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ABSTRACT 

We have considered the problem of determining the time trajectories of the joint 
variables of a mobile manipulator with many redundant degrees of freedom that will 
minimize the maximum value of the torque during a large scale motion by the manipulator. 
To create a well defined problem, we will divide the problem into two components: path 
planner and surveyor. The path planner will choose a path (between two points in 
Cartesian space) that will minimize the maximum value of the torque along the path. The 
input to the path planner is a network of path segments with the maximum value of the 
torque on each segment. The surveyor will find the points in joint space that are local 
minimums for the maximum value of the torque at each Cartesian position and define the 
network of path segments. In this paper, our focus will be on the surveyor and not on the 
path planner. 

There is a large literature on algorithms for the solution of min-max problems. 
However, our min-max problem has an extra constraint on the joint variables. We seek 
a min-max at each Cartesian position rather than a global min-max. We have used the 
Kuhn-Tucker conditions to derive necessary conditions for the solution of our min-max 
problem. We find that the necessary conditions require that at one or more of the joints the 
magnitude of the normalized torques will be equal to the min-max value. 

We have explored the torque surfaces for two mobile manipulators: a planar 
manipulator and the CESARm. The planar manipulator has three revolute joints. The 
paths with three equal torques cover the workspace and satisfy the necessary conditions. 

The CESARm is a manipulator with three joint angles controlling the height of the 
arm. The paths with three equal torques have low values for the torque but they only cover 
part of the workspace and do not join together. Paths with two equal torques cover the 
workspace and bridge between the disjoint path segments. We have evaluated the 
necessary conditions for both the paths with three equal torques and the paths with two 
equal torques. In most cases, the paths satisfy the necessary conditions. 

ix 





1. INTRODUCTION 

Consider a mobile manipulator with many redundant degrees of freedom. A 
mission for the mobile manipulator robot will be subdivided into a sequence of tasks. 

During a task, the robot moves from an initial configuration to a final configuration while 

minimizing an objective function. The objective function could have several components 

including: obstacle avoidance, torque minimization, manipulability, and platform stability 

(see [l], [2], and [3]). In this paper, we consider a large scale motion while minimizing a 

single component of the objective function: the maximum value of the torque. 

Manipulators consist of rigid links that are connected by joints. The joints can be 

revolute or prismatic. The number of degrees of freedom of a manipulator is the number of 

joint variables that must be specified to uniquely determine all of the parts of the machine. 

If the three vector P is the location of a point on the manipulator (usually the position of the 

end effector) in Cartesian space and 8 is the vector of joint variables: 

For the manipulator, the Jacobian [J] maps the joint velocities to Cartesian 

velocities: 

i )  = J(9) 6 
where 

J(0) =- 
a0 

(3) 

Furthermore, the transpose of the Jacobian maps the static Cartesian forces 

at the end of the manipulator to the static joint torques [z] induced by the load: 

from a load 

T = J(@T F (4) 

Let Q be the maximum of the magnitudes of the joint torques (Ti) divided by a limit 

for each joint (Wi): 

1 
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Let A be the minimum value of Q(8) at each Cartesian position: 

A = m in Q(0) = m in max IT iI / wi 
e 0 l  

Our objective is to determine paths for the joint variables (ei) that will minimize Q(0) 

during the motion of the mobile manipulator from an initial position (Pi) to a final position 

(Pf). Solving this min-max problem will resolve the redundancy for the joint variables. 

In classical optimization theory, the methods that are used to minimize a function at 

a point are different than the methods that are used to minimize a functional on a trajectory 

from an initial position to a final position. At an unconstrained interior minimum of a 

function of one variable, the derivative is equal to zero. For the most simple problem in the 

calculus of variations, the objective is to find a function [x(t)] such that x(ti) = a, x(tf) = b, 

and the functional [ a ]  is a minimum, where: 

tf 

Q, = jU(x(t)j(t),t) dt 
ti 

At every point on the trajectory, the variables must satisfy the Euler-Lagrange equation: 

(7) 

Only in the special case where the function U does not depend on k will the Euler-Lagrange 

equation require that the function U be at its minimum for all points on the path from a to b. 

We have not found any papers on min-max problems over a trajectory. However, 

if there were a few isolated points on the trajectory with maximum torque, there would be 

no need to minimize the torque at the other points. Thus, the min-max criterion may not 

constrain or determine most points on the path and the path may not be unique. For 

example, suppose that you wanted to plan a path that would minimize the maximum 

elevation during an automobile trip from Saint Louis, Missouri to Salt Lake City, Utah. 
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The maximum elevation would probably be in the Rocky Mountain states. Thus, the 

criterion to minimize the maximum elevation during the trip would not give you any 

guidance as you traveled across the Great Plains states. 

To create a well defined problem, we will divide the problem into two components: 

path planner and surveyor. The path planner that will choose a path between two points in 

Cartesian space that will minimize the maximum value of the torque along the path. The 

input to the path planner is a network of path segments with the maximum value of the 

torque on each segment. The surveyor will explore the joint space and define the network 

of path segments. In this paper, our focus is on the surveyor and not on the path planner. 

Given a Cartesian position (P), we can solve the min-max problem. Conventional 

search techniques slowly solve min-max problems. The basic reason is that the 

conventional search techniques assume that the function is differentiable and Q(0) is 

usually not differentiable at the minimum. Many algorithms that solve min-max problems 

have been developed (see Pol& [4]). 
In the next section, we will convert the min-max problem into a nonlinear 

programming problem and use the Kuhn-Tucker conditions to derive necessary conditions 

for the solution of the min-max problem. We shall find that the necessary conditions 

require that at one or more of the joints the magnitude of the normalized torques will be 

equal to the min-max value. However, an isolated minimum may not be useful for a large 

scale motion. 

In the subsequent sections, we will explore continuous paths for the joint variables 

that will minimize the maximum of the normalized torques during a large scale motion by 

the mobile manipulator. In the third section, we will find min-max paths for a planar 

manipulator. In the fourth section, we will explore min-max paths for the CESARm. The 

final section will present our conclusions. 





2. NECESSARY CONDITIONS FOR THE 
MIN-MAX PROBLEM 

There is a large literature on algorithms for the solution of min-ma problems. An 

example is a recent paper by Polak [4]. However, our min-max problem has an extra 

constraint on the joint variables [Eq. (l)]. Consequently, the necessary conditions for our 

min-max problem are more general than for the standard problem. Pol& calls a point that 

satisfies the necessary conditions for the standard problem a Danskin point. Our conditions 

will reduce to the conditions for the Danskin point when the extra constraint is removed. 

We will convert our min-max problem into a nonlinear programming problem and 

use the Kuhn-Tucker conditions to derive necessary conditions for the solution of the 

min-max problem. To simplify our notation, we will define the functions Gi(0) by: 

Following Polak, we convert Eq. (6) from an unconstrained nondifferentiable optimization 

problem to a constrained differentiable optimization problem: 

Find 8 to minimize A subject to: 

A 2 Gi( 9) 

We introduce the nonnegative slack variables (CFi): 

<Ti = A - Gi(8) 2 0 

We assume that the position of the end effector is fned: 

f(8) = P* 

where P* is a constant. Define the Lagrangian (L) by: 

L = -A + Ch, (f ,(e) - PL) + Cpi(A - G'(0) - oi) 
k i 

5 
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The Lagrangian depends on five variables (A, 8, h, p, 0). The first four variables 

are unrestricted in sign while the last variable (0) is nonnegative. The first order necessary 

conditions for the unrestricted variables require that all first order partial derivatives of L 

with respect to the unrestricted variables must vanish. The Kuhn-Tucker conditions 

provide the first order necessary conditions for the restricted variables. The first order 

necessary conditions are: 

cpioi(e*) = 0 
1 

We can use the first order necessary conditions to demonstrate that at the min-max 
point (e*) the magnitude of the normalized torques will be equal to the min-max value (A) 

at one or more of the joints. Since both p and 0 are nonnegative, every term on the left 

side of Eq. (17) must be zero: 

Thus, whenever pi is positive, the corresponding slack variable (Gi) will be zero. At each 

point where the slack variable is zero, the normalized torque (Gi) is equal to the min-max 
value (A). Equation (14) requires that at least one of the pi must be positive. 

We can classify the sets of points that satisfy the necessary conditions based on the 
number of the pi that are positive. For Class 1, one of the pi will be positive. For Class 2, 

two of the pi will be positive. For Class n, n of the pi will be positive. For Class 1, one 

of the Gi(8) is larger than the others (Q(8) = Gk(8)) and the necessary conditions simplify 

to the familiar conditions of classical optimization. If we let h = 0, Eq. (15) becomes: 
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We can think of the Gi@) as surfaces in parameter space. For Class 2, two of the 

surfaces intersect at the min-max point (e*): 

A = Q(O*) = Gk(9") = Gm(8*) (20) 

Near the min-max point, there will be a region (A) where Q(9) = Gk(9) and a region (B) 
where Q(9) = Gm(8). If we ignore the end effector constraint (let h = 0) and move from 

region A through the min-max point to region B, Q(9) will decrease as we approach 8" and 

increase as we move away from 8". Normally, Q(8) is not differentiable at the rnin-ma 

point. When h = 0, Fq. (15) is a generalization of classical optimization condition: 

For the classical optimization condition F q .  (19)], all of the partial derivatives of Q(9) are 

equal to zero. For the generalized condition [Eq. (21)], all of the partial derivatives of a 

weighted average of the G@) are equal to zero. 

For Class n, n of the surfaces intersect at the min-max point. We will solve the 

min-max problem by identifying all of the points in all of the classes. For Class 1, we will 

find all of the points that satisfy the classical optimization condition [Eq.(l9)]. For the 

other classes, we will identify all of the points that are on the intersections of two or more 

surfaces and test whether or not the necessary conditions are satisfied. 

To find the global min-ma, we plot Q(8) vs P(8) for all of the points in all of the 

classes that satisfy the necessary conditions. The global min-max at the point P(8) has the 

lowest value for Q(8). 

The surveyor will identify all of the type A paths (paths with continuous joint 

variables that link points in the work space and satisfy the necessary conditions). If there 

are points in the workspace that cannot be linked by type A paths, the surveyor will identify 

type B paths to bridge between the type A paths. The type B paths have continuous joint 

variables, are members of one of the classes, link points in the work space, and may not 

satisfy the necessary conditions. 
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Equation (15) is our generalization of the conditions for a Danskin point. If we ignore the 

constraint [Eq. (12)], h = 0 and Eq. (15) reduces to Polak's condition [his Eq. (7)]. It is 

useful to express Eq. (15) in matrix notation. Define the elements of the matrix A by: 

Then Eq. (15) may be written: 

ATp = JTh 

In Polak's unconstrained case, h = 0 and A must be singular. In our constrained case, A 

can be singular or nonsingular. 

We have demonstrated that the magnitude of the normalized torques will be equal to 

the min-max value at one or more of the joints. In the examples that we will consider in 

this paper, the best Class 3 and Class 2 paths will have lower values for the normalized 

torques than any of the Class 1 paths. However, we can create a simple example where the 

Class 1 paths are best. Consider a manipulator with stacked prismatic joints. The z 
coordinate of the arm's tip (P) is given by: 

z = ZO + zqiei 
i 

For this example, the components of J are constants (Ji = si) and the components of G are 

constants (Gi = gi). Thus, the elements of the matrix A are zero (aij = 0). Assume that the 

first component of G is the largest (gI > gi for i > 1). Then, Q = gl, pl = 1, pi = 0 for 

i >1, 01 = 0, and CJi > 0 for i  > 1. 



3. MIN-MAX PATHS FOR A PLANAR MANIPULATOR 

We consider a mobile planar manipulator with three revolute joints (6i). The 

platform can move in the x direction. The manipulator can reach points in the (x,z) plane. 

We assume that the platform will control the x coordinate of the arm's tip (P) [we recognize 

that obstacles could prevent free motion of the platform in the x direction]. If the lengths of 

the three links of the arm are (1, 1, and 0.5) meters, the z coordinate of P is given by: 

Z = sin + sin ~2 + 0.5 sin v3 (25) 

where: = 01, ~2 = 81 + 02, and ~3 = 01 + 02  + 03. The components of the Jacobian 

are: 

J2 = COS ~2 + 0.5 COS ~3 (27) 

If the force is directed downward (Fz = -1 newton), the joint torques are given by: 

We will assume that the weights for each joint are equal: Wj = 1. 

We have three joint angles controlling the height of the arm (z). Given a desired 

change in height, we would like to determine paths for the joint angles that minimize the 

maximum of the torque during the motion. In the last section, we demonstrated that at the 

min-max point the magnitude of the torques will be equal to the min-max value at one or 

more of the joints. We begin by exploring the Class 3 paths where the magnitudes of all 

three torques are equal during the motion (subsequently, we will consider the Class 2 paths 

where two of the three torques are equal and the Class 1 paths). We distinguish four cases 

in Table 1. 

9 
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For each of the four cases, we can solve Eqs. (26) to (28) and determine two 

For example when TI = TZ = 7 3 ,  J1 = 52  = 53 and 

Each of the two conditions has two solutions. For the condition cos = 0, the 

+ cos w2= 0, the two solutions 

. Thus, each case has four subcases. We define the 16 subcases for the 

conditions on the link angles (w). 
subtracting Eq. (27) from Eq. (26) yields the first condition for the first case (cos w1 = 0). 

two solutions are: w1 = & n / 2. For the condition cos 

are: w 2  = IT k 

planar manipulator in Table 2. 

For each of the 16 subcases, we have defined the three link angles in terms of a 

single parameter (@). The last column in Table 2 expresses z as a function of $. By 

relating the three link angles to $, we have resolved the redundancy. Thus, Table 2 

displays 16 ways to resolve the redundancy. 

We will assume that z can have both positive and negative values (if z cannot have 

negative values, we could raise the base of the manipulator by 2.5 meters). All of the 

expressions for z have the form: z = a + b sin $ , In some subcases, a = 0 and z will range 

from -b to b as @ ranges from - n / 2 to 7c / 2 .  In the subcases where a is not equal to zero, 

there is another subcase where a1 = -a2 and bl = b2 (for example, subcases 1.2 and 1.4 and 

subcases 2.2 and 2.3). Thus, all of the subcases exhibit symmetry between positive and 

negative values of z. 

Next, we will determine which of the 16 subcases satisfy the necessary conditions 

[Eqs.( 14), (15) and (16)]. We begin by determining the elements of the A matrix [see 

Eq. (22)]. For the planar manipulator, the functions Gi(B) are given by: 

where the constants dj = L 1 and the signs are chosen to make the G@) nonnegative. We 

define the functions Si(@ by: 

SdB) = sin ~1 + sin ~2 + 0.5 sin ~3 

S2(8> = sin ~2 + 0.5 sin v3 

S3(e) = 0.5 sin y ~ 3  

(32) 

(33) 
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Case 1 Torque Signs 

1 1 21 = 2 ? = 2 3  

Table 1. Definition of the four cases with equal torque at three 
joints for the planar manipulator. 

First Condition Second Condition 

cos v1 = 0 cos v7 = 0 

2 

3 

4 

21 = 22 = -23 

21 = -22 = 23 
21 = -z2 = -23 

cos w1= 0 

cos y l1  + cos yQ= 0 

cos ly2 = 0 

cos w2 + cos y3= 0 

cos yl2 + cos w3= 0 

cos yf1 + cos w3= 0 

Table 2. Definition of the 16 subcases for the planar manipulator. 

Subcase Vl  v2 I w3 z = f($) 
1 

1 . 1  n / 2  - X I 2  + 2 sin$ 

1.2 n / 2  n / 2  $ 2 + f sin 

1.3 - n / 2  n / 2  $ z sin$ 

1.4 - X I 2  - n / 2  $ 

I 
I 
I 

1 

- 2 + ~  1 sin$ 

n l 2  n+$ I cp 1 -5 sin$ 

- 1 + T  3 sin$ 

b 

1 

3 

2.1 

2.2 n / 2  n - 0  $ 1 + ;i sin 9 

2.3 - X I 2  n - +  9 
I 2.4 - n / 2  n + +  Q, - 1 - 5  sin$ 

3.1 4) n + +  $ 2 sin $ 

3.2 $ cp 5 sin 9 
3.3 0 n-$ -0 5 sin$ 

3.4 + E + $  - $  - 2 sin$ 

1 

5 

3 

1 

. 
~~ 

n - 0  
~ ~ 

4.1 

4.2 

4 .3  

4.4 

3 
E - $  - n / 2  @ - 1 +z sin$ 

n-4) n / 2  9 1 + 5 sin $ 

n+4, X I 2  4 1 -5 sin+ 

n+cp - n / 2  + - 1 - 5  sin$ 

I 3 

1 

1 
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Using the Si, the A matrix is: 

Our goal is to find the pi that satisfy Eq. (23). We will first solve for an 

intermediate vector (q): 

Using the qj, Eq. (23) is: 

Subtracting Eq. (37) from Eq. (36) and subtracting Eq. (38) from Eq. (37), Eqs. (36) to 

(38) may be written in triangular form: 

The constants dj = k 1 and their signs are chosen to make the Gi(B) nonnegative. 

Expressions for the three link angles (vi) are given in Table 2 (as functions of the 

parameter @). Given values for the di and the Vi, Eqs. (39) to (41) can be solved for the 

qi. The values of di and qj are displayed in Table 3 for the 16 subcases. 

Our goal is to find the pi that satisfy the fnst order necessary conditions [Eqs. (14) 

to (16)]. We have introduced the intermediate vector (q) and solved Eq. (15) to find the 

values of qi displayed in Table 3. We can choose the normalization factor (A) to insure that 

Eq. (14) is satisfied: 
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h = -1/ cqi 
1 

The remaining condition is that the pj must not be negative [Eq. (16)]. The corresponding 

condition on the vi is that they must all have the same sign. In 13 of the 16 subcases in 

Table 3, the qi have the same signs. Thus, the pi satisfy the necessary conditions for 13 of 

the 16 subcases. 

Table 3. Evaluation of the necessary conditions for the 16 subcases. 

Subcase 1- 
1 1.2 

1 1.3 

2.1 

2.2 

2.3 

2.4 

3.1 

3.2 

3.3 

3.4 
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We will examine plots of maximum torque (Q) versus height (z) for the four cases. 

We will not consider the three subcases that do not satisfy the necessary contions. 

Furthermore, subcase 1.3 will not be considered bacause it is so similar to subcase 1.1 (in 

1.1 the first joint is up, while in 1.3 the first joint is down). 

The three subcases of case 1 are displayed in Fig. 1. All three subcases have the 

same range (one meter). For each subcase, the torque increases from zero to a maximum 

and the decreases to zero as the manipulator moves through its range. Each subcase has a 

different value of z at its midpoint (0.0 for subcase 1.1, 2.0 for subcase 1.2, and -2.0 for 

subcase 1.4). 

The four subcases of case 2 are displayed in Fig. 2. Two of the subcases have a 

one meter range while the other two have a three meter range. For each subcase, the torque 

increases from zero to a maximum and then decreases to zero as the manipulator moves 

through its range (the maximum values for the torque for all 13 subcases are identical). For 

two of the subcases, the midpoint of the range is 1.0 and for the other two the midpoint is 

-1.0. If we added subcases 2.1 and 2.4 to Fig. 1 ,  we would find that the new subcases fill 

the gaps in Fig. 1 and we would have five disjoint options for covering the total five meter 

range. Subcases 2.2 and 2.3 cover the same five meter range and overlap near 0.0. 

The three subcases of case 3 are displayed in Fig. 3. Each of the subcases has a 

different range (one, three, and five meters). The midpoint of the range is 0.0 for all three 

subcases. Subcase 3.1 covers the same range as Subcase 1.1. The two subcases of case 4 
are displayed in Fig. 4. The two subcases have the same workspace as subcases 2.2 and 

2.3. 

We have found three groups of subcases { ( l . l ,  1.3, 3.1), (2.2, 4.2), (2.3, 

4.l))that have identical values for Q in identical workspaces. However, the values of the 

link angles are not identical within these groups. If we were considering the more general 

problem of avoiding obstacles while minimizing the maximum torque, one member of the 

group might be better than the others. 

We began with 13 subcases that satisfied the necessary conditions. We have found 

five configurations with a one meter workspace, three configurations with a three meter 

workspace, and one configuration with a five meter workspace. Which of the options 

(summarized in Fig. 5 )  should we use to move from an initial value of z to a final value? 

All but one of the options (subcase 1.1) has a portion of the workspace where it is 

superior to any of the other options. For example, subcase 3.2 is best near the upper and 

lower limits of the workspace. Subcase 1.2 is best for a small interval beyond z = 1.5 

meters. Subcases 2.2 and 2.3 are better than subcase 1.1 on the middle interval 

[ -0.5,  0.51. 
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Fig. 1. Maximum torque (Q) versus height (z) for three subcases of 
case 1. The units of torque are newton meters and the units of height are 
meters. 
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Fig. 2. Maximum torque (Q) versus height (z) for four subcases of 
case 2. The units of torque are newton meters and the units of height are 
meters. 
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Fig. 3. Maximum torque (Q) versus height (z) for three subcases of 
case 3. The units of torque are newton meters and the units of height are 
meters. 
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Fig. 4. Maximum torque (Q) versus height (z) for two subcases of 
case 4. The units of torque are newton meters and the units of height are 
meters. 
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Fig. 5. Maximum torque (Q)  versus height (z) for the nine subcases 
that satisfy the necessary conditions. The units of torque are newton 
meters and the units of height are meters. 
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A path planner for the manipulator could choose the option that was best for each 

task. If the planner wanted to choose a single option that was occasionally best and always 

close to the torque minimum, it could choose subcase 3.2.  

We conclude this section by considering Class 2 paths that have equal torque 

magnitudes at two of the three joints and the Class 1 paths. We distinguish six cases in 

Table 4. When the torques are equal at two of the joints, we can derive one constraint on 

the link angles (vi) and could express the three link angles in terms of two parameters. 

However, we will assume that z is constant and express the three link angles in terms of 

one parameter. 

Table 4. Definition of the six cases with equal torque at two joints 
for the planar manipulator. 

In Table 4, we defined six cases with equal torque magnitudes at two joints, while 

we defined four cases with equal torque magnitudes at three joints in Table 1. As we 

consider all cases that have equal torques at two joints, we will find isolated points in the 

three dimensional space of link angles where the torques are equal at three joints. Thus, as 

we consider all of the points in link space that are in Case 1 in Table 4, we will find isolated 

points that are in Cases 1 and 2 in Table 1. Similarly, Cases 3 and 4 in Table 1 are 

examples of Case 2 in Table 4. To examine all of the cases in Table 1, we need to consider 

Cases 1 and 2 in Table 4, or Cases 3 and 4, or Cases 5 and 6 .  Since we have a simple 

analytical expression for the conditions on the link angles in Cases 3 and 4, we will focus 

on Cases 3 and 4. 
We will assume that z = 0.25. This point is in the workspace of 10 of the 16 

Subcases listed in Table 2 (see Table 5). As the parameter k increases from 0 to 100, the 

link angle ~3 will increase from - n / 2 to IT / 2 .  For Cases 3 and 4, the condition in Table 
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4 will provide two solutions for w2 when w 3  is known. Given w3, w2, and z, Eq. (25) 

may yield two solutions for ~ 1 .  Thus, for each value of the parameter k, we can determine 

up to four solutions for the link angles. We will use a mode variable with a range from 0 to 

3 to identify the four solutions. 

Table 5. The 10 subcases defined in Table 2 that can reach the 
point z = 0.25. 

Subcase W1 v2 w3 k Figure I 
1.1 nI2  - n / 2  Q, 66 7 

2.2 n / 2  n - 0  0 33 9 

2.3 - n / 2  E - 0  0 82 9 

3.1 0 n + 0  0 67 8 

3.2 @ n - 0  Q, 53 9 

3.3 @ n - 0  - 0  45 8 

4.1 7C-o - X I 2  @ 81 7 

1.3 - X I 2  X I 2  Q, 67 6 

3.4 @ n + 0  1 - 4  67 9 

4.2 n - 0  ~ ~ _ _ _ _ _ _  n / 2  1 0 33 ~ 6 

In Case 3, z2 = 23.  Thus, G2 = G3. GI and G2 are plotted in Fig. 6 as a function 

of the parameter k for Case 3 and mode 1. A is the minimum value of the maximum of the 

Gi. In Fig. 6, there are two local minima at k = 33 and k = 67. At each local minima, 

GI = G2 = G3. Hence, there are no local minima at which only two of the joint torques are 

equal. At each local minima, we can determine the link angles and identify which of the 16 

subcases in Table 2 has occurred. At k = 33, the subcase is 4.2 and the subcase is 1.3 

when k = 67. We will identify the value of k and the figure number for each of the ten 

subcases in Table 5. 

GI and G2 are plotted in Fig. 7 for Case 3 and mode 3. In Fig. 7, there is one local 

minima at k = 81 and a point where G1 = G2 that is not a local minima at k = 66. At 

k = 66, the subcase is 1.1 and the subcase is 4.1 when k = 81. Although subcase 1.1 

satisfies the necessary conditions, we previously noted that it was never the best option for 

any region of the workspace. 
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Fig. 6. G1 and G2versus the parameter k for case 3 (G2 = G3) and 
mode 1. The units of torque are newton meters. 
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Fig. 7. G1 and G2versus the parameter k for case 3 (G2 = G3) and 

mode 3. The units of torque are newton meters. 
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In Case 4, 22 = - 23 and G2 = G3. GI and G2 are plotted in Fig. 8 for Case 4 and 

mode 0. In Fig. 8, there are two local minima at k = 45 and k = 67. At k = 45, the 

subcase is 3.3 and the subcase is 3.1 when k = 67. 

G1 and G2 are plotted in Fig. 9 for Case 4 and mode 2. In Fig. 9, there are four 

points where GI = G2. Three of the four points are local minima at k = 33, k = 53 and 

k = 82. The point that is not a local minima is at k = 67. The subcases are: 2.2 at k =33, 

3.2 at k =53, 3.4 at k =67, and 2.3 at k =82. In Table 3, we found that subcase 3.4 did 

not satisfy the necessary conditions. In Fig. 9, we find that subcase 3.4 is not a local 

minima, 

By examining two modes of case 3 and two modes of case 4, we have been able to 

identify all 10 of the subcases that can reach the point z = 0.25. In 8 of the 10 subcases, 

we have found a local minima. All of the local minima occurred at points where the torques 

were equal at all three joints. Thus, we were unable to find any local minima at which only 

two of the joint torques were equal. 
Finally, we shall consider the Class 1 paths. For Class 1, one of the Gi(8) is larger 

than the others and it must satisfy the conditions of classical optimization [Eq. (19)]. The 

elements of the A matrix are the partial derivatives of the Gi(0). If G1 is largest, the 

classical optimization conditions require that the first column of the AT matrix will be zero. 

If G2 is largest, the second column of the AT matrix will be zero and if G3 is largest, the 

third column will be zero. In all three cases, S3(e) = 0 [see Eq. (34)]. Thus, sin ~3 = 0 

and cos y ~ 3  = & 1. Consequently, G3 = 0.5 [see Eq. (28)] and Q(0)  cannot be less than 

0.5. None of the Class 1 paths can be better than the best Class 3 paths in Fig. 5. 

The Class 3 paths span the workspace. The local minima for the Class 2 paths 

occur when they become Class 3 paths. The minimum torque for the Class 1 paths is never 

less than 0.5 newton meters (the maximum values for the torque on the Class 3 paths). 
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Fig. 8. G1 and G2versus the parameter k for case 4 (G2 = G3) and 

mode 0. The units of torque are newton meters. 
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4. MIN-MAX PATHS FOR CESARm 

The CESARm is a manipulator with 7 degrees of freedom (including a 3 degree of 

freedom spherical wrist) and a high capacity to weight ratio [5] (see Fig. 10). We assume 

that the CESARm is mounted on a mobile platform. The platform can move in the x and y 

directions. The manipulator can reach points in three dimensional (x,y,z) space. We 

assume that the platform will control the x and y coordinate of the arm's tip (P) [we 

recognize that obstacles could prevent free motion of the platform in the (x,y) plane]. We 

will not consider the last three degrees of freedom that control the spherical wrist. Since 

the first joint variable does not change the z coordinate of P, we will neglect it. 

The z coordinate of P is given by: 

z = ~2 ~3 D + C? H 

where si = sin (0i), ci = COS (ei), and: 

and a3, a, and d3 are constants (a3 = 0.029 m, 

components of the Jacobian are: 

= 0.508 m, and d3 = 0.635 m). The 

If the force is directed downward (F, = -1  newton), the joint torques are given by: 

We will assume that the weights for each joint are equal: Wi = 1. 

27 
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Fig. 10. The seven degrees of freedom of the CESARm manipulator. 
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Case K3 K4 0 2  03 

1 + 1  + 1  02 03 

2 + I  - 1  - 92 II: - e3 
3 - 1  - 1  82 - 93 

. 4 - 1  + l  - 62 - (x. - 03) 

We have three joint angles (82, 03, 04) controlling the height of the arm (z). Given 

a desired change in height, we would like to determine paths for the joint angles that 

minimize the maximum of the torque during the motion. In the second section, we 

demonstrated that at the min-max point the magnitude of the torques will be equal to the 

min-max value at one or more of the joints. We begin by exploring the Class 3 paths 

where the magnitudes of all three torques are equal during the motion (subsequently, we 

will consider the Class 2 paths where two of the three torques are equal and the Class 1 

paths). Define K3 to be the ratio of 52 and 53 and & to be the ratio of J3 and J4: 

Since K3 = rtl and & = +1, we can distinguish four cases. For the planar manipulator, 

the four cases were distinct (see Table 1). For the CESARm, we will now show that the 

four cases correspond to changes of variables (see Table 6).  

If the sign of 8 3  is changed, the sign of s3 changes. Consequently, the signs of z, 

J2, and 54 are unchanged, while the sign of J3 changes. Thus, the signs of both K3 and & 
change (case 3). 

If the sign of 0 2  is changed and 93 is replaced by (x. - e,), the signs of s2 and c3 

change. Consequently, the signs of z and J4 are unchanged, while the signs of J2, and J3 

change. Thus, the sign of I6, changes (case 2). 

If the sign of 92 is changed and 03 is replaced by -(x. - e,), the signs of s2, s3, and 

c3 change. Consequently, the signs of z, J3, and J4 are unchanged, while the sign of 52 

changes. Thus, the sign of K3 changes (case 4). 
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Since the four cases are not distinct, we assume that K3 = & = 1. We have two 

equations in three unknowns. For each pair of equations, we can solve for T2 = tan 02: 

We can eliminate 02 and obtain a single equation relating 03 and 04: 

Using a step size of 2 degrees, we allow 04 to sweep its allowable range (from -55 

degrees to 45 degrees). At each step, 04 is known and we use a search technique (Brent's 

method. See Press [SI) to find all of the values of 03 that satisfy Eq. (55) (when 04 is 

known, we have replaced a two parameter (02  and 03) search of a function that does not 

have a continuous derivative [Eq. (6)] by a one parameter search of a function with a 

continuous derivative). The results are displayed in Fig. 1 1. 

As 04 increases from -55 degrees, there are no solutions of Eq. ( 5 5 )  until 04 

reaches -9 degrees. When 0 4  = -9 degrees, there are two solutions with positive z: 

(z,Q) = (0.73, 0.30) and (z,Q) = (0.67, 0.33). The two solutions with negative z 
correspond to an increase in 02  by 180 degrees. When z is positive (or negative), we can 

separate the paths in Fig. 11 into two distinct paths that have continuous values of the joint 

variables: upper and lower. The upper path begins at (z,Q) = (0.67,0.33) and extends to 

point B [(z,Q) = (0.17,0.24)]. The lower path begins at (z,Q) = (0.73, 0.30) and extends 

to point A [(z,Q) = (0.29, 0.27). The maximum value of Q on the upper path is 0.37, 

while all of the values on the lower path are less than 0.30. The left ends of the two paths 

(when z is positive) occur when 04 is at its upper limit (45 degrees). 

Our goal is to determine continuous paths for the joint variables that will minimize 

Q during a large scale vertical motion by the mobile manipulator. Although the upper path 

has a greater range in z and a lower values for Q at its left end, the lower path is more 

attractive for large scale motions because it has a smaller maximum value for Q. In the 

remainder of this section, we will consider both of the equal paths: upper and lower. 
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Fig. 11. Maximum torque (Q) versus height ( 2 )  for paths with three 
equal torques. The units of torque are newton meters and the units of 
height are meters. 
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The two segments of the equal paths are the only Class 3 solutions and they cannot 

reach all of the workspace for the CESARm. To cover all of the workspace, we will use 

Class 2 solutions. To define the workspace of the CESARm, we will introduce two new 

variables (R and a) and derive a new expression for the z coordinate of the CESARm. We 

express the variables c3 D and H in polar coordinates: 

c3 D = R sin 01 

H = R cos a 

where: 

R2 = ( ~ 3  D)2 -t H2 

tan 01 = c3 D / H  

Using Eqs. (56) and (57), Eq. (44) may be written: 

(58)  

(59) 

As 0 2  increases from a to 01 + .n, z will decrease from R to -R. Thus, R defines the reach 

for the CESARm. For fixed values of 8 4  (D and H), the maximum value of R will occur 

when c3 = k 1 and 03 = 0 or 71;. 

In Fig. 12, values of Q are plotted for three cases as 02 increases from a to a + E .  

For the cases in Fig. 12, 03 = 0 and 84 = -55 degrees, -5 degrees, and 45 degrees. The 

maximum value of the reach occurs when 04 = -55 degrees and R = 1.10 meters. The case 

when 84  = -55 degrees has very high values for Q when z = 0. The case when 04 = 45 

degrees has much lower values for Q in the neighborhood of z = 0. For the cases in 

Fig. 12, a good strategy for moving through the workspace would be to move from the 

maximum reach posture (04  = -55 degrees) to the minimum reach posture (04 = 45 
degrees) and back to the maximum reach posture as the elevation of the CESARm moves 

from 1.10 meters to -1.10 meters. 
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In each of the three cases displayed in Fig. 12, the plots of Q vs z have local 

minima. The local minima are Class 2 solutions that occur when the maximum torque 

switches from one joint to another. Since 03 = O,J3 = 0 [see Eq. (48)]. Thus, the local 

minima always occur when G2(8) =G4(0) or 52 = +  J4. For each value of 04 there 

are two values of 82 (and two values of z) for which G2(0) = G4(8). In Fig. 12, the 

solutions with positive values of z have lower values than the solutions with negative 

values of z. 

The branch with the lower values is plotted in Fig. 13 (and labeled Long). The 

lower path from Fig. 11 is plotted in Fig. 13 (and labeled Equal). The Long path has a 

greater range than the Equal path. Furthermore, the Long path has lower values for Q for 

values of z that are greater than the value at which the two curves cross (although the 

curves cross in Fig. 13, the joint angles are not equal. 6 = (1 10, 0, 15) for Long and 

0 = (-121, -140, 5) for Equal). The Equal path has lower values for Q for values of z that 

are less than the value at which the two curves cross. 

By exploring Class 2 paths, we have found a continuous path that could reach 

larger values of z than the Class 3 Equal path. Next, we will seek Class 2 paths that can 

bridge between the two segments of the Long path or the four segments of the Equal path. 

A bridge path must be continuous in joint space. For each point in a plot of Q and 

z, there are four sets of joint angles that will reach the point. Consider the surface of Q as a 

function of 0 2  and 03. We will keep 04 constant (04 = 45 degrees). From Table 6 ,  we 

find the surface is symmetrical about the 02 axis [since Q(02, -03) = Q(02, 03), the surface 

is symmetrical about the line where 93 = 0 (the 02 axis)]. Since the surface is symmetrical, 

we will assume that the values of 03 lie between 0 and 7c. The surface is not symmetrical 

about the 03 axis [Q(-82,~-83)  = Q(02,03). We will assume that the values of 0 2  lie 

between -7c and x .  Thus, there will be two sets of joint angles that will reach each (Q,z) 

point The set with positive values for 02 will be called set one, while the set with negative 

values for 0 2  will be called set two. 

To find Class 2 paths, we seek all values of the joint angles that have equal 

magnitudes for two of the three torques. With 04 constant (04 = 45 degrees), we vary 02 

from - 180 degrees to 180 degrees. For each value of 02, we find all of the values for 03 

that have equal magnitudes for two of the three torques. For each value of 02, there can be 

as many as six values for 03 (52 = f J3,J2 = k J4, and 53 = 5 J4. The six expressions for 

03 are derived in the appendix). When two of the three torques have equal magnitudes 

(Gi = Gi ), the third torque (Gk ) can be larger or smaller than the two equal torques. We 

restrict our attention to the case where the two equal torques are larger than the third torque 

and consequently are on the Q surface. 
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Fig. 13. Maximum torque (Q) versus height (z) for the Long path 
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To discuss the paths on the Q surface, we will define the beginning and ending 

points for the paths. In Fig. 11, we identified the four segments of the Equal path using 

the letters A, B, C, and D. For each point on a bridge path, there will be two sets of joint 

angles. At point A, the set with positive values for 02 will be called AI,  while the set with 

negative values for 0 2  will be called A2. Our list of significant points on the bridge paths is 

given in Table 7.  

Fig. 14 is a network diagram showing the connections between the significant 

points on the bridge paths that are defined in Table 7. Although all of the points are 

displayed in the correct positions, the paths between the points are not the straight lines in 

Fig. 14. We have previously discussed the points A, B, C, and D. The points E and F are 

on the boundary between positive and negative values of 82 (recall that the angle 02 = n is 

equal to the angle 02  = -n). The points G and H are the ends of the two segments of the 

Long path. Furthermore, G and H are on the boundary between positive and negative 

values of 03. The points J, K, L, and M are intermediate points on a bridge paths between 

the four ends of the segments of the Equal path at which the torque attains its maximum 

value (they are the summits on the paths). 

In Fig. 14, there are two paths from A to D: AJC and CMD or ALB and BKD. 

Both paths have the same maximum value for Q (at points J or K). Similarly, there are two 

paths from B to C. The path from A to B via L has a lower value for Q than the path via J, 

C, M, D, and K. The path from G to H passes through A and D. 

For each point on the surface of Q in the Q-z plane, there are two sets of joint 

angles with positive values for 03 ( and two sets of joint angles with negative values for 

03) that will reach the point. The network diagram showing the bridge path connections in 

the Q-02 plane is displayed in Fig. 15, while the network diagram in the Q-83 plane is 

displayed in Fig. 16. In Fig. 15, the points with positive values for 0 2  have the subscript 

one, while the points with negative values for 02 have the subscript two. The points E and 

F are on the boundary between positive and negative values of 02. In Fig. 16, we see that 

all significant values of 03 have two points; the first with the subscript one and the second 

with the subscript two. There is a path between the points El and E2 and between the 

points FI and F2. Thus, the points E and F provide paths between the subscript one points 

and the subscript two points (paths between positive and negative values of 02). 

We have reviewed the connection network for the bridge paths. Next, we will learn 

the topography of the Q surface by examining slices through the surface for various 

positive values of 02 .  We begin with 8 2  = 0 (see Fig. 17). From Table 6, we expect the 

figure to be symmetrical about 0 3  = 90 degrees [since, Q(83) = Q(n: - 83)]. From Fig. 15, 
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Point Z Q 02 0 3  

A1 0.29 0.27 91 44 

A2 0.29 0.27 -9 1 136 

B1 0.17 0.24 142 102 

B2 0.17 0.24 -142 78 

C1 -0.17 0.24 38 78 

c2 -0.17 0.24 -3 8 102 

D2 -0.29 0.27 -8 9 44 

E2 0.28 0.36 -180 22 

F1 -0.28 0.36 0 22 

F2 -0.28 0.36 0 158 

GI 0.36 0.32 84 0 

G2 0.36 0.32 -84 180 

D1 -0.29 0.27 89 136 

El 0.28 0.36 180 158 

. 

HI -0.36 0.32 96 180 

H2 -0.36 0.32 -96 1 0 

J 1  0.08 0.32 70 62 

52 0.08 0.32 -70 118 

Kl -0.08 0.32 110 118 

K2 -0.08 0.32 -1 10 62 

L1 0.28 0.3 1 115 1 62 

L2 0.28 0.3 1 -1 15 118 

M1 -0.28 0.3 1 65 118 

M2 -0.28 0.31 -65 62 

we expect to see point F in this figure. Point F1 is when G2 = G4 at 22 degrees, while 

point F2 is when G2 = G4 at 158 degrees. Since Q is constant between F1 and F2, there is 

no torque penalty in moving from F1 to F2. Point F1 is the trailhead for the path to positive 

values of 02, while F2 is the trailhead for the path to negative values of 62. 

Table 7. The joint angles at the significant points on the bridge paths. 
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The point C1 is a Class 3 point where G2 = G3 = G4 (see Fig. 18). There is only 

one path from F1 to C1. As 02 increases from 38 degrees after C1, the trail forks and there 

are two paths: C1 to A1 and C1 to D1. 

The point GI is end of the Long path (see Fig. 19). In Fig. 19, 02 = 83.6 degrees, 

G I  is a local maxima of Q, and the local minima of Q occur at 03 = 51 degrees on the path 

from C1 to AI and at 03 = 133 degrees on the path from C1 to D1. In Fig. 19, there are six 

points where Gi = GJ. The Q surface is symmetrical about 03 = 0 and GI is a trailhead for 

entering the negative values of 83. In the network diagram (Fig. 14), the path leads from 

G1 to AI.  However, there is not a torque penalty to immediately move from GI  to the path 

from C1 to AI.  

In Fig. 20, 02 = 88.5 degrees and the point D1 is a Class 3 point. We followed the 

path from C1 to D1. As 02  increases, two paths leave D1; one travels to HI and the other 

travels to B1. Thus, a Class 3 point is the junction of three Class 2 paths. All four Class 3 

points in Fig. 14 have this property. On the left side of Fig. 20, we see two Class 2 paths 

approaching AI: the path from C1 to AI and the path from GI to A]. 

In Fig. 2 1, 02 = 91.5 degrees and the point A1 is a Class 3 point. As 02 increases, 

the only path leaving A1 travels to B1. On the right side of Fig. 21, we see two Class 2 

paths leaving Dl: the path from D1 to B1 and the path from D1 to HI. In both Figs. 20 and 

2 1, we see that there is a hill that prevents a low torque path directly from A1 to D1. 
In Fig. 22, 02 = 96.4 degrees and the point HI is end of the Long path. Since the 

Q surface is symmetrical about 03 = 0, H1 is a local maxima and a trailhead for entering the 

negative values of 03. In Fig. 23, 02 = 116 degrees and the point L1 has the maximum 

torque on the path from AI to B1. 

In Fig. 24, 0 2  = 142 degrees and the point B1 is a Class 3 point. As 02 increases, 

the only path leaving B 1 travels to El. 

In Fig. 25,02 = 180 degrees and we have reached point E, the gateway to negative 

values of 02. Like Fig. 17, Fig. 25 is symmetrical about 03 = 90 degrees. Point El is at 

158 degrees, while point E2 is at 22 degrees. Since Q is constant between El and E2, there 

is no torque penalty in moving from El to E2. Point El is the trailhead for the path to 

positive values of 82, while E2 is the trailhead for the path to negative values of 02. 

We have proven that at the min-max point the magnitude of the normalized torques 

will be equal to the min-max value at one or more of the joints. We have assumed that the 

paths with minimal torque will be Class 3 paths that have equal torque in all joints. To 

extend the space of possible paths, we have considered Class 2 paths. To find paths, we 

have ignored the position constraint [f(0) = P*]. We have found all Class 3 and Class 2 

points and then examined their positions. 
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The sequence of figures (Figs. 17 to 25) provides us with an opportunity to 

examine some of our assumptions. The figures display the surface of Q as a function of 8, 

and 03. In general, each local minima on the Q surface could be a Class 1, Class 2, or 

Class 3 point. In Figs. 17 and 25, there is a interval where Q is constant . For the initial 

and final points two torques are equal but for the interior values only one of the torques 

(G4) is equal to Q. Although the derivative of G4 with respect to 03 is zero in the interval, 

the derivative with respect to 62 is not zero except at the point where €13 = 90 degrees. This 

point is not a local minimum, it is a saddle point (minimum with respect to 8 3  and 

maximum with respect to 02). In all of the other figures, the minimum values of Q occur 

when two or three torques are equal. Thus, there are no Class 1 points in the sequence of 

figures. 

Figure14 is a network diagram that connects the significant points on the bridge 

paths with straight lines. We will now display the actual shape of the bridge paths. We 

begin with the equal bridge paths, the paths that connect the points A, B, C, and D. A 

closeup of the equal bridge paths is given in Fig. 26. Figure 27 displays both the equal 

paths (upper and lower) and the bridge paths. While there is a significant increase in torque 

in moving from A to I>, the maximum values are less than the unoptimized values in 

Fig. 12. 

The bridge for the long path begins at G, moves to A, and can take either of the two 

paths from A to D. A closeup of the long bridge path via point C is displayed in Fig. 28. 

Fig. 29 plots both segments of the long path and the bridge. The paths from G to A and 

from H to D are very close to straight lines. 

By exploring paths where the magnitudes of two or three of the torques are equal 

during the motion, we have found three types of paths that are continuous in joint space: 

Equal, Long, and Bridge . Next, we will determine which paths satisfy the necessary 

conditions [Eqs.(l4), (15) and (16)J. We begin by determining the elements of the A 

matrix [see Eq. (22)]. For the CESARm (and the planar manipulator), the functions Gi(0) 

are given by: 

where the constants di = It 1 and the signs are chosen to make the Gi(0) nonnegative. We 

define the matrix Q(9) by: 
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The matrix R will be symmetric: 

Using the matrix R, the A matrix is: 

Our goal is to find the pi that satisfy the first order necessary conditions [Eqs. (14) 
to (16)]. We will introduce the intermediate vector (qi = pi / h) and solve Eq. (15) to find 

the values of Vi. We can choose the normalization factor (A) to insure that Eq. (14) is 

satisfied: 
h = l / C q i  

i 

The remaining condition is that the pi must not be negative [Eq. (16)]. Thus, the pi satisfy 

the necessary conditions if the qi all have the same sign. 

Table 8 provides a s u m a r y  of our evaluation of the necessary conditions for the 

lower branch of the Equal path. The first six points do not satisfy the necessary conditions 

while the last six points do satisfy the conditions. In Fig. 13, the initial section of the 

lower branch of the Equal path is higher than the Long path. All points on the Long path 

satisfy the necessary conditions (see Table 9). 



57 

n 0 4  z 
1 -10 0.74 

2 -5 0.72 

3 0 0.69 

4 5 0.66 

5 10 0.6 1 
6 15 0.58 

7 20 0.53 

8 25 0.49 

9 30 0.43 

10 35 0.39 

11 40 0.34 

12 45 0.29 

For the Bridge paths, 04 is constant and we will evaluate the necessary conditions 

for both a function of all three joint variables and a function of the first two variables. We 

present the results for the Bridge path from A to B in Table 10. The results for the path 

from C to D are the same as the results in Table 10. Considering all three joint variables, 

the Bridge path satisfies the necessary conditions for the first four points and fails the test 

for the last two points. Thus, the Class 3 points B and C (the lowest points in Fig. 14) do 

not satisfy the necessary conditions. Considering the first two joint variables, the Bridge 

path satisfies the necessary conditions for the first three points and the last point while 

failing the test for two intermediate points. 

Q Satisfy? 

0.30 No 

0.29 No 

0.29 No 

0.29 No 

0.29 No 

0.29 No 

0.29 Yes 

0.29 Yes 

0.29 Yes 

0.29 Yes 

0.28 Yes 

0.27 YeS 

n 9 4  z 
1 -55 1.09 

Q Satisfy? 

0.1 1 Yes 

2 -30 0.99 1 0.19 

3 -5 0.82 0.25 

4 20 0.62 0.30 

Yes 

YeS 

Yes 



58 

5 

6 

Table 10. Evaluation of the necessary conditions for the Bridge path 
from A to B. 

Satisfy? 

50 -0.09 0.28 No Yes 

38 -0.17 0.24 No Yes 

For the Bridge path from A to C (see Table l l ) ,  the path satisfies the 3x3  

necessary conditions for the first three points and fails the test for the last three points. The 

path satisfies the 2x2 necessary conditions at all points. The results for the path from B to 

D are the same as the results in Table 1 1. 

The results for the Bridge path from A to G (and D to H) are summarized in 

Table 12. The path satisfies both the 3x3  necessary conditions and the 2x2  necessary 

conditions at all points. The path from B to E is evaluated in Table 13. The path does not 

satisfy the 3x3 necessary conditions at any point except the last point. The path satisfies 

the 2x2 necessary conditions at all points. 
Finally, we shall consider the Class 1 paths. For Class 1, one of the Gi(8) is larger 

than the others and it must satisfy the conditions of classical optimization Eq. (19)]. The 
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n 0 2  2 Q 3 x 3  2x2 

1 91 0.29 0.27 Yes Yes 

2 90 0.30 0.28 Yes Yes 

3 89 0.3 1 0.28 Yes Yes 

4 88 0.3 1 0.29 Yes Yes - 

5 87 0.32 0.29 YeS YeS 

6 86 0.33 0.30 Yes Yes 

7 85 0.34 0.3 1 Yes Yes 

8 84 0.36 , 1 0.32 Yes Yes 

elements of the A matrix are the partial derivatives of the G'(6). If G* is largest, the 

classical optimization conditions require that the first column of the AT matrix will be zero. 

If G3 is largest, the second column of the AT matrix will be zero and if G4 is largest, the 

third column will be zero. 

If the first column of the AT matrix is zero, then S2, will be zero: 

n 

1 

D cannot be zero. (If D = 0, 64 = 5 93 degrees. The allowable range for 64 is from -55 

9 2  z 1 Q 3 x 3  2x2 

142 0.17 0.24 No YeS 

degrees to 45 degrees.) If a23 is zero, then either c2 = 0 or s3 = 0. 

2 1 1 50 0.17 0.25 No Yes 

3 160 I 0.19 0.28 No Yes 

4 170 0.22 

5 180 I 0.28 

0.3 1 No Yes 

0.36 I Yes Yes 
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For the first case, if c2 = 0 and 5122 = 0 then c3 D = 0. Since D cannot be zero, 

c3 =O. If c2 = 0, c3 =0, and R24 = 0, then c4 = 0. However, the points where c4 = 0 are 

outside the allowable range for 04. Thus, there is not a Class 1 solution for this case. 

For the other set of Class 1 solutions, s3 = 0. If Q24 is zero: 

T2 = -c3 T4 (73) 

Given 04, Eq. (73) can be used to determine 02. For example, if 03 = 0 then 0 2  = -04 or 

02 = n: - 64. There are four sets of solutions (two values of 0 2  when 03 = 0 and two 

values of 02 when 03 = n). For all four sets of solutions, G4 = = 0.508 newton meters. 

Thus, the minimum value of Q(0) cannot be less than 0.508. Hence, these four Class 1 

solutions have much higher values for Q(0) than the best Class 2 and Class 3 paths (see 

Figs. 27 and 29). 

If the second column of the AT matrix is zero, then Q23 will be zero and either 

c2 = 0 or s3 = 0. For the first case, if c2 = 0 and 0 3 3  = 0 then c3 = 0. If c2 = 0, c3 = 0, 

and Q34 = 0, then s4 = 0. At these points: G2 = 0.635, G3 = 0.537, and G4 = 0. Thus, 

Q(0) = 0.635 newton meters and G3 is not the largest value. Thus, there is not a Class 1 

solution for this case. 

For the second case, if s3 = 0 and Q33 = 0 then s2 = 0 and Q34 = 8. If s3 = 0 and 

s2 = 0, G2 = D, G3 = 0, and G4 = D - a3. Thus, Q(0) = D and G3 is not the largest value. 

Thus, there is not a Class 1 solution for this case. 

The third column of the AT matrix will be zero if s2 = 0 and s4 = 0. For this 

case: G2 = c3 D, G3 = 0, and G4 = 0.508. If the magnitude of 03 is greater than 18.9 

degrees, G4 will be the largest of the Gi and Q(e) = 0.508 newton meters. Thus, this case 

has a Class 1 solution. 

The second case for which the third column of the AT matrix will be zero is when 

s3 = 0 and Eq. (73) is satisfied. This is the same as the second case when the first column 

of the AT matrix was zero. 

We have examined all of the possible Class 1 solutions. In all cases, the minimum 

value of Q(0) cannot be less than 0.508 newton meters. Hence, all Class 1 solutions have 

much higher values for Q(0) than the best Class 2 and Class 3 paths (see Figs. 27 and 29). 



5. CONCLUSIONS 

We have considered the problem of determining the time trajectories of the joint 

variables of a mobile manipulator with many redundant degrees of freedom that will 

minimize the maximum value of the torque during a large scale motion by the manipulator. 

To create a well defined problem, we have divided the problem into two components: path 

planner and surveyor. The path planner chooses a path between two points in Cartesian 

space that will minimize the maximum value of the torque along the path. The input to the 

path planner is a network of path segments with the maximum value of the torque on each 

segment. The surveyor explores the joint space, calculates the Cartesian position and 

maximum torque, and defines the network of path segments. In this paper, our focus has 

been on the surveyor and not on the path planner. 

There is a large literature on algorithms for the solution of min-max problems. 

However, our min-max problem has an extra constraint on the joint variables. We have 

used the Kuhn-Tucker conditions to derive necessary conditions for the solution of our 

min-max problem. We find that the necessary conditions require that at one or more of the 

joints the magnitude of the normalized torques will be equal to the min-max value. We 

have classified the sets of points that satisfy the necessary conditions based on the number 

of the normalized torques t hat are equal to the min-max value. We have solved the 

min-max problem by identifjhg all of the points in all of the classes. 

Our surveyor is experienced and uses a rule of thumb: follow valleys. Valleys are 

the intersections of two or more of the joint torque surfaces [Gi(0)]. Along the valleys, the 

magnitudes of two or more of the joint torques will be equal. Valleys are good locations 

for low torque paths. The surveyor has explored two examples: a planar manipulator and 

the CESARm. 

The mobile planar manipulator has three revolute joints. We began by exploring the 

Class 3 paths. We defined four cases and 16 subcases. For each of the 16 subcases, we 

have defined the three link angles in terms of a single parameter. By relating the three link 

angles to the parameter, we have resolved the redundancy. 

We have found that 13 of the 16 subcases satisfy the necessary conditions. Of the 

13 subcases, there are five configurations with a one meter workspace, three configurations 

with a three meter workspace, and one configuration with a five meter workspace. Given 

an initial value for z and a final value, the path planner will choose one of the 13 options. 

All but one of the options has a portion of the workspace where it is superior to any of the 

other options. Thus, the Class 3 paths reach all parts of the workspace. 
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We have explored Class 2 and Class 1 paths. We have surveyed Class 2 paths for 

a constant value of z. By examining Class 2 paths, we have been able to identify all 10 of 

the Class 3 subcases that can reach the point z = 0.25. In 8 of the 10 subcases, we have 

found a local minima. All of the local minima for the Class 2 paths occurred at points 

where the torques were equal at all three joints. Thus, we were unable to find any Class 2 

local minima. All of the Class 1 solutions had higher values for the torque than the best 

Class 3 paths. 

The CESARm is a manipulator with 7 degrees of freedom that can reach points in 

3D space. We assumed that the CESARm is mounted on a mobile platform that will 

control the x and y coordinate of the arm's tip We have three joint angles controlling the 

height of the arm (z). We explored the Class 3 paths. There are four ways that three 

torques can be equal. For the planar manipulator, the four cases were distinct. For the 

CESARm, the four cases correspond to changes of variables. We found four segments for 

the Class 3 paths. While the four segments have low values for the maximum torque, they 

only cover part of the workspace and do not join together. 

By exploring Class 2 paths, we have found paths that cover the workspace and 

bridge between the disjoint Class 3 path segments. We have evaluated the necessary 

conditions for both the Class 3 paths and the Class 2 paths. In most cases, the paths 

satisfy the necessary conditions. 

We have examined all of the possible Class 1 solutions. In all cases, the minimum 

value of the torque cannot be less than 0.508 newton meters. Hence, all Class 1 solutions 

have much higher values for the torque than the best Class 2 and Class 3 paths. 
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APPENDIX 

FORMULAS FOR TWO EQUAL TORQUES 

With 94 constant, we vary e 2  from -180 degrees to 180 degrees. Foreach 
value of 0 2 ,  we find all of the values for 03 that have equal magnitudes for two 

of the three torques. For each value of 92, there can be asmany as six values for 

03 (J2 = k J3, J2 = rt 54, and 53 = rt 54.). In this appendix, we will derive formulas for the 
six expressions for 0 3 .  

Assume that J2 = K J3 (where K = k 1.0). Then: 

Gathering the terms involving 03 on the left: 

( ~ 2  ~3 + K ~2 ~ 3 )  D = ~2 H 

Using the addition formula for cosine: 

If Is2 H / DI < 1.0, define 6 by: 

COS(@ = ~2 H / D 

Then the solution of Eq. (A3) is: 

Assume that 52 = K J4. Then: 

~2 ~3 D - ~2 H = - K ~2 ~3 ~4 + K ~2 ~4 

Gathering the terms involving e3 on the left: 

65 
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~3 ( ~ 2  D + K ~2 ~ 4 )  = ~2 H + K Q ~2 ~4 

Eq. (A7j may be written: 

c0s(e3) = ( s 2  H + K c2 c4) / (c2 D + K s2 s4) 

Assume that 53 = K J4. Then: 

- ~2 ~3 D = -  K ~2 ~3 ~4 + K Q ~2 ~4 

Gathering the t e r n  involving 0 3  on the left: 

Define 6 and p by: 

p COS 6 = K ~2 ~4 

p sin 6 = s 2  D 

Eq. (A10) may be written: 

p ( c g c o s  6 - sg sin 6) = K a 4 c 2  c 4  

Using the addition formula for cosine: 

cos(e3 - 6) = K c2 c4 p 

If IQ c2 c4 / pl < 1.0, define E by: 

COS(&) = K ~2 ~4 / p 

Then the solution of Eq. (A14) is: 
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