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SUMMARY 

In 1991, U.S. electric utilities spent almost $1.8 billion on demand-side management 
(DSM) programs. These programs cut peak demands 5% and reduced electricity sales 1% 
that year. Utility projections suggest that these reductions will increase to 9% and 396, 
respectively, by the year 2001. 

However, utility DSM efforts vary enormously across the county, concentrated in a 
few states along the east and west coasts and the upper midwest. To some extent, this 
concentration is a function of regulatory reforms that remove disincentives to utility 
shareholders for investments in DSM programs. A key component of these reforms is 
recovery of the net lost revenues caused by utility DSM programs. These lost revenues occur 
between rate cases when a utility encourages its customers to improve energy efficiency and 
cut demand. The reduction in sales means that the utility has less revenue to cover its fixed 
costs. 

This report describes a new method, statistical recoupling (SR), that addresses this 
net-lost-revenue problem. Like other decoupling approaches, SR breaks the link between 
electric-utility revenues and sales. Unlike other approaches, SR minimizes changes from 
traditional regulation. In particular, the risks of revenue swings associated with year-to-year 
changes in weather and the economy remain with the utility under SR, 

Statistical recoupling uses statistical models, based on historical data, that explain 
retail electricity sales as functions of the number of utility customers, winter and summer 
weather, the condition of the local economy, electricity price, and perhaps a few other key 
variables. These models, along with the actual values of the explanatory variables, are then 
used to estimate "allowed" electricity sales and revenues in future years. For example, a 
utility might use quarterly data from 1980 through 1992 to estimate the SR models. The 
models would then be used to determine allowed revenues for 1993, 1994, and 1995. 

Five utilities - Nevada Power, New England Electric System, PacifiCorp, Public 
Service Company of Colorado, and Southern California Edison - provided data to use in 
testing this new approach. The empirical results are quite promising (Fig. S-1). With only 
one exception, the errors are all less than 2%. And the three-year averages for four of the 
utilities are less than 1%; the three-year average is 1.3% for Southern California Edison. The 
lack of patterns across these three years and five utilities suggests that statistical recoupling 
is a robust method that is likely to yield only small errors from year to year and from utility 
to utility. 
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I examined the nurnber of data points needed to obtain stable results, the price 
charilges likely to occur with this method, i t s  effect on a utility's incentives to control costs 
and promote economic development, the opportunities to manipulate model selection io 
achieve desired goals, the effects of past DSM programs, and the effects uf DSM programs 
that diffcr across customer classcs or in load factor. For each issuc, statistical recoi~plirig 
seems to work well. For example, although di€ferermt statistical models yield different 
estimates of future elcctricity use, the differences are small. Therefore - abscat perfect 
foresight about future changes in thc cxplanmatoq variables - choosing a model to yield 
desired results is extrenely difficult. Also, this approach encoaaa-ages utilities to promote 
increased sales only when such sales imprave the local economy. 

In summary, statistical recoupling appears i o  be an effective way to break the link 
between revenues and sales. This approach, when implemented, should free utilities to 
ambitiously and creatively pursue cost-effective DSM resources in their service areas. 
Utilities, operating with statistical recoupling, can do so because their shareholders will no 
longer be penalized by the operation of successful DSM programs. 

TIMAPES OF ELECTRICITY USE 
____ 

-4 
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Fig. S I .  Errors in SR estimates of total (residential9 commercial, and irndustriial) retail 
electricity sales for 1 ntage changes in electrkity 

u3d be 50 to 75% of the errors 
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CMABTER 1 

The Colorado Public Utilities Commission ( 1993) recently wrote: 

itional regulation, YSCs’s [Public Sewice Company of 
utility in the Rocky Mountain region] revenues and profits 

h. For similar reasons, PSCo’s 
i s  conserved, even if the savings 

increase whenever it sells an a ~ d ~ t i ~ ~ n a ~  
revenues and profits decline whenever a k 
are accomplished at no cost. 

[Thus], the financial incentives under ich PSCo operates will logically act 
nder the ongoing IRP [integrated resource planning] process. For 
ple, the record of this case shows that utilities in other states have 

developed ~ ~ a ~ ~ ~ ~ ~ ~ ~ i ~ g  marketing programs even though new resource needs 
were imminent, and have ~ ~ ~ d e r e ~ ~ i ~ a t e ~  the long-run DSM [demand-side 
management] potential. 

In other words, utility DSM ~~~~~~~~s that improve customer energy efficiency create tension 
between the interests of custor ers and utility ~ h a r e ~ o ~ ~ e r s .  Utility customers want the 
benefits of greater energy efficiency (lower utility bills and imprnved comfort and 
p r ~ d u c ~ ~ v ~ t y ) ,  while utility shareholders want the greater earnings associated with higher 
electricity sales. This conflict can be a major stumbling block to utility i m ~ ~ e ~ ~ n t ~ t i o n  of 
what would otherwise be its “least-cost” resource plan. 

State regulation to encourage utility investment in energy efficiency requires three 
elements (Nadel, Reid, and Wolcott 1992): 

a Utility recovery of the costs it incurs to plan, design, implement, and evaluate its 

m Recoveiy of the net lost revenue caused by the energy and demand reductions 
attributed to the utility’s DSM programs;* and 

rn A financial incentive to the utility to encourage it to run innovative and aggressive 
programs that capture as rnuch of the cost-effective resource as possible. 

hik all three components are significant and deserve attention, the net-lost-revenue 
c ~ m ~ o n ~ ~ t  is often the most important. It is the most critical both because a ~ ~ o w i n ~  a utility 
to recover lost revenues i s  required to create a level playing field between demand and 

‘E the utility runs load-building programs, it will enjoy net “gained” revenues. 



supply resources and because i t  usually represents the largest dollar amount, This report 
focuses on lost rcvcnues and suggests a new way to solve this problem, called statistical 
recoaipling (SR). 

The next chapter defines the aet-lost-revenue problem and, using data from a western 
utility, shows the magnitude of the earnings loss caused by utility DSM programs. Chapter 
3 reviews the various approaches that have been used to deal with lost revenues. Chapter 
4 presents SW concepts, Chapter 5 presents model results based on data from five utilities 
throughout the IJnited States, Chapter 6 shows haw it would work in practice, and Chapter 
7 discusses various issues related to this new approach. Chapter 8 compares the strengths 
and limitations of SW with those of other methods that deal with net lost revenues. 

2 



CHAPTER 2 

DEFINING AND QUANTIFYING THE PROBLEM 

This chapter quantifies the point that others have made during the past five years: 
the more electricity a utility sells, the more money it makes for its shareholders (Moskovitz 
1989). Conversely, the less electricity it sells (e.g., because it runs energy-efficiency programs 
for its customers), the more shareholders are hurt. 

Utilities periodically file rate cases, and public utility commissions (PUCs) then hold 
hearings to establish the utility’s revenue requirement. Once the revenue requirement is 
established, the PUC allocates it among customer classes. This allocation is then used to set 
electricity price structures to collect enough money from each customer class to cover the 
utility’s costs of providing electricity (both energy and demand) to  that class. 

After rates are set, changes in the amounts of electricity used affect utility revenues, 
Because fuel and other vuPinhZe costs vary directly with the amaunt of electricity sold, a 
utility automatically collects enough money to just cover these variable costs. Even if 
prudently incurred fuel costs per kWh change with time, shareholders neither gain nor lose 
because of the fuel-adjirstment clauses (FAG) that operate in many states. 

Changes in electricity use also affect the amount of money that a utility collects to 
cover its fixed costs. Although these costs increase over time (because of inflation, changes 
in tax rates, and other factors), these increases are - by definition - independent of 
changes in electricity use. Historically, utilities and PUCs have agreed (at least implicitly) 
that between-rate-cases increases in revenues associated with load growth would roughly 
compensate the utility for increases in its fixed costs. 

This relationship, however, can produce perverse financial incentives. Consider a 
utility with an average retail price of BC/kWh. This price reflects 2C/kWh of variable costs 
and 4 ~ ~ W ~  of fixed costs. If this utility runs a load-building program that permanently 
increases electricity use, say by 100 kWh/year, its revenues will go up by $6/year. This 
increased revenue is offset by higher fuel costs of $2/year. Thus, the utility has an extra $4 
of revenue to offset increases in fixed costs and to increase earnings. The utility will receive 
this extra $4 each year until the next rate case. 

If the utility, on the other hand, sponsored an energy-efficiency program that saved 
its customers 100 kWh/year, its shareholders would lose $4 each year until the next rate case. 
Thus, existing regulation discourages the utility from running energy-efficiency programs and 
encourages the utility to sell more electricity. These incentives and disincentives are largely 
independent of any benefits that customers derive from these programs. 

3 



’To quantify these relationships arnong short-run cosis and retail priccs and their effect 
on utility shareholders, € k t  and Blank (1993) developcd a simple model that quantifies the 
eF€ects of higher or lower load growth on shareholder earnings. We used this inodcl to 
examine the effects of load growth on shareholder earnings for Public Scmicc Company of 
Colorado, Nevada Powcr Company, Montana Power Company, and thc Utah Division of 
PacifiCorp. Because the results are quite similar across utilities, 1 present ody  the results for 
IJtah. Eto, Stoft, and Hclder-s (1983), using a different appi-oach, show how utility profitability 
varies with the fraction of total cost that is variable and the ratio of marginal variable cost 
to average variable cost. ‘Their analysis of data from nearly 160 utilities from 1964 t o  1989 
shows “excess” annual profits of almost 50 basis points, consistent with thc results presented 
here.* 

If PacifiCorp’s Utah loads grow l%/year fastcr than expected (Lem7 at 4 vs 3%/year 
or at 2 vs l%/year), PacifiCorp shareholdcrs will ear1 an extra 130 basis points during the 
three years assumed to occur between rate cases. 

If ratc eases are conducted more frequently, the effect of highcr or lower load growth 
on earnings is diminished (Fig. 1). For example, if rate cases are conducted annually instead 
of once every three years, the effect on shareholder carnings is cut in half. 

‘The preceding cases implicitly assumed that load growth is beyond the utility’s control 
(e.g., caused by changes in winter and summer weather or by changes in the rate of 
economic growth). However, utilities can affect sales through DSM programs, either with 
load-builtling or energy-efficiency programs. The following cases examine the effects o n  
utility shareholders of DSM programs that help customers improve energy cfficiency and cut 
electric bills. 

Table 1 shows the effects on customers and on PacifiCorp shareholders of three DSM 
programs. The pilot program operates with a conservation load factor (CLF)‘ of 10% and 
meets 11% of the growth in energy use. This program provides very small benefits to 
customers and only a very small penalty to shareholders. 

The ramp-up program increases in magnitude from year to year and has a 50% CLF. 
This program offsets 22% of the energy growth between rate cases. Customer benefits and 
shareholder costs are both increased substantially relative to the pilot program. 

‘One hundred basis points equals a 1-percentage-point change in the rate of return. For example, 
an increase of 130 basis points is equivalcnt to an increase in rctusn on equity from 12.0% t o  13.3%. 

’Analogous to the utility’s system load factor, the coiiservatiorn load factor is the ratio o f  the 
DSM-program-induced average demand reduction to the peak-demand reduction. 
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rrype of Percentage Customer Shareholder 

program growth (million $) Basis points 
DSM of energy net benefits" effects 

Pilot 11 

Full-scale 36 
Ramp-up 22 

7 
41 
80 

-6 -2 
-52 -14 

- 136 -37 

"The benefits of these programs are the avoided capacity costs plus the associated 
savings in fuel costs and operation and maintenance costs. The costs include the costs of the 
measures plus the utility's administrative costs to run the program. Net benefits are the 
difference between benefits and costs. 

Finally, the full-scale program offsets 36% of the three-year growth in energy use. It 
est customer hemefits, hu t  also has the greatest adverse effect on 
issue for Utah regulators and others is how to balance the customer 

say the $80 inillion from tht: full-scale program) against the shareholder 
penalty ($37 million). 

me preceding analyses were all co ucted for PaciFiC'orp's resirlen tial customers, who 
sults are qualitatively the same for PLpcifiCorp's 

CJ face demand and energy charges. Fig 
rent GLFs four the two 
am saves per ktV of d 

PaeifiChrp s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s  arc penalized. This effect is most pronounced for residential 
caxistnw~ers but applies to a11 ciistorncr classes. 
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-I - e -  
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+ 
I 
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$323 million; ROE = 13.8%; 
Retai! prim = 6.8 e/kWh 

1 
I 

1 2 3 4 5 

Fig. 1. The effects on PacifiCorp share 
the number of years be een rate cases, (NPV i s  m t  present value, and ROE i s  

gs of variations in load g o  

return on equity.) 
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CHAPTER 3 

S TO THE NET-LOST-REVENUE PR 

In this approach, the PUC specifies clcaaly what the utility should do, The commission 
then closely monitors subsequent utility acticms €cor compliance with the PUC dircctive, I€ the 
utility tloes not follcw the P1IC order a ~ ~ ~ ~ ~ ~ ~ e ~ y ~  thc commission can pcnaiize the company 
in subsequent proceedings. 

This approach works well in only one state, Wiscomixi (Newman, Kill 
Schocngold 1992). Wiscaansin, however, i s  unique because it has annual rate  cas^^ and a 
f ~ i t i i ~ e  test year. Also, thc Wisconsin Public Service Cornrazission~ staff works closely on a day- 
to-day basis with the state's regulated utillities. 

I know uf no evidence to show t t ~ t  the commmd and control a p p r ~ ~ t c h ,  by itself, has 
the empr-lasis in1 recent years 011 remoYing here else in the U S  To the ccintrra 

disiraecntives to 
s suggests just t 

M nrid providing iraceaitavzs to sitilitics that run exernpla 
pposite ~~~~~~~~~ Reid, and Wolcott 1992). Experie:alce wa. 

decoupling in New York, CeiliforrLa, and Washington show how these 
regulatory rcfoxrns can dramatically and rapidly change the strength arid scope of utility 
DSM prrogranns (Swanson 1992). 

The Vermont Public Sen-vice Board (1 9 0) recngriized the difficuity in ordering a 
utility to take actions inconsistent with the welfare uf it:; shareholders: 

effort to implement least-cost utility phis ;ling must recognize that 
enkatim of ~ ~ ~ ~ n ~ - s i ~ ~  rneawres r-eq uirm a workable partriership 

the aitilities and their C U S ~ O ~ C ~ S ,  supported by the regulatory 
rk within which they operate. To maximize their effectiveness, 



demand-side programs must be, carefully crafted, crcatively marketed, and 
intelligently monitored. Thcse charactel istics cannot be achiwrd by regulatory 
fiat alone, and are ncrt likely to bc achicvctl. a i  ail if utilities a l e  finaircially 
penalired for succeeding ill  l o v ~ ~ i n g  their sales. 

Yinally, the Colorado PUC (1993) stated elcarly that it tvalited to adopt a different 
approach. 

One solutio11 to this pmb1eni [hai;cial iilcpi1tIvCs that inhibit utilities fr om 
puss~ing DSM] would bc inci eased oversight with greatcr reliance OIP 

command and control regubthn .  Given the lin-rited I csoiirces availablc to 
monitor iitility behavior in Colorado, as well as our prefercnce to adapt a 
solution that positively reinforces the desired utility belravior without the 
iimgosition of constant regulatory cvcrsight, this commission pf efcrs to address 
the problem through ieg111at0~ reform. 

Annual rate rases, as shown in l’ig. 1, greatly reduce b!it do not eliminatr - the 
utility’s incentive to boost salcs growth. Utilities in Wisconsin file annual rate cases with the 
Wisconsin Public Sei vice Commission, and New England Elcctric files annual rate cases with 
the 1;ederal Blncrgy Kegulatory Commission I Iowever, ratc cases are expensive, timi 
cnursuming, and bail dcmome on all those iiwolved. Therefax, PIJCs and utilities may prcfer 
to inctcase thc time between rate cases rather than conduct rate cases inore often. Also, 
frequent rate cascs dampen the cost-cutting incentiws that utilities face between rate cases. 

ALT’XXNATIVE IPAI’E DESIGNS 

A PUC, in principle, could sct retail rates for energy and demand exactly eyaial io 
utility short-run crnergy and demand costs. With such rates in place, utilities would face no  
shareholder incentive to boost electricity salcs and 110 disincenitive to run DSM programs 
that reduce sales. 

‘To ensure that utilities collected enough revenue to cover allowed costs, the monthly 
customer charges would have to bc increased greatly to compensate for the much lower 
energy and demand charges. However, as noted by the Connecticut Department of Public 
IJtility Control (1991), ‘^the dramatic increases in charges that art: unrelated to the amount 
of consumption would be perceived by most customers as unfair, unjustified, and 
intolerable. 95 

Most important, setting prices at short-i un costs sea& customers econorriically 
inappropriate signals that could lead to inefficient incr eases i i i  electricity me. ’l‘hus, this 
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option conflicts drainatically with the concept of economic efficiency, for which prices should 
reflect long-run marginal costs. 

NET-LOST-REVENUE-ADJUSTMENT MECHANISMS 

NLRAs are designed to compensate utilities for changes in revenues associated with 
utility DSM programs. As such, they are mare sharply focused than mechanisms that break 
the link between sales and revenues (discussed below). NLRAs have been approved in 16 
locations, including Arkmsna, Connecticut, the District of Columbia, Hawaii, Indiana, Iowa, 
Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, New York, North 
Carolina, Ohio, Oregon, and Vermont (Reid, Brown, and Deem 1993). 

To implement an NLRA, the utility would first estimate the energy and load 
reductions caused by each of its past and present DSM programs for the year in question. 
Thcse GWh- and MW-saving nuinbers are then niultiplied by the difference between the 
retail price for each rate class arid the short-term costs (both energy and capacity). The two 
products (lost energy and lost capacity revenue) are added together, again fur each rate 
class. This sum is the net lost revenues caused by the utility's DSM program. It is called 
"net" because it is equal to the difference between the reduction in utility revenue minus 
the reduction in utility short-term costs (fuel costs plus variable operation and majntenance 
costs). 

N L W  address only the last revenue associated with a utility's DSM programs. The 
narrow focus of this mechanism excludes other factors that affect utility sales, revenues, and 
earnings. For example, the utility could simultaneously operate energy-efficiency and load- 
building programs. Its NLRA mechanism would cornpensate it for lost revenues caused by 
the efficiency program, and the extra sales caused by the load-building prvgrarn would 
benefit shareholders, leading to "dueling incentives. Thus, an NLRA would not eliminate 

rograms. In addition, an NLRA would, in 
rograms that look good on paper and would 

incentives to operate load-buildi 
e utilities to operate 

A, but WOldd fad uce energy savings in practice ~ ~ ~ ~ ~ ~ ~ v i t ~ ,  
~ a ~ r ~ n ~ ~ o ~ ,  and Austin 1992). 

could be controversial and difficult t o  administer (Swanson 1992). In 
paaticuijar, the esdiinated revenue losses from e ~ e ~ ~ - ~ ~ f ~ c ~ e ~ c y  programs could be reduced 
by the revenzie gains from (1) utility prom eional efhrts and (2) illcreased c,ff-syslem sales 
of electricity nr~t  captured in the PAC. @a1 lating the effects of ~ o ~ d - ~ ~ u ~ ~ d ~ n ~  ~~~~~~~~~ (Leo9 
both direct ~ r ~ ~ ~ l ~ ~ ~ ~ ~ ~  programs and rat centives) is  likely to be as difficult 

aving effects of ener -efficiency ~ ~ o ~ r ~ ~ ? ~ s ~  Similarly, estimating th 
alesale sales attribu le directly to the electricity freed up by en 

~ ~ o ~ ~ a ~ ~ s  is likely to be difficult. 

In addition, estimating the lost revenue associated directly with the energy-efficiency 
~~~~~~~~~~ may be difficult and contentious. ~ ~ r ~ u ~ ~ ~ ~ t ~  might occur over the 
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operation for the lighting fixtures trcated in a utility's DSM program, the number of years 
the measuies are expected to remairn in place and operate as expected, and the number of 
participating custonaers who ape free riders and would have installed the utility-sponsored 
measaires without the program. For a DSM progam aimed at industrial customers, 
aigumcnts might occur over the effects of the DSM measures on increased productivity and 
output, and therefore increased electricity use, These technical issucs are difficult to resolve 
and could take up a great deal of time for BUC staff and commissioners. 

'I'hus, NEIL4 mechanisms place a substantial burden on program evaluation 
(Curnmings 1992: and Hirst 1992). Evaluation results form the basis for the utility's claim that 
it is entitled to compensation for its net lost revenues. Thcse results sewe as documentation 
for the energy savings arid load reductions contributed by the utility's DSM piograrns. 
Unfortunately, the state of the practice of DSM evaluation is such that precise cstimates of 
program effects cannot be developcd unambiguously. 

Uncertainty in the estimates of program effects is also a problem in determining 
DSM-program cost recovery, in estahlishing an appropriate incentive to the utility for its 
DSM programs, and in resource planning, but the amount of money at stake is typically 
much higher for net lost ievemes than for these other issues. 'The problem is corripounded 
by an NLRA's need to identify energy and demand savings in detail - by rate class and rate 
block -- to determine the amounts of revenue actually lost year after year. 

Discussions with utility and PplC staff in Connecticut ('T'owwsley 1993 and ChinIan 
1993) and in Maryland (Switzer 1993 and Tighe 1993) suggest that these problems can be 
overcome. Although the experience with NERAs is limited (gencrally less than a year) in 
both states, both the utility and PUC people were positive about the experierices to date. 
In both states, the active presence of a I X M  collaborative iiiadc it much easier than it 
otherwise would have been to establish the protocols to calculate energy and demand savings 
for each DSM 19rogram. Outside the hearing room, the coilaborative participants were able 
to agree on the methods to use and the estimates to apply for each program. 

In addition, both utilities (Baltimore Gas & Ekctnic and Northeast Utilities) made 
substantial commitments to evaluating their DSM programs. The results of these evaluations 
will be used, in later years, to adjust the NLRA methods and assumptions. 

Woolf (1993), in his review of the operation of NI ,Rh,  I eached similar conclusions. 
I Ie found that NLRAs work without controversy where therc is substantial cooperation 
between the utility and other parties (e.g., through a DSM collaborative), where the utility 
i s  doing conipetent evaluations of its DSM programs, where the IRP process is working well, 
and where the utility is acquiring cost-effective IISM resourccs. Woolf notes that 
"measurement issues, while cumbersome, can be resolved through agreements between 
interested parties, and they will become less important over time as better monitoring and 
evaluation practices are applied. '' 
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Utility exyerience in, and competence with, evaluation is growing rapidly in many 
parts of the country. In addition, some regulatory agencies are adopting protocols for utilities 
to use in estimating the energy and load reductions caused by their DSM programs. For 
example, the US. Environmental Protection Agency (1993) recently published its 
Coraservution Verification Protocolu, which it will use in reviewing applications for the sulfur 
allowances in the Conservation and Renewable Energy Reserve. Similar protocols were 
developed in New Jersey and in California. 

An NLRA niechanism can work satisfactorily only for programs that produce 
L( tangible” and easily measured energy and load reductions. However, programs aimed at 
educating the public; training installers and technicians; and promoting stricter efficiency 
standards for new construction, appliances, and equipment are very hard to measure. But, 
these “soft” programs might also be cost effective. Adopting a mechanism that rewards a 
utility only for “hard” DS might be counterproductive, leading to a component approach 
to DSM programs rather than a comprehensive and integrated approach. 

Overall, NLRAs are probably best suited for utilities that have in place an effective 
IRP process, are committed to acquiring cost-effective DSM resources as part of their IRP, 
are part of a well-functioning and ongoing DS collaborative, and are committed to 
conducting competent evaluations of their DSM programs. NLRAs can work best if the PUC 
staff provides substantial oversight of utility programs. By devoting resources to DSM- 
program evaluation aiid review of programs for load-building activities, the incentive to build 
uneconomic load that remains with an NLRA may be overcome. To some extent, the 
collaboratives in Connecticut and Maryland serve this function. 

Decoupling is a two-part mechanism. The first part breaks the link between utility 
revenues and h sales. The second, more difficult part involves “recoupling” revenues to 
something else, such as growth in the number of customers, the determinants of changes in 
fixed costs, or other factors. Decoupling generally follows one of two paths. It tracks either 
fixed costs or actual revenues. Decoupling operates in four states, California, Washington, 
New York, and Maine, and i s  being considered in several other states. 

California and New York 

California was the first state, in 1981, to iinplement a decoupling system, called the 
Electric Revenue Adjustment Mechanism (ER ) (Marnay and Comnes 1990 and 1992). 
Once every three years, the California PUc sets rates for each of the state’s utilities 
following much the same procedures used in states without decoupling. The rate-case 
process, based on a future test year, includes a determination of the amount of naoney the 
utility c a i ~  recover for its fixed costs. The ERAM account is used to ensure that, for each of 
the years between general rate cases, the utility cslkcts no more and no less than the 
authorized amount for nonfuel costs. As discussed below, attrition mechanisms are used to 
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adjust this atmnouiit for each year to reflect changes in the determinants of the utilily’s fixed 
costs. 

During each of the three years between rate cases, thc utility collects in a balancing 
accoiint any excess revcnues associated with sales higher than those included in the test year 
(or deficit revcnues associated with sales below thosc in the test year). During the following 
year, these excess (deficit) revenues are refunded to (collected from) customers by 
decreasing (increasing) the price of electricity. These revenue adjustments deal only with 
fixed costs; E R N  does not address changes in variable costs, which are handled through 
a FAC. 

In addition to ERAA4, allowed fixed costs are adjusted each year through an attrition 
adjustment (Ziering 1986). This mechanism adjusts the components of fixed costs on the 
basis of various factors that are not controlled by the utility, such as inflation rates and other 
cost and productivity indices. 

Attrition in California includes three components: financial, operational, and rate-base 
attrition. Financial attrition adjusts for changes in the utility’s cost of capital. These 
adjustnments are haridled in an annual proceeding that covers all the California energy 
utilities. l h e s e  proceedings set interest costs and return on equity, based primarily on actual 
bond interest rates. 

Operational attrition adjusts for changes in operating costs, such as wage rates and 
the costs of certain materials. These casts are changed on the basis of price indexes that are 
specified in the general rate cases. No adjustments are made for changes in the number o f  
employees or the quantities of materials used. Presumably, these cost increases are offset 
by productivity gains. Operational attrition protects utility shareholders from thc risks of 
inflation while preserving the cost-minimization incentives inherent in traditional ratemaking. 

Rate-base attrition adjusts for changes in the utility’s ratebase. ‘Ihese: adjustments are 
based primarily on forecasts of capital expenditures developed during the general rate case. 

Thus, while ERAM breaks the link between revenues and sales, the attrition 
mechanisms r-ecouple revenues to the determinants of changes in fixed costs. Because the 
attrition mechanisms are based primarily on cost indexes, not the utility’s actual costs, utility 
productivity improvements and cost-cutting measures benefit utility shareholders until the 
next rate case. 

In practice, California’s mechanism is a tradeoff between frequent, sniall rate changes 
and less frequent, larger rate changes. Overall, ERAM and attrition should have little efrect 
on the amount of money a utility collects from its customers. Figure 3 shows the effects of 
these mechanisms on retail electricity prices for California’s two largest utilities, Pacific Gas 
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and Electric (Smith 1992) and Southern California Edison (Lisbin 1993).* For the ten-year 
period from 1982 through 1991, PG&E’s retail customers experienced six price increases and 
four price decreases. The largest changes were -3.5% (1987) and +4.5% (1989). Over the 
course of the decade, customers faced a total price increase of 9%. 

4 
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1982 1983 1984 1 85 1986 1987 1988 1989 1990 1991 

Fig. 3. The percentage changes in retail electricity prices caused by ERAM and attrition 
for Pacific Gas and Electric and Southern Califrmia Edison. 

SCE’s customers faced six price increases and three price decreases from 1983 to 
1991. The largest changes were -3.7% in 1984 and -3.4% in 1988. During this nine-year 
period, SCE‘s customers faced a total price increase of less than 1%. 

These results show that the amounts of money tlowing through the ER 
are small. It is important to note that E R M  and attrition affect primarily the timing of 
price changes, rather than the amounts of price changes. That is, the factors that affect utility 
costs would be treated in the three-year general rate cases, if they were not already included 
in ERAM and attrition. 

The New Uork decoupling mechanisms, including the three-year rate-case cycle, are 
similar to the ones used in California. 

*Eto, Stoft, and Belden (1993) provide additional details on the historic impacts of ERAM in 
California. They show that E W f  “has had a negligible cffect on rate levels and has, €or FG&E, 
actually rcduced rate volatility.” 
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Washington and Maine 

Decoupling mechanisms were adopted in Washington and Maine in spring 1991; see, 
for example, Washington Utilities and Transportation Cornmission (1991). In these two 
statcs, electric revenues are tlecoenpled froin sales, as in California. But these states do not 
use an explicit attrition mechanism to adjust for increases in fixed costs over time. Instead, 
to cover increases in fixed costs, these two PUCs reconiplerl revenues to growth in the 
number of electricity customers. 

Recent orders from the Washington arid Mainc commissions point to some problems 
with revenue-Fer-custoIrner (RPC) decoupling related to price volatility. ‘l‘kc Washington 
Utiiities and Transportation Commission (1992) expressed considerable concern about the 
large amounts of money flowing through Puget Power’s Periodic Rate Adjustment 
Mechanism (PRAM). In September 1991, the Commission granted a PRAM rate increase 
of $28 million and in September 1992 approved another $66 million increase. These dollar 
amounts are equivalent to rate increases of about 3% and 7%. The Commission noted that 
“unusually warm weather [which reduced electricity consumption and the amount of low-cost 
hydropower] and other circunistances workcd to create an unusually large deferred amount. 79 

Indced, as Fig. 4 shows, more than half of these price increases were causcd by changes in 
power -supply costs (replacements for the low-cost hydro and new purchased-power 
contracts). Puget Power does not have a FAC. It flows purchased-power costs through its 
PRAM, which includes a decoupling component. 

D 
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The Washington experience suggests that it might be a mistake to use a decoupling 
mechanism to collect other costs ( k ,  power-supply costs). In Puget Power’s case, these 
other costs, not decoupling itself, led to large price increases. 

Since the Commission issued its order in September 1992, Puget Power has filed a 
rate case; after hearings on that rate case, the Commission will decide whether to continue 
the decoupling mechanism. The Commissioners have made statements since issuing their 
September 1992 order showing their interest in continuing the decoupling experiment. In 
addition, Puget Power’s CEO filed testimony (Sorsstelie 1993) supporting continuation of 
decoupling: 

The weather and hydro conditions which occurred during the PRAM 1 period 
- October 1991 through September 1992 - were far from average, and it 
would have been helpful to evaluate PRAM and decoupling on the basis of 
a longer, and more representative, period. 

[Tlhe P W / d e c o u p l i n g  mechanism has performed well to date in meeting 
the Commission goals: ... Adjustment for Factors Beyond a Utility’s Control 
... Purchased Power Cost Recovery ”.. Conservation Cost Recovery ... [and] 
Incentives for Least Cost Planning. 

[Flor Puget Power, the PRA 
triple the amount of conservation. 

ecoupling mechanism was essential for us to 

In response to a directive from the Commission, Puget Power proposed to modify its 
decoupling mechanism to extend the cost recovery period to two years. This change would 
reduce the rate swings that customers would otherwise experience. The Cornmission will 
issue its order later this year and decide, at that time, whether t o  continue, modify, rcplace, 
or abandon decoupling. 

A month after the Washington commission issued its order, the Maine PUC (1992) 
expressed its concern about the effects caf decoupling for Central Maine Power, Halfway 
through the three-year trial period, the amount accrued, almost $41 million, represented a 
5% rate increase (3.3%/year increase). As in ashington, the increase was caused irm part 
by nondecoupling factors. In particular, t cmged Maine recession led to an 
overestimate of future load growth at the en P’s prior rate case. Specifically, while 
per-customer electricity use grew at almost 3%/year between 1988 and 1988, it dcclincd by 
more than l%/year between 1985 and 1991. Kalher than reopen the rate case, the parties 
agreed to stick with the prerecession forecast and let decoupling address the ensuing revenue 
shortfall. 

In early 1993, several parties filed a settlement agreement with the Maine PUC. This 
agreement, accepted by the Commission, terminates the three-year decoupling experiment 
three months early. In its order, the Maine PUC (11993) noted that “a relatively small 
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portion of these [decoupling] accruals was due to DSM efforts. The vast majority was 
because the recession had reduced sales.” 

In March 1993, as part of its general rate-case filing, CME’ (1993) filed a report with 
the Commission on decoupling. CMP argued that its mechanism worked as intended and 
that it did “remove the immediate financial penalty of ongoing DSM programs.” CMP 
suggested that the Commission keep RPC decoupling in place. 

The company suggested a Yew simple ~evisior~s” to its decoupling mechanism. These 
include use of a more accurate sales forecast, calculation of the allowed revenue-per- 
customer amount based on projected customer counts, and the filling of a rate case if large, 
accruals begin to occur. 

h t e r  testimony from other parties and the response from CMP seemed to abandon 
consideration of decoupling or other mechanisms to remove the disincentives to utility DSM 
programs. Instead, the parties focused on changing regulation to recognize the increasingly 
competitive environment in which CMP operates. Both the intervenors and CMP proposed 
various types of incentive regulation, including a cap on price incrcases and greatcr flexibility 
in pricing electricity. 

As in Washington, the nutcome will be known only when the Commission issues its 
order, later this year, in the current CMP rate case. However, decoupling may be dropped, 
primarily because none of the parties i s  supporting it. 

Other Proposals 

In response to an older from the Oregon PUC (199%), Portland General Electric 
(1993) and other parties developed a decoupling proposal that relies on frequent rate cases. 
The PGE proposal includes a two-year futuie test period for gerieral rate cases. In such a 
rate case, the PUC would set retail load forecasts, revenues, and variable costs for each 
month during the next two years. Thus, the rate case would produce monthly values of the 
amounts of money PGE could collect for fhed-cost recovery. 

Actual revenues, sales, and variable costs would be recomputed each month on the 
basis of differences between normal and actual weather. This step is intended to ensure that 
the utility (rather than customers) bear the price volatility associated with changes in 
weather. 

Differences between the forecast margins computed during the rate case and the 
decoupling margins computed each month on the basis of actual sales and actual weather 
is called the dccoupling adjustment. This adjustment would be cumulated over a six-month 
period, with the six-month balance refunded to (or collected from) retail cmtorners during 
the following 18 months. To further limit the price volatility associated with this mechanism, 
these price changes are subject to a *3% rate c a p  If the cap i s  binding, the period of 
collection is extended. 



Other utilities, including PacifiCorp (1993); Florida Power Corporation (1 993); 
Botomac Electric Power; Montana Power; and groups in Colorado, Georgia, and IJtah, are 
considering different mechanisms to break the link between electric revenues and sales. 
Potornac Electric Power (1993) proposed a simple ERAM, in which changes in the national 
Consumer Price Index are used to  set the company's allowed revenues. The company found 
that its nmfuel costs are more closely correlated with the CPI than with the number of 
customers it serves. Montana Power (Corcoran 1993) proposed a decoupling system based 
on the diHerence between forecast retail electricity sales and actual weather-normalized 
sales. 

Risk Shifting 

Decoupling as implemented in California, New York, Washington, and Maine shift 
the revenue and price risks associated with changes in weather from utilities to  customers. 
As illustrated in Oregon and ntaraa, however, risk shifting can be, decided separately from 

is especially hot (or the winter partficialasly cold), the utility kecps that extra 
th some decoupling mechanisms, however, the company would r e f~~ i id  that 

revenue to customers in the following year. On the other hand, if the weather is especially 
mild and electricity sales are low, the utility opcrating under thcse mechanisms will riot 
collect ~~~~~g~ revenues to meet its authorized revenues; it will therefore collect that deficit 
the following yeas. The sa c logic applies to higher (lower) sales caused by high (lower) 
economic growth. 

the decision to  decouple. Un  traditional regulation, if electricity sales are higher because 

C decoupling shifts only smne of the risks associated with changes in economic 
growth to  customers. The economy-related risks associated with changes in the number of 
customers remain with the utility. 

~~~~~~~e~ this shifting of risks lis g o ~ d  or ba depends on one's perspective. T 
no f ~ ~ d a ~ ~ ~ ~ t a ~  reason why these risks should reside with. either the utility or its customers. 
Consider the debates two decades ago over FACs. efore that time, utilities bore all the: 

After the 1975 oil embar 
agreed, that i t  was appr 
risks of fuel-price volabil i t , utilities argued, and PUCs germrally 

riate to let clmstomzrs bcar the risks of changes in fuel prices. 

'Lagso, while these decals ling ~ e c ~ a n ~ s ~ s  shift price risks from the utility to  its 
customers, they reduce bill vola lity for customers with weather-sensitive loads. Electricity 
bills are the product of prices and c o ~ ~ s ~ ~ ~ n ~ ~ ~ ~ ~ n .  Under traditional regulation, if the winter 
is very cold, electricity use and bills are igh, although prices remain unch 
decoupling, electricity use will also be hig but prices the fdlowing year will 
therefore bills (with a lag) will not increase as much as they would under traditional 
regulation. 

Because some forms of decoupling shift the risks tsf changes in weather and economic 
conditions from utilities to customers, electricity prices can be more volatile thari under 
traditional r e ~ u ~ ~ ~ ~ ~ ~ .  One way to reduce the ~ [ ~ ~ ~ ~ i ~ ~ ~ ~  of price changes is  to spread the 



decoupling-induced changes over more than one year. A two-year amortization period would 
reduce the year-to-year swings in electricity price. 

Another way to  reduce the volatility in electricity prices that decoupling might cause 
is to impose rate caps on the allowed price changes. To be fair, this limit would be imposed 
on both price increases and decreases (e-g., to limit price increases to no more than 3% and 
price decreases to no more than -3%). Although such price caps might partially recouple 
revenues to sales, they impose limits on how much prices can vary from year to year. 
Moskovitz, Harrington, and Austin (1993) discuss these, arid other ways to reduce the risk 
shifting associated with decoupling. 

Finally, to the extent that risks are shifted to customers, utility revenues will be more 
stable. This greater stability should lower the utility’s overall cost of capital, which in turn 
would lower electricity prices. 

Summany 

Thr, recent experiences in Washington and Maine show that when adverse weather 
and/or a poor economy occur, price changes can be important. Even in those states, 
however, decoupling worked as intended. And the price increases that flowed through the 
decoupling mechanism might have occurred anyway (although with some delay) if the 
utilities, absent decoupling, had filed rate cases. Finally, when the economy i s  growing rapidly 
and/or the weather is favorable, decoupling will lead to price decreases (as shown by the 
record of ERW-induced price changes in California). 

In general, decoupling is  likely to be most appropriate for coinmissions that want 
utilities to run ambitious DSM programs and for utilities that already run (or plan to run) 
large DSM programs. Decoupling also makes sense in states where the PUC has only limited 
staff resources to monitor the utility’s DSM programs. 

Decoupling removes both the incentive to increase electricity sales and the 
disincentive to run energy-efficiency programs. This situation occurs because, with 
decoupling, utility earnings are driven by authorized revenues rather than actual revenues. 
Unlike N L M s ,  decoupling requires no estimates of the energy savings and load reductions 
caused by a utility’s DSM programs. And decoupling is, at least in principle, simple to 
administer. 

RPC decoupling, although much simpler than the attrition mechanisms used in 
California and New York, has two potential problems. First, for utilities with increases in 
electricity useper customer, some adjustment must be made to allow revenues to grow more 
rapidly than wcauld occur with simple RPC decoupling. Considerable disagreement might 
arise about how to compute that growth factor because its value would affect utility 
revenues. 
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Second, large industrial customers impose costs on utilities that are much larger than 
the average amount recovered through the decoupling mechanism. Therefore, some of these 
customers are concerned that utilities with RPC decoupling might discriminate against them. 
Implementing RPC decoupling separately for each customer class largely addresses this 
issue. 

These concerns with decoupling led to the development of statistical recoupling, 
which is discussed in the next four chapters. 
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CHAPTER 4 

STATISTICAL RECOUPLJNC CONCEPTS 

I developed a. new method called statistical recoupling. This decoupling a ~ ~ ~ ~ ~ c ~  
should interest utilities and Commissions that do not want to adopt a n  attrition mechanism 
(in which allowed revenues are tied to the determinants s f  fixed costs) and that are 
concerned about the ecouyling-induced changes in electricity prices that have occurred in 
recent years. This new mechanism minimizes changes from current rate making while 
severing the link between sales and revenues. One way to accomplish these goals is to let 
the utility retain the risks associated with f l ~ c ~ ~ ~ ~ ~ t i ~ ~ ~  in the weather, the local economy, and 
customer growth, as it does unider current regulation. 

Like other decoupling mechanisms, SR involves two steps. ']The first step decnuples 
revenues from electricity sales. In the second step, revenues are recoupled to statistical 
estimates of cleetricity use. 

enting an SR ~~~~~~~~~s~ requires the use of statistical models that explain 
well the effects af weather and ccoa-somic activity on electricity sales. Such a system might 
be developed as fdloavs. The utility wouPd statistically analyze historical data (e.g., for the 
past 18 to 15 years) on quarterly or monthly electricity sales as a function of weather severity 
(e.g., heating and cooling degree days), semice-area economic activity (e.g.? income or 
~ ~ ~ ~ ~ ~ y ~ e n ~ ~ ~  retail ekctricity prices, and otlaer factors that materially aFfected elcctricity 
sales. 'C"his rnsrlel would he estimated either separately for  each  customer class or for all 
retail sales in aggregate. For example, the model might have the following forni: 

E;, 9= ai -+ bi * DD, i ci * Y, -c- di * P, J- ei * C, -+ ._. 

E is electricity use (CWh) for month or quarter t and customer class i; 

DD i s  a iiieasure of weather severity (such as heating QP cooling degree days); 

Y is  a measure of economic activity; 

P Is retail electricity price; 

c3 is the number of utility customers; 

... represents other factors that affect electricity use; and 
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a, b, c, d, and e are coefficients that are statistically determined from historical data. 

The coefficients from this statistical model would then be used to estimate electricity 
use for each Tuture year, given the actual weather patterns, economic conditions, arid 
electricity prices for that year. For example, the utility might use data from 1975 to 1991 to 
create this model. The model would then be used to calculate electricity use for the year 
1993, based on actual weather, economic conditions, and electricity prices for 1993. The 
utility’s allowed revenue in 1993 would then be the product of the computed electricity use 
(E’) and the “fixed” price of electricity (P,) summed over all the retail customer classes i: 

The difference between actual 1993 electric revenues and the allowed revenues is the 
amount of money flowing through the utility’s recoupling account: 

P, is the fixed-cost comporient of retail electricity prices. It is lower than the average 
retail electricity price for two reasons. First, it is adjusted down to remove the amount of 
revenue collected through the monthly customer charge. Second, it is adjusted down to 
reflect the base energy cost (Pv, either the variable cost allowed in the utility’s current FAC 
or, for utilities without a FAC, the actual variable cost for that year).* That is: 

P, = Retail revenue .- Bevenue from customer charges - P, 
Retail sales 

‘Iypically, P, is 50 to 75% of the average retail electricity price. 

If the recoupling account is positive ( k 7  the utility was authorized to collect more 
money than it did), it will raise the price of electricity the next year to recover this 
difference. Of course, if the recoupling account is negative, the price will be reduced during 
the following year. 

While the models used in SW are virtually identical. to those used by utilities, the 
application i s  quite different. Utilities routinely estimate the effects of weather, the economy, 
arid other factors on electricity sales as part of their short- and long-term forecasting efforts. 

Wheni utilities use their models to forecast electricity sales, they must make 
assumptions about the values far the explanatory v~riables. For example, a utility En 1993 

*P, must be calculated at the customer meter (and not at the  power plant busbar) to appropriately 
account for line losses. Its calculation depends on the particular FAC, if any, used by the  utility. 
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wanting to forecast sales for 1994 and 1995 will have to assume values for income, number 
of customers, and other factors for these two future years. However, in SR, these anodds are 
used to determine allowed sales for the most recent year. And values for all the explanatory 
variables are available at that time. In other words, SR involves 110 assumptions on what the 
values will be for heating degree days, income, electricity price, and so on. 

With respect to allocation of risks between a utility and its customers, statistical 
recoupling is like existing regulation. The utility, under SR, retains the risks associated with 
changes in sales and revenues caused by changes in all the variables included in the SR 
model. For example, if the model includes heating degree days as an explanatory variable, 
then the company’s allowed revenues will change according to changes in actual heating 
degree days. If the winter is especially mild, the value for heating degree days will he lower 
than normal. This lower value will then, through the SR model, cut allowed revenues. Unlike 
other decoupling approaches, this one adjusts the revenues for fixed-cost recovery to vary 
with changes in the weather, local economy, and any other factors explicitly included in the 
models. This conclusion assumes that the statistical model(s) will accurately capture the 
effects of changes in weather, the economy, and electricity price on electricity use. 
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CHAPTER 5 

STATISTICAL RECOUPLING MODELS 

DATA 

I obtained data from five utilities to use in testing statistical recoupling (Table 2). Two 
of the utilities provided monthly data (New England Electric System’s Massachusetts Electric 
Conapany subsidiaq and Nevada Power Company), while the other three provided quarterly 
data (PacifiCorp’s Utah service area, Public Service Company of Colorado, and Southern 
California Edison). All five utilities provided 13 or more years of  data for their residential, 
commercial, and industrial customer classes. The utilities also provided data on heating and 
cooling degree days, average electricity prices for each customer class, and various measures 
of economic activity in their service areas. The price variable uscd in all these SR models 
is the ratio of revenues to sales; it does not explicitly treat the tariff details (Le., monthly 
customer charge, enerby charges, and deinand charges). 

MODEL RESULTS 

In developing SR models, I emphasized simplicity rather than accuracy. So, I 
estimated only linear models (Le., I ignored the possibility that log-log or loglinear models 
might perform better) and I used the minimum number of variables that sceined 
reasonable.* 111 particular, I used no binary (dummy) variables, as did the five utilities in 
their estimation of statistical models. For example, Nevada Power used binary variables for 
each month in combination with the cooling degree day variable to allow for differences in 
the amounts of electricity used for air conditioning by month. Other utilities used binary 
variables to reflect unusual weathcr or economic conditions (e.g., a strike). Finally, I used 
no lagged dependent variables (e.g., last quarter’s electricity use) as explanatory variables; 
to do so would recouple revenues to sales. 

To begin, 11 used the data from PSCn to construct two sets of  statistical models.‘ One 
set dealt with each customer class separately, while the second set dealt with total sales. Jn 
each case, I used the data through 1989 to estimate the statistical models. I then used the 
last three years (1990, 1991, and 1992) to see how well the models performed. 

“The models include terms that correct for autocorrelation, a common problem with time-series 
models. Autocarrelation refers to correlations among the error terms in a statistical modcl. Failure 
to correct for autocorrelation leads to higher standard errors for the niodel coefficients. 

“I used Forecast Pro for DOS to estimate the models presented h e x  (Stcllwagen and Goodrich 
1923). 
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Customer classes Independent variables" 
I- .- ._.. _I 

Nevada Power (monthly data, 1981-1992): 
residential, general sewice, large general 
seavice, hotel 

New England Electric (monthly data, 
1980-1992): residential electric heat, 
nonelectric heat, master-metered; 
commercial; industrial 

Pacifieorp - Utah (quarterly data, 1978- 
1992): residential, commercial, all 
industrial, four largest industrial customers 

Public Service Company of Colorado 
(quarterly data, 1970-1992): residential, 
commercial, industrial 

Southern California Edisoii (quarterly 
data, 1980-1992): residential, commercial, 
industrial 

Fraction of apartments in Clark County 

Disposable income, personal income, 
employment (nonmanufacturing and 
manufacturing), wholesale production 
index 

Iiicome, employment (manufacturing, 
mining, total), industrial output 

Income, employment 

Income, employment (manufacturing and 
nonmanufacturing), unemployment rate, 
gross state product 

"All the utilities sent data on electricity sales, number of customers, revcnues, and 

Sources: Farina (1993), Southern California Edison (1993), Tarnashim (1993), 
price for each customer class, as well as data 011 heating and cooling degree days. 

Wharton (1993), and Wordley (1993 j. 

I used two criteria to assess the feasibility of applying SR to I'SCo. First, I looked at 
the statistical properties of the model to see how well it did in simulating the past. Second, 
I looked at the changes in electricity prices that SR would have caused for the Isst three 
years (1994) through 1992). 

The class-specific models had good statistical properties. The models all explained 
93% or more of the quarterly variation in electricity use €or each customer class. (Such high 
values for R2 are typical of time-series models.) In addition, the coefficients of each variable 
always had the expected sign. As examples, the cocfficients for heating and cooling degree 
days were both positive, and the coefficient for electricity price was negative. The coefficients 
for heating and cooling degree days were statistically significant at the 99% level, while the 
caefficients for electricity price and income wcre often significant at only the 80 to 90% 
level. 
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In terms of their ability to simulate correctly electricity use for 1990, 1991, and 1992 
the models’ performances were also good. The residential model had errors of -1.5, -2.4, and 
-2.8% for these three years. The commercial model had errors of -1h> -3.1, and -2.5%. And 
the industrial rntadel had errors of +1.3, +2.2, and +1.8%. The combined effect of these 
s i ~ ~ ~ a t ~ ~ ~ ~ ,  when weighted by the contribution of each sector to total retail revenues, was 
quite good. As s ~ ~ ~ n  in the top part of Table 3, the three models together had combined 
errors of -1.296, -2.296, and -2.1% for 1990, 1991, and 1992. 

egate model of total electricity use combines data from the residential, 
industrial sectors. Thus, electricity use and the number of customers 

tals across the three sectors, and electricity price is the ratio of tutal 
revenues to total sales across the three sectors. This model had much better statistical 
properties and an even more accurate simulation record than did the three sector-specific 
models (Fig. 5) .  This model had errors of -0.5%, 0.0%, and + 1.1% for the three years. And 
the aggregate nmodel of total electricity use per customer had errors of ~ 0 . 2 % ~  -t- 1.4%, and 
+0.8% for 1990, 1991, and 1992. The aggregate model of electricity use is the simplest, has 
the best statistical properties, and yields the sinallest errors. For the three years 1990 
through 1992, SK based on this model had an average error of only 0.2%/year. If statistical 
recoupling had been in place in Colorado, it would have led to a 0.3% price decrease in 
1990, no price: change jn 19 1, and a 0.6% price increase in 1992. 

I developed similar s ~ a t ~ ~ ~ i c ~ ~  models with the data from the other four utilities; the 
results are similar to the PSCo results. For example, I conducted the same type of analysis 
described above with ~~~~t~~~~ data from Nevada Power (bottom part nf ‘I’able 3). The 
c o m ~ ~ ~ ~ ~  results, across the thrce primary customer classes, had errors slightly larger than 
those obtained with the PSCo irmodels. The aggregate mo els had smaller errors than the 
combination of class models, consistent with the PSCo results. 

il electricity sales had stat. 

Combination of Total. Total sales 
class rriodells sales per customer 

1990 
1991 
1992 

Public Service Company of Colorado 
-1.2 -0.5 4-0.2 
-2.2 0.0 4- 1.4 
-2.1 4- 1.1 I- 0.8 

Nevada Bower Company 
-1.8 -1.8 -1.9 
-1.8 -0.4 -0.7 
-2.3 -0.2 -0.5 

27 



% E  RS IN ELECTRICITY s 

4 

2 

0 

-1% 

-4 

LES ERROR - .- P 

1971 1 1975 1977 1979 1 

Figure 6 shows the performance of the SR models for each of  the five utilities.' AI! 
these models used total electricity use (GWh) as the dependent variable in a simple linear 
equation with about six ii-rdepew ent variables. With one exception (1992 for SCE), the 
errors are all less than 2%. And the three-year average error for each utility i s  less than 1%, 
except for SCE, which has a three-year error of -6.3%. The 15 data points in Fig. 6 show 
no pattern, either across utilities or with time. This lack of a pattern is encouraging because 
it suggests that the errors associated with SR are largely random and that, on average, the 
price changes caused by SR will approach zero. 

These analyses of data from €he utilities showed great similarity in results. This 
regularity suggests that SR is likely to yield consistent results from year to year and from 
utility to utility. 

.._. 

*The percentage change in electricity price associated with SR would be 25 tu 50% loaver than 
the percentage change in electricity sales, as discup .,sed above. 
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Fig. 6. Errors in SR estimates of total (residential plus commercial plus industrial) 
electricity use: for 1 1991, and 1992. 

NUMBER OF OBSERVATIONS NEEDED 

An important issue associated with SR is the minimum number of observations 
needed to obtain reliable and stable estimates of electricity use during the simulation period. 
To examine this issue, I used the monthly data from N E E ,  which covers 1980 through 1992. 
I tested models of total electricity use (residential, commercial, and industrial) with eight, 
seven, six, five, four, and three years of data (ie., with 96 to 36 observations). These models 
all included an autocorrelation term with a 1Zmonth lag, which is why the first year of data 
(1980) was not available. The last three years of data (1990 through 1992) were not used in 
the estimation so that they could be used in a simulation test. 

Table 4 summarizes the results for these six models. Each model had the same 
explanatory variables: number of customers, heating degree days, cooling degree days, 
average electricity price, and industrial production. 

A1 the models, even the one with only 36 observations had very high explanatory 
power, with R2 values of 97% or higher. The coefficients for number of customers, heating 
degree days, and cooling degree days were significant at the 100% level for every model. 
Ilowever, the coefficients for electricity price and industrial production were less significant 
for the models with fewer observations. Even here, however, the coefficients were significant 
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at the 95% level or better €or all the models with 60 or more observations. These lwo 
coefficients were not significant in the models with 36 or 48 obsmvations, 

96 

Adjusted M2 0.989 
Significance of coefficients 

Numher of customers 1 .oo 
Heating degree days 1 .oo 
Cooling degree days 1.00 
Electricity price 0.99 
Industrial production 1-00 

0.988 0.986 0.985 0.978 0.972 

1 .00 1.00 1 .oo 1 .oo 1.00 
1 .oo 1 .oo 1 .oo 1 .oo 1 .oo 
1 .oo 1.00 1 .oo 1.00 1.00 
0.95 0.94 0.98 0.89 0.82 
1.00 1 .oo 0.98 0.77 0.30 

Total error in simulation 
period, 1990 to 1992 (%) + 1.2 4-0.9 -1.0 + 0.5 -3- 1.5 -k 4.8 

The magnitudes of the coefficients for number of customers, heating degree days, and 
cooling degree days were quite stable across these models. The maximum variation across 
these three variables and six models was 15%. The variation in the magnitudes of the 
coefficients for electricity price and industrial production were higher. To illustrate, the 
electricity price coefficient in the model with 60 observations was 36% higher than the 
coefficient in the model with 96 observations. 

Figure 7 shows the simulation performance of these six models for the years 1990, 
1991, and 1992. All the models, except the one with only 36 observations, gave accurate 
estimates of total electricity use. These five models also gave consistent estimates from year 
to year: a slight underestimate of 1990 electricity use ( - O S % ) ,  a slight overestimate in 1991 
(+0.4%), arid a larger overestimate in 1992 (+0.7%). 

I coriclueted a similar experiment with a utility that provided quarterly data rather 
than nionthly data. The results, using PSCo data, are essentially the same (Table 5). As the 
number of observations used to estimate the model increases, the s i rda t ion  accuracy also 
increascs. For example, the model with 73 observations had a smaller three-year errclr 
(0.5%) than did any of the models with fewer observations; the same i s  t i u e  for the niodel 
with 55 observations, and so on. 
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1990 1991 1992 

Fig. 7. Simulation results obtained with six models (with 36 to 96 observations) of 
total retail electricity use for N E E .  

Table 5. Statistical properties and performance of models of total electricity use for 
PSCo retail customers 

Adjusted R2 
Significance of coefficients 

Number of customers 
Heating degree days 
Cooling degree days 
Electricity price 
Income 

Number of observations in model 
73 65 57 49 41 33 

0.992 0.990 0.988 0.983 0.975 0.970 

1.00 1.00 1 .OO 1 .oo 1 .oo 1.00 
1.00 1 .oo 1 .oO 1 .oo 1 .OQ 1 .oo 
1 .OO 1 .00 1 .OO 1 .oo 1 .00 1 .oo 
0.94 0.90 0.98 0.99 0.95 0.75 
0.99 1 .oo 1 .oo 1 .oo 1 .oo 0.98 

Total error in simulation 
period, 1990 to 1992 (%> + o s  + 1.3 + 2.7 +3.9 + 4.5 + 5.3 
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Generally speaking, the more obsewations used to estimate the model, the more 
accurate it is over the simulatiorr period. However, over a broad range of sample sizes 
(above 40 or so), the results are quite stable in terms of both model estimation (explanatory 
power and statistical significance of the coefficients) and simulation (accuracy of predictions). 
Also, the range in model estimates incrcases from 199 to 1991 and again to 1992. 
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CHAPTER 6 

IMPLEMENTING STATISTICAL RECOUPLING 

Implementation involves two steps. In the first step, the utility, working with other 
interested parties, develops alternative statistical models. After review of these models, the 
company and other parties agree on a particular model to use, subject to approval by the 
PUC. For purposes of this example, I use the PacifiCorp quarterly data from 1978 through 
1989 on electricity sales and its key determinants.* Aggregation of the data across the three 
primary classes (residential, commercial, and industrial) yields the following “preferred” 
model (Table 6): 

Total electricity use (GWh/quarter) = -564 (CONST) 
+ 0.00660 * Number of customers (CTOT) 
+ 0.113 * Heating degree days (HIID) 
+ 0.347 * Cooling degree days (CDD) 
- 61.7 * Retail electricity price (PTOT) 
+ 177 * Industrial output (INDOUT) 

Table 6. Statistical properties for model of PadiCorp total Utah sales (GW 

Term Coefficient Standard error t-statistic Significance 

CTOT 0.006603 0.001354 
PTOT -61.723168 31.555730 
HDD 0.113035 0.013195 
CDD 0.346906 0.035360 
INDOUT 176.921646 111.595417 
CONST -563.573372 334.283099 
AUTO[ -11 0.415613 0.148275 
- 
- ____________________----------------- 

4.875088 0.999982 
-1.956005 0.942527 
8.566718 1.000000 
9.810710 1 f 000000 
1.585385 0.879246 

-1.685916 0.900402 
2.802979 0.992229 

._______-______lll____ll______l__l______-- 

Sample s i z e  47 
Mean 2496 
R-square 0.968 
Durbin-Watson 1.981 
Forecast error 62.69 
MAPE 0.01869 

Number of parameters 7 
Standard deviation 326.9 
Adjusted R-square 0.9632 
Ljung-Box(l8)=19.99 Pz0.6664 
BIC 77.04 
RMSE 57-83 

“See the Appendix for an explanation of the statistical terms. 

The second step involves application of the model to compute allowed sales and 
revenues €or the years 1990, 19917 and 1992. Results for a case with no DS 

*I did not use the data for 1990, 1991, and 1992 in estimating the statistical model; these data 
were used only to test the accuracy of the SR model in simulation. 
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shown in Table 7; see especially the last two lines of this table.' For 1990, based 011 actual 
values of heating and cooling degree clays, industrial output, electricity p~ice,  and number 
of customer's, the model computes allowed sales of 12,615 GWh, 1.7% more than the actual 
sales of 12,398. This yields an increase in electricity price of 0.05CkWh to be applied in 1991 
to the base value of 5.366/kWh (the weighted average of the retail prices for each customer 
class approvcd in the most recent rate casc), Thuq, the average retail electricity price in 1991 
is, as shown in Table 7, s,4lC/kWh. 

T h P e - y e w  
1990 1991 1992 1993 effect 

Without  s t a t i s t i c a l  recoup1 i n g  
Gross sales (GWh) 12398 12839 13427 

Net sales (GWh) 12398 12839 13427 

Revenues ( m i l l i o n  $ )  667 688 687 13'76 

DSM effect (GWh) c) 0 0 

Average retail price (C/kWh)a 5.38 5.36 5.12 5.12 5.20 

W i t h  s t a t i s t i c a l  recoupLi ng 

Average r e t a i l  piice (C/kWh) 5.38 5.41 5.14 5 .07  5.21 
Revenues (million $ )  667 695 690 1385 

Heating degree days 5370 5735 5153 
Cooling degree days 1345 1102 1189 
Utah i n d u s t r i a l  output 11.2 11.3 11.8 
Rcal e l e c t r i c i t y  piice 4.68 4.47 4.16 
Number of customers ( t h o u s a n d s )  491 5 0 3  506 

Ackuals 

Allowed 
Sales (GWh) 12615 1 2 9 2 5  13173 
Revenues ( m i l l i o n  $ ) 674  69 I 680 
Price ad jus tmen t  , next .   yea^ 
C / k W  0.05 0.02 -0.05 
% change 1.0 0.4 -1.0 

1371 

0.02 
0-3 .3  

"The yeas-to-year changes in average retail prices reflect the changes, both within and 
across customer classes, in the relative arriounts of electiicity used, 

In 1991, the winter is more severe, the suiiirne~ is milder, the number of customers 
grows, industrial output iricreases slightly, and electricity prices fall, leading to an increase 
in allowed sales, to 12,925 GWh. Actual sales grow also, to 12,839 GWh. This difkrerice 
between actual and allowed sales in 1991 Icads to a 0.02C/kWh price increase to he applied 
to the base price in 1992. 

*To produce the allowed sales estimates in 'l'able 7, t he  coefficients in Table 6 for @KIT, P TOT', 
INDQIJT, and CONST must be multiplied by 4 to convert from quarterly to annual estimates. &so, 
the automrrelation term (AIITO[-I]) in Table 6 is sct to zero for simulation. 
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In 1992, allowed sales are slightly below actual sales, leading to a O.OSC/kWh price 
decrease applied in 1993. During this three-year period, SR would have increased prices 
slightly for two years and then decreased prices slightly in the third year. 'The overall. effect 
is an increase in electricity price of 0.02CkWh (0.33%) for the three years. The percentage 
changes in electricity price are less than two-thirds the percentage errors in the SR model 
because of the adjustments in going from the retail electricity price to P,. A typical 
residential customer with a base price of, say, 6.OCkWh would have paid 6.05c/kWh, 

, and .5.95C/kWb for electricity in 1991, 1992, and 1993 had SR been in place. 

Table 8. ~ ~ l e ~ ~ ~ ~ a t ~ o ~  of statistical recoupling in Utah with DS 

Three-year 
1990 1991 1992 1993 ef feet 

Without statistical recoupling 
Gross sales (GWh) 12398 12839 13427 
DSM effect (GWh) -60 -120 -180 
Net sales (GWh) 12338 12719 13247 

Revenues (million $ )  664 682 678 1360 

With statistical recoupling 

Average retai l  price (C/kWh) 5.38 5.43 5.17 5.10 5.23 

Average retail price ($/kWh)a 5.38 5.36 5.12 5.12 5.20 

Actuals 

Revenues (million $ )  664 690 685 1375 

A 1  lowed 
Sales (GWh) 12615 12925 13173 
Revenues (million $ )  672 m a  676 1364 
Price adjustment, next year 

Cl/kWh 0.07 0.05 -0.02 0.10 
8 change 1.3 0.9 -0.3 1.86 - - - ~  

"To keep this example simple, these prices do not reflect recovery of DSM-program 
costs. 

If PacifiCorp had run DSM programs that cut electricity use during this period, the 
mechanics of implementing SR would have been unchanged. In this example, I assume that 
the company's DSM programs cut electricity use by an incremental 0.5% each year (Table 
8). In 1992, sales are lower by almost 1.5%. 

Because of the company's assumed DSM programs, the price decreases arc slightly 
smaller and the price increases are slightly larger than was the case with no DSM programs. 
During the three-year period, prices increase an average of O.l%/year without DSM 
programs and 0.6%/year with DSM programs.' Thus, SR works as expected: it yields only 

'These DSM-induced short-term price increases are offset by price decreases later on and by 
lower total costs of meeting electric-energy service needs. 
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small changes in electricity price and it removes the disincentive fop. YacifiCorp DSM 
programs. 

This example covers a thee-year implenientation period, which, I believe, is 
appropriate. Retention of the same model for several years i s  administratively simple 
because it avoids conflict over model form and variables, However, the forecasts made with 
a statistical model will become less accurate as time goes on. O n  the other hand, cstirnating 
new models every year invites regulatory complications and, more important, i s  probably inot 
neccssaq to maintain accuracy. Although SR can be implemented and updated as part cf 
a rcgular rate-case cycle (e+, the three-year cycles in California and New York), the method 
can be implemented and updiitd independent of rate cases. 
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CHAPTER 7 

THER ISSUES FOR STATISTICAL RECOUPLING 

COST-CONTROL AND ECONOMIC-DEVELOPMENT EFFORTS 

Statistical recoupling should have no effect on a utility’s efforts to control its costs, 
keep electricity prices low, and promote economic development. Because the mechanism 
focuses on revenues and not on earnings, a utility would continue to have the same incentive 
it always had to hold down costs. 

Although the mechanism removes the incentive to build uneconomic load, it also 
removes the disincentive to promote customer enerby efficiency. As the Connecticut 
Department of Public Utility Control (1991) noted “conservation is an essential tool to keep 
Connecticut business competitive and attract new companies to the state.” 

A utility operating under SK would continue to run beneficial load-building programs 
(e.g., to promote economic development or to improve local environmental quality) because 
its long-term profits depend can the health of the economy in its service area. If local 
industries do poorly or go out of business, the utility will lose not only those industrial sales 
but all the associated residential and commercial sales, too. In the short term ( i c y  between 
rate cases), the utility would have an incentive to promote economic sales and a disincentive 
to promote sales that did not improve the local economy (i.e,, that were not reflected in the 
economic variable in the SR model). 

For example, Southern California Edison (1992) runs load-building programs to help 
its commercial and industrial customers meet environmental regulations and therefore 
remain in the SCE service area. These programs focus on local air quality; examples include 
the Volatile Organic Compound Reduction Test Program for Dry Cleaners and a program 
to reduce NO, emissions from fossil-fuel boilers through “retrofits, heat recovery equipment, 
emission reduction technologies, electric boilers, heat pumps, and thermal storage 
applications.” Because SCE’s earnings are independent of electricity sales (because of 
ERAIM, discussed above), the California PUC can be more confident that SCE runs these 
programs to help customers. 

To the extent that a utility promotes load growth that increases economic activity, SR 
will increase allowed utility revenues and therefore earnings. For example, the model 
presented above for NEES uses Massachusetts industrial output as an explannatony variable. 
The inclusion of this variable in the model means that any NEES economic-deveiloprxserlt 
activity that increases output will increase NEES’s allowed revenues U I ~ ~ J  SR. If NEES 
encourages a firm to build a new factory in Massachusetts, the output generated by that 
factory will. increase NEES’s allowed revenues. 
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However, if the company boosts loads in a way that does not increase output in the 
sewlice area, its revenues and earnings will riot increase. In other words, the company, under 
SR, has an iriceritive to promote sales that help the locall cconorny. However, NEES receives 
no compensation for sales that do not benefit customers in gerieral (i.e., undifferentiated 
load growth). ‘Ihese are very desirable features of Sa,  in my view. 

As Bartsch and DeVaul (1993) comment: 

Utilities traditionally have supported economic development initiatives 
because they depend upon the fiscal fortunes of their service territories. Most 
follow the ‘smoke-stack’ model of industrial recruitinent, however, often 
offering low incentive rates to attract new business. Few actually undertake an 
active effort to invcst directly in business modernization or to help firms 
improve their cash-flow positions by managing energy needs and costs. 

Yet by linking energy efficiency and competitiveness strategies, utilities can 
lower businesses’ operating costs and upgrade their process technologies. 

Statistical recoupling provides an incentive for utilities to link efficiency and competitiveness 
because the method removes the disincentive to reduce electricity sales while retaining an 
incentive for economic growth. 

BIAS IN MODEL SELECI‘ION 

To assess the possibilities of manipulating the models used in SIR, I developed various 
models of total electricity use. I used the PacifiCorp data for Utah to conduct this exercise, 
the details of which are in the Appendix. 

I estimated models of total electricity use (combining data from the residential, 
commercial, and industrial classes) as well as models of total electricity use per customer. 
Three of the four models in each set are lincar models, while the fourth model uses the 
logarithmic form for electricity use, electricity price, and the economic variable. The first 
three models differ in their use of an economic variable: industrial output, manufacturing 
ernployment, and industrial output per customer. 

Table 9 and Fig. 8 show how these eight models differ in the accuracy of their 
estimates of electricity use for 1990, 1991, and 19932, as well as the cumulative (three-year) 
error. These models were all estimated using data from 19‘78 through 1989. 
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Table 9. Simulation errors obtained with different models of electricity me for 
PacifiCurp" 

Percent error 
Total sales models Sales per customer models 

(1) (2) (3) (4) (5) (6) (7) (8) 

1990 + 1.7 +2.8 + 1.6 +2.7 + 2.0 + 2.6 + 1.6 + 2.2 
1991 +0.7 + 1.4 + O S  +2.3 + 0.9 + 0.4 +0.1 + 1.3 
1992 -1.9 -2.0 -2.2 +0.1 -1.5 -3.9 -2.4 -2.1 

Three-year 
error + 0.5 + 2.2 +0.1 +5.1 +1.4 -0.9 -0.7 + 1.4 

"The Appendix provides details on each of these models. 

% ERROR IN SR ESTIMATES OF ELECTRICITY SALES 
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Fig. 8, Simulation errors obtained with eight models of electricity me far Paci%iCorp. 

The models all overpredict electricity use in 1990 and 1991. A11 but one of the anodels 
underpredict 1992 electricity use. The range in predictions among the tnodels iaacrenses from 
year to year, from 1.2 percentage points in 1 9 0  tu 2.2 percentage points in 1991, and 4.0 
percentage points in 1992. These results, not surprisingly, show that the accuracy of the 
models' estimates decreases as one moves further away from the historical estimation period. 
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This phenomenon was also observed in the comparison of six rnodcls for NEES, which was 
discussed above (Fig. 7). 

Given this range in moikl performance, how might a utility seeking to maximize i t s  
allowed revenues in future years pick among thesc models? Table 9 shows that Model 4 
yields thc largest positive error of these eight models, a 5.1% overprediction of sales. 
Comparing the coef€iicients of this nicsdel with those of Model 8, the other log-log model, 
shows that Model 4 has a higher electricity-priec coefficient arid a lower industrial-output 
coefficient" 

If the utility knew, in 1989, that industrial output would grow s~owly during the next 
three years aiitl that the mix of electricity sales would shift to the industrial sector (which 
pays a lower price than does the residential class), then the utility would pick Model 4 over 
Model 8. On thc other hand, if thc utility thought that the economy would grow rapidly and 
that the mix of sales would not change (or would shift to the residential sector), theii it 
would want to use Model 8. Absent goad information on such future trends, the Intility has 
n o  bask for selecting one model over araotlacr. 

One can pick any pair of mudels among these eight and go through the same type 
of exercise to show the difficulty of selecting a rnodell to achieve a desired outcome. Consider 
Models 1 and 2 as another example. The sta-te's comiiiner advocate might like a m~cle l  that 
lowered the titility's authorized revenue. So it would pre€er, aftcr the fact, Model 1 to  Mudel 
2. But in 1989, how would it know whether the number of customers would glow slowly (in 
which case it svould pick Modcl 2) or whether the summers would Epc especially hot and the, 
winters unusually mild (in which case it woul1l pick Model 1)? What would the consumer 
advocate do if it thought that the n~lmbca- of customers would grow slowly (which favors 
Model 2) and that the summers w0~1d be inild and the winters harsh (which favors Model 
l)? 

This cxaniinatisn of alternativc models aiid their simulatiori results leads to tinree 
conclusions: 

M It is v e ~ y  difficult - absent reliable information on future changes in the number of 
customers, the weather, arid the economy - to select a model that will achieve a 
desired outcorne. Thus, manipulation is not a problem with SR. 

s The range in estimates across these models is quite sniall, which suggests . .  that SR 
results are robust. 

m The range in estimates iricreases from one year to the next, which suggests that these 
models should be re-estimated every fcw years. 
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EFFECTS OF PAST UTILITY DSM PROGRAMS 

Because the models used in SR are based on historical data, they will automatically 
include the effects of any past load-building or energy-efficiency programs that the utility 
might have run. Will the effects of such past programs bias the estimates obtained with the 
statistical-recoupling models? 

Hypothetical Example 

To explore this issue, I used the data from PacifiCorp and added the effects of a 
hypothetical load-building program. This hypothetical program began in 1985, with a first 
quarter sales increase of 0.15%. The program continued unchanged with each quarter’s load 
increment added to the cumulative effects of all past increments such that sales in 1989 were 
increased 2.5% because of these load-building efforts. By assumption, this program had no  
effect on the local economy (ie., Utah industrial output). 

I made two alternative assumptions for the 1990- 1992 simulation period: (1) the 
utility continued its load-building program unchanged during these three years or (2) the 
utility stopped load-biiilding program at the end of 1989 (Fig. 9). In both cases, the effects 
of past load-building programs continued through the simulation period. I used the same 
linear model formulation of total electricity use shown in Table 6; the coefficients art: 
different because of the load-building effects from 1985 through 1989. 

PACIFICORP ELECTRlClTY SALES (GWh) 

LOAD BUILDING 

1978 1980 1982 1904 1986 1988 1990 1992 

Fig. 9. PacifiCarp retail electricity sales for its Utah service area. 
actual sales. The dashed line assumes that a lo 
operation from 1985 through 1989. The dotted 
building program continued to aperate through 1992- 
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The simulation results for the case with continuation of load building are quite similar 
to those obtained with no load building (compare the first columIn in Table 9 with the first 
column in Table 10). However, the errors are consistently more positive for the case when 
load-building stops at the end of 1989. Over the three-year sirnulation period, the difference 
anrounts to an extra 2.7% of sales if the utility had stopped its load-building programs at the 
end of 1989. 

Load building Load building 
continued through 1992 stopped in 1989 

1390 
1991 
1992 

Three-year error 

1.7 
0.3 

-2.4 

2.1 
1.2 

-1.0 

-0.4 +- 2.3 

“?‘his bad-building program, begun in 1985, increased sales by 2.5% in 1989. The 
diffcrence between the two cases in 1992 was 1.5% of sales. 

These results are expected. The model and i ts  coefficients used to estimate electricity 
use for 1990, 1991, and 1992 are exactly the same in both cases. Therefore, the estimated 
results are the same in both cases. The errors are greater in the second ease because the 
“actual” values of electricity use are lower when load building stops at the end of 1989. 

These results show that SR overestimates allowed revenues if the utility had load- 
building programs that were discontinued at the start of the statistical-recoupling 
implementation period. The reverse is also true, If the utility had run energy-effkiency 
programs that were cancelled when SR was being implemented, thc utility would under- 
recover. This error in SR may, fortuitously, lead to good policy. The  error encourages 
utilities to stop load-building programs that do not promote economic growth and to 
continue energy-efficiency programs. 

If the statistical models include explanatory variables that capture the effects of the 
utility’s DSM programs (e-g., the utility’s quarterly budget for load-building or energy- 
efficiency programs), this problem might not occur. However, the historical effects of utility 
DSM programs are likely to be small and difficult to capture in such a simple statistical 
model. 

The practical issue i s  whether historical bad-building programs that do not affect the 
local economy are likely to have a large enough effect on past and future electricity sales to 
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have measurable effects. Tf the load-building programs were small, the bias in simulation 
results obtained with SR would, likewise, be small. 

Analysis of Southern California Edison Data 

Southern California Edison (1993) calculates, on a quarterly basis, what electricity 
sales would have been for each sector absent the effects of SCE conservation programs, 
mandatory appliance and building efficiency standards, and bypass. These adjustments 
increased from 4% of sales in 1980 to 15% in 1992. Thus, these data provide an opportunity 
to examine empirically the performance of SR when (1) a utility has DSM programs in 
place, (2) has estimates of the effects of these programs (as well as other factors) on 
electricity use, and (3) when the effect of these programs on sales is nontrivial. 

I tested different specifications of a model of SCE retail electricity sales with and 
without a variable that is SCE's estimate of the change in sales caused by the factors listed 
above. The coefficients of this change variable were always statistically sigriifican t at the 99% 
level; the magnitude of this coefficient ranged from 0.6 to 1.1. A coefficient greater than 1.0 
implies that the SCE estimates of the electricity savings caused by these factors was too low, 
a coefficient of 1.0 implies that the SCE estimates are exactly correct, and so on. 

In most cases, the model that included this additional factor'had more accurate 
estimates of actual sales for 1990, 1991, and 1992 than did the model without this variable 
(Table 11). However, the models that did not include this change variable also had very 
good predictive powers. So, even in a case where the adjustments are substantial (15% in 
1992 for SCE), a model that ignores these effects can perform well. 

Table 11. Performance of models of electricity sales for Southern California mison with 
and without an explanatory variable for the effects of DSM and other factors 

Variables Number of Number Coefficient Three-year 

variables at 99% electricity savings error (%) 
in model explanatory significant R2 of estimated (1990-92) 

Employment, CDD, 3 3 0.988 - -1.4 
and price 4 4 0.99 1 -1.3 -1.7 

Unemployment, CDD, 3 2 0.990 -1.3 
and price 4 4 0.993 -1.1 -0.6 

Unemployment, CDD, 4 3 0.992 -1.5 
HDD, and price 5 5 0.994 -1.1 -0.4 
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EFFECT’S OF DIFFI~3KENTlAL DSM PROGRAMS 

The statistical rccoupling models all de;d with electricity use and not demand (GWh 
and not MW). In addition, the aggregate models (which are sirnplcr io estiilmate and which 
perform better than separate models for each ciustonner class) include all customer classes 
in one equation. 

l’hese features of SR raise questions about its accuracy in estimating the net. lost 
revenues associated with DSM programs if (1) these programs affect different customer 
classes differentially or (2) these programs have difkrent effects on cncrg-y use and demand. 
To explore thc performance of SR with different types of DSM programs, I created a 
hypothetical utility with three customer classes and the rate structures shown in ‘l’able 12. 

Table 12.. Rate structures and electricity me by castomer class foe a hypa~~hetiml utility 

Residential 5 6.5 0 900 6300 14311 
Cornmercial 30 3.6 10 90 5480 1121 
Industrial 150 2.5 8 5 6300 899 

Totals 8 4.3 5.3 995 18008 3458 

Typical of most utilities, this one has rate structures that differ substantiailly across 
custon-ler classes. The residential customers pay no chnand charge and have the highest 
aver;,@ price (7.7C/kWh). The commercial and industrial customers pay both energy arid 
demand charges, wit11 the industria; class paying less (leading to average prices of  G.-/C/kWh 
and (r.OC/kWh for the commercial and indmtrial classes, respectivcly). The iitility’s total 
revenue i s  $1.1 billiorn. 

Differences in DSM Across Customer Classes 

If this utility runs a set of DSM programs that reduce both errergy and demand f c i t  

each customer class by 1.0%, the nct lost revenues total $6.1 million (0.6% of revenue). If 
the iitility’s TISM programs, bowever, emphasize one class over the others, then SK based 
on a n  aggregate model will not appropriately compensate the iitility for its net lost rcvcnues 
(‘l’able 13). For example, if the percentage savings from the industrial DSM programs are 
50% mole than the savings achieved by the residmtial arid coanrnercial prcgrams, then SR 
will overcompensate the utility, awarding it the samc $6.1 nillioii foul its loss of $5  6 million, 
a -0.04% error in total revenues. On thc other hand, if the residential programs cut 
electricity use by 50% more than the commercial and itdustrial programs, then SK would 
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undercompensate the utility, awarding it the same $6.1 million for its loss of $6.4 million, a 
+0.03% error in total revenues. 

A DSM program aimed at only one customer class i s  the worst-case situation for SR 
(Table 13). An industrial-only program that cut aggregate energy and demand by the same 
1% would result in $3.0 million of lost revenue. But the aggregate SR model woiild pay the 
utility $6.1 million, a -0.28% error in revenues. A DS program that cut energy and demand 
by residential customers enough to save 1% overall would result in $8.3 million of lost 
revenue. Once again, the aggregate SR model would pay the utility $6.1 million, a +0.20% 
error in revenues. Thus, a utility operating under SR with an aggregate model would have 
an incentive to target industrial customers and neglect residential customers in its DSM 
programs. 

Table 13. Comparison of DSM-induced net lost revenues and the amounts awarded by 
statistical recoupling 

Net lost revenue (million $) 
Actual SR-aggregate" 

Savings 50% higher in 
Residential class 
Commercial class 
Industrial class 

Savings only in 
Residential class 
Commercial class 
Industrial class 

6.4 6.1 (+O.03) 
6.2 6.1 (+0.01) 
5.6 6.1 (-0.04) 

8.3 6.1 (+0.20) 

3.0 6.1 (-0.28) 
7.0 6.1 (+O.O9) 

aThese cases all involve DSM programs that cut overall energy and demand by 1.0%. 
The numbers in parentheses are the percentage errors in the amounts of money awarded 
by the SR model relative to total revenues ($5,096 million). 

bSR-aggregate refers to use of one statistical model that simulates electricity use for 
all three classes. 

These cases of disproportionate DSM yield three conclusions: 

Use of an aggregate statistical model introduces some error into estimation of the 
amount of net lost revenues associated with DSM programs; use of statistical models 
for each customer class avoids this prol~lem. 

rn The error caused by use of a n  aggregate model is small. Even in the worst possible 
situation (a DSM program aimed only at the industrial sector, where the lost 
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revenues per kW% are the lowest), the amount of excess revenue granted the utility, 
while double the actual net lost revenues, is only 0.3% of total revenues. 

Therefore, states considering SR should either ensure roughly proportionate DSM 
across customer classes or use individual statistical rnoclcls rather than the aggregate 
model. 

Differences in Conservation Imad Factors 

DSM programs can also differ in their effects on customer energy use and peak 
demands. In the cases discussed above, energy and demand were always reduced by the 
same percentages, which assumes that the conservation load factor (CLF) is the same as the 
utility system's load factor. 

However, DSM programs typically cut demand by a larger percentage than they cut 
energy use (i-q the CLF is less than the system load factor). Consider a set of DSM 
programs that cut peak demands in each sector by 1% with different perccntage reductions 
in energy USE. Because residential customers pay no demand charge, actual nct lost revenues 
equal those computed with SR models. For the commercial a i d  industrial sectors, which pay 
both energy and demand charges, the SR modcls underestimate net lost revenues when the 
CLF of DSM programs is less than the system load factor (60% in this example). 

The extent to which the SR models underestimate net lost revenues depends OII (1) 
whether the DSM prcgrams cut peak demands at the time of maximum customer demand 
(Le., the relationship between coincident and noncoincident peaks), (2) any nonzero short- 
term avoided capacity costs, arid (3) whether the utility's demand charge includcs a ratchet.* 
In the following analysis, I assume a zero avoided capacity cost and ignore differences 
between the timing of 19Sh.I-program demand reductions and customer peaks; these 
assumptions represent a worst-case treatment of SR. I treat the monthly deanand charge 
parametrically, with a full 12-month ratchct at one extreme and no ratchet at the other. 

If the DSM programs cut demand by 1% and cut energy use by 0.5% (Le", the CI,F 
is half the system load factor), net lost revenues are $4.1 milliori with a 12-month ratchet and 
$3.1 million with no ratchet, but the SIR model allows only $3.0  ini ill ion (a -0.1% error in 
total revcnues with the ratchet and a -0.01% crmr with no ratchet). Figuic 10 shows how 
the SIX-induced error varies with differences in the CLF of the utility's DSM programs. 
Unlike the situation with differcnt DSM effects across customer classes, the two types of S R  
models, by class and aggregate, yield the same errors. 'I'his error occurs because the SK 
models estimate electricity sales (GWh) and are silent with respect to demand (MW). 
'Therefore, changes in demand that do not a€fect sales have 110 effect on the amounts of net 
lost revenues estimated with SR models. 

'A demand ratchet has a demand charge ($ikW-month) based on the customer's highest demand 
during the past n months (whcrc n is  often 12), rather than tile highest demand during the current 
month. 
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Figure 10 shows that the SR estimate of lost revenue is increasingly inaccurate as 
CLP gets smaller. With a 12-month demand ratchet and a CLF of 0.1, the actual revenues 
lost are almost triple that calculated by the SR method. With no demand ratchet, the actual 
revenues exceed the SR estimate by 25%. Figure 10 also shows the SR error as a percentage 
of total. revenues. Because the amount of revenue lost is quite small for programs that save 
little e n e r u  per kW saved, these percentages are quite small. Even for DSM programs with 
a CLF of 0.1 and a 12-month ratchet, the SIX-induced error i s  less than 0.2% of revenues. 

For two reasons, the errors in allowed revenues calculated here are upper bounds. 
First, I assumed that there is no short-term capacity cost that can be avoided by DSM 
programs. Second, utility load-management programs typically focus on reducing demands 
at the time of system peak, which may not coincide with the times of customer peak 
demands; therefore, the net lost revenue associated with demand charges will bc less than 
assumed here. 

RATIO OF ACTUAL LOST REVENUE 
TO SR ESTIMATE % OF REVENUE 

0.25 - 12-MONTH RATCHET 
3.0 

\ 
. .- NO RATCHET 

. . . * . . " . . . . . . . . . . . . .  - - - - - - __ - - - - - - --.L 

0.1 0,2 0.3 0.4 0.5 0.6 0.0 

CONSERVATION LOAD FACTOR 

Errors in the SR estimates of DSM-induced net lost revenu 
conservation load factor. phe system load factor is 0.a.) ' 
two sets of curves, both with a 12-month ratchet and w ~ ~ h ~ ~ t  a 
first set shows the ratio of actual lost revenues to the SK est 
second set shows the SR error as a percentage of total revenues. 
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SHIFTS IN ELECTRICITY USE AMONG CUSTOMER CLASSES 

As discilmssed above, the models of aggregate electricity use perform better than docs 
the combination of models of each customer class. In addition, it takes less time and i s  
simpler to estimate one model than to estimate separate models for the residential, 
commercial, and industrial classes. 

Although the mix of electricity use and demand across sectors changes from year to 
year, SIX based 011 an aggregate model should produce unbiased estimates of allowed 
revenue. The variables that capture electricity use, number of customers, and electricity price 
all account for changes in the rnk of sales, customers, and revenues across customer classes. 
Also, the proportions of electricity sales by customer class change only slowly over time (Fig. 
11). ?'herefore, any errors caused by aggregate SR are likely to bt: quite small. 

Even in Massachusetts, where the economy has been poor during the past few years, 
the shifts in electricity sales among classes have lieen slight. Between 1988 and 1992, for 
example, the share of NEES, sales to the industrial sector declined from 27.6% to 25.7%, 
a two-percentage point change in four years, 

I I I 1 ............ 1 1 (-j 1- ........ I ........... 1 __I_- 

1983 19 



EXCLUSION OF SOME CUSTOMER CLASSES 

In this analysis of data from five utilities, I estimated models for the same three major 
customer classes, residential, commercial, an3 industrial. What are the consequences of 
ignoring electricity sales and revenues for the other customer classes, including street and 
highway lighting, other public authorities, and railroads and railways? 

National data (Edisnn Electric Institute 1992) show that the three major classes 
accounted for more than 95% of total retail electricity sales during the past decade. Of 
course, the contributions of these classes to total sales differ across utilities. Among the five 
in this sample, the three classes account for anywhere from 93 to 99% of total retail sales. 

These data suggest that SR, based on inclusion of only the three major customer 
classes, can proceed in one of two ways. The utility can adjust electricity prices for all retail 
customer classes (including those excluded from the SR analysis), which will reduce slightly 
the SK-induced price changes. This approach makes sense if the utility’s DSM programs 
affect these excluded customer classes. Alternatively, the utility could adjust electricity prices 
for only those classes that are explicitly included in the SR analysis. Because the three major 
customer classes account fcx such a large fraction of total retail sales, the difference between 
these two approaches i s  very small. 
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CHAPTER 8 

CQNGLUSIONS 

COMPARISON OF STATISTICAL RECOUPLING WITH OTHER MECHANISMS 

Statistical recoupling is only one of several methods that can be used to remove the 
disincentives that utilities face, under current regulation, to implement energy-efficiency 
programs. These approaches include explicit net-lost-revenue adjustment mechanisms and 
three forms of decoupling. The decoupling mechanisms iriclude ones that recouple revenues 
to the determinants of fixed costs (e.g., California’s Electric Revenue Adjustment 
Mechanism), to growth in the number of custramers (revenue-per-customer decoupling), or 
to the determinants of electricity sales (SR). Not surprisingly, these methods have diffcrent 
strengths and limitations (Fable 14). 

All four approaches remove the disincentive tea utility promotion of improved 
customer energy efficiency. With an NLRA, a utility’s shareholders are compensated for the 
between-rate-cases net lost revenues caused by the utility’s I)SM programs. with decoupling, 
utility revenues are independent of sales levels, 

The three decoupling methods, but not NLRAs, remove the incentive to promotc 
load growth. Whether utilities should be encouraged tu build load is a controversial issue. 
Some argue that, in a competitive environment, the utility (like other private companies) 
should earii more money if it sells more of its product. Others believe that, as part of 
integrated resource planning, the utility should earn more money for implementing its 
preferred resource ph i ,  which likely will include both demand and supply resources. SR 
compensates utility shareholders for load growth that i s  a consequence of ~ C Q I I C N I ~ ~ C  growth 
but  not for “undifferentiated” load growth. 

One of the concerns raised with decoupling is that it allows the utility to become less 
competitive and to worry less about controlling costs, promoting economic devcloprnent, and 
providing top-notch customer service. Because NLRAs are narrowly focused OII I>SM 
programs, such mechanisms have no effect on the utility’s competitive behavior. In principle, 
the decvupling ap  roaches, because they affect utility reveizues rather than ~ ~ ~ - ~ ~ ~ ~ ~ ,  should 
not affect a utility’s efforts to control costs. However, decoupling removes the incentive for 
load building, which removes the incentive for economic development that increases Inads. 
Thus, utilities with EKAM or RPC clecoupling might devote less effort to ~ C O J B Q I I I ~ C  

d e v e ~ ~ p ~ ~ ~ t  in their service areas, although utilities with RPC clecoirpling have an iaacc;;tive 
to add customers whose costs are less than that allowed in the RPC mechanism. SR, on the 
other hand, contains an  explicit incentive for utilities to promote econornic growth. This 
incentive is a consequence of the explanatory variable(s) used in the SW rnodel(s) that 
capture local employment, industrial output, income, or gross state product. 



Criterion Current 
NLKA E R M  RPC SR regulation 

Removes disincentive to 
energy-efficiency programs 

Yes Yes Yes NO 

Removes incentive to build 
load 

No Yes No 

Retains utility incentives to 
- Control costs 
- Bronnote economic 

development 
- Improve customer service 

Y e3 

Yes 
Yes 
No 

Yes 
S0l-I-E 

Yes 
Yes 

Yes 
Yes 

Yes Yes '> Y C S  Yes 

Simple to 
- Understand 
- Administer 

No 
Yes 

Yes 
Yes 

No 
NO 

No 
No 

Yes 
Yes 

I)ifficult to manipulate No Yes Yes Yes 

Minimizes volatility of 
electricity prices 

Yes N O  No Yes YCS 

Maintains current risk 
allocation between 
customers and utility 

No No Yes Yes 

Because WPC decoupling pays the utility a fixed amount per customer, the utility may 
lnavc no incentive to encourage growth in the iiumbcr of large irlnstnmers (k? those for 
whom the cost of service is above the average). Palthough thcre was no evidence of this 
phenomcnon occurring in Maine 01 Washington, some customers are concerned about this 
disincentive. However, RPC decoupling could bc implemented seprately foi each customer 
class. Because the concept of revenlie per customer is nct part of either EZtNblI or SR, there 
is no reason for a utility to pay less attecition to its large commercial and industrial 
customers. Thus, sewice quality is no more, nor less, of a problem with Ekl*$rl or SR than 
it is with traditional regulation. 

Establishirng arid overseeing an NLMA can be very time consuming arid complicated. 
On the other hand, this effort to establish an adequate IXM-program moriitoring and 
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Ax1 NLRA, because of its nariow fcpcus o programs, will have minimal cffects 
on electricity prices. ERAM and RPC ~ ~ ~ ~ ~ ~ a ~ ~ ~ " ~  can lead t o  larger swings in priws. SIX, 
because it seeks to mimic cicssely current r ~ ~ 3 ~ ~ ~ ~ ~ ~ ~ ~ )  should have only small 
changes in electricity prices. However, SK relies on the accuracy of statistical 

ased on historical data. 'I'o the extent that thc future is different from the 
to errnrs in the amounts of money traaisferrcd to or frirom the utility. Thus, 

le to major structixral shifts in ener 
s or a new electroteehnrslo 

~~~~~~~1~~ (e.g., tough new building or app1liaav.x 
eeps the market). 

PG ~~~~~~~~~~~ trasnsfc  me risks from the utility to customers, thuse 

~ ~ r ~ ~ r a ? ~  performance risks Oonr a utility to its customers. The risks 
r and the economy remain with the utility urider SR. With SW, 

customers hear the risk only far changes in revenues associated with those factors that oftect 
sales and are not appropriately incliided in the SR equations. 

sal.i;s ~ ~ ~ ~ ~ ~ ~ a t ~ ~ 1 ~ ~  caused hy nges in the weather and r k  e c o n ~ y .  N L,KA 

In summary, statistical recoupling is similar to other forms of decoupling in that it 
eliminates the between-rate-cases incentive lo build load and the disiiicentivz to run energy- 
efficiency programs. P-Io~ever, SR does not shift the revenue and price risks associated with 
weather and economic changes from utilities to customers. Thus, SR is  likely to invt,lvc much 
smaller price changes than do other types of decoupling. 

'Thrce reviewers of this report helkvc that development of thG models for statistical recoupling 
will be contentious because people will assunic that these models can be manipulated. IBecaizse thc 

amounts of money at stakc arc large relative to  eaknings (although very small c ~ ~ p ~ ~ ~ ~ ~  to rev/cnt~cs), 
they think that smart analysts will find ways to manipulate thc modcls. TB~ese people weac not 
convinced by the exampilcs summarized in Table 9 and Fig. 8. 
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FINAL TMQUGI-ITS 

Whethcr QP not §R is a good idea depends on two key factors. Frrst, one has to 
believe that electric utilities can and should play a major role in helping their customers 
irnprove efficiency of electricity use. Second, one must believe that the beiv.zcn-rate-cases 
disincentive to DSM in current regulation is an important deterrent to aggrcssive and 
innovative utility DSM programs. 

Acceptance of these two propositions leads to a commitment io remove from 
regulation the incentives for load growth and the disincentives for encrgy efficiency. As 
discussed here, utilities and regulatory commissions liave sevcral options to choose from in 
addressing this problem. These options include net-lost-revenue adjustments, variorns forms 
of decouphg,  annual rate cases, alternative rate designs, and command-and-control 
regulatiorn. 

Compared with other approaches, S R  offers important advantages. Its kcy strength 
is its ability to break the link between electric revenues and sales with minimal deviations 
from current ratemaking. In particular, SR shifts fcw risks from utilities to customers; 
therefore, the price swings caused by SR should be less than those caused by other 
decoupling approaches. SW should be easy to design and implement, primarily because it 
uses the same ditta and analytical techniques that utilitics have used for years in developing 
short-term forecasting models. SXZ should be sirnple for I egulators to oversee because its 
application is uncomplicated and i t  is difficult to manipulate thc system. SW should serve 
utilities and their customers well in an era of increasing competition beca-dse SR retains dn 

incentive for utilitics to promote local. economic growth. The major uncertainty with SR is 
the possibility that the determinants of electi icity use svill be different during the application 
period than during the histcarical pcriod on which the modcls were based. If the structure 
of electricity usc changes dramatically during thc few years that SK is applied, then this 
approach could lead to nontrivial price changes. 

On balance, statistical recoupling offers iiiuch potential to completely break the link 
between revenues arid salcs and therefore to fi-ee utilities to run ambitious and creative 
DSM programs. Statistical recoupling is easy to dcsign, implennerit, and oversee; it should 
yield only small  much less than 2%/year) changes in electricity p ice ;  and it retains the 
traditional inceiitives for utilities to control costs, promote ecoilmnic dcvelopnient, and 
improve customer sewicc. 
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APPENDIX 

ALTERNATIVE MODELS OF TOTAL ELECTRICITY 
USE FOR PACIFICORP 

The models summarized in Table 9 and Fig. 8 are presented below. These tables are 
the outputs from Forecast Pro, the software used to estimate these time-series models. 
CTOT is the number of customers, PTOT is the average retail electricity price in real (1987) 
dollars, HDD and CDD are heating and cooling degree days, INDOUT is Utah industrial 
output, EMPMFC is manufacturing employment in Utah, CONST is the constant term, 
- AUTO[-11 is the first-order autoregressive term, and Ln refers to the logarithmic form of 
the variable. R-square and Adjusted R-square show the percentage of variation explained 
by the model. BIC is the Bayes information criterion. The Durbin-Watson d-statistic and the 
Ljung-Box test check for autocorrelation in the residual terms. MAPE is the mean absolute 
percentage error. And RMSE is the root-mean-squared error. 

1. Forecast Model: Total Utah Sales (GWh) 

Term Coefficient Standard error t-statistic Significance 

CTOT 0.006603 0.001354 4.875088 0.999982 
PTOT -61.723168 31.555730 -1.956005 0.942527 
HDD 0.113035 0.013195 8.566718 1 * 000000 
CDD 0.346906 0.035360 9.810710 1.000000 
INDOUT 176.921646 111.595417 1.585385 0.879246 
- CONST -563.573372 334.283099 -1.685916 0.900402 
AUTO[- 11 0.415613 0.148275 2.802979 0.992229 

Sample size 47 Number of parameters 7 
Mean 2496 Standard deviation 326.9 
R-square 0.968 Adjusted R-square 0.9632 
Durbin-Watson 1.981 Ljung-Box(18)=19.99 P=0.6664 
Forecast error 62.69 BIC 77.04 
MAPE 0.01869 RMSE 57.83 

Three-year simulation errors 
1990 +1.7% 
1991 +O. 7% 
1992 -1.9% Total error = 0.5% 
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2. F o r e c a s t  Model: Total. Utah Sales (GWh) 

Term C o e f f i c i e n t  S t anda rd  error t - s t a t i s t i c  S i g n i f i c a n c e  

I- .___.-.._ 

CTOT 0.007429 0.000649 11. 440181 1. O0000Q 
PTQT -69.018620 23.089086 -2 989231 0.995235 
BDD 0.112369 0.013876 8.098222 1.000000 
CDD 0.349962 0.037 5-79 9.312740 1.000000 
EMPMFG 8.787764 3 * 887644 2.260434 0.970693 
CQNST -1351.119893 276.522568 -4.886 I11 0.999983 
AUTO[ -. 11 0.2755’79 0.161422 1.707200 0.9044653 

- 

Sample size 47 Number of  parameters 7 
Mean 2496 Standa rd  d e v i a t i o n  326.9 
R-square  0.96518 Adjusted W-square 0.9653 
Burbin-Watson 1.921 ~~jung-.Bsx(18)~21.34 P=0.7373 
Forecast error 60.88 BIC 74.81 
NAPE 0.01841 REIISE 56.16 

Three-year s i m u l a t i o n  errors 
1990 +2.8% 
199% +1.4% 
1392 -2.0% T o t a l  e r r o r  = 2 . 2 %  

3. F o r e c a s t  Model: T o t a l  U t a h  S a l e s  (GWh) 

T e r m  C o e f f i c i e n t  S t anda rd  error t - - s t a t i s t i c  S i g n i f i c a n c e  

CTQT 0.007213 0 000944 7 . 6 3 5 7 3 5  1.000000 
?TOT -62.397034 30.292397 -2. 059825 0,954037 
BDD 0.113102 0.013115 8.623676 1. OQQOOO 
CDD 0,346624 0,035132 9.866210 1.000000 
INDCPUT/’CTOT 86.535951. 50.657948 1.708240 0.904658 
CONST -861.035894 255.838531 -3.365544 0.998304 
AUTO[- 1-1 0 e 417843 0 - 148038 2 -922545 0.932613 
- 
- 

Sample s i z e  47  Number of  parameters 7 
Mean 2496 Standa rd  d e v i a t i o n  326.9 
R-square  0.9683 Adjusted R-square 0,9636 
Durbin-Watson 1.985 Ljung-Box(18)-20.31 P=0.6844 
Forecast error 62.4 BIC 7 6 , 6 8  
MAPE 0.01858 RMSE 57.56 

Three-year s i m u l a t i o n  errors 
1990 +1.6% 
1991 +0 .5% 
199% -2 ” 2% T o t a l  error = 0.1% 



4. Forecast Model: Total Utah Sales (GWh) (Log transform) 

Term Coefficient Standard error t-statistic Significance 

Ln ( CTOT 1 
Ln ( PTOT 1 
WDD 
CDD 
Ln ( INDOUT) 
CONST 
- AUTO[- 11 

1.238864 
-0 -  153025 
0.000047 
0.000142 
0.102805 
-8.148596 
0.370750 

0.213670 5.798027 0.999999 
0.069808 -2.192072 0.965745 
0.000005 8.540861 1. OOOOOO 
0.000015 9 -663676 1 OOOOOO 
0.077822 1 .. 321033 0.806002 
2.663202 -3.059699 0.996056 
0.152165 2,436505 0.980625 

-I-_.- 

Sample size 47 Number of parameters 7 
Mean 7.814 Standard deviation 0.1328 
R-square 0.9686 Adjusted R-square 0.9639 
Durbin-Watson 1.983 Ljung-Box(18)=17.57 P=O.516 
Forecast error 0.02522 BIC 76.32 
MAPE 0.01915 RNSE 58-61 

Three-year simulation errors 
1990 +2.7% 
1991 +2.3% 
1992 +o. 1% Total error = 5.1% 

5. Forecast Model: Total Utah S a l e s  per Customer (kwh) 

Term Coefficient Standard error t-statistic Significance 

PTOT -94.840849 64.463149 -1.471241 0.85  I140 
HDD 0.262514 0.028798 9.115726 1.000000 
CDD O f  793193 0.076713 10.339750 1.000000 
INDOUT 560.396888 100.023316 5.602663 0.999998 
- CONST 4699.238795 510.335709 9 -208132 1 .. 000000 
- AUTO[- 11 0.492139 0.140957 3.491423 0.99a835 

Sample size 47 Number of parameters 6 
Mean 5107 Standard deviation 350.8 
R-square 0.8512 Adjusted R-square 0.833 
Durbin-Watson 2.059 Ljung-Box(18)=20.77 P=0.7086 
Forecast error 143.3 BIC 171.2 
MAPE 0.01933 RMSE 133.9 

Three-year simulation errors 
1990 +2 * 0% 
1991 +o. 9% 
1992 -1.5% Total error = 1.4% 
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6. Forecast Model: Total Utah Sales per Customer (kWh) 
~~ - 

Term Coefficient Standard error t-statistic Significance 

PTOT -77.908581 63.924633 -1.218757 0.770097 
HDD 0.260320 0 e 030097 8.649273 1.000000 

1. OOO0OO CDD 0.790214 0 080359 9.833496 
EMPMFG 38.238323 7.111025 5.377329 0.999997 
CONST 2137.989280 886.464513 2.411816 0.979565 
AUTO[- 11 0.465573 0.145612 3.197345 0.997328 

__I_...__ 

- 
..._ - 

Sample size 47 Number of parameters 6 
Mean 5707 Standard deviation 350.8 
R-square 0.8421 Adjusted X-square 0,8228 
Durbin-Wataon 2.001 Ljung-Box(18)=18.96 P=0.6057 
Forecast error 147.7 BIC 176.3 
MAPE 0.02031 aMSE 137.9 

Three-year simulation errors 
1990 +2 - 6% 
1991 +O. 4% 
1992 -3  - 9% Total error = -0.9% 

7. Forecast Model: Total Utah Sales per Customer (kWh) 

Term Coefficient Standard error t-statistic Significance 

PTQT -87.482583 77.156850 -1.133828 0.736547 
HDD 0.265101 0.027561 9.618740 1 - 000000 
CDD 0.788912 0.073277 10 .. 766149 1.000000 
INDQUT/@TOT 351.254641 78.939624 4.449662 0.999935 

- AUTO[- 11 0.586401 0.131043 4.474858 0.999940 
- CONST 4215.013094 710,312774 5.934024 0.999399 

Sample size 47 
Mean 5707 
R-square 0.8485 
Durbin-Watson 2. 
Forecast error 1 

Number of parameters 6 
Standard deviation 350.8 
Adjusted R-square 0.83 

157 I,jung-Box(18)=22.25 P=0.7791 
-44.6 B I C  172.7 

MAPE 0.01923 EZMSE 135.1 
Three-year simulation errors 

1990 +1 e 6% 
1991 +o. 1% 
1992 -2.4% Total error = -0.7% 
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8. Forecast Model: Total Utah Sales per Customer (kWh) (Log transform) 

Term Coefficient Standard error t-statistic Significance 

Ln (PTOT) -0.118210 0.066328 -1.782202 0.917877 
HDD 0.000047 0.000005 9 .. 028772 1. OQOOOO 
CDD 0.000140 0.000014 10.158988 1" OQOOOO 
Ln(IND0UT) 0.1842 14 0.031288 5.88762 1 0 * 999999 
- CONST 8.655771 0.129577 66.800403 I. oaoooo 
- AUTO[- 11 0.461057 0.143213 3.219389 0.997486 

Sample size 47 Number of parameters 6 
Mean 8.648 Standard deviation 0.06107 
R-square 0.8485 Adjusted R-square 0.8301 
Durbin-Watson 2.074 Ljung-Box(18)=20.39 P=O.6886 
Forecast error 0.02518 BIC 171.3 
MAPE 0.01931 RMSE 133.4 

Three-year simulation errors 
1990 + 2 . 2 %  
1991 +1.3% 
1992 -2.1% Total error = 1.4% 
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