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Abstract 

An algorithm was presented by Alpert and Rolihlin for the rapid evaluation 
of Legendre transforms. The fast algorithm can be expressed as a matrix-vector 
product followed by a fast cosine transform. Using the Chebyshev expansion to 
approximate the entries of the matrix and exchanging the order of summations 
reduces the time complexity of computation from O(n2) to O(nlogn), where n is 
the size of the input vector. Our work has been focused on the implementation 
and the parallelization of the fast algorithm of matrix-vector product. Results have 
shown the expected performance of the algorithm. Precision problems which arise 
as n becomes large can be resolved by doubling the precision of the calculation. 
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1. Introduction 

Legendre expansions are very important in applied mathematics. Although they can 
be useful numerical tools in many applications, the implementation poses difficulty. 
For an n-term Legendre expansion, normally it takes O(n2)  operations to evaluate the 
expansion at n nodes. Alpert, et. al., [l] presented an algorithm for the fast evaluation 
of a Legendre expansion at  Chebyshev nodes on the interval [-1,1]. Suppose we have a 
function f that has a finite Legendre expansion: 

n-1 

f ( t )  = “j Pj(t )  . 
J=o 

The algorithm substitutes the Legendre expansion with a Chebyshev expansion of the 
same length a.nd subsequently evaluates the Chebyshev expansion using a fast cosine 
transform algorithm. The replacement of the Legendre expansion by a Chebyshev 
expansion, which turns out t o  be a matrix-vector multiplication, can be done in O ( n )  
operations, while the fast cosine transform requires O ( n  log n,) operations. Therefore, 
the overall time complexity of the algorithm is of order O( n log n). 

We have concentrated our efforts on the implementation and parallelization of the 
matrix-vector multiplication part of the algorithm since there are existing codes for 
the fast cosine transform. In the process of generating the code, we discovered that 
several points needed clarification in [l]. In section 2 of this paper, we present a general 
mathematical background of the fast algorithm. In sections 3 and 4, we will describe 
in detail the sequential algorithm of the fast matrix-vector multiplication and parallel 
implementation respectively. A discussion of generalization of the fast algorithm for the 
input size can be found in section 5. Section 6 contains the conclusion of the current 
work and discuss avenue of future research. 

2. Mathematical Background 

In this section, we summarize the basic mathematical terms and theories used in the 
fast matrix multiplication for Legendre expansions. 

2.1. Legendre and C hebys hev Polynomials 

Suppose we have a set of polynomials ($0, $1,. . . , # n }  of degrees 0, 1, . . . , n. It is said 
t o  be an orthogonul set offunctionson the interval [a, b] with respect t o  the nonnegative 
continuous weight function w on this interval if 

Both Legendre and Chebyshev polynomials are orthogonal sets of polynomials on 
the interval [-1,1] [6]. The weight functions associated with these orthogonal sets are 
w ( t )  1 and w(t) = 1 / d m  (on the interval (-l , l)) ,  respectively. The Legendre 
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polynomials, {Pn}) take the form: 

( t 2  - l ) n  (72 2 0 )  , (3) P,(t) = - __ 1 dn 
2nn!  dt" 

while the Chebyshev polynomials, {Tn}, take the form: 

f l x ( t )  = cos(n arccos t) ( n  2 0 ) .  (4) 

Chebyshev nodes of order k are the zeros of Tk( t ) .  The ith node of order k on the 
interval [-1) I] can be expressed as 

1 ( 2 i +  l ) T  
t .  - -cos( > )  ' - 2  21; 

for i = 0,1, ..., k - 1. 

2.2. Relationship Between Legendre and Chebyshev 

Suppose that a function f: [-1,1] --+ R has a finite Legendre 

n-1 

f(cOs e) = . qcOs 8 )  , 
i=O 

Expansions 

expansion of the form 

and also has a finite Chebyshev expansion of the form 

n-1 n-1 

Notice here that the second term in Eq.(7) is the cosine expansion. The two vectors 
Q = ( C Y O , C Y ~ ,  . . . , c Y , - I ) ~  and $ = ( P o , / $ ,  . . . ,Pn-l)T have the relationship as follows 
-. 
~ ~ 5 1 :  

M"d (8) 

and 
cy" = L"p . (9) 

M" and L" are n x n matrices defined by 

if 0 = i 5 j < n and j is even, 

otherwise, 
z A ( $ ) A ( q )  if 0 < i 5 j < n and i +  j is even, (10) Mn. = 

'3 

and 

if i = j = 0, 
if 0 < i = j < n, 

if 0 5 a < j < n and i + j is even, 
otherwise, 

A(j-i-2) A(-) 
L?. == 

$3 
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where function A : C + C is defined by the formula: 

Here I' is the gamma function [3]. 

2.3. Lagrange Interpolation 

The following two theorems can be found in [2]. 

Theorem 2.1. If tO,tl, ..., tn are distinct numbers on the interval [a ,b]  and f E 
Cn+l[u, b] ,  for each t E [a,  b ] ,  there exists a number <(t) such that 

n. 
where Q ( t )  is defined by 

and 
n t - t j  

j = O , j # i  

is the i t h  Lagrange interpolating polynomial. 

Notice that a function is said to be smooth if it has n continuous derivatives on its 
domain. The second term of the right hand side in Eq. (13)  is the error term of the 
Lagrange interpolation and it can be minimized using the following theorem. 

Theorem 2.2. If Q is an interpolating polynomial of degree n for a function f E 
CnS1[-1, 11, the maximum error of the interpolation is minimized when Chebyshev 
nodes of order n + 1 are used for the interpolation points and 

We can extend this technique for choosing Chebyshev nodes to minimize the interpolat- 
ing error to any closed interval [a ,  b] by using the change of variable = $ [ ( b - a ) t + b + a ]  
t o  transform Chebyshev nodes ti on the interval [-l,l] into the corresponding ii on 
the interval [u ,b] .  

3. Fast Matrix Multiplication in Sequential Mode 

In this section, we discuss the fast matrix multiplication algorithm, clarify the key 
points, present our implementation, and show the results of our implementation. 
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3.1. Descript ion of the Fast Matrix Mult ipl icat ion 

First we present an example illustrating the fast matrix-vector multiplication algorithm 
presented in [l]. Suppose we have an n x n matrix T n  whose entry TG can be expressed 
as a smooth function T ( i , j )  : R x R --+ R. The smoothness of the function T allows 
us t o  compute w" = Tv" efficiently, where v' = (210, 0 1 , .  . . , ~ ~ - 1 ) ~  is an arbitrary vector. 
To compute 

n-1 

w; = c T ( i , j )  * vj  , 
j = O  

we expand T( i ,  j) a t  the Chebyshev nodes of order I C ,  { t o , t l , .  . . , t k - l } ,  in j .  We have 

j 
k - I  

T ( i , j )  x T(i , trn)  . u r ( - )  n . 
r=O 

The error of the approximation depends on the infinite norm llT(k+l)llm of the matrix. 
Substituting Eq. (18) into Eq. (17) and exchanging the order of summation, we get 

k-1 n-1 k-1 

where 
3 
n br = 21, (-) - ~j for T Q,1, . . . , k - 1 . 

j =O 

Evaluating b,, T = O , l ,  . . . , k - 1, takes O ( n k )  operations and, given these values, the 
evaluation of vector w' takes an additional O(nk) operations. For bounded llTk+lIlm 
and a given error bound E ,  k a log( l/c). Therefore, the time complexity of computing 
w" = Tv" is reduced from O ( n 2 )  to  O(nlog(l/c)). The key t o  the reduction of the 
number of operations is the Chebyshev expansion of matrix entries and the exchange 
of summation. 

Examining Eq. (10) and Eq. (ll), we notice that the entries for the two matrices M 
and L cannot be expressed as smooth functions. Both matrices are upper triangular 
with every other entry at the upper triangular part as 0. We cannot apply the fast 
method directly. If we define the following two smooth functions M ,  L : R x R --.+ R by 

and 

we have MG = M(i ,  j) when 0 < i 5 j < n and i -I- j is even, and L$ = L( i ,  j) when 
0 5 i < j < n and i + j even. We can separate the matrices into four parts if we 
rearrange the matrices in the following way: first group even indexed rows together 
and put them a t  the upper halves of the matrices, and odd indexed rows at the lower 
halves, then rearrange the columns similarly. The bottom-left and the upper-right 



- 5 -  

submatrices become 0 matrices while the upper-left and the bottom-right ones become 
upper triangular matrices, whose entries are smooth. In order to  keep the correct order 
of computation, we must rearrange the input vector accordingly, by separating even 
and odd indexed entries. Thus the matrix-vector multiplication becomes 

Finally, we must rearrange the output to obtain the final result with entries in the 
correct order .' 

By the reordering, the matrix-vector multiplication problem is reduced to  the mul- 
tiplications of upper triangular submatrices and vectors of half size. However, we still 
cannot apply directly the fast method discussed earlier in this section. Only the upper 
triangular parts of the submatrices can be expressed as smooth functions. In [l], a 
method of partitioning the upper triangular matrix was presented. The partitioning is 
illustrated in Fig. 1.2 The upper triangular matris is partitioned into square submatri- 
ces, noted as iS;,j, with side sizes of powers of 2. Here I is the level of the submatrix 
in the partition. The lower the level, the smaller the submatrix is and the more sub- 
matrices on this level are. The total number of levels of partition is h = log2(n/s) - 1. 
The smallest matrices have level number 1 and are of size s (a parameter which is 
adjusted later to  minimize the execution time). The matrix size of any level 1 > 1 is 
twice that of the previous level. Indices i and j indicate where the submatrix is located 
in the original matrix. The position of any submatrix iSi,j in the original matrix can 
be decided by the formula 

[i 'rn, (i +  1). m - 11 x 0 m, ( j +  1) - 972 - 11. (24) 

where m = 2'-' - s  is the side size of a submatrix on level 1. We can now apply the fast 
method to  the multiplications of these submatrices and the corresponding portion of the 
input vector. For the unpartitioned parts, those entries close to  or on the main diagonal, 
we multiply directly with the corresponding portion of the input vector. Summing up 
corresponding results, we obtain the product of the matrix and the vector. 

We now discuss the time complexity of the above method. On level 1 ,  there are 
3 - (2h+1-i - 1) submatrices of order 2l-I s. According t o  the properties of M and L 
matrices, the error of the interpolation shrinks as 3-k 111. Therefore for error bound 
c, k K log( l /c) .  We conclude that it takes O ( n  log( l / c ) )  to do a matrix-vector multi- 
plication of order n for a submatrix; if 6 is a constant, the time complexity is of order 
O ( n ) .  Therefore, the time complexity of multiplications of the partitioned part is 

h 

[3 - (2h+'-' - l)]  - [2'-' * S] = 3 .S - ( h  - 1) * 2h + 3 S. (25) 
1=1 

'These rearrangements are vital to the fast matrix multiplication but were not stated in [l]. 
'Our work has been focused on input vector of order of power of 2, so in the discussion below, the 

size of input is assumed to be a power of 2 unless it is explicitly stated otherwise. 
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Figure 1: Subdivision of the upper triangular matrix to  three levels. 

Tf we also consider s constant, the time complexity is of order O(nlogn) ,  since h = 
log,(n/s) -. 1. Taking into account the unpartitioned part, we conclude the overall time 
complexity is also of order O( R log n) .  

As we have noticed, the key points of the fast matrix multiplication algorithm are 
the use of the Chebyshev expansion and the exchange of summation. Previously, we 
expanded the entries of matrix in one direction only. Further improvement can be 
gained by expanding the entries of matrix in both i and j directions. Let m = 2 l - l  - s 
be the side size of a submatrix on level I, the matrix-vector multiplication for submatrix 
I Si,j becomes 

m - 1  

wI+;' = M(inz + i', j m  -I- j ' )  * V j f + j m  

j '=O 

where i' = 0,1,. . ., rn - 1. For clarity, we introduce intermediate variables as in [l] by 

a 



- 7 -  

the following formulae 

k-1 

7=0 

The following notations are helpful since we must sum up the corresponding wi's for 
the partitioned part to obtain the partial result. 

4 , g  j = 14j,2j+2 + 14j ,2 j+3  j = 0 , l  7 . . . , n / ( 2 1 .  3) - 2 ,  (31) 

(32) 
1 - cp. 

c;,2j+1 - 1 2~+1,2j+3 
- 

~f),n/m-2 cf),nlm-l = 0 7 

and 
k--1 

p=O 

To obtain the final output vector for i = 0 , 1 , .  . . , n - 1, we define the following 

Po.$z((n-i)/(2s))l [i/sJs+2s-1 

I,Li/mJ + Mc "T 7 
r=i 

c ai mod w; = 
1=1 

(34) 

where the first term on the right hand side represents the computation of the partitioned 
part of the matrix while the second term represents that of the near diagonal part in 
the matrix. 

If we count the number of operations required to compute b i j 7  we can confirm that 
the method has the complexity of order Q(n1og n). A better algorithm proposed in [l], 
which is an Q(n)  method, uses the following recursive expressions3 

and 

3See Appendix A for detail. 
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And the output vector can be calculated by the formula 

where i' = 0 , 1 , .  . ., s - 1, and j = 0,1, .  . ., n / s  - 1. 
A detailed pseudo code for the O ( n )  method can be found in Appendix B. 

3.2. Time Complexity Analysis 

In this section, we confirm the time complexity for the algorithm we discussed above is 
actually of order O ( n ) ,  using operation counts for each step of the algorithm. Table 1 
and Table2 show the time complexity analysis for each step in the initialization phase 
and the evaluation phase of the fast algorithm. 

Step 

hev interpolation coefficients, 2ks operations 
i = O , l , .  . .,s - 1, and 4k2 operations for 

If we consider both k and s constant, each step of the algorithm requires O ( n )  
operations. Therefore, the overall time complexity is of order O ( n ) .  From the previous 
discussion, we know that k 0: log(l/~). How about s? During the initialization phase, 
step 3 and step 4 dominates the computation time in that  they require the evaluation of 
the M or L function while the previous two steps require constant number of operations 
regardless of the size of input. If we count the total number of evaluations of the A4 or 

3 n 
tinit sz -k2 + -ns + - 

s 2 2 '  

L function, we get 
3n 

Choosing s to minimize the evaluation time t in i t  yields 

In the evaluation phase, multiplication dominates the computation time. Counting 
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Complexity 

O ( n k 2 / s )  

O ( n k 2 / s )  

O ( n k 2 / s )  

O(nk + n s )  

Step 

5.  

6. 

7. 

8. 

9. 

Explanation 

Computing b; , j ,  for j = O , l , .  . . ,n/s - 1 and T = 
O , l , .  . . , k - 1, at  O(s)  multiplications each, and total nk 
multiplications. 

Computing b[,j for 1 < 1 _< h. Total number of multiplica- 
tions is 2(n/s  - 4) - k 2 .  

Computing c;lj. Total number of multiplications is 3 ( n / s -  

Computing dF,j. Total number of multiplications is 

Final computation of output vector. Total number of mul- 
tiplications is nk t (n(3s + 1) - s2)/2. 

4 - h )  - k2.  

2(n / s  - 4) * I C 2 .  

these operations, we obtain 

7n 3 n 
teval w -k2 + -ns 2 -t 2nk + - 2 . 

S 

Therefore, when 

s =  g - k = 2 . 1 6 O = k ,  (43)  

teva[ becomes minimum. This result is different from that in [l]. It agrees with the 
practical performance of our implementation. 

3.3. Numerical Results 

We have implemented the O ( n )  algorithm for the matrix-vector multiplication in the C 
programming language for both single and double precision arithmetic. The results of 
the fast algorithm are compared to  those produced by the direct multiplication of the 
matrix and the vector, which is an O ( n 2 )  method, in double precision. The measure of 
error was chosen to be the C2-norm: 

I n-1 n-I 

where is the result of the fast algorithm and x’ is the result of the direct multipli- 
cation using double precision arithmetic. The components of the input vector were 
pseudorandom numbers on the interval [0,1]. The number of Chebyshev nodes for the 
expansion of submatrix entries decides the precision of the computation. We chose k 
t o  be 8 for single precision and 18 for double precision as in [l]. The tests of our C 
implementation were run on a Sun4/490. 

In order to confirm our analysis in 3 3.2 for the choice of s, the order of the smallest 
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submatrix which decides the efficiency, an automatic program was written. Fig. 2 shows 
the behavior of s for single precision calculation, with input vector size as 16384 and 
k = 8. We can see that s = 24 = 16, which is 2k, is the most efficient one. The 
diagram shows the evaluation times for different s’s, but the behavior of s is similar 
for the initialization time.4 Similar experiments confirm that s = 32 is the best choice 
for double precision calculation. 

t 

0-0 
0 1 

1 

2 3 4 5 6 7 8 
Size of smallest submatrix S (Power of 2 )  

The comparison of the fast method and the direct method is shown in Table3 and 
Table 4. In the forward direction the L matrix was used while in the backward direction 
the M matrix was used. 

When testing the code, we also checked the maximum fractional error of the com- 
ponents of the output vector. The maximum fractional error is of the same order of 
magnitude as the C2 error for the backward direction, but it is three orders of mag- 
nitude larger than the C2 error for the forward direction, using the L matrix. This 
result was obtained by comparing the results of both the fast algorithm and the di- 
rect method using single precision arithmetic against that of the direct method using 
double precision arithmetic. The maximum fractional errors are comparable. Also the 
position of the occurrence of the maximum fractional error was searched. It varied with 
different input vectors of the same size. Therefore, we conclude that the fluctuation of 
the fractional errors of the components of the output vector is due t o  the characteristics 
of the matrix L and not t o  the matrix multiplication algorithm. Using higher precision 

’Notice that only the size of input vector is needed for the initialization phase, so in practice, if we 

are doing lots of multiplications with the same input vector size, we can do the initialization once and 
store all the necessary results for the evaluation phase. 
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Input 
size 

Table 3: Single Drecision comDutation. 
L2 error Time (seconds) 

Forward I Backward I Initial. I Eval. 1 Direct 

256 
512 

I I I I I 

128 I 1.304E-07 I 1.135E-07 I 0.24 I 0.01 I 0.36 1 
1.366E-07 1.3633-07 0.58 0.03 1.42 
1.539E-07 1.6073-07 1.29 0.06 5.94 

1024 
2048 

I 

1.565E07 I 1.751E-07 2.81 I 0.11 22.97 
1.590E-07 I 2.022E-07 5.80 I 0.27 88.55 

4096 
8192 

I I 1 I 

1.594E-07 2.4093-07 11.94 0.53 357.19 
1.647E-07 2.8043-07 24.36 1.06 1462.59 

Table 4: Double Drecision comDutation. 
L2 error Time (seconds) 

Forward I Backward I Initial. 1 Eval. I Direct 

arithmetic corrects the problem for the input sizes of interest and gives the required 
precision for the output. 

The implementation of the fast algorithm has also been combined with the fast 
cosine transform (of order O ( n  log m)). Table 5 shows the maximum fractional differ- 
ence and the .C2 difference between the input vector and the output vector through 
a backward and then a forward Legendre transform. Again using a double precision 
calculation, the maximum fractional difference is within an acceptable. range for single. 
precision accuracy. 

Table 5: Legendre transform using double precision arithmetic. 
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4. Parallel Implementation 

4.1. Description of the Paral le l  Implemen ta t ion  

In this section, we discuss our initial parallel implementation of the fast matrix multi- 
plicat,ion. As mentioned before, our work has been focused on the implementation of 
a special case, in which the size of input vector is a power of 2. For the paralleliza- 
tion, we keep this assumption for the size of input vector. In addition, we assume that 
the number of processors working concurrently on the problem will also be a power 
of 2, within the ra.nge of [l, n/ (2s)] .  Computation work is equally divided among the 
processors except for the first and the last processors. 

For the initialization part, the first two steps require a constant number of op- 
erations, no matter what the size of input vector is, and the results from these two 
steps, the Chebyshev interpolation coefficients, will be used multiple times in the eval- 
uation part. Therefore all the processors are assigned t o  calculate these values and 
store them in their local memories for later use. The third step evaluates the val- 
ues ,M[;  of the k x k matrix for each submatrix lS;,j of the partition. We divide 
these submatrices on each level in columns but consider each set of three submatri- 
ces [S~~,Z;+Z, lS2i,2i+3, /S2i+1,2j+3 as indivi~ible.~ If there are more submatrix sets than 
the number of processors on a level, the sets are evenly distributed among the proces- 
sors. Otherwise, the processors are evenly distributed for these submatrix sets; several 
processors work on the same set simultaneously and store the results in their local 
memories for later use. One should notice here that the top-left set on each level is 
actually outside the upper-triangular matrix. For these sets, we just assign 0’s for 
the conveniency of later calculation. Step 4 evaluates the entries of the unpartitioned 
part of the original matrix. We evenly distribute the unpartitioned part in rows to  the 
processors and simply put 0’s for the entries outside the matrix on the last portion in 
order to make later computation convenient. 

For the evaluation part, we can actually calculate c’s right a€ter we have obtained the 
results for b’s on the same level. Fig. 3 shows the last three levels of Computation of b& 
and c:,~, using 8 processors. All the numbers in the diagram are subindices j .  As we can 
see from the diagram, the computation of b’s and c’s are evenly distributed among the 
processors and if there are not enough work for all the processors, we assign the same 
work t o  relevant processors and this eliminates communication between processors, 
which is much more expensive than the duplicated computation. But we cannot avoid 
communication entirely at this stage. We need communication between processors on 
the last two levels in order to  obtain b’s on previous levels for furthur computation. 
And we must also send the first two c;,~)s on each processor t o  its left neighbor for later 
calculation of d:,j on the latter. For the processor or the group of processors a t  the 
right end, we simply append 0’s t o  the end of the c list since the last two c’s on each 
level are 0. And Fig. 4 shows the first three levels of computation of dT,j from the results 
of c ; , ~ ,  using 8 processors. Again if there is not enough work for all the processors, we 
assign the same work to relevant processors. Notice on level I = h - 1, each processor 

5This is the reason why we have to make the assumpt.ion that the number of processors should be 
less than or equal to n/(2s). 
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calculates a different d on that level. We must check the processor id in order to decide 
whether to  use u;( tk)  or t o  use u;(t;+,). On the last step, each processor produces its 
portion of result for the output vector. 

4.2. Numerical Results 

A parallel code for the fast matrix-multiplication has been implemented in the C pro- 
gramming language for iPSC/860 parallel computer using the PICL communication 
library [4]. In order to  compare the results of the sequential and the parallel imple- 
mentations, the sequential code was modified to  run on the iPSC/S60. The maximum 
fractional differences between components of output vectors from parallel and sequen- 
tial implementations are within the machine’s precision for both single and double 
precision arithmetic. 

The efficiencies of the parallel implementation over the sequential implementation 
for the initialization phase and the evaluation phase are shown in Fig.5 and F i g 6  
respectively. The efficiency is defined as follows 

rn 

where Tseq and Tp,, are computation times for sequential and parallel implementations 
and P is the number of processors used for parallel execution. We can see from the 
diagrams that for a fixed input size, as number of processors increases, the efficiency 
decreases. From the discussion of parallel implementation, we know that as the number 
of processors increases, we introduce more and more redundant work among different 
processors, which causes the efficiency to drop. But for fixed number of processors, 
as the input size increases, we have a smdler percentage of redundant work among 
different processors, causing the efficiency to increase. 



Figure 3: Parallelization of the last three levels of computation for 6 and c, using 8 processors. 
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Figure 4: Parallelization of the first three levels of computation for d,  using 8 processors. 
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5.  Generalization 

Although the fast matrix-vector multiplication algorithm discussed in the previous 
sections requires the size of the input vector to  be a power of 2, there are ways to  
generalize the method for any kind of input. Two different generalization methods 
have been tried. 

Suppose the size of input vector is n. The straight forward generalization method 
extends the size of the input vector to  the nearest power of 2, n', and appends 0's to  
the end of the input vector.6 We can then apply the fast algorithm discussed above 
t o  obtain the resulting vector of size n'. Since for either M or L matrix, the top left 
n x n portion is the same as long as the size of the matrix is larger than n, the first n 
components of the resulting vector of size n' produce the desired output vector of size 
n. The time complexity for this method is simply O(n')  M O ( n ) .  

Another generalization method is to  partition the matrix from the top right corner, 
in the same fashion as the method described in 3, stopping when we reach submatrices 
of size s. We then procede as before, using the fast method to  compute the partitioned 
part and calculate directly for the unpartitioned part close to the major diagonal. 
Caution must be taken when we partition the matrix. As the error analysis in [l] 
shows, the partitioned submatrices are required to  be separate from the major diagonal. 
Therefore, for input vector of size between 2 P  and 2Pf1  - 1, we can only have as 
many levels of partitioning as we do for input vector of size 2 P .  This results in large 
unpartitioned portions of the original matrix when the size of the matrix is close to  but 
less than a power of 2. Because of this, we expect this generalization method to be of 
order O ( n 2 ) .  

Both methods of generalization have been implemented. Table6 shows the C2 er- 
rors of the results of both generalization methods using single precision calculation. 
Gene I refers to  the straight forward method while gene I1 the other. The errors are 
comparable to  those of the input sizes of powers of 2. Fig. 7 shows the comparison of 
the computation time of the direct method and the generalization methods. In the 
diagram, the platforms for gene I show approximately same amounts of computation 
time for input sizes between 2 P  and 2Pt1 - 1. The computation time of gene I1 has 
similar tendency as that of the direct method, in that the amount of direct compu- 
tation increases as the input size increases between 2 P  and 2P+' - 1. Going from one 
power of 2 range to  the next, the computation time drops sharply since the amount of 
unpartitioned part decreases at this point. 

6.  Conclusion 

The fast matrix-vector multiplication algorithm discussed above is an O ( n )  method. 
When the method is combined with a O(n1ogn) fast cosine transform, we have an 
O ( n  log n )  method for the Legendre expansion. The straight forward generalization 
method is easy to implement and effecient for the computation. 

When implementing the method, programmer should beware that some compilers might not have 
exact binary representation for floating point number 0. Therefore, this method will introduce extra 
error. 
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The work we have done leads toward the more general problem of a full spherical 
harmonic transform. Given anm for R. = 0,1, .  . ., N - 1 and m = -n, -R. + 1,. . . ,n,  
evaluate the expression 

N - 1  n 

a t  the points 

where i , j  = 0,1, .  . ., N - 1. Notice that the matrices A4 and L are functions of rn. 
We have focused our work on the case m = 0. Some approximation properties of M ,  
and L,  need to be established in order to apply the same technique and incorporate 
multiple Mm and L,  into a single algorithm. 
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Appendix 
A. Derivation of Recursions for br,j and dr,j 

Before we show the recursive relation of bf,;, we emphasize that the Chebyshev nodes 
being used in the fast algorithm are on the interval [O, 13, instead of [-1,1]. For any 
given function f E Cn+' [u,  b] ,  we have the Lagrange expansion 

where t; for i = 0 ,1 , .  . . , k - 1 are the Chebyshev nodes on the interval [0,1]. Therefore 
we have the following: 

and 

If we check the above two equations at the Chebyshev nodes t;/2 and (t i  + 1)/2, for 
i = 0,1,. . . , k - 1, respectively, we can confirm that  they are not approximations but 
exact expressions. And we claim the following recursive relations 

where m = 2l-l - s. 
Here we show how to derive Eq. (51) as an  example. 

Check Eq.(27) for the definition of ~ f . , ~  and notice that m / 2  <_ j < m. Now we prove 
the recursive expression for br,j. The base ca.se is trivial. For the recursive part, using 
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Eq. (as), we have 

= b i j  . 

Notice that in the proof above, m = 21-2 . s and m’ = 2m. 
in Eq. (33) 

from level h down to level E .  If there is only one level of partition, i.e. h = 1, it is 
trivial. We just have t o  substitute Eq. (37) into Eq. (39). When h > 1, we consider the 
summation of afj ’s on two adjacent levels E and 1 + 1. Suppose the i th row of the matrix 
crosses the partition level 1 and 1 + 1. In order to  compute the component of output 
vector wi, we have to take the sum of a’s on these two levels. Suppose rn = 2l-l -s, i’ = i 
mod m, j = Li/(2m)J, we have two cases t o  consider: + af+l,j and af:2J+1 l+l,j. 

Here we only consider the second case. Using Eq. (33) and Eq. (51), we have 

d[,j in the recursive definition, Eq. (38), is actually the partial sum of 

+ ai’+m 

k-1 k-1 

r=O p=O 

&. p=o r=O 

Cascade the sum of with level I -- 1 and the cy+l,, with level I + 2, we can obtain 
the recursive relation of the summation of a’s. If the 2th row of matrix does not cross 
partition levels I > 10, we can tell that the results of cI~,~, for 1 > lo,  are 0 from the 
recursive relation since the last two cy,j on each level are 0. This is how we obta.in the 
recursive relation for dr,j. 
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B. Pseudo Code For O(n)  Method of Matrix-vector Multiplication (G = 
Mv') 

Comment[Most  part of the pseudo code is drawn directly from [l]. Additional com- 
ments and modifications are added in order to clear the ambiguity in the original 
represent ation.] 

Ini t ia l izat ion Phase 

Comment[Input  to  this phase is the size of input vector n.] 
Set the number of Chebyshev nodes k w log(l/c), where E is the desired precision. Set 
the smallest interval size s z 2k, instead of s M 4k as in [l]. (See $3.2 for detail.) 

Step 1. 

Comment[Construct Chebyshev nodes to ,  t l ,  . . . t k - 1  on the interval [0,1], Chebyshev 
nodes tb, t i , .  . . , on the interval [0, $1, and Chebyshev nodes ti,th+l,. . . ,t2k.1 on 
the interval [i, 11.1 
do r = 0, ..., k- 1 

I 

set t,. = [1 - cos((? + 0 . 5 ) / n / k ) ] / 2  
set t i  = t , /2 and t;+, = (1 + t , ) / 2  

end do 

Step 2. 

Comment[Evaluate the denominators in the expressions for the Chebyshev interpola- 
tion coefficients uo, u1,. . ., uk-1.1 

d o t  = 0 , . . . 7 k -  1 

set denr = I-$:$+ (2, - tr) 
end do 

Comment[Evaluate the Chebyshev interpolation coefficients uo, u1,. . . , uk-1 at the 
uniformly spaced nodes 0, l/s, 2/s, .  . . , (s - 1)/s. Note: be careful when testing code 
with odd k's. The following code needs justification since l / s  and t ,  can both be 1/2 
for certain cases.] 

do 1 = 0,. . . , s  - 1 
set z = n,",: ( I / S  - t,) 
d o ~ = O ,  ..., k - 1  

set . , ( I / . )  = [ z / ( Z / S  - t,)]/den, 
enddo 

enddo 

Cornment[Evaluate the Chebyshev interpolation coefficients uo, q, . . . , U k - 1  at the 
Chebyshev nodes tb, t i , .  . . , tLk-l .] 
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d o 1 = 0 ,  ..., 2 k - 1  
k-1 / set 5 = n,.=-, (tl - t r )  

do T = 0, . . . , k - 1 
set %,(ti) = [z / ( t i  -- t ,)]/denr 

enddo 
enddo 

Step 3. 

Comment[Evaluate the values ,M(' of the k x k matrix on each subrnatrix iS;,j of 
the partition.] 

h = log,( n / s )  - 1 
do 1 = 1, ..., h 

do i = 0, .  . . , n/(2[-'s) - 3 
do j I= i + 2, .  . ., i + 3 - i m o d 2  

do p = 0, . . . , k - 1 
do T = 0, ..., k - 1  

Calculate IM(T according to  Eq. (29). 
enddo 

enddo 
enddo 

enddo 
enddo 

Step 4. 

Comment[Evaluate entries in the unpartitioned part of the matrix, near the diagonal. 
Note the major difference from that in [l]. Beware that indices might fall out of the 
boundary of the matrix.] 

do j = 0, . . . , n / s  - 2 
do m = 0 , .  . . , s  - 1 

d o i =  m , m + l ,  ..., 2s 

enddo 
Calculate M ( m  + j s ,  i + j s )  using Eq. (21). 

enddo 
enddo 
set j = n / s  - 1 
do m = 0,. . . , s  - 1 

do i = m, m + 1,. . . , s 

enddo 
Calculate M ( m  + j s ,  i f j s )  using Eq. (21). 

enddo 

End of Init ialization Phase 
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Evaluat ion Phase 

Comment[Input  to  this phase is v' = (VO, VI,. . ., ~,-1)*.] 

Step 5. 

Comment[Evaluate the coefficients b;,; from the input vector u' and the interpolation 
coefficients u.,(i/s).] 

d o j = O ,  ..., n / s - 1  
do T = 0, .  . . , k - 1 

enddo 
set b;,j = u,- ( i / s )  

enddo 

Step 6.  

Comment[Evaluate the coefficients bT,j for 1 2 2, which correspond t o  larger submatrix 
sizes, from the coefficients for smaller submatrix sizes and the interpolation coefficients 
U T  ( t i )  .I 
do 1 = 2, ..., h 

do j = 0,. , . , n / ( 2 ' - ' ~ )  - 1 
d o r = O ,  ..., k - 1  

enddo 
set b[,j  = [ur(t:) - b;-1,2j  t . ~ l p ( t i + i )  * bj-l,,j+J 

enddo 
enddo 

Step 7. 

Comment[Evaluate the coefficients c1,; from the values lM,?'r and the coefficients b[ , j .  
Note: do not forget to set the last two elements on each level to zero.] 
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Step 8. 

Comment[Evaluate the coefficients dL,j from the coefficients cy,j and the interpolation 
coefficients ur(t:). Note: the last two elements on each level are always zero, although 
they are calculated in the same way as others for conveniency.] 

set d i , j  = c ; , ~  for r = 0,. . ., k - 1 and j = 0 , .  . . , 3  
d o l =  h - 1 ,  ..., 1 

do j = 0,. . . , n / ( 2 ' ~ )  - 1 
do r = 0, . . . , k - 1 

set d;,,j = ~ ; , ~ j  + C f i  ui(t:) * di+,,j 

set d;,,j+l = cr,,j+l + LO ui(%+r) .dl+l,j 
k-1 

enddo 
enddo 

enddo 

Step 9. 

Comment[Evaluate the final result G = (wo, w1,. , . , ~ ~ - 1 ) ~  from the coefficients dilj, 
the interpolation coefficients u,(m/s),  the values of M near the diagonal, and the input 
vector 17. Note: check the boundary as in Step 4.1 

a. j = 0,. . . ,121s - 2 
do m = 0,. . ., s - 1 

set Wm+-js - - t=O u;( m/s)  d i , j  
do i = m , m + 1, . . . ,2.s 

enddo 
set ~ , + j s  = Wm+js + M (  '122 + j .9 ,  i + j s )  . V i g j s  

enddo 
enddo set j = n / s  - 1 
do m = 0, . . . , s - 1 

set w,+j, = u; (m/s )  df , j  
do a' = m, m 4- 1, . . . , s 

enddo 
set wm+js = w,+j, -!- M ( m  + js, a' + j s )  vi+js 

enddo 

End of Evaluat ion Phase 
End of Algorithm 
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