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ABSTRACT 

A numerical method is presented to solve mode conversion equations resulting from the 
use of radio frequency (rf) waves to heat plasmas. The solutions of the mode conversion 
equations contain exponentially growing modes, and ordinary numerical techniques give 
large errors. To avoid the unphysical growing modes, a set of boundary conditions are 
found, that eliminate the unphysical modes. The mode conversion equations are then 
solved with the boundary con&tions as a standard two-point boundary value problem. A 
tunneling equation (one of the mode conversion equations without power absorption) is 
solved as a specific example of this numerical technique although the technique itself is very 
general and can be easily applied to solve any mode conversion equation. The results from 
our numerical calculation agree very well with those found from asymptotic analysis. 





1 INTRODUCTION 

In radio frequency (rf)  heating of fusion plasmas. the mode conversion from an inci- 
dent fast wave to ion Berstein wave (IBM') plavs an important role. The mode conversion 
process can be described by a fourth- or higher-order ordinary differential equation, which 
is called a mode conversion equation. Mode conversion equations can be solved globally 
by using multiple layer[l,2], finite differencel31. and finite element methods[4], or can be 
solved locally by using Green's function[5], shooting[6,7], mode expansion[8], and invariant 
imbedding methods[9]. In this paper we discuss only the numerical methods to  solve the 
mode conversion equations locally. Mode conversion equations are very difficult to solve 
numerically because of exponentially growing components[lO]. The idea of the Green's 
function method is to find a solution for simplified homogeneous equations and use it to 
construct integral equations.[5,11] The success of this technique depends on the numeri- 
cd solutions of the homogenous equations, which are nontrivial and contain exponentially 
growing components too. The shooting method uses an initial value ordinary differential 
equation (ODE) solver to integrate mode conversion equations many times to find all inde- 
pendent solutions, from which transfer matrices are constructed.[7,10] A key to the success 
of this method is to avoid the effects from the exponentially growing components. This is 
done by calculating the transfer matrices at each step and stopping when the change of the 
parameters is small enough. If one integrates too far, the growing components will dominate 
the solutions and undermine the accuracy of the method. Although meaningful numerical 
results can be found by using thrs method, the method intrinsically is numerically unstable. 
The mode expansion method used in Ref. [8] has some arbitrariness on the effect of the 
exponentially growing modes, which is controlled by an input parameter. The invariant 
imbedding method isolates the exponentially growing mode from the other well-behaved 
solutions to the mode conversion equation and uses an intial value ODE solver to solve the 
well-behaved solutions. This method is numerically stable but difficult to set up, especially 
when there is more than one exponentially growing mode - for example, in a sixth-order 
mode conversion equation. Due to these difficulties, all these methods were used to solve a 
fourth-order mode conversion equation, which has only one exponentially growing mode. 

In this paper, we present a finite difference method to solve the mode conversion equa- 
tion. The method is numerically stable and easy to implement. As can be seen from Sec. 2, 
the method also gives very accurate solutions compared with analytical asymptotic analysis, 
whereas the results found by the other methods were not compared with those from asymp- 
totic analysis and their accuracy is hardly known. The main idea of this technique is to first 
find a set of appropriate boundary conditions which force the exponentially growing modes 
and other unphysical modes to vanish. Then. these boundary conditions and the mode 
conversion equations are solved as a standard two-point boundary value problem. In this 
paper, we will use this method to solve a tunneling equation - one of the mode conversion 
equations without power absorption. However, the method itself is not limited to this case 
and can be used to solve any mode conversion equation. For example, a sixth-order mode 
conversion equation with power absorption and one more exponentially growing mode on 
each side of the mode conversion layer is discussed in Sec. 4. 

The tunnehg  equation solved in this paper is 

y'" + x2zyrr  4- (X2Z + 7)y  = 0, 

1 
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where y = y(x), y" = dZy/dx2, y" = d4y/dz4, and X and y are constant parameters. The 
solution for y < -1 was analyzed by Faulconerll21. The solution for y > -1 wa5 first 
analyzed by Erokhn[l3], and later by Ngan and'Swanson in applying it to the tunneling 
problem at the ion cyclotron harmonic.[l4! The reason we choose this equation as a specific 
example is that its asymptotic solution for 1x1 -+ 03 is available [14,15] and can be compared 
with our numerical results. Although Eq. (1) has four independent solutions, in this paper 
we consider only a fast wave incident from -m or t m ,  or a slow wave incident from t o o .  
These solutions are the only three with physical interest, but the other solution can be 
found in the same fashion. 

The organization of this paper is as follows. In Sec. 2 we present the numerical method 
to solve the tunneling equation (1). In Sec. 3 we give the numerical results and compare 
our results with those from asymptotic analysis. In Sec. 4 we conclude by discussing the 
implications of the numerical method. 
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2 NUMERICAL METHOD 

Before we use the finite &fference method to solve the tunneling equation as a two- 
point boundary value problem, we need to find boundary conditions that eliminate the 
exponentially growing mode and other unphvsical modes. We first convert the fourth-order 
ODE (1) to a set of four first-order ODES: 

dy  - M . y ,  
dx 

where y = (y ,  y’, y“, y”’) and 

The asymptotic solution for large JzJ can be expanded in terms of Wentzel-Kramers- 
Brillouin (WKB) modes. We assume that the WKB mode is 

where Y is a vector with four elements and has weak dependence on c .  Substituting y into 
the ODE (2), we obtain a characteristic equation, 

det(M - i k l )  = 0, (5) 

where I is the 3 x 3 unit matrix. The characteristic equation gives four eigenvalues, 

Each eigenvalue k has its corresponding eigenvector, Y = [I, ik, ( i k ) 2 ,  (q3]. 
To clearly see the physical meaning of each WKB mode, we expand Eq. (6) for large IzI 

although the expansion is not needed in our numerical computation. For 2: -+ -m, we get 

k L 2  = +1 (7) 

12& = ++p. (8)  

k:2 = fl (9) 

= ~ A Z ’ / ~ .  (10) 

and 

For z 4 +m, we get 

and 

The 12 = 1 mode is a fast wave traveling in the + z  direction, and the k = - 1  mode is a 
fast wave traveling in the --t direction. The 12; mode exponentially decavs awav from the 
mode conversion layer, and the E4 mode exponentially grows, which is the reason for the 
instability of other numerical techniques. For a physical solution, the growing mode has 
to be avoided for large -2. The El mode represents a slow wave having positive phase 
velocity but negative energy flow.[15] The kt represents a slow wave having negative phase 
velocity but positive energy flow. 



2.1 Fast wave incident from ---x 

For a fast wave incident from -a k:, we have a reflected fast wave l i ;  and an expo- 
nentially decaying mode k i  for z -+ -m.  For 2: - 3-00, we have a transmitted fast wave 

k t  and a slow wave k a .  
The asymptotic solution for z -+ -cc can be expanded as 

4 

y = c,:yl-, 
1=1 

where Y,: are the eigenvectors correspondmg to eigenvalues k ;  and the exponential factors 
exp(i s’ k,: dz’ )  are absorbed into the unknown expansion coefficients Cl-. 

To eliminate the exponentially growing mode k q ,  we simply set C4- = 0. In order for 
Eq. (11) to have nontrivial C,, C,, and C,, we obtain from Eq. (11) 

y’ i k ;  ik; i k ,  

which is a homogenous equation. The physical meaning of this condition is that the expo- 
nentially growing mode vanishes at the surface where the condition is imposed. If we can 
numerically satisfy the above condition, the exponentially growing mode will be avoided. 

The asymptotic solution for E ---$ 3-00 can be expanded as 
4 

y = CCTY’, 
i = l  

where Y: are the eigenvectors corresponding to eigenvalues k:. To eliminate the unphysical 
modes k z  and k3$ (which represent a fast wave incident from +m and a slow wave with 
energy flowing from +m, respectively), we set C l  = C l  = 0. In order for Eq. (13) to have 
nontrivial C: and C4f, we obtain from Eq. (13) 

(14)  
Y 1  

and 

I y’ ik? ik$  
y” (ik;)’ (ik:)’ = 0. 
y”’ ( i k 9 3  ( q ) 3  

The physical meaning of these two conditions is that there is no fast wave incident from 
+a or no slow wave energy flowing from + 00. 

We solve the set of first-order ODEs (2)  with the boundary conditions given by Eq. (12) 
at 1: = E- ,  and Eqs. (14) and (15) at E = z+. A normalization y = 1 is used at either end. 
This is a well-posed two-point boundary value problem: four first-order ODEs and four 
boundary conditions. Here, E -  and z+ are chosen far enough from the mode conversion 
layer so that the asymptotic WKB expansion is valid. In our actual calculation, the eigen- 
values are calculated from Eq. (6), rather than Eqs. (7)-(IO), and each mode is numerically 
identified. 



2.2 Fast wave incident from +oc 

For a fast wave incident from tx IC’. we have a reflected fast wave k!: and a slow wave 
k a  for E + +M. (Actually, there is no reflected fast wave, but this fact is known only after 
the ODES are solved. This fact will serve a good test for the accuracy of the numerical 
method.) For z -.) -03, we have a transmitted fast wave k; and an exponentially decaying 
mode k ; .  To eliminate the fast wave I C ;  incident from --oo and and the exponentially 
growing mode k; for t -+ -m, we set C; = C, = 0 in Eq. (11) and obtain 

and 

i k ;  

To eliminate the slow wave with energy flowing from t o o ,  we set C$ = 0 in Eq. (13) and 
have 

r y  1 1 1 1  
y’ i k t  ik,f i k a  
y” ( ikl+)2 ( ik; ) ’  ( ik4 f )*  

det i y”’ 
( i k t ) 3  ( ik2f )3  ( ik4+)3  

Equations (16) and (17) at E = E -  , Eq. (18) at E = z+, and a normalization y = 1 at either 
end constitute the boundary conditions for a fast wave incident from +m. 

2.3 Slow wave incident from +oo 

For a slow wave incident from fm k z  , we have a fast wave k: from the mode conversion 
and a reflected slow wave 12: for E -+ +oo. For z -+ --oo we have a fast wave k; from 
the mode conversion and an exponentially decaying mode k;. To eliminate the fast wave 
k; incident from --oo and and the exponentially growing mode k: for z --+ -00, we set 
C, = C i  = 0 in Eq. (11) and obtain 

Y 1  

y” ( i k ; ) 2  (ik;)’  
det [ y’ i k ,  ik, 

and 

I y‘ i k ;  i k ,  

y”’ ( i k ; ) 3  ( i k 3 ) 3  
y” ( i k ; ) 2  ( i k ; ) 2  = 0. 

To eliminate the fast wave incident from +m for z -+ t o o ,  we set (3: = 0 in Eq. (13)  and 
have 
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r Y  1 1 1 1  
y' ik; ik,' ik: I = O .  det I y"' ( i k 9 3  ( i k 3 3  ( i k . 3 3  
y" ( i k T ) 2  ( i k , - ) 2  (iqy 

Equations (19) and (20) at 2 = 2- ,  Eq. (21) at E = z+, and a normalization y = 1 at either 
end constitute the boundary conditions for a slow wave incident from +m. 



3 NUMERICAL SOLUTION 

Since this is a standard two-point value problem, we use a routine in the Numerical 
Algorithm Group (NAG) Library, which solves a linear two-point boundary value problem 
for a system of ODEs using a deferred correction techruque. Figure 1 shows the dispersion 
curves found from Eq. (6) for A = 3 and -y = 1. The mode conversion layer is located around 
x = 0. 

3.1 Fast wave incident from -co 

Figure 2 shows the numerical solution with boundary conditions given by Eq. (12) 
imposed at z = -10, and by Eqs.(l4) and (15) with y = 1 at x = 10. Since our solution 
satisfies Eqs. (12)’ (14) and (15),  it does not contain the exponentially growing mode at 
large - 2 ,  the incident fast wave from +m, or the slow wave with energy flowing from +m. 

To check the accuracy of the numerical solution, we calculate a conserved quantity for 
the tunneling equation (1) [15], 

P(y) = y”‘y”= + p y -  - y ’ y  - ry’y- - C.C. . (22) 

This conserved quantity is related to energy flux in rf heating of plasmas[l5] and will be 
used later to define scattering coefficients. The largest relative error of P for the solution 
within (-10,lO) shown in Fig. 2 is 3 x loe6.  

To compare these results with the results from asymptotic analysis, we use the conserved 
quantity to define the transmission, reflection, and mode conversion coefficients. For a fast 
wave incident from -00 towards +eo, we define the transmission coefficient as 

the reflection coefficient as 

P ( C , Y , )  

Rp = i P ( C ; Y ; ) i  ’ 
and the mode conversion coefficient as 

(24) 

where C; and C: are defined in Eqs. (11) and (13) ,  respectively, and can be found after the 
ODEs are solved. Using the asymptotic solutions in Ref. [15], we find that our definitions of 
T,, R,, and C, are related to T, R and C in Ref. [15] by T, = T2, R, = R2, and C, = pC2, 
where p = (1 - and 7 = x ( 1  t -y)/2X2 is called the tunneling factor. Our defini- 
tions have the advantage of being independent of the specific WKB mode normalization 
and are easy to implement in the numerical computation for solutions in a finite domain. 
Equation (22) implies[l5] 

T p + R p + C p = l .  (26) 
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For the solution shown in Fig. 2 ,  we have Tp = 49.74'%, R, = 25.22%, and C, = 25.04%. 
As another check of the numerical accuracy, the sum of T,, R,, and C, differs from unity by 
2 x From the asymptotic analysis in Ref. [15], Tp = e - 2 v  = 49.75%, R, = ( 1  -e -2v)2  = 
25.2570, and C, = e-*q(l - e - 2 v )  = 25.00%. We can see that our numerical results agree 
with those from the asymptotic analysis very well. 

3.2 Fast wave incident from 400 

For a fast wave incident from +a, we solve the ODEs given by Eq. (2)  with boundary 
conditions given by Eqs. (16) and (17)  at z = -10, and by Eq. (18) and y = 1 at z = 10. The 
solution is shown in Fig. 3. The largest relative error of the conserved quantity P defined 
in Eq. (22) is 8 x Now the transmission, the reflection, and the mode conversion 
coefficients are defined as 

P(CFY,)  = 
Tp = 1 P(c:Y:)l  

R - 

The numerical results of these coefficients for the solution shown in Fig. 3 are Tp = 49.74%, 
Rp = 1.2 x and Cp = 50.26%. The sum of Tp, R,, and C, differs from unity by 
4 x From the asymptotic analysis in Ref. [15], Tp = e-2q = 49.75%, R, = 0, and 
C, = 1 - e-2q = 50.25%. Note that the boundary condition given by Eq. (18) allows 
the presence of the reflected fast wave, but, as expected from asymptotic analysis[l5], the 
solution of the ODEs does not contain the reflected fast wave. This provides another 
demonstration of the accuracy of the numerical method. 

3.3 Slow wave incident from +oo 

For a slow wave incident from $00, we solve the ODEs given by Eq. (2 )  with Eqs. (19) 
and (20) for boundary conditions at z = -10. Equation (21) and y = 1 are used for 
boundary conditions at z = -10. The solution is shown in Fig. 4.  The largest relative error 
of the conserved quantity P defined in Eq. (22) is 2.3 x The coefficients for the mode 
conversion to a fast wave traveling towards -00, the slow wave reflection, and the mode 
conversion to a fast wave traveling towards +00 are defined as 



The numerical results of these coefficients for the solution shown in Fig. 4 are C l  = 25.04'?&, 
R, = 24.7090, and C; = 50.26%. The sum of C; , R,, and CP+ differs from unity by 6 x 
The solution from the asymptotic analysis in Ref. I151 is C; = e 2q(1 - e - 2 q )  = 25.00%, 
R, = e-4'7 = 24.75%, and Cp" = 1 - e-2n = 50.25%. 

- 
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4 CONCLUSION 

In this paper we demonstrate that a finite difference method can be used to  solve a 
mode conversion equation without the difficulty of exponentially growing modes associated 
with other techmques. This numerical method is quite general and can be applied to solve 
any mode conversion equation provided appropriate boundary conditions can be found to 
eliminate unphysical components of the solutions. The ODES can then be easily solved by 
using a standard two-point boundary value solver. This technique has also been successfully 
applied to solve a sixth-order mode conversion equation with power absorption. The sixth- 
order equation has one more exponentially growing mode on each side of the mode conversion 
layer compared with the fourth-order tunneling equation (1) .  These results will be reported 
in a future publication. 
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solid and dashed lines represent the real and imaginary parts, respectively, of b2 .  

The dispersion curves for the tunneling equation (1) with X = 3 and y = 1. The 
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Figure 2: The numerical solution for the tunneling equation (1) with X = 3 and 7 = 1, 
and a fast wave incident from -m: (a) y vs z, (b) y' vs z, (c) y" vs z, and (d) y"' vs 2. 

The solid lines are real parts, and the dotted lines are imaginary parts. 
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Figure 3: The numerical solution for the tunneling equation (1)  with X = 3 and y = 1, 
and a fast wave incident from foo: (a) y vs z, (b) y’ vs I, (c )  y” vs 2 ,  and (d) y”’ vs z. 
The solid lines are real parts and the dotted lines are imaginary parts. 
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Figure 4: The numerical solution for the tunneling equation (1) with X = 3 and y = 1, 
and a slow wave incident from +m: (a) y vs t, (b) y’ vs E ,  (c) y” vs E ,  and (d) y”’ vs E .  

The solid lines are real parts and the dotted lines are imaginary parts. 
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