHS

-, boxnew. cylnew all canonical for T,

equiv and ADD-TO-TRACE results all different

Tc.boxnew E boxnew

Completeness (3): The predicates in the LHC of each table partition the intended domain of tbe
relation:

No partitioning of domain, therefore complete

179

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

boxnew defined by LHS

No partitioning, therefore unique.

bOMeW is a canonical trace

Tc.cylnew E cylnew

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed wbenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence ~t~ti01-1 are canonical

Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

cylnew defined by LHS

No partitioning, therefore unique.

boxnew is a canonical trace

(4)VALUES

V[next](T) =
conditions values

parsen, I, L, D) A I = set next@) 1 n
else I NULL 1

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in tbe RHC are defined whenever the corresponding predicate in
the LWC is 'hue':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC vdues arr unique:

else insures partitioning.

n defined in LHC.

NotracesinRHC

Value or N U U .

V[load-ok](T) = %undefined%

Completeness (3): The predicates in the LWC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are uniquc:

no partitioning.

erroronly.

No traces in RHC.

erroronly.

Vbufferlfl) = %undefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

no partitioning.

180

Completeness (4): The predicates in the RHC are defmed whenever the correspondi& predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

emoronly.

NotracesinRHC.

crroronty.

Tc = boxnew
Tc = cylnew

else

value of boxnew
value of cylnew

NULL

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): ?be predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): ALI traces specified in the RHC of the equivalence section are c a n o n i d

Consistency (3): All RHC values are unique:

else insures partitioning.

defrnedinLHC.

NotracesinRHC

different values or NULL.

Program Name Argument No Value
I cfSeIectAndLoad I Value I created 1

Completeness (2): There is one output functiodrelation that specifies each output value:
There is one output value V[created] defined above for the one value in the table.

181

CLASS: MAPBOX

1 (i) cfSelectAndLoad I <Mapobject*> I <Xv-opaque> frame I c i n e lineno

TYPE IMPLEMENTED: cMapBox>

<char*> line

(1) SYNTAX

(i) created

Note: (i) items are inherited

<Mapobject*> fn return

ACCESS PROGRAMS

OUTPUT VARIABLE!

CLASS OUTPUT VARIABL.ES

Func Name Value k g # I Arr#2
UtikcfNotice-OK 1 <void> I <Xv-opaque>frame 1 <char*> message

(2) CANONICAL TRACES

canonical(Ti) <--> (Ti = Mapobject() v set-next(n)) v
(Ti = WapObjectO v set-next(n)].load(f,In,l)) v

(Ti = Mapobject() v set-next(n)] .load(f,in,i).draw(d,xw,s,m))

182

canonical(Tc) <--> Cr, = 3 v (Tc = boxnew) v (Tc = cylnew).v (Tc = cffsMe(1))

Consistency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed through the equivalences
The iraces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): 'ihe predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (3): All RHC values are unique:

Else insures partitioning.

Constants, therefore always defied.

True.

conditions equivaiences
I (1 is of form "box docx> docm cwidlh> I Vue I I <length> Icheighol") I I

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): l'he predicates in the RHC are defined whenever the rorresponding predicate in
tbe Lflc is 'true':

Consistency (3): All RHC v a i w are unique:

else insures partitioning.

Constants. therefore always defined.

True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
There is one each for set-next(). load(), save(), draw(), and cfisMe(); Mapobject(),
cffclectAadload(), boxnew, cylnew are unchanged from previous

T.set-next(@ E set-next(n).LD where parse(T, I, L, D)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

No partitioning, therefore unique.

set-nexto defined by RHS. L & D defined by parsing T.

set-nexto, set-next().load(). and set-nextO.loadO.draw0 are all canonical traces.

183

T.load(f, In, 1) E

fomt error: bad box definition @ line <In>")

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition

defined by LHS

Lload() is canonical

trace alone or trace + ADD-TO-TRACE().

T.save(b, bs) E T

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

defined by LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Tis canonical by definition
Consistency (3): All RHC values are unique:

onlyone

nopartition

T.draw(d, xw, s, m) =

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partition

defmed byLHS

I.load() is canonical

trace alone or trace + ADD-TO-TRACE().

Tc.cflsMe(l) E cflsMe(1)

Completeness (3): The predicates in tbe LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defiied whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

No partitioning of domain, therefore complete

cfI sMe() defined by LfIS

cfIsMe() is a canonical tracs

184

Consistency (3): All RHC values are unique:
NO partitioning, therefore unique.

parseCT, I, L, D) A
LFload(f,ln,l) A legal-box(1) A

D=draw(d,xw,s.m)

draw rectagle parsed from 1 in
window defined by d, xw with

scale s and positioned relative to
bottom LHC of window

I else %undefined%

(4) VALUES

OUTPUT VALUES

Note: V[next] and V[crated] are unchanged from inherited; V[loadpk] and Vpuffer] override superclass
der.

L=load(f,ln,l) A

parse(?’, I, L, D) A
L=load(f,ln,l) A

FALSE (0)

%undefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Compleleness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true’:

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partitioning.

mnstanls or m r .

NotracesinRHC.

opposite values or mor.

Vlbuffer] 0 =
conditions values

parseU, I. L, D) A
L=load(f,ln,l) A

“box clocx> docp <width>
dength> cbeij$hb” from load()

with default height if none

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicaes in the RHC are defined whenever the corresponding predicate in
the LHC is ‘me‘:

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical:

Consistency (3): At1 RHC values are unique:

else insures partitioning.

valueorerror.

NotracesinRHC.

valueoremor.

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are. unique:

else insures partitioning.

defmed by RHC.

NotracesinRHC

one value or error.

V[isMe](Tc) =
conditions values

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partitioning.

constants.

e NotracesinRHC

opposite values or error.

REIWZN VALUES

Completeness (2): There is one output functionhelation that specifies each output value:
Yes, except for inherited values that are not ovemdden.

186

CLASS: MAPCYLINDER

(i) next
(i) load ok
(i) buffer

(output -screen)

TYPE W-: cMapCylinder,

(1) SYNTAX

cMapObiect*> public
< inb fn return (overridden)

<Ch*> fnparam return
(X displav window) NIA

Note: (i) items are inherited

(i) cfSelectAndhd

cflsMe

ACCESS PROGRAMS

<Mapobject*> <Xv-opaque> frame <in0 linen0 <char*> line
created

<inb isMe e b a r *> line

I I I display I I ovemdden I

-

OUTPUTVARIABLES

(i) created <MapObiect*> fn return

CLASS OUTPUTVARIABLES

Func Name Value &g#l Ara#2 1 Utils::cfNotice-OK I <void> 1 cXvppaque>frame I <char*> message

(2) CANONICAL TRACES

~OniCalCri) <--> (Ti = MapObjectO v set-next(n)) v
Cri = WapObjectO v set_next(n)].load(f,In,l)) v

(Ti = &lapobject() v set~next(n)l.load(f,ln,l).draw(d,xw,~,m))

canonical(Tc) <--> (T, = 3 v (Tc = boxnew) v (Tc = cylnew) v (Tc = cflsMe(1))

187

Consistency (1): The canonical form fulfills the requirements of section XI.
The traces in the set are not further reducible when passed through the.equivalences
The traces contain exactly the information needed for the equivalences and outputs

(1 is of form "cyl[inder] clocx, docp <radius>
[&eight>] ")

AUXILIARY FUNCTIONS

me

parse(S,S 1,s2,s3) =

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the comesponding predicate in
the LHC is 'true':

Consistency (3): All RHC values are unique:

Else insures partitioning.

Constants, therefore always defined.

True.

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in
the LHC i s 'true':

Consistency (3): All RHC values are unique:

else insures partitioning.

Constants, therefore always defined.

True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
The= is one each for set-next(). load(), save(), draw(), and cflsMe(); Mapobject(),
cfSelectAndLoad(). boxnew, cylnew are unchanged from previous

T.set-next(n) = set-next(n).LB where parsec, I, L, D)

Completeness (3): The predicates in the LHC of each table partition the intended domaim of the
relation:

Completeness (4): The predicates in the RMC are defied whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

No partitioning of domain, therefore complete

No partitioning, therefore unique.

set-next() defined by RHS, L & D def ied by parsing T.

setgext(). set-next().load(), and set-next().load().draw() are all canonical traces.

188

legal cyIinder(1)
else

I.load(f, In, 1) where parsee, I, L, D)
equiv = I.load(f, In, 1) where parse(T, I, L, D);
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file
format error. bad cylinder definition @ line
<in>"). where TU is the class trace for Utils

Tc.cflsMe(l) E cflsMe(1)

) IL.draw(d, xw. s. m)

, else
legal cylinder(I)

%cannot draw without legal load0 first%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in
the LHC is 'true':

No partitioning of domain, therefore complete

cfIsMe() defined by LHS

189

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:
cRsMe() is a canonical trace

No partitioning, therefore unique.

(4)VALUES

Note: V[next] and V[created] are unchanged from inherited: V[load-ok] and Vmuffer] override superclass
def.

V[l~ad-~k](T) =
conditions values

I parse(T. I, L, D) A I TRUE (1)
L=load(f,ln,l) A

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
h e LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:
opposite values or error.

else insures partitioning.

9 constants or error.

No traces in RHC.

Vlbufferlfl) =

Lrload(f,ln,l) A
legal-cylinder(1)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partitioning.

value or error.

No traces in RHC.

value or error.

190

Vl(out~ut_screen)lQ =
conditions values

stmCm~("cyl", 1, 3) = 0
Tc = cflsMe(1) A

stmcmp("cyl", 1, 3) # 0
else

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partitioning.

defined by RHC.

NotracesinRHC

one value or error.

FALSE (0)

%undefined%

V[isA4e](Tc) =

(i) load
(i) save

(i) cfSelectAndLoad

Value load ok (ovemdden)
&# 1. buffer (overridden)
Value created

(i) load
(i) save

(i) cfSelectAndLoad

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
dation:

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Consistency (3): All RHC values are unique:

else insures partitioning.

constants.

NotmcesinRHC

opposite values or error.

Value load ok (ovemdden)
&# 1. buffer (overridden)
Value created

RETURNVALUES

I cfIsMe I Value I isMe I
Completeness (2): There is one output functiodrelation that specifies each output value:

Yes, except for inherited values that are not ovcmdden.

191

VII. c lear Boxes (Seco nd Level)

The clear boxes consist of the following files, which are attached:

Increment 2 C++ Header Definitions (Complete)

MapObjectC - class implementation of MapObject, MapBox, and Mapcylinder

/ / ww-ui.H
/ /
/ / Westworld
/ /
/ / Alex L. Bangs, 2 / 1 0 / 9 ?

/ / Modification History:
/ / 2/10/93 ALB Increment 1
/ / 6/21/93 ALB Increment 2

#i fndef WW-UI-HEADER
#define WW-UI-HEADER

#include <math. h >

/ / Map constants

const double default-width = 12.0;
const double default-length = 12.0;
const int default-scale = 40;
const int min-scale = 1;
const int max-scale = 100;
const double min-width = 1.0;
const double min-length = 1.0;
const int panel-text-size = 8 0 ;
const int filename-size = 80;
const double default-obj-height = 2.0;

/ / simple #define functions

#define min(a,b) ((a) < (b) ? (a) : (b))
#define scaleIt(coord) (irint((coord) * scale))

/ / Main descriptor
/ / (note no real class for Main, but has function + globals
/ / class Main
/ / void main(int argc, char **argv);
extern Attr-attribute INSTANCE;

extern class Mapobject;
extern class WinMap;

/ / Other class descriptors
class Map {

Di sp lay *display ;
Window xid;
GC gc ;

MapObj ec t * objects ;
WinMap' pWinMap ;

public:
double width, length;

192

int scale;
char filename[filename-size];

Map();
-Map (1 ;
void
void
void
int

int
int
int

1;

init-draw(Display*, Window, WinMap*);
draw () ;
clear(1 ;
change-size(Xv-opaque frame,

load(Xv-opaque frame, char *loadfile) ;
save(Xv-opaque frame, char *savefile);
loadline(Xv-opaque frame, int lineno, char *line);

double new-width, double new-length, int new-scale) ;

class PopupLoadMap (
Xv-opa qu e frame ;
Xv-opaque controls ;
Xv-opaqu e filename-field;
Xu-opaque button;

Map* pMap;
void update () ;

public:
void init(Xv-opaque owner, Map* pTheMap);
void show();
void load(Pane1-item item) ;

/ I class functions

1;
static void cfLoad(Pane1Jtem item, Event *event);

class PopupSaveMap {
Xv-opaqu e frame :
Xv-opaqu e controls;
Xv-o paqu e filename-field;
Xv-opaqu e button;

Map* pMaP;
void update () ;

public :
void init (Xv-opaque owner, Map* pTheMap) ;
void s h o w () ;
void save (Panel-i tem it em) ;

/ / class functions

1 ;
static void cfSave(Pane1,item item, Event *event);

class PopupMapSize {
Xv-opaque frame ;
Xv-opaqu e controls ;
Xv-opaque map-width-field;
Xv-opaqu e map-length-f ield;
Xv-opaque map-scale-field;
Xv-opaqu e change-button;

Map* pMap;
void update () ; / / update numbers in the window

193

public:
void init(Xv-opaque owner, Map* pTheMap);
void show(); / / redisplay the box, and do an update
void change(Pane1-item); / / change button pressed; send values to

PMa?

/ / class €unctions
static void cfChange(Pane1-item item, Event ‘event);

/ / XView button callback for Change
1 ;

class WinMap (
X v p pa qu e
Xv-o pa qu e file-menu-button;
Xv-opa qu e
Xv-opaque robots-menu-but ton;
Xv-o p a qu e
Xv-window canvasqaint;
Display*display;
Window xid;

controls ;

map-menu-bu t t on ;

canvas ;

Xv-opaque file-menu-create(caddr-t * , Xv-opaque);
Xv-opaque map-menu-create(caddr-t * , Xv-opaque);
Xv-op aqu e robots-menu-create(caddr-t *, Xv-opaque);

Map * @Map;
PopupLoadMap * pPopupLoadMap;
PopupSaveMap* pPopupSaveMap;
PopupMapSize* pPopupMapSize;

public :
Xv-opaque frame ;

void init(Xv-opaque owner, Map*, PopupLoadMap”, PopupSaveMap*,

void unimplementedo;
void quito;
void set-title(char* new-title);

PopupMapSize*);

/ / XView interface callbacks (class functions)
static Menu-item cfMenuFileLoad(Menu-item item, Menusenerate op);
static Menu-item cfMenuFileSave(Menu-item item, Menugenerate op);
static Menu-item cfMenuFileQuit(Menu-item item, Menugenerate op);
static Menu-item cfMenuMapRedraw(Menu-item item, Menu-generate op);
static Menu-item cfMenuMapClear(Menu-item item, Menugenerate op);
static Menu-item cfMenuMapChangeSize(Menu-item item, Menu-generate o p) ;
static Menu-item cfMenuUnimplemented(Menu-item item, Menu-generate op) :

/ / general XView callbacks (class functions)
static Notify-value cfDestroy(Xv-opaque client, Destroy-status status);
static void cfRepaint(Canvas canvas, Xv-window paint-window,

Display *display, Window xid, Xv-xrectlist ’rects);
1;

class Utils {
public:
/ / class functions

static void cfNotice-OK(Xv-opaque owner, char* message);
static int cfNotice-YN(Xv-opaque owner, char* message);

1;

class Mapobject {

194

protected:
double locx, locy, height;

public :
MapObj ec t * next;

Mapobject (1 ;
MapOb] ect * set-next(MapObject* ncxtobj);
virtual int load(Xv_opaque frame, inc lineno, char* line) = 0;
virtual void save(char* buffer, int bufsize) = 0;
virtual void draw(Display* display, Window xid, int scale, int maxy) =

0;

/ / class functions
static Mapobject' cfSelectAndLoad(Xv-opaque frame, int lineno,

char* line);
I ;

class MapBox : public Mapobject (
/ / private

double width, length;

pub1 ic :
int load(Xv-opaque frame, int lineno, char* line);
void Save(char* buffer, int bufsizel;
void draw(Display* display, Window xid, int scale, int maxy);

/ / class €unctions

1 ;
static int cfIsMe(char* line);

class MapCylinder : public Mapobject (
/ / private

double radius;

public:
int load(Xv-opaque frame, int lineno, char* line);
void save(char* buffer, int bufsize);
void draw(Display* display, Window xid, int scale, int maxy);

/ / class €unctions

1 ;
static int cfIsMe[char* line);

endi f

195

Vita
Alex L. Bangs was born in Midland, Michigan on July 23, 1966. He grew up in
Michigan and moved to Indiana, where he started his first professional programming job
at the age of 14. He attended Harvard University, where he was active in the
International Relations Council and worked in the Harvard Robotics Laboratory. In 1988
he received an A.B. degree in Computer Science and Engineering Sciences magna CUM

l a d e .

After graduation, he worked for a year at the Institute for Defense Analyses in
Alexandria, Virginia as a Research Staff Member where he concentrated on technology
policy andysis. He next worked at Honeybee Robotics in New York City as a Project
Engineer, developing space and commercial robotic prototypes including a robot
bartender. In 1990, he moved to Tennessee to work at Oak Ridge National Laboratory.
The same year he began work on his Master of Science degree at the University of
Tennessee, concentrating in software engineering, and worked during the 1991 -1992
school year as a research assistant, He graduated in August 1993.

Since 1990, he has been a Research Associate in the Intelligent Systems Section at Oak
Ridge National Laboratory, most recently concentrating in cooperating mobile robots
research. He has also been an ongoing computing consultant to Bangs Laboratories of
Camel, Indiana since its incorporation in 1988.

The author is a member of ACM and EEE.

196

ORNL/TM-12439

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. J. E. Baker
3. M. Beckerman
4. R. J. Carter
5. 0. H. Doerum
6. J. R. Einstein
7. C. W. Glover
8. X. Guan
9. J. P. Jones

10. H. E. Knee
11. R. C. Mann
12. E. M. Oblaw
13. S. Petrw

14-18. F. G. Pin
19. K. Rahmani
20. N. S. V. Ran,
21. S. A. &by

22. D. B. Reister
23. M. Shah
24. J. C. Schryver
25. P. F. Spelt
26. E. C. Uberbacher
27. M. A. Unseren
28. R. C. Ward
29. Y. Xu

30-31. Laboratory Records
Department

32. Laboratory Records,

33. Document Reference

34. Central Research Library
35. ORNL Patent Section

ORNL-RC

Section

EXTERNAL DISTRIBUTION

36. OfEce of Assistant Manager, Energy Research and Development,
Department of Energy, Oak Ridge Operations, Oak Ridge, T N 37831

37. Dr. Peter Allen, Department of Computer Science, 450 Computer Science,
Columbia University, New York, NY 10027

38-62

63

64

I.

Mr.
CA 94040

Alex L. Bangs, 877 Heatherstone Way, #604, Mountain View,

Dr. Wayne Book, Department of Mechanical Engineering, J. S. Coon
Building, Room 306, Georgia Institute of Technology, Atlanta, GA 30332
Professor Roger W. Brockett, Harvard University, Pierce Hall,
29 Oxford St.. Cambridge. MA 02138

65. Dr. Steven Dubowsky, &&achusetts Institute of Technology, Building 3,
Room 469A, 77 Massachusetts Ave., Cambridge, MA 02139

66. Dr. Avi Kak, Department of Electrical Engineering, Purdue University,
Northwestern Ave., Engineering Mall, West Lafayette, IN 47907

67. Dr. James E. Leiss, Route 2, Box 142C, Broadway, VA 22815-9303
68. Dr. Oscar P. Manley, Division of Engineering, Mathematical, and

Geosciences, Office of Basic Energy Sciences, ER-15, U.S. Department
of Energy-Gennantown, Washington, DC 20545

69. Prof. Neville Moray, Department of Mechanical and Industrial
Engineering, University of Illinois, 1206 West Green St., Urbana, IL 61801

70. Prof. Jesse Poore, The University of Tennessee, Department of Computer
Science, 107 Ayres Hall, Knoxville, T N 37996

71. Dr. Wes Snyder, Department of Radiology, Bowman Gray School of
Medicine, 300 S. Hawthorne Dr., Winston-Salem, NC 27103

72. Prof. Mary F. Wheeler, Department of Mathematics, Rice University,
P.O. Box 1892, Houston, TX 77251

73-74. Office of Scientific and Technical Information? P.O. Box 62, Oak Ridge,
T N 37831

197

