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Preface 

There were a number of goals that I had set out to accomplish with this work. The 

overall goals were to learn something about cooperating robots and software 

engineering, and to construct a sirnulator in the process of doing both. On the software 

side specifically, I wanted to experiment with specification methods for designing a real 

system. I also wanted to experiment with object-oriented design and see how this 

meshed with the specification methods being explored. Finally, I wanted to work in C++ 

and X windows, to gain experience with both. 

I chose the Trace Assertion Method as the specification method for this work for three 

reasons. First, I was familiar with it following a seminar at the University of Tennessee 

in the Spring of 1992. Second, it appeared to be a good candidate for object-oriented 

specifications, because it grouped functions together in modules in a manner that seemed 

to mesh well with object-oriented concepts. Third, Professor Poore and I were curious as 
to how the trace method would apply to real systems. 

The work began in the Fall of 1992, with an attempt to build a simulator for cooperating 

mobile robots. I built a concept prototype of a simulator in January of 1992, but this ran 
in Smalltalk on a Macintosh and was very slow. In the Summer of 1992, I started to 

work on a prototype interface using X Windows and C t t  under the SunOS environment. 

This prototype was a good learning experience, and a number of lessons learned from 

that are included in the requirements specification document for the simulator interface, 

which was written as the next step (this document is included in Appendix B). 

Once the requirements had been established, the hardest work was in trying to adapt the 

specification method to the software being designed. The first increment is relatively 

simple-three major objects with some supporting objects. It proved to be more difficult 

to specify than anticipated, and extensions to the Trace Assertion Method were required 

to allow true object-oriented designs to be specified. Specifically, notations for handling 

module YO and module interactions needed to be more fully developed. In addition, the 
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method, which was created for module specification, had to be adapted to'fit into a full 

system design. 

One of the most helpful ideas came in a brief conversation with Neil Erskine. a student 

of David Parnas. I was struggling with module interactions, and Neil suggested a new 

method that I had not considered. While the idea that he gave me required some 

development to be useful, it nevertheless allowed me to progress significantly. 

This thesis documents the work done to adapt the method for object-oriented/C++ 

design, and gives examples from the increments developed. 
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Abstract 

The Trace Assertion Method, originated by David Parnas, is a method for developing 

specifications for software modules. The nature of the method allows verification of 

consistency and completeness of the specification, and provides a rigid structure to the 

designer. This method is extended to work with object-oriented designs for a C++ 

system involving a user interface. A number of object-oriented concepts which are not 

present in the original Trace Assertion Method are incorporated into the method and 

demonstrated on two completely specified increments of the system being developed. In 

addition, the method is incorporated into a system wide view beyond the original 

modular scope of the method. Advantages of the adapted method and its problems are 

discussed. 
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1 Introduction 

This work discusses adaptations to the Trace Assertion Method (TAM) [Parnas89] to 

handle the specification of C++ programs using object-oriented designs. The examples 

given are specifications of C+t objects for a user interface being developed under the X 

Window System, as part of Westworld, a simulation system for experiments with 

cooperating robots. 

Simulators represent an important part of research in robotics, allowing robot navigation 

and other tasks to be tested in an environment that is more forgiving of mistakes and 

allows experiments not possible in the real world. A simulation is typically made up of a 

number of components that manage both the display for the operator as well as the actual 

pieces of the robots being simulated. Use of object-oriented systems for designing and 

implementing simulators is common since the object model allows simulator 

components and data representations to be more easily and naturally designed. 

As a simulation becomes more complex, however, it presents a problem for the designer. 

A large number of interacting components can be difficult to design and maintain. This 

is where specification methods are useful. By using specifications for the various 

components in the system, components can be designed in parallel, without knowledge 

of the internals of other components, and in the confidence that the interfaces for each 

component are complete. 

The specification method chosen for this development effort was the Trace Assertion 

Method, as defmed by David Parnas and Yabo Wang. Unfortunately, the TAM report 

leaves many questions unanswered, and does not give very complex examples of the 

application of the method. Given the method's orientation toward modular design, it was 

chosen as the method for specifying the object-oriented design of the user interface. In 

addition, some elements of the box structure design method [Mills881 are utilized as 

well. 
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In Chapter 2, adaptations to TAM are discussed. TAM, like many other-specification 

methods, works well for parameterized input and output, but deals poorly with classes 

that manage user interface tasks, where the input and output are not easily 

parameterized. In addition, TAM handles input and output as variables, but some forms 

of input and output may be more in the form of events or functions, rather than variables. 

This is crucial, since peer interaction between classes through functions is an important 

part of object-oriented systems. Notational additions to TAM are presented that allow 

the designer to deal with user interface input and output, and to handle peer interactions 

between objects. In addition, other object-oriented elements such as class functions, 

constructors/destructors, and inheritance are discussed and notation for using these 

elements with TAM is presented. 

In Chapter 3, a few example classes from the system being developed are discussed at 

length, including the adaptations required to allow their specification. TAM was 

intended for specification of individual modules, not an entire system. A process has 

been developed to incorporate the TAM-specified classes into a larger, single unit, and 

to handle interelass operations. This is discussed in Chapter 4. 

After development of a prototype for the interface, a requirements specification was 

written to document the interface functions and responses. This document is contained in 

Appendix B. 

The first increment developed for the interface involves three classes: Map, 

PopupMapSize, and WinMap. The Map class contains the core data structure for the 

application, holding the map dimensions (width, length) and number of pixels per meter 

(scale) for the map to be represented on the screen. It also controls the X paint window 

created by WinMap. The PopupMapSize class creates a pop-up window for modifying 

the Map fields of width, length, and scale. The WinMap class controls the main window 

for the application, including an X paint window for displaying the map rectangle and 

menus for controlling the program functions. It acts as the routing point for all menus in 

the window, and calls functions from other classes based on user actions. This increment 

was developed in C - u  using XView, an X-windows library, and Devguide, an XView 

graphical user interface (GUI) builder tool. The specification for this increment is 

contained in Appendix C. 
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The second increment adds new classes to the first increment to allow the Map to load 

and save objects in files, and to draw those objects on the screen. Therefore, the Map 

object was significantly enhanced and objects were added to manage loadsave popup 

windows as well as the data structure for the items in the map. This specification is 

contained in Appendix D. 

lal An Introduction to the Trace Assertion Method 

The Trace Assertion Method is a system for specification of software modules, as 

defined in [Parnas89]. It was initially developed by David Parnas [Pamas721 and has 

been further developed in [Bartussek78; Hoffman88; Hoffman89; McLean841; note that 

[Parnas72] and [Bartussek78] also appear in [Gehani86]. [Pamas891 was an attempt to 

define the method for practical use. In addition, [Erskine92] contains some further 

refinements. 

For the purposes of trace specification, a module is a set of functions designed to work 

together. Pamas uses the term access programs to refer to the set of functions that can be 

accessed from outside the module. An event is typically an access program call (there 

may be other types of events), and an event class is all the possible calls of a particular 

access program given its set of parameters. A trace of the module is a sequence of input 

events and their corresponding outputs. For deterministic objects, the trace is usually 

written with the events only, since the outputs are uniquely determined from an event 

sequence. A trace can be considered to be similar to a stimulus history for a black box, in 

that through providing the history of access to the module or box, the outputs of the box 

can be determined. 

A trace can be reduced to contain only those elements which are necessary to produce 

the required outputs from the module and to maintain the proper sequencing of events. 

This reduced trace is called the canonical trace, and the reduction is accomplished 

through equivalences. 

An actual trace specification consists of the following parts, some of which may not 

always be used for all module definitions. First, in the SYNTAX section, the external 

interface to a module is defined. This consists of tables of input variables, output 
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variables, and access programs. Second is the CANONICAL TRACES section, which ' 

defines the canonical traces for the module. In addition, a DICTIONARY subsection 

may be included, which defines external types and auxiliary functions. The latter are 

useful for simplifying trace parsing in the following sections. 

The third and typically largest section is the EQUIVALENCES section, consisting of 

tables of conditions and equivalences for each event class (there is one event class for 

each access program; there may be multiple events for each class based on parameters to 

the programs). The form of this section has the left-hand side of the equivalence with a 

canonical trace T appended with the event class. On the right-hand side is the table of 

conditions and equivalences. The set of conditions presented in the left-hand column of 

the table must form a complete partition, and the equivalences in the right-hand column 

must result in canonical traces, or errors if the event is not aIIowed under certain 

conditions. Through the use of these equivalence tables, a trace of the module must be 

reducible to a canonical trace. Therefore, the equivalences section must correspond with 

the canonical traces defined. 

The fourth section is the VALUES section, with two parts: OUTPUT VALUES and 

RETURN VALUES. The output values subsection consists of tables of conditions and 

values. If traces are used in the conditions column, they must be canonical. This means 

that for unique output values to result from a module, the information required for that 

output must be present in a canonical trace. This is an important consideration when 

selecting the canonical traces. The return values subsection details which output values 

correspond to which access program arguments or return values as defined in the first 

section. 

Once the specification is complete, it must be verified. As Parnas notes, "a principal 

advantage of this method is that systematic validation of the design is simplified." 

[Parnas89]. The verification steps are contained in section XVIII of the TAM report, 

"Assuring completeness and consistency". This section is as follows: 

A specification is complete if the values of the output vector are specsled for every legal trace. To 
check for completeness, one must verify that: 
( 1 )  There is one equivalence function for each event class. 
(2) There is one output function that specities each output value. 
(3) The predicates in the left-hand column of each table partition the intended domain of the relation. 
(4) The predicates in the right-hand column are defined whenever the corresponding predicate in the left- 

hand column is 'me'. 
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A specification is consistent if one cannot derive two contmdictory statements about the output vector 
values. Consistency is assured by verifying that: 
(1) The canonical form fulfills the requirements of section XI. 
(2) All traces specified in the right-hand column of the equivalence section are canonical. 
(3) For function definitions, all right-hand sides specify a unique value. 

These checks can be canied out systematically and, often, mechanically. 

Section XI, mentioned above, notes that “the canonical form must have the property that 

every legal trace is equivalent ... to exactly one trace in that form.” The actual 

specification verification steps, including canonical trace verification, are detailed in 

Chapter 4 below. 

An Example: The Savings Account Tracker 

As an example, consider a simple system to track a savings account balance. This system 

has three basic functions: DEPOSIT, WITHDRAW, and BALANCE. The DEPOSIT 

function, given a parameter with the amount to deposit, deposits the money in the 

account. The WITHDRAW function, given a parameter with the amount to withdraw, 

withdraws the requested amount or gives an error if not enough money is available. 

Finally, the BALANCE function reports the current balance, which is the net of the 

deposits minus the withdrawals. The full specification is contained in Appendix A. 

The first step is to specify the syntax for the module. For output variables, there is only 

one-the balance variable which is returned by the BALANCE function. For access 

programs, there are three, WITHDRAW, DEPOSIT, and BALANCE. 

Second, specify the canonical trace for the system. Since the canonical trace determines 

the state of the system, i t  is necessary to consider what functions will need to be 

remembered in order to achieve the proper functionality. Since the BALANCE function 

reports the state but does not change it, BALANCE will not be in the canonical trace. 

WITHDRAW and DEPOSIT both modify the state, so they should be in the trace. 

Therefore, the canonical trace will be: 

canonicalfl) e--> (T = 

This can be interpreted as meaning that T is canonical if and only if T is a string of 

events with zero or  more DEPOSIT events followed by zero or more WITHDRAW 
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events. The ”.” character is the concatenate operator for traces. Note that. the ordering 

that is imposed in the canonical trace does not necessarily represent the actual order of 

events arriving at the module. This is addressed below. 

’ 

As part of the canonical trace section, an auxiliary parse() function can be defined which 

will simplify the equivalences to follow. The function 

is defined to return me if and only if T = D.W and D = [DEPOSIT(Xi)$O and W = 

<boolean> parse(<trace> T, <trace> D, <trace> W) 

Third is the equivalences section. In this section, there must be one equivalence for each 

input event to the module. The results of the equivalences must be canonical traces or 

errors. For DEPOSIT, the equivalence is simple. A trace of T.DEPOSIT(x), where T is 

canonical, is equivalent to a trace with DEPOSIT(x) added into the appropriate place in 

T. For WITHDRAW, the equivalence is more complex-there are two cases, based on 

whether there is enough money for the withdrawal or not. Given a trace of 

T.WITHDRAW(y) and given that the sum of the deposits in T minus the withdrawals in 

T is greater than or equal to y, this is equivalent to T.WITHDRAW(y). Otherwise the 

equivalence results in an error of %insufficient funds%. Finally, the equivalence for 

BALANCE is the simplest. T-BALANCE is equivalent to T, since it is not in the 

canonical trace. 

The final section is the values section. For output values, there is one item, the variable 

balance. Given a canonical trace T, the value of this variable is the sum of the deposits in 

the trace minus the withdrawals. If the trace is empty, the value is zero. For return 

values, there is one, which is the value from the BALANCE access program, which is 

mapped to the balance output variable. 

At this point, the specification must be verified. For each table, a set of verification items 

must be checked. In addition, the canonical trace must be verified against the rest of the 

specification. These verification questions are documented in the example in Appendix 

A. 
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1.2 An Introduction to Object-Oriented Design 

There are three basic types of systems based on the object model: object-based, class- 

based, and object-oriented pegner90].  Object-based systems are the simplest of the 

three systems. The key element of object-based systems is the concept of collecting state 

data and functions which operate on that data together into a single module. Ada is an 

object-based language. 

In class-based systems the data and function collection forms the definition of a class, 

which can then have multiple instances or objects, which may differ in their state data. 

This has great advantages when working with a system that may have many replicated 

components which have common functions to handle their data-such as elements in a 

linked list, transactions for a financial database, or objects in a robot world map. A 

typical class-based programming language will eliminate the need to make special 

references within object functions to act on object data, thus simplifying the 

programming task. 

Object-oriented systems are defined as those which add inheritance to the object model. 

Inheritance allows objects with common functionality or data to be grouped together in a 

hierarchy. For example, consider the objects in a robot world map. These objects may be 

boxes, cylinders, or complex polygonal shapes. Nevertheless, they all share some 

common functions, such as draw(), which directs the object to draw itself on the screen. 

In addition, they may share some common variables, such as locationx and locationy. 

Therefore, it is best to first define a superclass called Mapobject which has all the 

common functions, and then define the subclasses, such as MapBox and Mapcylinder. 

The hierarchy can be carried to multiple levels, for example, there could be special 

versions of MapBox. In some cases, specialization is better handled through the object's 

variables rather than creating a new class; this issue is discussed in numerous object- 

oriented texts. C++ and Smalltalk are examples of object-oriented languages. 

In C++, there is a special concept called an abstract base class, or an abstract superclass. 

In this kind of class, there cannot be any instantiations because some functions are 

undefined for that class. For example, in Mapobject, load(), save(), and draw() are all 
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undefined for MapObject. Therefore, C t t  will give a compile error if there is an attempt 

in the code to create a MapObject. The purpose of this is to define some functions in this 

superclass, and then force the subclasses to implement certain functions-if they do not, 

a compile error will occur. 

A few other terms should be presented to complete the description of object-oriented 

systems. Constructors are used in C++ to initialize objects when they are first created. A 
constructor is a special function which can be defined by the programmer that is 

automatically called when the object is created. This allows default variable values, for 

example, to be set automatically. A destructor is a separate function that also can be 

defined that is called whenever the object is destroyed. This allows, for example, special 

memory which was allocated by the object to be deallocated. A similar functionality can 

be achieved in other object-oriented languages, such as Smalltalk, by specializing the 

calls that create a new object. 

Another important concept is the difference between class and instance functions and 

variables. In some object-oriented languages, including C++, special functions and 

variables can be defined at the class level. The functions are available to instances, but 

do not have any special pointers to instance data as rn instance would. Class functions 

do, however, have access to class level variables. There is only one copy of these 

variables for the entire class and instances. These variables are typically used for 

maintaining data such as counting the number of instances which are active. 

One feature available in C++ that was not used in this project is overloading. This means 

having multiple definitions of a function which differ in the arguments they handle. For 

example, in the MapObject hierarchy, there exists a public variable called next and a 

function called set-next(). Another way to handle this would be to have a function called 

next() which, when called with an argument, would set the next variable to that 

argument. If called without an argument, it would simply return the current value of the 

next variable. Overloading can in some ways clarify notation, but it can also be 

confusing. It may introduce a burden on the verification of a system which is 

undesirable, so it was decided that overloading would deliberately be avoided in C++ 

specifications. 
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While the concepts used in object-oriented languages are generally the same, some 

differences may exist in notation. The notation presented above will be used throughout 

this thesis. Note that while C++ is the target language for this work, there may be some 

differences between notation used for C++ and that used here. For example, superclasses 

and subclasses are called, respectively, base and derived classes in C++. For details on 

features of particular object languages, see the Appendix in [Boochg 11. 

1.3 An Introduction to the Box Structure Method 

The Box Structure Method (BSM) [Mills86; Mills87b; Mills881 was developed by 

Harlan Mills as part of the Cleanroom development process [Mills87a]. The first step in 

a box structure specification is a black box. The black box describes the possible stimuli 

to the system, the possible responses, and the transition from stimulus histories to 

responses. The transitions must use only current stimuli or the stimulus history; no state 

information can be considered. The stimulus history is then used to develop a state box, 

from which a procedural clear box is derived. From this point, blocks are identified in 

the clear box which should be further refined as new black boxes, and the procedure is 

repeated with these new boxes. 

An important part of BSM is the verification steps. At each step, the current box is 

verified against the box it was created from. Each state box is verified against the black 

box, and each clear box is verified against the state box. In addition, there are a few 

further concepts that are examined during verification and design. First, the boxes should 

be referentially transparent, meaning that each box is independent and does not require 

knowledge about the design of other boxes. State migration is the process of moving 

state data into lower-level boxes when it is only used in the lower level box. Of course, 

referential transparency must be maintained. Third, transaction closure should be 

verified to show that the stimuli to a box are necessary and sufficient to produce the 

required responses. Finally, common services should be identified where possible to 

prevent duplication of code and simplify the design. 

In fHevner931, the BSM model is discussed with respect to object-oriented systems, and 

object-oriented concepts are compared to box structured concepts. Notational difficulties 

that are involved in developing object-oriented systems are not directly addressed in the 
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paper. In particular, only object-based systems, which do not include inheritance, are 

addressed. In addition, the concept of class versus instance is not addressed. 

' 

The method presented here makes two modifications to using BSM to specify a system. 

First, notational changes are made to the boxes to address object-oriented concepts, and 

to match better with the trace specifications. Second, the trace specifications are used in 

place of a state box. The process for combining the two is discussed further in Chapter 4. 

1.4 Other Object-Oriented Specification Systems 

A number of specification systems have already been developed for object-oriented 

systems, many of which are extensions to existing specification systems, including 

Object-Z [Duke9 1 ; Rose921, Moo2 [MeiragO; Meira921, Larch/C++ [Leavens92), and 

others. Several Z-based object-oriented systems, including [Rose92], are presented in 

[Stepney92]. A few languages were designed with structures which permit more format 

specification, the most notable being Eiffel [Meyer90]. Using specifications with 

Smalltallc is presented in [cook92). A good overview of a number of methods as well as 
general concepts of formal methods for object-oriented systems and an extensive 

bibliography is presented in [Casais93]. 
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2 Adapting the Trace Assertion Method 

The Trace Assertion Method, with its emphasis on specification of a group of access 

programs in a module and on verification, appears to hold great promise for specifying 

object-oriented designs, since the object method is also based on grouping related 

functions together. In practice, however, there are a number of problems. First, it is not 

clear how to handle the distinction between instance and class functions in TAM. 

Second, module interactions and user interface input/output require notation that is not 

defined by TAM. Finally, constructors, destructors, and inheritance require some 

notational changes. 

The specifications for two increments developed using the notational changes discussed 

below are contained in Appendix C and Appendix D. 

2.1 Specifying Object Inputs and Outputs 

To understand the original TAM limitations with specifications, it is necessary to 

examine exactly what are the types of input and output that a module/clasdobject would 

have to accommodate, and how they would be handled (or not) under TAM. 

The following types of output would be typical for a module: (a) publicly accessible 

variables, (b) access program return values, (c) user interfacdextemal world output, and 

(d) calls to outside objects (state modifying). Note that (c) is basically a subset of (d). 

The following types of input would be typical: (a) publicly accessible variables of other 

objects, (b) access program parameter values, (c) user interfacdextemal world input, and 

(d) return values from calls to outside objects. 

Examining the TAM document reveals the following two items. First, in [Parnas89], 

section X N  "The syntax section" (p.8), Parnas defines the following1: 

'There is no discussion of input tables or event tables, and there are no cases of them in the examples 

given in Parnas' paper. Input tables and input variables events are, however, covered briefly in [Mills86]. 
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The syntax section consists of an input table, an output table, an access-program table, and an 
event table. 

The input and output tables list the input and output variables and specify their types, 
.. . 

The event tables define parameterized classes of events as relations on values of the input 
variables. Only events in these classes may appear in traces. 

Second, in section VI "Communication with objects" (p.3), three modes of 

communication between the object and the outside world are presented: input variables, 

output variables, and access programs for sending and receiving information. 

Given this information, for outputs, it is apparent that case (a), publicly accessible 

variables, is handled via output variables and specified via the output table, and case (b), 

access program return values, is handled by access programs and specified by the access 

program table and output table. Cases (c) and (d) are more difficult. 

For inputs, case (a), publicly accessible variables of other objects, is handled by input 

variables and specified via the input table, and case (b), access program parameter 

values, is handled via the access programs and specified via the access program table 

(and perhaps the input value table, although this is not directly addressed in the TAM 

report). Again, cases (c) and (d) are more difficult. 

In general, directly accessible input and output variables from a module violates normal 

black box specifications, which normally assume all access to a box is via some function 

or stimulus. Under TAM, however, input and output variables in class definitions 

without using access functions, such as public variables in C++, are allowed. This 

simplifies the specification and design of classes by not requiring an access function for 

each output variable. It is important, however, that when access functions are not used to 

access variables, that there be a rigid set of criteria for these variables. These criteria 

have been defined as follows: 
* a variable must be initialized by a constructor or a one-time initialization functicn; 

* following initialization, a variable value must always be defined; 

* access to a variable from outside must be read-only, i.e. all state modifications of an 

object must come from function calls. 
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The more difficult cases can also be handled, through some adjustments to the TAM 

notation. First, output case (c), user interface output, can be handled through the use of a 

special output variable for the interface. External world output, such as writing to 

devices, can also be handled with special variables. In the Map class, an output variable 

"(output screen)" was added, and in the output values section, the value for the variable 

was a description of what the output should look like based on the current trace. In 

addition, drawings of the expected output can be included. 

Case (c) for user input is handled differently. This is a problem because the user input 

that an object is responsible for (Le. data input to the fields of a dialog box, which then 

must be processed by the object that created that dialog box) appears to be an integral 

part of its state, and therefort: must be included in some form as part of the event trace 

for the object. For example, the class PopupMapSize is responsible for a dialog box that 

has three input fields (width, length, scale) and a Change button. When the Change 

button is pressed, the data from these fields (the result of user input) must be sent to a 

different class, Map, which returns a value indicating if the values were acceptable or 

not. 

Access functions for PopupMapSize objects are needed to initialize the object (i-e. 

creating the dialog via window manager calls), display the dialog, and take action when 

the Change button has been pressed. The input fields are not handled directly by the 

object. Instead, they are handled by the window manager and can be retrieved at any 

time. Therefore, the reasonable logic is that when the Change button is pressed, the field 

values are retrieved and passed onto the Map object. If the Map object accepts the 

values, they should be redrawn on the screen to represent the new Map values. 

In this case, however, the user input is not really part of the object's state. It is part of the 

window manager's state, and it should be considered an input variable to the program 

which can be retrieved at will. The state maintained by the object is a pointer to the 

window manager-maintained input field. 

In another case, however, the input is again not directly handled by the object, but input 

directly affects the state of the object. This happens when an XView Notice is displayed 

by an object. There is some sequence of events that leads up to this notice being 

displayed, and nothing else can occur until this notice is dismissed. Therefore, the 
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program must wait on the user to press the Confirm button, making this'an important 

input to the system. However, since the notice box and input are handled by XView, the 

notice output is instead treated as a user interface output from the object, and the confirm 

input is treated as an input variable event which is part of the trace. 

The final cases are input and output cases (d), which involve access calls to external 

objects which may return values. These calls are the basis of peer interactions between 

objects and are an integral part of object-oriented designs. In addition, this also includes 

calls to "common services" where those services maintain some state for the object-Le. 

XView, a file manager, etc. Calls to outside objects should be considered as important 

for specification purposes only if they modify the state or report on the state of some 

outside object. This excludes, therefore, many external utility calls such as string and 

math functions. 

As an example, consider the change() function in PopupMapSize. It takes the user input 

values in the dialog box and passes those along to the Map object, via the change-size() 

function. In addition, it must receive a variable back indicating the success of the 

Map::change-size() function. In effect, the call to Mapxchange-size() is a form of 

output. In addition, the return value of the function is an important input. 

The first solution to this problem that was considered is as follows. First, the parameters 

passed to Map may be considered as output variables. Therefore, those parameters 

should be included in the output variable tables. The return values from such a function 

should be included in the input variables table. To show when an output function call 

would occur, appropriate sequencing information must be included in the canonical trace 

to allow the outputs to occur at exactly the correct moment. This complicates the module 

specification significantly. 

The solution chosen instead involves adding new notation to the equivalence tables. The 

solution, proposed in part by Neil Erskine [Erskine93], was expanded to allow objects to 

call functions in other objects and receive return values by adding notation to the 

equivalence section of a trace specification. For example, in the change()/change-size() 

example given above, the equivalence for change() should include an ADD-TO- 
TFUCE(Tp, change-size()) , where change has some pointer p to the appropriate Map 

object. In addition, in the left-hand column (conditions), where the value returned from 
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change-size must be considered, the function is written there as well.'Obviously, if the 

change-size function is included in the conditions section, a corresponding ADD-TO- 

TRACE must appear in the right-hand column. This method has also been adapted to 

clasdinstance function interactions, discussed below. 

2.2 Class Functions 

Class functions are functions which do not require an instance to be run, and do not have 

a set of instance variables associated with them. Instead, these are used to handle overall 

class operations, such as counting the number of instances or maintaining common 

variables for all instances. There may be a set of class variables for use by the class or 

instance functions, but unlike instance variables, there is only one copy of class 

variables. For XView programming, class functions are required for user interface 

callbacks, and are therefore an important part of the development of the interface. 

When developing a trace specification, the class and instance function specifications 

should be included in the same module. The reason for this is that class functions and 

variables are used for tasks directly related to the module and its instances. For example, 

class variables can be used to store common variables which will be used by the class or 

instance functions. 

For the purposes of XView programming, callbacks must be made to functions in the 

program to allow the user interface to pass infomation and actions to the program. 

Callbacks cannot be made to instance functions. XView is, however, capable of storing a 

pointer to an instance. When a callback is made, information passed with the parameters 

allows the instance responsible for the interface component to be determined. 

The best way to handle callbacks under C++ is as follows. When a graphical component 

is being created, a pointer to the instance creating the component is passed to XView. In 

addition, a class function is passed to XView as the callback function for the component. 

When the callback occurs, XView passes this pointer back to the callback function. The 

callback function is then able to call the proper instance function with this pointer. For 

example, in PopupMapSize, the class function cfChange(), activated by the Change 
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button on the popup window, gets a pointer to the instance of PopupMapSize to be 

called, and calls the change() function for that instance. 

To handle class level functionality within a module, the access programs for class 

functions appear in a separate section called CLASS ACCESS PROGRAMS, and any 

appropriate output variables in CLASS OUTPUT VARIABLES. A separate canonical 

trace is shown for the class functions, if any are defined. 

Within the access program equivalences for class or instance functions, if a class 

function is required to interact with an instance function, or visa-versa, the following 

notations developed for module interaction apply: 

Ti = trace for instance i of a module 

Tc = trace for class functions/variables of the module being detlned 

ADD-TO-TRACE(Tx, function(pararneters)) = add function() to the trace for TX with 

the given parameters, where x is determined through some pointer to the object 
to be called, or where Tx denotes the class function trace for some class (such as 

the Utds class, which only has class functions and no instances). 

Note that ADD-TO-TRACE does not affect the equivalence for the calling function. 

ADD-TO-TRACE is not, however, guaranteed to call a function in the canonical trace of 

the called object; this would limit module interactions. Rather, it must call an access 

function in the object being called, and it is up to the called object to handle the function. 

This is important since the calling function therefore only needs to know the external 

interface for the called object, and does mot need to know the canonical trace of the 

called object. 

Also note that an instance can modify the TC trace without having any specific pointer to 

the trace, since there is no concept of specific instance for a class. This even holds true 

for functions outside the class calling public class functions. However, for a class 
function to modify a specific instance trace Ti, it must have some means of determining 

i. 

As with module interactions, if a class-instance interaction requires that a return value 

from the external function be considered, then these values should be considered in the 
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left-hand column of the equivalence section where the ADD-TO-TRACE macro is to 'be 

used. 

One final comment on notation: if classlinstance functions were to be translated into 

Parnas' notation, it would seem that the instance functions are akin to the "named" 

modules, i.e. have a pointer to a specific instance, while class functions do not have this 

pointer. This is actually what C++ does, via providing a pointer called "this" which 

points to the instance and its variables, but the passing of "this" to the instance function 

is hidden from the programmer. Using Parnas' named notation for all the instance 

function calls would be cumbersome, since they are far more common than the class 

functions. Therefore, all functions are assumed to be instance functions unless noted 

otherwise. In order to distinguish class functions from instance functions, class functions 

begin with a lower-case "cf', i.e. cfChange0. 

2.3 Const ruc tors/Des tructo rs 

The Map class uses a constructor, which is a function that is run anytime an instance of 

the class is created. This allows, for example, variables in the instance to be initialized to 

some value. Therefore, €or such a class, the constructor must be added as an access 

function, and be shown in the canonical trace if necessary. If the constructor is present in 

the canonical trace, then an empty canonical trace is not possible, since when a new 

instance is created, the constructor function is run, and therefore the trace will, at 

minimum. include this function. 

Destructors are functions that, when defined, run automatically when an object is 

destroyed or scoped out of existence. For example, given a class with a destructor, if an 
instance is created with a 'new' call and then destroyed with a 'delete' call, at the moment 

that 'delete' is called, the destructor function will be called. When an object is scoped out 

of existence, such as when an object declared as a local variable is destroyed when the 

function returns, the destructor will also be called. 

Destructors may or  may not be part of the canonical trace for a class. This depends on 

whether they affect the outputs from the class. Typically, it will not affect the canonical 

trace since after the destructor has been called, the object has been scoped out of 
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existence and its canonical trace no longer has any meaning. If, however, the destructor 

results in a change in the user interface output, it should be part of the canonical trace. A 

destructor function has no arguments or return values. A destructor was used in the 

Map() class to eliminate objects created over the lifetime of the Map object, such as 

Mapobject subclasses. 

Every class responds to a class access program called 'new' which returns a pointer to an 

instance of the object that is created at run-time. The object can then be deleted via 

'delete'. These functions are automatically handled by C++, although they can be 

redesigned by the programmer if desired. Therefore, new will be specified for a class 

only when it will be specially designed. Otherwise, it is assumed to be a part of the class 

interface. 

2.4 Inheritance 

Inheritance allows classes to be defined as subclasses of some superclass, inheriting 

functions and variables from the superclass. In specifying the subclass under TAM, a 

balance must be maintained between repeating information and providing enough 

information to properly specify the subclass. 

In the external interface portion of a trace specification of a subclass, any functions that 

are inherited must be shown but should also be noted as inherited. If any of these 

functions are to be overridden, that should also be noted. In the equivalences and outputs 

section of the trace specification, a function or output should only be included if its 

behavior will be different in the subclass due to being overridden or interaction with 

newly defined functions. 

One problem with inheritance that can be seen in the Mapobject hierarchy is that the 

trace equivalence specification for a function may change, even though the function is 

inherited without change from the superclass. For example, the set-next() function has a 

very simple trace equivalence in the Mapobject class since the canonical trace is so 

simple: 

T.set-next(n) = set-next(n) 
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In the subclasses, however, it must be redefined to show its interaction with the new 

canonical trace: 

T.set-next(n) = set-next(n).LD where parse(?: I. L, D) 

In this case, we can see that the equivalence must preserve the information in the 

canonical trace, represented by L and D, which was not present in the canonical trace for 

the superclass. Despite the difference in equivalences, the function itself does not have to 

be reimplemented in these subclasses since the actual program code is the same. 

2.5 Understanding Canonical Traces 

The canonical trace section of a TAM specification contains a predicate that defines 

which trace sequences are to be considered canonical. The information held in a 

canonical trace represents the state data required by a module in order to function. The 

form of the canonical trace is not unlike that of a piece of stimulus history used by a 

black box. 

Where the canonical trace is really used by a module is in the output variables section of 

a TAM specification. The cases considered for an output value must be based on 

canonical traces. Therefore, any values reported from a module must be represented in 

some form in the canonical trace. Consideration of output requirements for modules 

required for the Westworld design led to the realization that the state represented in a 

canonical trace is more complex than just simple variable state. 

For example, several of the objects in the system use XView Notify boxes to put a 

message on the screen until it is dismissed by the user by clicking on a Confirm button. 

The display of this notice on the screen must be considered an output of the Utils module 

which creates it. Therefore, it must be represented in the output values section for this 

module, and something must be present in the canonical trace to show when this notice 

should appear versus when it should not. In other words, the error condition that led to 

the notice appearing must be in the canonical trace. In a black box specification, this 

could be handled by a simple stimulus-response pairing, not requiring any state data. 

Under TAM, the canonical trace is holding information related to the sequencing of the 

functions, a more complex form of state than simple variables. 
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Another case where state information beyond simple variables is required in the 

canonical trace arises when dealing with functions that return a value. This is considered 

an output from a module, but it is not necessarily representative of the simple state of the 

module. For example, there is a load() function in the Map class which given a file 

name, loads objects listed in that file into the Map. If there is a problem with the load 

process, then the load function must return a FALSE value, otherwise it returns a TRUE 

value. Since this is an output of the module, it must be calculable from the canonical 

trace. However, this information is not important to the functioning of the Map module 

following this function call. Nevertheless, this information remains in the trace, making 

it more complicated to develop and maintain. 

Under TAM, the canonical trace does represent the state of the module, but more than 

just the values of stored variables. It represents the state of the program, state such as 

that in a finite state machine. When discovering the canonical trace, it is important to 

remember that this is true. Unfortunately, this also means that for an object with 

complex outputs or sequencing requirements, the canonical trace may be quite complex, 

and may require parsing functions to simplify the equivalence and output sections. 
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3 The Specification Process 

3.1 Background 

TAM is a method for specification of individual modules or classes, not entire systems. 

Therefore, a bridge is required between the specification of the system as a whole and 

the specification of the classes which will make up the system. Initially, a traditional box 

structure method process was considered for specifying and designing the top level 

system, but this has a number of problems. First, it is desirable to avoid specifying the 

state data for the system until it has been divided into classes. Then, once these modules 

have been specified without consideration of state, the state discovery process could 

proceed for each module. Going through a top level state box would require doing state 

discovery, and then throwing this state out when the individual modules are specified 

using TAM. 

Another problem with going from a top level system to TAM descriptions of modules is 

that it is hard to go directly into a TAM specification. While the black box approach is 

not as complete as a TAM description, and lacks the concept of state that is present in 

the canonical trace, it does allow a simple view of the responsibilities of a class. 

Therefore, it would be best to perform a black box specification for each class, then a 

TAM specification, and finally a clear box. 

The final step is to connect the top level black box with the individual black boxes for 

each class. The goal is to take the stimuli from the top level box, and split this stimuli 

among a set of discovered classes for the system. In addition, class interactions should 

be considered at this step. This process is in the realm of object-oriented design, and any 

object-oriented design process will do, as long as it is focused on the responsibilities of 

each individual object, rather than the state of the objects. An example of such an 

approach is that proposed in mirfs-Brock90j. The output of this step must be black box 
definitions for each class in the system, including the top level main() program. 

In the interface system developed, main() and global variables were grouped into a 
pseudo-class called Main, and utility functions were grouped into a class called Utils. 

21 



Each X window had a class which was responsible for its creation, maintenance, and 

callbacks. Finally, classes were defined for data representation-the Map and 

Mapobject hierarchy. 

3.2 Design Process Steps 

The process steps are as follows: 
e 

e 

0 

e 

e 

e 

e 

e 

0 

Create a black box for the entire increment, showing the stimuli to the system and 

the appropriate responses. 

Verify black box versus the requirements for the increment. 

Identify possible classes/objects in the system (including main()), assign stimuli to 

these classes, identify inter-class stimuli, and create black box descriptions for the 

classes. 

Verify that all top-level black box stimuli are assigned to classes and that the 

lower-level black boxes perform all the top-level operations. 

Verify that all inter-class stimuli used in black boxes match receiving boxes' 

specifications. 

Create TAM specifications for the classes 

- use black box header to create syntax section 

- create canonical trace(s) using access programs and input events 

- create equivalences based on canonical trace and output requirements; create 

- create outputs based on canonical trace 

- verify specification using Parnas Verification Checklist (see below). 

Verify TAM specification to black boxes for each class. 

Write C++ header for each object using TAM specification and verify to 

specification. 

Create Ci-t objects and main() 

- write using C++ header and TAM specification 

- verify versus TAM specification and Ci-t header 

- verify cross-object access is correct. 

Any lower-level C++ classes "discovered" should be developed by creating a black 

box definition for the class and then designing as described above. 

auxiliary functions and dictionary entries as needed 
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3.3 Trace Assertion Method Verification Details 

The method used for verification of trace specifications grew out of seminar discussions 

over the TAM document [Parnas89]. The rules are divided into completeness and 

consistency sections. 

Completeness 
(1) There is one equivalence for each event class. 

(2) There is one output functionhelation tha specifies each output value. 

(3) The predicates in the left-hand column (LHC) of each table partition the intended 

[applies to EQUIVALENCES section] 

[applies to OUTPUT VALUES section] 

domain of the relation. 

[applies to any table with conditions in the specification] 

(4) The predicates in the right-hand column (RHC) are defined whenever the 

corresponding predicate in the LHC is 'true'. 

[applies to any table with conditions in the specification] 

istenc y 

(1) The canonical form fulfills the requirements of section XI in [Parnas89], namely 

that (a) no two traces in the set are equivalent and (b) every legal trace is equivalent 

to exactly one trace in the set. 

(2) All traces specified in the RHC of the equivalence section are canonical. 

(3) All RHC values are unique. 

[applies to canonical traces] 

[applies to tables in the equivalence and output section] 

[applies to any table with conditions in the specification] 

Canonical trace verification, embodied in consistency rule (I), is quite difficult. Proving 

(a) requires simply showing that no traces in the set are further reducible via the 

equivalences defined and that none of these traces are exactly equal. Proving (b) is not 

really possible since it requires looking at every Iegal trace or type of trace. Instead, it is 

up to the designer to bear in mind the requirements of (b) when developing the 

equivalences and canonical trace. In addition, consistency rule (2) constrains the 
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canonical trace and assists in its design and verification. In practice, the ciinonical trace 

is developed based on an idea of what state will be required to gain the proper outputs 

and sequencing for the system. If an error is made in the canonical trace, it will be 

discovered when the equivalences and values sections are written. Once these sections 

are complete, the canonical trace must be re-examined to verify that it is exactly what is 

required to produce the appropriate equivalences and values. 

' 

3.4 C++ Verification Details 

When writing the C++ code based on the trace specification, it is important to keep a few 

rules in mind which are detailed below. In addition, there are a number of sources which 

detail rules to bear in mind when designing C and C++ code which may also be 

applicable to the C++ verification process [Henricson92; Koenig89; Trammell931. The 

following is a list of items that are specific to this implementation of TAM for C++ and 

should be incorporated into the existing TAM and C verification methods: 

Verification of C++ code versus the TAM specification: 

0 

All C++ class headers match TAM tables 

Access functions implement inputs, outputs, and equivalences properly 

External function accesses match tables. 

C++ Coding: 
* 
0 

0 

0 

0 

Proper headers included in file-including project as well as system headers. 

All functions prototyped in class definition or separately in a header. 

All functions used in file match prototype. 

All functions defined in file match prototype, 

All copiedre-used code has variables that are declared. 

All non-obvious code blocks are commented. 
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4 Case Studies: Classes from Westworld 

In this chapter, the process described above is applied to two class groups, the 

PopupMapSize class and the Mapobject hierarchy. The process steps are listed in italics, 

with the action that was taken for those steps. It is assumed that at this point, the top 

level black box has already been specified and the separate classes have been identified, 

as well as their inter-class stimuli. The complete specification for these classes is 

contained in Appendix D. 

4.1 PopupMapSize 

Identify possible classedobjects in the system (including main()), assign stimuli to these 

classes, identify inter-class stimuli, and create black box descriptions for the classes. 

This class was identified as necessary to manage the popup window which will allow a 

user to input changes in the map size and scaling (see Figure 1). The stimuli for 

PopupMapSize were identified from the top level black box as well as requirements for 

interactions with other classes in the system. For the top level, this class must respond to 

the XView callback for the Change button that is part of the popup window. For class 

interactions, it must display the popup window when called by WinMap, which handles 

the "Change Map Size" menu callback. In addition, when the Change button is pressed, 

the user-entered data must be passed to the Map object for acceptance or rejection. 

Finally, it must have some sort of initialization function which will create the popup so it 

is ready to be displayed when the "Change Map Size" menu item is selected. 

-0 Map Size 

Width: cf1%.2f> Length: cf1%.2fz 

Figure 1. PopupMapSize Popup Window 
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The PopupMapSize class is relatively difficult to specify, because of its user interface 

interaction and its interaction with another class. In the popup window it manages, the 

user can type in fields, dismiss the window, or press the Change button to register the 

changes made. Only the latter action, pressing the Change button, causes the program to 

act. All other handling, such as  the dismissing or basic keyboard events, are handled 

internally by XView. When a change is made, it has to be handed off to another class, 

Map, that handles the actual values. Therefore, it uses a pointer to an instance of this 

class, and when the Change button is pressed, the entered values are passed along. In 

addition, the Change button cannot call the instance that created the window directly. 

Instead, it must call a class function which in turn will call the appropriate instance 

function. 

The next step is to define a black box for this class, with a header structure that 6 similar 

to the header for the trace specification. The sections of the header include: access 

programs, output variables, output, class access programs, class output variables, class 

output, input variables, and external access programs. The construction of a black box, 

and especially its header, is typically an iterative process, with some items not being 

included until the transitions are being written and one can see that, for example, certain 

external inputs or program accesses are required for the class. In addition, some of the 

specific information required in program arguments, such as the format of the 

cfChange() callback, requires some knowledge about XView programming. Such 

knowledge is best obtained through implementing a previous system or through 

performing experiments to better understand the package that will be used. 

This is the header for the black box PopupMapSize: 

access programs 
void init(Xv-opaque owner-frame, Map* pMap) 
void show0 
void change(Pane1jtem) 

output 
popup window 

class access programs 
static void cfChange(Panel-item, Event) 

input variables 
Atqattribute Main::INSTANE. 
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x v s e t  variables FRAME-CMD-PUSHPINJN, XV-KEY-D ATA, entered-width, 
entered-length, entered-scale 

external access 
int Map::change-size(Xv-opaque frame, double new-width, 

double Map::widtb 
double Map::length 
double Map::scale 

double new-length, in1 new-scale) 

Note that any functions are specified using C++ notation, and that all data types are C++ 

types, although some m a y  be defined by this program or by XView. For example, 

Xv-opaque is a special type for XView which may contain any of a number of different 

types of pointers to XView data. Another C++ notation uses the :: operator, as in 

Map::width; this expression references the width member of the Map object. 

After the header comes the transition section of the black box, which specifies how the 

class responds, given a stimulus history and a current stimulus. The transition for this 

black box is as follows: 

Si = init(o, p) -> no response. 
Si = &OW() --> 

display popup screen with owner 0, with values in widWIengWscale fields 
from p->width, p->length, p->scale, where (3Sj I < i) A (Sj = inir(o,p)> A 

notask I (i 4 k4 i) A (Sk = init(o,p)))) 

S j = change(item) --> 
given pointer to popup input fields for width/length/scale and popup frame "f' 
created by init (3Sj I (i < i) A (Sj = init(o,p))), call p>change-size(f, entered 
width, entered length, entered scale); if change-size returns 1 and x v j e t  
parameter FRAMFi-CMD-PUSHPIN-IN from f is 1, then call show(); if 
change-size0 returns 0, send an error to XView via item to hold the popup on 
the screen. 

Si = cfChange(item, ev) --> 
call PopupMapSize* p->change(item) where p = xv_get(item, 
XV-KEY-DATA, INSTANCE) [xv_getO is an XView function to get the 
value of a variable maintained by XView] 

Verify that all top-level black box stimuli are assigned to classes and that the lower-level 

black boxes perform all the top-level operations. 
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The only top-level stimulus assigned to this box is the Change button callback, which 

was implemented in cfChange(). In addition, the box displays the PopupMapSize dialog, 

which is required in the top-level box. 

Verify that all inter-class stimuli used in black boxes match receiving boxes' 

specifications. 

This requires checking other classes to ensure they reference the class being specified 

correctly, and that any external accesses from this class are done correctly. For external 

accesses, the change-size call to Map as well as the direct variable accesses must be 

verified to ensure that types match. 

Create TAM specifications for the classes 

- use black box header to create syntax section 

This is perhaps the most time consuming step of the specification process. The first step 

is to take the black box header above and create the syntax section of the trace 

specification. This should be a direct mapping. In the process of developing a trace 

specification, it is possible that some extra items might be needed in this section that 

would not normally be part of the black box. 

The tables for the syntax section are shown below. Note that some additional 

information is added beyond that included in the black box. Specifically, an access 

column has been added to input variable and output items to indicate how the variable is 

accessed by this class or may be accessed by other classes. In addition, the 

entered-widtldentered-lengwentered-scale variables, which were mentioned in the 

black box but not really carefully defined are enumerated here. They probably should be 

added into the black box header; it is up to the designer to make these backward 

compatible steps. The rigor is more important at this step than in the black box. 

Finally, a new variable change-error has been added. This variable is equivalent to the 

result from the Map::change-size() function. This variable has an important effect on the 

output from the class, so it has been specified specially as a separate item so it can be 

included in the canonical trace. 
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ev-opaqu-  
owner frame 

init <void> 

show <voicb 

Variable Name Type Access 
(popup window) 1 (XView Popup window) I N/A i I 

<Map*> pMap 

change <voi& 

EXTERNAL ACCESS PROGRAMS 

<Panel-item item 

Map:: c i n e  <Xv-opaque> <double> <double> 

- create canonical truce using access programs and input events 

CinD 

The canonical trace is built by examining the stimuli to the class and determining what 

events will be needed to produce the required outputs or meet any sequencing 

requirements for the stimuli. Examining the use of stimulus history in the black box may 

be useful. for this step. For items that have both class functions as well as instance 

functions, there are two canonical traces, one for each. 

change-size change-em pop up-frame 

The instance canonical trace for PopupMapSize is: 

new-width new-length new-scale 
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canonical(Ti) <--> (Ti = 3 v (Ti = init(o,p)) v (Ti = init(o,p).show()) v (Ti = init(o,p).show().change(it)) 

(Ti = init(o,p).show().change(it).cfiange-error) 
V 

This canonical trace has five basic forms representing five basic states for the class. It 

can be empty; initialized; initialized and displayed; initialized, displayed, and have a 

valid change; and initialized, displayed, and have an invalid change. The change-error 

variable is a function result rather than a direct stimulus to the class, but it must be 

included here to ensure that the output is correct. 

The show() function isincluded in the trace since it must be called before a change() call 

can be made. While a change() call before show() would not have any ill program effects 

as long as init() had been called, it is not really possible for this to occur since it can only 

be called after the Change button has been pressed, and this button will not appear until 

show() has been called at least once. The change() function will not be called if the user 

dismisses the popup (something beyond the control of the program) without show() 

being called again. 

The class canonical trace is: 
canonical(Tc) <--> (Tc = _> 

The canonical trace is empty, which indicates that the class-level operations will not 

require any state data. 

- create equivalences based on canonical trace and output requirements; create 

auxiliary functions and dictionary entries as needed 

In the equivalences section, there is an equivalence for each access program and input 

event. The equivalences are responsible for resolving any trace into a canonical trace, 

and therefore are largely verified against the canonical trace. Since the canonical trace is 

somewhat complicated, it can be more easily referenced in a parsed form, giving rise to 

the need for a parse function to be defined. This is defined as an auxiliary function as 

follows: 
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The following tables are the equivalences for this class: 

T =  
else 

T.init(o,p) = 
conditions equivalences 

T = -  I init(o,p) 
Tf- 1 %already-initialized% 

%uninitialized% 
I.show() 

T =  %uninitialized% 
-T = init(o,p) %undisplayed% 
parse(T, I, S, C, (3E) A equivalence = IS.change(it); 

PXhange-SiZeO = TRUE cfiange-size(€, atof(entered-width), atof(enteredJength), entered-scale)) 
where f is frame created by init() 

else equivalence = I.S.change(it).change-ee_error, 

S f: - A I=init(o,p) A ADD-TO-TRACE(Tp, 

ADD-TO-TRACE(Tp, 
change-size(f, atof(entered-width), atof(entered-length), entered-scale)) 
where parse(T, I, S, C, CE) A I=init(o,p) A change-error = change-size() 
A f is frame created by init0 

T = init(o,p).show().change(it) 1 T.change error 
, else 1 %undefined% 

Tc.cfCbange(item,e) = Tc; ADD-TO-TRACECTp, change(item)) 
where PopMapSize* p = xv,get(item, XV-KEY-DATA, INSTANCE); 

- create outputs based on canonical trace 

For each item listed as an output or output variable for the class, there must be an output 

table. Since the conditions side of an output table may only use canonical traces, the 
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information required to derive an output must be contained in the canonicd trace. At this 

stage, the process is checking that the canonical trace has this information. 

The values section has two parts. The first part contains a table for each item in the 

outputs. The second part maps those outputs to access function parameters or return 

values. For this object, since no access function returns a value, there are no return 

values listed. 

V[popup-framel(T) = 
conditions values 

T = .  1 %undefined% 
else 1 frame created via init function 

In the table for V[(popup-window)](T), the else case represents the case where the 

change-error function is in the canonical trace in order to indicate when an error has 

been returned from Map::change-size() and therefore when the popup should be left on 

the screen until corrected by the user or dismissed. 

- verify specification using Parnas Verification Checklist. 

The verification for the trace specification is done in two ways, First, the canonical trace 

is verified through the creation of the equivalences and outputs sections, which will 

show if the canonical trace is insufficient to provide the required information for output 

and sequencing, Unfortunately, there is not really a good method to verify whether a 
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canonical trace contains too much information, except through careful examination and 

use in the specification. 

Second, for each table used in the specification, a series of questions regarding 

completeness and consistency must be answered to ensure that the table is correct. These 

questions and answers, mentioned in Chapter 3, are written in the specification directly 

following each table. See Appendix D for the verification of PopupMapSize. 

VeriB TAM specification to black boxes for each class. 

First, the trace syntax section should be compared to the header for the black box to 

verify that all information is the same. Second, the output section of the trace 

specification should be verified against the responses from the black box to ensure that 

they are the same and are given under the same conditions. 

Write C++ header for each object using TAM specification and verifjl to specification. 

The C++ declaration of the PopupMapSize class looks like (note that // is a comment 

marker in C++): 

class PopupMapSize ( 
Xv-opaque frame; 
Xv-opaque controls; 
Xv-opaque map-width-field; 
Xv-opaque map-length-field; 
Xvppaque map-seale_field; 
Xv-opaq ue change-but ton; 

/I holds XView pointer to main structure for popup 
// holds XView pointer to controls area on popup 
I /  holds XView pointer to field for entered width 
// holds XView pointer to fieid for entered length 
/I bids  XView pointer to field for entered scale 
// holds XView pointer to Change button 

Map* pMap; 11 holds pointer to Map object 
void update(); /I update numbers in the window (private, for internal use only) 

public: 
void initflv-opaque owner, Map* pTheMap); 
void &ow(); // redisplay the box, and do an update 
void change(PaneI-item); // change button pressed; send values to pMap 

11 class functions 
static void cfChange(Pane1-item item, Event *event); 

I /  XView button callback for Change 
1: 
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The first part of the class declaration defines the items private to the class; i.e. variables 

and functions that are not available to functions outside the class. The section following 

public: defines what is available to outside functions. The private variables are 

discovered in the process of developing the C++ code. The public interface can be 

verified easily against the trace syntax given above. 

Create C+ + objects and muin() 

- write using C++ header and TAM specification 

The C++ code is not contained in this document, but it is available on request. The 

functions perform the following tasks: 

init() creates the window but does not show it on the screen (should only happen 

once in lifetime of instance). 

show() displays the window on the screen and displays the current values from the 

Map object (Map::width, Map::length, Map::scale) in the input fields; show() is 

called via a menu item which causes the window to "pop up" 

change() takes the values of input fields, converts them to numbers, and calls the 

Map::change-size() function with the new values. If the change is successful and the 

window is still displayed, the fields on the screen are updated to show the values 

changed to, via show(). This is required to get rid of any spurious non-numeric 

characters that might be entered but ignored by the numerical conversion routines. If 

the change is not successful, the popup window is forced to remain on the screen. 

update() is a private function and therefore only available to functions for this class. 

It updates the fields on the popup from the Map object values. 

cfChange() is a class function which looks up the instance that the button pressed 

belongs to, and calls change() for that instance. The only output from this function is 

via change(), but it does not return a value; rather, it calls another function and via 

this method passes the information to the other object. This output is dependent on 

user input, which is not shown in the class definition. 

- verifr versus TAM specification and C++ header 

- verifr cross-object access is correct. 

Verification of the C++ code against the specification takes two forms. First, the code 

must be examined to ensure that it has been written to implement the class as defined by 
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its own header, i.e. check the syntax of the functions and type of the‘ variables that are 

contained in the class definition. Second, the code must implement the TAM 

specification, in that sequencing and output conditions are met by the C++ code. Finally, 

any external access made by the class being developed must be checked to ensure that 

calls match external functions or classes accessed. 

Any lower-level C++ classes “discovered” should be developed by creating a black box 

definition for the class and then designing as described above. 

None were discovered for this class. 

4.2 Mapobject Hierarchy 

(From the Map class) Any lower-level C++ classes “discovered” shouk ,e developel 

creating a black box definition for the class and then designing as described above. 
’Y 

The interface requires the Map class to store information on the individual items in the 

Map. These items may be of varying types, but they will have some common features. 

For example, they will all have to have a draw() call through which they will draw 

themselves on the screen. A case like this is best managed through inheritance, where a 

single root class is defined that has common functions that will be the same for the 

subclasses defined, and has stubs for functions that must be defined by the superclass. In 

the second increment, there are only two types of items that can appear in the map- 
boxes and cylinders. Therefore, the class hierarchy looks like: 

MapBox MapCylinder - c 

Figure 2: Mapobject Hierarchy 

35 



The functions and data that will be necessary for both classes must be identified and 

placed in Mapobject. The functions that will be exactly the same for both should also be 

fully defined by Mapobject. Functions that are not defined in Mapobject should have 

some error associated with their response in Mapobject. 

Each object will require a draw function to draw itself on the screen, a load function to 

set its internal values according to a string from a file, a save function to return such a 

string for saving to a file, and a mechanism for allowing the objects to be placed in a 

linked list. In addition to these instance functions, a class function is required for each 

subclass to examine a string and indicate whether it is possibly a string that defines an 
object of that type. At the Mapobject level, a class function is also needed to handle the 

process of selecting a subclass to define a new object being loaded. 

The black box header for Mapobject is as follows: 

access programs 
MapObj ec tO 
Mapobject* set-next(MapObject* nextobj) 
virtual int load(Xv-opaque f m e ,  int lineno, char* line) 
virtual void save(char *buffer, int bufsize) 
virtual void draw(Disp1ay *display, Window xid, int scale) 

output variables 
Mapobject* next 

class access programs 
static MapObject* cfSelectAndLoad(Xv-opaque frame, int lineno, char* line) 

external access 
int MapBox::cfIsMe(char* 1) 
int MapCylinder::cfIsMe(char* 1) 
void Uti1s::cfNotice-OK(char *message) 
MapBox* MapBox::new() 
Mapcylinder* MapCy1inder::newO 
void MapBox::delete(MapBox*) 
void MapC ylinder::delete(MapCylinder*) 

The transition section is as follows. Note that the load(), save(), and draw() functions are 

not defined for Mapobject. They will be specialized by each subclass. 

Si = Mapobject() --> no response 
Si = next --> returns value from last set-next(n) call, otherwise returns NULL 
Si = set-next(p) --> p 
Si = load(f,n,l) --> not implemented in this class 
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Si = save(b, bs) --> not implemented in this cfass 
S j = dmw(d,xw,s) --> not implemented in this class 
Si = cfSelectAndload(f,n,l) A MapBox::cfIsMe(l) = TRUE A 

(p = new MapBox)->load(€,n,l) = TRUE --> p 
Si E cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = TRUE A 

(p = new MapBox)->load(f,n,l) = FALSE --> NULL 
Si = cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = FALSE A 

MapCylinder::cfIsMe(l) = TRUE 

Si = cfSelectAndLoad(f,n,I) A MapBox::cfIsMe(l) = FALSE A 

MapCylinder::cfIsMe(l) = TRUE 

Si = cfSelectAndL.oad(f,n,l) A MapBox::cfIsMe(l) = FALSE A 

MapCylinderxfIsMeO) = FALSE --> 

(p E new MapCylinder)->load(f,n,l) = TRUE --> p 

(p = new Mapcylinder)-rload(f,n,l) = FALSE --> NULL 

Utifs::cfNotice-OK(f, "Map file format error: unknown object 8 line a>"); 

For MapBox, the black box header is as foltlows (throughout this section, MapBox will 

be used to show the subclass specification process; Mapcylinder is nearly identicd): 

access programs 
Mapobject() <inherited> 
Mapobject' set-next(MapObject*) <inherited> 
virtual int bad(Xv-opaque frame, int lineno, char* line) <inherited>, <overridden> 
virtual void save(char *buffer, int bufsize) <inherited>, <overridden> 
virtual void draw(Display *display, Window xid, int scale) <inherited>, <overridden> 

output variables 
Mapobject* next cinheriteb 

class access programs 
static void cfSelectAndLoad(Xv-opaque frame, int lineno, char* line) <inherite& 
static int cflsMe(char* line) 

external access 
void Utils::cfNotice-OK(chat *message) 

Note that certain functions are inherited but not overridden. In this case, these functions 

do not need to be redefined in the black box. The transition is as follows: 

Si = load(f.n.1) A legai-box(1) --> TRUE 
Si = load(f,n,l) A not(legal-box(1)) --> 

Utils::cMotice-OK(f, "Map file format error: bad box definition @ line a'') 
return FALSE 

copy information from load() into "box clocx> <lacy> <width> d e n g t b  
cheigho" with default height if none specified by load() and limited to length 
of bs. 

draw rectangle at <locx>*s ,<loc~*s+deng~*s  of size 

Si = save@, bs) --> 

Si = draw(d.xw,s) --> 

cwidtb*s,<length> *s 
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Si = cfIsMe(1) A stmcmp(1, "box". 3) = 0 --> TRUE 
Si = cfIsMe(1) A smcmp(1, "box", 3) f 0 --> FALSE 

Verifi that all top-level black box stimuli are assigned to classes and that the lower-level 

black boxes per$orm all the top-level operations. 

There is no top-level box for the Mapobject classes, but they are constrained by the 

requirements set by the Map class. Therefore, it must be verified that the required 

functions have been included and that the syntax for these functions matches that used in 

the Map class. 

Verifjt that all inter-class stimuli used in black boxes match receiving boxes' 

specifications. 

This class hierarchy has no interactions with classes other than the creating class. 

Create TAM specifications for the classes 

- use black box header to create syntax section 

The syntax tables for Mapobject are as follows. Note that some input and output 

variables listed were not present in the input or output sections of the black box above. 

In the trace table, outputs which are returned from access program calls, or inputs that 

result from external function calls must be documented in the input and output tables. 

For example, buffer is listed in the output variables table, but maps to the buffer 

parameter returned from the save() access program. 

ACCESS PROGRAMS 
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next I <Mapobject*> public 
load ok < i n 0  fn return 
buffer <Char*> fn param return 

cfSelectAndLoad &lapobject*> -Sv-opaque> frame &U lineno 
created 

<char*> line 

Variable Name Type Access 

I boxnew 1 <MapBox*> I ext En return 
cylnew <Mapcylinder*> ext fn return 1 

EXTERNAL ACCESS PROGRAMS 

(9 (constructor) 
MapObject 
(i) set-next <MapObject*> <Mapobject*> 

nextobj 

frame 
(i) load 4110 load-ok <Xvppaque> 4x10 hneno 

(i) save <void> <char*> buffer <inP bufsizc 

(i) draw <void> <Display*> <Window> xid 
display 

For MapBox, the syntax tables are as follows (note that items marked with (i) are 

inherited) : 

<char*> line virtual. 
overridden 

Virtual, 
overridden 

< m u  scale vlrtual, 
overridden 

ACCESS PROGRAMS 
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OUTPUT VARIABLES 

(i) cfSelectAndLoad <Mapobject*> 
created 

cfIsMe <kit, isMe 

CLASS ACCESS P R O G W S  

<Xv-opaque> frame cinb lineno <char*> line 

<char *> line 

CLASS OUTPUT VARIABIES 

Func Name Value &g#l k p # 2  
I Uti1s::cMotice OK I <void> I cxv opaque>frame I <char*> message 

- create canonical trace using access programs and input events 

For the Mapobject class, the only real output is the next variable. Therefore, the only 

information that needs to be included in the canonical trace is the information required to 

give the value for this variable. For the class trace, the output needed is the pointer to a 

new object created from the cfSelectAndLoad() function. This value will actually come 

from an external function call, so this information had to be included in the input 

variables table for the class so it could be included in the class canonical trace. The 

canonical traces for Mapobject are: 

monical(Ti) <--> (Ti = Mapobject()) v (Ti = set-next(n)) 

monid(TC)  <--> (Tc = 3 v (Tc = boxnew) v (Tc = cylnew) 

The MapBox object adds the load(), save() and draw() functions. The save() function 

does not affect the output of the class and does not have to be included in the canonical 

trace. The load() function must be included since its parameters determine the details of 

the item's form. The draw() function must be included to ensure that the screen output is 

handled correctly. On the class side, there is a new output for the cfIsMe function, based 



on its parameters, so it must be included in the class canonical trace. The canonical 

traces for this class are: 

canonical(Ti) <--> (Ti = MapObjectO v set-next(n)) v 
(Ti = wapObject() v set-next(n>l.load(f,In,l)) v 

(Ti E [MapObjectO v set_next~n)I.load(f,ln,l).draw(dxw,s)) 

w o n i d ( T c )  <--> (Tc = v (Tc = boxnew) v (Tc = cylnew) v (Tc = cffsMe(1)) 

- create equivalences based on canonical trace and output requirements; create 

auxiliary functions and dictionary entries as needed 

The equivalences for Mapobject are relatively simple, with the exception of the 

equivalence for cfSelectAndLoad(), which is complex because of its interaction with 

functions of the subclasses. The equivalences are: 

T.Mapobject() = MapObjectO 

T.set-next(@ = set-next(n) 

T.load(f, In, 1) = %undefined for this class% 

T.save(b, bs) = %undefined for this class% 

T.draw(d, xw, s) = %undefined for this class% 
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Tc.cfSelectAndLoad(f, In, 1) = 
conditions 

MapBox::IsMe(l)=TRUE A 

(boinew = new MapBox)->load(f, In, I)=TRUE 

MapBox::IsMe(l)=TRUE A 

(boxnew = new MapBox)->load(f, In, I)=FALSE 

MapBox::IsMe(l)=FALSE A 

MapCyl::IsMe(l)=TRUE A 

(cylnew = new MapBox)->load(f, In, l)=TRUE 

MapBox::IsMe(l)=FALSE A 

MapCyl::IsMe(l)=TRUE A 

(cylnew = new MapBox)->load(f, In, l)=FALSE 

else 

equivalences 
equiv = boxnew; 
ADD-TO-TRACE(Tab, IsMe(1)); 
ADD-TO-TRACE(Tmb, new); 
ADD-TO-TRACE(Tbomew, load(f, In, I)), 
where T m h  is the class trace for MapBox 
equiv = -; 
ADD-TO-TRACE(Tab, IsMe(1)); 
ADD-TO-TRACE(Tmb, new); 
ADD-TO-TRACE(Tbxnew, load(f, In, 1)); 
ADD-TO-TRACE(Tab, delete), 
where Tab is the class trace for MapBox 
equiv = cylnew; 
ADD-TO-TRACE(Tmb, IsMe(1)); 
ADD-TO-TRACE(Tac, IsMe(1)); 
ADD-TO-TRACE(Tmc, new); 
ADD-TO-TRACE(Tcylnew, load(f, In, l)), 
where Tab is the class trace for MapBox and 
Tcmc is the class trace for Mapcylinder 
equiv = -; 
ADD-TO-TRACE(Tmb, IsMe(1)); 
ADD-TO-TRACE(Tmc. IsMe(1)); 
ADD-TO-TRACE(Tmc, new); 
ADD-TO-TRACE(Tcylnew, load(f, In, 1)); 
ADD-TO-TRACE(Tmc, delete(cylnew)), 
where Tab is the class trace for MapBox and 
Tcmc is the class trace for Mapcylinder 
equiv = -; 
ADD-TO-TRACE(Tmb, IsMe(1)); 
ADD-TO-TRACE(Tac, IsMe(1)); 
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file 
format error: unknown object 63 line a>"), 
where TU is the class trace for Utils, Tcmb i s  the 
class trace for MapBox and T m c  is the class 
mce for Mapcylinder 

Tc.boxnew = boxnew 

Tc.cylnew = cylnew 

For MapBox, the equivalences are also relatively simple. Note that the equivalence for 

set-nexto is included although it is not being overridden. This is because the 

equivalence in Mapobject does not make sense for the subclasses, and it seemed to 

make sense to include a new equivalence for it in this subclass to make clear its effect on 

the canonical trace. 

An auxiliary function is defined to assist in parsing the MapBox trace: 
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1 (s = Sl.%!.s3.!%) A true 
(S1 = [MapObjectO v set-next(n)]) A 

( ~ 2  = [load(f.~n,l)]$) A 

(S3 = ~draw(d,xw.s)l,',) . else false 

The equivalences for MapBox are as follows: 

legal box(1) 
else 

T.set-next(n) = setgext(n).L.D where parse(T, I, L, D) 

I.load(f, In, 1) where parse(T, I, L, 0) 
equiv = I.load(f, In, 1) where parse(T, I, L, D); 
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file 
format mor. bad box definition @ line <inn>") 
where Tu is the class trace for Utils 

T.savetb, bs) = T 

T.draw(d, xw, s) = 
conditions equivalences 

parsen, I, L, D) A L r: load(f, ln, 1) A legal-box(1) 1 I.L.draw(d, xw, s) 
else 1 %cannot draw without legal load0 frst% 

Tc.cfIsMe(1) E cfIsMe(1) 

- create outputs based on canonical trace 

As mentioned above, for Mapobject, the only current instance output is the next 

variable, which is NULL or the value from the set-next() call in the canonical trace. 

Other instance outputs, while mentioned in Mapobject, are undefined in the superclass. 

The class output from cfSelectAndLoad is set according to the canonical trace as shown. 
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V[load-ok](T) = %undefined% 

Tc = boxnew 
Tc = cylnew 

value of boxnew 
value of cylnew 

V[buffer](T) = %undefined% 

parse(T, I. L, D) A 

L=load(f,ln,l) A 
legalJox(1) 

"box <locx> <lacy> <width> 
<length> <height>" from load() 

witb default height if none 
specified 

l2ETuRN VALUES 

1111 

parse(T, I, L, D) A 

L=load(f,ln,l) A legal-box(1) A 

draw rectangle parsed from 1 in 
window defined by d, xw with 

D-=draw(dxw,s) scale s 
else %undefined% 4 

For MapBox, as noted, V[next] and V[created] are unchanged from the superclass. Note 

that while load-ok is a simple boolean result from a function to indicate its success or 

failure, information must be contained in the canonical trace for this output to be valid. 

This is true even if the infomation required in the canonical trace would have no 

meaning beyond the scope of this function. 

OUTPUT VALUES 

V 

44 



V[isMelCTc) = 

stmmp("box", 1.3) = 0 
Tc = cfisMe(1) A 

stmcmp("box", 1,3) # 0 
else 

FALSE (0) 

%undefined% 

(i) load Value 
(i) save ArHl 

(i) cfSelectAndLoad Value 
cff sMe Value 

load-ok (ovemdden) 
buffer (ovenidden) 

created 
isMe 

- verifr specification using Pumas Verification Checklist. 

Veri& TAN specification to black boxes for each class. 

The verification is as mentioned for the example given in the previous section. The 

verification information accompanies the specification contained in Appendix D. 

Write C+ + header for each object using TAM specification and veri& to specification. 

The C++ header is created first from the TAM specification. Private and protected items 

for storage by the object may be added as the code is being developed. Protected means 

that the items are visible to subclasses but not to externai classes. 

The Ctt- header for Mapobject is as follows: 

class MapObject { 
protected: 

double Iocx, locy, height; 

public: 
MapObjectO; 
Mapobject* set-next(MapObject* nextobj); 
virtual int 
virtual void 
virtual void 

load(Xv-opaque frame, int lineno, char* line) = 0; 
save(char* buffer, int bufsize) = 0 
dxaw(Diiplay* display. Window xid, int scale) = 0; 

N class functions 
static Mapobject* cfSeIectAndLoad(Xv-opaque frame, int lineno, 

char* line); 
1; 
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The load(), save(), and draw() are not implemented and are therefore written as 'pure 

virtual functions', in C++ terminology, meaning that they are not implemented in the 

abstract base class. 

For MapBox, the C++ header is as follows: 

class MapBox : public MapObject ( 
11 private 

double width, length; 

public: 
11 class functions 

1; 
static int cfIsMe(char* line); 

The 'public Mapobject' line means that it is inheriting from Mapobject and keeping the 

public members of Mapobject public in this subclass. MapBox is largely empty since 

the public interface for the subclass was mostly defined by the superclass. The private 

entries differ due to the information that must be stored to represent a box (length and 

width). Note that the information common to both boxes and cylinders, namely location 

and height, are contained in the Mapobject definition. 

Create C+ + objects and main() 

- write using C+ + header and TAM specification 

The operation of the C++ functions is as mentioned in the original requirements for 

MapObjec t. 

- verih versus TAM specification and C++ header 

- verify cross-object access is correct. 

Verification is as mentioned in the previous example. 

Any lower-level C++ classes "discovered" should be developed by creating a black box 

definition for the class and then designing as described above. 
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One additional function was identified in developing the C++ code, called nextfield(), 

which assists in parsing the lines read in from a file. Its specification is not included 

here. 



5 Conclusion 

This project was undertaken to better understand the Trace Assertion Method and to see 

if it was a useful specification method for working with object-oriented design. 

Notational changes have been added to the method to handle specific elements of object- 

oriented systems, including class versus instance, constructors/destructors, and 

inheritance. In addition, the method, which is designed for module specification, has 

been integrated into a larger process for complete system specification, development, 

and verification. 

The results are mixed. TAM provides some useful representations for dealing with 

modular code, and adapting it for object-oriented design was not extremely difficult, but 

our interpretation of it does produce a voluminous amount of specification material, and 

can lead to convoluted specifications in order to meet the TAM requirements. 

TAM provides a body of important information for the designer in a well organized 

format, including a clear idea of the input and output variables and their types, access 

programs and their syntax, events of interest-i.e. state-via the canonical trace, and 

values and window of validity for outputs. The organization of this information into 

tables and the use of a specific structure makes it easy for the designer to find the 

appropriate information in a TAM specification. The information maps directly into a 

C++ header definition for a class. In addition, there are specific steps for verification of 

the tables which allow a designer to immediately check whether a table is complete and 
consistent with other pieces of the specification. 

On the other hand, while TAM gives a good idea of how the various functions of the 

module/class interact-such as the equivalences and the canonical trace-it does not 

give a clear view of what each access program actually does. A black box description 

seems superior in that regard. The concern is whether the TAM description 

communicates information to the implementor in a useful form. It seems more oriented 

toward assisting the designerkpecifier to ensure the Specification is complete, and less 

toward helping the programmer understand how the code must perform. Nevertheless, it 
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is the responsibility of the programmer to learn to read these specifications in order,to 

make this process easier. 

Another problem is that simple stimulus-response pairs for an object can result in a 

tangled canonical trace in order to hold certain program state information, For example, 

to display XView Notice outputs, a new event must be in the canonical trace to indicate 

exactly when such a notice appears. In addition, to represent simple return values from 

functions requires that information appear in the canonical trace which is otherwise 

unnecessary. In effect, putting this information in the canonical trace makes it more 

difficult to decipher and develop, and makes it more complicated than the clear box that 

will follow. 

Finally, the method developed here produces large amounts of specification material for 

a simple system. A good example of this is the equivalence for the save() function in 

Map. The equivalence table for this is long, since it is completely non-procedural. The 
code itself is much simpler since handling the cases is simpler when considered 

procedurally. While some might argue that more is better, this creates problems in terms 

of keeping a large body of material under proper revision control and insuring that 

verification between various steps is completed properly. 

The modified method and process presented here may be applicable for critical systems, 

for those requiring more care and documentation, or for those involving a large number 

of interacting objects. In these cases, the additional steps required under this method will 

be worth the effort in order to better understand and document the system being 

developed. 
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SAVINGS TRACKER MODULE 

- 
DEPOSIT 

WITHDRAW 
BALANCE <floab 

TYPE IMPLEMENTED: <Savings> 

(1) SYNTAX 

OUTPUT VARIABLES 

CfloaD 
<float> 

ACCESS PROGRAMS 

Consitency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

AUXILIARY FUNCTIONS 

Func Name Value k g #  1 k g # 2  Arp#3 
parse I <boolean> I <trace> 1 <trace> 1 <trace> E 

ParSe(S,S 1,S2) = 
conditions equivalences 

true 1 

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consitency (3): AU RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defined. 

0 True. 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence function for each event class. 
There is one each for DEPOSIT. WITHDRAW. and BALANCE. 

55 



T.DEPOSIT(x) E DDEPOSIT(x).W where parse(T, D, W) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LI-IC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 
One value, therefore unique. 

nopartition. 

T defined by LHS, D & W defined by T from parse(). 

D is string of deposits; D.DEPOS1T.W maintains canonical trace structure. 

T.WITHDRAW(y) = 

where parsen, D, W) A D = [DEPOSIT(xi)]:0 A 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): AU RHC values are unique: 

else insures partition. 

T defined by LHS 

One value, one error. 

T is canonical by definition. 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): 'Ihe predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'trw': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

nopartition. 

T defined by LHS. 

One value. 

T is canonical by definition. 
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(4) VALUES 

OUTPUT VALUES 

where parse(?', D, W) A D = DEPOSIT(Xi ) l~O - A W = [ w I T H D R A W ( ~ j ) l ~  

Completeness (3) :  The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

T defined by LHS, rest are defined from T according to canonical trace. 
Consistency (2): All traces specified in the RHC of the equivalence sect~on are canonical: 

NIA 
Consitency (3): All RHC values are unique: 

No partitioning, therefore unique. 

Nopytitioning. 

RETURN VALUES 
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58 



WestWorld 

0 WestWorld - filename 

Fi( 

O C I  0 

Interface Requirements 
Document 

Alex L. Bangs 
Oak Ridge National Laboratory 

Center for Enpineering Systems Advanced Research 

59 



Table of Contents 

I . Introduction and Overview ...................................................................................................................... 61 
A . A Simulation of Cooperating Mobile Robots .......................................................................... 61 

C . Mapper: A Prototype for the Interface .................................................................................... 63 
D . Overview: Interface Requirements .......................................................................................... 64 

I1 . The Interface Requirements Specification ............................................................................................. 66 
A . User Interaction and GUI Specification ................................................................................... 

1 . Program Invocation .................................................................................................... 66 
2 . Initial Program Actions .............................................................................................. 66 
3 . Program Menus and Actions ...................................................................................... 66 

a. The File Menu .............................................................................................. 66 
b . The Map Menu ............................................................................................ 69 
c . The Robots Menu ........................................................................................ 71 

4 . Mouse Actions ........................................................................................................... 71 
5 X EventsMrindow Manager Actions 73 

B . HELIX Interface and Interactions ............................................................................................ 73 
1 . HELIX Events ............................................................................................................ 73 
2 . HELIX SharedMemory ............................................................................................. 74 

a. RobodSimulator Interface ............................................................................ 74 
b . Add-on Interface ......................................................................................... 75 

C . Supporting Specifications ........................................................................................................ 75 
1 . Map Format ................................................................................................................ 75 
2 . System Interfaces ....................................................................................................... 76 

a. File System (FS) .......................................................................................... 76 

B . An Examination of Other Simulation Systems ........................................................................ 62 

. ......................................................................... 

b . Memory Management (MM) ....................................................................... 76 
D . Summary of GUI ELEMENTS ............................................................................................... 77 

Subappendix B: Glossary ............................................................................................................................ 81 

III . Incremental Development Plan ............................................................................................................. 78 
Subappendix A: The XView Toolkit .......................................................................................................... 79 

Subappendix C: References ........................................................................................................................ 82 



I. Introduction and Overview 

A. A SIMULATION OF COOPERATING MOBILE ROBOTS 

Tbe reasons for constructing a simulator for conducting experiments in cooperation are multi-fold. Firsi a 
simulator will allow more agents to be simulated than would be practical in a laboratory environment; at 
least 10-20 robots is desired. Currently in CESAR we have three robots, and may purchase more in the 
near future, but having as many as 10 or more robots is not realistic. Second, it allows testing of some 
elements of cooperation, such as communications protocols and task planning algorithms without dealing 
with "real" robot problems. These problems include operating multiple sets of sonar sensors in the same 
room, setup time for getting all software loaded on robots, locating robots at desired starting positions, 
having operators on band to monitor each robot, etc. While experimentation with real robots is essential, it 
can be done in a later phase once the basic infrastructure and algorithms for cooperation have been 
developed. 

?he basic architecture of the simulator is to be based on HELIX. HELIX is a system developed in CESAR 
to provide a communications system for processes running on a heterogeneous network of systems 
[Jones9%, Jones92bl. This system allows both shared-memory and message-passing communications. 
Since our current base of robot code runs under HELIX, it makes sense to base the simulator and the 
experimental element of the work on HELIX since it will allow use of current code as well as make the 
integration of our system easier. 

The main process of the simulator will be a graphical user interface that will show tbe progress of the 
various robots in the environment via animation, and will display related data (sensor sweeps, confidence 
maps, communicated data, etc.). The simulation will be linked into the simulations of the various robots 
via €EL=. Using HELIX wili allow the use of both simulated and real robots during a simulation run. 
This ability to display real robot status will make the interface useful as a console for a multirobot 
opefation. 

The simulation of each individual robot simulator could vary according to the complexity of the 
simulation. The g a d  design of a robot simulator using HELIX would use a separate process to handle 
the cooperative aspects of control, while other processes would handle the other functions of robot control. 
In a simple simulation, these processes could all be rolled into one process. For a more complex robot, a 
large number of processes might be required. 
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Interface Y 
t 

Robot Sim llat or Cooperation 
Coordinator 

HELIX Network 

HELIX Network 

I A A A A +, Sirnuator $=l* Simulator +I-. 
I 

Fig.1: Interface and Simulation Components 

Since each of these separate robots is represented by a cooperation process, the view of the whole system 
as seen by each robot or the interface is basically a collection of cooperation processes. Figure 1 shows 
one possible simulation setup. Note that also a component could be a real robot rather than a simulation. 
The HELIX network inside each component is separate from the network between components. This will 
be handled by a special version of HELIX called N-HELIX, to be developed. 

Construction of the complete simulation system will involve not only building the user interface, but also 
the simulated robots (including simulations for actuators and sensors), simulated “worlds”. and the 
processes required for cooperation. This document focusses specifically on the requirements for the 
interface portion of the simulation. ”be contents include a discussion of prototypes of the interface already 
developed, the role of the interface in the system, a breakdown of requirements between the interface and 
add-on components, and the requirements specification of the interface, and an incremental development 
Plan. 

B. AN EXAMINATION OF OTHER SIMULATION SYSTEMS 

Several other simulation systems have been examined, both to determine if they were up to the rask of 
cooperating robot simulations as well as to note features for possible inclusion into the simulator being 
developed. 

Fust, a few simulations capable of working with multiple robots have been constructed. A simulator is 
being developed at RIKEN specifically to support work there in multirobot cooperation [Habib92]. It 
currently consists of a simple system capable of displaying an environment map and the robot movements. 
The system runs on a Silicon Graphics machine and uses IPC to communicate between the display process 
and the robot simulation processes. As of 7/92, a separate ultrasonic simulation had been completed, but 
was still to be integrated into the full simulation [Asama92]. 
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Another simulation capable of supporting multiple robots is one being used by Lynne Parker at MITT. This 
simulator, originally developed by Yasuo Kagawa of Mazda while visiting MIT, runs in Common Lisp on 
a Macintosh, and has been extended by Ms. Parker. Due to running on a Macintosh and under lisp, its 
operation is slow rParker92b; Parker92cl. 

Commercial simulation packages, such as IGRIP, are undesireable because of their cost and limitations 
(such as the local limitation that it can only be run on one machine). 

Several simulations that have been examined might be capable of multirobot work with some adaptation. 
EDDIE, from CMU, is purported to be capable of multirobot simulation, but a workstation is required for 
each robot to be simulated, thus limiting its ability to scale to large populations of robots [Gowdy91; 
ParkeB2bl . 

Yutaka Watanabe has developed a sophisticated simulation system at ORNL which is specially designed 
to work with an omnidirectional platform also developed at O m .  He is planning to extend this simulator 
to be capable of handling more than one robot at a time. The simulation is feature-packed, with a large 
number of display options available. These include the usual ability to monitor the position and orientation 
of the robot as well as the wheel orientations on the platform; a map display with a grid; fuzzy rule 
evaluation; vision, which shows a 3D perspective view of the robot based on the world model; sonar, 
which shows the sonar beacons scanning on the map; and an option to display the simulation's "real" 
position for the robot vs. the estimated position kept by the user program running on the robot. He also has 
a tool that allows the map to be dumped out and edited by idraw for printing or inclusion into other 
documents Watanabe931. 

Another simulator is the one that has been developed for use in the robotics lab at Tsukuba University with 
their small robots called Yamabico. This simulator is for single robots only [Kimoto92a]. A large amount 
of time was invested in developing the sonar simulation for this system, including two basic types of 
reflection which can be chosen-a simple model and a more complex model using diffusion. A good 
feature of this simulator is that is was developed to run programs written for the robot without 
modification [Kiioto92bl. 

Finally, a simulation bas been developed at the University of Michigan for experimenting with disuibuted 
AI problems. This simulation is Common Lisp based Mont903. Having this Lisp-based makes it more 
difficult to integrate with CESAR systems. 

porrance929 provides a useful discussion of simulation problems and benefits. 

c. MAPPER: A PROTOTYPE FOR THE INTERFACE 

A very simple prototype of an interface was initially written in Smalltalk. While this prototype was not 
very sophisticated, it did give some ideas on object-oriented programming and interface elements. 

A second prototype called "mapper" was written, using C++ and HELIX. It is a very simple program for 
loading object maps and displaying robots moving in the map environment. The robots are controlled by 
separate processes which give their position to the mapper program via HELIX shared memory, and send 
and receive events from the mappr. 

The GUI was built using a Sun tool cailed "GUIDE" which allows interactive building of an interface, and 
dumps out XView graphics code and call-back stubs (C++ in this case) whicb on then be modified by the 
programmer. 

Some observations about the mapper interface: 

63 



mapper allows only one map to be loaded at a time. If a new map is loaded, it destroys all the robots 
currently in the map, but does not ask the user if this is ok, nor does it send quit messages to the affected 
robot simulators. 

mapper only allows one coordinate system, i.e. the current map, to be worked on; it does not handle 
multiple spaces or multiple windows. This is probably sufficient for most simulations. If a large complex 
space needs to be simulated, it can be done all in one map. 

mapper creates an event menu for each new robot to allow individual control of that robot. This is does 
not scale well to many robots, however, since there is not enough menu-bar space. Therefore individual 
robot actions will have to be handled both or either through a click-on-the-robot type interface to pop up a 
menu, or through a command-line/dialog box interface where the robot number is specified. While the 
current version has a menu to send messages to all robots, this is also probably not good for many robots. 
Thus a grouping scheme for robots would be useful, and then use a dialog interface to send an event to all 
members of a specific group. 

when a robot is created, the user locates and orients the robot with the mouse. This will have to be made 
optional, to be selected by the simulator. For large numbers of robots in a simulation, manual placement 
may be unwieldy. 

mapper adjusts the map to fit the window size; this should be improved to first adjust the map to the 
window, then adjust the window to fit exactly to the map. This will look better. 

when a map is large enough that it scaling it will go beyond the minimum size for map magnification, 
then the mapper window should be scalable to accommodate the larger size. 

Some internallcoding observations: 
XView objects as built by GUIDE are awkward and basically smcts 
The mapper was not very object-oriented; a new object was added later, RobotX, which made the design 

more object-oriented. Some effort was made to design this object with box structures. 

D. OVERVIEW: INTERFACE REQUIREMENTS 

The interface has two primary roles: display and control. For display, the user should be able to see the 
locations of the robots and the objects in the simulated world. The user should also be able to focus on 
specific items of a robot’s status, including position, velocity, sensor status, and internal representation 
information. For control, the user should be able to (a) create new simulated robots and place them the 
environment, (b) delete robots from the environment, (c) start and stop robots in the environment, (d) have 
some teleoperaion capabilities, Le. directing a robot toward a new goal, etc. 

In addition to manipulating robots, the user should be able to manipulate the virtual world in which the 
robots exist. The user should be capable of creating, changing, moving, and deleting objects in the map as 
well as changing the dimensions of the map. In addition, loading and saving map files (which are text files 
using a special object description language), and allowing maps to be loaded on top of one another, as well 
as allowing certain maps to be known a-priori by the robots, while other maps are not known are dl 
desired. 

The interface will have two primary modes of interaction: with the user via the GUI, and with the 
cooperating components. The GUI will be done in XView (an X windows toolkit), and the graphics code 
should be as isolated as possible to permit porting to another window system (see Subappendix A for an 
explanation of why XView was chosen). The system will use HELIX as its communications system for 
cooperation, in order to allow connectivity to existing robot code. 

In addition, the interface will probably need to be spIif into multiple processes to allow new simulation- 
specific components (“add-ons”) to be added later without changing the interface internals. For example, if 
we want to add a capability to the simulator to display a sensor map in a window, it makes the most sense 
to put this into a separate process that maintains its own window and communicates directly with the 
sensing process. Therefore, the interface will have to have yet another mode of communication, to add-on 
elements. Communication between interface elements should be done via HELIX. 
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Given this ability to extend the interface with add-ons, the primary interface element should include the 
basics from above. This includes the basic control functions, Le. create/delete/start/stop/relocate/restart, 
and basic display functions, i.e. display map, robots, basic status info (position, velocity). Abilities beyond 
this should be developed in add-ons. This includes displays such as internal and sensor information and 
special control functions. Where possible, the interface should be designed to easily accomodate new 
robots or simulators with little or no modifications to the core interface. 

A X-Windows 

e 

Components 

I ’  

Add-Oris 

Fig. 2: Connections to the Interface 

Not all the functions desired of the interface have to be provided in the first increment. In fact, the add-ons 
are perfect for later increments, as are some of the advanced map handling and event passing features 
described above. An increment plan is presented at the end of this document. 
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II. The Interface Requirements Specification 

A. USER INTEFUCTION AND GUI SPECIFICATION 

J. Prwram Invocation 

On invocation, the user can optionally give a filename of an initial map to the program. Any errors on 
loading this initial map are reported as below. Other than this, the program does not have any specific 
command line options. It should, however, accept and pass to XView any X or XView options from the 
command line. See the xview man page [Sun911 for a list of XView options. 

2. Initial Promam Actions 

The initial screen presented by the program looks like this (see Subappendix A for an explanation of 
XView graphical elements): 

[WinMap-EmptyI 
This screen should be sized so that the default map size, 12.8 x 12.8m, fits the canvas exactly using a pre- 
selected d e  (see below for information on map size and scale). 

"be <NONE> indicates that no map tile has been loaded. If there is a problem setting up X, then an 
iqpmpriate emt is written on the invoking terminal and the program terminates. 

3. fi- 

a. T h e  File Menu 
The File menu consists of the following options: 

Load... 
Save ... 
Quit [default] 

Selection of the Load... option presents Ihe following popup box: 

66 



-0 WestWorld: Load Map 

Filename: <string> 

1 I 
lPopupL-dMapl 

Filename is set to the last file loaded or the last file saved (whichever is most recent) or blank. 

The sideways (unpinned) pin in the header means that the box will disappear when the Load button is 
pressed, unless the pin is pressed, in which case it will stay on the screen. If the pin is pressed again, the 
box will disappear, effectively canceling the Load... command. 

If the file cannot be opened, then the following notice appears: 

The file could not be opened. 

[NoticeOK-FUeOpenErr] 
Other filesystem errors that will be reported are "An error occurred reading the file", "An error occurred 
writing the frle", and "An emr occurred closing the file". If the file can be opened but there is an error the 
data format of the file, this error is reported as verbosely &$ possible, to allow the user to correct the e m r  
in the file. 

Map file format error: <error> 

fNoticeOK-FjieFormat Err] 
See "Map Format" for details on the correct format for the map files. For either of these errors, the Load 
box remains on the screen again to allow tbe user another try. 

If the file i s  correctly loaded, the new map objects plus any previously loaded are drawn on the SCreen to 
scale. Note that the map origin is its lower left-hand comer. The objects are scaled (to the integer part of a 
fiatCtional scale) based on a default scale which can be changed by the user (see below). Invisible objects 
are drawn with dashed borders. The header is updated to show the filename (last component of path only) 
of the latest map file loaded. Finally, once the scale has been determined by the current screen size, the 
screen is re-sized to fit the map outline exactly. This gives us a window as below. 
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[ WinMap-WithObj] 

Selection of Save ... brings up a box as with the Load ... command. Again, this box can be disposed of by 
pressing on the pin. The filename is set to the last file saved or the last file accessed via load (whichever is 
most recent) or blank. 

~opupSnveMap] 
When the Save button i s  pressed, the file is checked to see if it already exists. If so, she notice box shown 
is displayed. 

File Exists. Overwrite it? 

[NoticeYN-FUeOverwrlte] 
If Save is selected, the file is overwritten. If Cancel is selected, the Notice disappears and the Save Map 
window remains on the Screen for the user to enter a different file name. If an error occurs during save, a 
notice appears detailing tBe emor (either "File could not be opened for write." or "Error writing file."); 
when dismissed, the Save box is put back on the screen to try again. 

Once Save has successfully been selected, a file is written out with a comment at the top with the filename, 
current dace and time, a note that it was automatically written by the named program, and 

Selection of Quit terminates the program. If any map objects have been modified or added, then the 
following notice appears: 

The map has been modified. Quit anyway? 

Iy.;l pq 
[ NoticeOK-MapModQuit] 
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If No is selected, then the program continues operation. Otherwise, if Yes was selected or no map objects 
were modified or added, then QUIT events are sen1 via HELIX to all simulation processes that are 
registered with the program, and the program terminates. 

b 

New Map Object 

Box Cylinder Polyline 

F l  

b. The Map Menu 
The Map menu consists of the following options: 

Redraw [default] 
<blank line> 
Update HELIX Map 
Clear Map 
Change Map Size ... 
New Map Object ... 

Selection of Redraw causes all objects (robots or map objects) in the main window to be redrawn. This 
also occurs if the window is resized via the window manager. 

Selection of Update HEWX Map causes the bitmap representation of the map in 
HELIX memory to be cleared and then rescanned. Once this is complete, a MAPUPDATED message is 
sent to all registered clients. 

If the user selects Clear Map and h e  map is currently empty, then nothing happens. If, however, the user 
select Clear and there are objects in the map, then the following notice appears: 

Are your sure you want to clear the map? 

f NoticeYN-ClearMap J 
If the user answers Yes, then the map is cleared of all objects but the map size remains the same: the 
screen is also redrawn to reflect the new blank map. If the user answers No, then there is no change. 

The Change Map Sue ... selection causes the following window to appear: 

Width: d1%.2f> Length: <f1%.2f> 
Scale: -4ntz- 

[ PopupMapSize] 
If Change is then selected, the values of the width and length fields are checked. If they are less than 1 .O or 
not legal numbers, then a notice box appears with an OK button and one of the following messages: 
"Width and Length must be at least 1 m." or "Width and Length must be floating point numbers." 
Otherwise, the map size is changed, and the map is redrawn with objects and robots to scale. 
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The three top items are an exclusive choice list, with Box being the default choice when'the box appears 
for the fmt time. If the pin is pressed or the box ignored, then nothing happens. If the New button is 
pressed, the New Map Object box disappears and one of the following windows appears, depending on the 
selection made: 

' 

0 Map Object: Box 

Map File: <string> 

Position x: <fI %2f> y: dl %.a> 
Width: <fl%.2fs Length: <f1%.2f> Height: <f1%.2f> 

$visible IAddl F l  Fl I [PopupMapObjBox] 

I 0 Map Object: Cylinder 

Map File: <string> 

Positionx: d1%.2f> y: d1%.2f> 

Radius: <f1%.2f> Height: d1%.2f> I 

[PopupMnpObJCylinder] 

Map Object: Polyline l o  
Map File: <string> 

Position x: d1%.2f> y: cf1%.2f> 

Height: <f1%.2f> 

Point List: 

dl%.2f>,<f1%.2f> ,... 

[PopupMapObjPolyline] 

For a new object, Map File: has "<new>" in it, and all other values are 0.0. If the user pushes the pin, the 
new item is not created. If Change or Delete is pressed and Add has not yet been pressed, then the 
following notice appears: 

The object has not been added. 

~~ 

[NoticeOK-ObjNotAdded] 
If Add is pressed and any of the Length, Width, or Height parameters are zero or less, then a notice with 
an OK button and the following message appears: "LengtNWidWeight must be greater than zero". If the 
object has been placed so all or part of it is outside the c m n t  map size, then the following notice appears: 
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Object outside map boundaries. 

[NoticeOK-ObjOutside] 
Otherwise, the item is added to the Map, and tbe map will be redrawn to show the object. 

c The Robots Menu 
The Robots menu consists of the following options: 

Summon ... [defauit] 
<blank line> 
Start all 
stop all 
Quit all 

Selection of Su mmon... causes the following box to appear on the screen: 

I I -0 Robot Summon 

[PopupRobotSummonl 
The box can be dismissed via the Summon button or the pin. If the summon button is pressed and a valid 
robot ID has been entered (range of l...lOOO), then the Robot Control box (below) appears. If the ID is 
invalid, then a notice appears with the following message: "Invalid I.D.". The up/down arrows next to the 
field allow the number to be incremented and decremented, but not below 1. The maximum is IOOO. Note 
that this box can be handy if the robot has driven off screen and the mouse actions below Cannot be used. 

Selection of Stan All sends START even& via HELIX to all simulation processes registered with the 
program. Stop All sends STOP events similarly, and Quit All sends QUIT events similarly. 

If the left mouse button is clicked while the pointer is inside a map object, a box from one of the three Map 
Object boxes (above) appears, depending on the type of object. Changes a n  be made to the object. If no 
changes m made, then pressing the Add or Change button gives the following message: 

The object has not been modified. 

[NoticeOK-ObjNotMod] 
Otherwise, the Add acts as given above, and replaces the Map File srring wirh caddeb. Change replaces 
the current object with rhe given modifications, and replaces the Map File field with <changed>. If Delete 
is pressed, then the object is removed from the map. If any of Add, Change, or Delete are successfully 
done, then the Map is redrawn to show the object change. 

If the middle mouse button is clicked inside an object, the Map Object box appears and then the object 
tracks the mouse moving around the screen. When the mouse button is released, the equivalent of the 
Change button is done, i.e. the map is updated and redisplayed. 
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If the left mouse button is clicked while the pointer is inside a robot (or within some reasonable bounding 
box, since robots may be round or rectangular but not oriented with the XY axes), the following window 
appears: 

0 Robot Control 

Robot ID: -<int>- e9621 
Position x: <fl%.2f> 

Robot Type: cstring/ro> <reaVsim> 

y: cfl %.a> a: <fl %.a> Speed: 41 %.2f/readonly> 

Status: <stringhead-only> 

-1 Cont. Update: [m -1 

[PopupRobotControl] 
This box provides not only basic status information on the robot retrieved from HELIX memory. It can be 
dismissed as the with the map object box. This box also features two pull-down menus and a special row 
of buttons, discussed below. If the middle button is pressed inside a robot, then the window also appears. 
In this case, however, the interface sends a REQUEST-PLACEMENT message to the robot. If the robot 
returns PLACE-OK, then the robot moves around the screen and follows the mouse for location and az (as 
with initial placement); once the placement is finished, the new position is set in HELIX memory and 
PLACE-SET is sent to the robot. If the robot returns PLACE-REFUSE, then the following notice 
appeZUs: 

The robot has refused the update. 

[NoticeOK-UpdnteRefused] 

Tbe Events menu has the following items: 
Start 
stop 
Ping [default] 
Quit 

Ea& of these send a corresponding HELIX event to the robot. 

The Add-ons menu is initially empty, but can be added to via events sent from add-on programs. 

The Single Update button reads the latest data from the robot in the HELIX memory and displays that in 
the box. If the Cont Update/Start button is seleckd, then the display is periodically updated from WELIX 
memory, not necessarily as fast as other graphics updates on h e  screen. When the Cont Update/Stop 
button is selected, the screen is not updated unless Single Update is chosen. If the Send Change button is 
pressed, the interface sends a REQUEST-PLACEMENT message to the robot. If the robot returns 
PLACE-OK, the new position is set in HELIX memory and PLACE-SET is sent to the robot.. If the robot 
returns PLACE-REFUSE then the notice shown above appears. 

If the Robot JD value is changed, then the screen is updated for that robot If Cont Update/Start button is 
selected, then continuous updates are displayed for the newly selected robot. If the Robot ID value is not 
valid for a registered robot, then <invalid ID> is displayed in the Status field. 
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5. X E v e n W  indow Manager Actions 

There are some events that have to be monitored by the program that are a result of user actions but come 
from the window manager rather from the progmm's direct interactions. These can usually be monitored 
via call-backs and could therefore be considered stimuli rather than conditions; this will depend on h e  
specifiers preference. See "System Interfaces" below for information on more system conditions. 

These conditions fHeiler921 and their cooresponding actions: 
X:Destroy(stams) where status = 

DEs~OY-C€iECKING -> 
if map needs saving, ask if ok to quit; if not, veto destroy; otherwise send QUIT 
messages to all registered simulation components and allow destroy. 

ignore 

prepare for death; should clean up memory 

prepare for death; no need to clean up memory 

DESTROY-SAvE_YOURSELF --> 

DESTROY-CLEANUP --> 

DESTROY -PROCES S -DEATH --> 

X:Repaint -> redraw map and robot objects 

B. HELIX INTERFACE AND INTERACTIONS 

Once the program has been invoked and the initial screen drawn, the program can respond to the basic set 
of HELIX events. These are NULL-EVENT, QUIT. EPING, ACK, QUIET, START. and STOP. The 
actions for these are the following: 

NULL --> 110 response 
QUIT --> terminate program; send QUIT to registered simulation processes 
EPING --> return ACK event to sending process 
QUIET --> no response 
START --> no response 
STOP -+ no response 
ACK -> no response 

In addition. a set of events has been defined especially for interfacing with simulation components. These 
are: ROBOT-STAR'I", ROBOT-SHUTDOWN, PLACE-REQUEST, PLACE-OK, PLACELRERJSE, 
PLACE-SET. ROBOT-STARTUP is sent by an initializing sirnulation component to register itself with 
the interface. ROBOT-SHUTDOWN is sent by a robot when it is shutting down to let the interface know 
that it should dispose of the robot. Robots send this when they have received a QUIT, usually from the 
interface. 

When ROBOT-STARTUP i s  received, the interface will have to register the robot that the message was 
received from. If the robot wishes to place tbe robot in the environment it also sends a PLACE-REQUST 
message. With this message, the interface goes into a special mode for user interaction. The robot image is 
drawn on the screen at the mouse position, and follows the mouse around. If the middle mouse button is 
pressed, the robot rotates its az value counterslockwise. If the right mouse button is  pressed, the robot 
rotates its az value clockwise. If the left mouse button is pressed, the robot is placed at that point, and a 
PLACE-SET message is Sent back to the robot simulation component. Note that there is no way to abort 
the robot placement sequence. HELIX events received during this sequence are queued. If the 
PLACE-REQUEST message is not received, it is assumed that the robot simulator has selectec the 
position of the robot before sending ROBOT-STARTUP, and the robot is drawn at the coordinates given 
in the HELIX shared memory. 
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The other HELIX interface is with Add-on components. At this time, this feature will not be included. 

The following table illustrates the HELIX communications that takes place under certain specific activities 
of the simulations and the interface: 

send <- ROBOT-SHUTDOWN 
send <-- ROBOT-SHUTDOWN 

send PLACE-OK if placement ok 
send PLACE-REFUSE if not 

write robot oosition to HELIX rnemorv 

a. RobotiSimuiator Interface 
This  section discusses the PostIts in shared memory which will be required. The interface will have to 
determine the current robot status and position. Therefore the following PostIt will be needed for each 
robot: 

struct robot-corn ( 
float x; 
float y ;  
float az ; 
float speed; 
char status[80]; 
int time; 
short type; 
short global-ID; 
short intype-ID; 

short flags ; 

/ *  
/ *  
/ *  
/ *  
/ *  
/ *  
/ *  
/ *  
/ *  

/ *  

x in meters * /  
y in meters * /  
az in radians * /  
speed in m/sec * /  
string holding robot status info * /  
time stamp to indicate update * /  
robot type * /  
ID of the robot vs.  all others * /  
number of this robot among those 
with the same type * /  
flags 
bit0 = 1 if real robot, 0 if sim * /  
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Also, the map of visible and invisible objects has to be placed in memory. The visLob j s-map contains 
only the visible objects; a1 1-ob j s-map confains both visible and invisible objects. The maps are 
currently fixed size, and sized to fit into 3% based on an OS-9 HELIX limitation. If a map is smaller than 
12.8m x 12.8m, then the space beyond that size is considered empty and is cleared by the interface. If a 
map is larger than 12.8m x 12.8m, it wiIl be cropped at the 12.8m x 12.8m border for HELIX 
representation. This may be fixed in a future version. 

struct vis-objs-map { 

I 
char grid[1281 [128] [32]; 

struct all-objs-map { 

1 
char grid[1281 (1281 [321; 

b. Add-on Interface 
A PostIt will be needed for the interface to communicate certain information with Add-ons. For now, this 
infomation is nil. 

struct add-on-interface { 
I 

c. SUPPORTING SPECIFICATIONS 

Format 

The map file consists of lines of interpretable dau. Each line is considered a separate entity. Each map line 
can be nil (blank line), start with a ## (comment), or have a map command, one of "map", "cyI[inderj", or 
"box". The a w s >  (non-white space) after the command means &at the rest of the command name is 
ignored if the fmt  three letters are matched, i.e. cylinder, cyl. or cylfoo are all legal for cylinder. The 
<vis> parameter, which is optional, indicates whether an object is visible (Le. a priori known to the robot) 
or invisible (only can be found via sensors). The default condition is visible. The <height> parameter, if 
not present, defaults to 2m. 

Maps may be overlayed with one another, Le. multiple map files may be loaded to make a single complex 
map in the simulation memory. If, however, separate maps are loaded and have different map sizes, the 
largest map size is assumed. The map sue defaults to 12.8m x 12.8m and to a scale of 40; the default is 
used if no map command is encountered. 
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line-list := clocxg>,<ws><locyg><middle><locxg>,<ws>clocyg> 
middle := (<I~X~>,CWS><~~Y~><WS>] '  I <WS> 

NOTE that the first coordinate must be repeated to close the polyline 
ws := <fab>Icspace> 
nws := any character not cws> or <CR> (including nil) 
vis := * ~ i ~ " ~ n w s z c w s > I ~ i n v i s ' ~ n w s ~ c w s ~ I ~ w s ~  
nil := empty string 

2. Svstem Interfaces 

a. File System ( F S )  
The fde system will present several conditions to the system which will have to be dealt with. These are 
already dealt with in the requirements above. Errors include: FS:FileExists, FS:FileDoesNoExist, 
FS:WriteError, FS:ReadError. 

b. Memory Management (MM) 
This system is not dealt with in the requirements above. If a memory allocation (object constructor, 
malloc, etc) returns an error, program should put up a notice that memory is low. A QUIT event is send to 
all registered simulation components. The program then checks to see if a save is needed; if so, brings up 
the save box to save the current map. After a save is complete, the program quits automatically. All menu 
items except Quit and Save are disabled during this procedure. If a second memory error occurs during 
this shutdown procedure. the program terminates immediately. 
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D. SUMMARY OF GUI ELEMENTS 

W indows/PopupslNotices 
WinMap 

PopupLoadMap 
PopupS aveMap 
PopupMapSize 
PopupNewMapObj 
PopupMapObjBox 
PopupMapObjC ylinder 
PopupMapObjPol yline 
PopupRobotS uaunon 
PopupRobotCon trol 

NoticeOK 
NoticeYN 

Menus 
Window Menu Item 
MapWin File Load .. . 

Save ... 
Quit 

Update HELIX Map 
Clear Map 
Change Map Size ... 
New Map Object ... 

Robots Summon .._ [default] 

Map Redraw [default] 

start All 
Stop All 
Quit All 

PopupRobotConrrol Events Start 
stop 
Ping [default] 
Quit 

Add-Ons enone> 

Misc. Stimuli 

XVIRepaint 
xv/Destroy 
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HI. Incremental Development Plan 

This section describes the incremental development plan. This plan roughly states which features will be 
included into each increment as the software is developed. Each increment will be specified, coded, 
verified, and tested individually. Each increment also must a functional, runnable program or group of 
programs. 

If functions have buttons or menus in an early increment but are not yet implemented, the following notice 
appears if they are selected: 

Increment 1 

This function has not been implemented. 

IConfirml 
[NoticeOK-FuncNotImp] 

Initial window with menus and all menu items present. All menu items are stubs, except Redraw and 
PopupMapSize will be available. 

Increment 2 
Map loading, saving, clearing, and drawing on screen available; only box and cylinder objects allowed 
(NOTE: polylines not included until increment 7). 

Increment 3 
@-screen editing of map objects allowed via mouse clicks. New map objects may be created. Visible and 
invisible objecbs, map size information in file. 

Increment 4 
Initial robot/HELIX interface. Basic event interface + robotsatus interface as defined in this document. 
Object map from interface not yet available. 

Increment 5 
Addition of robot control via mouse clicks on screen, Robot control box and submenus added. Robot 
Summon available. 

Increment 6 
HELIX shared memory object map supported by interface. 

Increment 7 
Polyline objects added. 
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Subappendix A: The XView Toolkit 

A Note on XView Interface Elements 

Figure 3 shows some of the graphical elements used in the sample screen displays below [Sun89]. 

Control areas, as shown in Fig 3, are required for certain interface elements such as buttons, menus, slides, 
tex t  input, etc. Another type of area on a window is a Pane. This area is typically a text or graphics area 
(the latter k ing  called a Canvas). 

Control 
area 

Window menu button 

Header aka Title bar 

/ Pull-down menu 

Pane I 
Pin (on pinable pop-up windows) re 
Pin, in unpinned position v 

Figure 3: XView Interface Elements 

Pins appear on certain windows which may be designed to stay on the window if the user chooses. If a 
window comes up with the pin already stuck in, then the window will stay in place unless the user 
explicitly dismisses it or pushes on the pin. If the pin comes up unpinned, then the window will disappear 
after it is used unless the user pins it in place. If the window is made to disappear by unpinning it, this is 
equivalent to cancelling any function the window was to perform. Note that actions using the pins do not 
send a specific stimulus to the program. Thus, if a box is cancelled by pushing its pin, the program does 
not note that the box bas disappeared, but will never receive any other stimuli from the box. 

Note that using pin-able pop-up windows allows for non-modal operations, i.e. it is possible to bring up 
these windows, but then continue working with other windows. There are also modal windows, that must 
be acted upon before other work can be done with the program. In XView, these are called Notices, and 
tbey are used for some functions in the program below. 

Menus are implemented via burtons that, when clicked on via the right mouse button, present a pull-down 
menu. If the left mouse button is pressed, a default selection (if set by the programmer) is highlighted 
automatically. 

Why XView? 
The graphical user interface will be built using the XView toolkit. This toolkit has been chosen because (a) 
we have an interface builder for this toolkit and (b) it is the basis for the window tools we use in our 
laboratory (Sun's Openwindows). Writing programs for basic X windows is more universal, but also much 

79 



harder. Using a tookit such as XView or Motif will save a considerable amount of tiine. XView was 
selected over Motif because it is better supported in our laboratory, and I have. been told tbat it is easier 
and more logical to program than Motif. One final note: XView libraries are available free, which should 
allow Ws to run on any X windows-based system. 
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Subappendix B: Glossary 

Add-ons-new interface elements added to provide information from a specific simulation. 

Cmponent -a  process or group of processes that represent a significant part of the simulation-i.e. a 
robot or the interface. 

Cooperation Prcxess--the process in a component that is responsible for communicating with the other 
components in the system, including other simulation components and the interface. 

Element- part of a component, i.e. a process that is part of a single robot simulator, or a process that is 
part of the interface. 

GUIIIE-A Sun-based tool for developing XView interfaces. GUIDE stands for Graphical User Interface 
Development Tool. 

HELIX-a system for communications between processes, including message passing (events in HELIX 
terminology) and shared memory (PostIts in HELIX terminology). N-HELIX is an extension to HELIX 
tbat supports a hierarchy of HELIX networks. 

Interface--fers to the component of the simulation that presents the graphical user interface to the user. 
This component is also called the “Master Simulator” since it conuols the actions of the other components 

Registered Process/Robot/Simulator-a robot simulator is “registered” with the interface if it has sent a 
ROBOT-STARTUP event to the interface, indicating that its position should be tracked. 

Robot-a  component of the simulation system, possibly consisting of multiple processes, and either 
controlling a real robot or a simulated robot. 

XView-a Sun-developed X-based graphical user interface library which is comparable to Motif. The 
system will use this library as it is available on ail our Suns. 
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Appendix C: The First fncrernent Specification 
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Wes tW orld 
Increment 1 Specification 

6. Tou Level Black Box 

define-BB void Westworld 
input 

output 

Invocation 
XCB 1:MenuEiIeLoad 
XCB :Menu/File/Save 
XCB:Menu/File/Quit 
XCB :MenulMafledraw 
XCB:Menu/MaflpdateHelix 
XCB :Menu/Map/Clear 
XCB :MenulMap/ChangeS ize 
XCB :Menu/Map/NewObj 
XCB :Menu/Robots/S ummon 
XCB:Menu/Robots/Start 
XCB:Menu/Robots/Stop 
XCB :MenuRotmtslQuit 
XCB:B uaon/MapSizeChange 
XCB:XV/Destroy 
XCB :XV/Repaint 

window WinMap 
popup PopupMapSize 
notice NoticeOK 

transition 
Invocation -> 

-WinMapInit() 
XCB:Menflile/Load --> 

-Unimplemented(WinMap frame created at Invocation); 
XCB:Menflile/Save --> 

-Unimplemented(WhMap frame created at Invocation); 
XCB :Menu/File/Q ui t --> 

xv-destroy-safe(WinMap frame created at Invosation) 
XCB:Menu/Map/Redraw --> 

-Re paint() 
XCB :Menu/MaflpdateHeEx --> 

-Unimplemented(WinMap frame created at Invocation); 
XCB:MenulMap/Clear --> 

-Unimplemented(WinMap frame created at Invocation); 
XCB:Menu/Map/ChangeSize --> 

PopupMapSizeS how0 
XCB:Me&Viap/NewObj -> 

Unimplemented(WinMap € m e  created at Invocation); 
XCB:Me&Robots/Summon --> 

UnimplementedOVinMap f m e  created at Invocation); 
XCB:Me&RobotslStart --> 

- Unimplemented(WinMap frame created at Invocation); 

IXCB = X Call Back 
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XCB:MenulRobotslStop --> 

XCB :MekFZobots/Quit --> 

XCB:Bu~on/MapSizeChange --> 

XCB:XV/Destroy(client, status) --> 

XCB:XV/Repaint --> 

Unimplemented(WinMap frame created at Invocation); 

Unimplemented(WinMap frame created at Invocation); 

-PopupMapSizeChangeO 

-Desfroy(client, status) 

-Repaint0 
end-BB 

0 WestWorM - <NONE> 

1- Wl p z i l  

1 

Black Box Specification Functions: 
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-0 Map Size 

Width: <fl%.2f> Length: <f1%.2b 

Scale: -<int>- EYEJ 

[ -PopupMapSizeChange() I = 
[ (atof2(entered width) < 1 I atof(entered length) -c 1) --> 

NoticeOK(PopupMapSize frame, 

I (entered scale < 1) I (entered scale > 100) 
NoticeOK(PopupMapSize frame, 

"Width and Length must be at least 1.b.") 

"Scale must be in the range of 1 to 100.") 
I (PopupMapSize pushpin is in) --> 

redisplay values in PopupMapSize; 
-Repaint() 

-Repaint() 
I true --> 

1 

[-Repaint() 1 = 
[ clear WinMap paint window created at Invocation and 
draw map border using X Display+Window params for paint window 
given width, length, s a l e  from 
default or XCB:PopupMapSizeChange 

1 

I -Unimplemented(Xv-opaque owner) 1 = 
[ -NoticeOK(owner, "This function has not been implemented.") ] 

[ -NoticeOK(Xv-opaque owner, char *message) ] = 
display notice for owner 
with Confum button and given message string: 

1 

2atof0 is a C function which converts a suing to a floating point number, ignoring any alphanumeric 
CharaCtefS. 
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Class Des im and Class BB Spec ificatiom 

(1) Choose candidate objects 

Tbe first candidates for objectdclasses are those that represent an interactive window under X; this is the 
way the code is automatically generated by the Devguide mol. Tberefore, there needs to be an object for 
the main window and its menus (WinMap) as well as the "Change Map Size" popup CPopupMapSize). 
There does not need to be one for the Notify boxes since they do not have any notion of complex 
interaction or permanence. In addition, there needs to be an object to hold the map data and associated 
functions (Map). A ciass should be created to group all the miscellaneous functions, such as Notice-OK 
(vas). The final object is that which controls all the others, or at least initiates their actions via the main0 
function (Main). 

(2) Assign top-level stimuli to objects 

Main 
Invocation 

PopupMapSize 
XCB :Button/MapSizeChange 

WlnMap 
XCB :Menu/EieLoad 
XCB :Menu/FIe/Save 
XCB Menfli leQuit  
XCB:Menu/Nap/Redraw 
XCB :Menu/Map/UpdateHelix 
XCB :Menu/Map/Clear 
XCB :Menu/Map/ChangeSize 
XCB :Menu/Map/NewObj 
XCBMendRobotslSummon 
XCBMendRobotdSm 
XCB :Menu/Robots/Stop 
XCB:Menu/RoboMQuit 
XCB:XV/Deswy 
XCB:XV/Repaint 

utils 
<none> 

(3) Identify inter-class stimuli 

Main, via the main() function, will have to hitialize/Cmte all the other objects, through either init d s  M 

constNctors. 

Map will draw the map info in the paint window of WinMap, based on window information passed from 
WinMap. i t  will assume a default map size until a map size change is sent from another object. It should 
have the basic map parameters publicly available. 

PopupMapSize will draw the Change Map Size popup and handle the button callback for that popup. It 
will have to be able to display the popup on command when the appropriate menu item is selected via 
WinMap, and it will have to pass the change size parameters u, Map when the Change button i s  pressed. 
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WinMap will be responsible for drawing the main window. It will accept all menu callbacks, but will only 
handle those directly related to what it COR~IO~S. Since Map will handle the drawing of the map in a 
subpane of WinMap, data referencing that subpane will have to be passed to Map, as will the actual draw 
calls. The menu item that causes the Change Map Size popup to appear will have to be passed to 
PopupMapSize. 

utils w rill handle the Notice-OK call. r - l  Main 

I show() 1 PopupMapSize b-1 WinMap 

I I 

BB Format Notes: 
(1) access programs includes any access to class via function calls; if a return or YO parameter is 
involved, this must be handled in the response section of the transition for this access program, 
(2) output variables shows variables maintained by the box which are publicly accessible; access to these 
variables is to be considered a stimuli for the purpose of determining the value of the output 
(3) outpur contains output not handled by access program p m e t e r s  or return values -- Le. user interface 
outputs 
(4) class access. class output variables. and class output provide a similar interface as described above, 
but for the class functions. 
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(5 )  input variables lists external inputs required by this class. 
(6) extemul access lists e x t d  funcum calls required by this ciass 

defmeBB Main 
class access programs 

&vocation> 
main0 

output variables 

input variables 

At@-atuibute INSTANCE 

WinMap::frame 

external access 
Map::MapO 
void PopupMapSize::init(Xv-opaque owner-frame, Map* pMap) 
void WinMap::init(Xv-opaque owner-frame, Map* pMap, 

PopupMapSize *pPopupMapSize) 

txansition 
Si = <Invocation> --> 

create Map [invokes Map()], PopupMapSize, WinMap 

call init for PopupMapSize + WinMap object crated by Invocation 
Si = main() --> 

endBB 

define-BB Map 
access programs 

Map0 
void init-draw@isplay *display, Window xid) 
int change-size(Xv,opaque frame, double new-width, double new-length, 

int new-scale) 

output variables 
double width 
double length 
double scale 

output 
X display window 

external access 
void Utils::cMotice-OK(Xv-opaque owner, char* message) 

transition 
Si = Map() -> No response. 
Si = init-draw(display, xid) --> 

(Si = change-sizdframe, W, l, s)) A ((w <1) v (I < 1)) --> 
draw map border (rectangle) of 12*40 x 12*40, using display + xid parameters. 

Utils::NoticeOK(frame, "Width and Length must be at least 1 .Om."); 
return FALSE value from change-size 

Utils:floticeOK(frame, "Scale must be in &e range of 1 to 100.") 
return FALSE value from change-size 

(Si = change,size(frame, w, l, s)) A ((s < 1) v (s > 100)) --> 
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(Si = change-size(frame, w, 1, s)) A change-valid(w, 1, s) --> 
draw map border (rectangle) of new-width*new-scale x new-width*new-scale 
using display + xid parameters from previous init-draw() call; 
return TRUE value from change-size 

Si = width A (3Sj I (i < i) A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) A 

notdSk I (i < k < i) A (Sk = change_size(f,w',l',s') ) A change-valid(w',l',s')) --> w 
Si = width A not(3Sj I (i < i) A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) --> 12 
Si = length A (3Sj I (i < i )  A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) A 

not@Sk I (j < k < i) A (Sk = change-size(f,w',l',s') ) A change-valid(w',l',s')) --> 1 
Si = length A not@Sj I (j < i)  A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) --> 12 
Si = scale A @Sj I (i < i) A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) A 

notask I (i < k < i) A (Sk = change-size(f,w',l',s') ) A change-valid(w',l',s')) --> s 
Si = scale A not@Sj I (i < i)  A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) --> 40 

endBB 

Spec Function 
[ change-valid(w.1.s) ] = 

[ ((1 5 S 5 100) A (W 2 1) A (1 2 1)) ] 

NOTES: 
(1) assumption i s  made that init-draw comes before any change-size; no error checking for this 
(2) Map0 must be first stimuli, by default, since it is a constructor 

defme-BB PopupMapSize 
access programs 

void init(Xv-opaque owner-frame, Map* pMap) 
void show() 
void change(Pane1-item) 

output 
popup window 

class access programs 
static void cfChange(Pane1-item, Event) 

input variables 
Attr-attribute INSTANCE; 
x v s e t  variables FRAhE-CMD-PUSHPIN-IN, XV-KEY-DATA, entered-width, 

entered-length, entered-scale 

external access 
Map::change-size() 
Map::width, Map::length, Map::scale 

transition 
Si = init(o, p) --> no response. 
Si = Show() --> 

display popup screen with owner 0, with values in width/length/scale fields 
from p->width, p>lenglh. p->scale. where (3Sj I (j < i) A (Sj = init(o,p)) A 

nOt(3Sk I (i < k< i) A (sk = bit(0.p)))) 

Si = change(item) --> 
given pointer to popup input fields for widtMengWscale and popup frame "f' 
created by init a S j  I (i < i) A (Sj = init(o,p))), call p>change-size(f. entered 
width, entered length, entered scale); if change-size returns 1 and xv-get 
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parameter FRAME_CMD_PUSHPIN,IN from f is 1, then call show{); if 
change-size0 returns 0, send an error to XView via item to hold the popup on 
the screen. 

. 

Si = cfChange(item, ev) -> 
call PopupMapSize' p->chge(item) where p = xv_get(item, 
XV-KEY-DATA, INSTANCE) 

end-BB 

NOTES: 
(1) assumption is made that init0 comes before any other calls 

defmeBB WinMap 
access programs 

init(Xv-opaque owner, Map* pMap, PopupMapSize' pPopupMapSize) 
void unimplemented0 
void quit() 

output variables 
Xv-opaque frame 

output 
XView main window 

class access programs 
static Menu-item cfMenuFileQuit(Menu,itea Menujenerate) 
static Menujtem cfMenuMapRedraw(Menu-item, Menujenerate) 
static Menu-item cfMenuMapChangeSi~(Menu-item. Menudenerate) 
static Menujtem cMenuUnirnplemented(M4enu-item, Menusenerate) 
static void cfRepaint(Canvas, Xv-window, Display, Window, Xv-xrectlist) 
static void cfDesuoy (Xvppaque, Destroy-status) 

class output variables 
Notify-value notify-value 

At@-attribute INSTANCE 
x v s e t  variable XV-KEY-DATA 

input variables 

external access 
pOpupMapSize::show() 
Map: :mit-draw() 
Utils::cfNotice,OK~) 

transition 
Si = init(0, pl ,  p2) --> 

Si = unimplemented0 --> 
create WinMap window with owner 0, call pl->init-draw with display and xid 

Utils::cfNotice,OK(f, "This function has not been implemented.") 
where f is frame created from Sj, where (3Sj I Q c i) A <Sj = init(o,p))) 

call xv-destroy-safe(frame created from Sj), where (3Sj I 
Si = quit() --> 

< i) A (Sj = 
init(o,p))) 

Si = cfMenuFiieQuit(item, op) --> 
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call WinMap* p->quit() where p = xv_get(item, XV-KEY-DATA, 
INSTANCE) 

call Map* p->drawO where p = xv_get(item, XV-KEY-DATA, INSTANCE) 

call PopupMapSize* p->show0 where p = xv_get(item, XV-KEYDATA. 
INSTANCE) 

call WinMap* p->unimplemented() where p = xv_get(item, XV-KEY-DATA, 
INSTANCE) 

Si = cfRepaint(c, PW, d, W, X) -> 
call Map* p->draw() where p = xv_get(pw, XV-KEY-DATA, INSTANCE) 

Si = cfDestroy(client, status) --> 
-Destroy(client, status) 

Si = cfMenuMapRedraw(item, op) --> 

Si = cfMenuMapChangeSize(item, op) -> 

Si = cfMenuUnimplemented(item, op) --> 

endBB 

NOTES: 
(1) assumption is made that init0 comes before any other calls 

d e f i e B B  Utils 
class access programs 

static void cfNotice-OK(Xv-opaque owner, char *message) 

uansition 
cMotice-OK(o, m) --> 

display XView notice with owner 0, message, and Confm button; wait until 
Confi i  is pressed. 

endBB 

92 



m. TAMSpec ifications for C lasses 

CLASS: MAIN 

INSTANCE <At@ .attribute> 

TYPE IMPLEMENTED: <Main> 

publiclv accessible 

Map::Map() (constructor) 
PopupMapSize::init() <void> <xv opaque> <Map*> 

WinMap::init() - v o i d ,  <xv opaque> <Map% <PopupMapSize*> 

(2) CANONICAL TRACES 

canonical(Tc) c--> (Tc = <Invocation>) v (Tc = main(>) 

Consitency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for eacb event class. 
9 There is one each for dnvocatiom and main(). 

Tc.~Invocari0n> E <Invocation>; 
ADD-TO-TRAcEcTm, MapO) wbere Tm is trace for Map object created by d n v o c a t i w  

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

defined by LHC. 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

dnvocation> is canonical. 
Consitency (3): AU RHC values are unique: 

Onevalue. 

nopartition. 
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Tc .m 

T = main0 

in() 
conditions 

Tc = <Invocation> 

xv-unique-key0 

else 

equivalences 
main(); 
ADD-TO-TRACE(T-, init(NULL, M, mms)); 
ADD-TO-TRACE(Tpm, init(pm->frame, pm)); 
where T m  is trace for WinMap object created by main0 and pm is 
pointer to that object, Tpms is a trace for PopupMapSize object 
created by main0 and mms is pointer to that object, and Pm is 
pointer to Map obiect created by <Invocation> 
%main already called% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

event defined by LHC; traces and pointers used in RHC are specified by event in Tc 
[cInvocation>] or the current event [main()] 

else insures partition. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 
main() is canonical. 

One value. one error. 

(4)VALUES 

OUTPUTVALUES 

Completeness (3): The predicates in the LHC af each table partition the intended domain of the 
relation: 

Since T is canonical. the conditions partition the canonical trace and therefore give a full 
partition. 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

NIA 

NIA 

One value. one error. 

<none> 
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CLASS: MAP 

r Map3 (constructor) 1 

init-draw <void, cDiplay *> <Window> xid 
display 

draw ovoid> 
change-sue tint> <xv-opaque> <double> <double> cinv 

fnme new, width new-lenEth new scale 

(1) SYNTAX 

widtb <double> public 
length <double> public 

- 

ACCESS PROGRAMS 

scale 
channe ok 

(output screen) 

<in0 public 
< i n 0  function return 

(X displav window) N/A 

Utils: :NoticeOK <void> Gv-opaque> 
owner 

Consistency (1): The canonical form fulfills the requirements of section XI. 
0 

* 
The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

<char *> 
message 

AUXILIARY FUNCTIONS 

bad-values <boolean> d o u b l e  <double> <inP 
new-width new length new scale 

PXSe <boolean> <trace> . mace <trace> <trace> 

3Map() is a constructor, and herefore will automatically be called anytime an instance of the class is 
mated. Map0 defines default values for the values width, length, and scale until redefined by 
change-size. Map0 cannot be called explicitly. 
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(w<l) v (1 > 1) v 
(s < 1) v (s > loo) 
else 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): ?he predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

Consitency (3): All RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defied.  

True. 

true 

false 

parSe(S,S 1,s2,s3) = 
conditions equivalences 

(s = sl.s2.sa) A 

(S1= Map.[init-draw(d.xw)I~=,,,) A 

(S2 = [change-size(f,w.l,s) A not(bad_values(w,l,s)],!,) A 

(S3 = [changesize(f ,w',I',s') A bad_values(w',l',s')l~~) 

I true 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consitency (3): All RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defined. 

True. 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for access programs Map, init-draw, draw, and change-ske. 

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): AU RHC values are unique: 
No partitioning, therefore unique. 

No partitioning of domain, therefore complete 

No partitioning of domain, tberefore complete 

Map0 is a canonical trace 

T.init-draw(&xw) E MapO.init-draw(d,xw).C.CE, where parse(T. I. C, CE) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

No partitioning. 
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Completeness (4): "he predicates in the RHC are defied whenever the comespondirlg predicate in 
the LHC is 'true': 

The predicates in RHC are comprised of canonical trace elements from LHC or the 
stimulus itself, and are therefore all defined. 

The trace given is canoncical. 
Consistency (2): AI1 traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 
Only one value. 

T = Map0 %uninitialized% 
( W < l ) V O < l )  equiv = I.C.change,size(f,w,l,s); 

ADD-TO-TRACE(Tu, cf?Wice-OK(f, "Width and Lengtb must be at 
least 1 .om.") 
where parsev, I, C, CE) and Tu is the class access trace for Utils 
equiv = I.C.change_size(f,w,l,s); 
ADD-TO-TRACE(TU, cfNotice-OK(f. "Scale must be in the range of 1 to 
100.") 
where parsefl, I, C, CE) and TU is the class access trace for Utils 
I .change-size( f, w ,Is) 
where parse(?: I, C, CE) 

(W 2 1) A (I 2 1) A 

((s < 1) v (s > loo) 

else 
I 

T.draw() = 
conditions equivalences 

T = Map() I %uninitialized% 
else I T  

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): 'Ihe predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical 

Consitency (3): Ail RHC values are unique: 

else insures partition. 

One value, one error. 

T i s  defined by other side of equivalence. 

T is canonical by definition. 
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(4) VALUES 

parse(T, I, C, CE) A C f - 1 where 
: C = change size(f,w,l,s) i 

OUTPUT VALUES 

.. 

conditions values 
I parse(T, I, C, CE) A C f - I w where I 

Completeness (3): The predicates in the LHC of each table partition the intended domain of tbe 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
tbe LHC is 'true': 

first case is defined since change-size() must be defined if C # -; second case is 
constant. 

else insures partitioning. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 
NIA 

The first case value may be the sane  as the constant, but not always, requiring 
partitioning. 

V[length]O = 

ConsistencyICompleteness: Same LXS above. 

conditions values 
I patse(T, I, C. CE) A C # - I s where I 
I I C = change size(f,w,l,s) 

else 40 

ConsistencylCompleteness: Same as above. 

V[change-ok]O = 
conditions values 

Completeness (3): ' h e  predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

cases one and two are distinguished by C test; else insures partitioning. 

NIA 

true. 

all outputs are constant or e m r  and therefore defined. 
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T = Map() 
1, c, CE N) A 

I = MapO.init-draw(d,xw) A 
C =  

parsen, I, C ,  CE, N) A 
I = Map().init-draw(d,xw> A 

C = change size(f.w,l,s) 

RETURNVALUES 

%no output% 
rect of size 12*40 x 12'40 drawn 

in window with Display *d, 
Window xw 

rect of size w*s x l*s drawn in 
window with Display *d, 

Window xw 

Completeness (2): There is one output functionlrelation that specifies each output value: 
There is one output value V[cbange-size] defined above for the one value in the table. 
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CLASS: POPUPMAPSIZE 

FuncName I Value 

TYPE IMPLEMENTED: <PopupMapSize> 

(1) SYNTAX 

Arg# 1 A r R # 2  

ACCESS PROGRAMS 

cfChange 1 <void> 

OUTPUT VARIABLES 

<Panel-item> <Events 

Variable Name Tm Access 
(popup window) 1 (XView Popup window) I 1 I N/A 

Map: : 
change-size 

u n o  cXv-opaque> <double> <double> <inD 
change-error pop up-frame new-width new-length new-scale 

(2) CANONICAL TRACES 

caonicd(Ti) <--> (Ti = J v (Ti = init(0.p)) v (Ti = init(o,p).show()) v (Ti = init(o,p).show().change(it)) 

(Ti = init(o.p).showO.chanange(it).change-error) 
V 

Consitency (1): The canonical form fuMls the requirements of section XI. 

- The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 



AUXILIARY FUNCTIONS 

(s = s l.s2.S3.s4) A 
(S 1 = [init(o,p)&,) A 

(S2 = A 

( ~ 3  = [change(it)],',) A 

(S4 = [change-errorI,'d 
else 

true 

false 

(3) EQUIVALENCES 

, T =  I init(o,p) 
, T #  I %already initialized% 

completeness (1): Tbere i s  one equivalence for each event class. 
0 There is one each for init show, change, change-error, and cKhange 

, T =  %uninitiaIized% 
else i.show() 

1 

where parsen. I. S, C, CE) 

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever tbe corresponding predicate in 
the LHC is 'true': 

init(0.p) is defined by event itself, 0th- RHC item is error message. 
Consistency (2): All tram specified in the RHC of the equivalence section are canonical: 

Only one is specified, init(), and it is canonical. 
Consitemy (3): All RHC values axe unique: 

One is value, one is error. 

- If one LHC condition is true, the other must be false. and tbey therefore partition. 
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Consitency (3): All RHC values are unique: 
True. 

T.change(it) = 
conditions 

S * - A I=init(o,p) A 

p->change-size() = TRUE 

equivalences 
%uninitialized% 
%undisplayed% 
equivalence = I.S.change(it); 

change-size(f. atof(entered-width), atof(entered1ength). entered-scale)) 
where f is frame created by init() 
equivalence = I.S.change(it).change-error; 

change-size(f, atof(entered-width), atof(entered-length), entered-scale)) 
where parse(T, I, S, C, CE) A I=init(o,p) A change-error = change-sizeO 
A f is frame created by init0 

ADD-TO-TRACE(Tp 

ADD-TO-TRACE(Tp, 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

I and S defined for traces in 3rd4th cases; p, change-error defined as given; entered* 
values defined if popup has been created (since init must be in trace, that is true). 

init().show().change() and init().show().change().change-emor are canonical 

3rd + 4th cases differ in equivalence 

First two are obviously differenf third has show() in T, else separates third from fourth. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

T.change-error = 
conditions equivalences 

T = init(o,p).show().change(it) I Txhange-error 
else 1 %undefined% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Compieteness (4): m e  predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

elseinsures. 

T defined by LHC. 

One value, one error. 

T.change-error canonical ifT is as defmed by LHC 

Tc.cfCha,nge(item,e) = Tc; ADD-TO-TRACE(Tp, chmge(item)) 
where PopMapSize* p = xv_get(item, XV-KEY-DATA, INSTANCE): 

Completeness (3): "be predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

If change occurs. the PopupMapSize object must have already been created, and p will 
be valid. 

No partitioning. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 
Tc canonical by definition. 
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Consitency (3): All RHC values are unique: 
Onlyonevalue. 

T =  

(4)VALUES 

OUTPUT VALUES 

%undefined% 

T= 
T = init(0.p) 

T = init(o,p).show() 

T = init(o,p).showO.change(it) A 
xv_get(frame created by init(), 

FRAME CMD PUSHPIN IN)=TRUE 
T = Tl.change(it) A 

xv_get(frame created by initO, 
FRAME CMD PUSHPIN IN) =FALSE 

else 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

else insures partitioning. 

NotracesinRHC 

Either frame or error. 

frame is defined by inif which must be part of any non-empty trace. 

%undefined% 
%undisplayed% 

popup window displayed on screen; 
Width field = p->width fonnatted "%.2f'; 

Lengtb field = p>lengtb formatted "%2f'; 
Scale field = p->scaie; values may be modified by 

popup fields set to values from p-> as given 
above 

popup window disappears from screen 

user 

popup forced to remain on screen,with values as 
modified by user 

-0 Map Sue 

Width: cf1%.2f> Length: cf1%.2f> 

Scale: -<intz- e3621 

[PopupMapSize] 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
dation: 

LHC partitions the entire canonical trace. 
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Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
tbe LHC is 'true': 

window and fields are created by init, which is included in RHC trace 
Consistency (2): AU traces specified in tbe RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 
NotraceshRHC 

Either has constant (default) appeance or one modified by user input. 

RETURN VALUES 

(none) 
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CLASS: WINMAP 

frame cXv-oDaque> publicly accessible 
k (main window) (XView window) N/A 

TYPE IMP-: <WinMap> 

(1) SYNTAX 

PopupMapSiLe::show 
Map::init-draw 

Utiis: :cMotice-OK 

ACCESS PROGRAMS 

<void> 
cvoid> <Display> <Window> xid 

display 
<void> a v - o p a q u u  <char *> 

message owner 

OUTPUT VARIABLES 

Variable Name Access 

I XV KEY DATA <xvppaque> I XView xv qet value 
INSTANCE <At tr-attribu tei direct access 

EXTERNAL ACCESS PROGRAMS 
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Consistency (1): The canonical form fulfills the requirements of section XI. - 

The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

T = -  

else 

(3) EQUIVALENCES 

equivalence= init(o,pl,p2); 
ADD-TO-TRACE(Tpl, init-draw(disp, xid)) 
where disp + xid are defined by XView calls to 
create the window 
%already-initialized% 

Completeness (1): There is one equivalence for each event class. 
There is one each for access functions init, unimplemented. quit, cfMenuFileQuit, 
CfMenuMapRedraw, CfMenuMapChangeSize. cfRepaint, and cfDestroy 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

init(0.p) is defined by event itself, other RHC item is error message. 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Only one is specified, init(), and it is canonical. 
Consitency (3): All RHC values are unique: 

else insures partition. 

One value, one error. 

T.unimplemented0 = 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): AH RHC values are unique: 

else insures partition. 

T defined by equivalence. 

One value, one error. 

T is canonical by definition. 

conditions equivalences 
I %uninitidized% I 

CompletenesdConsistency 5ame as above. 
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xv get(item, XV KEY-DATA, INSTANCE) = 0 
op = MEN'U-NOTIFY A 
xv_get(item, XV-KEY-DATA, INSTANCE1 f 0 

%invalid item% 
equivalence = T,; 
ADD-TO-TRACE(Tp, quit()) 
where WinMap* p = 

xv aet(item, XV KEY DATA, INSTANCE); 

Completeness (3): The predicates in the LHC of each table partiuon the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the correspondkg predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are Canonical: 

Consitency (3): All RHC values are unique: 

first two differentiated by =/*; else insure partition 

Tc defined by LHS; if fn called then item must be created and therefore p will be valid. 

Tc is canonical by definition. 

emor + one has ADD-TO-TRACE. other does not. 

xv get(item, XV KEY DATA, INSTANCE) = 0 %invalid item% 
Op = W - N o T I E T  A equivalence = Tc; 
xv_get(item, XV-KEY-DATA, INSTANCE) f 0 ADD-TO-TRACEpp, draw()) 

where Map* p = 
xv get(itern, XV KEY DATA, INSTANCE); ~ 

xv get(item, XV KEY DATA. INSTANCE) = 0 
Op = = - N o m  A 

xv_get(item, XV-KEY-DATA, INSTANCE) # 0 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
dation: 

Completeness (4): The predicates in the RHC are def ied  whenever the corresponding predicate in 
the LHC is 'true': 

first two differentiated by =&; else insure partition 

Tc def ied  by LHS; if fn called then item must be created and therefore p will be valid. 

Binvdid item% 
equivalence = T,; 
ADD-TO-TRACE(Tp, showo) 
where PopupMapSize* p = 

xv get(item, XV KEY DATA, INSTANCE); 

107 



Consistency (2 ) :  All traces specified in the RHC of the equivalence section are canonical: . 

Consitency (3): AU RHC values are unique: 
Tc is canonical by definition. 

emor -t one has ADD-TO-TRACE. other does not. 

Tc.cfMenuUnimplemented(item, op) E 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the conesponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

fust two differentiated by =/#; else insure partition 

Tc defined by U S ;  if fn called then item must be created and therefore p will be valid. 

Tc is canonical by definition. 

error + one has ADD-TO-TRACE, other does not. 

Tc.cfRepaint(canvas, pw, display, xid, rects) = 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

first two differentiated by =/#; else insure partition 

Tc defined by LHS; if fn called then item must be created and therefore p will be valid. 

Tc is canonical by definition. 

error + one has ADD-TO-TRACE, other does not. 

Tc.cfDestroy(client, status) = cfDestroy(client, status) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): AU RHC values are unique: 

nopartition 

def ied  byLHS 

cfDestroy() is canonical 

one value only 

108 



(4)VALUES 

T=- 

OUTPUT VALUES 

%undefined% 

T= 
T = init(o,pl,p2) 

~~ 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): ?he predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

LHC paritions the canonical h o e .  

NotracesinRHC. 

EIther frame or error. 

frame is defined by init. 

values 
%undefined% 

display WinMap on screen, with canvas exactly 
encompassing default map size, with title 
"WestWorld -- &one>", with border fitting map 
size (Map::init-draw), with menus as follows: 
- File: Load ..., Save ..., Quit - Map: Redraw cdefaulo, <blank>, Update 

HELIX Map, Clear Map, Change Map Size ..., 
New Map Object ... - Robots: Summon ... cdefaub, < b W ,  Start 
All. Stop All, Quit All 

WestWorM - <NONG 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

LHC paritions the canonical trace. 

window is defined by init. . 
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Consistency (2 ) :  All traces specified in the RHC of the equivalence section are canonical: ' 

Consitency (3): All RHC values are unique: 
No traces in RHC. 

EIther window or error. 

T c = -  
TC = cfDesuoy(client, status) A 

V[notify-value](Tc) = 

%undefined% 
notify-next-destroy-func(client, status) 

status = DESTROY-CLEANUP 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LMC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): AI1 RHC values are unique: 

fust two differ, else insures partition. 

- N/A 

constant error, or clienthtatus defined by LHC 

%or, constant, or fn call return 

REIZTRN VALUES 
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CLASS: UTILS 

cfNotice-OK (notice) + <Xv-opaque> 
<void> owner 

TYPE IMPLEMENTED: <Utils> 

<char *> 
messare 

(1) SYNTAX 

CLASS ACCESS PROGRAMS 

INPUT VARIABLES 

(2) CANONICAL TRACES 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for cfNotiw-OK and notice-confirm. 

Tc.cfNotice-OK(o,m) = 
conditions equivalences 

Tc = cfNotice-OK(o,m) 1 %waiting% 
else I cfPJotice-OK(o,m) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

event defined by LHC. 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

cfNoticx-OK is canonical. 
Consitency (3): AU RHC values are unique: 

One value, one error. 

else insures partition. 

Tc.notice-confm = 
conditions equivalences 

Tc = cfNotice-OK(o.m) - 
else I %nonotice% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

else insures partition. 
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Completeness (4): The predicates in the RHC are defied whenever tbe conesponding predicate in 
the L.HC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): ~ l l  RHC values are unique: 

constants. 

is canonical. 

One value, one error. 

(4)VALUES 

0mUT VALUES 

V[(not idlf l )  = 
conditions values 

0, message m, an 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Since T is canonical, the conditions patition the canonical trace and therefore give a full 
partition. 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical: 

Consitency (3): All RHC values are unique: 

def ied  by LHC 

NIA 

One value. one error. 

RETURN VALUES 

<none, 
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Clear Boxes 

The clear boxes consist of the following files, which are attached: 
ww-ui.H - header fie containing class, constant, and mix.  definitions 
Main.C - file with main0 loop and global variables 
Map.C - class implementation for Map 
WinMap.C - class implementation for WinMap 
P0pupMapSize.C - class implementation for PopupMapSize 
Utils.C - midutility routines 

Increment 1 C++ Header Definitions 

/ /  ww-ui.H 
/ /  
/ /  Westworld 
/ /  
/ /  Alex L. Bangs. 2/10/93 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
/ /  Modification History: 
/ /  2/10/93 ALB Increment 1 

#ifndef WW-UI-HEADER 
#define WW-UI-HEADER 

#include <math. h> 

/ /  Map constants 

- - - -  

const double default-width = 12.0; 
const double default-length = 12.0; 
const int default-scale = 40; 
const int min-scale = 1; 
const int max-scale = 100; 
const double min-width = 1.0; 
const double min-length = 1.0; 
const int panel-text-size = 8 0 ;  

/ /  simple #define functions 

#define min(a,b) ((a) < (b) ? (a) : (b)) 
#define scaleIt(coord) (irint((coord) * scale)) 

/ /  Main descriptor 
/ /  (note no real class for Main, but has function + globals 
/ /  class Main 
/ /  void main(int argc, char **argv); 
extern Attr-attribute INSTANCE ; 

/ /  Other class descriptors 
class Map { 

Display *display; 
Window xid; 
GC gc; 

public : 
double width, length; 
int scale; 

MapO; 
void init-draw(Display*, Window); 
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void draw() ; 
int change-size(Xv-opaque frame, 

double new-width, double new-length, int new-scale); 
1 ;  

class PopupMapSize { 
Xv-opaque frame; 
Xv-opaque controls; 
Xv-op aque 
Xv-opaque map-length-field; 
Xv-opaque 
Xv-opaque change-button; 

map-w idt h- f i e 1 d ; 

ma p-sc a 1 e- f i el d ; 

Map* pMap; 
void update ( ) ; / /  update numbers in the window 

public: 
void init(Xv-opaque owner, Map* pTheMap); 
void show(); / /  redisplay the box, and do sn update 
void change(Pane1-item); / /  change button pressed; send values to pMap 

/ /  class functions 
static void cfChange(Pane1-item item, Event *event); 

/ /  XView button callback for Change 
1; 

class WinMap ( 
Xv-opaque 
Xv-opaque 
Xv-opaque 
Xv-opaque 
Xv-opaque 
Xv-window 
Display' 
Window xid; 

Xv-op aqu e 
Xv-opaque 
Xv-opaque 

Map* 

controls; 
file-menu-button; 
map-menu-button; 
robots-menu-button; 
canvas ; 
canvasgaint; 
display ; 

file-menu-create(caddr-t * ,  Xv-opaque); 
map-menu-create(caddrt *, Xv-opaque); 
robots-menu-create(caddr-t * ,  Xv-opaque) ; 

pMap ; 
PopupMapSize*pPopupMapSize; 

public : 
Xv-opaque frame; 

void init (Xv-opaque owner, Map*, PopupMapSize') ; 
void unimplemented ( ) ; 
void quit(); 

static Menu-item cfMenuFileQuit1Menu-item item, Menu-generate op); 
static Menu-item cfMenuMapRedraw(Menu-item item, Menusenerate op); 
static Menu-item cfMenuMapChangeSize(Menu-item item, Menugenerate op); 
static Menu-item cfMenuUnimplemented(Menu-item item, Menugenerate op); 

/ /  general XView callbacks 
static Notify-value cfDestroy(Xv-opaque client, Destroy-status status); 
static void cfRepaint(Canvas canvas, Xv-window paint-window, 

Display *display, Window xid, 
Xv-xrectlist *rects); 
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c l a s s  U t i l s  ( 
pub l i c  : 

1;  
static void cfNoticepK(Xv-opaque owner, char* message);  

#endif  
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Appendix D: The Second Increment Specification 
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Westworld 
Increment 2 Specification 

L TOD Level Black Box 

define-BB void Westworld 

Invocation 
XCB :Menu/File/Load 
XCB :MenulFile/Save 
XCB :Menu/File/Quit 
XCB :Menu/MaplRedraw 
XCB%lenu/Map/UpdateHelix 
XCB :Menu/Map/Clear 
XCB :Menu/Map/ChangeSize 
X C 3 : M e n ~ a f l e ~ b J  
XCB :Menu/RoWSummon 
XCB:Menu/RobotdStart 
XCBMenuiRobotdStop 
XCB :Menu/Robots/Quit 
XCB :B uttonflvIapLoad 
XCB :B uaon/MapSave 
XCB :Buaon/MapSizeChange 
XCB:XV/Desmy 
XCBXVRepaint 

input 

output 
window WinMap 
POPUP P O P U P L ~ ~ a P  
POPUP PopupSaveMap 
POPUP PopupMapSke 
notice Notice-OK 
notice Notice-YN 

transition 
Invocation -> 

XCB:Menu/File/Load --> 

XCB:Menu/File/Save --> 

XCB:Menu/File/Quit --> 

XCB:MenulMap/Redraw --> 
-Repaint0 

XCB:Menu/Map/UpdateHelix --> 

XCB:Me~u/Map/Clear --> 
-Repaint(); 

XCB :MenuRvlaplChangeS ize --> 
-PopupMapSizeS how0 

XCB:Menu/Map/NewObj -> 

XCB:Me&Robots/Summon -> 

-WinMapInit() 

,PopupLoadMapShow () 

JopupSaveMapS how0 

xv-desmy-safe(WinMap frame mated at Invocation) 

Unimplemented(WinMap frame created at Invocation); 

Unimplemented(WinMap frame created at Invocation); 
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UnimplementedWinMap frame created at Invocation); 

-Unimplemented(WinMap frame created at Invocation); 

UnimplementedWinMap f m e  created at Invocation); 

-Unimplemented(WinMap frame created at Invocation); 

XCB:Me&tobots/Start --> 

XCB:Menu/Robots/Stop -> 

XCB:Me&Robots/Quit --> 

XCB:Button/MapSizeChange --> 
PopupMapSizeChange() 

PopupLoadMapLoad() 

PopupSaveMapSave() 

Desuoy(c1ient status) 

XCB:Buion/MapLoad --> 

XCB :B utton/MapSave --> 

XCB:XV/Destroy(client, status) --> 

XCB :XVkepaint --> 
-Repain tO 

end-B B 

Black Box Specification Functions: 

[ -WinMapInit() ] = 

display WinMap on screen, with canvas exactly encompassing default map size 
with title "WestWorld -- <None>" 
with menus as follows: 

File: Load .... Save ..., Quit 
Map: Rednw <default>, cb larb ,  Update WELIX Map, 

Robots: Summon ... Cdefaulo, <blank>, Start All, 

[ 

Clear Map, Change Map Size ..., New Map Object.. 

Stop All, Quit All 
with border fitting map size (-Repaint) 

I 

[ -Repaint() ] E 
[ clear WinMap paint window m t e d  at Invocation and draw map border using X 

Display+Window params for paint window given width, length, scale from default or 
XCB:PopupMapSizeChange; draw map objects since last successful load, if not clear since 
last load 

1 
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[ -Desmy(Xv-opaque client, Destroy-status status) I = 
[ status = DESTROY-CHECKING --> NOTIFY-DONE 
I SWUS = DESTROY-SAVE-YOURSELF --> NOTIFY-DONE 
I status = DESTROY-CLEANUP --> notify-next-desuoy-func(client status) 
I Status = DESTROY-PROCESSDEATH --> NOTIFY-DONE 
1 

[ -PopupLoadMapSbowO ] = 
[ display PopupLoadMap witb either last file loaded or saved (whichever was most recent) or 

blank 

-0 Westworld: Load Map 

Filename: <string> 

[ -PopupLmdMapLoadO I = 
[ 

I 

if open file on filename from PopupLoadMap results in error 

for each line in file 
--> -Notice-OK(PopupLoadMap frame, "The file could not be opened.") 

if in correct format, add object to map 
else -Notice-OK(PopupLoadMap frame, "Map file format emr: <erroh @ line 

<line>") 
where error is the form of the error (possible errors are "bad box definition", 
"bad cylinder definition:, and "unknown object") and <line> is the iine where it 
Occured 

change title on window created by -WinMapInit() to include last component of filename 
-Repaint 

1 
[ -PapupSaveMapShowO 1 = 

[ display PopupSaveMap witb either last file loaded or saved (whichever was most recent) or 
blank 

-0 Westworld: Save Map 

filename: <string> 

[ _PopupSaveMapSaw() ] e 
[ ((fde already exists A -Notice-YN(PopupSaveMap frame, "File exists. Overwrite it?")) v 

file doesn't exist) A no file writdopen errors -> 
write comment line to file witb f ie  name and datdtime of write; 
for each object in map from load process since clear, write line to file 

-Notice-OK(PopupSaveMap frame, "File could not be opened for write. ") 

-Notice-OK(PopupSaveMap frame, "An error occurred writing the file.") 

I file open error --> 

I file write error --> 

1 
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[ -PopupMqSizeShow() ] E 

[ display PopupMapSize with map width (using %.2f format) of default of 12 m or last width 
set by successful XCB:Button/MapSizeChange and length (using %.2f format) of 12m or last 
height set by XCB:Button/MapSizeChange and scale of default 40 or last d e  set by 
XCB :Bu tton/MapSizeChimge 

Map Size I -  
Width: 4%.% Length: <fI%.Zf> 

Scale: -<int>- 

1 

[ -PopupMapSizeChangeO I = 
[ (atof(entered width) < 1 I atof(entered length) < 1) --> 

I (entered scale < 1) I (entered scale > 100) 

No tice-OK( PopupMapSize frame, 
"Width and Length must be at least 1.0m.") 

Notice-OK(PopupMapSize frame, 
"Scale must be in the range of 1 to 100.") 

I (PopupMapSize pushpin is in) --> 
redisplay values in PopupMapSize; 
-Repaint() 

-Repain t() 
I true --> 

1 

[ -Notice-OK(owner, "This function has not been implemented.") 1 
[ -Unimplemented(Xv-opaque owner) ] = 

[ -Notice-OK(Xv-opaque owner, char *message) I = 
display notice for owner 
with Confirm button and given message strkg: 

<message> 

1 

[ 
[ -Notice-YN(Xvppaque owner, char *message) 1 = 

display notice for owner 
with Yes/No buttons and given message string; 
return TRUE (1) if Yes pressed, FALSE (0) olherwise 

<message> 

1 
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r€* c: lass Design and Class BB SDec ifications 

(1) Choose candidate objects 

The WinMap, PopupMapSize, Map, Utils, and Main classes were already defined in increment 1. 
Increment 2 adds two new popup windows, so PopupLoadMap and PopupSaveMap classes need to be 
defined. Consideration of an abstract base class called Popup to hold the common interface and data for all 
tbe popup objects may be in order. Handling files could be pushed into a new class, but it is best at tlus 
point to use basic functions from UNIX (fopen, etc) and have Map be responsible for the filename. 

(2) Assign top-level stimuli to objects 

Main 
Invocation 

PopupLoadMap 
XCB:B utton/h.lapLoad 

PopupS aveMap 
XCB:B utton/MapSave 

PopupMapS ize 
XCB :B uuon/MapSizeChange 

WinMap 
XCB :Menu/File/L.oad 
XCB :MenulFile/Save 
XCB :Menu/File/Quit 
XCB :Menu/Map/Red.raw 
XCB :Menu/Map/UpdateMelix 
XCB :Menu/Map/Clear 
XCBMenu/Map/ChangeSize 
XCB:MenulMap/NewObj 
XCB :Menu/Robots/Swnmon 
XCB:Menu/Robots/Start 
XCB :Menu/Robots/Stop 
XCB :Menu/Robots/Quit 
XCB :XV/Destroy 
XCB:XV/Repaint 

utils 
<none> 

(3) Identify inter-class stimuli 

Main, via the main() function, will have to initializelcreate all the other objects, through either h i t  calls or 
mnsuuctors (same as increment 1). 

Map will draw the map info in the paint window of WinMap, based on window information passed from 
WinMap. It will assume a default map size until a map sue change is sent from another object. It should 
have the basic map parameters publicly available. For increment 2, the filename must be available, and 
functions called load(Xvppaque frame, char *filename) and save(Xv-opaque frame, char *filename) 
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which return TRUE if successful and 0 if not. If successful, they set the title bar of tJie WinMap window to 
reflect the current filename loaded. clear() clears out the map. load0 will read in lines from the data file 
and call itself via loadline() for each line in the Map. The loadline0 function is responsible for intepreting 
the file data as objects or comments or errors. Eventually, loadline will have to have some data structure 
for storing this data for the Map, but this must be discovered at the clear-box level. 

PopupLoadMap wil  draw the Load Map popup and handle the button callback for that popup. It will 
display the current value of the filename held by the Map when show() is called. It will call Map::loadO 
when the Load button is pressed. PopupSaveMap is basically the same. 

P0pupMapSiz.e will draw the Change Map Size popup and handle the button callback for that popup. It 
will have to be able to display the popup on command when the appropriate menu item is selected via 
WinMap, and it will have to pass the change size parameters to Map when the Change button is pressed 
(same as increment 1). 

Since the popup objects all share some common traits, including functions for show0 and init(), an 
abstract superclass called Popup might be considered to define the common interface and functions that 
must be defined by the subclasses. However, the init0 functions may be different for each, and the 
composition of popup windows may be significantly different, so a superclass will not be considered at 
this time. 

WinMap will be responsible for drawing the main window. It will accept ail menu callbacks, but will only 
handle those directly related to what it controls. Since Map will handle the drawing of the map in a 
subpane of WinMap, data referencing that subpane will have to be passed to Map, as will the actual draw 
calls. The menu item that causes the Change Map Size popup to appear wiIl have to be passed to 
PopupMapSize. For incr 2, we have to pass show calls to PopupLoadMap and PopupSaveMap, and pass 
the clear function to MapO. In addition, when Map::init-draw() is called, a reference to the WinMap 
window is required which will allow Map to change the title of the window to reflect the latest 
loadedfsaved filename. 

Utils will handle the cfNotice-OK call. For increment 2, we add cfNotice-YN. It does not have any 
instantiations. 
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Figure X: Second Insrement Object Interaction Diagram 

(4) Black Box Definitions 

define-BB Main 
class access programs 

cInvwtion> 
main0 
<Exit> 

class output variables 
At&-atuibute INSTANCE 

input variables 
Xv-opaque WinMap::frame 

external access 
Map::Map() 
Map:: -Map0 
void PopupLoadMap::init(Xv-opaque owner-frame, Map* pMap) 
void PopupSaveMap::init(Xv-opaque owner-frame, Map* pMap) 
void PopupMapS ize::init(Xv-opaque owner-frame, Map* pMap) 
void WinMap::init(Xv-opaque owner-frame, Map* pMap, 

PopupLoadMap* pPopupLOadMap,. PopupSaveMap* pPopupSaveMap, 
PopupMapSize* pPopupMapSize) 

wansition 
Si = dnvocation> -> 
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mate Map [invokes Map()]. PopupLoadMap, PopupSaveMap, PopupMapSize, 
WinMap 

call init for PopupLoadMap, PopupSaveMap, PopupMapSize + WinMap object 
created by Invocation 

destroy Map [invokes -Map()] 

Si = main() --> 

Si = <Exit> --> 

end-BB 

defme-BB Map 
access programs 

fipo 
-Map0 
void init-draw(Display *display, Window xid, WinMap* pWinMap) 
void draw0 
void clear() 
int change-size(Xv-opaque frame, double new-width, 

int load(Xv-opaque frame, char *loadfile) 
int save(Xv-opaque frame, char *savefile) 
int loadline(Xv,opaque frame, int lineno, char *line) 

double new-length, int new-scale) 

output variables 
double width 
double length 
double scale 
char *fdename 

output 
X display window 
XView notice 

extemal access 
void Utils::cfNotice-OK(Xv,opaque frame, char* message) 
int Utils::cMotice_YN(Xv_opaque frame, char* message) 
void WinMap::set-tiUe(char *) 
fopen, fclose, fgets, fputs [stdio calls] 

transition 
Si = Map() --> NO response. 
Si = -Map() --> NO response. 
Si = ini t-draw(display, xid. pWinMap) --> 

clear window and draw map border (rectangle) of 12*40 x 12*40 [call draw()], 
using given display + xid parameters. 

clear window and draw map border (rectangle) of w*s x l*s where w,l,s are 
default or from last legal change-size(), using display + xid parameters from 
previous iniLdraw0 call; for each object in a legal loadline0 call since last 
Map0 or clear0 or load0, draw appropriate object with from init-draw 
display+xid parameters; 

Si = draw() -> 

Si = clear() --> call draw0 fw self, set filename in title to <NONE> 
(Si = change-size(frame, w, 1, s)) A ((w <1) v (1 < 1)) --> 

Utils::cfNotice-OK(frame, "Width and Length must be at least 1.h."); 
return FALSE value from change-size 

Utils::cfNotice-OK(frame, "Scale must be in the range of 1 to 100.") 
(Si = change-size(frame, w, 1, s)) A ((s c 1) v (s > 100)) --> 
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return FALSE value from cbange-size 

call draw() for self: 
return TRUE vaiue from change-size 

Utils::cfNotice-OK(frame, "The file could not be opened.") 
retum FALSE from load() 

Utils::cfNotice-OK(frame, "An error occurred reading the file.") 
return FALSE from load() 

UtilsxfNotice-OK(frame, "An error occurred closing the file.") 
retm FALSE from l a d ( )  

(Si = change-size(frame, w, 1, s)) A change-valid(w, 1, s) --> 

(Si = load(frame, f)) A error opening f --> 

(Si = load(frame, f)) A error reading f -> 

(Si = load(frame. f)) A error closing f --> 

(Si = load(frame, 0) A 
(this->loadline(frame, tine #, line from f) = FALSE) --> 

(Si = load(frame, f)) A 

(this->loadline(frame, line #, line from f) = TRUE) --> 

return FALSE from load0 

call pWinMap->set-title(ff) where ff is the file component from the path f 
for each line in file, call this->loadline(frame, line #, line) 
return TRUE from load() 

(Si = save(frame, f)) A f exists A 

IJtils::cfNotice-YN(frame, "File exists. Overwrite it?") = TRUE A file create error --> 
Uti1s::cfNotice-OK(fme, "File could not be opened for write.") 
return FALSE from save 

(Si = save(frame, f)) A f exists A 

Utils::cfNotice-YN(frame, "File exists. Ovenvrite it?") = FALSE --> 
return FALSE from save 

(Si = save(frarne, 0) A error opening f --> 
Utils::cfNotice-OK(frame, "File could not be opened for write.") 
return FALSE from save 

Utils::cMotice-OK(frame, "An e m r  occurred writing the file.") 
return FALSE from save 

(Si = save(frame, f)) A no errors opening f A no error writing f --> 
write file with heading of file name + date +- time of save, 
one line for each legal loadline() in stim. hist since last Map(), clear() or load(); 
call pWinMap->set-title(ff) where ff is the file component from the path f 
return TRUE from save 

(Si = save(frame, f)) A no errors opening f A error writing f --> 

Si = loadline(f,n,l) A ((1[01= '#') v (1[01= 'IO')) --> TRUE 
Si = loadtine(f.n,l) A legaI-box(l) --> TRUE 
Si = loadline(f,n,l) A (smcmp(1, "box", 3) = 0) A not(legal-box(1)) --> 

Utils::cfNotice-OK(f, "Map file format error: bad box definition @ line <ID") 
return FALSE 

Si = loadtine(f,n,l) A legaLcylinder(1) --> TRUE 
Si = loadline(f,n,l) A (stmcmp(1, "cyl", 3) = 0) A not(legal-cylinder(1)) --> 

Utils::cfNotice-OK(f, 

return FALSE 
Si = loadline(f,n,l) A (suncmp(1, "box", 3) f 0) A (s~ncmp(1, "cyl", 3) f 0) A (1[0] f '#I) 

--> Utils::cfNotice-OK(f, "Map file format emr: unknown object @ line 
<ID"); 

return FALSE 
(Si = filename) A (no successful load) A (no successful save) --> "" 
(Si = filename) A d S j  I (i < i) A 

"Map file format error: bad cylinder definition @ line an>") 
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(((Sj = load(fr,f)) A 00ad Ok)) v ((Sj = save(fi,D) A (save &I)) A 

notask I (i < k < i) A (((Sk = load(fr.0) A (load ok)) v ((Sk = save(fr,f)) A (save ok))) - 
> 
f 

Si = width A @Sj I (i < i) A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) A 

not@Sk 1 (i .c k < i) A (Sk = change-size(f ,w',l',s') ) A change-valid(w',l',s')) --> w 
Si = width A not(3Sj I (i < i) A (Sj = change,size(f,w,l,s) ) A change-valid(w,l,s)) --> 12 
Si = length A (3Sj I (i < i) A (Sj = change-size(f,w,l,s) ) A change,valid(w,l,s)) A 

not(3Sk I 0' < k < i) A (Sk = change-size(f,w',l',s') ) A change-valid(w',l',s')) --> 1 
Si = length A not(3Sj I (j c i) A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) --> 12 
Si = scale A (3Sj I (i < i) A (Sj = change-size(f,w,l,s) ) A change-vaIid(w,l,s)) A 

not(3Sk I (i c k c i) A (Sk = change_size(f,w',l',s') ) A change-valid(w',l',s')) --> s 
Si = scale A not(3Sj I (i < i) A (Sj = change-size(f,w,l,s) ) A change-valid(w,l,s)) --> 40 

end-BB 

Spec Function 
[ change-valid(w,ls) 3 = 

[ ((1 5 S 5 100) A (W 2 1) A (1 2 1)) ] 
legal-boxO) 1 = 

[ if 1 is of form "box <locx> <lacy> <width, <length> [<height>]" --> TRUE 
else --> FALSE ] 

[ if 1 is of form "cyl[inder] clocx> &cy> <radius> [<height>]" --> TRUE 
else --> FALSE ] 

[ legal-cylinder(1) ] E 

NOTES: 
(1) assumption is made that init-draw comes before any change-size; no error checking for this 
(2) Map0 must be f i t  stimuli, by defauit, since it is a constructor 

define_BB PopupLoadMap 
access programs 

void init(Xv-opaque owner-frame, Map* pMq)  
void show() 
void load(Pane1-item) 

output 
popup window 

class access programs 
static void cfLoad(Panel-imn, Event) 

input variables 
char *Map::filename; 
Am-attribute Main::INSTANCE; 
x v j e t  variables FRAME-CMD-PUSHPINJN, XV-KEY-DATA 

int Map::lmd(Xv-opaque frame, char *loadfile) 
char *Map::filename 

external access 

transition 
Si = init(o, p) --> no response. 
Si = &OW() --> 

display popup screen with owner 0, with values filename field from 
p->filename, where (3Sj I (i c i) A (Sj = init(0.p))) 
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Si = ioad(item) --> 
given pointer to popup input field for filename and popup frame "f' creased by 
init (3Sj I Q < i) A (Sj = init(o,p))), call p->load(f, entered filename); if p- 
>load() returns 1 and xvdet  parameter FRAME-W-PUSHPM-IN from f is 
1, then call show(); if p->load() returns 0, send an error to XView via item to 
hold the popup on the screen. 

S j = cfLoad(item, ev) --> 
call PopupLoadMap* p->load(item) where p = xv_get(item, XV-KEYDATA. 
INSTANCE) 

end-BB 

NOTE3 
(1) assumption is made ahat init0 comes before any other calls 

defmeBB PopupSaveMap 
access programs 

void init(Xv-opaque owner-frame, Map* pMap) 
void show0 
void savePanel-item) 

output 
popup window 

class access programs 
static void cfSave(Pane1-item, Event) 

input variables 
char *Map::fiiename; 
Attr-attribute Main: :INSTANCE; 
x v s e t  variables FRAhE-CMD-PUSHPIN-IN, XV-KEY-DATA 

external access 
int Map::save(Xv-opaque frame. char *savefile) 
char *Map::filename 

transition 
Si = init(o, p) --> no response. 
Si = &OW() --> 

display popup sereen with owner 0, with values filename field from 
p>filename, where (3Sj I (i c i) A (Sj = init(o,p))) 

Si = save(item)--> 
given pointer to popup input field for filename and popup frame "f" created by 
init @Sj I (i < i) A (Sj = init(o,p))), call p->save(f, entered filename); if P 
>save0 returns 1 and xvse t  parameter FW-Ch4D-PUSHPIN-IN from f 
is 1, hen call showo; if p->save() returns 0, send an error to XView via item to 
hold the popup on the screen. 

Si = cfSave(item, ev) --> 
call PopupSaveMap* p->save(item) where p = xv_get(item, XV-KEY-DATA, 
INSTANCE) 

e n d B B  
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NOTES: 
(1) assumption is made that init0 comes before any other calls 

defme-BB PopupMapSize 
access programs 

void init(Xv-opaque owner-frame, Map* pMap) 
void show() 
void change(Panel-item) 

output 
popup window 

class access programs 
static void cfChange(Pane1-item, Event) 

input variables 
At@-atuibu te Main: :INSTANCE; 
x v s e t  variables FRAME_CMD-PUSHPIN_TN, XV-KEY-DATA, entered-width, 

entered-length. entered-scale 

external access 
int Map::change-sizernv-opaque frame, double new-width, 

double Map::width 
double Map::length 
double Map::scale 

double new-length, int new-scale) 

m s i  tion 
Si = init(o, p) --> no response. 
Si = &OW() --> 

display popup screen with owner 0, with values in widlhllengWscale fields 
from p->width, TAength, p->scale, where @Sj I (i < i) A (Sj = init(o,p>) A 

notask  I (j C k< i) A (sk = wt(0.p)))) 

Si = change(item) --> 
given pointer to popup input fields for width/length/scale and popup frame "f' 
created by hi t  e S j  I (i < i) A (Sj = initbp))), call p>change-size(f, entered 
width, entered length, entered scale); if change-size returns 1 and x v s e t  
parameter FRAME-CMD-PUSHPIN-IN from f is 1, then call show(); if 
change-size0 returns 0, send an error to XView via item to hold the popup on 
the screen. 

Si = cfChange(item, ev) --> 
call PopupMapSize* p->change(item) where p = xv_get(item, 
XV-KEY-DATA, INSTANCE) 

NOTES: 
(1) assumption is made that init0 comes before any other calls 

def i i eBB WinMap 
access programs 

void init(Xv-opaque owner-frame, Map* pMap, 
PopupLoadMap* pPopupLoadMap, PopupSaveMap+ pPopupSaveMap, 
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PopupMapSize* pPopupMapSize) 
void unimplernented() 
void quit0 
void set-title(char *new-title) 

output variables 
Xv-opaque frame 

output 
XView main window 
XView Notice 

class access programs 
static Menujtem cfMenuFiieLoad(Menu-item, Menusenerate) 
static Menu-item cfMenuFileSave(Menu-itern, Menusenerate) 
static Menu-item cfMenuFileQuit(Menu-item, Menugenerate) 
static Menujtem cMenuMapRedraw(Menujtem, Menusenerate) 
static Menu-item cfMenuMapClearRrlenu-item, Menusenerate) 
static Menu-item cfMenuMapChangeSizetMenu-item, Menujenerate) 
static Menu-i tem cfMenuUnimplemented(Menu-item, Menusenerate) 
static void cfRepaint(Canvas, Xv-window, Display, Window, Xv-xrectlist) 
static void cfDestroy(Xvppaque, Destroy-status) 

class output variables 
Notify-value notify-value 

input variables 
Attr-attribute Main::INSTANCE; 
x v j e t  variable XV-KEY-DATA 

external access 
void PopupMapLoad::show() 
void P0pupMapSave::sbowO 
void PopupMapSize: :show() 
void Mapxinit-draw@isplay *display, Window xid, WinMap* pWinMap) 
void Map::clear() 
void Uti1s::cfNotice-OK() 

msition 
Si = init(o, pl, p2) --> 

Si = unimplemented() --> 
create WinMay, window with owner o, call pl->init_draw(display,xid,~is) 

Utils::cfNotice-OK(f, "This function has not been implemented.") 
where f is frame created from Sj, where (3Sj I 

call xv-destroy-safe(frame created from Sj). where @Sj I (i c i) A (Sj = 

c i) A (Sj = init(0.p))) 
Si = quit() --> 

init(o,p))) 
Si = se-title(new-tiUe) --> set window title to "Westworld -- anew-dtle>" 
Si = cfMenuFiieLoad(item, op) --> 

call PopupLoadMap* p->show() where p = xv_get(item, XV-KEY-DATA, 
INSTANCE) 

call PopupSaveMap* p->show() where p = xv_get(item, XV-KEY-DATA, 
INSTANCE) 

Si = cfMenuFiIeSave(item, op) --> 

Si = cfMenuFileQuit(irem, op) --> 
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call WinMap* p->quitO where p = xv_get(item, XV-KEY-DATA, 
INSTANCE) 

call Map* p->dnw() where p = xv_get(item, XV-KEY-DATA, INSTANCE) 

call Map* p->clear() where p = xv_get(item, XV-KEY-DATA, INSTANCE) 

call PopupMapSize* p->show0 where p = xv_get(item, XV-KEY-DATA, 
INSTANCE) 

call WinMap* p->unimplementedO where p E xv_get(item, XV-KEY-DATA, 
INSTANCE) 

Si = cfRepamt(c, pw, d, W, X) -> 
call Map* p->draw() where p = xv_get(pw, XV-KEY-DATA, INSTANCE) 

Si = cfDesuoy(client, status) --> 
-Desuoy(client, status) 

Si = cfMenuMapRedraw(item. op) --> 

Si = cfMenuMapClear(item, op) --> 

Si = cfMenuMapChangeSize(item, op) --> 

Si = cfMenuUnimplemented(item, op) --> 

endBB 

NOTES: 
(1) assumption is made that init0 comes before any other calls 

defie-BB U t i  
class access programs 

static void ctNouce-OOK(Xv-opaque owner, char *message) 
static int cfNotice-YNO[v-opaque owner, char *message) 

ed-BB 

uansition 
cfNotice-OK(o, m) --> 

cfNotice-YN(o, m) --> 

display XView notice with owner 0, message, and Confirm button; wait until 

display XView notice with owner 0, message, and Yes/No buttons; wait until 
button is pressed, return TRUE (1) if Yes. FALSE (0) if No. 

confirm is pressed. 
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c$ I. TAM 

CLASS: MAIN 

<In voca tion> 
main() < v o i b  
<Exit> 

TYPE IMPLEMENTED: <Main> 

< inu  arpc <char **> argv 

(1) SYNTAX 

INSTANCE <Atqatuibute> 

CLASS ACCESS PROGRAMS 

publicly accessible 

CLASS OUTPUT VARIABLES 

INPUT VARIABLES 

EXTERNAL ACCESS PROGRAMS 

(2) CANONICAL TRACES 

canonical(Tc) <--> (Tc = dnvocation) v (Tc = <Invocation>.main()) 

Consistency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed througb the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for &vocation> and main(). 

Tc.<Invocation> = dnvocation>; 
ADD-TO-TRACECr,, MapO) where Tm is trace for Map object crated by <Invocation> 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

nopartition. 
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Completeness (4): The predicates in the RHC are defined whenever the correspondiag predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

defmed by LHC. 

dnvocation> is canonical. 

Onevalue. 

Tcmain() = 
conditions 

Tc = <in~ocat ior~  

else 

equivalences 
main0; 
ADD-TO-TFLACE(Tw, init(=L, pm, P p h ,  Ppsrn, ems) ) ;  
ADD-TO-TRACE(Tp~, init(pm->frame, pm)); 
ADD-TO-TRACE(Tp,, init(pW->frame, pm)); 
ADD-TO-TRACEITpms, init(pm->frame, pm)); 
where Twm is &ace for WinMap object created by main0 and p m  is 
pointer to that object, T p h  is a trace for PopupLoadMap object 
created by main() and p p h  is pointer to that object, Tpsm is a trace 
for PopupSaveMap object created by main(> and Ppsm is pointer to 
that object, Tpm is a trace for PopupMapSize object created by 
main() and mms is pointer to that object, and pm is pointer to Map 
obiea created by <Invocation> 
%main alreadv called% 

completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

event defined by LHC; traces and pointers used in RHC are specified by event in Tc 
[<invocation>] or the current event [main()] 

else insures partition. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): AU RHC values are unique: 
main() is canonical. 

One value, one error. 

Tc.<Exib = Tc; 
ADD-TO-TRACEVn, -Map()) where Tm is trace for Map object mated by <Invocation> 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'kue': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values arc unique: 

nopartition. 

defrned by LHC. 

Onevalue. 

Tc is canonical by definition. 
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(4) VALUES 

T = cInvocation> 

0UTPuTvALms 

%undefined% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Since T is canonical. the conditions partition the canonical trace and therefore give a full 
partition. 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

NIA 

NIA 

One value. one error. 

RETURN VALUES 

<none> 
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CLASS: MAP 

TYPE IMPLEMENTED: <Map> 

(1) SYNTAX 

ACCESS PROGRAMS 

Func Name 

init-draw 

clear 
change-size 

E loadline 

Value AW#l &p#2 Arc#3 Arp#4 
(constructor) 
(destructor) 

e o i b  d i s p l a y  *> <Window> xid <WinMap*> 
display pWinMap 

INPUTVARIABLES 

Variable Name Type Access 
I file-status 1 I pseudo I input pseudo-event 1 

EXTERNAL ACCESS PROGRAMS 

lThis variable does not necessarily exist, rather it is a placemarker for the results from calls to the 
filesystem. 

135 



(2) CANONICAL TRACES 

canonicalO <--> 

(T = Map().init-draw(d,xw,wf). 
[change-size(f, w, 1, s)],!,.[change-size(f, w', l', s')) A bad-value~(w',l',s')]~~. 

[load(fr,fi) v save(ti,fi)]~~.[file-statusl,',. 
((loadline(f,i,l) A bad-line(1)) v [loadline(f,i,li) A not(bad-line(li))J,$) 

cr = M W )  v 

1 is of form "box  doc^ clocp 
<width> clengthr [cheigho] v 
1 is of form "cyl[inder] <locx> 
clocp <radius> [cbeighb] v 

else 
I[O] = v I~O] = 70' 

Consistency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly &e information needed for the equivalences and outputs 

false 

true 

AUXILIARY FUNCTIONS 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (3): All RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defined. 

True. 

bad-line(1) = 
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Completeness (4): 'Ihe predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (3): All RHC values are unique: 
Constants, therefore always defined. 

True. 

par~e(S,S l,S2,S3,S4,SS,S6) = 
conditions 

(s = sl.s2.S3.s4) A 

(Sl = Map.[init-draw(d,xw,wf)l.td I- A 

(S2 = [change-size(f,w,l,s) A not(bad-value~(w,l,s)]~,~) A 

(S3 = [change-size(f ,w',l'$) A bad_values(~',l',s')]~~) A 

(s4 = [load(fr,fi) v save(fr$i)J;*) A 

(S5 = [file-stat~s]~~) A 

(S6 = (loadline(f,i,l) A bad-line(1)) v 
[loadline(f,i,li) A not(bad-line(li))]& 

1 

1 

1 

equivalences 
uue 

false 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (3): Ail RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defined. 

True. 

(3) EQUIVALJ3NCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for access programs Map, -Map(), init-draw, draw, clear, 
change-size. load, save, and loadline as well as input event file-status. 

T.Map0 = Map0 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
dation: 

Completeness (4): The predicates in tbe RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

No partitioning of domain, therefore complete 
Consistency (2): AU traces specified in the RHC of the equivalence secuon are canonical: 

Map0 is a canonical trace 
Consistency (3): All RHC values are unique: 

No partitioning of domain. therefore complete 

No partitioning, therefore unique. 

T.-Map0 E T2 

~~ 

2The destructor -Map0 wiIl probably result in state changes For the object, but since it is about to 
disappear from scope, its effect on the trace does not matter since following -Map(), the object is 
undefined. 
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Completeness (3): The predicates in the LHC of each table partition the intended domaih of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

No partitioning of domain, therefore complete 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Map() is a canonical trace 
Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

No partitioning, therefore unique. 

T.init-draw(d,xw,wf) = MapO.init_draw(d,xw,w~.C.CE.FN.FS.L, where p w ( T ,  I, C, CE, FN, FS, L) 

completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

The predicates in RHC are comprised of canonical trace elements from LHC or the 
stimulus itself, and are therefore all defined. 

The trace given is canoncical. 

No partitioning. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: - Only one value. 

T.drawO = 
conditions equivalences 

T = Map0 1 %uninitialized% 1 

Completeness (3): The predicates in the LHC of each table paitition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 
Tis canonical by defmition. 

Consistency (3): AH RHC values are unique: 
One value. one error. 

else insures partition. 

T is defined by other side of equivalence. 

Completeness (3): The predicates in the LHC of each table pabtition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 
Map().init-draw() and MapO.init-draw().change-size() are canonical 

Consistency (3): All RHC values are unique: 

else insures partition. 

Tis defied by LHS. 

One value, one error. 
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T = Map0 
(w < 1) v (1 < 1) 

(W 2 1) A (1 2 1) A 

((s c 1) v (s > loo) 

else 

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the 
relation: 

f i s t  case has only constructor, others assume init-drawo in trace; second and third 
separated by wfl comparisons, else insures full partition 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

RHC items defied by call and parsed trace. 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

The traces shown are all canonical. 
Consistency (3): All RHC values are unique: 

Second and third cases are different by the cfNotice-OK calls; third replaces any error 
present. 

%uninitialized% 
equiv = I.C.chaoge_size(f,w,Ls).FN~S~; 
ADD-TO-TRACE(TU, cfNotice,OK(f, "Width and Length must be at 
least 1 .Om.'') 
where parsefl, I, C, CE, FN, FS, L) and Tu is the class access trace for 
Utils 
equiv = I.C.channge-size(f,w,l,s).FN.FS.L; 
ADD-TO-TRACE(TU, cfNotice-OK(f, "Scale must be in the range of 1 to 
loo.") 
where parsec, I, C, CE, FN, FS, L) and Tu is the class access trace for 
Utils 
I.change-siz~f,w.l,s).FN.FS .L 
where parsetT, I, C, CE, FW, FS, L) 

T.load(fr,fi) 

T = Map0 
fopen(fi. "r") = NULL 

conditions 

(fOpWl(f& "f") f m) A 

(loadline(fr, i, si) = FALSE) 

equivalences 
BuninitializedQ 
equiv = I.C.(file-status = FILE_OPEN_ERR); 
ADD-TO-TRAcE(this, clear()); 
ADD-TO-TRACEcTf, fopen& "f")); 

ADD-TO-TRACECT,, cfNotice-OK(f, "The file could not be 
0peIEd.")); 
where parsep, I, C. CE, FN, FS, L), Tu is the class access trace for 
Utils, and Tf is the trace for the file system 
equiv = I C ;  
ADD-TaTRACE(this, clear()); 
ADD-TO-TRACE(this, [loadline(fr, i, si)]:&); 

ADD-TU-TRAcEcTf, F=fopen(fi, "r"), [fgetsF, N. s;>lp=o, fclose0); 
where parsen, I, C, CE, FN, FS, L) and Tf is the m e  for Ihc file 
system 

ADD-TO-TRACE(this, cleafo); 
ADD-TO-TRACE( this, [loadline( Fr, i, si)] :!); 
ADD-TO-TRACE(Tf, F=fopen(fi, "f"), [fgersF, N, sj )1peo, fclose0); 
ADD-TO-TRACE(TU, cfNotice-OK(f, "An error occurred reading 
the file.")); 
where parse(T, I, C, CE, FN, FS, L) TU is the class access trace for 
Utils. and Tr is the trace for the file svstern 

equlv = 1.c; 
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F=fopen(fi, "r") # NULL) A 

(loadlinelfr. i. si) = TRUE) A 

else 

equiv = I.C.(file-status = FILE-CLOSE-ERR); 
ADD-TO-TR.ACE(this, clear()); 
ADD-TO-TRACE(this, [loadline(fr, i, si)]:'.); 
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), [fgets(fi, N, si)&,, fclose0); 
ADD-TO-TRACE(TU, cfNotice-OK(f, "An error accu-red closing 
the file.")); 
where parsec, I, C, CE, FN, FS, L), TU is the class access trace for 
Utils, and Tf is the trace for the file system 
equiv = I.C.load(fr, fi).[loadline(fr, i, Si)lp=O 

ADD-TO-TRACE(this, clear()); 
ADD-TO-TRACE( this, [loadline(fr, i, Si)] Pd); 
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), [fgets(fi, N, si)],>, fclo%F)); 
ADD-TO-TRACE(Twf, set-.titJe(fi)); 
where parse(T. I, C, CE, FN, FS, L), I=init-draw(d, XW, wf). and 
Tf is the trace for the file system 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in (he RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition. 

T is defined by LHS. 

1.C.filestatus. I C ,  I.C.load.loadline* are all canonical 

Each different in either output tracc or modifica~ons to other traces. 

conditions 
T = Map0 
fopen(fi, "r") f NULL A 
cfNotice?'N(fr, "File exists. 
Overwrite it?") = FALSE 

equivalences 
%uninitialized% 
equiv = I.C.(file-status = FILE-0PEN-ERR)L; 
ADD-TO-TRACECTf, F=fopen(fi, "r").fcloseO); 
ADD-TO-TRACE(TU, cfNotice-YN(fr, "File exists. Overwrite it?'?): 
where parseU, I, C, CE, FN, FS, L), Tu is the class access trace for 

the class access trace for 
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(F=fopen(fi, "r") f NULL A 

cfNoticeYN(fr, "File exists. 
Overwrite it?") = TRUE) A 

(F?sfopen(fi, "w") f NULL) 

fciose(F2) # 0 
A fpUtS(F2, Si) f 0 A 

(F=fopen(fi, "r") f NULL A 

cfNoticeYN(fr, "File exists. 
Overwrite it?") = TRUE) A 
n=fopen(fi, "w") f NULL) 

fclose(F2) = 0 
A fputS(F2, Si) f 0 A 

(F=fopen(fi, "r") = NULL) A 
w=fopen(fi, "w") = NULL) 

(F=fopen(fi, "r") = NULL,) A 
(F2=fopen(fi, "w") f NULL) 
A fputscFz, si) #cl A 
fclosecF2) f 0 

else 

equiv = I.C.(file-status = FXE-CLOSE-ERR).L;' 
ADD-TU-TRACE(Tf, Tf, F=fopen(fi, "r"), fclose(F). F2=fopen(fi, 

ADD-TO-TRACE(Tu, cfNotice-YN(fr, "File exists. Overwrite it?"), 
cfNotice-OK(f, "An e m r  occurred closing the fie.")); 
where parse(T, I, C, CE, FN, FS, L), Tu is the class access trace for 
Utils, and Tf is the trace for the file system 
equiv = I.C.save(fr, fi).L 
ADD-TO-TRACE(this, clear()); 
ADD-TO-TRACE(T,, cfNotice-YN(fr, "File exists. Overwrite it?")); 
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), fclose(Fl, =fopen(fi, "w") 

ADD-TO-TRACE(Twf, set-title(fi)); 
where parse(", I, C, CE, FN, FS, L), I=init-draw(d, xw, wf), Tu is the 
class access m e  for Utils, and Tf is the trace for the file system 
equiv = I.C.(file-status = FLE-OPEN-ERR)L; 
ADD-TO-TRACE(this, clear()); 
ADD-TO-TRACE(Tf, fopen(fi, "r")); 
ADD-TO-TKACE(T,, cfNotice-OK(f, "The file could not be 
opened.")); 
where parsen, I, C, CE, FN, FS, L), TU is the class access trace for 
Utils, and Tf is the trace for the file system 
equiv = I.C.(filestatus = FLE-WRITE-ERR).L; 
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), fclose0, F2=fopen(fi, "w") 

ADD-TO-TRACE(Tu, cfIVotice-OK(f, "An error occurred writing 
the file.")); 
where parse(T, I, C, CE, FN, FS, L), T,, is the class access trace for 

"w") [fputscFz, si)]:!, fclox(F2)); 

[fpUts(F2, Si)Jp50, f c l o W 3 ) ;  

[fPB(F2, si>lL* fclox(W); 

Utils, Ad Tf is the trace for the file system 
equiv = I.C.(file-status = FILE-CLOSE-ERR).L; 
AbD-TO-TRACE(Tf, Tf, F=fopen(fi, "r"), fclose(F), F2=fopen(fi, 

ADD-TO-TRACE(Tu, cfNotice-OK(f. "An error occurred closing 
the file.")); 
where parse(T', I, C, CE, FN, FS, L), Tu is the class access trace for 
Utils, and Tf is the trace for the file system 
equiv E I.C.save(fr, fi)L 
ADD-TO-TRACE(this, clear()); 
ADD-TO-TRACECrf, F=fopen(fi, "r"), fclosecF), F2=fopen(fi, "w") 
IfpW% si>\'& fclose(F2)); 
ADD-TO-TRACE(Twf, set-title(fi)); 
where parse(T, I, C, CE, FW, FS, L), I=init-draw(d, xw, wf), and Tf 
is the trace for the file system 

"w") [ f p ~ t s F Z  si)l~~. fCloSe(F2)); 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): "he predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

else insures partition. 

T i s  defined by LHS. 

1.C.fiestatus. I.C, 1.C.save.L are all canonical 
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Consistency (3): All RHC values are unique: 
Each different in either output tracc or modifications to other traces. 

T.loadline(fr, n, 1) = 
conditions equivalences 

T 

equiv = I.C.FN.FS.loadline() 
ADD-TO-TRACE(Tu, cfNotice-OK(fr, 
”Map file format error: bad box @ line 
<ID“)); 
where parse(T, I, C, CE, FN, FS, L) 
equiv = I.C.FN.FS.loadline0 
ADD-TO-TRACE(TU, cmotice-OK(fr, 
“Map file format error: bad cylinder @ 
line a>”)); 
where parsen, I, C, CE, FN, FS, L) 
equiv = I.C.FN.FS.loadline0 
ADD-TO-TRACE(TU, cMotice-OK(fr, 
“Map fiie format error: unknown object (3 
line a>”)); 
where parse(T, I, C, CE, FN, FS, L) 
equiv = I.C.FN.FS.L.loadline0 
where parse(T, I, C, E, FN, FS, L) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is  ‘true’: 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical 

Consistency (3): All RHC values are unique: 

else insures partition, tests on 1 all different 

I.C.FN.FS.loadline* is canonical 

One value, one error. 

T i s  defined by LHS. 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is ‘true’: 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition. 

1.C.CE.FN.file-statu.L is canonical 

T is defiind by LHS. 

One value, one error. 
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(4) VALUES 

C #  

OUTPUT VALUES 

C = change. size(f,w,l,s) 

conditions values 

1 parse(T, I, C, CE, FN, FS, L) A I w where 1 

parse(T, I, C, CE. FN, FS, L) A 

C# 
else 

1 where 
C = change size(f,w.J,s) 

12 

parsecT, I, C, CE, FN, FS, L) A 

else 

fi where FN = load(fr, fi) v 
' 

FN# FN = savdfr,  fi) .. " 

Consistency/Complekness: Same as above. 

V[scale]O = 
conditions values 

I ~ar~e(T. I. C, CE. FN, FS, L) A I s where I . .  
C #  1 C = change size(f,w,l,s) 
else 40 I 

ConsistencyKornpletcness: Same as above. 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'tfld: 

fmt  case is defined since load() or save() must be in trace if FN # -; second case is 
c W S t a n t  

else insures partitioning. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): AH RHC values are unique: 
N/A 

* One has real filename, other is blank. 

V[changepk]O = 
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conditions values 
I uarse(T, I, C, CE, FN, FS. L) A I %undefined% 1 

parse(T. 1, C, CE, FN, FS, L) A 
L = loadline(f, i, 1) A bad line(1) 
m(T. I. C. CE. FN. FS. L9 A 

C =  ACE= 1 
parse(T, I, C, CE, FN, FS, L) A 1 1 

0 

1 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): ?he predicates in the RHC are defied whenever the comesponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

cases one and two are distinguished by C test; else insures partitioning. 

NIA 

true. 

all outputs are constant or e m r  and therefore defined. 

not(bad-line(1, )) I 
else %undefined% 

* 

V[loadsave-oklO = 
conditions values 

I WseCT, I, C, CE, FN, FS. L) A I 0 1 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

logic in load() + save() equivalences prohibits having a value in FS when value in FN, 
therefore these conditions are separate; else insures partition for other cases. 

Completeness (4): I b e  predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

* 

N/A 

true. 

all outputs are constant or error and therefore defined. 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): ?he predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical: 

Either L is defined and bad or it is defined and ok: else insures partition for other cases. 

NIA 

all outputs are constant or error and therefore defined. 
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Consistency (3): AI1 RHC values are unique: 
true. 

change size Value change ok 
load Value loadsave ok 
save Value loadsave ok 

loadline Value loadline ok , L 

V[(output-screen)JQ = 
conditions 
T = Map() 

parseU, I, C, CE, FN, FS, L) A 
I = bfapo.init-draw(d,xw,wf) A 

C = -  

pxse(T. I, C, CE, FN, FS, L) A 

I = Map().init-draw(d,xw,wf) A 

C = change-size(f,w,l,s) 

%no output% 
rect of size 12*40 x 12*40 with 

objects defined by L (if not 
bad-line) drawn in window with 

Display *d, Window xw 
rect of size w*s x I*s with objects 

defined by L (if not bad-line) 
drawn in window with Display 

*d. Window xw 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

If trace does not have just Map(), then I will be equal to Mapoinit-draw combination, 
and C cornpansion insures partition. 

Completeness (4): ?%e predicates in the RHC are defined whenever the correspondlng predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 
NIA 

values are either constant or defined from variables present in LHC, therefore defined. 

case 3 may be same as constant values in case two, but not always, requiring 
partitioning. 

Completeness (2): There is one output functiodrelation that specifies each output value: 
There are output values defined above for each value in the table: V[changepk], 
V[loadsave-ok], and Vttoadline-ok]; the other values above are not return values. 
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CLASS: POPUPLOADMAP 

c b a d  <void> <Panel i t e m  

TYPE IMPLEMENTED: <PopupLoadMap> 

<Event, 

(1) SYNTAX 

ACCESS PROGRAMS 

OUTPUT VARIABLES 

Variable Name Type Access 
(popup window) I (XView Popup window) I NJA I I 

CLASS ACCESS PROGRAMS 

EXTERNAL ACCESS PROGRAMS 

(2) CANONICAL TRACES 

canonicalfli) <--> (Ti = J v (Ti = init(o,p)) v (Ti = init(o,p).showO) v (Ti = init(o,p).sbow().load(it)) v 
(Ti = init(o,p).show().load(it).load-exor) 

Consistency (1): The canonical form fulfills the requirements of section XI. 

* 
The traces in the set are not further reducible when passed through the equivalences 
The traces m n h  exactly the information needed for the equivalences and outputs 

AUXILIARY FUNCTIONS 
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parse(S,Sl,S2,S3,S4) = 

T =  
else 

conditions equivalences 
(s = s l.s2.S3.s4) A I true 1 

%uninitialized% 
I.show() 
where parsefl, I, S. L, LE) 

( S  1 = [init(o,p>l,!,> 
(S2 = A 

(S3 = [load(it)]:d A 

(S4 = [load-error],!,) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): ?he predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (3): All RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defined. 

True. 

(3) EQUIVALENCES 

Completeness (1): There is one equivalenw for each event class. 
There is one each for init, show, load, load-error, and c f b a d  

T.init(o,p) E 
conditions equivalences 

T= I init(o,p) 
T# I %already-initialized% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

init(0.p) is defined by event itself, other RHC item is error message. 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Only one is specified. init(). and it is canonical. 
Consistency (3): All RHC values are unique: 

One is value, one is error. 

If one LHC condition i s  true, the other must be false, and they therefore partition. 

T.showO 

Completeness (3): ' h e  predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): Tbe predicates in the RHC are defied whenever the corresponding predicate in 
the LfiC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

First case is empty trace, second has something in trace, third is else, insuring partition. 

Tme. 

First two cases are errors, in last I must be defined since T is not empty. 

Trace init()show() fl.show()] is in the canonical trace. 
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T.ioad(it) E 

T =  
T = init(o,p) 

rse(T, I. S, L, LE) A 

%uninitialized% 
%undisplayed% 
equivalence = I.S.load(it); 

S # - A I=init(o,p) A 
p->load() = TRUE 
else 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): n e  predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

I and S defined for traces in 3rd/4th cases; p, load-error defined as given; 
entered-filename and f defined if popup has been created (since init must be in trace, 
that is true). 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 
init().show().load() and init().show().load().load-emr are canonical 

Consistency (3): All RHC values are unique: 
3rd + 4th cases differ in equivalence 

First two are obviously different, third has show() in T, else separates third from fourth. 

AbD-TO-TRACE(Tp, ioad(f, entered-filename)) 
where f is frame created by init() 
equivalence = I.S.load(it).load-err; 
ADD-TO-TRACECTD, load(f, entered-filename)) 
wbere parse(T, I, S. L, LE) A I=init(o,p) A load-error = load0 A f is 
frame created by init0 

T.load-emr E 
conditions equivalences 

T = init(o,p).sbowO.load(it) 
else [ %undefined% 

I T.load e m r  

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

elseinsures. 

T defined by LHC. 

One value, one error. 

T-load-error canonical if T is as defined by LHC 

Tc.cfLoad(itern,e) = Tc; ADD-TO-TRACE(Tp, load(item)) 
where PopLOadMap* p = xv_get(item, XV-KEY-DATA, INSTANCE); 

Completeness (3): The 'predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever tbe corresponding predicate in 
the LHC is  'true': 

If load occurs, the PopupLoadMap object must have already been created, and p will be 
valid. 

Nopartitioning. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 
Tc canonical by definition. 

Only one value. 
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(4)VALUES 

OUTWTVALUES 

T =  %undefined% 

T= 
T = init(o,p) 

T = init(o.p).show() 

T = init(o,p).show().load(it) A 
xv_get(frame created by init0, 

FRAME CMD-PUSHPIN W)=TRUE 
T = Tl.Ioad(it) A 

xv-get(frame created by init(), 
FRAME CMD PUSHPIN IN)=FALSE 

else 

1-0 WestWotld Load Map 

%undefined% 
%undisplayed% 

popup window displayed on screen; 
Filename field = p>filename; value may be 

modified by user 
popup field set to value from p-> as given above 

popup window disappears from screen 

popup forced to remain on screen,witb values as 
modified by user 

I Filename: <string> 

[PopupLoadMap] 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

window and fields are created by init, which is included in RHC trace 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

LHC partitions the entire canonical trace. 

NotracesinRHC 

Either has constant (default) appeance or one modified by user input. 
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CLASS: POPUPSAVEMAP 

inlt 

show 
save 

TYPE IMPLEMENTED: cPopupSaveMap> 

(1) SYNTAX 

c v o i b  <Xv-opaque> <Map*> pMap 
owner-frame 

<void, 
<void> <Panel-itemz item , 

ACCESS PROGRAMS 

Map::save c i n e  <Xv-opnque> <char*> 
save-error popup-fnme savefiie 

Variable Name Type Access 
I (POPUP window) I (XView Popup window) 1 NIA 1 

CLASS ACCESS PROGRAMS 

INPUTVARIABLES 

EXTERNAL ACCESS PROGRAMS 

Consistency (1): The canonical form fulfills tbe requirements of section XI. 
The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

AUXILIARY FUNCTIONS 
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Parse(s,s1,s2,s3,s4) = 
equivalences 

true 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (3): All RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defined. 

True. 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for init, show, save, save-error, and cfSave 

T.init(0.p) I 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

init(0.p) is defined by event itself, other RHC item is error message. 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Only one is specified, init(), and it is canonical. 
Consistency (3): All RHC values are unique: 

One is value, one is emor. 

If one LHC condition is true, the other must be false, and they therefore partition. 

T.show() L 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): "he predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

Frst  case is empty trace, second has something in Irace, third is elsee, insuring partition. 

True. 

First two cases are errors. in last I must be defined since T i s  not empty. 

Trace init().show() [I.show()] is in the canonical trace. 
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9 

T =  
T = init(o,p) 
parsecf, I, S, L, LE) A 
s # - A I=iI&(O,p) A 
p->save() = TRUE 
else 

%uninitialized% 
%undisplayed% 
equivalence = I.S.save(it); 
ADD-TO-ntACE(Tp, save(f, entered-filename)) 
where f is frame created by init() 
equivalence = I.S.save(it).save-errorror, 
ADD-TO-TRACECTp, save(f, entered-filename)) 
where parse(T, I, S, L, LE9 A I=init(o,p) A save-emr = save() A f is 
frame created by init0 

T.saw-error = 
conditions equivalences 

T = init(o,p).showO.save(it) 
else 1 %undefined% 

1 T.save error 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Compbteness (4): The prrdiates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'me': 

Consistency (2): All &aces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

elseinsures. 

T defined by LHC. 

One value. one mor. 

Tsave-mor canonical if T is as defined by LHC 

Tc.cfSave(item,e) P T,; ADD-TO-TRACE(T, save(item)) 
where PopSaveMap* p = xv_get(item, XV-KEY-DATA, INSTANCE); 

completeness (3): The predicates in the LHC of each table partition the intended domain of the 
Elation: 

Completeness (4): Tbe predicates in the RHC are defined whenever the corresponding predicate in 
tbe LHC i s  'true': 

If save occurs. the PopupSaveMap object must have already been created, and p will be 
valid. 

NopartitioNng. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 
Tc canonical by definition. 

Consistency (3): All RHC values are unique: 
Onlyonevalue. 
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(4) VALUES 

OUTPUT VALUES 

1 T = -  %undefined% 
else I frame created via init function ~ 

T = init(o,o) 
T = init(o.p).show() 

T = init(o,p).show().save(it) A 

xv_get(frame created by init(), 
FRAME PUSHPIN IN)=TRUE 

T = Tl.save(it) A 
xv_get(frame created by init(), 

FRAhE CMD PUSHPIN IN) =FALSE 
else 

values 

-Q Westworld: Save Map 

Filename: <string> 

[PopupSaveMap] 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

window and fields are created by inif which is included in RHC trace 
Consistency (2) :  All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

LHC partitions the entire canonical trace. 

NotracesinRHC 

Either has constant (default) appeance or one modified by user input. 
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CLASS: POPUPMAPSIZE 

I init <void> cXv-opaque> 

TYPE IMPLEMENTED: <PopupMapSize> 

<Map*> pMap 

(1) SYNTAX 

show 
change 

ACCESS PROGRAMS 

owner-frame 
< v o i b  
<void> <Panelwitem> item 

Map:: <in0 cXv-opaque> <double> <double> < in0  

OUTPUT VARIABLES 

Variable Name Type Access 
(popup window I (XView Popup window) I NiA 1 I 

CLASS ACCESS PROGRAMS 

chanpe-size change-error pop up-frame new-width new-length new-scale 

INPUTVARIABLES 

EXTEIWAL ACCESS PROGRAMS 

Consistency (1): The canonical form fulfills the requirements of section XI. 
The @aces in the set are not fusther reducible when passed through the equivalences 
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The traces contain exactly the information needed for the equivalences and outputs 

(s = sl.s2.S3.s4) A 

(SI = [init(o,p)lf,) A 

( ~ 3  = [change(it)I!d A 

( ~ 4  = [c~~inge_errorI> 

(s2 = [ShOWo]:a,) A 

else 

AUXILJARY FUNCTIONS 

parSe(S,S l,S2,S3,S4) = 

m e  

false 

' T r  
else 

in of the 

%uninitialized% 
Ishow() 
where rwrsecT, I, S, C, CE) 

Else insures partitioning. 
Completeness (4): "he predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (3): All RHC values are unique: 
Constants, therefore always defined. 

True. 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for hit. show, change, change-emr, and cfChange 

T.init(o,p) = 
conditions equivalences 

T =  I init(o,p) 
T #  I %already-initialized% 

Completeness (3): "he predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): "be prediiates in the RHC are defied whenever tbe corresponding predicate in 
thc LHC is 'true': 

init(o,p) is &fined by event itself, otber RHC item is ermr message. 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Only one is specified, init(). and it is canonical. 
Consistency (3): All RHC values are unique: 

One is value. one is e m .  

If one LHC condition is me, the other must be false, and they therefore partition. 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): n e  predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

First case is empty trace, second has something in trace, third is else, insuring partition. 

First two cases are errors. in last I must be &fined since Tis not empty. 

Trace init().sbw() Q.sbow()] is in the canonical trace. 
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Consistency (3): All RHC values are unique: 
True. 

T.change(it) = 
conditions 

T =  
T = init(o,p) 

S # - A I=init(o,p) A 

p-xhange-size() = TRUE 

parseCT, 1, s, c, E) A 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

I and S defined for traces in 3rd4th cases; p. change-error defined as given; entered* 
values defined if popup has been created (since hit must be in trace, that is true). 

init().show().change() and init().show().change().change-error are canonical 

3rd 4 4th cases differ in equivalena 

First two are obviously different. third has show() in T, else separates third from fourth. 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

T,change-mor 
conditions equivalences 

T = init(o,p).showO.chanpe(it) 1 T.change-error 
else I %undefined% I 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical 

Consistency (3): All RHC values are unique: 

elseinsures. 

Tdefined by LHC. 

One value. one error. 

T.change-error canonical if T is as defined by LHC 

Tc.efChange(i&em,e) E Tc; ADD-TO-TRACE(Tp. cbange(itern)) 
where PopMapSize* p = xv_get(itern, XV-KEY-DATA, INSTANCE); 

Completeness (3 ) :  The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

If change occurs, the PopupMapSize object must have already been created. and p will 
be valid. 

9 No partitioning. 

Consistency (2): All tram specified in tbe RHC of the equivalence section are canonical: 
Tc canonical by definition. 
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Consistency (3): All RHC values are unique: 
Onlyonevalue. 

T = init(o,p).showO.change(it) A 

xv_get(frame created by init(), 
FRAME_cMD PUSHPIN IN)=TRUE 

T = Tl.change(it) A 

xvset(frame created by init0, 
FRAME CMD PUSHPIN IN) = FALSE 

else 

(4) VALUES 

user 
popup fields set to values from p-> as given 

above 

popup window disappears from screen 

popup forced to remain on screen,with values as 
modified by user 

OUTPUT VALUES 

I Change I 
J 

V[popup-f=elO = 
conditions values 

I T =  I %undefined% 
else I frame created via init function 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section we canonical: 

Consistency (3): All RHC values are unique: 

else insures partitioning. 

NotracesinRHC 

Either frame or error. 

frame is defined by init which must be part of any nonempty trace. 

v[(pop~p-~ind~w)](T) = 
conditions 

T = init(o,p).show() 

values 

popup window displayed on screen; 
Width field = p->width formatted "%.2f"; 

Length field = p-Aength formatted "%.2f'; 
Scale field = p-xcale; values may be modified by 

-0 Map Size 

Width: d1%.2f> Length: <fl%.Zf> 

Scale: -.cinb- esSa 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

LHC partitions the entire canonical trace. 
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Completeness (4): "be predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

window and fields are created by init, which is included in RHC trace 
Consistency (2): AU traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 
NotracesinRHC 

Either has constant (default) appeance or one modified by user input. 
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CLASS: WINMAP 

fmne I <xv opaque> 

TYPE IMPLEMENTED: <WinMap> 

publicly accessible 

(1) SYNTAX 

ACCESS PROGRAMS 

0muT VARIABLES 

c L A s s o m v A R I A B L E s  

Variable Name Type Access 
I notify value I <Notify value:, 1 func return 1 

mvARIABLEs 

Variable Name Access 
<xv-opaque> XView xv get value XV KEY DATA 

INSTANCE <Attr-attribute> direct access 

EXTERNAL ACCESS PROGRAMS 
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Utils::cMotice-OK <void> 

(2) CANONICAL TRACES 

<Xv-opaque> <char *>. 
owner message 

Consistency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the infomation needed for the equivalences and outputs 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for access functions init, unimplemented, quit. cfMenuF'ileQuit, 
cfMenuMapRedraw, CfMenuMapChangeSize, cfRepaint, and cfDestroy 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

init(0.p) is defined by event itself, other RHC item is error message. 
Consistency (2): AU braces specified in the RHC of the equivalence section are canonical 

Only one is specified, init(). and it is canonical. 
Consistency (3): All RHC values are unique: 

else insures partition. 

One value, one exor. 

T.unimplemented() = 
conditions equivalences 

%uninitialized% 
equivalence = T; 

ctNotice-OK(f, "Tbis function 
has not ken implemented.") 
where Tu is the class access trace 

ADD-TO-TRACE(Tu, 

1 1 forutils 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of b e  equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition. 

T defined by equivalence. 

One value, one error. 

T is canonical by defmition. 
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T.quit() E 

T =  
T = T1 .init(o,pl,pZ,p3,p4) 
T = Tl.set-title(t? 

conditions equivalences 
[T' 1 %uninitialized% 1 

%uninitialized% 
T.set-title(t) 
T1 .set-title(t) 

CompletenesdConsistency same as above. 

xv get(item, XV KEY-DATA, INSTANCE) = 0 
op = M E N U - N O m  A 
xv_get(item, XV-KEY-DATA, INSTANCE) f 0 

else 

%invalid item% 
equivalence = Tc; 
ADD-TO-TRACECTp, draw()) 
where Map* p = 

xv, eet(item, XV-KEY-DATA, INSTANCE); 
TC 

T&MenuFileQuit(itern, op) E 

conditions 

xv_get(item. XV-KEY-DATA, INSTANCE) f 0 

%invalid item% 

ADD-TO-TRACE(Tp, quit()) 
where WinUap* p = 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

first two differentiated by =/#: else insure partition 

Tc defined by LHS; if fn called then item must be created and therefore p will be valid. 

Tc is canonical by definition. 

mor + one has ADD-TO-TRACE, other does not. 
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Completeness (3): The predicates in the LHC of each table partition the intended domah of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

first two differentiated by =/#; else insure partition 

Tc defined by LHS; if fn called then item must be created and therefore p will be valid. 

Tc is canonical by definition. 

error + one has ADD-TO-TRACE, other does not 

Tc.cfMenuMapChangeSize(item, op) = 

ATA, INSTANCE) f 0 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

first two differentiated by ==h; else insure partition 

Tc defined by LHS; if fn called then item must be created and therefore p will be valid. 

Tc is canonical by definition. 

emor + one has ADD-TO-TRACE. other does not. 

Tc.cfMenuUnimplemented(item, op) E 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
d3tiOn: 

Completeness (4): The predicates in the RHC are defined whenever the colresponding predicate in 
the LHC is 'me': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

first two differentiated by =k: else inswe partition 

Tc defined by LHS; if fn called then item must be created and therefore p will be valid. 

Tc is canonical by definition. 

error + one bas ADD-TO-TRACE, other does not. 

T,.cfRepaint(cmvas, pw. display, xid, rects) = 
conditions equivalences 

1 xv qet(pw, XV-KEY DATA, INSTANCE) = 0 1 %invalid item% I 
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- 
Op = M E N U - N o m  A 
xv_get(pw, XV-KEY-DATA, INSTANCE) f 0 

else 

T&Ikstroy(client status) = cfDestroy(dient, status) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

nopartition 

def ied  by LHS 

cfDestroy() is canonical 

one value only 

equivalence = T,; 
ADD-TO-TRACE(Tp draw[)) 
where Map* p = 

xv eet(pw, XV- KEY^ DATA, INSTANCE); 
Tc 

(4) VALUES 

OUrPuT VALUES 

V[framelO = 
conditions values 

T =  I %undefined% 
T = init(o,pl,p2) 1 frame id for (main window) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

LHC paritions the canonical trace. 

NotraccsinRHC. 

EItherframeorerror. 

hame is defined by init. 
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T = init(o,pl,p2,p3,p4) 

T = T1 .set-title(t) 

V [ (main-window )] 0 = 
conditions values 

I T =  %undefined% 
display WinMap on screen, with canvas exactly 
encompassing default map size, with title 
”WestWorld -- <None>”, wirb border fitting map 
size (Map::init-draw), with menus as follows: - File: Load ..., Save ..., Quit 

HELIX Map, Clear Map, Change Map Si ze..., 
New Map Object ... 
- Robots: Summon ... <default>, <blank>, Start 

All, Stop All, Quit All 
same window as above, with title 

- Map: R&w <defaUlO, <blanlo, Update 

In WestWorld -<NONE> 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is ‘true’: 

Consistency (2): All &aces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

LHC paritions the canonical trace. 

NotracesinRHC. 

Window titles differ. 

window is defined by init. 

V[notify-valuel(T~) = 

conditions values 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

first two differ, else insures partition. 
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Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 
NIA 

constant m r .  or clientktatus defined by LHC 

Error, constant, or fn fall return 

Program Name Argument No Value 

1 CfDeStrOY I Value 1 notify-value I 
Completeness (2): There is me output functiodrelation that specifies each output value: 

There is one output value defined above for notify_value. 
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CLASS: UTILS 

(notice) (XView Notice) I N/A 
yn answer c inb  func return 

b - 

TYPE IMPLEMENTED: <Utils> 

notice Confirm button 

(1) SYNTAX 

pseudo-even t 

CLASS ACCESS PROGRAh4S 

notice-confirm 

Func Name Value 
<void> j <Xv-opaque>owner 1 <char *> message cfNotice-OK 

cmotice-YN <in0 yn-answer <char *> messaee I 
CLASS OUTPUT VARIABLES 

Consistency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed through the equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for cfNotice-OK cfNotice-YN, notice-confirm, and notice-yn. 

Tc.cfNoti~~-OK(o,m) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values art: unique: 

else insures partition. 

event defined by LHC. 

cfNotice-OK is canonical. 

One value. one error. 
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Tc = cfNotice-OK(0.m) v 
Tc = cfNoiice-YN(o,m) 
else 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defured whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition. 

event defined by LHC. 

cfNotice-YN is canonical. 

One value, one emor. 

%waiting% 

cfNotice-YN(o.m) 

Tc.notice-confirm 5 

Tc = cfT'4otice_OK(o,m) 
conditions equivalences 4 

- 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
rclation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition. 

constants. 

- is canonical. 

One value, one error. 

conditions equivalences 
Tc = cfNotice-YN(o,m) 1 n o t i c e n  
else 1 %no YN notice% 

Completeness (3): The predicates in the LHC of each table pattition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition. 

no t ice jn  defined by U S .  

noticejn is canonical. 

One value, one error. 

169 



(4)VALUES 

cfNNotice-YN 

OUTPUT VALUES 

Value yn - answer 

V[(notice)JO = 
conditions values 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Since T i s  canonical, the conditions partition the canonical trace and therefore give a fuU 
partition. 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

defrned by LHC 

NIA 

One value, one error. 

conditions values 
I T = notice-yn A TRUE (1) I 

Completeness (3): The predicates in the LMC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): AII traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition. 

constants 

oo t ice jn  is canonical. 

Two distinct values. one error. 

Completeness (2): There is one output functiodrelation that specifies each output value: 
There is one output value defined above for yn-answer. 
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Clear Boxes 

The clear boxes consist of the following files, which are attached: 
ww-ui.H - header file containing class, constant, and misc. definitions 
A4ain.C - fie with main() loop and global variables 
Map.C - class implementation for Map 
PopupLoadSave.C - class implementations for PopupLoadMap + PopupSaveMap 
P0pupMapSize.C - class implementation for PopupMapSize 
Wid4ap.C - class implementation for WinMap 
Utils.C - midutility routines 

See below for increment 2 C++ headers. 
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v. c lass Desipn and Class BB SDec ifications (Seco nd Level) 

This section deals with objects or functions that were "discovered" during the implementation of the first 
level of clear boxes. 

(I) Choose candidate objects 

During the development of the Map object, it became apparent that there was a need for some additional 
classes. First, the interaction with files appeared to be similar to dealing with an external object, and 
therefore it appeared that it would be easier to encase these interactions into a File class, which i s  defined 
below. However, it was decided that since File would only be used by Map and would not significantly 
improve the specification's readability, a separate class was not created. In the code above, fiesystem is 
considered to be an external object with a set of function calls. 

In addition, the Map object requires a data structure to hold the Map data. The structure must be able U, 
represent multiple types of objects, specifically boxes and cylinders in this increment and perhaps others in 
future increments. Therefore, a hierarchy with an absuact base class and subclasses which actually 
implement the specific object types is appropriate. This results in the Mapobject hierarchy, with 
subc~asses MapBox and MapCylinder. This hierarchy was at first included in the fvst level on this 
increment, but it was realized that this was inappopriate, since the Mapobject hierarchy should only be 
defined after its requirements are clear from developing the Map class. 

(2) Assign top-level stimuli to objects 

Not applicable at this level. 

(3) Identify inter-class stimuli 

Mapobject responds to cfSelectAndLoad() by selecting the appropriate Mapobject subclass via checking 
&Me() for each subclass and then creates an instance of the class that has cflsMe()=TRUE and calls 
load(Xv-opaque frame, char* line) for the new object. If there are problems with loading. a notice 
explaining the problem is displayed using the passed frame. MapBox and Mapcylinder have to have 
appropriate class function cfIsMe and instance functions load(), save(), and draw(). The save(char *line, 
int limit) function takes the current data in the object and creates a loadable file line for the object to be 
saved to a f i l e  via the calling function. The set-next(MapObject*) function sets the next pointer for the 
object to the given parameter and returns that pointer, next contains the value of the current next pointer. 
An overloaded next0 function was considered to provide botb the set-next and next services, but this was 
deemed unacceptable because of possible confusion during specification and design. Mapobject is an 
abstract superclass, and therefore cannot be instantiated. 
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Figure Y: Second Increment Object Interaction Diagram (Final) 

(4) Black Box Definitions 

defure_BB Mapobject 
access programs 

Mapobject0 
Mapobject* set-next(MapObject* nextobj) 
virtual int load(Xv-opaque frame, int lineno, char* line) 
virtual void save(char *buffer, int bufsize) 
virtual void draw(Display *display, Window xid, int scale, int m y )  

output variables 
Mapobject* next 

class access programs 
static MapObject* cfSelectAndLoad(Xv_opaque frame, int lineno, char* line) 

external access 
int MapBox::cflsMe(char* 1) 
int MapCylink:cflsMe(char* 1) 
void Utils::cfNotice-OK(char *message) 
MapBox* MapBox::new() 
Mapcylinder* MapCy1inder::newO 
void MapBox::deIeteOMapBox*) 
void MapCylinderxdelete(MapCy1inderC) 

transition 
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Si = Mapobject() --> no response 
Si = next --> returns value from last set-next(n) call, otherwise returns NULL 
Si = set-next(p) --> p 
Si = load(f,n,l) --> not implemented in this class 
Si = save@, bs) --> not implemented in this class 
Si = draw(d,xw,s) --> not implemented in this class 
Si = cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = TRUE A 

(p = new MapBox)->load(f,n,l) = TRUE --> p 
Si = cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = TRUE A 

(p = new MapBox)->load(f,n,l) = FALSE --> NULL 
Si = cfSelectAndLoad(f,n,l) A MapBox::cfisMe(l) = FALSE A 

MapCy1inder::cff sMe(1) = TRUE 

Si E: cfSelectAndLoad(f,n,l) A MapBox::cfIsMe(l) = FALSE A 

MapCylinder::cfIsMe(l) = TRUE 

Si = cfSelectAndLoad(f,n,I) A MapBox::cfIsMe(l) = FALSE A 

MapCy1inder::cfI sMe(1) = FALSE --> 

(p = new Mapcylinder)->load(f,n,l) = TRUE --> p 

(p = new Mapcylinder)->load(f,n,l) = FALSE --> NULL 

Utils::cfNotice-OK(f, "Map file format ~ITOT; unknown object @ line -'I); 

return NULL 
end-RB 

defineBB MapBox 
access programs 

MapObj ea() <inherited> 
Mapobject* set-next(MapObject*) <inherited, 
virtual int load(Xv-opaque frame, int lineno, char* line) <inherited>, <overridden> 
virtual void save(char *buffer, int bufsize) anherite&, <overridden> 
virtual void draw@isplay *display. Window xid, int scale, int m y )  

dnhesiteb, <overridden> 

output variables 
Mapobject* next <inherited> 

class access programs 
static void cfSelectAndLoad(Xv-opaque frame, int lineno, char* line) &herite& 
static int cfIsMe(char* line) 

external access 
void Uti1s::cfNotice-OK(char *message) 

transition 
Si = load(f,n,l) A legal-box(1) --> TRUE 
Si = load(f,n,l) A not(legalJox(1)) --> 

Utils::ctNotice_OK(f, "Map file format error: bad box definition @ line a~") 
return FALSE 

copy information fiom load() into "box <locx> <lacy> <width> d e n g t b  
<height>" with default height if none specified by laad() and limited to length 
of bs. 

draw rectangle at <locx>*s,docy>*s+<lengtb*s of size 
cwidth>*s,<length>*s (origin in bottom LHC of map) 

Si = save@, bs) --> 

Si = draw(d,xw,S) --> 

Si = cfIsMe(1) A stmcmp(1, "box", 3) = 0 --> TRUE 
Si = cRsMe(1) A stmcmp(1, "box", 3) # 0 --> FALSE 
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e n d B B  

Spec Function 
legal-hx0) I = 

[ if 1 is of form "box docx> docp <width> <length> [<heighb]" --> TRUE 
else --> FALSE ] 

NOTES: 
(1) only new or over-ridden routines are redefined in a derived class (subclass). 

derine-BB Mapcylinder 
access programs 

Mapobject() <inherited> 
Mapobject* set-next(MapObject*) <inherited> 
virtual in1 load(Xv-opaque frame, int lineno, char* line) <inherited>, <overridden> 
virtual void save(char *buffer, int bufsize) <inherited>, <overridden> 
virtual void draw@isplay *display, Window xid, int scale, int m y )  

<inherited>, <overridden> 

output variables 
Mapobject* next <inherited> 

class access programs 
static void cfSelectAndLoad(Xv-opaque frame, int lineno, char* line) <inherited> 
static int cfIsMe(char* line) 

external access 
void Utils::cfNotice-OK(chat *message) 

Si = load(f,n,l) A legal-cylinder(1) -> TRUE 
Si = load(f,n,l) A not(1egal-cylinder(1)) --> 

transition 

Utils::cMotice,OK(f, 

retumFALSE 

copy infonnation from load0 into "cylinder <locx> <lacy> aadius> &eight>" 
with default height if none specified by load0 and limited to length of bs. 

draw circle at clocx>*s,clocp*s of radius cradius>*s, origin in bottom LHC 
of map 

"Map file format error: bad cylinder definition @ line a>") 

Si = save@, bs) --> 

Si = draW(d,XW,S) --> 

Si = cffsMe(1) A stmcmp(1, "cyl", 3) = 0 --> TRUE 
Si = cfIsMe(1) A stmcmp(1, "cyl", 3) f 0 --> FALSE 

end-BB 

Spec Function 
[ IegaLcylinder(1) 3 = 

[ if 1 is of fom "cyl[inder] <loco  & c y >  cradius> [&eight>]" --> TRUE 
else --> FALSE ] 
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VI. TAMSpec ifications for Classes (Second Level) 

cfSe.lectAndLoad <Mapobject*> <Xv-opque> frame 4110 lineno 
created 

CLASS: MAPOB JECT 

<char*> line 

TYPE IMPLEMENTED: cMapObjecb 

cvlnew <Mapcylinder*:, 

(1) SYNTAX 

ext fn return 

ACCESS PROGRAMS 

OUTPUT VARIABLES 

CLASS ACCESS PROGRAMS 

CLASS OUTPUT VARIABLES 

Variable Name T W  Access 
created <Mapobject*> fn return I I 1 I 

INPUTVARIABLES 

EXTERNAL ACCESS P R O G W S  
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canoniCal(Ti) e--> (Ti = MapObjectO) v (Ti = set-next(n)) 

canonical(Tc) <--> (Tc = 3 v (T, = boxnew) v Cr, = cylnew) 

Consistency (1): The canonical form fulfills the requirements of section M. - The traces in the set are not further reducible when passed through the equivalences 
Tbe traces contain exactly the informahon needed for the equivalences and outputs 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for Mapobject(), set-next(), load(). save(), draw(), 
cfSelectAndLoad(), boxnew, cylnew 

T.MapObject0 = MapObjectO 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

0 

No partitioning, therefore unique. 

No partitioning of domain, therefore complete 

MapObjcct{) is a canonical trace 

T.set-next(n) set-next(n) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

completeness (4): ?be predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

No partitioning of domain, tberefore complete 

&-next() is canonical. 

No partitioning, therefore unique. 

set-nexq) defined by RHS. L & D defined by parsing T. 

T.load(f, In, 1) E %undefined for this class% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): 'Ihe predicates in the RHC are d e f d  whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All h;ices specitied in the RHC of the equivalence section are canonical 

Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

e m  

NIA 

No partitioning, therefore unique. 

T.save(b, bs) = %undefined for this class% 
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Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): ' h e  predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

error 

N/A 

No partitioning. therefore unique. 

T.draw(d, xw, s, m) = %undefined for this class% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): 'Ibe predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): AI1 traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

error 

NIA 

No partitioning. therefore unique. 
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Tc.cfSelectAndLoad(f, ln, 1) E 

conditions 
MapBox::IsMe(l)=TRUE A 
(boxnew = new MapBox)->ioad(f, In, l)=TRUE 

MapBox::IsMe(l)=TRUE A 
(boxnew = new MapBox)->load(f, In, I)=FALSE 

MapBox::IsMe(l)=FALSE A 
MapCyl::lsMeO)=TRUE A 
(cylnew = new MapBox)->load(f, In, l)=TRUE 

MapBox::IsMe(l)=FALSE A 

MapCyl::IsMeO)=TRUE A 
(cylnew E new MapBox)->load(f, In, IbFALSE 

else 

equivalences 
equiv = boxnew; 

ADD-TO-TRACE(Tmb, new); 
ADD-TO-TRACE(Twxnew. load(f, In, l)), 
where T m b  is the class trace for MapBox 
equiv = -; 

ADD-TO-TRACEVmb, new); 

ADD-TO-TRACEflmb, IsMe(1)); 

ADD-TO-TRACE(Tmb, IsMe(1)); 

ADD-TO-TRACE(Tbxnew, lOad(f, In, I)); 

where Tab is the class trace for MapBox 
equiv = cylnew; 

ADD-TO-TRAWTac, IsMe(1)); 

ADD-TO-TRACE(Tcylnew, load(f, In, I)), 
where Tcmb is the class tram for MapBox and 
Tcmc is the class m e  for MapCylinder 
equiv = -; 
ADD-TO-TRACE(Tmb, IsMe(1)); 
ADD-TO-TRACE(Tmc, IsMe( 1)); 

ADD-TO-TRACEfTcylnew, load(f, In, 1)); 
ADD-TO-TRACE(Tmc, delete(cylnew)), 
where Tab is the class mce for MapBox and 
Tcmc is the class trace for MapCylinder 
equiv = -; 
ADD-TO-lRACECTmb, IsMe(1)); 
ADD-TO-TRACE(Tmc, IsMe(1)); 
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file 
format mor unknown object 0 line <n>"), 

class trace for MapBox and T m c  is the class 
trace for Mapcylinder 

ADD-TO-TRACE(Tcmb, delete), 

ADD-TO-TRACECTQnb, IsMe(1)); 

ADD-TO-TRACE(Tcmc, new); 

ADD-TO-TRACE(Tac, WW); 

W h e r e  Tu iS the Class trace for Ut&, T a b  iS the 

Completeness (3): The predicates in the LHC of each table partition tbe intended domain of the 
dation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC i s  'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical 

Consistency (3): All RHC values are unique: 

else insum parititioning 

values defmed by LHC or LHS 

-, boxnew. cylnew all canonical for T, 

equiv and ADD-TO-TRACE results all different 

Tc.boxnew E boxnew 

Completeness (3): The predicates in the LHC of each table partition the intended domain of tbe 
relation: 

No partitioning of domain, therefore complete 
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Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

boxnew defined by LHS 

No partitioning, therefore unique. 

bOMeW is a canonical trace 

Tc.cylnew E cylnew 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed wbenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence ~t~ti01-1 are canonical 

Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

cylnew defined by LHS 

No partitioning, therefore unique. 

boxnew is a canonical trace 

(4)VALUES 

V[next](T) = 
conditions values 

parsen, I, L, D) A I = set next@) 1 n 
else I NULL 1 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in tbe RHC are defined whenever the corresponding predicate in 
the LWC is 'hue': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC vdues arr unique: 

else insures partitioning. 

n defined in LHC. 

NotracesinRHC 

Value or N U U .  

V[load-ok](T) = %undefined% 

Completeness (3): The predicates in the LWC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are uniquc: 

no partitioning. 

erroronly. 

No traces in RHC. 

erroronly. 

Vbufferlfl) = %undefined% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

no partitioning. 
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Completeness (4): The predicates in the RHC are defmed whenever the correspondi& predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

emoronly. 

NotracesinRHC. 

crroronty. 

Tc = boxnew 
Tc = cylnew 

else 

value of boxnew 
value of cylnew 

NULL 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): ?be predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): ALI traces specified in the RHC of the equivalence section are c a n o n i d  

Consistency (3): All RHC values are unique: 

else insures partitioning. 

defrnedinLHC. 

NotracesinRHC 

different values or NULL. 

Program Name Argument No Value 
I cfSeIectAndLoad I Value I created 1 

Completeness (2): There is one output functiodrelation that specifies each output value: 
There is one output value V[created] defined above for the one value in the table. 
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CLASS: MAPBOX 

1 (i) cfSelectAndLoad I <Mapobject*> I <Xv-opaque> frame I c i n e  lineno 

TYPE IMPLEMENTED: cMapBox> 

<char*> line 

(1) SYNTAX 

(i) created 

Note: (i) items are inherited 

<Mapobject*> fn return 

ACCESS PROGRAMS 

OUTPUT VARIABLE! 

CLASS OUTPUT VARIABL.ES 

Func Name Value k g #  I Arr#2 
UtikcfNotice-OK 1 <void> I <Xv-opaque>frame 1 <char*> message 

(2) CANONICAL TRACES 

canonical(Ti) <--> (Ti = Mapobject() v set-next(n)) v 
(Ti = WapObjectO v set-next(n)].load(f,In,l)) v 

(Ti = Mapobject() v set-next(n)] .load(f,in,i).draw(d,xw,s,m)) 
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canonical(Tc) <--> Cr, = 3 v (Tc = boxnew) v (Tc = cylnew).v (Tc = cffsMe(1)) 

Consistency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed through the equivalences 
The iraces contain exactly the information needed for the equivalences and outputs 

AUXILIARY FUNCTIONS 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): 'ihe predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (3): All RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defied. 

True. 

conditions equivaiences 
I (1 is of form "box docx> docm cwidlh> I Vue I I <length> Icheighol") I I 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): l'he predicates in the RHC are defined whenever the rorresponding predicate in 
tbe Lflc  is 'true': 

Consistency (3): All RHC v a i w  are unique: 

else insures partitioning. 

Constants. therefore always defined. 

True. 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
There is one each for set-next(). load(), save(), draw(), and cfisMe(); Mapobject(), 
cffclectAadload(), boxnew, cylnew are unchanged from previous 

T.set-next(@ E set-next(n).LD where parse(T, I, L, D) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

No partitioning, therefore unique. 

set-nexto defined by RHS. L & D defined by parsing T. 

set-nexto, set-next().load(). and set-nextO.loadO.draw0 are all canonical traces. 
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T.load(f, In, 1) E 

fomt  error: bad box definition @ line <In>") 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition 

defined by LHS 

Lload() is canonical 

trace alone or trace + ADD-TO-TRACE(). 

T.save(b, bs) E T 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

defined by LHS 
Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Tis canonical by definition 
Consistency (3): All RHC values are unique: 

onlyone 

nopartition 

T.draw(d, xw, s, m) = 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defmed whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partition 

defmed byLHS 

I.load() is canonical 

trace alone or trace + ADD-TO-TRACE(). 

Tc.cflsMe(l) E cflsMe(1) 

Completeness (3): The predicates in tbe LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defiied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

No partitioning of domain, therefore complete 

cfI sMe() defined by LfIS 

cfIsMe() is a canonical tracs 
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Consistency (3): All RHC values are unique: 
NO partitioning, therefore unique. 

parseCT, I, L, D) A 
LFload(f,ln,l) A legal-box(1) A 

D=draw(d,xw,s.m) 

draw rectagle parsed from 1 in 
window defined by d, xw with 

scale s and positioned relative to 
bottom LHC of window 

I else %undefined% 

(4) VALUES 

OUTPUT VALUES 

Note: V[next] and V[crated] are unchanged from inherited; V[loadpk] and Vpuffer] override superclass 
der. 

L=load(f,ln,l) A 

parse(?’, I, L, D) A 
L=load(f,ln,l) A 

FALSE (0) 

%undefined% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Compleleness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is ‘true’: 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partitioning. 

mnstanls or m r .  

NotracesinRHC. 

opposite values or mor. 

Vlbuffer] 0 = 
conditions values 

parseU, I. L, D) A 
L=load(f,ln,l) A 

“box clocx> docp <width> 
dength> cbeij$hb” from load() 

with default height if none 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicaes in the RHC are defined whenever the corresponding predicate in 
the LHC is ‘me‘: 

Consistency (2): AU traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): At1 RHC values are unique: 

else insures partitioning. 

valueorerror. 

NotracesinRHC. 

valueoremor. 



Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are. unique: 

else insures partitioning. 

defmed by RHC. 

NotracesinRHC 

one value or error. 

V[isMe](Tc) = 
conditions values 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partitioning. 

constants. 

e NotracesinRHC 

opposite values or error. 

REIWZN VALUES 

Completeness (2): There is one output functionhelation that specifies each output value: 
Yes, except for inherited values that are not ovemdden. 
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CLASS: MAPCYLINDER 

(i) next 
(i) load ok 
(i) buffer 

(output -screen) 

TYPE W-: cMapCylinder, 

(1) SYNTAX 

cMapObiect*> public 
< inb fn return (overridden) 

<Ch*> fnparam return 
(X displav window) NIA 

Note: (i) items are inherited 

(i) cfSelectAndhd 

cflsMe 

ACCESS PROGRAMS 

<Mapobject*> <Xv-opaque> frame <in0 linen0 <char*> line 
created 

<inb isMe e b a r  *> line 

I I I display I I ovemdden I 

- 

OUTPUTVARIABLES 

(i) created <MapObiect*> fn return 

CLASS OUTPUTVARIABLES 

Func Name Value &g#l Ara#2 1 Utils::cfNotice-OK I <void> 1 cXvppaque>frame I <char*> message 

(2) CANONICAL TRACES 

~OniCalCri) <--> (Ti = MapObjectO v set-next(n)) v 
Cri = WapObjectO v set_next(n)].load(f,In,l)) v 

(Ti = &lapobject() v set~next(n)l.load(f,ln,l).draw(d,xw,~,m)) 

canonical(Tc) <--> (T, = 3 v (Tc = boxnew) v (Tc = cylnew) v (Tc = cflsMe(1)) 
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Consistency (1): The canonical form fulfills the requirements of section XI. 
The traces in the set are not further reducible when passed through the.equivalences 
The traces contain exactly the information needed for the equivalences and outputs 

(1 is of form "cyl[inder] clocx, docp <radius> 
[&eight>] ") 

AUXILIARY FUNCTIONS 

me 

parse(S,S 1,s2,s3) = 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the comesponding predicate in 
the LHC is 'true': 

Consistency (3): All RHC values are unique: 

Else insures partitioning. 

Constants, therefore always defined. 

True. 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in 
the LHC i s  'true': 

Consistency (3): All RHC values are unique: 

else insures partitioning. 

Constants, therefore always defined. 

True. 

(3) EQUIVALENCES 

Completeness (1): There is one equivalence for each event class. 
The= is one each for set-next(). load(), save(), draw(), and cflsMe(); Mapobject(), 
cfSelectAndLoad(). boxnew, cylnew are unchanged from previous 

T.set-next(n) = set-next(n).LB where parsec, I, L, D) 

Completeness (3): The predicates in the LHC of each table partition the intended domaim of the 
relation: 

Completeness (4): The predicates in the RMC are defied whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

No partitioning of domain, therefore complete 

No partitioning, therefore unique. 

set-next() defined by RHS, L & D def ied  by parsing T. 

setgext(). set-next().load(), and set-next().load().draw() are all canonical traces. 
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legal cyIinder(1) 
else 

I.load(f, In, 1) where parsee, I, L, D) 
equiv = I.load(f, In, 1) where parse(T, I, L, D); 
ADD-TO-TRACE(TU, cfNotice-OK(f, "Map file 
format error. bad cylinder definition @ line 
<in>"). where TU is the class trace for Utils 

Tc.cflsMe(l) E cflsMe(1) 

) IL.draw(d, xw. s. m) 

, else 
legal cylinder(I) 

%cannot draw without legal load0 first% 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defied whenever the corresponding predicate in 
the LHC is 'true': 

No partitioning of domain, therefore complete 

cfIsMe() defined by LHS 
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Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 
cRsMe() is a canonical trace 

No partitioning, therefore unique. 

(4)VALUES 

Note: V[next] and V[created] are unchanged from inherited: V[load-ok] and Vmuffer] override superclass 
def. 

V[l~ad-~k](T) = 
conditions values 

I parse(T. I, L, D) A I TRUE (1) 
L=load(f,ln,l) A 

Completeness (3): Tbe predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
h e  LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 
opposite values or error. 

else insures partitioning. 

9 constants or error. 

No traces in RHC. 

Vlbufferlfl) = 

Lrload(f,ln,l) A 
legal-cylinder(1) 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partitioning. 

value or error. 

No traces in RHC. 

value or error. 
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Vl(out~ut_screen)lQ = 
conditions values 

stmCm~("cyl", 1, 3) = 0 
Tc = cflsMe(1) A 

stmcmp("cyl", 1, 3) # 0 
else 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
relation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partitioning. 

defined by RHC. 

NotracesinRHC 

one value or error. 

FALSE (0) 

%undefined% 

V[isA4e](Tc) = 

(i) load 
(i) save 

(i) cfSelectAndLoad 

Value load ok (ovemdden) 
&# 1. buffer (overridden) 
Value created 

(i) load 
(i) save 

(i) cfSelectAndLoad 

Completeness (3): The predicates in the LHC of each table partition the intended domain of the 
dation: 

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in 
the LHC is 'true': 

Consistency (2): All traces specified in the RHC of the equivalence section are canonical: 

Consistency (3): All RHC values are unique: 

else insures partitioning. 

constants. 

NotmcesinRHC 

opposite values or error. 

Value load ok (ovemdden) 
&# 1. buffer (overridden) 
Value created 

RETURNVALUES 

I cfIsMe I Value I isMe I 
Completeness (2): There is one output functiodrelation that specifies each output value: 

Yes, except for inherited values that are not ovcmdden. 
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VII. c lear Boxes (Seco nd Level) 

The clear boxes consist of the following files, which are attached: 

Increment 2 C++ Header Definitions (Complete) 

MapObjectC - class implementation of MapObject, MapBox, and Mapcylinder 

/ /  ww-ui.H 
/ /  
/ /  Westworld 
/ /  
/ /  Alex L. Bangs, 2 / 1 0 / 9 ?  

/ /  Modification History: 
/ /  2/10/93 ALB Increment 1 
/ /  6/21/93 ALB Increment 2 

#i fndef WW-UI-HEADER 
#define WW-UI-HEADER 

#include <math. h >  

/ /  Map constants 

const double default-width = 12.0; 
const double default-length = 12.0; 
const int default-scale = 40; 
const int min-scale = 1; 
const int max-scale = 100; 
const double min-width = 1.0; 
const double min-length = 1.0; 
const int panel-text-size = 8 0 ;  
const int filename-size = 80; 
const double default-obj-height = 2.0; 

/ /  simple #define functions 

#define min(a,b) ((a) < (b) ? (a) : (b)) 
#define scaleIt(coord) (irint((coord) * scale)) 

/ /  Main descriptor 
/ /  (note no real class for Main, but has function + globals 
/ /  class Main 
/ /  void main(int argc, char **argv); 
extern Attr-attribute INSTANCE; 

extern class Mapobject; 
extern class WinMap; 

/ /  Other class descriptors 
class Map { 

Di sp  lay *display ; 
Window xid; 
GC gc ; 

MapObj ec t * objects ; 
WinMap' pWinMap ; 

public: 
double width, length; 
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int scale; 
char filename[filename-size]; 

Map(); 
-Map ( 1 ; 
void 
void 
void 
int 

int 
int 
int 

1;  

init-draw(Display*, Window, WinMap*); 
draw ( ) ; 
clear( 1 ; 
change-size(Xv-opaque frame, 

load(Xv-opaque frame, char *loadfile) ; 
save(Xv-opaque frame, char *savefile); 
loadline(Xv-opaque frame, int lineno, char *line); 

double new-width, double new-length, int new-scale) ; 

class PopupLoadMap ( 
Xv-opa qu e frame ; 
Xv-opaque controls ; 
Xv-opaqu e filename-field; 
Xu-opaque button; 

Map* pMap; 
void update ( ) ; 

public: 
void init(Xv-opaque owner, Map* pTheMap); 
void show(); 
void load(Pane1-item item) ; 

/ I  class functions 

1; 
static void cfLoad(Pane1Jtem item, Event *event); 

class PopupSaveMap { 
Xv-opaqu e frame : 
Xv-opaqu e controls; 
Xv-o paqu e filename-field; 
Xv-opaqu e button; 

Map* pMaP; 
void update ( )  ; 

public : 
void init (Xv-opaque owner, Map* pTheMap) ; 
void s h o w ( ) ;  
void save (Panel-i tem it em) ; 

/ /  class functions 

1 ;  
static void cfSave(Pane1,item item, Event *event); 

class PopupMapSize { 
Xv-opaque frame ; 
Xv-opaqu e controls ; 
Xv-opaque map-width-field; 
Xv-opaqu e map-length-f ield; 
Xv-opaque map-scale-field; 
Xv-opaqu e change-button; 

Map* pMap; 
void update ( )  ; / /  update numbers in the window 
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public: 
void init(Xv-opaque owner, Map* pTheMap); 
void show(); / /  redisplay the box, and do an update 
void change(Pane1-item); / /  change button pressed; send values to 

PMa? 

/ /  class €unctions 
static void cfChange(Pane1-item item, Event ‘event); 

/ /  XView button callback for Change 
1 ;  

class WinMap ( 
X v p  pa qu e 
Xv-o pa qu e file-menu-button; 
Xv-opa qu e 
Xv-opaque robots-menu-but ton; 
Xv-o p a qu e 
Xv-window canvasqaint; 
Display*display; 
Window xid; 

controls ; 

map-menu-bu t t on ; 

canvas ; 

Xv-opaque file-menu-create(caddr-t * ,  Xv-opaque); 
Xv-opaque map-menu-create(caddr-t * ,  Xv-opaque); 
Xv-op aqu e robots-menu-create(caddr-t *, Xv-opaque); 

Map * @Map; 
PopupLoadMap * pPopupLoadMap; 
PopupSaveMap* pPopupSaveMap; 
PopupMapSize* pPopupMapSize; 

public : 
Xv-opaque frame ; 

void init(Xv-opaque owner, Map*, PopupLoadMap”, PopupSaveMap*, 

void unimplementedo; 
void quito; 
void set-title(char* new-title); 

PopupMapSize*); 

/ /  XView interface callbacks (class functions) 
static Menu-item cfMenuFileLoad(Menu-item item, Menusenerate op); 
static Menu-item cfMenuFileSave(Menu-item item, Menugenerate op); 
static Menu-item cfMenuFileQuit(Menu-item item, Menugenerate op); 
static Menu-item cfMenuMapRedraw(Menu-item item, Menu-generate op); 
static Menu-item cfMenuMapClear(Menu-item item, Menugenerate op); 
static Menu-item cfMenuMapChangeSize(Menu-item item, Menu-generate o p ) ;  
static Menu-item cfMenuUnimplemented(Menu-item item, Menu-generate op) : 

/ /  general XView callbacks (class functions) 
static Notify-value cfDestroy(Xv-opaque client, Destroy-status status); 
static void cfRepaint(Canvas canvas, Xv-window paint-window, 

Display *display, Window xid, Xv-xrectlist ’rects); 
1; 

class Utils { 
public: 
/ /  class functions 

static void cfNotice-OK(Xv-opaque owner, char* message); 
static int cfNotice-YN(Xv-opaque owner, char* message); 

1; 

class Mapobject { 
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protected: 
double locx, locy, height; 

public : 
MapObj ec t * next; 

Mapobject ( 1  ; 
MapOb] ect * set-next(MapObject* ncxtobj); 
virtual int load(Xv_opaque frame, inc lineno, char* line) = 0; 
virtual void save(char* buffer, int bufsize) = 0; 
virtual void draw(Display* display, Window xid, int scale, int maxy) = 

0; 

/ /  class functions 
static Mapobject' cfSelectAndLoad(Xv-opaque frame, int lineno, 

char* line); 
I ;  

class MapBox : public Mapobject ( 
/ /  private 

double width, length; 

pub1 ic : 
int load(Xv-opaque frame, int lineno, char* line); 
void Save(char* buffer, int bufsizel; 
void draw(Display* display, Window xid, int scale, int maxy); 

/ /  class €unctions 

1 ;  
static int cfIsMe(char* line); 

class MapCylinder : public Mapobject ( 
/ /  private 

double radius; 

public: 
int load(Xv-opaque frame, int lineno, char* line); 
void save(char* buffer, int bufsize); 
void draw(Display* display, Window xid, int scale, int maxy); 

/ /  class €unctions 

1 ;  
static int cfIsMe[char* line); 

# endi f 

195 



Vita 
Alex L. Bangs was born in Midland, Michigan on July 23, 1966. He grew up in 
Michigan and moved to Indiana, where he started his first professional programming job 
at the age of 14. He attended Harvard University, where he was active in the 
International Relations Council and worked in the Harvard Robotics Laboratory. In 1988 
he received an A.B. degree in Computer Science and Engineering Sciences magna CUM 

l a d e .  

After graduation, he worked for a year at the Institute for Defense Analyses in 
Alexandria, Virginia as a Research Staff Member where he concentrated on technology 
policy andysis. He next worked at Honeybee Robotics in New York City as a Project 
Engineer, developing space and commercial robotic prototypes including a robot 
bartender. In 1990, he moved to Tennessee to work at Oak Ridge National Laboratory. 
The same year he began work on his Master of Science degree at the University of 
Tennessee, concentrating in software engineering, and worked during the 1991 -1992 
school year as a research assistant, He graduated in August 1993. 

Since 1990, he has been a Research Associate in the Intelligent Systems Section at Oak 
Ridge National Laboratory, most recently concentrating in cooperating mobile robots 
research. He has also been an ongoing computing consultant to Bangs Laboratories of 
Camel,  Indiana since its incorporation in 1988. 

The author is a member of ACM and EEE.  
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