
3 4 4 5 6 0 3 7 7 7 2 9 b

I

...... -~ ~- __

ORNL/TM-12285

Engineering Physics and Mathematics Division

Mat hematical Sciences Section

IMPLEMENTATION AND PARALLELIZATION OF FAST MATRIX
MULTIPLICATION FOR A FAST LEGENDRE TRANSFORM

Wentao Chen
Denison University

Granville, OH 43023

Date Published: September 1993

Research sponsored jointly by the Great Lakes Colleges
Asociatjon/Associated Colleges of the Midwest and the
U.S. Department of Energy CHAMMP Program of the Of-
fice of Health and Environmental Research.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4 4 5 6 0 3 7 7 7 2 7 b

. .

Contents

1 Introduction . 1
2 Mathematical Background . 1

2.1 Legendre and Chebyshev Polynomials 1
2.2 Relationship Between Legendre and Chebyshev Expansions 2
2.3 Lagrange Interpolation . 3

3 Fast Matrix Multiplication in Sequential Mode 3
3.1 Description of the Fast Matrix Multiplication 4
3.2 Time Complexity Analysis . 8
3.3 Numerical Results . 9

4 Parallel Implementation . 12
4.1 Description of the Parallel Implementation 12
4.2 Numerical Results . 13

5 Generalization . 17
6 Conclusion . 17
7 References . 20

B Pseudo Code For O(n) Method of Matrix-vector Multiplication (w' = MG) I . 23

A Derivation of Recursions for bZj and . 21

Acknowledgements

Prepared in partial fulfillment of the requirement of the ORNL-GLCA/ACM Sci-
ence Semester under the direction of Patrick H. Worley and John B. Drake, Research
Supervisors, in the Engineering Physics and Mathematics division.

I am very grateful to all the people who have helped with my research project,
especially to those in the Engineering Physics and Mathematics Division at the Labo-
ratory. I would like to give special thanks to my advisors John B. Drake and Patrick
H. Worley, my collaborator Brad F. Lyon, and Esmond Ng, who helped a great deal
putting this report together.

- v -

IMPLEMENTATION AND PARALLELIZATION OF FAST MATRIX
MULTIPLICATION FOR A FAST LEGENDRE TRANSFORM

Wentao Chen
Denison University

Granville, OH 43023

Abstract

An algorithm was presented by Alpert and Rolihlin for the rapid evaluation
of Legendre transforms. The fast algorithm can be expressed as a matrix-vector
product followed by a fast cosine transform. Using the Chebyshev expansion to
approximate the entries of the matrix and exchanging the order of summations
reduces the time complexity of computation from O(n2) to O(nlogn), where n is
the size of the input vector. Our work has been focused on the implementation
and the parallelization of the fast algorithm of matrix-vector product. Results have
shown the expected performance of the algorithm. Precision problems which arise
as n becomes large can be resolved by doubling the precision of the calculation.

- vii -

1. Introduction

Legendre expansions are very important in applied mathematics. Although they can
be useful numerical tools in many applications, the implementation poses difficulty.
For an n-term Legendre expansion, normally it takes O(n2) operations to evaluate the
expansion at n nodes. Alpert, et. al., [l] presented an algorithm for the fast evaluation
of a Legendre expansion at Chebyshev nodes on the interval [-1,1]. Suppose we have a
function f that has a finite Legendre expansion:

n-1

f (t) = “j Pj(t) .
J=o

The algorithm substitutes the Legendre expansion with a Chebyshev expansion of the
same length a.nd subsequently evaluates the Chebyshev expansion using a fast cosine
transform algorithm. The replacement of the Legendre expansion by a Chebyshev
expansion, which turns out t o be a matrix-vector multiplication, can be done in O (n)
operations, while the fast cosine transform requires O (n log n,) operations. Therefore,
the overall time complexity of the algorithm is of order O(n log n).

We have concentrated our efforts on the implementation and parallelization of the
matrix-vector multiplication part of the algorithm since there are existing codes for
the fast cosine transform. In the process of generating the code, we discovered that
several points needed clarification in [l]. In section 2 of this paper, we present a general
mathematical background of the fast algorithm. In sections 3 and 4, we will describe
in detail the sequential algorithm of the fast matrix-vector multiplication and parallel
implementation respectively. A discussion of generalization of the fast algorithm for the
input size can be found in section 5. Section 6 contains the conclusion of the current
work and discuss avenue of future research.

2. Mathematical Background

In this section, we summarize the basic mathematical terms and theories used in the
fast matrix multiplication for Legendre expansions.

2.1. Legendre and C hebys hev Polynomials

Suppose we have a set of polynomials ($0, $1,. . . , # n } of degrees 0, 1, . . . , n. It is said
t o be an orthogonul set offunctionson the interval [a, b] with respect t o the nonnegative
continuous weight function w on this interval if

Both Legendre and Chebyshev polynomials are orthogonal sets of polynomials on
the interval [-1,1] [6]. The weight functions associated with these orthogonal sets are
w (t) 1 and w(t) = 1 / d m (on the interval (-l , l)) , respectively. The Legendre

- 2 -

polynomials, {Pn}) take the form:

(t 2 - l) n (72 2 0) , (3) P,(t) = - __ 1 dn
2nn! dt"

while the Chebyshev polynomials, {Tn}, take the form:

f l x (t) = cos(n arccos t) (n 2 0) . (4)

Chebyshev nodes of order k are the zeros of Tk(t) . The ith node of order k on the
interval [-1) I] can be expressed as

1 (2 i + l) T
t . - -cos(>) ' - 2 21;

for i = 0,1, ..., k - 1.

2.2. Relationship Between Legendre and Chebyshev

Suppose that a function f: [-1,1] --+ R has a finite Legendre

n-1

f(cOs e) = . qcOs 8) ,
i=O

Expansions

expansion of the form

and also has a finite Chebyshev expansion of the form

n-1 n-1

Notice here that the second term in Eq.(7) is the cosine expansion. The two vectors
Q = (C Y O , C Y ~ , . . . , c Y , - I) ~ and $ = (P o , / $, . . . ,Pn-l)T have the relationship as follows
-.
~ ~ 5 1 :

M"d (8)

and
cy" = L"p . (9)

M" and L" are n x n matrices defined by

if 0 = i 5 j < n and j is even,

otherwise,
z A ($) A (q) if 0 < i 5 j < n and i + j is even, (10) Mn. =

'3

and

if i = j = 0,
if 0 < i = j < n,

if 0 5 a < j < n and i + j is even,
otherwise,

A(j-i-2) A(-)
L?. ==

$3

- 3 -

where function A : C + C is defined by the formula:

Here I' is the gamma function [3].

2.3. Lagrange Interpolation

The following two theorems can be found in [2].

Theorem 2.1. If tO,tl, ..., tn are distinct numbers on the interval [a ,b] and f E
Cn+l[u, b] , for each t E [a, b] , there exists a number <(t) such that

n.
where Q (t) is defined by

and
n t - t j

j = O , j # i

is the i t h Lagrange interpolating polynomial.

Notice that a function is said to be smooth if it has n continuous derivatives on its
domain. The second term of the right hand side in Eq. (13) is the error term of the
Lagrange interpolation and it can be minimized using the following theorem.

Theorem 2.2. If Q is an interpolating polynomial of degree n for a function f E
CnS1[-1, 11, the maximum error of the interpolation is minimized when Chebyshev
nodes of order n + 1 are used for the interpolation points and

We can extend this technique for choosing Chebyshev nodes to minimize the interpolat-
ing error to any closed interval [a , b] by using the change of variable = $ [(b - a) t + b + a]
t o transform Chebyshev nodes ti on the interval [-l,l] into the corresponding ii on
the interval [u ,b] .

3. Fast Matrix Multiplication in Sequential Mode

In this section, we discuss the fast matrix multiplication algorithm, clarify the key
points, present our implementation, and show the results of our implementation.

- 4 -

3.1. Descript ion of the Fast Matrix Mult ipl icat ion

First we present an example illustrating the fast matrix-vector multiplication algorithm
presented in [l]. Suppose we have an n x n matrix T n whose entry TG can be expressed
as a smooth function T (i , j) : R x R --+ R. The smoothness of the function T allows
us t o compute w" = Tv" efficiently, where v' = (210, 0 1 , . . . , ~ ~ - 1) ~ is an arbitrary vector.
To compute

n-1

w; = c T (i , j) * vj ,
j = O

we expand T(i , j) a t the Chebyshev nodes of order I C , { t o , t l , . . . , t k - l } , in j . We have

j
k - I

T (i , j) x T(i , trn) . u r (-) n .
r=O

The error of the approximation depends on the infinite norm llT(k+l)llm of the matrix.
Substituting Eq. (18) into Eq. (17) and exchanging the order of summation, we get

k-1 n-1 k-1

where
3
n br = 21, (-) - ~j for T Q,1, . . . , k - 1 .

j =O

Evaluating b,, T = O , l , . . . , k - 1, takes O (n k) operations and, given these values, the
evaluation of vector w' takes an additional O(nk) operations. For bounded llTk+lIlm
and a given error bound E , k a log(l/c). Therefore, the time complexity of computing
w" = Tv" is reduced from O (n 2) to O(nlog(l/c)). The key t o the reduction of the
number of operations is the Chebyshev expansion of matrix entries and the exchange
of summation.

Examining Eq. (10) and Eq. (ll), we notice that the entries for the two matrices M
and L cannot be expressed as smooth functions. Both matrices are upper triangular
with every other entry at the upper triangular part as 0. We cannot apply the fast
method directly. If we define the following two smooth functions M , L : R x R --.+ R by

and

we have MG = M(i , j) when 0 < i 5 j < n and i -I- j is even, and L$ = L(i , j) when
0 5 i < j < n and i + j even. We can separate the matrices into four parts if we
rearrange the matrices in the following way: first group even indexed rows together
and put them a t the upper halves of the matrices, and odd indexed rows at the lower
halves, then rearrange the columns similarly. The bottom-left and the upper-right

- 5 -

submatrices become 0 matrices while the upper-left and the bottom-right ones become
upper triangular matrices, whose entries are smooth. In order to keep the correct order
of computation, we must rearrange the input vector accordingly, by separating even
and odd indexed entries. Thus the matrix-vector multiplication becomes

Finally, we must rearrange the output to obtain the final result with entries in the
correct order .'

By the reordering, the matrix-vector multiplication problem is reduced to the mul-
tiplications of upper triangular submatrices and vectors of half size. However, we still
cannot apply directly the fast method discussed earlier in this section. Only the upper
triangular parts of the submatrices can be expressed as smooth functions. In [l], a
method of partitioning the upper triangular matrix was presented. The partitioning is
illustrated in Fig. 1.2 The upper triangular matris is partitioned into square submatri-
ces, noted as iS;,j, with side sizes of powers of 2. Here I is the level of the submatrix
in the partition. The lower the level, the smaller the submatrix is and the more sub-
matrices on this level are. The total number of levels of partition is h = log2(n/s) - 1.
The smallest matrices have level number 1 and are of size s (a parameter which is
adjusted later to minimize the execution time). The matrix size of any level 1 > 1 is
twice that of the previous level. Indices i and j indicate where the submatrix is located
in the original matrix. The position of any submatrix iSi,j in the original matrix can
be decided by the formula

[i 'rn, (i + 1). m - 11 x 0 m, (j + 1) - 972 - 11. (24)

where m = 2'-' - s is the side size of a submatrix on level 1. We can now apply the fast
method to the multiplications of these submatrices and the corresponding portion of the
input vector. For the unpartitioned parts, those entries close to or on the main diagonal,
we multiply directly with the corresponding portion of the input vector. Summing up
corresponding results, we obtain the product of the matrix and the vector.

We now discuss the time complexity of the above method. On level 1 , there are
3 - (2h+1-i - 1) submatrices of order 2l-I s. According t o the properties of M and L
matrices, the error of the interpolation shrinks as 3-k 111. Therefore for error bound
c, k K log(l /c) . We conclude that it takes O (n log(l / c)) to do a matrix-vector multi-
plication of order n for a submatrix; if 6 is a constant, the time complexity is of order
O (n) . Therefore, the time complexity of multiplications of the partitioned part is

h

[3 - (2h+'-' - l)] - [2'-' * S] = 3 .S - (h - 1) * 2h + 3 S. (25)
1=1

'These rearrangements are vital to the fast matrix multiplication but were not stated in [l].
'Our work has been focused on input vector of order of power of 2, so in the discussion below, the

size of input is assumed to be a power of 2 unless it is explicitly stated otherwise.

- 6 -

Figure 1: Subdivision of the upper triangular matrix to three levels.

Tf we also consider s constant, the time complexity is of order O(nlogn) , since h =
log,(n/s) -. 1. Taking into account the unpartitioned part, we conclude the overall time
complexity is also of order O(R log n) .

As we have noticed, the key points of the fast matrix multiplication algorithm are
the use of the Chebyshev expansion and the exchange of summation. Previously, we
expanded the entries of matrix in one direction only. Further improvement can be
gained by expanding the entries of matrix in both i and j directions. Let m = 2 l - l - s
be the side size of a submatrix on level I, the matrix-vector multiplication for submatrix
I Si,j becomes

m - 1

wI+;' = M(inz + i', j m -I- j ') * V j f + j m

j '=O

where i' = 0,1,. . ., rn - 1. For clarity, we introduce intermediate variables as in [l] by

a

- 7 -

the following formulae

k-1

7=0

The following notations are helpful since we must sum up the corresponding wi's for
the partitioned part to obtain the partial result.

4 , g j = 14j,2j+2 + 14j ,2 j+3 j = 0 , l 7 . . . , n / (2 1 . 3) - 2 , (31)

(32)
1 - cp.

c;,2j+1 - 1 2~+1,2j+3
-

~f),n/m-2 cf),nlm-l = 0 7

and
k--1

p=O

To obtain the final output vector for i = 0 , 1 , . . . , n - 1, we define the following

Po.$z((n-i)/(2s))l [i/sJs+2s-1

I,Li/mJ + Mc "T 7
r=i

c ai mod w; =
1=1

(34)

where the first term on the right hand side represents the computation of the partitioned
part of the matrix while the second term represents that of the near diagonal part in
the matrix.

If we count the number of operations required to compute b i j 7 we can confirm that
the method has the complexity of order Q(n1og n). A better algorithm proposed in [l],
which is an Q(n) method, uses the following recursive expressions3

and

3See Appendix A for detail.

- 8 -

And the output vector can be calculated by the formula

where i' = 0 , 1 , . . ., s - 1, and j = 0,1, . . ., n / s - 1.
A detailed pseudo code for the O (n) method can be found in Appendix B.

3.2. Time Complexity Analysis

In this section, we confirm the time complexity for the algorithm we discussed above is
actually of order O (n) , using operation counts for each step of the algorithm. Table 1
and Table2 show the time complexity analysis for each step in the initialization phase
and the evaluation phase of the fast algorithm.

Step

hev interpolation coefficients, 2ks operations
i = O , l , . . .,s - 1, and 4k2 operations for

If we consider both k and s constant, each step of the algorithm requires O (n)
operations. Therefore, the overall time complexity is of order O (n) . From the previous
discussion, we know that k 0: log(l/~). How about s? During the initialization phase,
step 3 and step 4 dominates the computation time in that they require the evaluation of
the M or L function while the previous two steps require constant number of operations
regardless of the size of input. If we count the total number of evaluations of the A4 or

3 n
tinit sz -k2 + -ns + -

s 2 2 '

L function, we get
3n

Choosing s to minimize the evaluation time t in i t yields

In the evaluation phase, multiplication dominates the computation time. Counting

- 9 -

Complexity

O (n k 2 / s)

O (n k 2 / s)

O (n k 2 / s)

O(nk + n s)

Step

5.

6.

7.

8.

9.

Explanation

Computing b; , j , for j = O , l , . . . ,n/s - 1 and T =
O , l , . . . , k - 1, at O(s) multiplications each, and total nk
multiplications.

Computing b[,j for 1 < 1 _< h. Total number of multiplica-
tions is 2(n/s - 4) - k 2 .

Computing c;lj. Total number of multiplications is 3 (n / s -

Computing dF,j. Total number of multiplications is

Final computation of output vector. Total number of mul-
tiplications is nk t (n(3s + 1) - s2)/2.

4 - h) - k2.

2(n / s - 4) * I C 2 .

these operations, we obtain

7n 3 n
teval w -k2 + -ns 2 -t 2nk + - 2 .

S

Therefore, when

s = g - k = 2 . 1 6 O = k , (43)

teva[becomes minimum. This result is different from that in [l]. It agrees with the
practical performance of our implementation.

3.3. Numerical Results

We have implemented the O (n) algorithm for the matrix-vector multiplication in the C
programming language for both single and double precision arithmetic. The results of
the fast algorithm are compared to those produced by the direct multiplication of the
matrix and the vector, which is an O (n 2) method, in double precision. The measure of
error was chosen to be the C2-norm:

I n-1 n-I

where is the result of the fast algorithm and x’ is the result of the direct multipli-
cation using double precision arithmetic. The components of the input vector were
pseudorandom numbers on the interval [0,1]. The number of Chebyshev nodes for the
expansion of submatrix entries decides the precision of the computation. We chose k
t o be 8 for single precision and 18 for double precision as in [l]. The tests of our C
implementation were run on a Sun4/490.

In order to confirm our analysis in 3 3.2 for the choice of s, the order of the smallest

- 1 0 -

submatrix which decides the efficiency, an automatic program was written. Fig. 2 shows
the behavior of s for single precision calculation, with input vector size as 16384 and
k = 8. We can see that s = 24 = 16, which is 2k, is the most efficient one. The
diagram shows the evaluation times for different s’s, but the behavior of s is similar
for the initialization time.4 Similar experiments confirm that s = 32 is the best choice
for double precision calculation.

t

0-0
0 1

1

2 3 4 5 6 7 8
Size of smallest submatrix S (Power of 2)

The comparison of the fast method and the direct method is shown in Table3 and
Table 4. In the forward direction the L matrix was used while in the backward direction
the M matrix was used.

When testing the code, we also checked the maximum fractional error of the com-
ponents of the output vector. The maximum fractional error is of the same order of
magnitude as the C2 error for the backward direction, but it is three orders of mag-
nitude larger than the C2 error for the forward direction, using the L matrix. This
result was obtained by comparing the results of both the fast algorithm and the di-
rect method using single precision arithmetic against that of the direct method using
double precision arithmetic. The maximum fractional errors are comparable. Also the
position of the occurrence of the maximum fractional error was searched. It varied with
different input vectors of the same size. Therefore, we conclude that the fluctuation of
the fractional errors of the components of the output vector is due t o the characteristics
of the matrix L and not t o the matrix multiplication algorithm. Using higher precision

’Notice that only the size of input vector is needed for the initialization phase, so in practice, if we

are doing lots of multiplications with the same input vector size, we can do the initialization once and
store all the necessary results for the evaluation phase.

- 11 -

Input
size

Table 3: Single Drecision comDutation.
L2 error Time (seconds)

Forward I Backward I Initial. I Eval. 1 Direct

256
512

I I I I I

128 I 1.304E-07 I 1.135E-07 I 0.24 I 0.01 I 0.36 1
1.366E-07 1.3633-07 0.58 0.03 1.42
1.539E-07 1.6073-07 1.29 0.06 5.94

1024
2048

I

1.565E07 I 1.751E-07 2.81 I 0.11 22.97
1.590E-07 I 2.022E-07 5.80 I 0.27 88.55

4096
8192

I I 1 I

1.594E-07 2.4093-07 11.94 0.53 357.19
1.647E-07 2.8043-07 24.36 1.06 1462.59

Table 4: Double Drecision comDutation.
L2 error Time (seconds)

Forward I Backward I Initial. 1 Eval. I Direct

arithmetic corrects the problem for the input sizes of interest and gives the required
precision for the output.

The implementation of the fast algorithm has also been combined with the fast
cosine transform (of order O (n log m)). Table 5 shows the maximum fractional differ-
ence and the .C2 difference between the input vector and the output vector through
a backward and then a forward Legendre transform. Again using a double precision
calculation, the maximum fractional difference is within an acceptable. range for single.
precision accuracy.

Table 5: Legendre transform using double precision arithmetic.

- 12 -

4. Parallel Implementation

4.1. Description of the Paral le l Implemen ta t ion

In this section, we discuss our initial parallel implementation of the fast matrix multi-
plicat,ion. As mentioned before, our work has been focused on the implementation of
a special case, in which the size of input vector is a power of 2. For the paralleliza-
tion, we keep this assumption for the size of input vector. In addition, we assume that
the number of processors working concurrently on the problem will also be a power
of 2, within the ra.nge of [l, n/ (2s)] . Computation work is equally divided among the
processors except for the first and the last processors.

For the initialization part, the first two steps require a constant number of op-
erations, no matter what the size of input vector is, and the results from these two
steps, the Chebyshev interpolation coefficients, will be used multiple times in the eval-
uation part. Therefore all the processors are assigned t o calculate these values and
store them in their local memories for later use. The third step evaluates the val-
ues ,M[; of the k x k matrix for each submatrix lS;,j of the partition. We divide
these submatrices on each level in columns but consider each set of three submatri-
ces [S~~,Z;+Z, lS2i,2i+3, /S2i+1,2j+3 as indivi~ible.~ If there are more submatrix sets than
the number of processors on a level, the sets are evenly distributed among the proces-
sors. Otherwise, the processors are evenly distributed for these submatrix sets; several
processors work on the same set simultaneously and store the results in their local
memories for later use. One should notice here that the top-left set on each level is
actually outside the upper-triangular matrix. For these sets, we just assign 0’s for
the conveniency of later calculation. Step 4 evaluates the entries of the unpartitioned
part of the original matrix. We evenly distribute the unpartitioned part in rows to the
processors and simply put 0’s for the entries outside the matrix on the last portion in
order to make later computation convenient.

For the evaluation part, we can actually calculate c’s right a€ter we have obtained the
results for b’s on the same level. Fig. 3 shows the last three levels of Computation of b&
and c:,~, using 8 processors. All the numbers in the diagram are subindices j . As we can
see from the diagram, the computation of b’s and c’s are evenly distributed among the
processors and if there are not enough work for all the processors, we assign the same
work t o relevant processors and this eliminates communication between processors,
which is much more expensive than the duplicated computation. But we cannot avoid
communication entirely at this stage. We need communication between processors on
the last two levels in order to obtain b’s on previous levels for furthur computation.
And we must also send the first two c;,~)s on each processor t o its left neighbor for later
calculation of d:,j on the latter. For the processor or the group of processors a t the
right end, we simply append 0’s t o the end of the c list since the last two c’s on each
level are 0. And Fig. 4 shows the first three levels of computation of dT,j from the results
of c ; , ~ , using 8 processors. Again if there is not enough work for all the processors, we
assign the same work to relevant processors. Notice on level I = h - 1, each processor

5This is the reason why we have to make the assumpt.ion that the number of processors should be
less than or equal to n/(2s).

- 13-

calculates a different d on that level. We must check the processor id in order to decide
whether to use u;(tk) or t o use u;(t;+,). On the last step, each processor produces its
portion of result for the output vector.

4.2. Numerical Results

A parallel code for the fast matrix-multiplication has been implemented in the C pro-
gramming language for iPSC/860 parallel computer using the PICL communication
library [4]. In order to compare the results of the sequential and the parallel imple-
mentations, the sequential code was modified to run on the iPSC/S60. The maximum
fractional differences between components of output vectors from parallel and sequen-
tial implementations are within the machine’s precision for both single and double
precision arithmetic.

The efficiencies of the parallel implementation over the sequential implementation
for the initialization phase and the evaluation phase are shown in Fig.5 and F i g 6
respectively. The efficiency is defined as follows

rn

where Tseq and Tp,, are computation times for sequential and parallel implementations
and P is the number of processors used for parallel execution. We can see from the
diagrams that for a fixed input size, as number of processors increases, the efficiency
decreases. From the discussion of parallel implementation, we know that as the number
of processors increases, we introduce more and more redundant work among different
processors, which causes the efficiency to drop. But for fixed number of processors,
as the input size increases, we have a smdler percentage of redundant work among
different processors, causing the efficiency to increase.

Figure 3: Parallelization of the last three levels of computation for 6 and c, using 8 processors.

I I I I I I 1
s ! I

MI=h-3) 0 1 2 3 I 4 5 6 1 1 8 9 10 11 I 12 13 14 15 116 17 18 19 I 20 21 22 23 I24 25 26 27 I28 29 30 31

- Null

- Null

- - - _ - - _ - Communication Line Null: Append 0's to the end of list on the last processcr,

Figure 4: Parallelization of the first three levels of computation for d, using 8 processors.

I I I I I I I

d(l=h-3) 0 1 2 3 4 5 6 7 I 8 9 10 11 I 12 13 14 15 I16 17 18 19 I 20 21
I I I I
I I I 1 I
I I I I I

11 ! 12 13 ! 14

22 23' 24 25 26 27 I28 29
I
I I
I I

6
30 31

processor0 1 processor1 I processor2 I processor3 I processor4 I processor5 1 processor6 I processor7
I I I I I I I
I I I I 1 I I

- 1 6 -

I I I I I
0

1 0 0 ,

ao

60

40

20

0

Figure 5: Efficiency of initialization phase using M matrix.
I 1 I I I I I

nX16384
EF----€ n=8192

n=4096
b----d n=2048 - n = 1024
-t----t n==512

I I I I
1 2 3

I I I
4 5 6 7

Number of processors (Power of 2)

- 1 7 -

5. Generalization

Although the fast matrix-vector multiplication algorithm discussed in the previous
sections requires the size of the input vector to be a power of 2, there are ways to
generalize the method for any kind of input. Two different generalization methods
have been tried.

Suppose the size of input vector is n. The straight forward generalization method
extends the size of the input vector to the nearest power of 2, n', and appends 0's to
the end of the input vector.6 We can then apply the fast algorithm discussed above
t o obtain the resulting vector of size n'. Since for either M or L matrix, the top left
n x n portion is the same as long as the size of the matrix is larger than n, the first n
components of the resulting vector of size n' produce the desired output vector of size
n. The time complexity for this method is simply O(n') M O (n) .

Another generalization method is to partition the matrix from the top right corner,
in the same fashion as the method described in 3, stopping when we reach submatrices
of size s. We then procede as before, using the fast method to compute the partitioned
part and calculate directly for the unpartitioned part close to the major diagonal.
Caution must be taken when we partition the matrix. As the error analysis in [l]
shows, the partitioned submatrices are required to be separate from the major diagonal.
Therefore, for input vector of size between 2 P and 2Pf1 - 1, we can only have as
many levels of partitioning as we do for input vector of size 2 P . This results in large
unpartitioned portions of the original matrix when the size of the matrix is close to but
less than a power of 2. Because of this, we expect this generalization method to be of
order O (n 2) .

Both methods of generalization have been implemented. Table6 shows the C2 er-
rors of the results of both generalization methods using single precision calculation.
Gene I refers to the straight forward method while gene I1 the other. The errors are
comparable to those of the input sizes of powers of 2. Fig. 7 shows the comparison of
the computation time of the direct method and the generalization methods. In the
diagram, the platforms for gene I show approximately same amounts of computation
time for input sizes between 2 P and 2Pt1 - 1. The computation time of gene I1 has
similar tendency as that of the direct method, in that the amount of direct compu-
tation increases as the input size increases between 2 P and 2P+' - 1. Going from one
power of 2 range to the next, the computation time drops sharply since the amount of
unpartitioned part decreases at this point.

6. Conclusion

The fast matrix-vector multiplication algorithm discussed above is an O (n) method.
When the method is combined with a O(n1ogn) fast cosine transform, we have an
O (n log n) method for the Legendre expansion. The straight forward generalization
method is easy to implement and effecient for the computation.

When implementing the method, programmer should beware that some compilers might not have
exact binary representation for floating point number 0. Therefore, this method will introduce extra
error.

- 1 8 -

Input Gene I Gene I I
size

S O

c3----ta Direct method-
o------+, Gene I, - 60 Gene 11, 43

e2
E a2

z
2
-- E

s

40

a

u 20

200 600 1000 1400 1soo 2200 2600

Input Size

0

Forward I Backward I Forward I Backward
500
700

2.567E-07 2.898E-07 1.061E-07 3.031E-07
2.542E-07 4.004E-07 1.543E-07 3.564E07

- 19 -

The work we have done leads toward the more general problem of a full spherical
harmonic transform. Given anm for R. = 0,1, . . ., N - 1 and m = -n, -R. + 1,. . . ,n,
evaluate the expression

N - 1 n

a t the points

where i , j = 0,1, . . ., N - 1. Notice that the matrices A4 and L are functions of rn.
We have focused our work on the case m = 0. Some approximation properties of M ,
and L, need to be established in order to apply the same technique and incorporate
multiple Mm and L, into a single algorithm.

- 20 -

7. References

[l] B. K. Alpcrt and V. Rokhlin. A fast algorithm for the evaluation of legendre
expansions. SIAM J. Sci. Stat. Cornput., 12, No. 1:158-179, 1991.

[2] R. L. Burden and J. D. Faires. Numerical Analysis. PWS-Kent, Boston, MA, 4
edition, 1989.

[3] P. J. Davis. Gamma function and related functions. In M. Abramowitz and I. A.
Stegun, editors, Handbook of Mathematical Functions, chapter 6 , pages 253-293.
Dover Publications, Inc., New York, 1972.

[4] G. A. Geist, M. T. Heath, R. W. Peyton, and P. II. Worley. A user’s guid to PICL: a
portable instrumented communication library. Technical Report ORNL/TM-11616,
Oak Ridge National Labomtory, August 1990.

[5] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Aca-
demic Press, New York, 1980.

[6] U. W. Hochstrasser. Orthogonal polynomials. In M. Abramowitz and 1. A. Stegun,
editors, Handbook of Mathematical Functions, chapter 22, pages 771-802. Dover
Publications, Inc., New York, 1972.

- 21 '-

Appendix
A. Derivation of Recursions for br,j and dr,j

Before we show the recursive relation of bf,;, we emphasize that the Chebyshev nodes
being used in the fast algorithm are on the interval [O, 13, instead of [-1,1]. For any
given function f E Cn+' [u, b] , we have the Lagrange expansion

where t; for i = 0 ,1 , . . . , k - 1 are the Chebyshev nodes on the interval [0,1]. Therefore
we have the following:

and

If we check the above two equations at the Chebyshev nodes t;/2 and (t i + 1)/2, for
i = 0,1,. . . , k - 1, respectively, we can confirm that they are not approximations but
exact expressions. And we claim the following recursive relations

where m = 2l-l - s.
Here we show how to derive Eq. (51) as an example.

Check Eq.(27) for the definition of ~ f . , ~ and notice that m / 2 <_ j < m. Now we prove
the recursive expression for br,j. The base ca.se is trivial. For the recursive part, using

- 22 -

Eq. (as), we have

= b i j .

Notice that in the proof above, m = 21-2 . s and m’ = 2m.
in Eq. (33)

from level h down to level E . If there is only one level of partition, i.e. h = 1, it is
trivial. We just have t o substitute Eq. (37) into Eq. (39). When h > 1, we consider the
summation of afj ’s on two adjacent levels E and 1 + 1. Suppose the i th row of the matrix
crosses the partition level 1 and 1 + 1. In order to compute the component of output
vector wi, we have to take the sum of a’s on these two levels. Suppose rn = 2l-l -s, i’ = i
mod m, j = Li/(2m)J, we have two cases t o consider: + af+l,j and af:2J+1 l+l,j.

Here we only consider the second case. Using Eq. (33) and Eq. (51), we have

d[,j in the recursive definition, Eq. (38), is actually the partial sum of

+ ai’+m

k-1 k-1

r=O p=O

&. p=o r=O

Cascade the sum of with level I -- 1 and the cy+l,, with level I + 2, we can obtain
the recursive relation of the summation of a’s. If the 2th row of matrix does not cross
partition levels I > 10, we can tell that the results of cI~,~, for 1 > lo, are 0 from the
recursive relation since the last two cy,j on each level are 0. This is how we obta.in the
recursive relation for dr,j.

- 23 -

B. Pseudo Code For O(n) Method of Matrix-vector Multiplication (G =
Mv')

Comment[Most part of the pseudo code is drawn directly from [l]. Additional com-
ments and modifications are added in order to clear the ambiguity in the original
represent ation.]

Ini t ia l izat ion Phase

Comment[Input to this phase is the size of input vector n.]
Set the number of Chebyshev nodes k w log(l/c), where E is the desired precision. Set
the smallest interval size s z 2k, instead of s M 4k as in [l]. (See $3.2 for detail.)

Step 1.

Comment[Construct Chebyshev nodes to , t l , . . . t k - 1 on the interval [0,1], Chebyshev
nodes tb, t i , . . . , on the interval [0, $1, and Chebyshev nodes ti,th+l,. . . ,t2k.1 on
the interval [i, 11.1
do r = 0, ..., k- 1

I

set t,. = [1 - cos((? + 0 . 5) / n / k)] / 2
set t i = t , /2 and t;+, = (1 + t ,) / 2

end do

Step 2.

Comment[Evaluate the denominators in the expressions for the Chebyshev interpola-
tion coefficients uo, u1,. . ., uk-1.1

d o t = 0 , . . . 7 k - 1

set denr = I-$:$+ (2, - tr)
end do

Comment[Evaluate the Chebyshev interpolation coefficients uo, u1,. . . , uk-1 at the
uniformly spaced nodes 0, l/s, 2/s, . . . , (s - 1)/s. Note: be careful when testing code
with odd k's. The following code needs justification since l / s and t , can both be 1/2
for certain cases.]

do 1 = 0,. . . , s - 1
set z = n,",: (I / S - t,)
d o ~ = O , ..., k - 1

set . , (I / .) = [z / (Z / S - t,)]/den,
enddo

enddo

Cornment[Evaluate the Chebyshev interpolation coefficients uo, q, . . . , U k - 1 at the
Chebyshev nodes tb, t i , . . . , tLk-l .]

- 24 -

d o 1 = 0 , ..., 2 k - 1
k-1 / set 5 = n,.=-, (tl - t r)

do T = 0, . . . , k - 1
set %,(ti) = [z / (t i -- t ,)]/denr

enddo
enddo

Step 3.

Comment[Evaluate the values ,M(' of the k x k matrix on each subrnatrix iS;,j of
the partition.]

h = log,(n / s) - 1
do 1 = 1, ..., h

do i = 0, . . . , n/(2[-'s) - 3
do j I= i + 2, . . ., i + 3 - i m o d 2

do p = 0, . . . , k - 1
do T = 0, ..., k - 1

Calculate IM(T according to Eq. (29).
enddo

enddo
enddo

enddo
enddo

Step 4.

Comment[Evaluate entries in the unpartitioned part of the matrix, near the diagonal.
Note the major difference from that in [l]. Beware that indices might fall out of the
boundary of the matrix.]

do j = 0, . . . , n / s - 2
do m = 0 , . . . , s - 1

d o i = m , m + l , ..., 2s

enddo
Calculate M (m + j s , i + j s) using Eq. (21).

enddo
enddo
set j = n / s - 1
do m = 0,. . . , s - 1

do i = m, m + 1,. . . , s

enddo
Calculate M (m + j s , i f j s) using Eq. (21).

enddo

End of Init ialization Phase

- 25 -

Evaluat ion Phase

Comment[Input to this phase is v' = (VO, VI,. . ., ~,-1)*.]

Step 5.

Comment[Evaluate the coefficients b;,; from the input vector u' and the interpolation
coefficients u.,(i/s).]

d o j = O , ..., n / s - 1
do T = 0, . . . , k - 1

enddo
set b;,j = u,- (i / s)

enddo

Step 6.

Comment[Evaluate the coefficients bT,j for 1 2 2, which correspond t o larger submatrix
sizes, from the coefficients for smaller submatrix sizes and the interpolation coefficients
U T (t i) .I
do 1 = 2, ..., h

do j = 0,. , . , n / (2 ' - ' ~) - 1
d o r = O , ..., k - 1

enddo
set b[,j = [ur(t:) - b;-1,2j t . ~ l p (t i + i) * bj-l,,j+J

enddo
enddo

Step 7.

Comment[Evaluate the coefficients c1,; from the values lM,?'r and the coefficients b[, j .
Note: do not forget to set the last two elements on each level to zero.]

- 26 -

Step 8.

Comment[Evaluate the coefficients dL,j from the coefficients cy,j and the interpolation
coefficients ur(t:). Note: the last two elements on each level are always zero, although
they are calculated in the same way as others for conveniency.]

set d i , j = c ; , ~ for r = 0,. . ., k - 1 and j = 0 , . . . , 3
d o l = h - 1 , ..., 1

do j = 0,. . . , n / (2 ' ~) - 1
do r = 0, . . . , k - 1

set d;,,j = ~ ; , ~ j + C f i ui(t:) * di+,,j

set d;,,j+l = cr,,j+l + LO ui(%+r) .dl+l,j
k-1

enddo
enddo

enddo

Step 9.

Comment[Evaluate the final result G = (wo, w1,. , . , ~ ~ - 1) ~ from the coefficients dilj,
the interpolation coefficients u,(m/s), the values of M near the diagonal, and the input
vector 17. Note: check the boundary as in Step 4.1

a. j = 0,. . . ,121s - 2
do m = 0,. . ., s - 1

set Wm+-js - - t=O u;(m/s) d i , j
do i = m , m + 1, . . . ,2.s

enddo
set ~ , + j s = Wm+js + M ('122 + j .9 , i + j s) . V i g j s

enddo
enddo set j = n / s - 1
do m = 0, . . . , s - 1

set w,+j, = u; (m/s) df , j
do a' = m, m 4- 1, . . . , s

enddo
set wm+js = w,+j, -!- M (m + js, a' + j s) vi+js

enddo

End of Evaluat ion Phase
End of Algorithm

- 27 -

ORNL/TM-12285

INTERNAL DISTRIBUTION

1. B. R. Appleton
2-6. W. Chen
7-8. T. S. Darland

9. E. F. D’Azevedo
10. J. J . Dongarra
11. T. H. Dunigan
12. J . B. Drake
13. W. R. Emanuel
14. B. F. Lyon
15. C. E. Oliver
16. R. E. Flanery

17-21. S. A. Raby

22-26. R. F. Sincovec
27. B. D. Semeraro
28. D. W. Walker

34. P. H. Worley
35. Central Research Library
36. ORNL Patent Office
37. K-25 Applied Technology

38. Y-12 Technical Library
39. Laboratory Records - RC

29-33. R. C. Ward

Library

40-41. Laboratory Records Department

EXTERNAL DISTRIBUTION

42. David C. Bader, Atmospheric and Climate Research Division, Office of Health and
Environmental Research, Office of Energy Research, ER-76, U.S. Department of
Energy, Washington, DC 20585

43. Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

44. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Arne Research Center,
Moffet Field, CA 94035

Berger, Courant Institute of Mathematical Sciences, 251 Merscer
Street, New York, NY 10012

46. Mike Berry, Department of Computer Science, University of Tennessee, 107 Ayres
Hall, Knoxville, T N 37996-1301

47. John H. Bolstad, Lawrence Livermore National Laboratory, L-16, P. 0. Box 808,
Livermore, CA 94550

48. George Bourianoff, Superconducting Super Collider Laboratory, 2550 Beckleymeade
Avenue, Suite 260, Dallas, T X 75237-3946

49. Joe Brandenburg, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton, OR 97006

50. Professor Roger W. Brockett, Pierce Hall, 29 Oxford Street, Harvard University,
Cambridge, MA 02138

51. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

52. Thomas A. Callcott, Director, The Science Alliance Program, 53 Turner House,
University of Tennessee, Knoxville, T N 37996

45. Marsha J .

- 28 -

53. John Cavallini, Office of Scientific Computing, Applied Mathematical Sciences,
Office of Energy Research, U.S. Department of Energy, Washington, DC 20585

54. Professor I-Liang Chern, Department of Mathematics, National Taiwan University,
Taipei, Taiwan, R.O.C.

55. Ray Cline, Sandia National Laboratories, Livermore, CA 94550

56. Jean CotC, RPN, 2121 Transcanada Highway, Suite 508, Dorval, Quebec H9P 1J3,
CANADA

57. William Dannevik, Lawrence Livermore National Laboratory, P. 0. Box 808, L-16,
Livermore, CA 94550

58. Craig Douglas, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598-0218

59. Dr. Donald J . Dudziak, Department of Nuclear Engineering, llOB Burlington
Engineering Labs, North Carolina State University, Raleigh, NC 27695-7909

60. John Dukowicz, Los Alamos National Laboratory, Group T-3, Los Alamos, NM
87545

61. Ian Foster, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

62. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY
13244-4 100

63. Dr. Rhys Francis, Div. of Information Technology, CSIRO, 723 Swanston Street,
Carlton, Vic. 3053, AUSTRALIA

64. Paul 0. Frederickson, ACI,, MS B287, Los Alamos National Laboratory, Los
Alamos, NM 87545

65. Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

66. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA
5001 1

67. Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. 0. Box 808,
Livermore, CA 94550

68. William D. Gropp, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 9700 South Cass Avenue, Argonne, IL 60139

69. James J . Hack, National Center for Atmospheric Research, P. 0. Box 3000, Boul-
der, CO 80307

70. Michael T. Heath, Center for Supercomputing Research and Development, 305
Talbot Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL
61801-2932

71. Michael Henderson, Los Alamos National Laboratory, Group T-3, Los Alamos,
NXI 87545

72. Dr. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical
Sciences, Ofice of Energy Research, U.S. Department of Energy, Washington, DC
20585

73. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA

74. Dr. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

75. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

76. Kenneth Kennedy, Department of Computer Science, Rice University, P. 0. Box
1892, Houston, Texas 77001

77. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff,
Office of Energy Research, Office G-437 Germantown, Washington, DC 20585

78. Dr. James E. Leiss, Rt. 2, Box 142C, Broadway,VA 22815

79. Rich Loft, National Center for Atmospheric Research, P. 0. Box 3000, Boulder,
CO 80307

80. Frank McCabe, Department of Computing, Imperial college of Science and Tech-
nology, 180 Queens Gate, London SW’? 2BZ, United Kingdom

02 142- 12 14

81. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. 0.
Box 808, Livermore, CA 94550

82. Robert Malone, GDO/ACL, MS B287, Los Alamos National Laboratory, Los
Alamos, NM 87545

83. Len Margolin, Los Alamos National Laboratory, Los Alamos, NM 87545

84. Hal Marshall, Laboratory for Scientific Computation, Rm. 271 Cooley Bld., Uni-
versity of Michigan, Ann Arbor, MI 48109-2104

85. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd. Pasadena, CA 91125

86. Professor Neville Moray, Department of Mechanical and Industrial Engineering,
University of Illinois, 1206 West Green Street, Urbana, IL 61801

87. Dr. David Nelson, Director of Scientific Computing, ER-7, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

88. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station
B, Nashville, TN 37235

89. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

90. James M . Ortega, Departmetn of Applied Mathematics, Thornton Hall, Univer-
sity of Virginia, Charlottesville, VA 22901

91. Ron Peierls, Applied Mathematical Department, Brookhaveil National Labora-
tory, Upton, NY 11973

92. Richard Pelz, Dept. of Mechanical and Aerospace Engineering, Rutgers University,
Piscataway, NJ 08855-0909

93. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville,
T N 37996-1300

- 30 -

94. Andrew Priestley, Institute for Computational Fluid Dynamics, Reading Univer-
sity, Reading RG6 2AX, UK

95. Lee Riedinger, Director, The Science Alliance Program, University of Tennessee,
Knoxville, T N 37996

96. Ahmed Sameh, University of Illinois at Urbana-Champaign, 469 CSRL, 1308 West
Main St., Urbana, IL 61801

97. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

98. Richard Smith, Los Alarnos National Laboratory, Group T-3, Mail Stop B2316,
Los Alamos, NM 87545

99. Peter Smolarkiewicz, National Center for Atmospheric Research, MMM Group,
P. 0. Box 3000, Boulder, CO 80307

100. Paul N. Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

101. Jurgen Steppeler, DWD, Frankfurterstr 135, 6050 Offenbach, GERMANY

102. Rick Stevens, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

103. Robert G . Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

104. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O.
Box 1892, Houston, TX 77251

105. David L. Williamson, National Center for Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

106. Samuel Yee, Air Force Geophysics Lab, Department LYP, Hancom AFB, Bedford,
MA 01731

107. Dr. Johii Boyd, Rutgers University, Institute for Marine Coastal Sciences, P. 0.
Box 231, New Brunswick, NJ 08903-0231

108. Dr. Clive Temperton, European Centre for Medium-Range Weather Forecasts,
Shinfield Park, Reading, Berkshire RG2 9AX UK

109. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N

110-111. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, TN 37831

37831-8600

