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Abstract

Statistical analyses ofdata from epidemiologic studies of workers ex
posed to radiation have been based on recorded annual radiation doses. It
is usually assumed that the annual dose values are known exactly, although
it is generally recognized that the data contain uncertainty due to mea
surement error and bias. We propose the use of a probability distribution
to describe anindividual's dose during a specific period of time. Statistical
methods for estimating this dose distribution are developed. The methods
take intoaccount the "measurement error" that isproduced bythedosime
try system, and the bias that was introduced by policies that lead to right
censoring of small doses as zero. The method is applied to a sample of
dose histories obtained from hard copy dosimetry records at Oak Ridge
National Laboratory (ORNL). The result of this evaluation raises serious
questions about the validity of the historical personnel dosimetry data that
is currently being used in low-dose studies of nuclear industry workers. In
particular, it appears that there was asystematic underestimation of doses
for ORNL workers. This could result in biased estimates of dose-response
coefficients and their standard errors.
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1. Introduction

In December 1941 at the University of Chicago, the first uranium-graphite pile

achieved criticality, and plans were soon underway to construct larger uranium-

graphite piles at Oak Ridge, Tennessee, and at Hanford, Washington [1,16]. The

purpose of the so-called Clinton Laboratories pilot plant at Oak Ridge was to

train crews to operate the even larger production facilities at Hanford and to

demonstrate the safe production and chemical separation of the fissionable Pu 239

isotope from uranium irradiated in the so-called X-10 pile or Graphite Reactor

at the Clinton Laboratories [10]. The Clinton Laboratories were renamed the

Clinton National Laboratory in 1947 and the Oak Ridge National Laboratory

(ORNL) in 1948.

Construction was started on the ORNL Graphite Reactor in January 1943 and

criticality was achieved in November 1943. The first batch of uranium irradiated

slugs from the reactor entered chemical separation at the pilot plant in December

1943. By the end of December, several milligrams of plutonium were separated

and shipped for experimentation at the University of Chicago, and by March 1943,

gram quantities of plutonium were being made available for experimentation at

Los Alamos. After the production facilities became operational at Hanford in

September 1944, the ORNL Graphite Reactor was used primarily for fundamental

nuclear research and production of medically important radioisotopes.

In the beginning at Chicago and later at Oak Ridge, pocket ionization cham

bers (or pocket meters) were considered the primary device for monitoring per

sonnel exposures, with a film dosimeter being only a valuable adjunct [9]. With

expanding experience at Oak Ridge and with the startup of the production fa

cilities at Hanford in 1944, this practice was reversed, and the film dosimeter

provided the official dose of record, while the pocket meter became the day-to

day means of monitoring personnel exposures in the workplace [21]. At ORNL,

however, the daily pocket-meter readings were also maintained as a part of an

individual's dose records [9].

An individual's radiation dose of record at ORNL for external penetrating



radiation, principally gamma rays, is based on pocket meters from 1943 to July
1944, film badges from then to 1975, and thermoluminscent dosimeters since
1975 [22]. The pocket meters were evaluated daily (minimum detectable limit
of 0.02 mSv), and the film badges were evaluated weekly from July 1944 to
July 1956, when quarterly monitoring was initiated (minimum detectable limit
of 0.30 mSv). Several reports have already been published about missing dose at
ORNL during the weekly evaluations of film badges [11,12,13]. However, there is
considerable doubt in the current literature concerning the lower detection limit

of the film badge dosimeters [23]. The general issue of uncertainty in individual
dose estimates inepidemiologic studies of nuclear industry workers also has been

discussed in [2,7,19,20].

The lower limitof detection ofthe most sensitive film used at ORNL was 0.10

to .30 mSv. A lower detection limit of 0.10 mSv was possible if an experienced

technician evaluated the exposed films with special care [14]. During film badge
exchange, when hundreds to thousands of films were read in large batches by
technicians with widely varying experiences, a lower limit of detection of about
0.30 mSv was about as good as could be expected [15]. In practice, a film badge
reading of zero means the radiation dose to the worker was less than 0.30 mSv
unless a smaller value is given. Thus, the missing dose from weekly evaluations of
thefilm badges occurred primarily among those workers with thelowest radiation-

dose estimates between 1944 and 1956 [11,12,13].

The design of the film badge and its use at ORNL changed considerably over
the years. In November 1951, for example, the photo film badge was introduced
and all ORNL employees were required to wear a film badge on the job [9]. Prior
to November 1951, only those ORNL employees who entered a radiation area

were required to wear a film badge. Two or more filters were used in all ORNL
film badges to aid in interpreting the radiation dose and in resolving the difficulty
due to the fact that the unshielded films were more sensitive to x rays between

50 and 100 keV than to x or gamma rays above 200 kev [15]. The film badge
readings quoted throughout this report are estimates of the equivalent dose from



-3

external penetrating radiation at a depth of approximately 1 cm within the total

body or a major portion of the total body.

Typically, epidemiological studies of the effects of external penetrating radia

tion on worker health have relied on recorded annual doses to the individuals in

the population as determined by personnel dosimeters. In the statistical analysis,

these dose values have been treated as though they are known exactly, although

everyone recognizes that there is some uncertainty due to measurement error and

bias. It is usually assumed that the measurement errors "average out" and that

the bias is small.

In this report, we consider primarily film badge data. In the situation of

practical interest, weekly film-badge readings are typically added up to obtain

the annual recorded dose, which is then regarded as "known." The lower limit of

detection of the film badge, together with the measurement error in the dosimetry

system, could lead to substantial uncertainty in the recorded annual dose.

2. Method

Here, we describe a method of accounting for uncertainty and bias in measure

ments of an individual's occupational radiation dose with film badges. The em

phasis here is on the general concept and the manner of implementing it. Detailed

models for some of the key probability distributions are still being refined.

The "true" dose here is taken to be the quantity of radiation encountered

by the film badge(s) worn by the individual during the period in question. The

relevant and difficult issues involved in estimating the dose to the individual (or,

even more relevant and more difficult, the estimation of doses to specific organs)

will be considered in subsequent reports. However, we expect that our approach

to these problems in the future will be based on the same framework as that

described in this report.

Here the basic quantities of interest are, for each week, the true dose to the

film badge and the recorded dose. Our objective is to provide the methodology

for determining the estimated dose (in terms of a probability distribution) of
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an individual during a year, given the recorded weekly exposure histories for
that individual in that year. It is usually impossible to determine the quantities
that we want to know, in this case true dose, precisely through measurement.
There are unobserved values (true doses) and observed values (recorded film
badge readings). We assume there is a relationship between the two and we
use this relationship to estimate the true dose. The statistical approach that we
shall adopt here provides the means to estimate, using the laws and language of
probability, the unobserved quantities given the values of the observed ones. For
each quantity of interest, this estimate is expressed in the form of a probability
distribution. Apoint estimate (single "best" value, by some criterion) could be
obtained from this distribution, but we shall generally avoid this, since we regard
the probability distribution itself as the estimate, and think of any reduction as
a loss of information. In particular, if the annual doses are to be used as inputs
to a model that relates health effects to radiation dose, it is important that the

uncertainty in these values be quantified.

2.1. Statistical background

Inorder toobtain estimates of theunobserved quantities, all quantities of interest,
observed and unobserved, are endowed with a joint prior probability distribution
that represents (approximately) the state of knowledge about them prior to (or
external to) observation or measurement. Then the actual values of the observed
measurements are put in, as conditioning information, and the laws of probability
are used to find the conditional distribution of the unobserved values given the
observed ones. See for example [18] for further background on this approach to

estimation.

For simplicity, we first consider only a single exposure period, e.g., one week.
There are two quantities of interest:

x the unobserved true dose to the film badge, and

z the recorded dose to the film badge.



It is important to explain why we consider these quantities as random vari
ables, even though they are deterministic in the sense that they each have afixed
value. For example, there can be only one true value for x, but, in the absence
of knowledge of what that value is, we attach a (prior) probability P(x) to every
possible value of x, where £xP(z) = 1. We shall refer to the function P(x) as
the probability distribution of the random variable x. The interpretation of prob
ability here is degree of belief in the truth of the proposition that the true dose
is x. This interpretation provides a mathematical representation of the degree of
uncertainty about deterministic quantities: a small bit of probability placed at
each of alarge number of values of xreflects ahigh degree of uncertainty, whereas
a probability of 1 placed at a single value reflects complete certainty.

We emphasize that the "distribution" P{x) as we have just defined it
refers to the distribution of probabilities over all possible values of x, which
concerns one individual and one exposure period. This is important to

note, because we will ultimately be dealing with populations of individuals and
exposure periods. The common usage of "distribution" describes the variation
in recorded doses for groups of individuals over fixed time periods (e.g. the dose
distribution for the 1950 cohort of ORNL workers) and this may cause some

confusion. P{x) is not the marginal distribution of true dose in the study cohort.
It is fair to ask why the recorded dose z also needs to be considered a random

variable, since it is known. Aside from the clarity that results from starting at the
beginning and formally introducing knowledge as it is gained, there is this. For
the observed quantity (z) to provide information about the unobserved quantity
(x) there must be some postulated relationship between them. Usually this is not
deterministic, because of variability in badge readings caused by uncontrollable
factors. Instead, the assumed relationship between z and x takes the form of a
conditional probabihty distribution P{z\x). (The vertical bar stands for "given".)
This is an "if x, then z" relationship, but with uncertainty built in, uncertainty
that exists prior to the observation of z.

We want to arrive at a statement about x given z. In the language of proba-
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bility, what is required is the conditional probability distribution P(x\z). Bayes'
Theorem allows us to get this from P(z\x) and P(x) as follows. Define the like

lihood function of x given z as

L{x\z) = P(z\x). (1)

Note that both P{z\x) and L(x\z) are really the same function of both x and
z viewed in two different ways. The distinction is that for a fixed x we have a

probability distribution on z (i.e. £2 P(z\x) = 1) and for a fixed z we have a

likelihood function of x (i.e. ExL(x\z) need not be *)• Now' Baves' Theorem

states that

P(x\z) = c(z)P(x)L(x\z), (2)

where c(z) is a normalizing constant which ensures that £X-P(x|z) = *• Both
the likelihood (1) and the posterior (conditional) distribution (2) are considered

functions of x, with z fixed at its observed value.

To implement this approach, P(z\x) will be determined by careful considera

tion of the properties of the measuring device (in this case the film badge and the

system used in reading and recording its dose). In effect, P(z\x) is the answer

to the question: "If the true dose is x, what is the probability that the recorded

value is 2?" The prior distribution P(x), on the other hand, is considerably more

problematic. What beliefs and uncertainties should go into the determination of

the prior probabilities? The use of the word "belief" itselfconnotes a subjectivity

that seems inconsistent with true scientific inquiry. In many situations, however,

it is possible to formulate a description of P(x) that is acceptably objective.

2.2. Example

Here we demonstrate the approach by means of a simple example. Suppose in a

given week, the recorded dose to a single film badge is z = 0.4 mSv. What is our
estimate of the true dose x, in the form of the conditional probability distribution

P(x\z = 0.4)? For P(x), our prior distribution of x, we shall use the lognormal
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x(mSv)

Figure 1: Probability density function for prior distribution of x.

distribution. (Thismeans that the natural log ofx has a normal distribution. All

logarithms used here will be natural logarithms, i.e., elo*x = x.) The lognormal
distribution is chosen partly for convenience here, and partly because it reflects

the general beliefthat larger doses are less likely than smallerones. This belief is

consistent with thestatistical distribution of film badge readings observed inlarge
populations. Another good choice for theprior would be thegamma distribution,
for example.

The lognormal distribution P(x) has parameters /i and a, which are the mean

and standard deviation of log(x). Note also that exp(fi) is the median (or 50th
percentile) of x. In this example we choose a prior with a median of .3 mSv and

75th percentile of 1 mSv. This gives lognormal parameter values of fj, = —1.204

and a = 1.821. These values were chosen so that the distribution agrees reason

ablywell with a small sample offilm badge readings for a single "representative"

individual (idl42225yr55, see Section 5). Also, it is sometimes suggested that

one-tenth of the weekly allowable dose (.3 mSv) was used as a plant action limit.

A more rigorous way of using data to specify the prior parameters for a single
exposure period is described in Section 4.

The probability density function for this lognormal distribution is shown in

Figure 1. The prior probability that the true dose lies between any two values
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Figure 2: Distribution function for prior distribution of x.

is equal to the area under the curve between those values. The area to the left of
a given value x is given by the corresponding distribution function in Figure 2.
It shows, for a given value x, the prior probability that the true dose is less
than x. The 5th, 25th, 50th, 75th, and 95th percentiles of this distribution are
0.014, 0.084, 0.30, 1.0, and 6.0 mSv, respectively. Note that the spread of the
distribution is quite wide, reflecting a considerable amount of prior uncertainty
about the true dose x in a given week.

Now we determine P(z|x), which is needed to compute the likelihood func
tion. Let z be the expressed dose to the badge; that is, the reading that would be
recorded if there were no rounding or censoring. ("Rounding" means that read
ings are given to the nearest multiple of 0.05 mSv. "Censoring" is the practice of
recording as zero all readings that are below acertain threshold.) The variability
in z for fixed x is intended to represent instrument error and reading error. We
shall assume that zhas alognormal distribution such that log(z) has mean log(x)
and standard deviation a(x), both of which depend on x. Thus,

^'=̂Lwexp{2sb!los(s)-logW,1-
At the moment, we are relying mainly on Morgan [14] for information about



the dependence of a on x. :

"... in ordinary routine procedures using technicians to process the
film badges, the probable error is about ±30 mrad [or 0.3 mSv of 7-
dose] ... This ±30 mrad does not represent our total probable error
in reading the film badges, except when the readings are from 0to 30
mrad. If the exposure is to hard 7-radiation [.1 to 3 MeV], we can
read 100 mrad to ±0.015 rad [i.e., ±15%] or 1 rad to ±0.1 rad [i.e.,

±10%]."

To translate this information into reasonable values for a(x), we assumed that
the "upper 3-standard deviation" limit on log(z) corresponds to the following
upper limits on z: 0.3 mSv at x= 0.01 mSv, 0.6 mSv at x= 0.3 mSv, 1.15 mSv
at x = 1 mSv and 11 mSv at x=10 mSv. Under the lognormal assumption, the

probability that these upper limits are exceeded is only 0.0013. That is, we are
treating Morgan's (1961) "probable errors" essentially as maximum errors. This
interpretation is consistent with Morgan's usage of them to compute the errors
for sums of film badge readings. By setting these upper limits to xe3a, i.e., the
logarithms of the limits to log(x) + 3a, we find a = 1.134 at x = 0.01 mSv,
a = 0.231 at x = 0.3 mSv, a = 0.0466 at x = 1 mSv, and a = 0.0318 at x = 10
mSv. To interpolate between these values, we used a piecewise linear function
in a vs. log(x), which is given in (3). (After trying a log transformation on one
or both axes, this was the representation that seemed to give the most regular
appearance, in the sense that the slope of the linear pieces is monotone in x.)

-0.0884874 - 0.2654017 * log(x) 0 < x < 0.30

a(x) =I 0.04658731 - 0.1532109 *log(x) 0.30 <x<1.00 (3)
0.04658731 - 0.00643505 * log(x) 1.00 < x < 10.00

The function is plotted in Figure 3.

Because the lognormal distribution is skewed to the right, the "probable er
ror" in the negative direction is less, under our model, than that in the positive
direction. For example, the 99% probability bounds for z are (0.0005, 0.19) at
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0.05 0.10 0.50 1.00

x(mSv)

5.00 10.00

Figure 3: a, the standard deviation of log(z) versus true dose.

x = 0.01, (.17, 0.54) at x = 0.30, (.89, 1.13) at x = 1.00, and (9.21, 10.85) at

x = 10.00. The bounds based on our interpolation are shown in Figure 4, for

0.01 < x < 5.00 mSv. Figure 5 shows, as an example, P(z\x) when x = 0.32.

This is a lognormal distribution such that log(z) has a normal distribution with

mean log(.32) = —1.139 and standard deviation a(.32) = 0.221 (from (3)).

Recall that z is the expressed dose. We assume in this section that the

recorded dose z is obtained from z by rounding to the nearest1 multiple of 0.05

mSv, and reporting this value if it is greater than or equal to 0.30 mSv. If z,

after rounding, is less than 0.30 mSv, then zero is reported. We call this last

policy the censoring convention. These are simplified versions of the rounding

and censoring that were done when the historical ORNL data were recorded. For

example, the historical data contains a small number of non-zero values that are

less than 0.30 mSv, which clearly were not censored.

Figure 6 is derived from Figure 5 by applying both the rounding and censoring

conventions. This is the assumed distribution of recorded doses that result if the

true dose x = 0.32 mSv. We can interpret this as a description of the frequency

distribution that we would expect if a large number of film badges were exposed

1We use unequal probability rounding suggested by historical data. Multiples of 0.10 favor
multiples of 0.05 at the rate of 85% to 15%.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x(mSv)

Figure 4: 99% probability bounds on expressed dose (z) versus true dose (x).

Figure 5: Probability density function of expressed dose zwhen true dose xis
0.32 mSv.
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Figure 6: Probability density of recorded dose z when true dose x is 0.32 mSv.

to 0.32 mSv and processed through the dosimetry and recording system used
prior to 1956.

For fixed z, L(x\z) = P(z\x) is the likelihood function (1). Figure 7 shows
the likelihood function when z = 0.40 mSv, the recorded dose to the badge in
the present example. This provides an answer to the question: "How likely is it
that this observed value z = 0.40 mSv was a result of a possible true dose x?"

Ifz = 0.40 mSv, then P(x\z) is obtained by multiplying P(x) times the like
lihood L(x\z = 0.40) and normalizing so that the sum of probabilities is one (See
(2)). This is shown in Figure 8. For computational convenience, we discretized
the prior distribution P(x) so that all of the probability lies on multiples of a
dose of 0.01 mSv (i.e., 0.00, 0.01, .02, ... ). Thus P{x) is the probability that the
lognormal variable with parameters fi = -1.204 and a = 1.821 lies within 0.005

mSv of x. The posterior distribution shown in Figure 8 necessarily has discrete
support also.

Figure 9 compares the posterior distribution shown in Figure 8 with the dis
cretized prior distribution on which the calculation was based. We see that

knowledge of the single film badge reading z - 0.40 mSv considerably sharpened
our knowledge ofx, in the sense of reducing the uncertainty about it.

Now suppose the recorded dose z had been zero rather than 0.40 mSv. The
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Figure 7: LikeUhood of true dose xwhen recorded dose zis 0.40 mSv.
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Figure 9: Comparison of prior to posterior distribution of true dose x when
recorded dose z is 0.40 mSv.

likelihood function in the case z = 0is shown in Figure 10 and the posterior distri
bution is shown in Figure 11. In Figure 12, the prior and posterior distributions
are plotted together for comparison. Note that although the film badge serves to
exclude the possibility that the true dose is greater than about 0.4 mSv, it does
not distinguish well among low values of x. In this low dose region, the posterior
distribution essentially mirrors the prior distribution, and is quite sensitive to the
particular choice of prior.

3. Estimating Yearly Dose

We now consider the estimation of a yearly dose based on a sequence of n film
badge readings, obtained weekly from a single individual, for example. Let xT =
E"=i Xi where x, is the true dose to the badge worn by the individual during
the ith week, and let z, be the corresponding recorded dose. We shall denote
the set of n true doses by x = {*i,x2,...,*B}, and the set of recorded doses
by z = {z!,z2,...,zn}. We want to obtain the posterior distribution P(xT\z),
to serve as an estimate of xT. The simplest approach is to treat each week as
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Figure 10: LikeUhood of true dose xwhen recorded dose zis zero.
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Figure 11: Posterior distribution of true dose xwhen recorded dose zis zero.
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Figure 12: Comparison of prior to posterior distribution of true dose x when
recorded dose z is zero.

independent of the others, so that

p(x|z)=np(x1|zi).
»'=1

That is, conditional on the set of recorded doses z, the set of true doses can

be treated as independent random variables, whose individual distributions are

given by P(x,-|z,-). The distribution of the sum xT can be obtained numerically
in various ways. Here, we shall simply generate a large random sample from this
distribution. To generate xTm, the mth value of xT in this sample, we generate
first the set {xlm,x2m,. ..,xnm} by drawing xim from P(x,|z.) for i = l,...,n.
These values are then summed:

xTm — / ,,XjTO,
i=l

and the procedure is repeated, until a large sample (usually consisting of several
thousand values) is generated.

To demonstrate the result ofthis procedure, we consider weekly records from

two individuals. The sequence of recorded film badge readings (z) for person A
in 1948 is:
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Figure 13: Yearly dose distribution estimate for person A (with recorded dose of
0.65 mSv) based on a fixed prior that assumes he is a radiation worker with a
true weekly dose of about one tenth of the occupational limit.
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Figure 14: Yearly dose distribution estimates for person B (with recorded dose
of27.2 mSv) based on a fixed prior that assumes he is a radiation worker with a
true weekly dose of about one tenth of the occupational limit.
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{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.35, 0, 0, 0, 0.30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

the total for the year being 0.65 mSv.

For each week, P(x,|z.) was computed, in a manner similar to the one we
used to generate Figures 8and 11. (The prior distribution was the same, but the
discretization was done in a slightly different way.) Then 5,000 values of xT were

generated as we have indicated. Ahistogram of this sample, which can be viewed
as a good approximation to P(xT|z), is shown in Figure 13. This suggests that
the true 1948 dose of person A is roughly between 3.5 and 7 mSv.

For person B, the sequence of recorded badge readings in 1954 is:

{ 2.1, 0, 0.8, 0.95, 1.4, 0.5, 0, 0.7, 0, 1.4, 0.3, 3.45, 1, 1.6, 0, 1.6, 0, 0.8, 0.5,
0.7, 0, 0.4, 0, 0, 0.6, 0.75, 0, 0, 0, 0, 0, 0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0.9, 0.7, 1.1,

0, 0, 0.9, 0, 0, 0, 1.7, 0.55, 0.3 },

the total for the year being 27.2 mSv. Figure 14 shows our approximation to

P(xT|z) for this individual. It suggests that the true 1954 dose for person B is
roughly between 27.5 and 31 mSv.

Note that for both individuals our estimate of the yearly dose is centered

higher than the sum of the recorded doses. This is more pronounced with the
lower recorded annual dose.

4. Use of Other Data

The available weekly data (described in Section 5) also includes a pocket-meter

dose corresponding to each recorded film-badge dose. This weekly pocket-meter
dose was calculated as the sum of minimum daily readings of a pair of pocket

meters. We will refer to this weekly sum as the weekly pocket-meter dose and

denote it by w. Also, let w = {wu w2,...,wn} be the vector of n weekly pocket-
meter doses that corresponds to z, the vector of recorded film-badge doses.

Here we assume that the weekly pocket-meter dose, w, is correlated with

the true dose, x, to the film badge and consider it only as additional informa-
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Figure 15: Likelihood of true dose x when recorded dose z is zero without cen
soring.

tion to specify our prior and likelihood functions. Amore rigorous approach to
the inclusion of pocket-meter data would account for error and bias of the daily
pocket-meter dose measurement system in a manner similar to that used in pre
vious sections for the recorded film badge dose. This more rigorous approach will

be discussed in a separate report.

4.1. Modifying the Likelihood

The UkeUhood function for z = 0, shown in Figure 10 is based on the censoring

convention of recording as zero any reading that would be rounded below 0.3
mSv. When the weekly pocket-meter dose w is zero, it is reasonable to conclude

for z = 0 that the expressed dose z was within rounding error of zero and no

censoring was necessary. Figure 15 shows the UkeUhood function of x, the true
dose, when z = 0 and no censoring is performed. We will refer to this as the
"rounded" zero UkeUhood and to the UkeUhood of Figure 10 as the "censored"

zero UkeUhood. The prior and posterior distributions of true dose x that result
from the "rounded" zero UkeUhood are in Figure 16. When we compare Figure 16

to Figure 12, we see that the "rounded" zero likelihood puts considerably more
posterior mass near zero, effectively excluding dose above 0.15 mSv.
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Figure 16: Comparison of prior and posterior distributions of true dose x when
recorded dose z is zero without censoring.

We demonstrate the effect of the "rounded" zero likelihood on P(xr|z) of

persons A and B introduced in Section 3. The sequence of weekly pocket-meter

doses w for person A is:

{0, 0, 0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0.05, 0, 0, 0, 0, 0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

and the same sequence for person B is:

{ 0.6, 0.15, 0.85, 0.8, 0.55, 0, 0.5, 0, 0.15, 0.6, 0.55, 4.3, 1.3, 1.7, 1.95, 0.9,

0.45, 1.4, 1.6, 0.4, 0.1, 0.3, 0, 0.05, 0'.7, 0, 0.1, 0.1, 0, 0, 0.15, 0, 0, 0.05, 1.7,

0.1, 0, 0, 0, 0.15, 0.35, 0.1, 0.1, 0.7, 0.45, 0.2, 0, 0, 0, 0.35, 0.2, 0.65 },

Their yearly dose distributions are shown in Figures 17 and 18. As expected,

both distributions have shifted closer to the recorded dose, although both are

still centered considerably higher than the recorded dose. The shift toward re

corded dose is greater for person A, because of a larger proportion of "rounded"

zeros. Rounded zeros also have less uncertainty and this results in a narrower

distribution for person A.
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mSv

Figure 17: Yearly dose distribution estimate for person A (with recorded dose of
0.65 mSv) allowing "rounded" zeros and with a fixed prior.

26 27 28 30 31

mSv

Figure 18: Yearly dose distribution estimate for person B (with recorded dose of
27.2 mSv) allowing "rounded" zeros and with a fixed prior.
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4.2. Specifying the Prior

In our examples to this point, the parameters /x and a of the prior distribution
P(x) have been fixed. To lessen the chance of being misled by poor specification of
these parameters, we will use pocket-meter data to specify /x and o. In particular,
the natural logarithm of the weekly pocket-meter dose will be used as \i. The
parameter a will be set to avalue that puts the 95th percentile of P(x) at /x +6.00
mSv. This ensures that the prior puts a nontrivial probability on values as high
as 6.00 mSv regardless of the value of w. This provides a large amount of prior
uncertainty and allows the recorded film badge dose to be the dominating factor
that determines the posterior dose distribution.

Some weekly pocket-meter doses are missing. In such cases we use that indi
vidual's weekly pocket-meter dose average over the weeks that it is not missing.
When all weekly pocket-meter doses are missing, we consider them as zero for
the purpose of specifying the prior. (See paragraph below for special treatment
of zeros.) Here we implicitly assume that an individual with no pocket meter

readings is not a radiation worker.

The use of the lognormal distribution as our prior on x, the true dose to the

film badge, imphcitly assumes that x > 0. This is consistent with the belief that
the true dose may be very small but can never be zero. Since the pocket meters

have a sensitivity threshold, many weekly pocket-meter doses are recorded as

zero. Because we cannot take the logarithm of zero, the accepted practice is to

choose a small positive value cq to replace the zero. We use the special case of
z = 0 and w = 0 to calibrate the value. This is where results are most sensitive

to the choice of Cq. The value cq = 0.0003 mSv puts the 95th percentile of

P(xr|z) at 0.30 mSv. That is, we choose cq so that the probability is .95 that
the yearly true dose is below 0.30 mSv, when all pocket-meter and film-badge
doses are zero. This distribution is shown in Figure 19. As the recorded dose

increases, sensitivity of the true dose distribution to the choice of Co decreases.

For example, the mean of the true dose distribution for an individual with a
recorded yearly dose of 16.75 mSv (which consists of about 50% weekly zeros)
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Figure 19: Yearly dose distribution estimate for an individual with zero recorded
film-badge dose and all zero weekly pocket-meter doses.

increases by 0.004 mSv in response to doubling the cq value. This is a very small

change, particularly when we consider that cq is a weekly quantity and the dose

distribution is a yearly quantity.

Again, we demonstrate the the effect of specifying the prior parameters n and

a with pocket-meter data on P(xx|z) of persons A and B. These are shown in

Figures 20 and 21. Both distribution have again shifted closer to the recorded

dose.

5. Application to ORNL Cohort

To illustrate the dose estimation method that we have developed, a sample of

hard copy records was obtained from the ORNL dosimetry files. The hard copy

records contain the detailed daily and weekly monitoring results for each "person-

year" selected. The sample was obtained in two stages. It includes a stratified

random sample of exposed workers (150 person-years) with yearly film badge

totals that are greater than zero. The remainder of the sample (100 person-years)

was obtained by sampling at random from all person-year records over the period

from 1945-1955 when film badges were evaluated on a weekly basis. The weekly

film-badge dose and the pocket-meter dose were abstracted from the hard copy
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Figure 20: Yearly dose distribution estimate for person A(with recorded dose of
0.65 mSv) allowing "rounded" zeros and with pocket-meter specified priors.

mSv

Figure 21: Yearly dose distribution estimate for person B(with recorded dose of
27.2 mSv) allowing "rounded" zeros and with pocket-meter specified priors.
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records. This data has also been used to develop a preliminary dose-adjustment

procedure in another study (see [4] for further details). It is important to note
that the data currently being used in epidemiologic studies of ORNL workers
[2,8,22,23,24] consists of the yearly total of the weekly film-badge readings for
each worker. The detailed weekly records are not available in machine readable

form at this time.

5.1. Dose Estimation

This section describes the results of applying our dose estimation procedure to
the 150 person-years (out of the possible 250 described above) that had at least
thirty weekly records. The results are summarized in Figures 22-25, which show
boxplots of P(x|z) for each person-year. The boxplots show the 1, 25, 50, 75, and
99 percentiles of each distribution. In addition abold glyph indicates the relative
position of the recorded dose for each person-year. The person-years along the
vertical axis are in increasing order of recorded dose. We use the available pocket-
meter data to modify priors and likelihoods as discussed in Section 4. As we
pointed out in Section 2.2, the data contain a few non-zero recorded film-badge
doses below the censoring point of 0.30 mSv. We use the "rounded" likelihood
in each of these cases, because clearly no censoring was performed.

We make the following observations about Figures 22-25. In making some of
these observations we use our knowledge of the underlying weekly dose data for

each person-year.

• Almost all distributions are centered above the recorded film-badge dose.

Thus recorded doses systematically underestimate the true dose.

• The recorded dose is below the one percentile of the distribution in about
half the cases. This indicates a severe underestimate of the true dose by

the recorded dose.

• The most severe underestimate occurs for person-years that have many

zero recorded film-badge doses which correspond to non-zero pocket-meter
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Figure 22: Boxplots of yearly dose distribution estimates and the corresponding
recorded dose (mSv) for a sample of the ORNL cohort.
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Figure 23: Boxplots of yearly dose distribution estimates and the corresponding
recorded dose (mSv) for a sample of the ORNL cohort (continued).
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Figure 24: Boxplots of yearly dose distribution estimates and the corresponding
recorded dose (mSv) for a sample of the ORNL cohort (continued).
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Figure 25: Boxplots of yearly dose distribution estimates and the corresponding
recorded dose (mSv) for a sample of the ORNL cohort (continued).
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doses. i

• The relative uncertainty is greatest at lower recorded dose levels.

• The large differences in uncertainty at the lower recorded dose levels appear
to be mostly due differences in content of "rounded" and "censored" zeros.
Censored zeros (a non-zero weekly pocket-meter dose corresponding to a
zero recorded film-badge dose) introduce more uncertainty than rounded
zeros (a zero film-badge dose corresponding to azero recorded pocket-meter
dose).

5.2. Dose-Response Analysis

The results in this report indicate that dose estimates obtained for ORNL workers
before 1956 that are currently being used inepidemiologic studies contain a large
systematic negative bias. It is also apparent that there is considerable uncertainty
in theses dose estimates that should be taken into account when they are used
in dose-response studies of radiation effects. Studies published to date [8,22,24]
that involve ORNL workers are based on the recorded film badge doses and
have not taken the uncertainties described here into account in the statistical
analysis. A general approach to statistical inference that reflects measurement
uncertainty has been described by [3] and discussed further in the context of radio-
epidemiologic studies by [7]. In this setting of chronic disease epidemiology, the
relation between time to failure and covariates that change over time is often

described with a relative risk regression model [17], e. g.

\[t\x(t)] = \0(t)6[x(t);P},

which represents the probability of disease incidence per unit time for persons
at age t with covariate history x{t) (i.e. x(t) is the true dose history up to time
t). The two forms of the relative risk function 6[x(t)-J] that are of particular
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interest are the loglinear relative risk regression model

log{0[x(*);/?]} = *W,

and the linear relative risk regression model

9[x{t);0] = l + x*(t)P,

where x*(t) is a known function of the covariate history which is usually taken

to be the lagged cumulative lifetime dose.

In this report we haveproposed a model that describes the effect of "measure

ment error" , i.e. a model that relates the recorded dose z to the underlying true

dose x for an individual during a specified period of time. The statistical problem

that remains is to develop a method for estimating the dose-response parameter

given the time to failure and the dose history distributions P(x(t)\z(t)) for each

individual in the cohort. The practical problem that remains for the ORNL co

hort is to obtain the historical daily pocket meter and weekly film badge data

in electronic form so that valid dose estimates can be obtained for subsequent

statistical analysis.

5.3. Computational Issues

The computational requirements of the method developed in this report are sub

stantial. In this section we present only a broad outUne. Details will be discussed

in a separate report.

The continuous distributions P(x), P(z|x), and P(x|z) are each represented

with a discrete approximation on 500 points. Since the lognormal distribution

is used in both P(x) and P(z|x), the computation of P(x|z) is performed on a

log scale rather than the linear scale, thus avoiding the evaluation of many logs.

This and many other ideas are used to reduce the computational burden.

The yearly dose distribution P(xr |z) can be computed in various ways. We

chose to compute it by generating a large random sample from it. There are faster
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ways (such as convolution via the discrete fast Fourier transform) to compute this
distribution, but our choice of the simulation method was made in part because
of its simplicity and in part because it easily extends to the method of Gibbs
sampling (see [6]), which we plan to use in some future extensions of this work.

All of the methods to compute P(xr|z) require computing P(x<|z,) for each
week i of a person-year. We exploit some storage-computation tradeoffs here,
which are available because of frequent repetition of some recorded film-badge
and pocket-meter doses. As we outlined in Section 3, to generate a sample point
from P(xT|z), we draw a point from each of P(x,|z;) and report the sum.

Acurrent high performance workstation (we used an IBM RS/6000) can gen
erate 5,000 sample points from P(xT|z) in about two minutes. This results in
roughly five hours of computation for the entire set of 150 person-years used in
this report. This computation was performed several times, in order to experi
ment with the various prior and UkeUhood specifications described in Section 4.
To make this a more interactive task, we prepared a parallel implementation of

our software. The parallel implementation utilizes PVM software [5] on a cluster
of high performance workstations and reduce the five-hour computational task to
about half an hour.

Expanding this computation to the entire ORNL cohort, after it is available
in machine readable form, will require even closer attention to computational
issues. The use of individual dose-distribution data in dose-response parameter

estimation will likely also be based on simulation and thus require state-of-the-art

computational resources.

6. Summary

We have developed methodology to account for uncertainty and bias in measure
ments of individual occupational radiation dose using weekly dosimetry data.
The product of this methodology is an estimate of the true dose for aperson-year
in the form of a probability distribution.

The key component of this methodology is a model of the procedures used
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in a single film badge measurement. This is the likelihood function. We have

attempted to formulate a realistic model that includes the most important aspects

of film-badge dose measurement in the 1940s and 1950s, however the historical

information is often sketchy. Perhaps more importantly, we have shown that

the model can easily incorporate much detail and as more information becomes

available this model can be modified.

Another important component is the prior distribution whose importance

grows with uncertainty in measurement. Since the largest uncertainty in recorded

doses results from censoring, dose estimates from data containing many censored

zeros are sensitive to prior specification.

We have shown how other data can be used to influence the prior and the

likelihood. We have used pocket-meter data to specify the prior location and

also to indicate whether a film-badge zero resulted from only rounding or from

rounding and censoring. A more rigorous way of including pocket-meter data

that accounts for bias and measurement error will be discussed in a separate

report. Potentially additional data, such as occupation or work location, can be

used to modify the prior and the UkeUhood.

We applied our methodology to a sample of dose histories obtained from

hard copy dosimetry records at Oak Ridge National Laboratory (ORNL). The

estimated dose distributions show that recorded doses generally have a strong

negative bias. The bias is present at all yearly dose levels, but it is most severe

at low to medium dose levels. This raises serious questions about the validity of

the historical personnel dosimetry data that is currently being used in low-dose

studies of nuclear industry workers. In particular, the results in this report indi

cate that ORNL workers employed prior to 1957 are likely to have had doses that

were higher than those recorded. Consequently, the dose-response coefficients

that are based directly on the recorded doses [8,22,24] are probably biased and

their uncertainty is understated.
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