




ORNL/TM-12853 

f! f i  I: 
Engineering Physics and Mathematics Division J 

.-./ 

BOUNDS FOR DEPARTURE FROM NORMALITY AND 

THE FROBENIUS NORM OF MATRIX EIGENVALUES 

Steven L. Lee 

Mathematical Sciences Section 
Oak Ridge National Laboratory 

P.O. Box 2008, Bldg. 6012 
Oak Ridge, T N  37831-6367 

na.slee@na-net .ornl.gov 

Date Published: December 1994 

r - - - - - - - - - 7  
Research was supported by the Applied Mathematical 
Sciences Research Program of the Office of Energy R.e- 
search, 1J.S. Department of Energy. 

Prepared by the 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831 
managed by 

Martin Marietta Energy Systems, Inc. 
for the 

1J.S. DEPARTMENT OF ENERGY 
under Contract No. DE-AC05-840R21400 

3 445b  04231625 7 





Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
3 Bounds for eigenvalues a i d  departure from normality . . . . . . . . . .  4 

3.1 Improved lower bounds . . . . . . . . . . . . . . . . . . . . . . . .  5 
3.2 Improved upper bounds . . . . . . . . . . . . . . . . . . . . . . .  7 

4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
5 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 

12 





BOUNDS FOR DEPARTURE FROM NORMALITY AND 

THE FROBENIUS NORM OF MATRIX EIGENVALUES 

Steven I,. Lee 

Abstract 

New lower and upper bounds for the departure from normality and the 

Frobeniiis norm of the eigenvalues of a matrix are given. The significant 

properties of these bounds are also described. For example, the upper 

bound for matrix eigenvalues improves upon the one derived by Kress, 

de Vries and Wegmann in [Lin. Alg. Appl., 8 (1974), pp- 109-1201. The 

upper bound for departure from normality is sharp for any matrix whose 

eigenvalues are collinear in the complex plane. Moreover, the latter formula 

is a practical estimate that costs (at most) 2m multiplications, where m is 

the number of nonzeros in the matrix. Ln terms of applications, the results 

can be used to bound from above the sensitivity of eigenvalues to matrix 

perturbations or bound from below the condition number of the eigenbasis 

of a matrix. 
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1. Introduction 

The departure from normality of a matrix, like the condition number of a matrix, 

is a real scalar that can be used to compute various matrix bounds. If A is an 

n x n matrix, its departure from normality (in the Frobenius norm) is defined to 

be [SI 

d e P p ( 4  := (IiAll; - ilnli'F)li2 7 (1) 

where A is a diagonal matrix whose entries are the eigenvalues, Xk, of A.  This 
measure of matrix nonnormality can be used to bound the spectral norm of matrix 

functions [2,5], the sensitivity of eigenvalues to matrix perturbations [8,16], and 

the distance to the closest normal matrix [10,16], for example. It is irnpractical 

to cornputc dep,(A) if A is large and its eigenvalues arc unknown. This difficulty 

motivates us to seek lower and upper bounds for dep,(A) that are practical to 

compute or optimal in some sense. 

In terms of eigenvalues, bounds for dep,(A) can be used to obtain lower and 

where Re(A) and Im(A) are the real and imaginary parts of A.  In particular, 

such results can be obtained by substituting lower arid upper bounds for dep,(A) 

into [13] 

where 
1 
2 

M = - ( A + A ~ )  

and 
1 
2 

N = - ( A  - A") (7) 

are the Hermitian and skew-Hermitian part of A, respectively. Upper bounds 

for IlAll$ can be used to bound the spectral radius [15] and the spread of a 

matrix [l]. Bounds for IlAll$ can also be used to compute or estimate lower 

bounds for the condition number of the eigenbasis of A [Ill. 
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The outline of this paper is as follows. In 52, we give the notation, definitions, 

and observations that will he needed in later sections. In 53, we present various 

bounds for 11A11$ and depc(A), and show how they can be improved. In 54, 
we describe the significant properties of the newly improved bounds. In 55, we 

group the currently known a priori bounds for llAllF and depg(A) into two main 

categories, and then show that the new bounds are among the best available. 

2. Preliminaries 

Let A = (q) be an n x n matrix with conjugate transpose AH = (t&) arid 

Frobenius norm 

11A11> := la;jI2. (81 
2 72 

Also, recall that A is normal if and only if (iff), for example, [7] 

(sa) A has a complete, orthogonal set of eigenvectors, 

( 9 ~ )  AI'A - AAH = 0. 

The set of normal matrices includes the Hermitian, skew-Hermitian, and unitary 

matrices and, in general, any matrix that is unitarily similar to a diagonal matrix. 

It is easily seen that depF(A) is invariant with respect to complex shifts and 

rotations. That is, 

depF(A) = depF(e-is(A - d)) (10) 

for any complex scalar a and 0 5 0 < 27r. For the Frobenius norm, we note that 

and 

The simplification in (12) also holds when A - a1 is replaced with e - i e (A  -- a I ) .  
It is also easy to show that the quadratic function IIA - aIll$ is minimized 

for a = m, 7L where tr(A) is the trace of A. If t r (A) = 0, we shall say A is a 
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centered matrix. Centered matrices such as 

and 

will be denoted with a tilde accent. Finally, we give a lemma that relates the 

norm of the shifted matrices A - a1 and A - a1 to the norm of the centered 

matrices A and A, respectively. 

Lemma 2.1. For any n x n matrix A and complex scalar Q, 

(15) 

ProoE First, we relate the norm of A to the norm of A. For tr = q, we have 

If we now replace A with A - a1 on the right-hand side of (17) and (24), we 

ob t air1 
tr(A - crI) Itr(A - d)I2 

n 7 (25) IIA - CYIII$ - IIA - 01 - 
I 1  
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and the second term can be simplified via 

(26) 
[tr(A) - t r (a I ) ]  

.. . . ... . . .- 
t r (A - C Y ~ )  

/ A  - aI - IllF = /lA - aI - .----- 
n n 

to obtain (15). The second equality (16) can also be proved in this manner. 

3. Bounds for eigenvalues and departure from normality 

We now present several bounds for 11A11$ and dep;.(A), along with their important 

properties. ,4n upper bound for 11A11; is given by Kress, de Vries, and Wegmann 

in [SI. Moreover, the authors exhibit nonnormal matrices for which the bound 

is sharp, and prove that the upper bound is the best possible in terms of I lAl l~  

and IIAHA -- A A H I I ~ .  

Theorem 3.1. [9, Tlirn. I ]  For nonnormal A there holds 

with equality i f f  
A = y(vwH + rwv H ), 

where y is a nonzero complex scalar, 0 5 T < 1 is a real scalar, and where v, w 

a.re orthonormal vectors. 

A practical lower bound for 11A11:7 [SI, 

comes from the triangle inequality applied to  the eigenvalues of A2: 
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The lower bound is sharp iff 0 and the eigenvalues of A are collinear. Moreover, 

the bound is cheap to compute since only the diagonal of A2 is needed. This 

diagonal can be computed with (at most) m multiplications, where m is the 

number of nonzeros in A. 

The lower hound [17] and the upper bound [5] for dep:7(A), 

can be obtained by substituting (30) and (32) into (1). The upper bound in (35) 

is sharp iff 0 and the eigenvalues of A are collinear, and it can be computed with 

(at most) 2n2 multiplications. The lower bound is an O(n3) computation that is 

sharp if A is normal, or satisfies condition (31). This lower bound inherits the 

properties of the upper bound (30) via (1); thus, it is the best possible in terms 

of IlAll~ and 1IA"A - AA"~IF. 
In 53.1, we will strengthen the lower bounds for depg(A) and 11A11$ in ( 3 5 )  

and (34). In 53.2, these improved lower bounds will be substituted into (3) 

and (l), respectively, to obtain tighter upper bounds for 111211$ and depg(A). 

3.1. Improved lower bounds 

The value of dep,(A) is invariant with respect to the shift parameter a; see (10). 

We now show how this free parameter can be used to maximize the lower bound 

in ( 3 5 ) .  For normal matrices, the lower bound 

(36) 
is zero for any choice of a. For nonnormal matrices, however, there is a unique 

value of cy that maximizes (36). In particular, by substituting (15) into (36), we 

seek to  maximize the function 

where 

1 /2 
f ( z ( a ) )  = (p' 4- z2 (a ) )  - [ (p  + 2 ( a ) ) 2  - h-'] 

2- (37) 

2 Itr(A - aT)I2 
z (cy) = 

n 
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and 

By solving 

1 - ( p 2  + 2)  [(p + z")" - 
dz 2 

we find that the unique solution z = 0 is a global maximum since 

By solving 
Itr(A - aI)I 

.(a) = = 0, 
n1/2 

we find that the lower bound is maximized €or cy = *. 
Lemma 3.2. For any n x n matrix A ,  

t r p )  where the lower hound is maximized for a = ----i - . 

Proof: The lemma follows via (37)-(42). m 

An improved lower bound for 11A11$ is less troublesome to obtain. 

Lemma 3.3. For m y  n x n matrix A ,  

Proof 

eigenvalues of A 2 ,  

As in (33)-(34), we begin by applying the triangle inequality to the 
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The lemma is obtained by substituting this lower bound for llhllg into 

Note that (46) i s  the same as (16) with cy = 0. 

3.2. Improved upper bounds 

For the 11A11& upper bound, we have 

Equation (15), with cy = 0, shows that 11A11$ - 11.111: simplifies to Itr(A)I . 

Lemma 3.4. For any n x n matrix A,  

where A = A - * I .  

For the de&(A) upper bound, we can substitute \ l i l lg  2 ltr(A2)1 into 

dep>(A) = dep$(i)  = llAll$ - IlAlIg ( 5 0 )  

to obtain the following lemma. 

Lemma 3.5. For any n x n matrix A, 

dep$(A) 5 ll All;, - l tr( i2) I ,  

where A = A - * I .  

4. Main results 

In this section, we establish the significant properties of the four bounds given 

in $3.1 and $3.2. To begin, recall that, the lower bound for dep&(A) and, in 
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turn, the upper bound for 11A11;. were optimized via the complex shift Q = F. 
Moreover, the latter derivation (47)-(48) shows that if the dep$(A) lower bound is 

sharp then so is the llAlli7 upper bound. The depg(A) lower bound in (35) is sharp 

for any nonnormal matrix that satisfies condition (31). 'I'he improved dep;?(A) 

lower bound (43) is unaffected by complex shifts; thus, it is sharp for 

for any choice of the scalar 0. Note that we have 

and that the shift N in (43) cancels the arbitrary shift CT. The improved bound 

is also imaffected by rotations. We summarize the above results as follows. 

Theorem 4.1. For any n x n matrix A, 

tr A )  where A = A - &-I. The bounds are sharp iff 

where y, r and 0 are complex scalars, 0 5 0 < 27r, and where v,  w are orthonormal 

vec t ors. 

We will now prove that the other two bounds (44) and (51) are sharp iff the 

eigenvalues of A are collinear in the coIriplex plane. Before doing so, we must 

establish a natural measure of the noncollinearity of matrix eigenvalues. One 

approach is to define "departure from collinearity" as 

depcol(A) := ldkI2, (57) 

where l d k l  is the perpendicular distance from Xk to the total least squares (TLS) 
fit of the eigenvalues of A. Recall that a TLS fit minimizes the sum of the squares 
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of the perpendicular distances from the points to the fitted line, and that / & I 2  
is the TLS error [6]. Given the definition (57), we find depcol(A) to be a sensible 

metric for quantifying departure from collinearity, especially since depcol( A) = 0 

iff A has collinear eigenvalues. 

A useful result concerning TLS error and departure from collinearity follows 

from [12, Thm. 2-21. 

- 1  Theorem 4.2. Given the complex numbers zk,  k = 1,. . . , n, let z = 
that 

zk so 

x zk = zk - 2. (58) 

The error for the total least squares fit is 

where I&( is  the perpendicular distance from Zg to the f i t .  

In the context of matrix eigenvalues, (59) yields 

1 
depcol(A) = - 2 ( l / i l l $  - ltr(A2)l) . 

(59) 

If we arrange (60) as 

and substitute into (46) and (SO), we obtain 

and 

dep;(A) = IlAll; - (\tr(A2)1 + 2 depcol(A)) . ( 6 3  

Note that the bounds in Lemmas 3.3 and 3.5 are special cases of (62) and (63). 

Theorem 4.3. For any n, x n matrix A, 
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where 

in the complex plane. Moreover, 

= A - * I .  The bounds are sharp iff the eigenvalues of A are collinear 

iff the eigenvalues of A are relatively close to  being collinear 

Proof: The bounds (64)-(65) are obtained from (62)-(63) by dropping the 

term 2 depcol(A). These hounds are sharp iff depcol(A) = 0; that is, iff the 

eigenvalues of A are collinear. Finally, the bounds are good estimates when the 

neglected term depcol( '4) is relatively small. 

5 .  Discussion and summary 

To the best of our knowledge, a priori hounds for 111111; and depg(A) fall into 

one of two distinct categories. The bounds in the first category are based on 

computing the Frobenius norm of the commutator AHA - AAH [3,4,8,14,17]. The 

bounds in the second category are based on inequalities that are sharp iff Ihe 

eigenvalues of A have a certain alignment in the complex plane [5,13]. For each 

of these categories, we now give the best available bounds known to us at this 

time. 

Bounds based on IIAH,4 - AAHII~ 
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REMARKS. The lower bound (68) is the counterpart to the upper bound (71) of 

Henrici [8, Thm. 11. The bounds (69)-(70) are given in Theorem 4.1. Note that 

Sun's lower bound (35) is the best possible in terms of IIA"A-AA"IIp and IlAllF; 

thus it is stronger than the bounds in [3,4]. The bound (70) iInproves upon Sun's 

lower bound, and it is also stronger than the one in [14]. 

Bounds based on eigenvalue alignment 

RXMARKS. The new bounds (72)-(73) are sharp iff the eigenvalues of A are 

collinear. In contrast, note that for a = q, we have [13, Thm. 3.21 

and its (unsimplified) counterpart 

Unfortunately, the bounds (74)-(75) are sharp only when the eigenvalues are 

horizontally or vertically aligned in the complex plane. Furthermore, the bounds 

in (72)-( 73) are half as expensive to compute as those in (74)-( 75). Despite these 

shortcomings, the latter bounds are useful and have some noteworthy properties. 

In particular, the bounds in (72)-(73) and those in (74)-(75) yield the same 

values if A is a real matrix. We also remark that (74) explicitly bounds matrix 

nonnormality in terms of the nonsymrnetry of A. 

Besides their practicality, the estimates (72)-( 73) are also appealing bccause 

they sometimes enable us to precisely compute IlAll$ and dep>(A) €or matrices 

with extremely sensitive eigenvalues. For example, consider the n x n matrix 

Gn = UHWnU (76) 
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where Gn is dense and unitarily similar to the Wilkinson matrix [lS,  pg. 901 

wn = 

n n  

n - 1  n 

2 n, 

1 

(77) 

h 

where n = 20. The eigenvalues of Wn are real, and the interior eigenvalues are 

notoriously difficult to compute for n >> 20. Thus, we cannot directly com- 

pute llAll$ for, say, W50 due to  these eigenvalue sensitivities. However, we can 

accurately obtain 111211; and dep&(A) for E 5 0  via (72)-(73) since the sharpness of 

these formulas (modulo rounding errors) only depends upon eigenvalue collinear- 

ity - not eigenvalue sensitivity. 

To summarize, we have developed several new and improved bounds for 

depg(A) and 111111$, and described their significant properties. We have also 

grouped these and the other known a priori bounds for dep$(A) and \\All; into 

two categories. Within each category, we have given the best available bounds. 

The bounds based on IIAHA - A A H l l ~  have an important property: they reduce 

to zero if A is normal. Unfortunately, such bounds are often weak, and impracti- 

cal to  compute if A is large. On the other hand, the bounds based on eigenvalue 

alignment are often good estimates (e.g., [13, Table l]), and they are practical 

to compute if A is large and sparse. A minor drawback is that these bounds 

only reduce to zero for normal matrices with collinear eigenvalues (e.g., Hermi- 

tian and skew-Hermitian matrices). Theorem 4.1, Theorem 4.3 and [8, Thm. 13 

describe the nonnorinal matrices for which the bounds in (68)-(73) are sharp. 

The significance of our results are described in $1. 

-. 
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