
3 4 4 5 6 0380304 3

.

-~~ ~ -_.........

L ______._.._...._............ ~, . . .~,

ORNL/TM- 1233 1
f/,T / i , . . Engineering Physics and Mathematics Division <-
2

Mathematical Sciences Section

MULTI-RING PERFORMANCE OF THE KENDALL SQUARE
MULTIPROCESSOR

Thomas H. Dunigan

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

t hd@ornl.gov

Date Published: March 1994

Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Re--
search, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4 4 5 6 0380304 3

Contents

. 1 Introduction 1
2 Implementation . 2
3 Multi-ring Memory Performance . 4
4 Scalability Experiences . 11

A Comparative Architectures . 20

.

.
5 Summary 16
6 References 18

...
. 111 .

MULTI-RING PERFORMANCE OF THE KENDALL SQUARE
MULTIPROCESSOR

Thomas H. Dunigan

Abstract

Performance of the hierarchical shared-memory system of the Kendall
Square Research multiprocessor is measured and characterized. The per-
formance of prefetch is measured. Latency, bandwidth, and contention
are analyzed on a 4-ring, 128 processor system. Scalability comparisons
are made with other shared-memory and distributed-memory multiproces-
sors.

- v -

1. Introduction

In September of 1991, Kendall Square Research (KSR) installed their first mul-
tiprocessor (serial number one) at Oak Ridge National Laboratory (ORNL). The
32-processor KSR was procured as part of the High Performance Computation
and Communication (HPCC) initiative. During the first year, the KSR system
was evaluated and a number of applications (including Grand Challenge appli-

cations) were ported to the shared-memory KSR [7]. In September of 1992, a

second ring of 32 processors was added, and we began further evaluations of the
performance and scalability of the KSR multiprocessor.

It is generally believed that shared-memory multiprocessors are easier to pro-
gram than distributed-memory multiprocessors, which usually employ a message-
passing programming model. However, bus- based shared-memory multiproces-
sors usually include fewer than 30 processors, whereas distributed-memory mul-
tiprocessors often contain hundreds of processors. Thus it is with great inter-
est that we study the KSR shared-memory multiprocessor, as it supports both
shared-memory and scalability to hundreds of processors. This report summarizes
our initial experiences with multi-ring KSR multiprocessors.

The distinguishing feature of the KSR multiprocessor is its shared-memory
architecture. Each processor has 32 megabytes of memory. Up to 32 processors
are connected to a slotted, pipelined ring, called an ACE:O. Larger configurations
are formed by connecting ACE:O’s to an interconnecting ring (ACE:l) with direc-
tory/routing modules (ARD’s), providing up to 1,088 processors. The memories
of all of the processors are part of a 40-bit virtual address space managed as a
cache, where the ring is used to transport cache lines to satisfy “cache faults.”
Custom CMOS chips manage the cache, ring, and ring-to-ring routing. Section
2 and [18] provide more detail on the actual implementation.

The KSR shared-memory architecture is similar to the bus-based, uniform
memory architecture (UMA) Sequent multiprocessors in that there is one cached
address space. The KSR differs from the Sequent in that the Sequent does not
have a notion of ‘‘local cache,” and in that the KSR architecture is extensible
beyond 30 processors. The BBN shared-memory multiprocessors, a nonuniform
memory architecture (NUMA), share KSR’s extensibility, but under the BBN’s
Uniform operating system there is no caching. Instead, a reference to a “remote”
shared location will always be remote, and replication is under software control.
KSR differs from the mesh-based, distributed shared-memory multiprocessors
DASH [14] and PLUS [l] in that these multiprocessors do not provide strongly
ordered read/write memory operations. DASH and PLUS must use explicit syn-
chronization operations when a specific ordering is required in accessing a shared

- 2 -

location. The KSR memory architecture is both sequentially consistent [12] and
strongly ordered [43, so ordinary read/write memory operations can be used to

implement synchronizations. The KSR’s ring-based memory architecture is quite
similar to MEMNET [2]? except that a MEMNET processor has a local memory
independent of the ring-based shared memory. Also, a shared memory location
on MEMNET has a “home” location, a feature not required on the KSR. Delp
[2] notes that the ring topology supports broadcast and provides an ordering of

memory accesses so a coherency protocol is easy to implement. Both KSR and
MEMNET pipeline the ring, so that more than one memory transaction may
be on the ring at the same time. The Swedish DDM [lo] [ll] is a cache-only
memory architecture (COMA) like the KSR but is based on a hierarchy of buses
and directories.

Additional details of the implementation of the KSR shared-memory architec-
ture are provided in Section 2. Section 3 describes various performance measure-
ments of the memory hierarchy of multi-ring KSR systems. Section 4 discusses
the scalability of algorithms and applications on multi-ring KSR systems. Section
5 summarizes scalability issues.

2. Implementat ion

The KSR ACE:O consists of a 34-slot backplane populated with 32 processor
boards, or cells. The remaining two slots are used for interconnects (ARD’s)
to the next level of the ring hierarchy (ACE:l). Each cell consists of 12 cus-
tom CMOS chips. Four Cell Interconnect Units (CIU) and four Cache Control
Units (CCIJ) manage the shared memory. The remaining chips comprise the four
functional units - the Cell Execution unit (CEU), the 30 Megabytes/second
(MBs) external 1/0 unit (XIU), the integer unit (IPU), and the floating point
unit (FPU). An instruction pair is executed on each cycle, with one member of
the pair coming from either the CEU or XIU and the other member coming from
either the FPU or IPU. Thus an address calculation, load/store, or branch can
be executed concurrently with either an integer or floating point instruction.

Each cell runs at 20 MHz, and the floating point unit supports a pipelined
adder and multiplier for a peak performance rate of 40 Megaflops per cell. Thus
the KSR processor is very similar to other superscalar processors such as the Intel
i860 and the IBM RS/SOOO (see Appendix A). The floating point unit uses 64
64-bit registers, and the integer unit has 32 64-bit registers. The CEU uses an
additional set of 32 40-bit address registers. Each cell holds a 256KB data cache
and a 256KB instruction cache, and a 32 MB daughter board is attached to the

- 3 -

from:

hardware cache
local memorv

back of each processor board. Release 1.0 of the OSF-based operating system
consumes about 14 Megabytes on each cell. KSR calls the local memory on each
processor cache and refers to the 256KB data cache as the subcache.

The memory of every cell is part of a single 40-bit virtual address space

managed as a hierarchy of caches. If a processor requests a location that is not in
the local data subcache then the data is fetched from the on-cell memory (cache).
If the data is not in the on-cell memory, then the data is fetched from the memory
of one of the other cells on the ring(s). In each case the processor stalls until
the data arrives. The latencies and capacity of each level of the cache hierarchy
are listed in Table 2.1 [18]. The hardware subcache is two-way set associative
with random replacement and write-back and uses a 2KB unit of allocation and
a 64-byte unit of transfer. The memory cache is 16-way set associative with a

16KB allocation unit and a 128-byte unit of transfer (subpage) from the ring.
Various options are available for managing a “set-full” in the memory cache [18],
and alternate strategies are still being evaluated.

cycles capacity

2 256KB
18 32MB

Memory Latencies

1

ACE:O 126 1GS
ACE: 1 600 34GB

Table 2.1: Vendor-stated memory latencies and capacities.

An ACE:O consists of two subrings, each 128 bits wide and clocked at 40 MHz
(twice the processor clock speed), implemented in a 34-slot midplane. Thus the
data rate and bisection bandwidth of an ACE:O is 1 GB/second. Ring requests
are interleaved on the two subrings based on the context virtual address. The
ring is managed as a circular pipeline with four stages. The 128-byte packet
(plus header) occupies ten pipeline stages. The time for the leading edge of a

packet to travel the ring is 3.4 ps [22]. Another 3.4 ps is consumed in launching
the request, retrieving the data from the responder’s cache, and delivering the
data to the requesting processor. The expected latency then is about 6.8 ps. If
the next generation processor ran twice as fast, the latency could be expected to
drop to 4.7 ps. The interconnecting ring (ACE:l) in a multi-ring configuration
is another 34-slot midplane operating at 1 GB/second, but the interconnection
speed from an ACE:O to an ACE:1 is only 100MB/second. (A system, however,
can be figured with multiple ACE:l connections (ARD’s) from an ACE:O.)

KSR provides several mechanisms (prefetch, poststore, automatic prefetch)

- 4 -

to avoid or reduce the latency of a cache fault. The programmer or compiler can

use a non-blocking prefetch instruction (up to four may be in progress from each
processor) to reduce the latency. It takes a processor 13 cycles to issue a prefetch,
and another 23 cycles to service the reply. It takes the responding processor
23 cycles to issue the reply. These figures suggest that the maximum request
rate of a processor is roughly 40MB/second, and the maximum service rate of a

processor is roughly 100MB/second. (In the next section we will measure these
data rates.) The poststore instruction broadcasts a subpage to all processors
that have an invalid copy. The poststore can reduce coherency misses and the
attendant latency. Coherency cache misses are further reduced by automatic
prefetch or “read snooping.” If a processor sees a memory reply on the ring for

a cache line that is presently invalid in its own cache, it will update its cache
with the new data. Multiple requests for the same subpage on another ring are
collapsed into a single request by the ARD, thus reducing ring traffic and load on
the processor that owns the subpage. Instructions to lock and unlock 128-byte
subpages are provided for serializing updates to shared information.

3. Multi-ring Memory Performance

A number of low-level tests were developed to evaluate the performance and scal-
ability of the KSR memory system and its locking and synchronizing primitives.
Tests were developed to measure latency and bandwidth of single and multiple
ring configurations. Contention-free tests were used to validate the vendor-stated
memory performance numbers (Table 2.1). Several concurrent memory tests were
used to identify bottlenecks in contending for a single shared-memory location
and to measure the aggregate data rate and scalability of interconnected rings.
The KSR’s performance is compared with other multiprocessors whose configu-
rations are summarized in Appendix A.

Latency and bandwidth

We measured the latency from the cache to the subcache at about 1 ps, in close
agreement with the number of cycles stated by KSR in Table 2.1. (A cycle is 0.05
ps .) If the datum is not found in the local cache, the processor stalls and a request
is issued on the local ring. We measured the latency between two processors on
the same ring to be 6.9 p s , which gives a data rate of 18.6 MB/second with the
128-byte data packet. The rate is measured to the subcache.

If the data item is not on the local ring, the request packet is routed to an
appropriate ACE:O via the interconnecting ring (ACE:l). Thus a request packet

- 5 -

that must travel to another ring, traverses three rings. The measured latency is

24.7 ps with a corresponding data rate of 5.2 MB/second.
If a KSR processor does not find data in its cache, then the resulting latency

or access time will depend on whether the data is found on the local ring or a
remote ring. If p processors are being used in the parallel application, and the
needed data item is equally likely to reside on any of the p - 1 other processors,
then we can calculate the expected access time for a cache-miss on a multi-ring
KSR (Figure 3.1). For a single ring (p < 33), the access time is just 6.9 ps.

If p > 32, then the expected remote access time grows asymptotically toward
24.7 ,us. (If another level of the KSR hierarchy were available (ACE:2), another
two rings would be traversed, and we conjecture that the curve would ramp up
again, asymptotically approaching 35 ps.) Although a function of the application,
this increasing access time could cause the performance of an application to
degrade as processors axe added. Remote access times for other scalable shared-
memory multiprocessors (DASH [14] and DDM [lo]) also grow with the number of
processors. Non-scalable shared memory multiprocessors (Cray Y-MP, Sequent,
Encore) have flat remote access times.

25

A

8 20
Y

f
r cn
0

111
uo 15
s
!!

s.

ii!
g! 10
U

X u

5

I I f I I I I I ! -L
loo 200 300 400 500 600 700 800 9 0 0 1 o O 0

processors

Figure 3.1: Expected average access time for a cache miss.

- 6 -

We developed some simple test codes that demonstrated that both prefetch
and poststore can eliminate the latency in a cache fault. Our initial experiences
with inserting prefetch and/or poststore in real applications showed little im-
provement in performance. Prefetch, however, can also be used to increase the
effective bandwidth between two processors. Up to four prefetches per processor
can be issued, providing a measured data rate of over 36 MB/second from one
processor to another on the same ACE:O [8]. If the two processors are on different
ACE:O’s, then the prefetch bandwidth drops to 19 MB/second.

Ring and processor contention

Several tests were constructed to measure the performance of the memory system
under concurrent use, in an effort to determine if the processor or interconnect
ring was the limiting factor in memory performance.

In [8] we measured the prefetch data rate between independent processor pairs
running concurrently on a single ring (PI 4 P2, P3 -+ P4,. . .). We performed
the same tests on multiple-ring configurations and found that the aggregate data
rate still scales linearly with the number of processor pairs, with the data rate
from one processor to another at 36 MB/second. For 16 pairs (one ACE:O), the
aggregate rate is 573 MB/second. For 64 pairs (four ACE:O’s), the aggregate
rate is 2.2 GB/second (Figure 3.2). The aggregate data rate is not affected by
multiple rings, since no pair crosses a ring boundary in our pairing scheme.

However, if one member of each pair is on a different ring (PI 4 P32, P2 +

P33,. . .), then the single-pair prefetch rate drops to 18 MB/second. For multiple
cross-ring pairs, the aggregate rate increases linearly up to 90 MB/second for 10
processors (5 pairs), but then flattens and declines as the 100 MB/second link
between the ACE:O and ACE:l becomes saturated (Figure 3.3).

Another test was an exchange of data between processor pairs using prefetch
(PI +j Pz, P3 t) P4,. . .). In this test, a processor both provides and requests
data. In the exchange, the provider data rate drops from 36 MB/second to 25
MB/second, but the aggregate rate (provider + requester) climbs to 50 MB/second.
(Note, if the two processors are on separate rings, the aggregate data rate for an
exchange drops to 32 MB/second.) For 16 pairs (one ACE:O) doing exchanges,
the aggregate rate is 811 MB/second. Again, the rate scales linearly even for
multiple rings, since a pair does not cross a ring boundary.

If we measure the data rate of a shift operation between processors using
prefetch (3 PI 4 €’2 -+ P3. - . -+ Pn 4)) then we detect a slight reduction in the
aggregate rate when a ring-crossing is required. For example, for 34 processors
the aggregate exchange data rate is 850 MB/second, but the aggregate shift data

- 7 -

16 32 48 64 80 96 112 128
processors

Figure 3.2: Aggregate memory throughput for concurrent prefetch.

rate is 834 MB/second. The shift data rate between processor 32 and 33 and
between 34 and 1 is only 16 MB/second because of the ring crossing.

Additional tests were constructed to measure the speed that a single pro-
cessor can service memory requests from other processors. From our prefetch
measurements, the maximum data rate between two processors on the same ring
is 36 MB/second. If we have multiple processors requesting distinct data from a
single processor, we measure the maximum service rate for a processor at about
75 MB/second (Figure 3.4). The figure shows the aggregate data rate for vari-
ous numbers of requesting processors with and without prefetch. We performed
various tests with the server processor idle and with it touching local pages. The
activity of the server processor seemed to have little effect on the rate at which
it serviced memory requests from other processors. However, Figure 3.4 shows
that the service processor is slowed by the memory requests of the other proces-
sors. Notice that the prefetch server’s data rate (the rate at which it touches
local pages) is slower than the server without prefetch. Since the data is already
local, the extra prefetch instructions have only a detrimental effect on the server
processor. Thus prefetch may not always benefit an application, and the optimal

- 8 -

h

,m m z. a o t ,
1

1 ..,_ ',.__C-l..
4 8 12 16 20 24 28 32

processors

Figure 3.3: Aggregate memory throughput for concurrent prefetch across two
rings.

use of prefetch is still m open research question [15]. In some cases, poststore
can also degrade overall performance [21].

In summary, with the present speed of the processors and ring, the speed of

the processors seems to be the limiting factor in memory performance. The one-
gigabyte-per-second ring can sustain eight million transactions per second [19],
and none of our concurrency tests were able to saturate the ring.

Memory contention

The previous tests had processors competing for the same ring or the same
"server" processor, but not for the same memory location. A number of tests
were used to see how the KSR scales when multiple processors try to update
one or more shared locations or hot spots. Our worst-case contention test is
p processors continually updating the same shared location. Like other shared
memory multiprocessors (Sequent and BBN), the average time for the KSR to
update a single shared location grows linearly with p [8] even across multiple
rings. The shared location bounces from processor to processor as each processor

- 9 -

//-=
sggregate cifmt ,/A&----..-'"- rats

_*---

5 10 15 20 25 30
processors

Figure 3.4: Aggregate data rate for multiple processors faulting independent
data from a single processor.

updates the value. A more realistic test is having p processors update m shared
locations some fraction of the time, f , the remaining time being used to access
local variables. We developed a simple, probablistic, hot-spots test where p pro-
cessors continuously update the m shared variables. Each processor selects the
m variables in a random order. The results of this test were consistent with the
results of our implementation of Nanda's parameterized shared-memory test [161.
Nanda's test permits us to select the fraction, f , of the workload that will be
shared-variable updates and to randomly select which shared variable to update
for each pass through the workload. A workload is an amount of local comput-
ing randomly interspersed with a given fraction, f , of shared memory updates
to rn = p shared variables. Figure 3.5 shows the average workload time ver-
sus the number of processors for a 1% and 10% shared update fraction using p

shared variables on p processors. Nanda argues that the workload time grows as

1 - (1 - f / r n) P . Our measurements on the Sequent, BBN, and the single-ring
KSR confirm this relationship [8]. However, for the multi-ring configuration illus-
trated in Figure 3.5, the contention curve is a series of curves. The access times

- 10 -

1WL.i 1% shared update traction

16 32 48 64 88 96 112 128
processors

Figure 3.5: Work load time for p processors and p shared variables.

climb rapidly at ring crossings, as processors on the “new’9 ring will most likely
find the shared variable they need to update on another ring and will experience
the longer multi-ring latency. The average workload time increases with p even
though the total amount of computation is increasing linearly with p as well, that
is, the per-processor amount of computation is constant. This suggests that ap-
plications with shared-memory updates need to have a computational component
that increases faster than p for performance to scale.

Locks and barriers

Updates to shared variables are usually controlled by locks. On the KSR a

hardware lock instruction, gsp, is provided to lock a 128-byte block of memory.
The gsp is the basis of the slower, but more socially acceptable, mutez library
routines. In the absence of contention, the average time for lock and unlock is 2.5
ps using gsp. If two processors on the same ring are contending for the lock, then
the average time is 14 ps. If each processor is on a different ring, the lock-unlock
time is 32 ps. Figure 3.6 shows the lock-unlock times when p processors contend
for the same lock.

- 11 -

Figure 3.6: Lock-unlock time.

Nanda [lS] argues that the expected lock-unlock time is proportional to (p -
l) (k + t,), where IC is the time the lock is held and t , is the time to access the
shared location that is the lock. As we noted earlier, the time to update a single
shared location by p processors grows linearly with p , so the lock-unlock time
grows quadratically with respect to the number of processors. For the KSR,
the coefficients of the quadratic change for each adltional ring of processors
contending for the lock. Clearly, an application that contends for a single lock
may not scale well.

KSR provides a barrier subroutine to synchronize processes or threads. A
simple implementation would use a single lock, but as the preceding paragraph
shows, such an implementation would not scale well. KSR provides the program-
mer with an n-ary tree barrier which scales roughly linearly with the number of

processors. Figure 3.7 shows average barrier delay for a four-ring KSR using a
tree width of four. Barrier times for the iPSC/860 and the Delta are provided
for comparison. By contrast, barrier synchronization is provided by hardware on
the CM5 and requires only a few microseconds.

4. Scalability Experiences

A simple parallel implementation of a dense Cholesky matrix factorization in
C exhibits the effect of ring-crossings on performance. Figure 4.1 shows the
megaflop rate for factoring a 1024 x 1024 and 2048 x 2048 matrix on a 4-ring KSR.
This implementation uses a single lock (g s p) to control a queue of columns to be
done, and a set of spin-locks to control when a column is ready for access by other

- 1 2 -

Figure 3.7: Average barrier delay.

processors. Poststore had no noticeable effect on the spin-locks, probably because
the processors were already spinning on the lock by the time it was released by
the owning processor. Performance for the 1024 x 1024 matrix flattens for larger
number of processors because the amount of computation per processor is not
sufficient to hide the overheads of parallelism and memory latency.

By contrast to the simple dense Cholesky, the 1000 x 1000 LINPACK repre-
sents the vendors best effort at parallelizing a code. Figure 4.2 compares KSR’s
performance (coded by Nick Camp of KSR) to the Intel Delta and iPSC/860 [3].
On a single processor, the machines achieve about 31 Mflops. The difference in
performance among the machines is mostly attributed to bandwidth (the Delta
and the iPSC/SSO have roughly the same latency) and to the lower latency of

the KSR. Again note the dip in performance at the ring-crossing. Table 4.1 com-
pares LINPACK performance of the three multiprocessors for the largest matrix
size that gives the optimal performance. With more computation and larger
messages, the Delta performs slightly better than the KSR.

The first parallel application to be ported was a 19,000 line FORTRAN code
that calculates energy densities for high temperature superconducting materials

- 13 -

Delta
iPSC /860

16 32 48 64 80 96 112 128
processors

8K 1.7 12.5K 3.5
9K 1.4 12K 2.6

Figure 4.1: Megaflops for dense C Cbolesky.

[9]. The code already contained explicit Cray parallel micro-tasking directives, so

porting to the KSR merely required changing the names and arguments for thread
creation and joining and for lock management. The parallel version exhibited
near linear speedup and achieved 540 Mflops on 60 processors. The application
is embarrassingly parallel, so it performs well on most parallel processors. The
computational kernel (based on a complex ZAXPY) runs at 9.1 Mflops on a single
KSR processor. (For comparison the kernel runs at 24.4 Mflops on an Intel Delta
processor and at 39.7 Mflops on the new Intel Paragon processor.) We used only
60 of 64 processors on a two-ring KSR because KSR performance usually scales

Massively Parallel LINPACK
128 CPUs

Table 4.1: Massively parallel LINPACK for 64 and 128 processors.

- 14 -

600 1

500

450 1 1

n
0

300

200

150
I

...~ .-.. ___

/----*
/

r.. ,"'
, we

I

8 16 24 32 40 48 56
processors

_- A

-4

4
64

Figure 4.2: Megaflops for 1000 x 1000 double-precision LINPACK.

better if the user avoids the processors with disks and network connections.
Serial and parallel versions of a sparse-matrix Cholesky using SPARSPAK

([17]) were ported to the KSR. The sparse Cholesky code includes implicit par-
allel directives for the Cray and Sequent, and those directives map nicely into
corresponding KSR directives. The latency of the KSR memory prevents the
KSR from achieving the speedups of the Sequent or Cray (Figure 4.3), but the
memory architectures of the Cray and Sequent are not scalable. (For the same
number of processors, the KSR outperforms the Sequent when measuring actual
run-time of the sparse Cholesky.) A global climate modeling code (CCM2) based
on Cray directives was ported and scaled well up to 32 processors on the KSR.

A parallel implementation of a hypercube simulator was ported to the KSR[5].
The simulator uses fork(" to create sub-tasks and System V shared memory and
semaphores to communicate among the sub-tasks. Performance for this sim-
ulator was poor and did not scale well on the KSR compared to the Sequent
implementation. Only a single shared buffer was used for message exchange, so

the longer latency of the KSR (compared to the Sequent) and the contention for a

single lock degraded performance. By contrast, the implementation of Argonne's

- 15 -

.-

1 6 / I /
/

/
/

/

/
linear,,
/

/ /p
/ 7

I I I

4 8 12 16
processors

Figure 4.3: Speedups for sparse Cholesky factorization.

tcgrnsg message-passing library performs well on the KSR. Tcgmsg uses a pool
of shared-memory message buffers for each processor and has separate locks for
each buffer. Two KSR processors on the same ring passing messages using tcgrnsg
have a message-passing latency of 71 ps and a bandwidth of 7.7 MB/second. If
the two processor are not on the same ring, the latency climbs to 162 p s and the
bandwidth drops to 3.4 MBlsecond. (By comparison, the Delta has a latency of

60 ps and rn 8 MB/second bandwidth; see Appendix A.)
Figure 4.4 shows the KSR performance for three of the benchmarks from the

Stanford Parallel Applications for Shared Memory (SPLASH) suite [23]. This
suite has been used to compare simulations of other scalable shared-memory
multiprocessors (DASH and DDM) with the Encore (a bus-based shared-memory
multiprocessor similar to the Sequent). The water code simulates the movement
of 384 water molecules. The mp3d code simulates a wind tunnel with 3,000
particles for 1,000 time steps. The Cholesky is a sparse matrix factorization
using the bcsstklii input matrix. The KSR speedups are somewhat less than the
Encore [23] and appear comparable to the simulated results for the DASH [23]
and the DDM [lo]. The problem sizes are small and need to be increased for

- 16 -

larger number of processors.

,‘

/

linear,

,,I ’ _na----
/- Sparse Cholwky

4 8 12 16
processors

Figure 4.4: Self-relative speedups for various SPLASH benchmarks.

5. Summary

The low level tests described in this report have measured the performance of

the KSR memory system with and without contention for the ring, for a pro-

cessor, and for one or more shared locations, demonstrating that the memory
system performance is limited by the speed of a processor. Applications that do
not contend for shared locations should scale well, but applications that contend
for shared locations will probably see performance drop as processors are added,
particularly at ring crossings. For applications whose computational component
scales faster than p , performance may continue to improve with increasing p . Ap-
plications ported from non-scalable shared-memory multiprocessors will likely ex-
hibit smaller speedups on scalable shared-memory rnultiprocessors like the KSR,
particularly multi-ring applications. We found that applications from smaller
shared-memory multiprocessors often used a single lock. For those applications
to scale to the larger number of processors available on a KSR, the applications

- 1 7 -

needed to be modified to use a hierarchy of locks and often required a re-design
of the use of shared variables. Performance may be further increased by using

prefetch or poststore and by improving data locality.

Acknowledgements

A special thanks to the Advanced Computing Research Facility at Argonne Na-
tional Laboratory for providing access to the BBN TC2000 and Sequent Sym-
metry and to the Theory Center at Cornel1 University for stand-alone time on
their 128 processor KSR. Arun Nanda of Michigan State University graciously
provided source to the workload program used in [16].

- 18 -

6. References

[l] R. Bisiani and M. Ravishankar. PLUS: A distributed shared-memory sys-
tem. In International Symposium on Computer Architecture, pages 115-124,
1990.

[2] G. S. Delp. The architecture and impelmentation of MEMNET: A high-
speed shared-memory computer communications network. Technical report,
University of Delaware, 1988. Ph.D. Dissertation.

[3] J. Dongarra. Performance of various computers using standard linear eyua-
tions software. Technical report , University of Tennessee, January 1991.
CS-89-85.

[4] M. Dubois, C. Scheurich, and F. Griggs. Memory access buffering in mul-
tiprocessors. In 13th International Symposium on Computer Architecture,
pages 434-442, 1986.

[5] T. H. Dunigan. A message-passing multiprocessor simulator. Technical re-
port, Oak Ridge National Laboratory, Oak Ridge, TN, 1986. ORNL/TM-
9966.

[6] T. H. Dunigan. Hypercube clock synchronization. Technical report, Oak
Ridge National Laboratory, 1991. ORNL/TM-11744.

[7] T. H. Dunigan. Performance of the Intel iPSC/860 and Ncube 6400 hyper-
cubes. Parallel Computing, 17:1285 - 1302, 1991.

[8] T. H. Dunigan. Kendall Square multiprocessor: Early experiences and
peformance. Technical report, Oak Ridge National Laboratory, 1992.
ORNL/TM-12065.

[9] G. A. Geist, B. W. Peyton, W. A. Shelton, and G. M. Stocks. Modeling High-
Temperature Superconductors and Metallic Alloys on the Intel iPSC/860.
In David W. Walker, editor, Proceedings of the Fifth Distributed Memory
Computing Conference, pages 504-512, 1990.

[101 E. Hagersten. Toward scalable cache only memory architectures. Technical
report, Swedish Institute of Computer Science, 1992. Ph.D. Dissertation.

[ll] E. Hagersten, A. Landin, and S. Haridi. Ddm - a cache-only memory archi-
tecture. Computer, September :44-54 , 1992.

- 19 -

[12] L. Lamport. Solved problems, unsolved problems, and non-problems in con-
currency. Operating Systems Review, 19:34-44, 1985.

[13] R. P. LaRowe and C. S. Ellis. Experimental comparison of memory manage-
ment policies for numa multiprocessors. Technical report, Duke University,
April 1990. CS-1990-10.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. In
International Symposium on Computer Architecture, pages 148-159, 1990.

[15] T. Mowry and A. Gupta. Tolerating latency through software-controlled
ParalZel and Distributed prefetching in shared-memory multiprocessors.

Computing, 12237 - 106, 1991.

[16] A. K. Nanda, H. Shing, T. Tzen, and L. M. Ni. Resource contention in
shared-memory multiprocessors: A parameterized performance degradation
model. ParaIEel and Distributed Computing, 12:313 - 327, 1991.

[17] E. Ng and B. Peyton. Block sparse cholesky algorithms on advanced unipro-
cessor computers. Technical report , Oak Ridge National Laboratory, Oak
Ridge, TN, 1991. ORNL/TM-11960.

[181 Kendall Square Research. KSR1 Principles of Operations. Kendall Square
Research, Waltham, MA, 1991. KSR 8/1/91 Rev 5.5.

[19] Kendall Square Research. Ii'SR TechnicaZ Summary. Kendall Square Re-
search, Waltham, MA, 1992.

[20] R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S. Tomlinson. The

Computer, 23: 18-30, April monarch parallel processor hardware design.
1990.

[21] E. Rosti, E. Smirni, T. Wagner, A. Apon, and L. Dowdy. The KSR1: Exper-
imentation and modeling of poststore. Technical report, Oak Ridge National
Laboratory, Oak Ridge, TN, 1992. ORNL/TM-9966.

1221 J. Rothnie, KSR, 1992. personal communication,

E231 J. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications
for shared-memory. Technical report, Stanford University, Stanford, CA,
1991. CSL-TR-91-469.

- 20 -

Appendix

A. Comparative Architectures

The KSR is compared with a number of other processors in this report. This ap-
pendix summarizes the architectures and configurations used in the comparisons.
The processor architecture of the IBM RS/6000 and the Tntel i860 share several
common characteristics with the KSR processor: independent integer and float-
ing point units and pipelined independent adder/multipliers in the floating point
units. The Sequent and BBN parallel processors provide contrasting shared-
memory architectures. Finally, the TMC and Intel distributed-memory parallel
processors provide contrast to KSR’s shared-memory model.

BBN TC2000

The BBN TC2000 at Argonne National Laboratory (ANL) is a 45 processor
shared-memory parallel processor. Each processor is a Motorola 88000 running
at 20MHz with 16 MB of memory fronted by a 16KB data cache and a 16KB in-
struction cache. All of the memories are interconnected by a 2-stage 8-way switch.
The system can be expanded up to 512 processors. The Uniform programming
environment (under nX 2.0.6) provides the program with both local and explic-
itly allocated shared memory. The shared memory may be allocated in another
processor’s memory, and thus a non-uniform memory access (NUMA) model is
supported. In the absence of contention, a remote reference typically takes less
than two microseconds, and a single channel of the switch has a bandwidth of

40 MBs [20]. The architecture could be used with other memory management
policies [13]. Compiles on the BBN were done with -0 -Ius. LINPACK 100 x 100
double-precision was 1.0 Mflops using -0LM -autoinline. Dhrystone (v1.0) was
19.4 Mips.

Intel iPSC/860 and DELTA

The Intel iPSC/860 hypercube and DELTA mesh distributed-memory parallel
processors both use the 40 MHz i860 processor. The i860 has an 8KB data cache
and 8 MB of memory (16 MB on the DELTA) with a memory bandwidth of 160
MBs. The processor has independent integer and floating point units, and the
floating point unit has an independent pipelined adder and multipler for a peak
rate of 64 MAops. The iPSC/860 has a maximum configuration of 128 processors.
The processors are interconnected with a hypercube network with a latency of

- 21 -

about 60 microseconds and a bandwidth of 2.8 MBs per channel [”I. The DELTA
is a mesh connected parallel processor located at Caltech with a maximum con-
figuration of 512 processors. The mesh has a latency of about 50 microseconds
and a measured bandwidth of about 17 MBs/channel[6]. The processors run NX
3.3 and compiles were done with - 0 3 -Knoieee on a separate “host” processor.
LINPACK 100 x 100 double-precision was 6.5 Mflops [3]. Dhrystone (v1.0) was

29.4 Mips.

Sequent Symmetry

The 26 processor Sequent Symmetry located at ANL is based on 80386/387 pro-
cessors (16 MHz) with a Weitek 3167 floating point co-processor. Each processor
has a 64KB cache, and 32 MB of memory is shared by all processors on a 54 MBs
bus. The maximum configuration is 30 processors. The processors run Dynix
3.1.2, and compiles were done using -0. LINPACK 100 x 100 double-precision
was 0.37 Mflops [3]. Dhrystone (v1.0) was 3.6 Mips.

TMC CM-5

A Thinlung Machines CM-5 processor nodes consists of a 32 MHz SPARC RISC
processor with four vector units and 16 MB of memory. The nodes are connected
by a 20 MB/second hypertree data network. A separate control network provides
support for broadcast, reduction, and synchronization. Message-passing latency
and bandwidth times were measured using CMMD 2.0.

- - 2 2 - n

-0-
KSR

&--p M

I

37 m/s, 7us (2-ring: 25 MB/s, 241.1s)

iPSC/860

I I I

60us

Figure A.l: Multiprocessor latency and bandwidth.

- 23 -

ORNL/TM- 12331

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. A. S. Bland
3. T. S. Darland
4. J . 3. Dongarra

5-9. T. H. Dunigan
10. G. A. Geist
11. K. L. Kliewer
12. M. R. Leuze
13. C. E. Oliver
14. R. T. Prirnm

15-19.
20-24.
25-29.

30.
31.
32.
33.
34.
35.

36-37.

S. A. Raby
R. F. Sincovec
R. C. Ward
P. H. Worley
Central Research Library
ORNL Patent Office
K-25 Appl Tech Library
Y-12 Technical Library
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

38. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

39. Robert G. 3abb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

40. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

41. Clive Baillie Physia Department Campus Box 390 University of Colorado Boulder,
CO 80309

42. Jesse L. Barlow, Department of Computer Science, 220 Pond Laboratory, Penn-
sylvania State University, University Park, PA 16802-6106

43. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

44. Professor Larry Dowdy, Computer Science Department, Vanderbilt University,
Nashville, T N 37235

45. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

46. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

47. Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

48. James C. Browne, Department of Computer Science, University of Texas, Austin,
T X 78712

49. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

WA 98124-0346

- 24 -

50. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

51. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

52. Tony Chan, Department of Mathematics, University of California, Los hngeles,
405 Hilgard Avenue, Los Angeles, CA 90024

53. Jagdish Chandra, Army Research Ofice, P.O. Box 12211, Research Triangle Park,
NC 27709

54. Siddhartha Chatterjee, RIACS, MAIL STOP T045-1, NASA Ames Research Cen-
ter, Moffett Field, CA 94035-1000

55. Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada N1G 2W1

56. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

57. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY
14853

58. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

59. Andy Conn, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

60. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

61. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

62. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

63. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

64. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, FL 32611-2024

65. John J . Dorning, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

66. Dr. Donald J. Dudziak, Department of Nuclear Engineering, llOB Burlington
Engineering Labs, North Carolina State University, Raleigh, NC 27695-7909

67. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

68. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

69. Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, P.O. Box 24346, M/S 7TJ-20, Seattle, WA 98124-0346

70. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

- 25 -

71. Paul 0. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1, Moffett
Field, CA 94035

72. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

73. Professor Dennis B. Gannon, Computer Science Department, Indiana University,
Bloomington, IN 47401

74. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

75. C. William Gear, WEC Research Institute, 4 Independence Way, Princeton, NJ
08540

76. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

77. J . Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

78. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304

79. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

80. Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

81. John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

82. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL

83. Don E. Heller, Center for Research on Parallel Computation, Rice University,
P.O. Box 1892, Houston, TX 77251

84. Dr. Dan Hitchcock, Office of Scientific Computing ER-7 Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington DC
20585

85. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

86. Dr. Gary Johnson, Office of Scientific Computing ER-7, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington DC
20585

87. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA

88. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

89. Malvyn H. Kalos, Cornel1 Theory Center, Engineering and Theory Center Bldg.,
Cornel1 University, Ithaca, NY 14853-3901

90. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cas Avenue, Bldg. 221, Argonne, IL 60439

6 180 1-2300

02 142- 12 14

- 26 -

91. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, T X 77001

92. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-437 Germantown, Washington, DC 20585

93. Richard Lau, Office of Naval Research, Code 1111MA, 800 Quincy Street, Boston,
Tower 1, Arlington, VA 22217-5000

94. Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

95. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

96. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

97. Professor Peter Lax, Courant Institute for Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012

98. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

99. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 981240346

100. Robert F. Luca, Supercomputer Research Center, 17100 Science Drive, Bowie,

101. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY
14853

102. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

103. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

104. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

105. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

106. Dr. David Nelson, Director of Scientific Computing ER-7, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington DC
20585

107. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

108. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

109. Charles I?. Osgood National Security Agency, Ft. George G . Meade, MD 20755

110. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 296341906

111. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

MD 20715-4300

- 27 -

112. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

113. Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
731 1 , Wake Forest University, Winston-Salem, NC 27109

114. James Pool, Caltech Concurrent Supercomputing Facility, California Institute of
Technology, MS 158-79, Pasadena, CA 91125

115. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

116. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

117. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

118. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

119. Professor Daniel A. Reed, Computer Science Department, University of Illinois,
Urbana, IL 61801

120. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

121. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

122. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

123. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

124. Joel Sdtz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

125. Ahmed H. Sameh, Center for Supercomputer R&D, 469 CSRL 1308 West Main
St., University of Illinois, Urbana, IL 61801

126. Robert Schreiber, RTACS, Mail Stop 230-5, NASA Ames Research Center, Moffett
Field, CA 94035

127. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

128. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

129. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

130. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

131. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, T X 77251

132. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

- 28 -

133. Paul N . Swartztrauber, National Center for Atmospheric Research] P.O. Box 3000,
Boulder, CO 80307

134. Robert G . Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

135. Phuong Vu, Cray Research, Inc., 19607 Franz Rd., Houston, ‘TX 77084

136. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, TX 77251

137. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663 MS-265, Los Alamos, NM 87545

138. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

139. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N

140-141. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

37831-8600

