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Abstract 
The report discusses the orientation tracking control problem for a kine- 

matically redundant, autonomous manipulator moving in a three dimensional 
workspace. The orientation error is derived using the normalized quaternion 
error method of Ickes [7], the Luh, Walker, and Paul error method [ll], and a 
method suggested here utilizing the Rodrigues parameters, all of which are ex- 
pressed in terms of normalized quaternions. The analytical time derivatives of 
the orientation errors are determined. The latter, along with the translational 
velocity error, form a closed loop kinematic velocity model of the manipulator 
using normalized quaternion and translational position feedback. An analysis 
of the singularities associated with expressing the models in a form suitable for 
solving the inverse kinematics problem is given. Two redundancy resolution 
algorithms originally developed using an open loop kinematic velocity model 
of the manipulator are extended to properly take into account the orientation 
tracking control problem. This report furnishes the necessary mathematical 
framework required prior to experimental implementation of the orientation 
tracking control schemes on the seven axis CESARm research manipulator 
[21, 36, 37, 381 or on the seven-axis Robotics Research K1207i dexterous ma- 
nipulator, the latter of which is to be delivered to the Oak Ridge National 
Laboratory in 1993. 





INTRODUCTION AND MOTIVATION 
The basic theory on the parameterization of orientation (attitude) of a rigid body 

in a three-dimensional workspace is well established [l, 2, 3, 4, 51. The generalized 
coordinates parameterizing orientation include the XYZ , ZYZ , and ZXZ convention 
Euler angles 111 (the XYZ convention is termed roll, pitch, and yaw angles by many 
authors), orthogonal rotation matrix (;.e., direction cosine matrix) [l], Eufer rotation 
angle and unit vector [l, 21, Cayley-Klein parameters [l], normalized quaternions 
(;.e., Euler Parameters) [l, 2, 3, 4, 5 ,  61, and Rodrigues parameters [2, 51. The 
application of this theory to the problem of controlling the orientation of a rigid body 
to track a desired, reference trajectory in a three-dimensional workspace requires 
the determination and mathematical modeling of the error between the desired and 
actual orientations of the rigid body. This problem is complicated by the fact that 
the Cartesian angular velocity vector, which is often used to describe the rotational 
motion of a spatial rigid body [6], is not the time derivative of a vector [I] (whereas 
Cartesian translational velocity is the direct time derivative of translational position). 
Indeed, angular velocity is referred to as a nonholonomic vector in [I]. One of the 
earliest researchers to address this problem was Ickes [7]. It was argued in [7] that 
the desired and actual normalized quaternions are an appropriate set of generalized 
coordinates to form the orientation error needed for control purposes. A mathematical 
model of the orientation error was derived in 171 which has served as the basis for 
recent work on this problem in robotics [S, 9, 101. Another approach to formulating 
the error between the desired and actual end effector orientations using orthogonal 
rotation matrices or the Euler rotation angle and unit vector is suggested in [ll]. It 
is termed the Luh, Walker, Paul (LWP) orientation error. The previous work on the 
orientation error control problem in autonomous robotics has mainly been restricted 
to the resolved rate and resolved acceleration control of kinematicafly nonredundant 
manipulators. 

On the other hand, a critical view of the literature on the theory, modeling, and 
control of kinematically redundant autonomous manipulators [E, 13, 14, 15, 16, 17, 
18, 19, 201 reveals that the spatial orientation control problem has largely been ig- 
nored. These literature resolve the redundancy based on open loop kinematic velocity 
and/or acceleration models of a serial link manipulator which could conceivably be 
applied to a spatial arm with N ( >  7) joints. But the proof of principle simula- 
tion examples presented in these literature mostly focus on the inverse kinematics 
of redundant planar manipulators with revolute joints or as in [17], a 3 DOF planar 
manipulator with two prismatic and one revolute joint. But the orientation of a pla- 
nar rigid body, e.g,, the end effector of a planar revolute serial link manipulator, can 
be represented by a single Euler angle measured about an axis perpendicular to the 
plane of motion. Only the component of angular velocity measured about the axis 
perpendicular to the plane is nonzero and it is simply the time derivative of the Euler 
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angle measured about that axis. Thus even if feedback loops are incorporated into 
the model for servoing of the tracking errors, the orientation error can be formed in 
the same way that the translational position error is formed in such a configuration. 
Thus the spatial orientation problem has been avoided. In [21, 221, the LWP orienta- 
tion error was formed by employing orthogonal rotation matrix feedback [ l l ]  for the 
resolution of redundancy of 7 DOF and 9 DOF spatial manipulators, respectively. 
But only three of the nine parameters of a rotation matrix are independent, and the 
representation of the LWP error in terms of the four parameter normalized quater- 
nions will be investigated here. Besides, normalized quaternions are computationally 
efficient [l,  231. The time derivative of the LWP error, which was not considered in 
[ll, 21, 221, will be discussed in this report. 

Some comments are in order about the (6  x N )  Jacobian matrix P(q) that is 
contained in the open loop kinematic velocity model upon which several researchers 
base redundancy resolution schemes [12, 13, 14, 151. The Jacobian and model are 
derived by the following procedure in these literature: Let X denote a (6 x 1) task 
or operational space vector. The upper three elements of X are the components 
of Cartesian translational position of the end effector a t  its centerpoint. The lower 
three elements of X are not specifically identified, but are assumed to be a set of Euler 
angles [a, /3,rlT describing the orientation of the end effector, where superscript T 
denotes a matrix transposition. The task vector X is expressed as a function of the 
joint positions q ( = [q l ,  q2, . . . , q N I T )  ( N  2 7): 

X = H  (1)  
where the (6 x 1) vector H ( q )  is a continuous function of its argument. The Jaco- 
bian J* is defined to be the (6 x N )  matrix ( a H / a q )  in the equation obtained by 
differentiating eq. (1) : 

It should be noticed that the lower three elements of X are merely the time rates 
of change of the Euler angles. Indeed, differentiating the lower three elements of 
X ,  regardless of whatever 3-element parameterization of orientation they may be, 
will never yield components of Cartesian angular velocity of the end effector, since, 
as mentioned earlier, angular velocity is not the time derivative of a vector. Only 
the upper three FOWS of J* as defined in eq. (2) constitute a joint to Cartesian space 
mapping. The lower three rows of eq. (2) are in fact a mapping from one set of angular 
coordinates to another. To derive the lower three rows of J* symbolieally using the 
above procedure, the designer must first obtain analytical expressions for the lower 
three elements of H to  satisfy the equation [o, /3, 71' = [ OSx3,  13x3] H ( q ) .  ( Here I T x r  
denotes an ( r  x T )  identity matrix and Or,, an ( r  x s) matrix of zeros ). To express 
Euler angles as functions of the joint positions involves extracting the former from a 
(3 x3) orthogonal rotation matrix "hN(q) which describes the actual orientation of the 

x = ( a H / a q ) i  = J ' i .  (2) 
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end effector moving coordinate system ( X N ,  YN, Z N  ) with respect to the stationary 
base coordinate frame ( Xo, Yo, 20) [6]. The coordinate frames are shown in Fig. 1. 
However, this procedure involves the use of the two argument arctangent function 
(due to the nonuniqueness of Euler angles) and degeneracies cannot be avoided [6,24]. 
The inherent degeneracy of the extraction algorithm suggested in IS] is demonstrated 
for the XYZ, ZYZ, and ZXZ Euler angle conventions in Appendix A. By simulating 
planar redundant manipulators in their examples? the literature [12,13, 14, 151 which 
define J' by eqs. (1) and (2) have in fact avoided this problem. 

On the other hand, the Jacobian matrix J ( q )  presented in this report transforms 
the joint velocities to obtain the Cartesian translational and angular velocities of 
the end effector in the base coordinates ( J  is defined mathematically in the next 
section). The lower three rows of this Jacobian can be derived symbolically using a 
well established algorithm described in [25, 261 which has no degeneracies. 

There is a second method for determining vector [ c i ,  ,b, $1 as a function of the joint 
velocities. It involves two steps: (i) calculate the Cartesian angular velocity of the end 
effector given the lower three rows of J and 4- (ii) calculate [iy,p,+] as a function 
of the angular velocity and [a,P,r]*. In Appendix A it is shown for the XYZ, ZYZ, 
and ZXZ conventions that step (ii) has singularities and that they are identical to the 
singularities found when extracting [a, p, rIT from "RON. The procedure described in 
steps (i) and (ii) results in the determination of J* as a function of J and [a, p, 71T 
[lo], and in Appendix A it is shown that the singularities of this function are identical 
to those in step (ii). It is evident that modeling the manipulator system using eq. (2) 
and introducing feedback loops to control [;Y,b,$] to track a desired trajectory is 
impractical and another representation of orientation should be considered. 

The spatial orientation error methods presented in this report employ normalized 
quaternion feedback. There are two significant advantages for using the normalized 
quaternions over Euler angles. Firstly, there exists an algorithm 1271 for extracting the 
normalized quaternions from an orthogonal rotation matrix "# which is singularity 
free except for the case when the Euler rotation angle 8,  which is defined in Section 
3, equals f 180". It is the opinion of the author that the singularities associated with 
extracting normalized quaternions from a&* are less restrictive than those arising 
from extracting Euler angles. Secondly, and most important, is the fact that the 
time derivatives of the normalized quaternions can be expressed as €unctions of the 
Cartesian angular velocity and normalized quaternions which are singularity free. It 
should be mentioned that the expressions for the orientation error derived here are 
Cartesian space vectors. 

In this report the existing orientation error methods of 17, 111 and a method pro- 
posed here using the Rodrigues parameters are applied to the problem of deriving 
a closed loop kinematic velocity model of an autonomous redundant manipulator. 
The method of [7] is based on a four parameter representation of orientation whereas 
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the method of [ll] is based on nine parameters (orthogonal rotation matrix) or four 
parameters (Euler rotation angle and unit vector). The proposed method is based 
on a three parameter representation of orientation. An analytical expression for the 
time derivative of each of three orientation errors is derived and combined with the 
translational velocity error, to yield a distinct closed loop kinematic velocity model 
for the entire system. The singularities of the error systems for the rotational kine- 
matics are determined. The models form the basis for theoretical and experimental 
comparisons of the three orientation error control methods. Two redundancy resolu- 
tion algorithms originally developed based on an open loop kinematic velocity model 
of a manipulator are extended to solve for the joint velocities using the models given 
here to properly take into account the spatial orientation tracking control problem. 

The report is organized as follows. First, the algebra of normalized quaternions 
relevant to this report is briefly reviewed. The orientation error, its analytical time 
derivative, and a closed loop system model at the velocity level for each of the three 
methods is presented. The problem of resolving the kinematic redundancy based on 
the models is then studied. Finally, a conclusion and recommendation for future work 
are provided. 





2 PROBLEM STATEMENT AND SYSTEM 
DESCRIPTION 

The problem is to determine a closed loop kinematic velocity model for an au- 
tonomous, serial-link, redundant manipulator which takes into account the spatial 
orientation tracking control problem. Three such models are derived here, each of 
which is derived by a distinct orientation error method. The models serve as a proper 
foundation for the resolution of kinematic redundancy. The manipulator has a sta- 
tionary base and contains N (  2 7 )  single DOF joints. The configuration of the 
system is shown in Fig. 1. 

2.1 SYSTEM VARIABLES AND COORDINATE 
FRAMES 

The joint positions q = [ql ,  q 2 , .  . . , q ~ ] ~  of the manipulator are the generalized coor- 
dinates describing the configuration of the system. The system variables include the 
generalized coordinates and velocities, the Cartesian velocities of the rigid body end 
effector, and the normalized quaternions. As shown in Fig. 1, the coordinate frame 
( X h ,  Y k ,  Zk ) is assigned to the kth link of the manipulator, where k = 0, 1, . . . , N .  

Let p r  denote the (3 x 1) translation vector which emanates from the origin of the 
( X o ,  YO, 20) coordinate frame to the origin of the ( X N ,  YN,  ZN ) coordinate frame. 
p f  is expressed in the base coordinates. 

2.2 KINEMATIC TRANSFORM ATIONS 
The kinematic transformation for a serial-link redundant manipulator which relates 
the Cartesian velocities of the end effector to the generalized velocities is given by: 

[ $ ] = J i  (3) 

N where the (3  x 1) vectors vo ( =  Z;:) and WON are the Cartesian translational and 
angular velocities of the end effector in the base coordinates. In eq. (3), J ( q )  is the 
(6 x N )  manipulator Jacobian matrix, which is assumed to possess full rank six. It 
is convenient to partition J into two matrices: 

J =  [;I (4) 

where &(q) and J,(q) are (3 x N )  matrices which transform q to obtain the transla- 
tional and angular velocities of the end effector, respectively. 

In this report eq. (3) is viewed only as a kinematic transformation for expressing 
the actual values of the end effector Cartesian velocities, denoted by {%ON, as 

7 
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symbolic functions of the joint space variables { q ,  q } .  It is not viewed as a model 
for solving the inverse kinematics, i.e., {’%I.,”, d ~ [ ,  q }  are given and the problem is to 
determine an underspecified solution for Q, where superscript d denotes the desired, 
planned values of the end effector Cartesian velocities. 

A brief review of the fundamentals of quaternion algebra relevant to this report 
is covered in the next section. 



3 REVIEW OF QUATERNION ALGEBRA 
According to Euler's Theorem on Rigid Body Rotations [l], the orientation (atti- 

tude) of a rigid body, after having undergone a sequence of rotations, is equivalent to 
a single rotation of that rigid body about an axis (unit vector) n' by an angle 6. The 
superscript 3 denotes that the quantity is an explicit function of the unit vectors 
directed along the principal axes of the Cartesian coordinate system it is expressed 
in. 5 and 6 are shown in Fig. 2, where for illustrative purposes, the origins of the 
base and end effector coordinate systems coincide. The components of n', denoted 
by a (3 x 1) vector n = [n,, n y ,  nZlT, may be expressed in any relevant Cartesian 
coordinate system, but will be in terms of the ( Xo, y0, 2 0 )  coordinate system in 
this report. Since all quantities and results are presented in a matrix/column vector 
notation throughout the report, vector n is used hereinafter. In the quaternion de- 
scription of the orientation of a rigid body, a (4 x l) vector e is introduced, termed the 
quaternion. It consists of a scalar component e, and a (Cartesian) vector component 
e, ( = [eur, euy, euz 17: 

e =  [::I. 
3.1 DEFINITION OF THE QUATERNION 
The quaternion e can be defined in terms of (n ,  8) [l]: 

cos(6 / 2) 

( 5 )  

e, contains the components of ZV, and eq. (6) reveals that e', is in alignment with ii 
as illustrated in Fig. 2. It is immediately evident that the square of the Euclidean 
norm of e equates to unity: 

(7) 2 ( 1 1  e 1l2l2 = e3 + evr + ef + = 1 . 
Thus, e is termed a normalized quaternion and its components are referred to as Euler 
Parameters [l]. Interestingly, the constraint equation (7) shows that the absolute 
value of any Euler Parameter cannot exceed unity. It is easy to see that: 

eTi = 0 .  

Since the following relation holds: 

01x3 ] e(n,  -0 )  = e(- -n,  -0) 
03x1 - 1 3 x 3  

e(n ,  S) = (9) 

9 
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Fig. 2. Rotation of (Xo,  Yo, 20) coordinate frame about unit vector T? by angle 
6 to obtain ( X N ,  YN, 2,) coordinate frame. 
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normalized quaternions, like the Euler angles, are not a unique representation of 
orientation. The physical interpretation of eq. (9) is that rotating about the axis - n 
by angle - 8 is the same as rotating about n by 4. Furthermore, it is straightforward 
to verify that the following relationships hold: 

which also demonstrate the nonuniqueness of the normalized quaternions. However, 
if the rotation is restricted to be about the +n axis and the Euler rotation angle is 
restricted to  the range (- 180" _< 6 5 lSO"), then e, 2 0 and e is unique. 

A scalar 1 and Cartesian space vector r( = [ r,, ry, r,] T ) may be represented in 
the quaternion convention by [ I ,  O l x 3 I T  and [ 0, rT] T , respectively. 

3.2 GENERAL PROPERTIES OF NORMALIZED 
QUATERNION ALGEBRA 

Let e* denote the quaternion conjugate operation. 'it is quantified by: 

e* = I-::]. 
Observing Fig. 2 and eq. (6) , it is easy to see that e* corresponds to rotating about 
the Euler axis n by an angle -6. 

Let el and e2 denote two distinct quaternions. The quaternion addition rule is 
given by: 

(13) 
el, + e2v 

The quaternion product of el and e2, represented by el o e2, can be expressed in 
a matrix-column vector notation as follows: 

where @(el) and S ( e 2 )  are (4  x 4) orthogonal matrices defined by IS, 281: 
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In eqs. (15) and (16), E(e1,) and E(e2,) are ( 3  x 3) matrices arising from expressing 
the vector cross-product operations ( ; I u  x ZZ,) and (Z'u x ;Iu), respectively, in a 
matrix- column vector no tat ion: 

(17)  1 [ - G u y  eivz 0 

0 - e i u z  eiuy 

E (e i v )  = e iuz  0 - e i u x  

for i = l ,2 .  It can be shown that @ ( e * )  = @ = ( e )  and *(e*) = @'(e). Moreover, 
e o e* = e* o e = [ 1, O I x 3 ]  . The quaternion "conjugate" product of el and e2 is 
represented by el o e;. 

T 

3.3 SUCCESSIVE ROTATIONS AND REPRESENTA- 
TIONS WITH RESPECT TO VARIOUS GOORDI- 
NATE SYSTEMS 

Suppose the Cartesian coordinate frame A is rotated to obtain coordinate frame 
B. Let quaternions :eCA> and :e<'> represent the relative orientation of B with 
respect to A,  expressed in the local coordinates ( X A ,  Y A ,  Z A )  and base coordinates 
(Xo,  Yo, Zo), respectively. Suppose now coordinate frame B is rotated to obtain 
coordinate frame C. The orientation of C with respect to A,  expressed in terms of 
the local coordinates, is determined by postmultiplying by ;eCB> [2, 3,  5 ,  291: 

On the other hand, the orientation of C with respect to A, expressed in terms of 
the base coordinates, is determined b y  premultiplying :e<'> by :eC0> [2, 3, 5, 291: 

Ce<O> - c <o> Be<O> 
A - B e  A 

Through application of the latter successive rotation formula, it is easy to see that 
the following relation holds: 

O1X3 ] g e < O >  ~ G e * < O >  

03x1 - 13x3 

Consider the time derivatives of quaternion :e<'>, the orientation of frame A with 
respect to the base frame, and its conjugate $e*<'>. Applying the theory of coordinate 
transformations and the relationship between the time derivative of a quaternion and 
angular velocity of the Ath coordinate frame with respect to the zeroth frame, we 
have [2, 3, 5 ,  291: 



1 3  

(22) A.*<O> = _ _  Ae*<O> Ao<O> 
0 2 O  

where tWo> is a quaternion with scalar part set to zero and vector part equal to the 
(3 x 1) Cartesian angular velocity vector w t .  

For further information on normalized quaternion algebra, the reader is referred 
to the detailed expositions given in [30, 311. The derivation of the orientation errors 
is discussed in the next section. 

0 e  





4 ORIENTATION ERROR ANALYSES 
In this section the orientation error between the desired and actual orientations 

of the end effector are derived using three methods. The time derivative of the 
orientation error is then determined, through which a closed loop model of the system 
is obtained. All methods will be expressed in terms of the normalized quaternions. Let 
the quaternions fed<'> and rea<o>(q)  signify the desired and actual orientations of 
the end effector coordinate frame { X N ,  YN, Z N )  with respect to the base coordinate 
frame (Xo, Yo, Zo), respectively. 

4.1 APPLICATION OF ICKES ORIENTATION ERROR 
TO REDUNDANT MANIPULATORS 

This method is based on the previous work of Ickes [7] and Lin [9]. Using the compos- 
ite quaternion rotation formula given by eq. (19), the orientation error was defined 
in [7] to be the conjugate product of :edC0> and tea<'>: 

where signifies the quaternion conjugate of rea<'> and where S is a quater- 
nion expressed in the base coordinates which consists of a scalar component 6, and a 
vector component S,, defined by: 

in which eqs. (14) and (15) have been applied and where E(:e$<O>) is defined as 
is E(e; , )  in eq. (17). 6, and 6, were termed the scalar and vector components of 
the quaternion error in 171. Interestingly, S, = 1 and 6, = O s x l  when the desired 
and actual orientations of the end effector are identical. 6, was proposed to be an 
appropriate representation of the orientation error for tracking control purposes in [7] 
and has been demonstrated on robotic hardware in [8, 101. A rigorous derivation of 
the orientation error leading to eq. (23) is provided in Appendix B. Noting eq. (7) 
, it is apparent that the absolute value of any component of 6, cannot exceed unity 
and that (11 6, 112)' 5 1.  

A closed loop error system at the acceleration level for the translational and 
rotational kinematics of the end effector of a six-axis serial link manipulator employing 
normalized quaternion feedback was presented in [9]. The error subsystem for the 
rotational kinematics was obtained by determining the second time derivative of the 
vector component of the Ickes orientation error quaternion. The procedure in [9] will 
be adopted here to derive a closed loop model for a redundant manipulator at  the 
velocity level. The analysis in [9], however, assumed that the Jacobian matrix was 

1s 
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square and directly invertible, which is not the case here. The first time derivative of 
the vector component of the quaternion error is now considered: 

where :i*' is a function of { q ,  q } .  Since all quaternion algebra and error functions 
presented throughout this report are expressed in terms of the ( Xo, Yo, 2 0 )  coor- 
dinate system, the superscript < 0 > is dropped from eq. (26) and hereinafter for 
convenience. 

Substituting eqs. (21) and (22) into the right hand side of eq. (26) gives: 

- ,Ned o :e*' o :nQ) 1 
2 

B, = - [ 0 Z x 1 ,  1 ~ ~ 3 1  ( fad  o ,Ned o 

in which eq. (23) has been used and where the normalized quaternions rQd and 
fn'(q, 4) are defined in the same way as tQ<o> below eq. (22). 

In Appendix C it is shown how the quaternion product expressions on the right 
hand side of eq. (27) can be expressed in a concise matrix-column vector form: 

1 
2 

& = - (FdW,N - GJ,q)  . 

Our objective is to drive &, 3 O3,,1. To accomplish this, a proportional and 
integral (PI) feedback control law is introduced: 

where I(, and K;, are (3 x 3) positive definite gain matrices. 
Eqs. (28) and (29) constitute a closed loop error system for the rotational kinemat- 

ics of a spatial redundant manipulator. These equations, together with the equations 
constituting a closed loop error system for the translational kinematics, derived in 
Appendix D, form a closed loop velocity model for the entire system: 

1 3 x 3  0 3 x 3  
I - [ 0 3 x 3  G 1 J q -  



To express the model in a form amenable to resolving kinematic redundancy, both 
sides of q. (30) are premultiplied by the inverse of the (6 x 6) coefficient matrix of 
the Jacobian: 

X’cnkes = J q  

where Y&,* is a (6  x 1) vector defined by: 

IC, p e  + Ktp J p e  d t  

2 G-’ (KO 6, + Ki0 J 6, dt ) 

d N  
VO 

G-’ F d ~ t  v i e s  = [ ] + [ 
In eq. (32) , Y&, is a function of the feedforward variables ( d N d N d  po , vg , wo N , N d  e ) 
and the feedback variables ( ‘ p f ( q ) ,  f e ” ( q ) ) .  When solving eq. (31) for the inverse 
kinematics, yze8 and J ( q )  are known and 4 is to be determined. This problem will 
be discussed later in the report. 

To arrive at eq. (31) , it has been implicitly assumed that matrix G is nonsin- 
gular. The conditions under which G is invertible are now discussed. The symbolic 
determinant of G is given by: 

]GI = 6, (bS2 + hVz2 + hVyZ + 6,,’) = 6, (33) 
where eq. (7) has been invoked. Thus IGl = 0 when 6, = 0, which corresponds to the 
Euler rotation angle taking on the values 6 = f 180”. In this configuration the desired 
and actual orientations of the end effector are separated by the maximum rotational 
amount. It is concluded that eq. (31) realistically models the kinematic behavior of 
the physical manipulator system when the Euler rotation angle is restricted to the 
range ) B J  < 180”. 

The closed loop system proposed in [SI for the rotational kinematics of a manip- 
ulator with a proportional control law is equivalent to modeling the system by the 
equation d ~ r  - J,q = -K,6, using the notation of this report. We take issue 
with the approach in IS] because 6, is not the time integral of the Cartesian angu- 

nonholonomic vectors. The nonintegrable nature of (’bw,” - Jr 4) is why the time 
derivative of the vector component of the Ickes orientation error is considered in this 
report. The control law in eq. (29) is logical and reasonable. 

lar velocity error expression ( d ~ r  - Jr 4 ) .  Indeed, d N  uo and “ w t ( q ,  g) (= J ,  q )  are 

4.2 APPLICATION OF LWP ORIENTATION ERROR 
TO REDUNDANT MANIPULATORS 

In 1980 Luh, Walker, and Paul (LWP) conceived an orientation error between the 
desired and actual end effector attitudes for application to the resolved acceleration 
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control of kinematically nonredundant manipulators [ 111. Their error function’, de- 
noted by [lWP, is related to the orientation parameters (n ,  0) as follows: 

tlWP = n sin(6). (34) 
This error function has been studied extensively in the literature [8,24, 32,331 and 

is presently the most widely accepted method for modeling the orientation error in 
robotics. What has not been considered, however, is the derivation of the analytical 
time derivative of the LWP orientation error expressed in terms of normalized quater- 
nions, which can be applied to determine a closed loop kinematic velocity model for 
a redundant manipulator and is the goal of this section. 

Eq. (34) can be expressed in an equivalent form: 

tlWp = 2 n sin(8 / 2) cos(6 / 2 ) .  (35) 
Observing the definition of the normalized quaternion e in eq. (6) along with the 

scalar and vector components of the Ickes orientation error quaternion defined by 
eqs. (24) and (25) , it follows that the LWP error can be expressed in a nornialized 
quaternion representation: 

p p  = 2 6,&. (36) 
Eqs. (7) and (36) reveal that the absolute value of any component of [lWP cannot 
exceed unity and that (11 [ l W P  5 1. 

Consider the time derivative of eq. (36): 

j l W P  = 2 ( i U b 8  + 6 U B . a )  - (37) 

A symbolic solution for i l w P  is now sought which is not an explicit function of 
the variables {&, jS}. Examining the structure of the intermediate solution for 8, 
in eq. (27) , it is easy to see that the time derivative of the scalar component of the 
quaternion error is given by: 

[ l ,  O l X 3 ]  B8 = - 0 6 - 6 0 0”””) . 1 
2 

In Appendix C it is shown how the two quaternion product expressions on the 
right hand side of eq. (38) can be expressed in a concise matrix-column vector form: 

Substituting for &,, and is in eq. (37) by their definitions in eqs. (28) and (39) 
obtains: 

‘also discussed in [l, pg. 165, eq. (495)] 
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(40) p J P  ~ 6s (Fdw,N-  GJrq) - 6uSu T d N  ( ~ 0  - J r i j )  

where matrices F(6)  and G(6) are defined by eqs. (C.2) and (C.4) , respectively. 
A PI feedback control law is introduced to drive j lWp --+ 

where Ki and Kio are (3 x 3) positive definite gain matrices. 
Eqs. (40) and (41) constitute a closed loop error system for the rotational kinemat- 

ics of a spatial redundant manipulator. These equations, together with the equations 
constituting a closed loop error system for the translational kinematics, derived in 
Appendix D, form a closed loop velocity model for the entire system: 

To express the model in a form amenable to resolving kinematic redundancy, both 
sides of eq. (42) are premultiplied by the inverse of the (6 x 6) co&cient matrix of 
the Jacobian: 

y i n  = J\ri i W P  

where v2p is a (6 x 1)  vector defined by: 
(43) 

In eq. (44) v&, is a function of the feedforward variables ('pp,", d ~ $ 7  d ~ , N 7  ,Ned) 
and the feedback variables ("#(q>, fe"(q)). When solving eq. (43) for the inverse 
kinematics, Y;;", and J ( q )  are known and q is to be determined. This problem will be 
discussed later in the report. 
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It has been implicitly assumed that matrix (6,G - Sub:) is nonsingular when 
arriving at eq. (43) . The conditions under which this matrix is invertible are now 
presented. Noting eq. (C.4) , this matrix can be expressed as a function of the 
components of 6: 

The determinant of eq. (45) is given by: 

4 4 4 (6, G - Su6Tl = Ss2 {Ss4 - S,, - buy - S,,, 

-2  ( 6 u ~ 2 S u y z  + 6ux2buz2 + 6u,2bu*2)}  . (46) 

Squaring both sides of the normalized quaternion identity in eq. (7) with e = 6 
gives: 

1 = ss4 + sVx4 + buy4 -I- bUz4 + 2hs2  (hUx2 + s~~~ + hUz2)  

+ 2  (6ux26uyz + 6,,z6u*2 + 6uy26,z2) . (47) 

Eliminating the term { - (hUz4 + 6uy4 + hvZ4)} on the right hand side of eq. (46) 
using eq. (47) and simplifying give: 

IS, G - 6, 6Tl = 6,' (2 S,4 - 1 -+ 2hS2 (bUz2 + SYy2 + Suz2>}  . 
Finally, eliminating the term ( 1 5 , ~  2 + buyz -+ hUz2) in eq. (48) using eq. (7) with 

(6,G - b,S,T( = SS2 (2bS2 - 1) . 

(48) 

e = 6 and simplifying give: 

(49) 

Thus I6,G - bU6TI = 0 when 6, = 0 or 6, = &&/2, which correspond to the 
Euler rotation angle taking on the values 8 = I180", f90", respectively. Moreover, 
the square of the Euclidean norm of the LWP error in fact decreases in value from 1 
to 0 when 8 is increased from 90" to 180" ( or when 8 decreases from - 90" to - 180"). 
But intuitively the orientation error should increase as 18 I increases. It is concluded 
that eq. (43) realistically models the kinematic behavior of the physical manipulator 
system when the Euler rotation angle is restricted to the range 181 < 90". Eq. (43) 
is thought to be the proper closed loop kinematic velocity model to use for resolving 
the kinematic redundancy when the orientation error is modeled by eq. (36) . 

The closed loop system model proposed in [SI for the rotational kinematics based 
on the LWP error given in eq. (36) with a proportional control law is equivalent to 
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modeling the system by the equation d ~ f  - J,. 4 = - 2 KA S,, 6, using the notation 
of this report. We take issue with the approach in [SI because (2 6, 6,) is not the 
time integral of the Cartesian angular velocity error expression ("7 - J+{) .  The 
nonholonomic, nonintegrable nature of the angular velocity error is why the time 
derivative of the LWP error is considered in this report. The control law in eq. (41) 
is logical and reasonable. 

t i w p  was also expressed in terms of the unit vectors comprising the columns of the 
desired (de) and actual ( "# (q) )  rotation matrices in [ll]. The second time deriva- 
tive of this alternate form of t i m p  was obtained in [33], which led to the determination 
of a closed loop error subsystem describing the rotational kinematics of a six-axis ma- 
nipulator at the acceleration level. A kinematic model for the entire nonredundant 
system was found by combining the rotational error subsystem with the one governing 
the translational acceleration error. The singularities of the feedback control scheme 
in [33] are identical to those obtained below eq. (49) . The derivation of the closed 
loop kinematic velocity model in eq. (43) builds on the methods of section 4.1 and 
exploits the inherent advantages of normalized quaternion feedback. 

4.3 A NEW ERROR METHOD WITH APPLICATION 
TO REDUNDANT MANIPULATORS 

The minimum number of parameters required to describe the orientation of a rigid 
body is three [2]. The normalized quaternion parameterization of orientation consists 
of four components, whose values are restricted by the constraint equation (7) .  Like- 
wise, the Euler rotation angle and unit vector parameterization is comprised of four 
components. On the other hand, the Rodrigues parameters are a minimal represen- 
tation of orientation [2]. It is proposed to model the error between the desired and 
actual orientations of the end effector of a redundant manipulator by a (3 x 1)  Carte- 
sian space vector trod( = [[yd, tiod, [ Z O d ] T )  termed the Rodrigues orientation error 
function. trod can be defined in terms of the Euler rotation angle and unit vector: 

trod = n tan(Ol2). (50)  

To apply the unified modeling procedure presented in the previous two sections to 
derive a closed loop kinematic velocity model based on the Rodrigues error function, 
the right hand side of eq. (50) is expressed in terms of normalized quaternions by 
invoking eqs. (6), (24), and (25): 

The denominator on the right hand side of eq. (51) goes to zero when the Euler 
rotation angle 8 = f: 180", thus the components of the Rodrigues error function can 
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become infinite, whereas the absolute value of any component of the Ickes (6,) and 
LWP (("''P) error functions cannot exceed unity. trod = 03x1 when the desired and 
actual orientations of the end effector are identical. 

To derive a closed-loop error system for the rotational kinematics of the redundant 
manipulator in terms of the Rodrigues orientation error, the time derivative of eq. 
(51) is now considered: 

Substituting for iV and i8 in eq. (52) by their definitions in eqs. (28) and (39) 
give: 

A PI control law is introduced to drive trod 3 03,..: 

where K,' and K:o are (3 x 3) positive definite gain matrices. 
Eqs. (53) and (54) constitute a closed loop error system for the rotational kinemat- 

ics of a spatial redundant manipulator. These equations, together with the equations 
constituting a closed loop error system for the translational kinematics, derived in 
Appendix D, form a closed loop velocity model for the entire system: 

where, here again, matrices F and G are defined by eqs. (C.2) and (C.4) , respectively. 
To obtain a model amenable to resolving kinematic redundancy, both sides of eq. 

(55 )  are premultipled by the inverse of the (6 x 6) coefficient matrix of the Jacobian: 

y an 
rod = J i  

where Ytz is a (6 x 1) vector defined by: 
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d N d N  d N N d  In eq. (57) , e ) and 
the feedback variables ( a p F ( g ) ,  f e a ( g ) ) .  

It has been implicitly assumed that matrix (6, G + S,6u') is nonsingular when 
arriving at eq. (56) . The conditions under which this matrix is invertible are now 
presented. Noting eq. (C.4), this matrix can be expressed as a function of the 
components of 6: 

is a function of the feedforward variables ( pa , v,, , wo , 

4 Eliminating the expression (6, + hVy4 + bUz4) on the right of eq. (59) using eq. (47) 
and simplifying give: 

Thus 15. G + 6, = 0 when 6, = 0, which corresponds to the Euler rotation an- 
gle taking on the values 6 = f180". As anticipated, the singularities of the matrix 
(S,G + &,6vT) are identical to the singularities of the Rodrigues orientation error 
function as discussed below eq. (51) . The desired and actual orientations of the end 
effector are separated by the maximum rotational amount in these singular configu- 
rations. It is concluded that eq. (56) realistically models the kinematic behavior of 
the physical manipulator system when the Euler rotation angle is restricted to the 
range 101 < 180'. Ep. (56) is thought to be the proper closed loop kinematic velocity 
model to use €or resolving the kinematic redundancy when the orientation error is 



24 

modeled by eq. (51) . The proposed Rodrigues error function given in eq. (51) is 
thought to be more sensitive and responsive to orientation errors than the Ickes or 
LWP error functions. The author is not aware of any previous work on modeling of 
orientation error using Rodrigues parameters and thus the material in this section is 
a new result. 

The problem of resolving the kinematic redundancy based on the closed loop 
velocity models derived in this section is discussed next. 



5 REDUNDANCY RESOLUTION 
In a recent report [34], the input relegation control method was suggested for 

resolving the kinematic redundancy of a manipulator based on the model defined by 
eqs. (3) and (4) ? which does not take into account the translational and rotational 
motion tracking control errors. Indeed, this model is open loop in nature and its 
inputs are the desired, reference trajectories {'vv,", d ~ r )  as defined below eq. (4). 
To overcome this deficiency, the method described in 1341 is extended to  resolve the 
redundancy based on any of the three closed loop kinematic velocity models derived 
here. The basic approach of input relegation control will be discussed without getting 
into the details. Additionally, another open loop inverse kinematics algorithm termed 
the two non-redundant step method is extended to take into account the orientation 
tracking control problem. 

5.1 INPUT RELEGATION CONTROL METHOD 
The closed loop systems described by eqs. (31), (43), and (56) can be expressed in a 
unified manner by a single equation: 

r"' =f J q  (61 1 
where qin(i = icles,lwp,rod) is a (6 x 1) vector defined by one of the equations 
(32), (44)) or (57) as selected by the designer. 

In input relegation control, a new vector variable E = [el, €2,. . . ) E : N - ~ ] ~  is intro- 
duced to resolve the kinematic redundancy. The number of scalar elements contained 
in e is equal to the number of redundant DOF contained in the system, namely ( N - 6 ) .  
It is defined by: 

The ( ( N  - 6) x N )  matrix B(q) in eq, (62) is selected so that the composite 
( N  x N )  matrix (J*,  BT)T is nonsingular. It is convenient to partition the inverse of 
(P ,  BT)T into two matrices: 

[ i1-l = P?r=] 
where U ( q )  is a ( N  x 6 )  matrix and C(q) a ( N  x ( N  - 6)) matrix. Eq. (63) implies 
that J a  = 16x6,  J c  = 0 ( 6 x ( N - 6 ) ) ,  B n  = O((N--6)x6)7 

(J3.J + C B )  = I N ~ N .  
= I ( ( N - 6 ) x ( N - 6 ) )  and 

Eqs. (61) and (62) can be solved for q: 

q = nyin + E €  

25 
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in which eq. (63) has been invoked. In eq. (64), 4 has been expressed as a function 
of the variables {y", E ,  q } .  Substituting the right hand side of eq. (64) into the 
kinematic velocity model (61) reveals that the expression ( J  C E )  identically vanishes 
regardless of the value of 6 ,  since ( J  C) = 0 ( 6 x ( N - 6 ) ) .  Likewise, substituting the right 
hand side of eq. (64) into eq. (62) reveals that the expression ( B  rI y'") identically 
vanishes regardless of the value of yI'", since (Bn) = O ( ( N - - 6 ) x S ) .  Therefore the 
designer can relegate separate tasks to the quantities (y", E } .  

When applying input relegation control to the orientation error modeling and 
control framework presented here, it is assumed that the desired trajectories of the 
variables { po , v, , wo , , e } have been specified by the designer and the actual 
values of { " p t ( q ) ,  : ea (q ) }  are available via feedback loops. There is now sufficient 
information available to calculate vn(z = ickes, Zwp, rod) using one of the equations 
(32), (44), or (57) as selected by the designer. It is also assumed that J ( q )  is known. 
To calculate the generalized velocities using eq. (64) , the values of {11, E, E }  need to 
be determined. In [34], it is' assumed that the designer first selects matrix B such that 
( J T ,  BT)T is nonsingular, which immediately leads to the determination of (11, E) by 
eq. (63) - Several techniques for selecting B are discussed in [34], one of which is 
described later in this section. However, eq. (64) still cannot be solved for 4 since e 
is an unknown quantity. To solve for { E ,  G}, an optimization scheme was suggested 
in [34] to pick E to secure a minimum Euclidean norm solution for the generalized 
velocities. The solutions for these quantities based on eq. (64) are given by: 

d N  d N  d N N d  

An analytical method was presented in [34] to choose B to maximize the determi- 
nant of matrix ( F ,  BT)T with the restriction that B is orthogonal to the rows of J ,  
i.e., J BT = O e X 1 ,  for manipulators with one degree of redundancy. Postmultiplying 
the matrix identity II J + C B = 17x7 by JT immediately leads to a symbolic solution 
for II: 

Furthermore, J B T  = O s x l  implies that I ITC = Oexl (341. Eqs. (65)  and (66) 
immediately simplify to: 

6 = 0,  (68) 

(69) 4 = J T  ( J  J T ) - ~  vn. 
A numerically efficient method for calculating eq. (69) in two steps is discussed next. 
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5.2 TWO NON-REDUNDANT STEP METHOD 
This method is based on the previous work [18] which calculated the Moore-Penrose 
pseudoinverse of the Jacobian matrix in two "non-redundant" steps to yield a mini- 
mum norm solution for 4 based on the open loop model given by eq. (3) . The method 
can be extended to calculate a solution for q based on the closed loop system with 
normalized quaternion feedback given by eq. (61) . In the first step, the following 
equation is solved for W, a (6 x 1) vector: 

J J ~ W  = K . ~ .  (70) 
The generalized velocities are then obtained in the second step: 

q = J T W .  (71) 
The explicit inversion of the (6 x 6) matrix ( J JT  ) in the symbolic solution for 

W = ( J  JT) - '  may be avoided by applying the numerical LU decomposition 
method for solving systems of linear algebraic equations [35]. 

Interestingly, an inverse kinematics scheme based on eq. (61) can be implemented 
in an open loop or closed loop manner to the physical plant, i.e., the manipulator. 
In an open loop implementation, the translational position and normalized quater- 
nion feedback loops are taken from the output of the redundancy resolution scheme, 
as shown in Fig. 3. This approach assumes that the lower level joint or encoder 
space feedback control laws can track the commanded articulated joint or encoder 
trajectories perfectly. In Fig. 3, the superscript a means the variable is calculated 
using the articulated, commanded values of the generalized coordinates available at 
the output of the redundancy resolution scheme. In a closed loop implementation of 
redundancy resolution, the feedback loops are taken from the output of the physical 
plant, as shown in Fig. 4. In this case the algorithm resolves the redundancy based 
on feedback measurements of sensors, e.g., the encoder sensors of the motors of the 
CESARm research manipulator 121, 36, 37, 381. A comparison of the performance of 
the input relegation control using eq. (61) when implemented in an open or closed 
loop manner to the plant is currently being investigated. 
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Fig. 3. Open loop redundancy resolution to the plant. 
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Fig. 4. Closed loop redundancy resolution to the plant. 
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CONCLUSION AND FUTURE WORK 
The error between the desired and actual orientations of the end effector of a spa- 

tial kinematically redundant autonomous manipulator was modeled in a normalized 
quaternion algebra framework by three different methods: (i) the vector component of 
the Jckes orientation error quaternion; (ii) the Luh, Walker, Paul (LWP) method; and 
(iii) a new method based on the Rodrigues parameters. It was shown that the LWP 
and Rodrigues errors can be modeled as explicit functions of the scalar and vector 
components of the Ickes orientation error quaternion. The time derivative of each of 
the orientation errors was derived symbolically and combined with the translational 
velocity error expression to yield a distinct closed loop kinematic velocity model em- 
ploying normalized quaternion and translational position feedback. The singularities 
of the coefficient matrix which premultiplies the (6 x N )  Jacobian matrix J ( q )  in each 
model were determined analytically, because the coefficient matrix had to be inverted 
to express each model in a form suitable for solving the inverse kinematics problem. 
It was found that singularities occurred when the Euler rotation angle (e) took on 
the values f180" when deriving closed loop models by all three methods, with the 
LWP error based method possessing additional singularities at 6 = f90". It was 
concluded that the Euler Rotation Angle must be restricted to the range 10 I < 180" 
for the Ickes and Rodrigues error methods, and to 16 1 < 90" for the LWP error 
method. 

The report argued that the normalized quaternions are superior to Euler angles 
for modeling the orientation error in a kinematically redundant manipulator. This 
is because the time derivatives of the desired and actual normalized quaternions 
{tid, r ia }  and their conjugates {ti*d, can be expressed by singularity free 

spectively, as well as the desired and actual angular velocities {%:, "wr (q ,  i ) }  using 
eqs. (21) and (22) . 

On the other hand, inherent singularities arise when expressing the time deriva- 
tives of the Euler angles as functions of the Euler angles and the Cartesian angular 
velocity. It has been shown that the identical singularities arise when expressing 
Jacobian J* as a function of J and the Euler angles, or when extracting the Euler 
angles from an orthogonal rotation matrix for feedback control purposes. In partic- 
ular, these singularities can happen when the designer uses eq. (2) to resolve the 
kinematic redundancy. Likewise, eq. (3) is ruled out as a basis for inverse kinematics 
of a spatial redundant manipulator where the orientation of the end effector is to be 
controlled to track a reference trajectory because the Cartesian angular velocity error 
expression ("W," - J,.q) is a nonholonomic, nonintegrable quantity. The modeling 
presented here is an explicit function of Jacobian J which can be calculated in a sin- 
gularity free manner. We conclude that the three models presented here employing 
normalized quaternion feedback are more appropriate for inverse kinematics applica- 

functions of the quaternions { r e d ,  f e " ( q ) }  and their conjugates ( r e  *d , N e *a ( q ) } ,  re- 
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tions where the spatial orientation tracking control problem is to be accounted for 
than the models in eqs. (2) and (3) . 

The report demonstrated how the input relegation control and two nonredundant 
step inverse kinematic algorithms could be extended to properly take into account 
the spatial orientation tracking control problem based on the modeling given in this 
report. It should be mentioned that the theory presented here has been experimentally 
verified on the CESARm research manipulator by the author and the results will be 
published in future papers. 

The research presented in this report has uncovered and identified a wealth of 
open research issues that warrant future attention. To conduct an experimental 
comparison of the three orientation error methods discussed in this report would be a 
very worthwhile and beneficial way to ascertain their merits relative to one another. 
This research could include a comparison of performances when the inverse kinematics 
is implemented in open and closed loop manners to the plant, as illustrated in Figs. 3 
and 4. 

It would be of interest to investigate the stability of the redundant manipulator 
system based on the three closed loop kinematic velocity models derived here. The 
results ob the stability analyses would complement those of the singularity analyses 
in determining which of the three orientation tracking control schemes is superior. 

Another suggested future research topic is to extend the approach given here to 
derive a closed loop kinematic acceleration model employing normalized quaternion 
feedback for each of the three orientation error methods. Such a model could be 
combined with the equations of motion of the manipulator to optimize a dynamic 
model based criteria when resolving the redundancy. 
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APPENDIX A 
SINGULARITIES IN COMPUTING EULER 

ANGLES, THEIR TIME DERIVATIVES, AND 
JACOBIAN J*(q)  

In this Appendix we review the singularities associated with a well known al- 
gorithm devised to extract the Euler angles {CY,@, y} from an orthogonal rotation 
matrix ' c ( g )  [SI for the XYZ, ZYZ, and ZXZ conventions. We also review the 
singularities associated with calculating the time derivatives of the Euler angles as 
linear functions of the Cartesian angular velocity of the end effector % f ( q ,  i )  with 
respect to the ( X o ,  Yo ,  2 0 )  coordinate frame [24, 26, IO]. Finally, the singularities 
arising from calculating Jacobian J'(q) as a function of the Jacobian J ( q )  and the 
Euler angles are demonstrated. To express the orientation of the end effector coordi- 
nate frame ( X N ,  YN, ZN) with respect to ( X o ,  y0, Zo), it is convenient to assume 
that the origins of these frames coincide and to let ( X ' ,  Y', 2') and (X", Y",  2") 
represent intermediate coordinate systems. It is useful to define "RON in terms of its 
elements: 

X Y Z  CONVENTION EULER ANGLES 
Rotate about 2 0  by angle CY to obtain (X', Y' ,  2'). Rotate about Y' by angle p to 
obtain ( X " ,  Y", 2"). Finally, rotate about X "  by angle y to obtain (XN, YN, 2,). 
av(a, P ,  7) is given by [I, 61: 

or 
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The above algorithm degenerates when: 

.(P) = 0 ,  p = f 9 0 " .  (A.7) 

It is well known that "WON can be expressed as a function of the Euler angles and 
their time derivatives [l]: 

- 44  4 P )  - 44 s ( P )  - .(P) 
.(a) .(PI - .(a) .(PI 0 ] "WON. [ ! I = - - & [  - c ( 4  - 44 0 

(A.9) 

Using eqs. (2) and (3) , it is straightforward to verify that the Jacobian J* can be 
expressed as a function of the Jacobian J and [a, P, y]: 

It is easy to see that a singularity occurs in the above two equations under the 
conditions given in eq. (A.7) . 

ZYZ CONVENTION EULER ANGLES 
Rotate about 2 0  by a to obtain ( X ' ,  Y' ,  2')- Rotate about Y' by ,f3 to obtain 
( X " ,  Y", 2"). Finally, rotate about 2'' by y to obtain ( X N ,  YN, Z N ) .  "Rf(cy, P7 y) 
is given by [l, 6, 391: 

@ = Atan2 (J-i, r a )  (A.12) 



35 

J* = 

or 

- 
13x 3 03x3 

03x3 S(+(P) -c(+(P) 0 
(A.19) 

- 

(A.13) 

The above algorithm degenerates when: 

s ( P )  = 0 ,  p = 0, f180”. (A.16) 

It is well known that “WON can be expressed as a function of the Euler angles and 
their time derivatives [I]: 

0 -44  c(+(P) 
(A.17) 

1 0  

A solution for [&, 8, +] can be obtained from eq. (A.17) [24, 26, lo]: 

44  4 P )  44 4 P )  - s ( P )  

-.(CY) -.(a) 0 
0 ] a w : .  (A.18) 

J’ can be expressed as a function of the J and [a, P, 71: 

ZXZ CONVENTION EULER ANGLES 
Rotate about 2, by CY to obtain ( X ‘ ,  Y’, 2’). Rotate about X’ by B to obtain 
( X ” ,  Y”, 2”). Finally, rotate about 2” by y to obtain ( X N ,  YN, Z N ) .   ah$"(^, P, 7) 
is given by 111: 
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or 

The Euler angles can be extracted from eq. (A.20) [6]:  

P = Atan=! (Ja, 7'33) 

P = Atan2 (JG, r B )  , 

(A.21) 

(A.22) 

C l  == Atan2 (7'13 / s ( P ) ,  -'T23 / s ( P ) )  7 

y = Atan2 (r3L / .(P), r32 / s (P)>  

(A.23) 

(A.24) 

The above algorithm degenerates under conditions described in eq. (A.16) 
It is well known that "u t  can be expressed as a function of the Euler angles and 

their time derivatives [l, 391: 

"Ut = 
0 4 4  4 4 4 P )  

(A.25) 
1 0  

A solution for [&, p, i.1 can be obtained from eq. (A.25) [24, 26, 101: 

J" = 

It is easy to see that a singularity occurs in the above two equations under the 
conditions given in eq. (A.16) . 

It has been shown that the singularities associated with extracting Euler angles 
from "RON and calculating [ci,  p, 91 as a linear function of 'w$ are identical for each 
of the three conventions. 



APPENDIX 8 
DERIVATION OF ICKES ORIENTATION 

ERROR 
In this Appendix the analytical expression for the error between the desired and 

actual end effector orientations proposed by Ickes is derived based on the successive 
rotation formula for normalized quaternions. Let :e<'> be the quaternion represen- 
tation of the error between the desired :eCo> and actual ;e<O>(q) orientations of the 
end effector, expressed in terms of the ( X o ,  I$, Zo) coordinate system. Based on eq. 
(19), it is straightforward to verify that the following relation holds: 

(B-1) d <0> = d < O >  a <O> 
0e o e  oe * 

The problem is to solve eq. (B.l) for :e<'>, where it is assumed that :e<'> and 
:eK0> are known. Eq. (B.l) can be expressed in a matrix-column vector form: 

(B.2) &<O> = q ( i e < o >  de<O> 

in which eq. (14) has been invoked. Since *(:ec0>) is an orthogonal matrix, we have: 
)a 

Eq. (B.3) can be expressed in terms of the quaternion product notation: 

ae - oe O WO' (B.4) d <O> - d <O> 

in which eq. (14) has been used. Applying eq. (B.4) to a redundant manipulator 
yields eq. (23) . 

It is of interest to derive the orientation error :e<'>, which is the actual end effector 
orientation relative to desired orientation, again expressed in the base coordinates. 
Applying eq. (19), the following relation holds: 

Solving eq. (B.5) yields: 
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Carrying through the multiplications in eqs. (R.4)  and (B.S), it can be shown 
that: 

as expected, where, here again, I,.,,. denotes an (T  x T )  identity matrix and Or,, an 
( r  x s) matrix of zeros. 



APPENDIX C 
QUATERNION PRODUCT SIMPLIFICATIONS 

In this Appendix two quaternion product expressions appearing in the derivations 
of the time derivatives of the orientation error are reduced to a simpler form. 

Part C1 
The first quaternion product expression on the right hand side of eq. (27) can be 
replaced by its equivalent matrix-column vector representation: 

in which eqs. (14) and (16) have been invoked and where Fad = [O, (dur)T]*. In 
eq. (C.1) ) F ( 6 )  is a (3 x 3) matrix defined by: 

(C.2) 

Part c2 
The second quaternion product expression on the right hand side of eq. (27) can be 
replaced by its equivalent matrix-column vector representation: 

J r ( q )  4 : G 1 
in which eqs. (14) and (15) have been invoked. In eq. (C.3) , rOa(q ,  q )  has been 
expressed as a linear function of the generalized velocities by applying eqs. (3) and 
(4) . The (3 x 3) matrix G(S) in eq. (C.3) is defined by: 
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- SV,  

It is easy to see that G = - F + 26a13x3 .  



APPENDIX D 
CLOSED LOOP TRANSLATIONAL ERROR 

SUBSYSTEM 
A closed loop error subsystem governing the translational motion of the end effec- 

tor of a serial-link, kinematically redundant manipulator is derived in this Appendix. 
First consider the position tracking error pc of the end effector as defined by: 

(D.1) 
d N  a N  

P e  = Po - Po 

where d p f  and "#(q) are defined below eq. (4) . Since a velocity model is sought, 
consider the time derivative of eq. (D.1): 

P . 2 )  
d N  

P e  = VQ - J * 9  

in which eqs. (3) and (4) have been applied. 

integral feedback control law is introduced: 
Our objective is to drive Ije + 0 ~ ~ 1 .  To accomplish this, a proportional and 

j e  = - (IC, pe + Icip J p e  d t )  (D-3) 

where K p  and Kip are (3 x 3) positive definite gain matrices. 

tional motion of the end effector. 
Eqs. (D.2) and (D.3) constitute a closed loop error system governing the transla- 
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