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A Paragon MP node consists of three 50 MHz i860XP processors, memory, and 
communication hardware (Figure 2.1). The nodes are interconnected by a 2-D 
mesh with 175 MB/second communication channels and a per-hop latency of only 
40 ns. The nodes are logically subdivided into service nodes, compute nodes, and 
1 /0  nodes (Figure 2.1). The service nodes appear as a single host and support 
time-sharing through the OSF operating system. The compute nodes run OSF 
or SUNMOS. The 1/0 nodes are connected to local networks and arrays of disks 
(RAID) and provide a UNIX file system, swap/paging space, and a Parallel File 
System (PFS). 

C o r n .  channel (25 us, 175MBs) 

50 MHz i86Oxp 
16 KB cache 

400 MB/s bus 
Mesh interface 

Comrn. CPU 
Node board 

Figure 2.1: M P  node board. 

Each i86OXP has its own 16 KB data and instruction cache, and each node 
has at least 64 MI3 of memory. The bus interconnecting the processors, mesh- 
interface, and memory operates at 400 MB/sccond. The 50 MHz i86OXP is a 
super-scalar architecture capable of a peak 75 Mflops (double precision). Typical 
FORTRAN performance is only 11 Mflops ([2]). Early designs of the MP proposed 
five CPUs with L2 cache, but cost-performance analyses dictated the three-CPU 
configuration and no secondary cache. Intel's analyses showed the bus bandwidth 
to the local memory would not support five CPUs efficiently. Also the three- 
CPU configuration provided more board real-estate for memory than the five- 
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CPUS 
Dflda-1 

on one, two, and three CPUs. The vector lengths are too long to be contained 
in the 16 KR cache, and speedups are sublinear due to bus contention. (‘l’he C 
inner-product for cacheable vectors gave linear speedups with a data rate of 88 
MB/second per CPU.) 

1 2 3  Sum 
251 251 

m e e m o r v  bandwidth (MBS? 

Table 3.1: Memory bandwidth consumption. 

We compared the MP shared-memory node board with other shared-memory 
multiprocessors. We compared thread and fork creation, lock and unlock, barri- 
ers, and concurrent update of shared variable (no locks). The i86OXP has no hard- 
ware “atomic” operations, SQ locks are implemented by software. Table 3.2 com- 
pares single processor performance of the 50 MHz i860XP with single processors 
on the KSR, BRN, and Sequent. The KSR is ring-based shared-memory multi- 
processor using a 20 MHz custom processor. The Sequent Symmetry is bus-bascd 
shared-memory multiprocessor using 16 MHz 386 processors. The BBN TC2000 
is a cascaded-switch based shared-memory multiprocessor using 20 MI32 M88000 
processors (see Appendix B). The performance of the i860XP and the Paragon 

fork/ wait 50,000 108,000 44,000 14,000 
thread/join 1,191 130 79 26 

I lock/unlock 11 13 I 3 1  10 
10 I barrier 39 I 11 I 

1.4 -- 0.41 I 1.3 I 1 hotspot 

Table 3.2: Single processor performance of shared memory. 

thread library is comparable to the other iniiltiprocessors. The thread/join times 
are slower, but the Intel programming model is such that threads are usually only 
created once at the start of the application. 

Table 3.3 compares the performance of three processors for an MP node 
hoard with three processors for the KSIt, RBN, and Sequent. The MY node 
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EY class A 
EP class B 

and one communication thread running concurrently for identical durations, the 
aggregate data rate was 177 MH/second. The communication thread garnered 31 
MU/second, and the p f ldq  thread achieved about 146 MBisecond. So the limited 
bus speed can slow both computation and communication. 

Table 3.5 surrrrnarizes speedups of the FORTRAN NAS parallel benchmarks 
on a Yargon MP (using two compute processors and one communication proces- 
sor) as reported by Intel in the Spring of 1995 (OSF R1.3). Speedups are relative 
to a Paragon GP (one compute processor and one communication processor). 
The class €3 versions represent larger problems (larger arrays or more iterations). 
The NAS results are consistent with the early results of OR,NL “grand challenge” 
applications on the Paragon MY. The material science parallel application real- 
ized a speed-up of 1.7 on the MP versus the GP. However, the shallow-water 
kernel showed little speedup on the MP, but that kernel is characterized by low 
data re-use. 

1.74-1.91 
1.94-2.00 

I Program ( 1  Speedup 

Table 3.5: Intel reported speedups of Pargon M P  verus GP for FORTRAN N A S  
Parallel Benchmarks. 

4. Message passing 

Our beta testing concentrated primarily on the shared-memory features of the 
MP, but we also re-evaluated message-passing performance and I/O. Most of our 
production research is conducted using Intel’s OSF on the compute nodes, hut we 
also continue to evaluate SUNMOS. Our communication tests uncovered several 
performance anomalies. Data rates were poor if message sizes were not a multiple 
of 32 bytes, and data rates of one-to-n communication degraded as n increased. 
Intel corrected the anomalies in subsequent software releases. Message-passing 
performance (latency and bandwidth) improved with each release of software. 
For nearest neighbor communication, we are currently measuring latencies of 25 
to 30 ps for zero-length messages, and data rates of nearly 171 MB/second for 
one MB messages. These numbers were measured under OSF 1.0.4 R1-3 and 
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NORMA IPC communication. IPC is used by OSF to cornrnunicate between the 
cornputc nodes and 1 /0  nodes. The TPC communication is in turn transported 
by the Paragon message passing hardware and software. Using 2 MB records to 
64 1/0 nodes, a single MP node achieves an 18 MB/sccorld read rate and a 36 
MB/sccond write rat,e (Figure 4.2). Figure 4.2 also shows that the NORMA IPC 
data rate between adjacent MP nodes peaks at about 45 MB/second, and the 
read and write 1/0 data rates follow the same basic curve as the IPC performance. 
The IPC performance probably limits 1/0 performance, since the IPC data rate 
is well below the 171 MR/second data rate available from the underlying mesh. 

7-p 7-- 3 -  I- __ 

NORMA IPC rate - 
45 

40 

35 
h 
u) 9 30 

2 

v 
al 5 25 

20 

15 

10 

5 

PFS write rate 

PFS read rate 

Figure 4.2: Paragon M P  N O R M A  IPC rate and PE’S r.ead/write data rates. 

Figure 4.3 shows aggregate read data rate using 16, 32, and 64 I/O nodes, 
with from 1 to 128 compute nodes doing concurrent 1/0. Aggregate read data 
rates of 95 MB/second are achieved with 64 1/0 nodes and 128 compute nodes, 
an improvement over earlier results ([4]). The PFS tests use 64 KR blocks, and 
each compute processor reads a 32 MB section of a file. Our PFS tests use the 
MBECORD mode of gopen(),  and open and close times are included in the 
t imings. 
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than two microseconds, and a single channel of the switch has a bandwidth of 
40 MRs [6]. The architecture could be used with other memory management 
policies [5]. Compiles on the BBN were done with -0 -1us. LINPACK 100 x 100 
double-precision on a single processor was 1 .O Mflops using -OLM -ailtoinline. 
Dhrystone (v1.0) was 19.4 Mips. 

Kendall Square 

The Kendall Square uses custom-desigrred 20 MI12 processors that share memory 
on a one gigabyte per second ring. Each processor has a 256KB cache, and the 
global memory is managed as a cache. A single processor generates a maximum 
of 40 MBs against the ring. LINPACK 100 x 100 double-precision on a single 
processor was 15 MAops [3]. 

Sequent Symmetry 

The 26 processor Sequent Symmetry locatcd at ANL is based on 80386/387 pro- 
cessors (16 MHz) with a Wcitek 3167 floating point co-processor. Each processor 
has a 64KB cache, and 32 MIB of memory is shared by all processors on a 54 MI3s 
bus. The maximum configuration is 30 processors. The processors run Dynix 
3.1.2, and compiles were done using -0. LINPACK 100 x 100 double-prccision on 
a single processor was 0.37 Mflops [l]. Dhrystone (v1.0) was 3.6 Mips. Processor 
4.8 MBs versus a 26 MBs bus. 
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