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PHASE AND GROUP FOR LAMB WAVES 
IN DOP-26 IRIDIUM AuxlY !ErEEP 

W. A. Simpson, Jr., and D. J. McGuire 

The relatively coarse grain structure of iridium weidments limits the ultrasonic 
inspection of these structures to frequencies in the low megahertz range. As the 
material thickness is nominally 0.635 mm for clad vent set capuks, the low 
frequencies involved necesIiarify entail the generation o€ Lamb waves in the 
specimen. These waves are, of course, dispersive, and detailed knowledge of both 
the phase and group velocities is required in order to determine accurately the 
location of flaws detected using Lamb waves. The purpose of this study is to 
elucidate the behavior of Iamb waves propagating in the capsllfe alloy and to 
quantify the velocities so that accurate flaw location b; ensured, We descn'be a 
numerical technique for computing the phase velocities of Lamb waves (or of any 
other type of guided wave) and derive the group velocities from this information. 
A frequencydomain method is described for measuring group velocity when multiple 
Lamb modes are present and mutually interfering in the time domain, and 
experimental confirmation of the group velocity is presented for the capsule 
material. 

1. INTRODUCIION 

DOP-26 iridium-base alloy containing nominally 0 3  wt % tungsten, 60 wppm thorium, and 

50 wppm aluminum was developed at Oak Ridge National Laboratory (ORNL) for cladding 

plutonium oxide pellets in radioisotope thermoelectric generators. Although it has performed well 

in the intended application, the severe elastic wave scattering Erom the relatively large grain size 

inherent in weldments of this alloy apparently limits the maximum frequency for ultrasonic 

inspection of such weldments to a few megahertz. Unfortunately, if the specimen is also thin @e., 

comparable to a few wavelengths or less), then the resulting waves will interact with both 

boundary surfaces simultaneously, and the intinite-medium propagation assumption of 

Research sponsored by the Office of Space and Defense Power Systems, Radioisotope 
Power Systems Division, US. Department of Energy, Office of Nuclear Energy, under contract 
DE-ACX15-840R22400 with Martin Marietta Energy Systems, Inc. 
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conventional ultrasonic evaluation is no longer valid. For example, the total temporal extent of 

even a highly damped ultrasonic pulse will be about three cycles of the center frequency, or about 

0.6 p at 5 MHz In iridium alloy (longitudinal wave velocity 5.035 km/s), this produces a wave 

train more than 3 mm long. For the 0.635-mm-thick (less than one wavelength at 5 MHz) 
DOP-26 iridium alloy clad vent set capsules, this means that the ultrasonic energy will interact 

with both bounding surfaces of the specimen simultaneously. Under these conditions, 

nondispersive bulk-wave propagation is replaced by a fundamentally different form of elastic 

guided wave propagation, Le., by Lamb wave propagation. 

Since Lamb waves are dispersive (both phase and group velocities are functions of 

frequency), it is imperative that the ultrasonic investigator have a clear understanding of this 

aspect of their behavior. In particular, if measurements are to be performed in the time domain, 

it is the behavior of the group velocity that is of interest, since this is the quantity actually 

measured. As in the case of electromagnetic wave propagation, the group velocity of Lamb waves 

may either e x d  the phase velocity (normal dispersion) or be less than the phase velocity 

(anomalous dispersion). In addition, the OCCurrenCe of negative group velocities has recently been 

theoretically predicted and experimentally confirmed for Lamb waves in certain materials.' This 
phenomenon, which leads to the decidedly nonintuitive condition in which energy propagates 

counter to the phase velocity @e., the wave propagates backwards), has apparently not been 

observed in the electromagnetic case. The strange nature of elastodynamic wave propagation in 

thin structures underscores the need to have a strong theoretical understanding of elastic guided 

wave propagation. 

The behavior of elastic wave propagation in plates whose thickness approximates a 

wavelength was first elucidated by Lamb,2 who showed that the energy is distributed among a 

series of modes which are analogous to the transverse electric ('E) and transveme magnetic (TM) 

modes of electromagnetic waves in waveguides. A recent, excellent treatment of Lamb wave 

propagation has been given by Achenbach: who derives the familiar transcendental equation 

connecting phase velocity and wave vector. 

Our approach in developing a solution for Lamb waves was somewhat different. Several 

years ago, we became interested in the general problem of the propagation of guided elastic 

waves of all types. This interest was engendered by the observation that the velocity of guided 

elastic waves is very sensitive to the boundary conditions at a solid-solid interface, and, hence, 

such waves might be an excellent tool for assessing nondestructively the strength of solid-solid 



3 

I 

joints. In particular, we were interested in guided waves in the center layer of a three-layer solid, 

a problem that had apparently not been solved previously. After obtaining a g a d  solution for 

the three-layer case,' we reaiized that by restricting the secular determinant to the order 

appropriate to other waves in layered structures, the analytical and numerical techniques that we 

had developed to solve the three-layer problem could be used to compute results for all of the 

other common types of guided waves, such as Rayleigh, Lamb, Stoneley, and Love waves, as well 

as for "leaky" waves of each of these types. Leaky waves are guided waves which leak" energy 

into the surrounding layers and correspond to solutions of the secular determinant for which the 

wave vector is compda These techniques have been used in the present case to investigate the 

properties of Lamb waves propagating in iridium alloy sheet. 

Strictly speaking, the waves excited in the inspection of iridium alloy capsules are leaky 

Lamb waves, and the properties of such waves can be quite different from those of the true 

(nonleaky) Lamb wave.' However, when the acoustic impedance of the material in which the 

waves propagate diff'ers widely from that of the surrounding medium, the dif€erence between 

guided and leaky waves is negligiile. For example, the phase velocity of a leaky Rayleigh wave 

on iron differs from the true Rayleigh wave by only about 0.05%, assuming that water is the 

medium into which the wave leaks. In the case of iridium am, the acoustic impedance disparity 
is even greater, and, hence, the dEerence in the leaky and nonlealry Lamb wave velocities will 

be still less. 

Our work in guided elastic waves,' although encompassing both leaky and true Lamb waves, 

did not explicitly present the secular determinant for these cases. Accordingly, we shall present 

the theoretical derivation of the equations of propagation for Lamb waves before discussing the 

numerical solution of the resulting secular determinant. 

2 THEORY 

Figure 1 shows the geometry for the Lamb wave problem The wave is assumed to have 

no y dependence and to propagate in the x direction in a layer of thickness 2h. The layer 
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material is assumed to be linear and isotropic with elastic constants p and I. The equation of 

motion which must be satisfied in the plate is? 

pv23 + ( A  + p)v(v.S) = pa2Qat2, (1) 

where 3 is the particle displacement, and p is the material density. Now 3 can be defined in 

terms of the usual potentials: 

s’ = v(#l f v x ip . (2) 

The displacement contains irrotational and solenoidal potentials that give rise to compressional 

and shear waves, respectively. Lamb waves, like all finite-layer guided waves, are thus seen to be 

very specific coupled sets of the usual bulk waves. 

Substituting Eq. (2) into Eq. (l), we see that 4 and 3 satisfy: 

vz4 = (yea a24/at2, v2g = (ilea a2g/at2 I (3) 

where C, is the longitudinal wave velocity and C, the shear wave velocity the plate. We seek 

solutions whose x dependence is of the form exp(ikx) and which are independent of y. The latter 

condition requires that 3 = (0, I # ~  0); we therefore let qY = 9. We also assume that the solutions 

are time harmonic of the form exp(-id), where o is the angular frequency. Thus: 

V2+ = -02+/C; = -k;4 , v*l# = -k21Jl , (4) 

or (V2 + k,34 = 0 and (V2 + k2)q = 0. Now: 

v2 = a2/Ebr2 + a2/&2 = -k2 + a2/&2 . 

Thus, the potentials satisfy: 

d24/dZ2 = a2+ , d2$r/dz2 = P2S , 
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where a2 = k2 - b2 and p2 = k2 - IC,*. The solutions to these equations are of the form: 

@ = Acxp(*az)exp[i(br - 091 , 9 = Berp(tBz)exp[i(kx - at)] , 

where A and 3 are arbitrary coefficients. 

The displacement 3 from Eq. (2) is given by  

s, = - alpla, sz = am + wa~ * (6) 

The stresses are calculated from the stress-strain relationship in an isotropic solid 

q j  = Ab#, 4. 2 w ( j  9 

is the strain tensor, and ea, the trace of the strain tensor, is the dilatation. The term ai is the 

Kronecker delta function. Substituting for Sk above gives: 

Now that we have the displacements and stresses in terms of &he displacement potentials, 

the solution for waves propagating in the plate can be written down straightforwardly. Since we 

have a single medium of finite thickness, the displacement potentials are: 
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where A,, B,, & and % are arbitrary amplitudes to be determined. The choice of circular sines 

and cosines for the displacement potentials was made to elucidate the symmetric and 

antisymmetric properties of Lamb waves, but this choice of potentials requires that the terms 

(k? + a'> in Eqs. (8) and (9) be replaced by (kz - p2). 
The boundary conditions that must be satisfied at z = *h are the vanishing of the normal 

and tangential stresses (traction-free surface). Calculating these values from Eqs. (8) and (9), we 

find that: 

(k2 - pl)Alcosah + (k2 - f3z)B,sinah - W $ A + @ h  + 2 k $ B 2 ~ $ h  = 0 
-2ikd,ainah + 2ikaB,cosah - (k2 - B x c o s B h  - (k2 - p2)B@nph = 0 
(k' - B%,cosah - (k2 - p2)B,sigah + 2ikpAfsnph + 2ikpB2wsah = 0 
2ikaA,sinah + 2ikaB,cosah - (k2 - PNcosBh + (A2 - P2)BpinfM = 0 .  

(11) 

If there is to be a nontrivial solution for thii set of equations, then: 

(k2 - B h a h  (k2 - $%ah -2ik$sinph 2ikpcosph 

(12) -2ikasina h 2ikacosah -(k2 - p-ph -(k' - p3sinBli 
= o s  

(k' - f3l)casah -(&' - p2)smah 2ikpsinSh 2ikpcosSh 

masinah 2ikacosah -(A' - p2)cusph (k2 - P%in$h 

Values of k which satisfy this determinantal equation yield the phase velocities as a function of 

frequency (dispersion relation) for each of the various Lamb modes. 

After the roots of the secular determinant are found, one would also like to know the 

amplitudes of the various waves (i.e., the coefficients A, and B, for each potential). The 

coefficients are determined by solving the homogeneous matrix equation: 

E = O ,  

where 6 is the determinant matrix, and ? is the coefficient matrix. Since the equation is 

homogeneous, one can only solve for ratios of coefficients. Thus, we set one of the coefficients 

to unity and solve for the others in terms of the prescribed amplitude. When this is done, two 

classes of waves, designated symmetric and antisymmetric because of the distortions induced in 

the plate as the wave propagates (see Fig. 2), are found. In our case, we first set the coefkient 

of the cosine term, AB in the shear potential to unity and solve for the other coefficients. For 

an antisymmetric wave, we shall then find that B, is negligible (the displacement is the derivative 
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SYMMETRIC ANTISYMMETRIC 

Fig. 2 Symmetric and antisymmetric distort.am in a plate cause 
propagating Lamb wave. 

'Y 

of its d a t e d  potential). If the wave is symmetric, however, the value for % will be very large, 

and we repeat the process With & set to unitya 

22 GROUP- 

Once the phase velocities have been determined, the group velocities can be calculated as 

follows. By definition, the group velocity is: 

VI = do/&. (14) 

However, the phase velocity, c, is given by: 

o = c k .  

Taking the total derivative of both sides of this equation and dividing by do: 
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where v is the frequency. Solving for V; 
-2 c 

= c - v&/dv 

Thus, once we have determined the phase velocity as a function of frequency, the group velocity 

can be calculated from the slope of the dispersion curve (dddv) at any given frequency using 

m. (16). 
The measurement of Lamb wave group velocity is notoriously dif€icult when more than one 

mode is present concurrently. Each mode contniutes its own rf (radio frequency) wave packet, 

which combines with any others present to yield a very complex waveform. EKamples of this 

phenomenon will be seen shortly in the section on results. The contributions of each component 

to the composite rf waveform often cannot be separated in the t h e  domain unless the group 

velocities are su5ciently different, and the propagation distance is such that the various wave 

packets no longer overlap. In the frequency domain, however, the various modes that may be 

present are often distinct, and an accurate measurement of group velocity may be obtained. The 

measurement is effected by computing the fast Fourier transform (FET) of the composite 

waveform, determining its phase spectrum, and computing the slope of this spectrum in the 

vicinity of the spectral peaks of the various waves? The phase slope is related to the group 

velocity as follows. The phase characteristic of a propagating plane wave is given by: 

&a) = kx - of . (17) 

Differentiating with respect to o: 

Wo) - = x- - t = x/vz - f . 
do do 

Thus: 

The term t in the denominator is an arbitrary time oBe t  which may be set q u a l  to zero here, 

provided that all measurements are made in a single digital window. It is also important to note 

that the phase spectrum is meaningful only in those frequency regions for which the amplitude 

spectrum is sensibly different from zero; we chose the spectral maxima to emure good signal-to- 

noise characteristics. 
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A useful adjunct to the determination of Lamb wave phase and group velocities would be 

the ability to predict the timedomain waveform of a single mode, or of combinations of modes, 

as a function of the propagation distance. Since the waves are dispersive, the shape of a wave 

packet will change with time (or distance) because of the different group velocities with which 

the various components of the packet propagate. Determination of the waveform for actual 

Lamb waves is a very difEicult problem that requires numerical integration of the results obtained 

from the phase velocity studies and which depends strongly on the transducer characteristics and 

the specimen configuration. For example, the timedomain results observed for ultrasound 

introduced in the knuckle region of a capsule will differ considerably from those obtained on flat 

specimens, even when the same transducer is used, because the former condition encompasses 

a much greater range of incident angles and thus a potentially greater range of frequencies. In 

other words, the speEific attributes of a particular test configuration must be combined with the 

phase velocity results in order to predict accurately the timedomain response of Lamb waves. 

Although a tharough study of the timedamain behavior of Lamb waves in the present case 

would require much more effort than we could afford to expend, some idea of the approach taken 

and of the results which can be obtained for a simple illustrative example can be provided. We 
shall see shortly that the rf waveform of the A,, Lamb mode can be modeled fairly accurately by 

a simple mine-modulated Gaussian. If we can atso assume that finear superposition holds for 

this case, make some simplifying assumptions about the functional relationship connecting o and 

k, and negIect the zdependence of the wave, the timedomain response can be determined 

analytically. Strictly speaking, ignoring the zdependence of the wave is not necessary for signals 

sufficiently narrowband that the variation mer  plate thickness can be neglected. However, this 

will likely not be the case in practice, and as we will not present a full treatment of the time- 

domain solution, reducing the problem to a single dimension for illustrative purposes is not 

particulariy m t r i c t k a  it merely indicates that we cannot solve the full problem analytically and 

must resort to numerical techniques. 

Following the development of Jackson,8 we write the timedomain response of an actual 

(finite bandwidth) Iamb mode as a linear superposition of plane waves: 
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where c.c indicates the complex conjugate, and where o(k) indicates the functional relationship 

connecting angular frequency and wave number. In an actual case, this relationship would be 

taken from the phase velocity results obtained earlier and the integrals determined numerically. 

We also restrict ourselves to the case of true Lamb waves (k is real) so that there are no 

dissipative losses. It is understood that the actual rf waveform is the real part of Eq. (20) and 

that the factor (2x)- lR in front of the integral, inserted by some authors to emphasize the Fourier 

transform relationship between A(k) and u(x,t), has been omitted. 

Since our solutions were developed from a second-order differential equation, the initial 

conditions must specify both u(x,O) and its derivative. Multiplying Eq. (20) by e-k, integrating 

over all space, and using the completeness properties of the exponential: 

where the asterisk indicates the complex conjugate. Taking the derivative of Eq. (20) and 

integrating over all space: 

Since the properties of the wave cannot depend on whether it propagates in the positive or 

negative xdirection, o(k) = o(-k); Le., o is an even function of k. Solving Eq. (21) and Eq. (22): 

Equation (23) gives the Fourier amplitude of the pulse which, when substituted back into 

Eq. (20), yields the pulse shape as a function of time. 

In order to obtain numerical results for the pulse shape, it is necessary to assume a 

functional relationship for o(k). Since the function must be even, a simple relationship is: 

where a has the dimensions of length and, as will be Seen shortly, can be chosen to control the 

rate at which the pulse "spreads" in time. 
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In addition to the functional relationship connecting o and k, it is also necessary to specify 

the initial conditions. As mentioned earlier, a good approximation to the waveform of the 

mode is a cosine-modulated Gaussian Accordingiy, for the initial matid domain conditions, we 

chose: 

where W is B characteristic width that controls the spatial extent of the pulse, and k, is the wave 

vector of the pulse frequency Substituting these expressions into Eq. (23) and performing the 

integration, we find for the Fourier amplitudes: 

We nuw substitute this expression and that given in Eq. (24) for o(k)  into Eq. (20) to find the 

timedomain behavior of our wave. The result k: 

1 
2 

= -  c [I.. + 3),] 2 (27) 
¶ 

where F(-kJ represents the first part of Eq. (27) with k, replaced by -k, From Eq. (U), the 

initial width of the Gaussian envelope is W. Equation (27) (after fmt computing the real part 

of the complex exponential) shows that, at some later time t, the envelope width is given by: 

On the other hand, the square root term in Eq. (27) shows that the pulse amplitude decreases 

with time. Thus, the pulse decays in amplitude and "spreads" in spatial extent as it propagates. 

This is precisely the behavior exhibited on the oscilloscope by the A, rf waveform (or by any 

other single Lamb mode). 

Equation (28) also shows that the rate at which the pulse spreads is governed by the ratio 

a2/W, which is the reason for our earlier statement that II determines the rate of spreading, once 

an initial Gaussian width, W, has been chosen. 
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Although the result contained within Eq. (28) is not directly applicable to the timedomain 

behavior of Lamb modes, it does illustrate the general properties of dispersive wave propagation 

and actually models rather well the behavior of certain modes. For actual Lamb waves, however, 

the twodimensional solutions for the displacement obtained earlier would have to be integrated 

numerically using the functional relationship between o and k implicit in the phase velocity 

results. While certainly possible, this would involve considerably more effort than we could afford 

to expend in this limited study. We have also not addressed the timedomain problem when more 

than one Lamb mode is present simultaneously. This would be a minor complication, however, 

since one could obtain solutions comparable to Eq. (28) for each mode and then coherently sum 

these timedomain results. 

3. NUMERICALSOLUTION 

In order to determine the phase velocity as a function of frequency for the various Lamb 

modes, we must solve Eq. (12) for the wave vector, k Our approach has been to search the 

complex plane for approximate local minima of the determinant function. The minimum is then 

located precisely using a two-axis Newton's approximation method; that is, the slope of the surface 

in both the real and imaginary directions is calculated using a step size of lo-'', and a weighted 

average is then taken to yield a consewative estimate of the location of the minimum. We found 

that a rather arcane collection of test statements was necessary to guarantee convergence to the 

minimum and to prevent the program from falling into an endless cycle of corrections which 

overshoot the minimum or that converge too slowly. In the final version, the program will 

generally locate the minimum of the surface within 10' along both the real and imaginary axes 

in ten steps (often in five steps, depending on the local nature of the surface). A final test 

determines if the minimum corresponds to a true root or merely to a nonzero minimum (which 

occurs, for example, when either the real or the imaginary part of the determinant, but not both, 

goes through zero). This approach will occasionally miss a root, but, in the event that the 

program is uncertain about the nature of a surface minimum, the complex plane location i s  

printed so that the possible root can be examined in detail with an interactive program. 

In locating the roots of the secular determinant, we note that there is a branch point 

associated with each square root which defines the wave vectors a and p [see Eq. (5), et seq.]. 

Thus, the roots of the secular equation will lie on several Riemann sheets. In defining the 
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potentials as we have in Eq. (lo), however, we see that the true Lamb modes (Le., the real roots 

of the secular equation) should lie on the sheet corresponding to all positive branches of the 

square root functions. Leab modes (not considered here) would occur on the sheet 

corresponding to the negative branch of the wave vector for the potential + in the fluid in which 

the leaky wave propagates. The wave vectors a and p; the wave amplitudes A,, B,, A, and B,; 

and the lamb wave vector, k, all complex variables, are the quantities calcuiated and printed by 

our computer program. 

The program to locate roots of the secular determinant is written in FORTRAN. In its 

original incarnation, the main routine would permit secular determinants up to 16 by 16 to be 

solved, which is sufficiently large to encompass a five-layer solid (three finite layers between two 

semi-infinite solids). This routine would then be linked with a subroutine called MATRIX, which 

defined the elements of the determinant whose roots were to be found However, we have since 

found it more convenient to write a separate program for each class of guided wave to be studied. 

Thus, we now have, for example, a program called LAMB, which sohes the 4 by 4 determinant 

given in Eq. (12). A second program, called LEAKLAMB and not considered here, solves the 

6 by 6 determinant associated with leaky Lamb waves. Still other programs were written for 

Rayleigh, Love, Stoneley, and other guided wave types as well as for leaky waves of each of these 

types. All, however, were derived from the original generalized program written to solve the 

multilayer elastic guided wave problem. 

"be material properties of iridium alloy used in calculating the phase and group velocity 

dispersion curves were taken from an unpublished table compiled by M. W. Moyer of the 

Oak Ridge Y-12 Plant- The salient properties are: C, = 5.305 kmh, C, = 3.119 Ws, and 

p = 22,!j14 kg/m3. Figure 3 shows the dispersion curves calculated for Lamb wave propagation 

in iridium alloy sheet. The ordinate of the graph gives the phase velocity (C) of the Lamb wave 

normalized to that of a shear wave in iridium alloy. Since, by Snell's law, the phase velocity is 

related to the critical angle for Lamb wave generation from a surrounding fluid, the ordinate is 

also inversely proportional to the sine of the incident angle, the proportionality constant being 

the ratio of fluid velocity to iridium alloy shear wave velocity. The abscissa of the graph is also 
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Eg. 3. Phase velocity dispersion curves showing Lamb wave modes in 
indium alloy. 

dimensionless, being the ratio of frequency times layer half-thickness to the shear velocity. By 

having dimensionless axes, Fig. 3 is applicable to any layer thickness. 

Figure 3 shows a typical set of alternating symmetric (S)  and antisymmetric (A) Lamb 

modes. As the frequency tends to zero, the only surviving mode is the lowest-order symmetric 

mode, S,,. For all other modes (except &, whose phase velocity asymptotically goes to zero in 

the low-frequency limit), there is a frequency limit below which the mode cannot propagate. The 

high-frequency b i t  of each mode, most easily seen for So and A, is just the Rayleigh wave 

velocity. ?his is in agreement with intuition, since in the high-frequency limit, the wavelength 

becomes negligibfe in comparison with the sample thickness, and the only guided wave that exists 

on the surface of a semi-infinite solid is a Rayleigh wave. 

If one draws a horizontal line on Fig. 3 at some arbitrary ordinate value (corresponding to 

a particular phase velocity or incident angle), this line will intersect one or more of the possible 

Lamb modes. For example, assume that the Lamb wave is to be excited by a plane wave incident 

on the sample at an angle of 3 9 O  in water. This incident angle, by Snell's law, will produce a 

Lamb wave whose phase velocity is 2.356 km/s, corresponding to an ordinate value of 0.756 in 
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Rg. 3. A horivontal line drawn at this ordinate will intersect only the & mode. Moreover, the 

intersection occurs at an abscissa value of 0.18. For 0.635-mm-thick iridium doy,  this value 

corresponds to a frequency of 1.76 MHz Tbus, using plane-wave excitation at a precise incident 

angle of 39’ should produce a single antisymmetric-mode Lamb wave in iridium aUoy at the 

s e  frequency. Even for plane-wave transducers, however, the finite element size will 

prod= beamspread, leading to a small range of angles in the incident beam. Consequently, the 

4 mode Lamb wave wiil be excited over a range of frequencies, the extent oE which depends on 

the range of angles in the incident beam and the slope of the mode respoase. If a focused 

transducer were used to excite this mode at the same centerline angle, the much greater range 

of angles present would probably excite the & mode over the full bandwidth of the transducer, 

and the S, mode would likely be excited as well. On the other hand, Fig. 3 shows that, for 

ordinate values in the range 2 to 3, the S, mode can be excited oniy over a very narrow range of 

frequencies because of the nearly vertical slope of the mode cuwe. 

At an ordinate value of 15 (corresponding to an incident angle of 18.S”), Fig. 3 shows that 

six modes could be excited Over the abscissa range depicted.. These modes, in order of increasing 

frequency, are S, A,, S,, Ab S, and A3. Assuming the 0.635-mm thickness mentioned above, 

these modes would be excited at frequencies of 3.14, 633, 9.82, 133, 16.4, and 19.6 MHz, 

respectively. 

Having obtained the phase velocities of the various Lamb modes, we next determined the 

p u p  velocities. The slope of the phase velocity curve was determined numerically at a given 

frequency by taking a smaU step of 0.01 (or 0-001 when the slope was large) above and below the 

desired point and approximating the derivative by a two-sided difference. The step size was 

adjusted to yield at least six-figure accuracy €or the approximation. The computed derivative, the 

frequenEy, and the phase velocity were then substituted in m. (16) and the group velocity 

determined 

Figure 4 shows the group vehi ty  (VJ dispersion culves for the first four Lamb modes. 

The results were limited to these modes becaw, at frequencies below about 10 M H z  in the 

iridium alloy sheet, Fig. 3 shows that only these modes can be generated. For mode S,,, the group 

velocity is equal to the phase velocity in the low-frequency limit but thereafter falls below the 

latter, reaching a minimum near an abscissa value of 0.39. The high-frequency asymptotic limit 

is again the Rayleigh velocity. For mode A, the group velocity rises rapidly from its low- 

frequency limit of zero and, at an abscissa value of about 0.33, quais that of mode S, 
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Fig. 4. Group velocity dispersion curyes showing Lamb wave modes in 
indium alloy. 

Thereafter, is actually faster than So, in contrast with the results of Fig. 3. If one were to use 

the phase velocity information (as is often done) to predict the location of a flaw from its echo 

arrival time, the conclusions could be considerably in error, as Fig. 4 illustrates. 

The results described above were confmed in flat iridium alloy sheet. Two plane, 5-M& 

matched broadband transducers were used in the experimental studies. Figure 5 shows the rf 

waveform of one of the transducers and Fig. 6 the spectral content. These units have sufficient 

energy for useful measurements in the range -2 to 10 MHz The transducers were mounted in 

a pitchetch fixture, so that one unit acted as the transmitter and the other as receiver. 

From Fig. 3 we see that, for ordinate values below about 0.92 (corresponding to an incident 

angle of 31.1O) and neglecting transducer beamspread, only the A, mode should be excited. 

Selecting an ordinate value of 0.75, both transducers were set to an angle of -39". Figure 7 shows 

the received rf waveform and Fig. 8 its frequency content. The waveform, which approximates 

the cosine-modulated Gaussian mentioned earlier, suggests the presence of a single Lamb mode, 

which is confirmed by the spectrum. The peak of the spectral energy occurs at 1.9 MHz, which 
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agrees well with the value of 1.8 M H z  predicted by Fig. 3. Some error is to be expected from 

unavoidable inaccuracies in the ultrasonic goniometers as well as from material properties which 

may differ slightly from the assumed values. The width of the spectral envelope is determined 

both by transducer beamspread and by the relatively small slope of the A, m e  near the 

intersection point. 

At an ordinate value of 15 (incident angle lU0), Fig. 3 indicates that three modes will be 

intercepted in the region of abscissa values less than or equal to 1 (S, at 3.1 MHz, A, at 6.6 MHz, 

and SI at 9.8 MHz).  Figure 9 shows the rf waveform of the received Lamb waves and Fig. 10 

their spectrum, As expected, the latter figure shows that three waves are present. The spectral 

peaks of the two higher-fkquency modes occur at frequencies lower than predicted, but this is 

likely attributable to errors in the measurement of the incident angle. This is reinforced by the 

fact that subsequent spectral peaks invariably occurred at slightly lower than predicted values, 

indicating a systematic error typical of goniometer inaccuracy. 

Figure 9 also illustrates a problem mentioned earlier. There are three wave packets in this 

composite waveform (corresponding to the three generated Lamb modes), and it would be 

impossible to measure the group velocity of any of the three from such an rf response. On the 

other hand, Fig. 10 shows that the modes are well resolved in the frequency domain, and hence 

measurements carried out here should be free of mutual interference. That the wave packets 

should arrive at approximately the same time is supported by the predictions of Fig. 4, where the 

group velocities of the three waves are nearly equal at the appropriate abscissa values, with So 

having a slightly higher velocity than the other two modes. 

For an ordinate value of 25, Fig. 3 indicates that four modes, A,, S,, S2, and A?, should be 

generated in the range 2 to 10 MHz (abscissa values 0.2 to 1.02). These waves occur at an 

incident angle of about 11". In addition, Fig. 3 indicates that the slopes of the m e s  SI and A2 

are nearly vertical at this ordinate value; hence, these waves should be neariy monochromatic. 

This is confirmed by the experimental data. Figure 11 shows the received composite waveform 

and Fig. 12 the spectrum. Because of the limited memory length in our digitizing oscilloscope, 

the timedomain record was inadequately sampled. Thus, the nearly monochromatic peaks near 

4 MHz (SI) and 7.4 MHZ (A3 in Fig. 12 are not well represented. An analog spectrum analyzer 

confirmed the presence of these very sharp peaks, however. The broader peaks at about 3.6 and 

7 MHz belong to A, and S, respectively. Neither S, nor A2 would likely be present during 

capsule inspection unless the exciting transducer had reasonable response at frequencies at and 
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abave 8 MHZ, for this reason, neither of these modes was included in the group velocity c u m  

of Fig. 4. 
Because two quasimonochromatic waves are present at an incident angle of 1l0, the wave 

packets of these two Lamb modes will be quite extended in time. Tbjs is admirably illustrated in 

Fig. 11, where a timedomain record 50 ps in length was required to capture most of the wave 

train. The ringing beyond about 10 ps is caused almost exclusively by S, and & while the peaks 

near 5 ps are caused by the more broadband modes AI and S, The figure also shows that the 

group velocities of S, and A2 are slower than those of A, and S, whose wave packets arrive 

earlier. This information can also be gleaned Erom Fig. 4, at least for A, and S,. 
These results indicate that, using the data of Fig. 3, the investigator can easily predict which 

Lamb modes will be present for a given incident angle, the frequencies at which these modes will 

OCCUT, and, at least qualitatively, what the relative mode bandwidths will be. For accurate flaw 

location, however, it is the group velocity (Fig. 4) that is important, and a measurement of this 

quantity must be addressed. 

As we mentioned earlier, because of the presence of multiple Lamb modes at most incident 

angles, accurate measurements of the group velocity must be performed in the frequency domain 

using phase-slope methods [Es. (19)]. To implement this technique, we computed the phase 

spectrum using the FIT. Two transducers in a pitchcatch arrangement were used, and the path 

length was changed by a known amount, following which the FFT was recomputed. The change 

in the phase-slope characteristic over the known differential path length was then determined and 

the group velocity computed using Eq. (19). Several error sources for this approach were 

recognized. Chief among these is the goniometer error in determining the incident angle, as 

mentioned earlier. In addition, the limited memory length of our digitizing oscilloscope required 

a relatively low sample rate for long record lengths, which in turn caused a relatively large 

timedomain error. In most eases, however, the results were adequate to validate the theoretical 

predictions. 

Examination of Figs. 3 and 4 also suggests potential problem areas. For the mode & for 

example, the group velocity (Fig. 4) increases very rapidly near the origin. This means that, even 

for small errors in the incident angle, the relative error in group velocity can be large. This same 

reasoning applies to any mode near its asymptotic limit. In addition, for & the region in which 

this rapid increase occurs ties in the range 0 to 1 MHZ, where the exciting transducers have very 

little energy (Fig. 6). Near the Rayleigh velocity (ordinate value -0.92 in Fig. 3), modes A, and 



23 

So coaiesce and cannot be separated even in the frequency domain (the group velocities, however, 

remain quite disparate in the range of absciissa values -034 to 0.7 in Fig. 4). For modes A, and 

SI, Fig 3 shows that, in the range of abscissa values -0.4 to 0.6, the modes are too closely spaced 

in the frequency domain for proper separation. In the range of ordinate values >25, the group 

velocities of these same modes are approaching their asymptotic limits and are again diEticult to 

measure. In summary, difficulties may be expected to arise whenever we approach too closely the 

asymptotic limit of a mode, or when two or more modes are inadequately separated in both time 

and frequency domains. 

In measuring p u p  velocity, we foilowed the procedure suggested by Eq. (19); i.e., we 

&termin& the slope of the phase characteristic after propagation through a known distance and 

computed the group velocity using the equation. Figure 13, which is a repeat of the theoretical 

curyes of Fig. 4 with our measured values superimposed, shows the results. We were primarily 

interested in verifying the shapes of modes A, and So since these modes will probably be most 

important in evaluation of the capsules. Figure 13 also shows that, except for a single data point, 

all of the measured velocities fell slightly below the predicted values. As mentioned earlier, this 

is a systematic error which is probably attriiutable to errors in the goniometer or to slight 

differences in the assumed and actual values for the material properties of the iridium alloy. The 

one exception occurred for mode S,, where the data point was probably affected by some 

contamination from mode A, (Fig. 3). 

5. SUMMARY AND CONCLUSIONS 

The secular determinant for Lamb waves propagating in a plate was derived and applied 

to the specific case of iridium alloy sheet. A computer program was written which finds the roots, 

both real and complex, of this determinant, and the roots for 0.64-mm-thick alloy sheet were 

determind From these roots, a graph of the phase velocity as a function of frequency was 

constructed for the various Lamb modes. A method for computing the group velocity of any 

mode from the phase velocity characteristic was presented, and a graph of the group velocities 

of the first four Lamb modes was constructed. 

Because of the difficulty of measuring group velocity in the time domain when two or more 

Lamb waves are present simultaneously, a frequencydomain technique that relies on the phase- 

slope behavior of the mode was presented and applied. Group velocities were measured at 

several points on the dispersion curves for the first four Lamb modes. 
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Fig. 13. Measured values of group velocity for four Lamb modes in 
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A study of the possibility of predicting the timedomain behavior of Lamb waves was 

undertaken. Because of the complexity of the problem and the limited time available €or the 

study, the results were restricted to analytical expressions for dispersive plane waves, a 

simplification that appears to yield surprisingly good results for some cases. A general treatment 

of this topic would need considerably more time, however, but the preliminaries are in place for 

a resumption of this effort if the results are deemed necessary. 

Because of the material properties (primarily grain size) of iridium alloy, Lamb waves are 

necessarily generated by the low inspection frequencies required to minimize grain boundary 

scattering losses in the thicknesses chosen for clad vent set capsules. This study of Lamb wave 

propagation in the alloy has shown that, insofar as facilitating the interpretation of inspection 

results is a primary goal, the researcher can achieve this goal by choosing a test configuration that 

provides maximum resolution of the various modes in the inspection domain. That is, if the 

inspection is conducted in the frequency domain, then the operating conditions should be chosen 

to provide maximum frequency separation of all modes which may be present On the other 

hand, if the inspection is camed out in the time domain, then the proper choice would be that 

which maximizes the disparity in the group velocities of the various modes. In this manner, the 



investigator can be certain which ones of the possible modes are actually contriiuting to the 

acquired data. In addition, the manner in which ultrasound is introduced into the capsule is 

critically important in determining the complexity of the resulting ultrasonic data display. If the 

incident energy is introduced in the knuckle region of the capsule using a focused transducer, for 

instance, essentially all incident angles from 0 to 90" wiil be present, and the resulting display will 

be vexy complex and consist of combinations of several Lamb modes. In addition, very little of 

the available ene rg  would propagate in the desired direction (Le., along the capsule axis). A 

better configuration would be that in which the ultrasonic energy is introduced in the flat region 

on the capsule top using the same transducer. The range of incident angles would be greatly 

reduced, thereby simpli@ing the Lamb mode spectrum, but much of the energy would still 

propagate in nonuseful directions. Perhaps the best configuration would be that in which a plane- 

wave transducer was used to generate a single Lamb mode in the capsule top flat region. With 

this configuration, the researcher could be assured of precisely which mode was generated 

(indeed, the mode generated could be controlled by changing the incident angle). Lastly, this 

configuration would produce maximum energy in the desired direction, thereby increasing test 

sensitivity. 

Regardless of which configuration is used in evaluating the capsules ultrasonically, the 

results of this study will allow the iwestigator to interpret the test results more clearly and 

quickly. In particular, the group velocity curves will permit identification of the Lamb mode 

producing a given flaw signal and yield more accurate €law locations by providing exact group 

velocity information. 
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