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represented by a 2-D cross-section. We consider, however, the storage in the partially 
saturated regions of the cross section, and the kchard's equation with nonlinear soil 
property functions is solved numerically by a finite element code 3DT;TEMWATER (Yeh 
1987): 

where 
h = pressure head (L); 
t = elevation (L); 
y = external source/sink (L3L3T); 

t = time (T); 
8 = 8(h) is water content that can be represented by a nonlinear function of pressure 

head; 

.=[E: 3 Kr is the hydraulic conductivity tensor, in which Ku, Ku,, Kxz = Kzr are 

the saturated scalar hydraulic conductivity components (LR) and K,(h) is the 
relative hydraulic conductivity that can be represented by a nonlinear function of 
pressure head. 

The numerical model developed by using 3DFI3dWATER was adapted as a module of a 
Latin-hypercube simulation framework, to be discussed in the next section, that can later 
become the basis for uncertainty analysis and risk assessment. Within the framework for 
the present study, three engineering designs were simulated to evaluate the effectiveness 
of the designs in isolating the disposal facilities from stormflow water. The alteration of 
flow processes in the stormflow zone by each of the engineering designs is examined and 
discussed. Field observations at the study site suggest that clay lenses exist in the vadose 
zone and may also alter stormflow processes. Therefore, a cross-section with clay lenses 
in the vadose zone was also simulated to investigate the effect of local heterogeneities on 
subsurface stormflow. 
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on x1 is then randomly selected and matched with a randomly selected observation on x2, 
and so on, through xk. We thus obtain the first vector of input variables. One of the 
remaining observations on x, is then matched randomly with one of the remaining 
observations on x2, and so on, to get the second vector of variables. This procedure is 
repeated until all of the observations on the input variables are exhausted and N Latin- 
hypercube samples are obtained. Comparing with an exhaustive sampling technique, 
which will result in Nk samples, the Latin-hypercube sampling technique is far more 
efficient and may provide an uncertainty estimate with comparable accuracy (McKay et 
al. 1979). Because the samples are obtained according to underlying probabilistic 
distributions, output from the numerical simulations can be easily translated into 
probabilistic distributions of the target variables. For example, for a Latin-hypercube 
simulation with N realizations, the empirical distribution function S(y) can be represented 

by 

where the unitary function is 

u ( t ) = l  if t 2 0  

==O if t < O .  

For detailed description and discussion of Latin-hypercube sampling techniques, refer to 
Iman and Conover (1980). Since pairwise correlation may exist when the number of 
realizations sampled by the Latin-hypercube technique is small, scatter plots of every two 
input variables are exarxhined graphically to ensure that there is no such canelation. In the 
present study, this suggests that the correlation of the model parmeters is rninirnal. For 
the purpose of analyzing off-site waste movement and studying development of 
stormflow zones, discharge rates and the horizontal extent of the perched water table 
were chosen as target variables. 

To conduct statistical analysis on the realizations, we apply a rank transform to the input 
and output variables. Rank transform is a simple procedure that replaces raw data with 
their corresponding ranks. It has been shown that rank transform is a repeatable 
that compares favorably with other methods in conducting statistical analyses to the raw 
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3. CONCEPTUAL AND NUMERICAL MODELS 

3.1 CONCEPTUAL MODEL 

On the basis of field data and technical studies on the Oak Ridge Reservation (ORR), a 
conceptual model of the reservation has been proposed by previous investigators (Moore 
1988; Solomon et al. 1992). This model represents an integration of data, information, 
and concepts that is intended to describe water flux and water chemistry on the QRR as 
they vary in location and time. According to this conceptual model, the subsurface flow 
system can be divided into the stormflow zone, the vadose zone, the groundwater zone, 
and the aquiclude (Fig. 2). The groundwater zone cm be subdivided into the water table 
interval, the intermediate interval, and the deep interval. fluxes of these hydrologic 
subsystems decrease with depth, and no discrete interface or lithological boundaries are 
defined between subsystems (Solomon et al. 1992). ecause detailed lithological data, 
which agree very well with the conceptual model, are available at an experiment site, the 
Melton Branch Watershed at OR_NL, the conceptual model of QRR is further modified to 
adapt the soil horizons or layered structure of the experiment site (Fig. 3). In addition to 
the soil horizons, clay lenses in the vadose zone result in local heterogeneities (Fig. 3). 
Clay lenses, though very often found in the B and C horizons on the ORR, have not been 
considered in the conceptual model. To investigate the effect of these local 
heterogeneities, we simulated both cross-sections with and without the clay lenses and 
compared the resultant flow fields. A conceptual model of the site therefore consists of 
three soil horizons and the clay lenses (Fig. 3). The A hori is a very thin layer of 
decomposed organic matter and is highly macroporous; th orizon is composed of 
weathered soils less than 1 m in thickness; and the c3 horizon is composed of highly 
fractured saprolites partially weathered from parent materials (Luxmoore and Abner 
1987; Wilson et al. 1993). 

3.2 NUMERICAL MODELS AND SIMULATION SCENARIOS 

To numerically define a model that can be simulated using a subsurface flow code, in 
addition to the lithological structure of a site, one needs to d e h e  boundary conditions 
and model parameters such as hydraulic conductivity and water content or porosity. The 
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Table 2. Model parameters and target variables for scenarios 1-4. 
realization K, infiltration anisotropy groundwater perched water 

( d s ) ”  rate ( d s )  ratio flux as % of length in 
total flux (%) stormflow 
(scenario 1) zone (m) 

(scenario 1 )  
1 6.88 x 10-5 3.40 x 10-6 9.53 1.67 2.2 1 
2 1.39 x 1.47 x 10-6 2.42 2.85 0.00 
3 1.69 x 10-5 4.04 x 10-6 8.58 0.06 32.00 
4 2.96 x 10-5 1.30 x 10-5 1.47 0.30 14.74 
5 1.47 x 10-5 6.61 x 10-6 5.74 0.03 41.00 
6 1.60 x 10-4 1.17 x 10-5 4.32 3.18 0.00 
7 1.21 x 10-4 4.68 x 10-6 2.90 2.73 0.00 
8 1.27 x 10-5 1.05 x 10-5 7.63 0.0 1 47.00 
9 9.1 1 x 10-5 8.33 x 10-7 3.84 2.43 0.00 
1Q 3.41 x 10-5 9.17 x 10-6 1 .oo 0.54 5.37 
11 1.84 x 10-4 9.81 x 10-6 10.00 3.34 0.00 
12 4.51 x 10-5 5.96 x 10-6 3.37 0.97 6.58 
13 5.19 x 10-5 1.11 x 10-5 7.16 1.06 16.63 
14 5.98 x 10-5 2.12 x 10-6 8.1 1. 1.49 0.00 
15 1.94 x 10-5 8.53 x 10-6 1.95 0.05 22,74 
16 3.92 x 10-5 5 . 3 2 ~  10-6 6.2 1 0.69 10.47 
17 2.23 x 10-5 2.76 x 10-6 5.26 0.23 5.2 1 
18 7.92 x 10-5 7.89 x 10-6 9.05 1.87 13.16 
19 1.05 x lo4 7.24 x 10-6 6.68 2.63 0. 
20 2.57 x 10-5 1.24 x 10-5 4.79 0.2 1 35.68 

“Ks = saturated hydraulic conductivity of A horizon. Saturated hydraulic conductivities 
of other soil horizons were calculated proportionately. 
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4. RESWETS AND DISCUSSION 

Among the 20 realizations of scenario 1 (no engineering designs), 13 of them developed 
perched water tables in the stormflow zone (Table 2) (e.g., realization 5 as shown in Fig. 
5) .  Those that did not develop perched water tables typically had high hydraulic 
conductivity, which indicated that development of perched water tables was inversely 
related to the parameter. Regression on ranks of perched water tables indeed suggested 
that the horizontal extent of perched water tables was inversely correlated with hydraulic 
conductivity and weakly positively correlated with rainfall rates (Table 4). 

Velocity in the stormflow zone was higher because of the higher conductivity in the 
associated soil horizons A and B relative to vadose and groundwater zones that largely 
consisted of the C horizon (not shown). Discharge rates near the bottom of the hillslope, 
in fact, suggested that less than 3% of the outflow was contributed by groundwater (Table 
3). Regression on ranks of discharge rates indicated that hydraulic conductivity was the 
most influential parameter (Table 4). A plot of discharge rates vs hydraulic 
conductivities suggested a strong correlation between the target variable and the 
parameter (Fig. 6) .  

For scenarios 2 and 3, in which one single cap was placed on the hilltop and the middle 
hillslope, respectively, the caps generally resulted in disappearance of the perched water 
table in the storrnflow zone right beneath the caps andor water table depression in the 
vadose zone (Fig. 5). Scenario 3, with a single cap on the middle hillslope, however, may 
not be effective in isolating the underlying trenches, as suggested by velocity plots of the 
realizations (e.ge9 Figure 7 for realization 15). High velocity in the stormflow zone may 
result in inundation of trenches because rainwater may reach the trenches laterally from 
underneath the cap, 

A French drain (scenario 4) alone was not an effective design to isolate waste trenches 
( e g ,  realization 15, shown in Fig. 8). The unsaturated area was further extended 
downslope of the drain, but surface infiltration may result in recharge to the trenches and 
leakage of waste to underlying saturated zones. Combinations of engineering designs are 
beyond the scope of the current study, but on the basis of the results from cap and French 
drain simulations, the use of both French drains and caps s ould prove very effective in 
lowering or eliminating perched water tables and in isolating areas downslope of the 

16 





target variable intercept infiltration anisotropy multiple 
(rank) rate" ratio" correlation 

coefficient 
groundwater flux 

%, scenario 1 
perched water table, 

scenario 1 
groundwater flux 

%, scenario 2 
groundwater flux 

%, scenario 3 
groundwater flux 

%, scenario 4 
groundwater flux 

%,scenario 5 
unsaturated area 

change, under 
the cap, 
scenario 2 

unsaturated area 
change, 
downslope of 
the cap, 
scenario 2 

0.236 

14.191 

0.758 

0.758 

0.236 

5.773 

16.7052 

3.806 

0.990 
(0.997) 
-0.809 

(-0.867) 
0.967 

(0.983) 
0.967 

(0.983) 
0.990 

(0.997) 
0.656 

(0.598) 
-0.864 

(-0.866) 

0.877 
(0.875) 

-0.033 
(-0.194) 
0.315 

(-0.44 1) 
-0.080 

(-0.239) 
-0.080 

(-0.239) 
-0.033 

(-0.194) 
0.144 

(-0.014) 
0.094 

(0.2 18) 

-0.062 
(-0.186) 

0.020 0.998 
(0.107) 
0.143 0.930 

0.040 0.988 

0.040 0.988 

0.020 0.998 
(0.107) 
-0.173 0.637 

0.179 0.888 
(0.096) 

(-0 e 04 5 )  

(-0.129) 

(-0.129) 

(-0.09 1) 

-0.178 
(-0.098) 

0.894 

aKs = rank of saturated hydraulic conductivity of A horizon. Parmeters were substituted 
by ranks before multiple linear regression. Values in parentheses are linear correlation 
coefficients associated with the parameters.drains. Questions regarding the relationship 
between the depth of drain and the designed increase of downslope unsaturated areas, 
however, remah to be answered by further modeling studies. 

Clay lenses in the unsaturated zones (scenario 5) resulted in alteration of flow patterns in 
these regions. The clay lens at the middle hillslope divided the flow processes into 
largely recharge to groundwater at the upper hillslope and discharge to surface water at 
the lower hillslope (e.g., realization 28, shown in Fig. 9). While realizations with low 
recharge rates still resulted in perched water tables in the stormflow zone (not shown), 
realizations similar to that of Fig. 9 suggested that the midslope clay lens became a barrier 
for downslope movement of water in the vadose zone. Infiltration upslope of the clay 
lens recharged directly to local groundwater. The clay lenses near the top of the hill aJso 
diverted infiltration in an opposite direction to the hillslope and, in fact, suggested that 

18 
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(b) 
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Fig. 9. Pressure head distribution for the cross section with clay lenses. The clay lens 
at the middle hillslope was a barrier for downslope movement of water infiltrating 
through the upper half of the slope. As a result, this water recharged directly to the 
groundwater flow zone and water infiltrating through the ther half of the slope 
discharged to surface streams, 

(scenario 1 only), the target variable was inversely related to hydraulic conductivity, and 
the contribution of rainfall intensity was more noticeable, (Table 4). Anisotropy was 
relatively the least important parameter for all the target variables. 

The effect of the caps on various sections of the hillslope can be measured either by the 
depression of perched water tables or the increase of unsaturated areas. Generally 
speaking, the perched water table in the stormflow zone right beneath the caps 
disappeared and the unsaturated areas increased. However, a noticeable difference in the 
change of unsaturated areas existed between the area underneath and downslope of the 
cap. For example, the change of these unsaturated a rea  for scenario 2 was not sensitive 
to hydraulic conductivity until it was higher than 0.3 mz/h (Fig. 10). The unsaturated 
areas underneath and downslope of the cap were also related to hydraulic conductivity 
differently. Unsaturated areas under the cap decreased with hydraulic conductivity, while 
they increased with hydraulic conductivity downslope of the cap, This implied that the 
effectiveness of the cap was not only location dependent (comparing scenarios 2 and 3) 
but also conductivity dependent. To implement a cap, one will need to consider the 
topography and the hydraulic conductivity of the capping areas. For scenario 4, with a 
French drain on the upper killslope, no relationship was observed between the extent of 
unsaturated areas and the parameters. 
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Fig. 11. Estimated cumulative distribution of grou 
total flux) for (a) layer cross section with no clay lenses and remediation designs and 
(b) cross section with clay lenses and without remediation designs. 
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5. SUMlMARYAN CONCLUSIONS 

Two-dimensional hillslope cross-section models of a waste disposal site at O W L  were 
developed to study variably saturated flow processes and to identify important model 
parameters for further studies of the site. ‘The conceptual model that the hillslope 
numerical model was based on did not address local heterogeneities; therefore, field data 
from a proposed disposal site were also used to study the effect of these heterogeneities 
on small watershed subsurface flow processes. Local heterogeneities, as suggested by the 
present study, may alter local flow patterns and affect recharge to groundwater zones and 
discharge to surface waters. Local features such as clay lenses, bedding planes, and 
geological strikes will need to be addressed carefully when basin or watershed scale 
models are to be used to obtain off-site water movement, 

Uncertainty of model parameters largely arises from the lack of field data needed for 
modeling studies and is usually analyzed using sensitivity analysis techniques such as 
Monte Carlo simulations. A Latin-hypercube simulation techni ue was used in the 
present study to reduce computational requirements that are usually intense in uncertainty 
analyses and risk assessment. Among the model parameters treated as randomly 
distributed variables, hydraulic conductivity was shown to be the most influential 
parameter to all the target variables. Estimated distribution functions of flux were also 
obtained, but the results should be considered as preliminary because the underlying 
distributions of the model parameters had not been adequately characterized. 

Results from the present study also indicated that neither of the two engineering designs, 
capping and French drains, was by itself effective in isolating downslope waste trenches. 
Both increase of unsaturated area downslope of the drain an disappearance of stormflow 
zone perched water tables beneath a cap, however, suggested that Combinations of the 
two engineering designs will be more effective than either of them alone. Nevertheless, 
the numerical models can be used to evaluate various engineering designs and have 
provided a set of useful tools for further studies of disposal sites at OWE. The 
framework for uncertainty analysis can also be adapted to management and decision- 
making cycles and, with its abilities to prioritize model parameters and to estimate 
probabilities of target variables, should prove helpful in cutting disposal operation costs. 
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