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ANALYZING PICL TRACE DATA WITH MEDEA 

Alessandro P. Merlo 

Patrick €1. Worley 

Abstract 

Execution traces and performance statistics can be collected for parallel applications on 

a variety of multiprocessor platforms by using the Portable Instrumented Communication 

Library (PICL). The static and dynamic performance characteristics of performance data 

can be analyzed easily and effectively with the facilities provided within the MEasurements 

Description Evaluation and Analysis tool (MEDEA). This report describes the integration 

of the PICL trace file format into MEDEA. A case study is then outlined that uses PICL 

and MEDEA to characterize the performance of a parallel benchmark code executed on 

different hardware platforms and using different parallel algorithms and communication 

protocols. 
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1. Introduction 

The demands for hardware and software resources of a computer system significantly influence 

its performance. Therefore, the quantitative description of resource consumption when running 

an application plays a fundamental role in every performance evaluation study 121. The best 

way to obtain such a quantitative description for a system is to take measurements while the 

system is processing its real workload. However, the set of data collected by the monitoring 

tools represents a detailed “discrete” description of the behavior of the measured applications. 

While such a characterization is very useful when used as input to visualization tools, it  is inap- 

propriate when applied to system modeling, where a compact and manageable representation 

of the workload processed by the real system is needed. 

The process of deriving a compact representation of the workload, workload characterzzatron, 

can be subdivided into several phases [ll]. The input t o  the process is the data collected by 

monitoring the execution of a given application over the system. Output includes both standard 

data analysis results, which provide useful insights into the behavior of the application, and 

workload models, which can be used as input to either simulation or analytic system models. 

How the data is analyzed and how the model is derived are functions of the type of questions 

being addressed about the performance of the computer system, the type of data collected, and 

the level of detail at which the analysis will be performed. For example, at some point in the 

process, the basic unit of work that is considered in a quantitative description of the workload, 

the workload component, must be specified. 

While the type of analysis that is appropriate for a particular workload characterization will 

vary as different questions are asked or different computer systems evaluated, many mathe- 

matical techniques are common to  a variety of analyses. To support this commonality, and to 
support the general data exploration process that is common to all workload characterization, 

researchers at the University of Pavia have developed the MEasurements Description Evalua- 

tion and Analysis tool (MEDEA) [15]. The basic aim of MEDEA is to define an integrated 

environment in which to perform workload modeling studies. The different operations required 

to  fully examine the behavior of the applications submitted to a system have been logically 

subdivided into modules, each performing a specific manipulation over the performance data 

and the intermediate results produced at each step of the workload characterization process. 

Figure 1 shows the overall structure of MEDEA and its relationships with other tools used in 

the workload characterization process. 

The collection of performance data is often a difficult task in itself, especially on systems 

without dependable operating system or hardware support for the collection of useful trace 

files. One portable option for the collection of performance data for message-passing computer 

systems is t o  use the Portable Instrumented Communication Library (PICL), developed at 

Oak Ridge National Laboratory, when implementing application codes [SI. PICL implements a 

generic messagepassing interface able to support interprocessor communications on a variety 
of different hardware platforms. 
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Figure 1: Overall structure of MEDEA and its relationships to other evaluation tools. 
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Furthermore, PICL tracing routines allow the user to collect detailed information on the be- 

havior and performance of parallel programs. The trace files generated by PICL can be used 

as input to performance visualization tools, e.g. ParaGraph [SI [9], for performance tuning and 

debugging, as well as to performance evaluation tools like MEDEA. 

This report describes the integration of PICL trace data into MEDEA, as illustrated in Fig. 1, 

indicating how the static and dynamic characteristics of the workload generated by PICL 
applications can be analyzed with the facilities provided within MEDEA. Sections 2 and 3 
give a brief description of the main features provided within PICL and MEDEA, respectively. 

Section 4 deals with the integration of PICL and MEDEA: the selection of possible workload 

components and the specification of the corresponding performance parameters are outlined 

here. Section 5 outlines an experimental application. A few conclusions are summarized in $6. 

2. The Portable Instrumented Communication Library 

A detailed performance analysis of a computer system under its real workload can be achieved 

by means of event-driven monitors, i.e., tools that capture the events generated by a program 

and store them into trace files. However, the trace file formats adopted by different monitoring 

tools are, in general, quite different from one another (see, for example, [3], [6], [lo], [12]), 
with each developer defining a specific record format able to  address those events of interest 

for the particular system being evaluated. This lack of standardization makes it difficult to 

easily analyze trace files collected on different systems, but is a reflection of system differences 

that cannot simply be eliminated by a standardization process. Recently, there has been a 

movement toward establishing a standard metaformat in which to specify trace file formats [l]. 

If this approach is adopted, it will ease one aspect of integrating new types of trace data into 

tools like MEDEA, but it will not eliminate true semantic differences between the information 

collected on different systems or with different tools. The integration of new types of trace 

information will always require careful thought and design. 

The PICL trace file format was chosen for integration with MEDEA because of the wide avail- 

ability and utility of PICL trace files. The machine independent layer of PlCL has proven to 

be a sufficient framework to support portability between different platforms, and the trace file 

format used by PICL is flexible enough to  collect data for performance evaluation. Moreover, 

while many of the available traces are generated from PICL programs, a significant number are 

generated directly by other event-monitoring systems or via postprocessing, so that they can 

be visualized with ParaGraph. 

The PICL trace file format was recently significantly modified, to better support the collection 

of information found to be most useful in visualization tools and in workload characterization, 

and to be more extensible [16]. The new trace file format has been incorporated into ParaGraph, 

and is being considered for use in other event monitoring systems. Because of the significant 
new capabilities of the new format, and because of its adoption outside of PICL, it  is the new 

format that has been integrated with MEDEA. 
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Record 

type 

[int] 

The basic structure of PICL trace records is shown in Table 1. 

Event Timestamp Processor Task Number of Data Data 
type ID ID data fields descriptor 

[int] [double] [int] [int] [int] [int or string] 

Table 1: Basic structure of PICL trace records. 

Four different record types are currently supported by PICL: user-defined, event, statistics, and 

s u bs e t - d e fin at i o n . 

e User-defined record types are used to specify the data associated with user-defined events. 

e Event record types are used to collect detailed information needed for a visualization 

tool like ParaGraph or for the analysis of user events by means of MEDEA, as will be 

explained in $4.1. 

e Statistics record types are used to collect profile data of system and user-defined events. 

e Subset-definition record types are used to define subsets, e.g., of processors or processes, 

for which cumulative statistics are to be collected. 

The process of workload characterization using PICL trace files is based primarily on the 

analysis of event and statistics record types. The tracing facilities provided within PICL allow 

the user to specify the amount and the type of data to store into trace files: if detailed data are 

needed, then for each event generated by the application, timestamped entry/exit records are 

stored for the processor and the process associated with the event; if only global information is 

needed (e.g., when it is not important to know the exact timing of the single events but when 

we are interested in the corresponding cumulative times), then the statistics records can be 

used to characterize the general behavior of an application at low overhead, since only these 

types of data will be collected during the tracing activity. 

The event types currently supported by PICL cover most of the event data utilized in perfor- 

mance evaluation studies of message-passing parallel applications. The most important cat- 

egories of these events are user-dejined, interprocessor communication, I/O, synchronization, 

resource allocation, and tracing. 

e User-defined events allow the user to specify that the execution of a subroutine or even 

arbitrary code segments be considered an event of a certain type, allowing the logical 

structure of the application to be represented during subsequent analysis; 

e Interprocessor communication events represent PICL commands for enabling, disabling, 

or invoking interprocess communications, including, for example, send and receive; 

e 1/0 events are used to collect performance data on (physical) I/O, which strongly influence 

the performance of most real parallel applications; 
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e Synchronization events currently supported include “clock normalization’’ and “barrier” ; 

0 Resource allocation events deal with the allocation/deallocation of processors to a given 

application; 

e Tracing events are recorded with the dual goals of allowing a correct interpretation of 

the trace files and of providing a measure of the overhead implied by the tracing activity 

itself. 

3. The MEasurements Description Evaluation and Analysis tool 

The construction of accurate workload models requires the application of different types of 

statistical and numerical techniques interacting together t o  fully characterize the behavior of 

the applications submitted to a system. During the design phase of MEDEA [14], the need for 

integration between these different underlying techniques and the need for portability across a 

variety of computer platforms led to the choice of a standard development environment. As a 

consequence, MEDEA is currently implemented on UNIX systems running X Windows/Motif l .  

Figure 2 shows the main window of the graphical interface provided by MEDEA. Every module 

specified in the overall structure of the tool (see Fig. 1) can be identified in the active graphical 

elements of this window. 

Figure 2: Main window of the graphical interface of MEDEA. 

Data manipulation module. The data manipulation module performs a preliminary anal- 

ysis of the trace data in order t o  correlate the events recorded during the execution of an 

application. Traditional performance indices, such as computation and communication times, 

and parallel metrics, such as speedup and efficiency, can then be derived by filtering the trace 

data. Initially, MEDEA required that all trace data be in the format generated by the PARal- 

le1 MONitor (PARMON), a distributed event-driven monitoring tool [12] for transputer-based 

MIMD architectures. In order to parse other trace file formats, format-specific trace file analysis 
facilities must be added to the data manipulation module, as has been done for PICL. 

‘MEDEA requires at least Xl lR5  and Motif 1.1.4. 
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Format manipulation module. Within MEDEA, a format  is a subset of the performance 

parameters that can be associated with the specific workload Component under study. The 

f o r n a t  manipulation module of MEDEA allows user-defined subsets of parameters to be stored 

in an internal library. ,4s a consequence, repeated workload analyses on different trace files can 

be performed with fewer interactions with the graphical interface. 

Cluster analysis module. The cluster analysis module is used to examine the statistical 

properties of the measured data set. For example, it can be used to identify groups of workload 

components having homogeneous characteristics with respect to some predefined parameters. 

The multidimensional clustering algorithm implemented within MEDEA is the IC--means, an 

iterative nonhierarchical method of partitioning data sets [7]. Each partition is derived by 

minimizing the distances between each workload component and the centroid of the cluster it 

belongs to. At the end of the analysis, the optimal partitions (if any) are derived according to 

the overall mean square ratios of the evaluated clusters. 

Fitting module. As outlined in $1, workload models must be compact and easily manage- 

able. The f i t t ing  module provided within MEDEA allows the user to derive analytic descriptions 

of the dynamic behavior of the wcrkload from the measured data. The analytic models are 
described in terms of one or more of the collected parameters, and are able to  represent the 

variations of the workload parameters with respect to any independent variables, including 

time. 

Functional description module. The process of workload characterization can be ap- 

proached from two different viewpoints. The physical viewpoint describes the behavior of the 

system and the applications by means of indices related to resource consumptions, such as 
computation and communication times. This quantitative approach is the one realized by the 

data manipulation and the cluster analysis modules of MEDEA. The functional viewpoint gives 

a logical description of the workload. In this case, the classification of workload components 

is based, for example, on the type of applications or on membership of particular components 

in a specific cluster The functional description module of MEDEA deals with the functional 

viewpoint. 

Data visualization module. The graphical visualization of parameter values, derived di- 

rectly from the trace data or from the results of analyses performed within MEDEA, is often 

an important tool in understanding the characteristics and the behavior of the workload. The 

daia visualization module of MEDEA provides this facility. 
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4. PICL-MEDEA Integration 

MEDEA uses the information stored in PICL trace files to derive models of the workload 

generated by the measured applications, and this is the only direct dependence MEDEA has 

on PICL. However, the selection of appropriate workload components and of the corresponding 

performance parameters is strongly dependent on the type of information collected into the 

trace files. 

Since PICL tracing routines allow the user to specify the level of detail and the amount of data 

to collect during the execution of an application, the information that can be derived in the 

workload characterization process may he different from trace file t o  trace file. If detailed trace 

files are used as input to MEDEA, then the tool looks for each single event entry/exit pair 

and, according to the event record type, correlates this new information to the previous ones 

in order to accumulate statistics that refer to the performance parameters used to characterize 

the workload components. If trace files are used that contain only statistics records, then 

MEDEA parses only those records that contain global information. In the following sections, 

specifications for the possible workload components and the corresponding parameters are given. 

4.1. Workload components 

The workload submitted to a system may be analyzed at different levels of detail, according to  

the “granularity” of the components selected for the modeling activity. As mentioned in $1, a 

workload component is defined as the basic unit of work that is considered in a quantitative 

description of the workload. Three different approaches (or granularities) have been adopted 

in MEDEA for the analysis of PICL trace files: program-oriented, processor- or task-oriented, 

and user-event-oriented. 

In the program-oriented approach, a trace file is analyzed from a global viewpoint and infor- 

mation about the behavior of the application considered as a whole can be derived. The basic 

workload component is the program itself. The processor-oriented approach derives a more de- 

tailed analysis of a trace file, in which the tasks executed on each single processor are selected as 
representative workload components. (While the programming paradigm supported by PICL, 

and assumed by ParaGraph, only allows one process per processor, the trace file format can 

be used to record data from applications with more than one process per processor.) Finally, 

in the user-event-oriented approach the facility provided within PICL for defining arbitrary 

code segments t o  represent distinct workload components allows MEDEA to use the ‘‘logical’’ 

or Kusern view of the application when analyzing its behavior. 

4.2. Parallel metrics 

Parallel profiles represent one of the best tools for analyzing the dynamic behavior of an ap- 

plication [13]. If detailed PICL trace files are used as input to MEDEA, then the number 

of processors in use as a function of the execution time can be evaluated with respect to the 
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Execution profile 
Computation profile 
Communication mofile 

different types of operations performed by the processors. An example communication profile 

is shown in Fig. 3. 

1/0 profile 

Speedup 
Efficiency 

I 1 

0 . 5  0 . 5 2  0 . 5 4  0 . 5 6  0.58 0 . 6  0 . 6 2  0 . 6 4  

Time [secsl 

Figure 3: Example of communication profile. 

When the performance of an application is measured for a varying number of processors, parallel 

metrics such as speedup, efficiency, efficacy, and execution signature can be use to characterize 

the behavior of the workload [5]. 

Table 2 lists the parallel metrics that can be evaluated by means of the data manipulation 

module of MEDEA. 

I Receive Drofile I Efficacy I 
I nansmi t  Drofile 1 Execution signature I 

Table 2: Parallel metrics evaluated by MEDEA. 

4.3. Performance parameters 

The selection of meaningful parameters to be considered in the workload characterization phase 

represents one of the most critical steps of this process. Table 3 lists the parameters that are 

currently used to characterize the program-oriented and the processor-oriented approaches. 
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Time parameters 

Execution time (extime) 1/0 time (iot ime) 

Com pu t ation time (cptime) Communication enable/disable time (iptime) 

(cmtime) Synchronization time (cktime) Communication time 
Receive time (rctime) Resource allocation time (rstime) 

Transmit time (trtime) System time (sytime) 

Volume parameters 

Volume of data exchanged (ttdata) Volume of transmitted data (trdata) 

Volume of received data (rcdata) Volume of 1/0 data (iodat a) 

Occurrence parameters 

Number of receive requests (rcnum) Number of 1/0 requests (ionum) 

Number of transmit requests (rcnum) Number of processors (prnum) . 

Total event time (ctime) 
System events time (stime) 

Table 3: Parameters for the program-oriented and the processor-oriented approaches. 

User events time (u time) 
Hidden system events time (hstime) 

Number of event occurrences (cnum) 
Number of svstem events (snum) 

I Number of user events (unum) J 

Number of hidden system events 
Number of hidden user events 

(hsnum) 
(hunum) 

Table 4: Parameters for the user-event-oriented approach. 

These parameters differ from those adopted for the other two approaches. In the following 

discussion, we use the trace records in Tab. 5 to explain the meaning and usage of the param- 
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eters. Here, the first field in each record denotes an event entry (-3) or an event exit (-4), 
the second field denotes the event type id, and the third field denotes the timestamp for the 

record. The other fields can be ignored for the following discussion. System events have types 

ids less than -10, and user events have nonnegative type ids. The indentation in Tab. 5 has 

been introduced to indicate nesting of events: and neither the indentation nor the timestamp 

labels, e.g., (timestamp a), reflect what PICL would produce. 

-3 0 0.000016 6 0 2 2 0 0 
-3 -52 0.000128 6 0 1 2  0 

-4 -52 0.000516 6 0 3 2 8 0 0 
-3 1 0.000711 6 0 2 2 0 0 

-3 -52 0.000818 6 0 1 2  1 

-4 -52 0.001643 6 0 3 2 8 1 5  
-3 -21 0.001665 6 0 3 2 8 1 7 

-4 -21 0.001711 6 0 0 

-3 2 0.001982 6 0 0 
-4 2 0.002005 6 0 0 

-4 1 0.002013 6 0 0 

-4 0 0.002067 6 0 0 

(timestamp a) 
(timestamp b) 
(timestamp c )  

(timestamp d) 

(timestamp e) 
(timestamp f) 
(timestamp g) 
(timestamp h 
(timestamp i) 
(timestamp j ) 
(timestamp k) 
(timestamp 1) 

Table 5: Example trace records. 

In PICL applications, user-defined events can correspond to any arbitrary code segment. As a 

consequence, the presence of nested user events is very common, especially if the user events 

are associated with the execution of program subroutines. With respect t o  the example trace 

records in Table 5, two nested events (of types i and 2 )  can be recognized within the “main” 

event of type 0. 

When these PICL trace records are analyzed according to the user--event-oriented approach, 

the following meanings and values are assigned to the identified parameters for user events of 

type 0. 

total event t ime is the elapsed time between the entry record for a type 0 event (timestamp a) 
and the corresponding exit record (timestamp 1) if the event type occurs once, or is the 

sum of the elapsed times if it occurs multiple times: 

d i m e  = 0.002067 - 0.00016 = 0.002051 secs . 

sys tem events t ime is the sum of the execution times of any system events that are nested 

at the first level of type 0 events (a type -52 event starting at timestamp b): 

stime = 0.000516- 0.000128 = 0.000388 secs . 
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user events time is the time spent executing user events nested at the first level of type 0 

events (one type I event): 

ulime = 0.002013 - 0.000711 = 0.001302 secs . 

hidden system events time is the time spent to execute system events that are detected 

in nested user events (type -52 and type -21 events nested in a type I event): 

hstime = (0.001643 - 0.000818) + (0.001711 - 0.001665) = 0.000871 secs . 

number of event occurrences is the number of times type 0 events have been executed on 

a given processor: cnum = 1. 

number of system events is the number of system events that are nested at  the first level 

of type 0 events (a type -52 event starting at  timestamp b): snurn = 1. 

number of user events is the number of user events that are nested at the first level of 

type o user events (one type I event): unum = 1. 

number of hidden system events is the number of system events occurring within nested 

user events (type -52 and type -21 events beginning at timestamps e and g, respectively, 

and nested within a type 1 event): hsnum = 2. 

e number of hidden user events is the number of user events nested within user events at  

the first level (one type 2 event): hvnum = 1. 

5.  A Case Study 

This section outlines a workload characterization study that uses MEDEA to analyze PICL 
trace data. The study is presented to illustrate how MEDEA can be utilized to analyze PICL 
trace data, what types of analyses are possible, and, hopefully, how useful the insights available 

from the analysis are. In consequence, the emphasis in the exposition is on the experimental 

methodology. While preliminary results from the study are mentioned at the end of the section, 

the analysis of the data is ongoing. The complete analysis will be presented in a later report. 

The application used for the study is PSTSWM, a messagepassing benchmark code and parallel 

algorithm testbed that solves the nonlinear shallow water equations on a sphere [17]. This code 

models closely how CCMS, the Community Climate Model developed by the National Center 

for Atmospheric Research, handles the dynamicd part of the primitive equations. PSTSWM 

was developed to compare parallel algorithms and to evaluate multiprocessor architectures for 

parallel implementations of CCM2. 

PSTSWM uses the spectral transform method to solve the shallow water equations. During 

each timestep, the state variabies of the problem are transformed between the physical domain, 
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where most of the physical forces are calculated, and the spectral domain, where the terms 

of the differential equation are evaluated. The physical domain is a tensor product longitude- 

latitude grid. The spectral domain is the set of spectral coefficients in a spherical harmonic 

expansion of the state variables. 

Transforming from physical coordinates to spectral coordinates involves first performing a fast 

Fourier transform (FFT) for each line of constant latitude, generating results on a waveniimber- 

latitude grid. This is followed by integration over latitude for each line of constant wavenumber, 

approximating the Legendre transform (LT). The inverse transformation involves evaluating 

sums of spectral harmonics and inverse FFTs, algorithmically analogous to the forward trans- 

form. 

Parallel algorithms are used to compute the FFTs and to compute the vector sums used to 

approximate the forward Legendre transforms. Processors are treated as a two dimensional grid, 

with the longitude dimension mapped onto row processors and the latitude dimension mapped 

onto column processors. Thus, the specified aspect ratio determines how many processors are 

allocated to computing the FFTs and the LTs. Many different parallel algorithms are embedded 

in the code, and the choice of algorithms is determined via input parameters at runtime. 

In this study, variants of two parallel algorithms to compute the forward Legendre transforms 

are compared. Both parallel algorithms are based on (1) computing local contributions to the 

vector of spectral coefficients, (2) summing the “local” vectors element-wise over a logical ring 

of processors, and (3) broadcasting the result to the members of the ring. Both algorithms 

send P - 1 (equal-sized) messages per processor to compute the global sum and P - 1 mes- 

sages to implement the broadcast, where P is the number of processors in a processor column. 

Each message in the summation is sent to the logical right neighbor, while each message in the 

broadcast is sent to the logical left neighbor. The algorithms differ in when the three stages are 

executed. The first algorithm, ringsurn, first computes all local contributions, then computes 

the global sum, and finally broadcasts the results. The second algorithm, ringpipe, interleaves 

the calculation of the local contribution with the global summation in a pipeline fashion, and 

interleaves the broadcast with the computation that uses the result, also in a pipeline fashion. 

Thus, the ringsum algorithm isolates the communication from the computation, preventing 

communication and computation from interfering with each other and (more) effectively syn- 

chronizing the processors in the interprocessor communication. The ringpipe algorithm allows 

the communication and computation to be overlapped, and requires less memory than ring- 

sum. The question addressed by the study is whether attempting to overlap communication 

with computation is cost effective on a given architecture. 

To address the question, PSTSWM was executed on four different platforms: the Intel iPSC/2, 
iPSC/860, Touchstone DELTA, and Paragon machines. The Intel iPSC/2 and iPSC/860 sys- 
tems are distributed memory, hypercube-connected parallel architectures [4]. The processor 

elements are the Intel i80286/387 and the Intel i860, respectively. The communication hard- 

ware, based on bit-serial channels, is the same for both the systems. The Intel Touchstone 

DELTA and Paragon systems are distributed memory, wormhole-routed, mesh-connected par- 

allel architectures. The processor elements are the Intel i860 and the Intel i86OSP, respectively. 
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iPSC/2 iPSC/860 DELTA 

Interconnect hypercube hypercube mesh 

Table 6 summarizes the main features of the parallel systems we used for this study. 

Paragon 

mesh 

CPU type 

Clock rate 
Memorv/node 

80386/387 860 860 860SP 

l6MHz 40MHz 40hJHz 50MHz 
4MB 8MB 16MB 16MB 

Table 6: Hardware characteristics of the architectures for the experimental study. 

5.1. Measurements 

On each architecture, PSTSWM was executed on a logical 1x16 mesh topology, calculating 

each FFT sequentially and each LT in parallel. Multiple runs were made using both ringsum 

and ringpipe algorithms, with varying implementations of the algorithms, underlying commu- 

nication protocols, and number of communication buffers. The following naming convention 

identifies a given experiment: 

Capplicat  ionname> .<algorithm-t ype> .<protocol-opt ion>.<buf f ering-opt ion> 

A guideline for the interpretation of trace file names is as follows: 

Algorithm type. Each stage of both algorithms is characterized by sending data to one 

neighbor, receiving data from another, and using the data to update a running sum. The 

following options differ in the order of these operations. 

ringpipe: 

1) type 00: calculate local contribution (calc)/sum/send/receive 

2) type 01 : calc/sum/send/receive or calc/sum/receive/send 

3) type 02: calc/receive/sum/send 

ringsum: 

1) type 10: send/receive/sum 

2) type 11: send/receive/sum or receive/send/sum 

3) type 12: same as 10, but posting receive requests early 

4) type 13: same as 11, but posting receive request early 

Algorithms of type 01, 11, and 13 implement a conservative protocol, where the odd numbered 

processors in the logical ring send first and receive second, and the even numbered processors 
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receive first and send second. This protocol works even when system buffer space is limited, 

and will also work on systems supporting only synchronous communication. Algorithms of type 

12 and 13 use nonblocking receive requests to indicate where messages should be stored when 

they arrive. 

Protocol option. On Intel multiprocessors, PICL supports both blocking and nonblocking 

communication requests and both regular and forcetype communication protocols. In block- 

ing requests, control does not return to the calling process until the corresponding operation 

is complete. In nonblocking requests, control returns immediately, and further inquiries are 

required to determine when the corresponding operation is complete.2 The forcetype protocol 

assumes that a receive request ha. been posted at the destination processor before a send re- 

quest is made at the source, thus allowing the elimination of some handshaking overhead, but 

it requires that the user insure that this condition holds. 

1) type 0: blocking send - blocking receive 

2) type 1: nonblocking send - blocking receive 

3) type 2: blocking send - nonblocking receive 

4) type 3: nonblocking send - nonblocking receive 

5) type 4: blocking send - nonblocking receive with forcetypes 

6) type 5: nonblocking send - nonblocking receive with forcetypes 

7) type 6: blocking synchronous send/receive (for algorithms of type 01, 11, and 13) 

Protocol option type 6 uses extra handshaking messages to guarantee that messages are not 

sent until the corresponding receive requests have been posted. This simulates what occurs 

when using synchronous communication requests. 

Buffering option. When nonblocking receives and/or sends are used and extra buffer space is 

available, some of the receive requests can be posted “early” and some sends completed “late”, 

potentially eliminating system buffer copying overhead and allowing additional communication 

and computation to be overlapped. 

1) type 0: use no extra communication buffers 

2) type x: use the maximum number of extra communication buffers 

Example. As an example, the trace file pstsvm. 02.3. Orefers to the execution of PSTSWM us- 
ing the ringpipe algorithm with the computational paradigm “calc/[send/receive I receive/send]” , 
assuming the “nonblocking send - nonblocking receive” communication protocol and no extra 
communication buffers. 

2Note that a send request on Intel multiprocessors is complete when the buffer containing the message being 
sent can be altered without altering the message, and does not indicate that the message has been received by 
the destination process. 
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5.2. Pre l iminary  analysis: performance parameters and parallel metrics 

We executed PSTSWM on the parallel systems described in 55, varying the algorithm type and 

the protocol and buffer options. From each execution, we collected a detailed trace file using 

the tracing facilities provided by PICL. As outlined in j4.1, these trace files can be analyzed 

at different levels of detail, according to the granularity of the workload components selected, 

which, in turn, is a consequence of the objectives of the analysis. We evaluated the usefulness 

of overlapping communications and computation using the program-oriented approach: each 

trace file was analyzed by MEDEA from a global viewpoint and a subset of the performance 

parameters described in Tab. 3 were used to characterize the behavior of the application. In our 

study, total execution, computation, communication, receive and transmit times were selected 

as representative parameters. Their values were used as input to MEDEA, and the parallel 

metrics described in $4.2 were used to obtain a first insight into the dynamic behavior of the 

application runs. 

As an example of the differences between the experimental runs, Fig. 4 and 5 show the receive 

profiles derived from the execution on the Intel Paragon for pstswm. 02.4.  I. and pstswm. 12.4.0. 
The first is a ringpipe algorithm based on a “calc/receive/sum/send” execution paradigm. It 

uses the “blocking send - nonblocking receive with forcetypes” communication protocol options 

and the maximum number of extra communication buffers. This algorithm maximizes the o p  

portunity for overlap of communication and computation phases. pstsm. 12.4.0 is a ringsum 

algorithm based on a “send/receive/sum” execution paradigm. It uses the same communication 

protocol as the ringpipe example, but without any extra communication buffers. The protocol 

option minimizes the overhead of interprocessor communication for any given send/receive pair, 

but the algorithmic options do not attempt to  interleave the communication and computation 

or to eliminate all system buffer copying. 

Figures 6 and 7 give a detailed view of the first communication phase shown in the receive 

profiles of these algorithms. Note that two subphases, summation and broadcast, can be easily 

identified for the ringpipe example (Fig. 6): each phase starts with a peak in the number of 

receiving processors, corresponding to the early posting of nonblocking receive requests by the 

single tasks, and then contains communications patterns involving a small number of processors 

at any one time as the explicit handshaking required when using forcetypes takes place. These 

patterns are separated by computation intervals during which no communication is performed 

at all, Le. the sequential FFTs. In the ringsum example (Fig. 71, there is only one peak when 

the summation/broadcast has been started, and then an almost continuous communication 

pattern can be identified as the messages move around the logical ring. 

5.3. Workload characterization 

The behavior of each experimental run is represented by a single point in a five-dimensional 

space, as determined by the number of performance parameters selected in 55.2. In our study, 

the statistical properties of this data set have been examined by means of the cluster analysis 

and the functional description modules of MEDEA for each multiptocessor platform, 
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5.3.1. Workload models 

As mentioned previously, the behavior of a real workload is very complex and difficult to repro- 

duce, and the amount of information collected into trace files is, in general, difficult to manage. 

In consequence, system studies usually require that a model, or simplified characterization, of 

the workload be constructed. Even though the execution of a workload is usually a determin- 

istic phenomenon, it is often modeled as a nondeterministic one, with statistical techniques 

being applied. As outlined in $3, MEDEA classifies processes in preparation for construction of 

workload models by means of the li-means clustering algorithm. In order to make meaningful 

comparisons between the performance parameters selected for our analysis, the values of these 

parameters are first scaled so that they lie in a common interval. Then the partitioning of 

workload components is derived. 

In our study we analyzed 56 trace files (corresponding to the execution of PSTSWM for the dif- 

ferent implementations of the ringsum and the ringpipe algorithms and varying the underlying 

communication protocol and the number of communication buffers) for each architecture. The 

following tables summarize the optimal partitions of the workload components with respect to 

the overall mean square ratios of the evaluated clusters. 

The means of the execution, computation and communications times represent the values for the 

centroid of the corresponding cluster. They can he used, together with the standard deviations, 

as input to either analytic or simulation system models to reproduce the behavior of real 

workload. 

Note that these experiments are part of a larger exercise in determining optimal algorithm 

parameters for problems that will be used on the largest configurations of each multiprocessor. 

To capture the right granularity when running on only 16 processors, the problem sizes were 

scaled. Thus, there is some difference between the different sets of experiments, and raw timings 

cannot be compared between the multiprocessors. The timings for the DELTA and the Paragon 

do represent the same problem though, and can be compared. 

5.3.2. Functional description 

The composition of each cluster has also been investigated from a functional viewpoint. 

We constructed a preliminary characterization by projecting the experimental runs onto a 

subspace identified by two of the selected parameters. Figure 8 shows the projections of the 

ringsum and the ringpipe algorithms within the e x t i m e c p t i m e  subspace for experiments run 

on the Paragon (see Table 10). While the first and second cluster can be easily identified, the 
remaining partitions do not have well defined shapes. This indicates that the extime and cptime 
parameters are insufficient to characterize the workload generated by algorithms belonging to 
the third and to the fourth cluster. The relationships that characterize the last two partitions 

involve the whole subset of performance parameters the cluster analysis was based on. For 

example, if we consider the projections within the rctime-trlime subspace (see Fig. 9), the 

third and fourth clusters are well shaped too. 
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Cluster Percentage 
Cluster 1 17.0% 
Cluster 2 47.2% 
Cluster 3 35.8% 

Cmtime Ext ime Cptime 
mean std dev mean std dev mean std dev 

139.577 0.561 137.659 0.225 1.712 0.797 
144.483 0.350 141.450 0.169 3.013 0.334 
142.571 0.247 137.376 0.167 5.514 0.303 

Table 7: Workload model for the trace files collected on iPSC/2. 

Extime I (Jptime I Gmtime I Cluster 1 Percentage I mean I std dev I mean 1 std dev I mean I std dev 

Table 8: Workload model for the trace files collected on iPSC/860. 

I Cptime I Gmtime Extime 
I Cluster I Percentage I mean 1 std dev I mean 1 std dev 1 mean I std dev 

Table 9: Workload model for the trace files collected on DELTA. 

Extime I Cptime I Gmtime I Cluster 1 Percentage I mean I std dev I mean I std dev I mean I std dev 

Table 10: Workload model for the trace files collected on Paragon. 
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As a second step in our functional characterization process, the coniponents belonging to a 

specific cluster can be listed in order to obtain better insights into the model of the workload 

being evaluated. As an example, Table 11 lists the applications grouped into the fourth cluster 

of the workload model for the Paragon. 

1 Paragon: cluster 4 1 

Table 11: Composition of the fourth cluster of the workload model for the Paragon. 

Note that all the components belonging to this cluster correspond to trace files derived from 

ringpipe algorithms based on the “send/calc/receive” execution paradigm. Furthermore, this 

cluster groups together those PSTSWM runs utilizing nonblocking receive communication pro- 

tocols and extra communication buffers. The cluster also includes the experiment utilizing 

nonblocking send - nonblocking receive communications with forcetypes and no extra commu- 

nication buffers (pstsam.02.5.0). These results imply that the forcetype protocol does not 

change the fundamental behavior of this algorithm when using extra communication buffers, 

but that  extra buffers are unnecessary (on the Paragon, using this algorithm) when forcetypes 

are used with nonblocking sends and receives. 

5.3.3. Results 

This case study has important implications on how these multiprocessors should be used. The 

preliminary results confirm that the utility of overlap varies across the platforms. Moreover, 

the techniques required to productively exploit overlapping communication with computation 

also vary between the architectures, even though their programming models are identical. For 
example, overlap is useful, and simple to characterize and exploit, on the iPSC/2. I t  is even 

more important for efficiency on the iPSC/860, but is more difficult to utilize effectively. Tech- 

niques maximizing the possibility of overlap have a marginal utility on the Touchstone DELTA, 

and it is doubtful whether overlap is the reason for the efficiency. The performance analysis 

on the Paragon currently changes with every operating system upgrade, but its performance 

characteristics, with regard to exploiting overlap, seem to lie between the those of the Touch- 

stone DELTA and the iPSC/SSO. We are currently quantifying these observations with further 

experiments and analysis, and will report on the results in a future report. 

6. Conclusions 

In this report we described the integration of the Portable Instrumented Communication Li- 
brary (PICL) trace file format into the MEasurements Description Evaluation and Analysis tool 
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(MEDEA). This integration was motivated by the wide availability and utility of PICL trace 

files, and by the capabilities in MEDEA for easily analyzing the static and dynamic characteris- 

tics of parallel workloads from trace data. We also described a workload characterization study, 

to indicate exactly how PICL data can be analyzed using MEDEA. In our initial experiences 

in using MEDEA to analyze PICL trace files, we have found the combination of these tools to 

be effective and powerful in workload characterization studies. 

Our experiments on the Paragon also point out the utility of having portable tools like PICL 

and MEDEA. While the Paragon will have a full suite of performance monitors and tools in 

future releases of the system software, they were not available for these experiments. This is 
typical in the analysis of early or experimental systems. It is important to understand the 

performance of early systems quickly, and PICL and MEDEA allow us to measure and analyze 

performance on these systems without depending on the availability of vendor-supplied tools. 
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