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A COMPARISON OF ITERATIVE METHODS FOR A MODEL 
COUPLED SYSTEM OF ELLIPTIC EQUATIONS 

June M. Donato 

Abstract 

Many interesting areas of current industry work deal with non-linear coupled 
systems of partial differential equations. We examine iterative methods for the 
solution of a model two-dimensional coupled system based on a linearized form of 
the two carrier drift-diffusion equations from semiconductor modeling. Discretizing 
this model system yields a large non-symmetric indefinite sparse matrix. 

To solve the model system various point and block methods, including the 
hybrid iterative method Alternate Block Factorization (ABF), are applied. We also 
employ GMRES with various preconditioners, including block and point incomplete 
LU (ILU) factorizations. 

The performance of these methods is compared. It is seen that the preferred 
ordering of the grid variables and the choice of iterative method are dependent 
upon the magnitudes of the coupling parameters. For this model, ABF is the 
most robust of the non-accelerated iterative methods. Among the preconditioners 
employed with GMRES, the blocked “by grid point” version of both the ILU and 
MILU preconditioners are the most robust and the most time efficient over the 
wide range of parameter values tested. This information may aid in the choice of 
iterative methods and preconditioners for solving more complicated, yet analogous, 
coupled systems. 





1. Introduction 

Scalar elliptic and systems of coupled elliptic partial differential equations (PDEs) arise 
frequently in the modeling of physical processes. Examples include the steady-state 
equation for heat conduction and the steady-state drift-diffusion equations that appear 
in semiconductor modeling. We will consider a variety of iterative methods including 
Alternate-Block-Factorization (ABF) and the GMRES method with a number of pre- 
conditioners. We will be particularly interested in comparing the performance of point 
and block methods in solving a model coupled system. 

Let us consider such a coupled system of equations on a region 52 C R” which can 
be written in the form 

with specified conditions on the boundary of 52. The d j )  are the variables of interest 
and the L; are known, possibly nonlinear, functions of the & I .  Each constituent ~ ( 3 )  

can be viewed as the concentration of a given species in reaction with the other species 
according to  the above system. In semiconductor modeling, for example, dl), d2), 
and d3) would represent the electrostatic potential, the electron density, and the hole 
density, respectively. 

If the L; are nonlinear in the &), a typical method of solution is nonlinear Gauss- 
Seidel (also known as Gummel’s iteration). 

In other methods, such as the Gauss-Seidel Newton method, the equations are first 
linearized. The resulting system of linear equations is then discretized on a partitioning 
of Q t o  obtain a matrix system 

dx=b (1) 

where 2 = (E(’), . . . ,p7(m))i and = (#), TIP) ,  . . . , v$’,~ is a column vector represent- 
ing the values of the function &) a t  the N grid points of Q. Hence, a t  a given grid 
point, there are m values to  be calculated, one for each species dj). The matrix A is 
typically very large and sparse. 

Our god is to find efficient methods for solving such a matrix system. Certainly, we 
could use direct solvers. But for large sparse systems, especially for three-dimensional 
problems, these methods may become prohibitive in both arithmetic complexity and 
memory requirements and hence in cost and time. 

Iterative methods, however, are well suited for the solution of large sparse linear 
systems. Jacobi, Gauss-Seidel, Successive-Overrelaxation (SOR) and other iterative 
methods and accelerators are well established [6,7,10,12,13]. They can easily be imple- 
mented to take full advantage of sparsity patterns of the matrix in order to  conserve 
on both storage and computing time. 

For large, sparse, coupled systems of equations, the choice of an iterative method 
also depends on the coupling between the unknown variables ~ ( j )  [2]. This coupling 
suggests the use of different reorderings of the dependent variables which in turn may 
lead to  different preconditioners than result from the original ordering. 

For example, in the system (1) A2 = f ~ ,  the ordering could be done “by equation” 
where the grid N values for the constituent d l )  occur first, followed by those for d2), 
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and so on for each of the rn variables v(j). So the vector g has the form 

An alternative ordering is “by grid point” where first we order all the values of the 
constituents at grid point 1, then those values a t  grid point 2, and so forth for each of 
the N grid points. This permuted vector jj of 2 would look like 

Here we investigate certain point and block iterative methods and preconditioners, 
especially those based on the orderings “by equation” and “by grid point.” 

The rest of this paper is organized as follows. In section 2 the model coupled 
system is presented in both “by equation” and “by grid point” ordering. In section 3 
the methods utilized for solving the model are overviewed. In section 4 experimental 
results are presented and discussed. In section 5 the main conclusions are summarized. 

2. The Model Coupled System 

In this study of coupled systems of equations, we are motivated by the steady-state 
normalized two carrier drift-diffusion equations from semiconductor modeling 

-Au + v - p -  N ( z )  = 0 

v * (VVU - Vu) = 0 

(pVu - Vp) = 0. v 

The functions u, v ,p ,  and N ( z )  represent the electrostatic potential, the density of 

To attack this set of nonlinear equations with numerical linear algebra techniques, 
electrons, the density of holes, and the doping profile, respectively. 

the equations are reduced in the following manner: 

1. Consider only the one carrier system. (Only u and v are kept in the equations.) 

2. Linearize the resulting equations. 

3. Assume that “the response of carriers to  a change in the electric field is much 
faster than the effective rate of change in the field.” In other words, assume that 
Vu >> Vu. (This assumption is not unusual, see [3].) 

This yields the following pair of linear second order coupled elliptic equations in u 
and v : 

(21 
- A u + v  = f, 

- A v + F - V v + q A u  = g o n S t .  

The positive real parameters E and q result from the linearization step. The constant E 

is an approximation to  the magnitude of Vu in comparison t o  Vu, 7 is an approximation 
for v in comparison t o  Vu, and r“ = (€,E). For this model problem, we use Dirichlet 
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boundary conditions and let = [0, I] x [0,1]. The one-dimensional version of this 
system has been examined in [2]. 

The usual five-point stencil discretization of the Laplacian with the natural rowwise 
ordering on an n2 x n2 mesh is used with uniform grid spacing h = &. The resulting 
scaled 2 x 2 block system with n x n subblock is 

d w = b  (3) 

where 

w = (  :), 
b = h 2 (  9 ’ )  = (i). 

Upwind differencing is used to  approximate the 7. Vv term of the equation (2), so that 

E’S = Eh2vh = (ch)(hVh) = 6‘ 
L J 

In the above system, “by equation” ordering was used where all the grid point 
values for ‘II are ordered prior to  those for v. For example, 

The discretized system can be ordered in a variety of ways. In particular, we are 
interested in studying the ordering “by grid point” where the values of u and v on a 
given grid point are taken as a pair and the natural rowwise ordering is used for these 
pairs. For this problem this yields 

The system would then appear as 
& = &  
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where d is an n x n block pentadiagonal matrix with 2 x 2 subblocks, 

A = [ C  B ] ,  

where 

7 - 1 - E ’  
-1 0 ) ,  B = (  - l ) , a n d  C = (  -’ h2 ’ = (  - i q  4 + 2 8  

Notes that there is a permutation matrix P such that 

d = PAPt. 

3. The Methods 

The model system is difficult to analyze directly due to the convection term. However, 
in [5] ,  two simpler model problems were examined that lent themselves t o  analytic 
techniques. Analysis for one of these models, an indefinite non-singular coupled sys- 
tem, was used in predicting which methods would be effective for the model presented 
here. Information gleaned from the analysis was utilized in the choice of methods t o  
be included for study with this current model system. As we shall show later, the 
incomplete factorization preconditioners based on ordering “by grid point” were the 
most robust and typically the most time efficient methods. The robustness of these 
preconditioners correlated well with the analysis given in reference [5] for the indefinite 
non-singular coupled system. 

Note that it is feasible t o  solve the model system (2) by solving for 2, in the first 
equation and then substituting into the second equation yielding a single fourth order 
equation in u. However, the goal is to determine iterative methods and preconditioners 
which will be “good” for more complicated yet analogous coupled systems that do not 
lend themselves to such an approach. 

Here we investigate certain point and block methods, especially those based on the 
orderings “by equation” and Uby grid point.” Once an ordering has been selected, 
methods can be implemented in a point or block fashion. In a point method, one 
element a t  a time is updated. In a block method, the variables are ordered into groups 
and variables within the same group are updated as a unit. 

Methods for (3) lend themselves t o  2 x 2 block methods where the subblocks are 
n2 x n2 matrices. These block methods will be called “block equation” (BE) methods. 

Methods considered for ( 5 )  will be n2 x n2 block methods where the subblocks are 
2 x 2 matrices. These methods will be designated “block grid” (BG) methods. 

In either ordering, we can chose to use point iterative methods. However, using 
point methods in the “by equation” ordering (PE - point equation) and point methods 
in the “by grid point” ordering (PG - point grid) did not yield significant, if any, dif- 
ference in results. So, we only present results for the PE, BE and BG implementations 
of the methods. 
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To solve the model problem the following methods were employed: Jacobi and 
Gauss-Seidel iterative methods, Alternate-Block-Factorization (ABF), and the Krylov 
subspace method GMRES [ll] with Jacobi, Gauss-Seidel, and incomplete LU precon- 
di tioners. 

Background on ABF is presented in [2]. It is a hybrid (composite) method in 
that both “by grid point” and “by equation” orderings are used: a block Gauss-Seidel 
iteration is applied t o  the matrix A in “by equation” ordering after it has been post- 
conditioned by the block Jacobi splitting matrix for A in “by grid point” ordering. 

The remaining methods and preconditioners are fairly standard and further back- 
ground can be found in [6,7,11,12,13,9]. 

The incomplete LU preconditioners are presented using the block (2 x 2) versions 
in “grid point” ordering. The point-equation version did not exist or were unstable 
for this model, so such data  is not presented. The block version using “by equation’‘ 
ordering does not make sense with this model, since no n2 x n2 block is fully zero, there 
would be no advantage in terms of sparsity. 

For some block methods, when ordering is done “by equation,” an inner iterative 
technique may be necessary for the sub-solves. GMRES is employed as the ‘inner’ 
solver in these cases. When ordering is done “by grid point,” the ‘inner’ solves are 
done exactly. 

Notation The shorthand denotation of the methods studied herein is as follows. 
The main letter denotes the method or preconditioner, the first subscript denotes 
whether the method is implemented in a point or block form, and the second subscript 
indicates whether the ordering was “by equation” or “by grid point .” For example, JPE 
stands for the typical point-Jacobi method on A (in “by equation” ordering). GSBG 
stands for the Gauss-Seidel method implemented in block (2 x 2) form in the “by grid 
point” ordering. 

4. Experimental Results 

The experimental results are based on the solution of 

where the right-hand-sides f and g are chosen so that the true solutions for u and v 
are given by 

u(z,y) = 32s2(z - 1)y(y2 - I ) ,  

‘u(z,Y) = 1 6 ~ ( 1  - s ) y ( l -  y). 

The model equations were discretized on an n x n grid. Hence, u and v represent 
N = n2 length column vectors and A is an order 2N matrix. For R = 7 there are 98 
unknowns, and for n = 15 there are 450 unknowns. 

The codes were written in Fortran 77 using double precision floating-point arith- 
metic. The experiments were all run on a dedicated Sun 3-280. The stopping criterion 
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Table 1: Iterations (Time) for n = 7, 7 = 0 
T Iter I € = O  I € = l  I € = l o  I c = 5 0  I E =  100 I 
I J P E  I - I  - I  - I  - I  - I  

G ~ P E  
J B E  3 (2.48) 3 (3.66) 
G S B E  3 (3.06) 3 (3.56) 
JBG - 
GSBG 
,4BF 3 (3.02) 3 (3.52) 

3 (3.20) 
3 (3.18) 

3 (3.16) 
E =  10 

65 (8.34) 
26 (4.44j 
2 (4.94) 
2 (5.02) 
70 (9.20) 
26 (3.76) 

11 (2.32) 
10 (2.12) 

c = 5 0  I 6 = 100 
72 (9.34) 1 71 (9.161 

for convergence in all cases was for the ratio of the current residual to  the initial residual 
to be less than 

Iteration counts and computational times (in parentheses) for the iterative methods 
and preconditioned GMRES are given for the model for a set of values for c given a 
value of 7. Tables 1, 2, 3, 4, and 5 ,  correspond t o  values of 11 = 0, 1, 10, 50, and 100, 
respectively. 

By examining the performance of the methods in these tables, we see that few 
methods converge for all the combination of parameter values. 

The only methods that converge throughout are ABF and GMRES preconditioned 
by JBG,  GSBG, ILUBC, and MILUBG.  Hence, these methods are seen t o  be are the 
most robust. In addition, among these methods the ILUBG and MILUBG precondi- 
tioners with GMRES are the most time efficient. 
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Precond r = O  € = 1  E =  10 c = 50 € = 100 
, J P E  - 90 (11.60) 

GSPE 92 (15.42) - 52 (8.80) 34 (5.80) 31 (5.28) 
JBE - 83 (130.60) 

JBG 22 (2.98) 33 (4.42) 49 (6.50) 69 (9.12) 83 (10.92) 
GSBG 28 (4.06) 28 (4.08) 28 (4.12) 28 (4.04) 28 (4.06) 

, G s B E  - - 

ILUBG 10 (2.14) 10 (2.22) 10 (2.12) 10 (2.14) 10 (2.14) 
MILUBG 11 (2.32) 11 (2.32) 11 (2.34) 11 (2.32) 11 (2.36) 

Table 2: Iterations (Time) for n = 7, 9 = 1 
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Table 4: Iterations (Time) for n = 7, q = 50 

I L U B ~  I 10 (2.14) I 10 (2.16) I 10 (2.16) I 10-  (2.16) I 10 (2.14) 
MILUBG I 11 (2.32) I 11 (2.32) I 11 (2.36) I 11 (2.42) 1 11 (2.34) 
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Results for n = 15 

We have seen from the n = 7 experimental results that  the most robust meth- 
ods for the model were ABF and GMRES preconditioned by JBG,  GSBG, ILUBG and 
MILUBG.  Hence, only the data  for these five methods have been tabulated in Tables 
6 and 7. 

As in the previous tables, these two tables include the iteration counts and com- 
putational time for e = O , l ,  10,50, and 100 for the set of 7 values of 0, 1, 10, 50, and 
100. 

From these results, we see again that ILUBG and MILUBG are the most efficient 
in time. 
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5. Summary 

In this paper various iterative methods and preconditioners were applied t o  the solution 
of a model system of coupled elliptic equations. Experimental results were presented 
for a range of values for the two parameters of the coupled system. 

The hybrid method ABF was by far the most robust and, typically, the most time 
efficient method among the non-accelerated methods studied. Among the precondition- 
ers employed, the block ILU and MILU methods based on ”by grid point” ordering were 
seen t o  be the most efficient and robust over a wide range of values for the parameters. 

This is noteworthy because the incomplete LU preconditioners ordered “by grid 
point” outperformed most methods even when the coupling between variables on the 
same grid point was very weak. This behavior, however, follows from the physics 
involved in coupled systems. Even in a mildly coupled system, the physical effects of 
the coupling are crucial to the behavior of the system. So, it is not surprising that 
an  iterative method or preconditioner that  utilizes the coupling will have an intrinsic 
advantage over techniques that treat each variables separately. Such behavior was seen 
in [2] for a one-dimensional coupled system. Similar behavior is expected in three- 
dimensional problems as well. 
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