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ABSTRACT

A numerical code GLOSI [Global and Local One-dimensional Solution for Ion cyclotron
range of frequencies (ICRF) heating] is developed to solve one-dimensional wave equations
resulting from the use of radio frequency (RF) waves to heat plasmas. The code uses a finite
difference method. Due to its humerical stability, the code can be used to find both global
and local solutions when impo}sed with appropriate boundary conditions. Three types of
boundary conditions are introc%uced to describe wave scattering, antenna wave excitation,
and fixed tangential wave magnetic field. The scattering boundary conditions are especially
useful for local solutions. The antenna wave excitation boundary conditions can be used to
excite fast and slow waves in a plasma. The tangential magnetic field boundary conditions
are used to calculate impedance matrices, which describe plasma and antenna coupling
and can be used by an antenna code to calculate antenna loading. These three types of
boundary conditions can also be combined to describe various physical situations in RF
plasma heating. The code alsd includes plasma thermal effects and calculates collisionless
power absorption and kinetic energy flux. The plasma current density is approximated by
a second-order Larmor radius expansion, which results in a sixth-order ordinary differential

equation.







1 INTRODUCTION

The experimental success in heating plasmas on the Tokamak Fusion Test Reactor
(TFTR)[1] and the Joint European Torus (JET)[2] with waves in the ion cyclotron range
of frequencies (ICRF) has stimulated interest in theoretical models for calculating global
and local wave fields and power deposition profiles for tokamaks. There are many one-
dimensional (1-D) numerical cojdes[3—9] which employ various numerical algorithms to find
either the global or local solutidns. The global solutions are usually solved in a region span-
ning from a conducting wall to another conducting wall with an antenna and a plasma in
between, whereas the local solutions are often solved in a thin layer covering a resonance
or a mode conversion to obtain the so-called scattering matrix. In application, we often
find that a numerical code for| any of these types of regions with very flexible boundary
conditions is badly needed. For instance, in studying fast wave poloidal flow generation in
an edge plasma, a code is needed to solve the sixth-order ordinary differential equations
(ODEs) locally in a low pla.smgl density region[10]. In studying plasma loading for a wave
launching antenna, a code is ne}eded to calculate plasma impedance matrices[11]. In study-
ing electron heating and current drive by mode converted slow waves, a code is required to
solve the ODEs in a region coﬁ'ering a mode conversion layer and a cutoff away from the
mode conversion layer[12]. Thus, it is desirable to have a code which enables us to find a
solution within any interval an(ji allows various physical boundary conditions. Recently, we
developed a 1-D numerical code GLOSI (Global and Local One-dimensional Solution for
ICRF heating), which, due to iits numerical stability, can find both glebal and local solu-
tions when appropriate boundai;ry conditions are imposed. The code uses a finite difference
method to solve 1-D wave equations resulting from the use of radio frequency (RF) waves
to heat plasmas. The plasma icurrent density is approximated by a second-order Larmor
radius expansion, which results in a sixth-order ODE.

The local solutions in many codes are found from a fourth-order ODE obtained from
the sixth-order ODE by assuming that the parallel electric field E, is small and can be
neglected or treated as a pertiubation[& 4, 6, 13]. This is a good approximation in the
region with high plasma density because there are always enough electrons to short out the
parallel electric field E,. However, GLOSI is developed to find solutions in any region, even
at the plasma edge, where the electron density is low and the parallel electric field may not
be small enough to be neglect{ d or treated as a perturbation. GLOSI always solves the
sixth-order ODE and allows the presence of a large parallel electric field E,.

Three different types of boundary conditions can be used in any combination to describe
various physical situations in RF plasma heating. These boundary conditions describe
wave scattering, antenna wave excitation, and fixed tangential wave magnetic field. The
scattering boundary conditions are especially useful for local solutions. The antenna wave
excitation boundary conditions can be used to excite fast and slow waves in a plasma.
The fixed tangential magnetic field boundary conditions are used to calculate impedance
matrices, which describe plasr‘na and antenna coupling and can be used by an antenna
code to calculate antenna loading[14]. The code also includes plasma thermal effects and
calculates collisionless power absorption and kinetic energy flux.

After appropriate boundary conditions are found for a physical situation, the finite
difference method is used to solve the ODEs. This approach is fully implicit and requires the
inversion of the complete finite hifference matrix in one step, including boundary conditions.

| 1



Such an implicit method does not suffer from a tendency of the evanescent wave branches
to grow exponentially[7, 15]. This method was successfully tested in solving the ODEs
globally[7], and its accuracy in solving a tunneling equation locally was detailed in Ref. [15].
The implementation of this method is very straightforward because there are standard two-
point boundary value ODE solvers available.

The organization of this report is as follows. In Sec. 2 we derive the wave equation solved
by the code. In Sec. 3 we list dielectric tensors for the plasma current density. Section 4
presents the three types of boundary conditions for local and global solutions, and Sec. 5
presents the power absorption and kinetic energy flux used in the code. In Sec. 6 we briefly
describe the numerical method used in the code. Section 7 gives several examples computed
by the code, and Sec. 8 concludes with a brief summary.

2 WAVE EQUATION

The code considers a perpendicularly stratified, 1-D slab plasma model of a tokamak
in which the equilibrium quantities are functions of the radial coordinate z only and the
external static magnetic field B is along the toroidal direction 2. The wave electric and
magnetic fields E and B are assumed to be small and with harmonic dependences of the
form, f(z)expli(kyy + k.z — wt)], where w/2x is the wave frequency, and k, and k, are the
poloidal and toroidal wave numbers. The code solves the wave equation,

2
w . .
~VxVxxE+ c—2E + twyg Ea Jo = —twpodext, (1)

where ¢ is the speed of light, ug is the vacuum permeability, Jex; represents the antenna
current, and J, is the plasma current for species o and approximated by a finite Larmor
radius expansion to the second order[7]:

Ja = (cieo) { (9 + ) +12) B [ +02) - T
+ 88 (P +02], E)+aa (xff) gf)} (2)

All the susceptibility tensors in Eq. (2) are listed in the next section. With J,, from Eq. (2),
the wave equation (1) becomes

1 OE
—— © 4,0, ,2 mL @ .2
kngVxE + {(e +ut + v ) +[ + ]U 97
3 OE i
Z |V £ @ @. %=y L
+ 52 ([c—: + 1 ] ) + = ( 8:1:)} weo-]exs, (3)
with kg = w/c,
9 = T4 EX(O) (4)
(2 = ZX(l 2) (5)
plt?d = ZPE}’Q), (6)



where Z is the 3 x 3 unit matrix. In (z,y,2) coordinates, we can write

1 VxVxE=|A —6—2~+B —8—-+C -E
k2 T\ T 08 ’
where
1 60 0 O
Ay = Z 01 0],
610 01
oo ik ik,
B = = —iky, 0 0 ,
0 gk, O 0
and
2 2
1 —k;,—k; O 0

Co= = 0 —k2 kyk,
0 koky —k2

By using Eq. (8) we can rewrit}e the wave equation [Eq. (3)] as

_5% (p.%%.{_Q-E) +R-%’§’+S'E:‘€‘E‘Z‘)‘Jextv
with
'P = .A0+€(2),
: [ 4] |
R = B+ [e(l)+u(2)]U,
S = Co+eO+pW 43,

[ S—

Equation (12) is a set of thre
first-order ODEs, we first deﬁn;e

| ox

and then Eq. (12) becomes

a[e]l [ -»t-@ P B
| F| | RPY0-8 -R-P||F|T| (~ifeow)Texs

(8)

(10)

)
)
15)
)

second-order ODEs. To convert Eq. (12) to a set of six

(17)

] , o (18)

where the superscript “—1” designates the matrix inversion. Equation (18) is a set of six
first-order ODEs and requires| six boundary conditions to become a well-posed problem.

The various boundary conditions are detailed in Sec. 4.




3 DIELECTRIC TENSOR

We approximate the plasma current J, for each species @ by a finite Larmor radius
expansion to the second order, Eq. (2), where (dropping subscript «)

X9 X0
XO =1 50 5% o |, (19)
0 0 Y
[0 0 p.(rlz) ]
KW=1 0 o AP, (20)
LAY A 0]
[ Tﬁ) 'ra(ci) 0 |
72 = Tﬁ) 7'155) 0 ) (21)
i 0 0 Tg) ]
[0 o) ]
[X(1)+p(2)]U: 0 0 x|, (22)
0 0 0 |
0 0 0]
[x(”+ p(Z)]L_ o2 0l, (23)
X X o]
and
X2 Ko
X =12 K& o0 - (24)
0o o0 x?

The nonzero elements of the tensors listed below come from Jaeger, Batchelor, and
Weitzner[7], but several gradient terms are neglected. The justification for neglecting these
terms was discussed by Brambilla[16]. We first introduce the notation

wp

bt = %, (25)
w2

ro= ;‘g—goz—h (26)
2
w

rp = ’;%fgz(llv (27)

and{16]



where &, = (w — nQ)/k, v, Z.

dZ(£,)/dg,,. Here,  is the cycl

frequency, and vy, is the therm
We also define

Note that ¢, r, p, s, and d are r
by

as plasma temperature 7, — Ol
n, the nonzero elements of the tensors can be expressed as

By using the above notatio

&

X

ey,

Cn

al speed.

- T~ B o

V5]

e

e

X

X =

'_Xzy

(

k

, = Z(&,) is the plasma dispersion function[17], and Z],
otron frequency with its sign of the charge, wy, is the plasma

1w? v}
o5 (—€0Zn), (28)
1w? v}
551 2 0énZns (29)
1 w? v}
5B Zn, (30)

(r+0)/2, (31)
(r—20)/2, (32)
(A + ) /2, (33)
Oon = An)/2. (34)

elated to the widely used Stix notation[18] for a cold plasma

= 14 Lo, (35)
= 1+ Ea:ra, (36)
= 1+ }a:pa, (37)
= 1+ isa, (38)
= X (39)

(1) =

L

2
0

> d,
[44

X = s, (40)
"'Xz(/(:)c) = —id, (41)

= p, (42)
(" ;Z%) (¢<1 — 1), (43)
= (-35) @6 - 1=, (44)
) (o2 — 01), (45)



1
Xy(fy) = (p) (02 — 301 + ZAO)a (46)
0
i
X&) = —x;(f‘?:( k0>(52—251) (47)
1
@ = () e m—2m) 2
DY ) (@
k. déo
o) = o= () Gt (50
s, 2k
o5 = pid == (k:’) dm+<k—§y> (71 =20, oy
2o Qdo
1 1
O %2 [ - <61~62)+2k 7;] kyxy (52)
7—1(:5) - _7-(2)
d261 Qd61 2
= Q_k% [ (Ul o2) — 2k “Ex—jl —ky a(lfy)’ (53)
Gl R R
1\ [d2x Qdm
@ _(LYjdm 4 ——= ~ k2x?
Taz (2kg)[dxz by g (T-1 =) + 2y da,-] RyXaz (55)

This set of susceptibility tensors is equivalent to that in Ref. [16] except for a slight difference
in the drift current [i.e., terms in 7(2) containing a factor of k,(Q/w)].

4 BOUNDARY CONDITIONS

The code allows three different types of boundary conditions at each boundary. The
first type is the scattering boundary condition that specifies which waves go out and which
waves come in. This boundary condition is especially useful for local solutions. The second
type is the plasma wave excitation from an antenna in vacuum. The solutions for the wave
equation in vacuum can be solved analytically. The analytical vacuum solutions can be
used to construct the boundary conditions at the plasma and vacuum interface. The third
type is to impose a fixed tangential magnetic field in the vacuum, and is used to calculate
the impedance matrix for antenna and plasma coupling.

Equation (18) is a set of six first-order ODEs and requires six boundary conditions. Since
the ODEs are homogenous, the amplitudes of waves are determined up to a normalization.
In the case of antenna wave excitation, the normalization can be the power emitted by the
antenna. In the cases of scattering boundary conditions, the normalization of E, = 1 at one
boundary can be used. In the following subsections, we discuss the three types of boundary
conditions in detail.



4.1 Scattering Boundary Conditions

There are many possible scattering boundary conditions. For example, if we have a
fast wave incident from the low field side, then on the low field side there are incident
and reflected fast waves and ow‘utgoing (in terms of total energy flux defined in Sec. 5) ion
Bernstein and shear Alfvén waves. On the high field side, there are a transmitted fast wave
and outgoing ion Bernstein and{ shear Alfvén waves. A few other variants include a fast wave
incident from the high field side, or an ion Bernstein wave (IBW) incident from the low field
side or high field side. It is even possible to have a set of scattering boundary conditions
to describe the transmitted fast wave reflected from a perfectly conducting wall[19]. In our
code, we can also impose a set. of scattering boundary conditions at one boundary and the
antenna wave excitation or the tangential magnetic field boundary conditions at the other
boundary. Rather than try to ‘hst all variants of the scattering conditions, we describe the
scattering boundary conditions for a fast wave incident from the low field side in detail.
Other variants can be obtained in the same fashion without any difficulty.

The asymptotic solution for r away from a resonance can be expanded in terms of

Wentzel-Kramers-Brillonin (WKB) modes. We assume that the WKB mode is

y;J [ 11:3 ] =Y exp [z/ k(z') dx'] , (56)

where Y is a vector with six elements and has weak dependence on z. Substituting y into
Eq. (18), we obtain a charactefistic equation,

1.9 -kT Pl
det [ RF'P l.g-8 -’R-P"1—kI] =0 (57)
The characteristic equation gives six eigenvalues, k; (i = 1,2,...,6). Each eigenvalue k;

has its corresponding eigenvec‘for, Y, = (Yii, Yai, Yai, Yai, Ysi, Ye:)?, and the superscript T
designates the matrix transpose. We assume that k; and ko are fast waves traveling in the

—z and +z directions, k3 a.nd‘ k4 are IBWs with energy fluxes flowing in the —z and +z
directions, and ks and kg are shear Alfvén waves with energy fluxes flowing in the —z and
+2z directions.

On the high field side of the mode conversion layer, we expand the solution at z =z~

as

6
y=307Y;, (58

where Y are the eigenvectors corresponding to eigenvalues k; , and the exponential factors
exp(i [ k; dz') are absorbed into the unknown expansion coefficients C;. For a fast wave
incident from the low field side, we have a transmitted fast wave k7, an IBW having an

outgoing energy flux k3, and ai shear Alfvén wave having an outgoing energy flux kg on the
high field side. To eliminate the other three unphysical modes k5, ki, and kg, we simply
set Cy =Cy =Cg =0in Eqw (58). For Eq. (58) to have nontrivial C[", C5, and Cy, we

obtain from Eq. (58),

det =0, (59)




Y2 Yy Yy Yo

det | Y3 Yat Ta Yas ) _ 60
ya Yy Y Y (60)

and
[vs Y5 Ya Y5 ]
yo Yy Yg Y
det e = | =0, 61
v Yo Y Ve "
| 6 Y51 Yoz Ye5 |
where y1, Y2, - -+, Ys are the six elements of y.

On the lower field side of the mode conversion layer, we have incident and reflected fast
waves ki and k;’ , an IBW having an outgoing energy flux k], and a shear Alfvén wave
having an outgoing energy flux k. We expand the solution at z = z7 as

6
y=2 G/ (62)
1=1
To eliminate the modes with incoming energy fluxes k3 and kJ, we set C; = C& = 0 in
Eq. (62). For Eq. (62) to have nontrivial C}", Cy , Cf, and Cg, we obtain from Eq. (62),

yo Yo Yob Yoi Yap
det | ys Y5 Yib Yi Yif | =0, (63)
+ oyt

and

det | w1 Y, Y Y Y | =0, (64)

ye Yo Yoo Yei Yl

We solve the set of first-order ODEs (18) with the boundary conditions given by Egs. (59)
~(61) at z = =z and Egs. (63) and (64) at z = z*. A normalization E, = 1 is used at one
of the two ends. This is a well-posed two-point value problem: six first-order ODEs and
six boundary conditions. Here, ~ and z* are chosen far enough from the mode conversion
layer so that the asymptotic WKB expansion is valid. In the code, the WKB eigenvalues are
numerically calculated from Eq. (57) by an eigenvalue solver, and each mode is numerically
identified.

4.2 Antenna in Vacuum

Plasma waves can be excited by an antenna located outside the plasma. In this sub-
section we consider how to impose the boundary conditions at the plasma and vacuum
interface = a with an external current source (an antenna). We assume that there is an
external current source (antenna),



outside the plasma at z = d
component, i.e., Jg = Joy¥ +
directions, respectively. The
current Jy, excites an IBW in
wall is located at z = b > d.

> a. We assume that the antenna current has no radial
Jo:2, where ¥ and 2 are the unit vectors along y and z
toroidal current Jy, excites a fast wave, and the poloidal
the plasmal[5]. We also assume that a perfectly conducting

With a perfectly conductin‘g wall at £ = b, the vacuum solution for region z € (d, ] is

E, = Dpsinh[A(z —b)], (66)
E, = Dssinh[A(z — b)), (67)
E, = —(i/X)(kydE,/dz + k,dE,/dz), (68)

where X = (k2 +k2 — k)12 for }
Equations (66) and (67) satisfy
E,(b) = 0. The vacuum solutio

Ey
E,

2 +k2—k§ > 0and X = i(k§ — k2 —k2)Y/? for k2+k2 k% < 0.
y the perfectly conducting wall boundary condition E,(b) =
n for region z € (a,d) is

C\ sinh[A(z — b)] + Ca cosh[A(z — b)],
Cs sinh[A(z — b)] + Cq cosh[A(z — b)].

(69)
(70)

To find the connection conaition at ¢ = d, we integrate the three components of wave

equation (1) over z € (d~,d")

and obtain
—iky[By) = ik [E:] = 0, (1)
[dE,/dz) — ik [E)] = —ipowdoy, (72)
[dE./dz] —ik.[E;] = —ipowdy,, (73)

where [f(z)] = f(dt) — f(d™)

antenna, we need four connecti
V-B=0:

[Ba
From the above four equations
[£y]

[dE,/dz]
[dE,/dx]

Substituting Egs. (66), (67), (6

with a; = sinh{A\(d — b)] and «

To connect the vacuum solu/tions on the two sides of the
on conditions. The other one can be obtained by integrating

| = (1/w) (ky[E] — k- [Ey}) = 0. (74)

and Eq. (68), we obtain the connection conditions at z = d,

(E.] =0, (75)
72 = ipowJos (kyks /k5) — Joy (k2 — N?)/K3), (76)
3 = ipowlJoy (kykz /k5) — Jos (k2 — X°)/K5). (77)

9), and (70) into the above connection conditions, we obtain
Cy = Doz —, (78)
Cy = Dia, (79)
Cy = Dzag—1s, (80)
C4 = Dgal, (81)

2 = cosh[A(d — b)].
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At z = a*, we obtain from Egs. (69) and (70),

Ey(a™) = Cif+ Cafa, (82)
E.(a%) = Csf+ Cafa, (83)
dEy(a™)/dz = XCif2 + Caf), (84)
dE,(aT)/dz = XC3Bs + Csf), (85)

with 8; = sinh[A(a — d)] and B, = cosh[A(a — d)]. Substituting C;, Ca, C3, and C4 from
Egs. (78)-(81) into the above equations and further eliminating D; and D3, we obtain,

dE,(a%)/dz = anEy(a™)+ aia, (86)
dE,(a")/dx = anE.(a")+ ag, (87)
with
air = ag1 = MNa1f + a282)/(a2f1 + a15), (88)
a1z = MG — B3)arye/ (b + 1), (89)
azg = A(BE — B3)orys/(e2f + a1 fe). (90)

Equations (86) and (87) are for the vacuum side of the plasma and vacuum interface. To
find the boundary conditions for the ODE at the plasma side of the interface x = a™, we
integrate the ODE (12) over region z € (a~,a") and obtain

(F+R'E)|x:a— = (F+R‘ E)lz:a'h (91)

where no presence of any external surface current is assumed at the plasma and vacuum
interface. On the vacuum side (z = a*), we have

—i(kyEy + k. E.)

dE,/dx —ik,Ey |. (92)
dE, [dz — ik, E,

(F +R- E)lz=a+ = 79
kO

Substituting Eqs. (86) and (87) into the above equation and using Ey(a™) = Ey(a*) and
E,(a”) = E,(a%), we can write the boundary conditions (91) at z = a™ as

(R—R1)-E+F =1, (93)
where .
1 0 —iky —ik,
Rl = E—i 0 (]_ - k;/AQ)all "(kykz/Az)an ’ (94)
010 —(kyk:/A%)a1y (1 —k2/X%)ay
and
1 0
01 (1 —kZ/X%)ag — (kyk,/X*)a1z



Equation (93) is imposed on the
To see the physical meaning

x = a are vacuum. Then, the z-

and E,(a”) = E.(a™). The y- a

field: By(a™) = By(a™) and I

sixth-order ODE in a plasma, b

condition does not cause any pr

and temperature, we find that

still lead to the continuity of t

becomes nontrivial. This additi
well posed.
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ODEs (18) at ¢ = ¢~ for antenna wave excitation problems.
of Eq. (93) or Eq. (91), let us first assume that both sides of
component of Eq. (91) becomes trivial if Ey(a™) = Ey(a™)
nd z-components give continuity of the tangential magnetic
3.(a”) = B,(a%). Since in vacuum Eq. (18), which is a
ecomes a fourth-order ODE, the lack of the third boundary
oblem. If the z < g side is a plasma with very low density
to the leading order the y- and z-components of Eq. (91)
he tangential magnetic field. However, the z-component
onal boundary condition ensures that the problem remains

4.3 Fixed Tangential B Boundary Conditions
|

In calculating antenna loading, it is conveunient to characterize wave propagation into
the plasma in terms of an effective plasma surface impedance matrix relating the tangential
electric and magnetic fields. The impedance matrix[14] at z

VAV AV
zZ= , 96
[ Zyy a2 ] (96)
is defined by
Ey (ZnBy + ZIQBZ)/IJ:O, (97)
E., = (ZuBy+ ZyB;)/m. (98)

To calculate Z, we need to solv

e the wave equations twice. First, we choose By =1 T and

B, =0 and solve E, and E, fr\om the wave equations and obtain Z1; and Zj;. Then, we
impose By =0 and B, =1 T and find Z;5 and Zs.

We impose more general boi

indary conditions,

By
B,

By07
BZOJ

(99)
(100)

at z = d > a in vacuum. The idea is to solve the vacuum solutions analytically first, and to
use the analytical solutions to construct a set of boundary conditions of the ODEs at the
plasma side of the plasma and vacuum interface. In region x € (a, d], we have the vacuum

solution for the wave equation dl), ’
E, = (1/NdEy(d)/dzsinh[X(z ~ d)] + Ey(d) cosh[A(z — d)}, (101)
E, = (1/XN)dE,(d)/dzsinh[X(z ~ d)] + E.(d) cosh[A(z — d)]. (102)
From Faraday’s law, we have
By, = —(i/w)(ik.E; —dE,/dz), (103)
B, = (i/w)(ik E; - dE,/dz), (104)

which, together with Eq. (68),
By() and Bzot

allow us to express dE,(d)/dr and dE,(d)/dz in terms of
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dE,(d)/de = (iwX*/k3) [(kyk:/X?)Byo + (K2/X* — 1)Buo] , (105)
AB:(@)/ds = —(wX/KG) [(kyke/X)Buo + (K}/X = 1)By] (106)
At £ = a™, we obtain from Egs. (101) and (102):
Ey(a,*) = (1/NdEy(d)/dzp:1 + E,(d)fBa, (107)
E.(a*) = (1/NdE,(d)/dzB + E.(d)fs, (108)
(109)
(110)

dE,(a*)/dx = dE,(d)/dzB; + \E,(d)B,,
dE,(a")/dz = dE,(d)/dzBs + \E,(d)p1,

with ;) = sinh[A(a — d)] and B, = cosh[A(a — d)]. Eliminating E,(d) and E,(d) among the
above equations, we obtain the boundary conditions at z = a™:

dE,(a*)/dz = anEy(a™)+ a2, (111)

dE,(a¥)/dz = a1 E,(a’)+ ag, (112)
where

ayn = ag = XB1/P2), (113)

aiz = (B3 — Bi/B2)dEy(d)/dz, (114)

ap = (63— B/0:)dE;(d)/dz. (115)

The boundary conditions for the ODEs (18) at the plasma side of the plasma and vacuum
interface z = a™~ are still given by Eq. (93), but a1, ai2, as1, and ayy are replaced by
Eqgs. (113)-(115).

5 POWER ABSORPTION AND KINETIC ENERGY FLUX

In an inhomogeneous plasma, the local power absorption P, at r by species o can be
defined as the time-average rate of change in the energy of the particles passing through r,
and is equal to[20]

Palt) = (1/2)Re [ dv/(@aB, #) -via(, v, ), (116)

where (...)y denotes the time average over t' fromt' = —ocotot' = ¢, r'(t') =rand v'(#') = v
at ¢ = t describe the particle trajectory, f, is the perturbed distribution function for species
«, and the asterisk indicates the complex conjugate. The right-hand side of Eq. (116)
represents the average rate of work done by the RF wave field on plasma particles. The
definition of P, [Eq. (116)] has some profound properties{21]: (a) it is positive definite if a
plasma is in local thermal equilibrium; (b) it agrees with the well-known weak damping limit
for a single mode in a homogeneous plasma; (c) it is consistent with Poynting’s theorem
[see Eq. (117) below]; and (d) superposition for different Fourier modes is valid in a plane-
stratified plasma.

It can be proven that the difference between F, and (1/2)Re(J7, - E) is the divergence
of a vector[21]. Thus, for a 1-D slab model,
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where K, is the kinetic energy

The total energy flux is the su

kinetic energy fluxes K,
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2)Re(J%, - E) = P, + 0K, /01, (117)

flux carried by coherent oscillation of particles in species a.
m of the Poynting flux S, = % - Re(E* x B)/2u0 and all

[4
where % is the unit vector along the coordinate z. From the Poynting theorem,
—_ —R E*-» J, | =0, 119
oz e ( 2:4 ) (119)
and Eqgs. (117) and (118), we obtain
o = 0. (120)

5.1 Power Absorption

In ICRF, power absorption
transit-time magnetic pumping
monics. Using the definition of t
up to the second order of the L

\/—60

-2 0e€
w

PO =

where B, = ~(1/w)(iE; + k,Ei
is ELD, the last term is electrc

2
— éDe

by electrons is due to electron Landau damping (ELD) and
(TTMP) and is determined by n = 0 electron cyclotron har-
he power absorption (116) to calculate the power absorption
armor radius, we obtain for electrons[16]

2
Ue 2 2
‘“%“’ | B.|

o (121)

. v )
265, |E:[* + 25 weo Im(B2 B;) +
€

z), and &ng = (w — ny)/k.ve. In Eq. (121), the first term
on TTMP, and the second term is a cross-term. ELD, the

cross-term, and electron TTME‘ come from the zero, first, and second order of the Larmor

radius expansion, respectively.

Note that P from Eq. (121) is positive definite.

For jons in ICRF, Landau Hamping and TTMP are very small and can be neglected,
and we need to calculate only harmonic resonance absorption. From Eq. (116), we find that

the power absorption due to the ion cyclotron resonance is[16]

2
w,
Py = [Zi‘lf sie S0 | B4 2
L+ YT ””’ eiRe {E} [2E! — B" + 2k E — K22E, + E
) Gaspie Tl e{ +[ v — B+ 2k EL -k, QF, + —)]}
€0 d2 wzz ’U2 2.
e (‘3’ Stoe B
2,2
€ Wp; v
+‘/;°k "JEE (——”—@gm )|E+|2 (122)
1

where Fy = E;+1E,, and the g
in Eq. (122) comes from the zex

»rimes represent derivatives with respect to 2. The first term
o-order Larmor radius expansion and is the same as that in
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a uniform plasma. The second term comes from the second-order Larmor radius expansion.
It can be shown that it reduces to the correct form in the uniform plasma limit{18]. Note
that the zero-order term in Eq. (122) is positive definite, but the second order term is not

explicitly positive definite. However, the total Pim should be positive within the error of
the finite Larmor radius expansion.
The power absorption due to the second-harmonic resonance is[16]

p® _ Ve “’pt v}

_¢e2
; s o ot i B, — ky By | (123)

which comes from the second-order Larmor radius expansion and is positive definite. The

power absorption Pi(Al) and Pi(_2) is negligibly small for ICRF since Pi(n) has a factor of

w(Z(&n:)] = /7 exp(—£5y)-
5.2 Kinetic Energy Flux

The kinetic energy flux is found by subtracting P, from (1/2)Re(J? - E). For electrons,

2
EQE’_psf’_e;,gOeIm Z(Eoe) (B, — iky Eg)Ep + 1Z’(§ge)E E; (124)

(0 — _
Ke 2 w

where the prime on the plasma dlspersmn function Z(§,,) indicates the derivative with
respect to its argument £,,. The kinetic energy flux corresponding to the ion cyclotron

absorption Pi(l) is
kY = 60_‘2’13)— Im [Z(£1,)(4E4+E\" + E\E* — E,E'* — 2k,EE")]
i = ’1‘6 041111 612)( 4L 4 W/ y b B
d 60 ’U "

The kinetic energy flux corresponding to the second harmonic absorption Pim is

2
€ 'U *
K = ”'§0 " §ozIm[ (62:) (B, — ky B4 ) EL] . (126)

Unlike P((,n), K™ has both Im [Z(éna)] and Re[Z(£nqe)]. Near the resonance, K™ is
dominated by terms having a factor of Im[Z(£,0)] = /7 exp(—£2,,), whereas away from the

resonance, K\ is dominated by terms having a factor of Re[Z(€nq)] = —(1/€na), which
has the same order of magnitude for n and —n. Therefore, we need to retain the terms
having Re[Z(£,4)] in KV and k52 , although the power absorption PEY and P2 s
negligibly small. The kinetic energy flux for n = —1 is

2 .2
€0 Wpi vf Eoi

.(_1) = =il > T AE _E'* E E* —FE_E.* 9 .
Kl 16 w le f——li m( £ + —Ay + kyE,.,E+)
d (€0 wpi v} o
(0SB S0 ) i (B EY).
& (16 w ) (BEL) (127)

The kinetic energy flux for n = —2 is
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P o whi v¥ Lo
; 8 w OJEy

Im(ELEY). (128)

However, the ion kinetic energy flux near the ion resonance is still much larger than the
ion kinetic energy flux away from the resonance. An estimate can be found from
Im[Z(0)]
ety Q;/k,v;), 2

|

which is usually very large for present ICRF experiments. Of course, this is a very rough
estimate, and a detailed study of their contribution to the kinetic energy flux needs to include
the radial spatial variation of the RF electric field and requires numerical computation. For
example, near a two-ion hybr%d resonance, Im[Z(£1,)] = v/mexp(—£%,) may not be very

small, and the spatial variatiqn of the electric field is strong due to mode conversion. In

that case, K 1-(1) may contribute significantly to the kinetic energy flux of ions.
1

|
6 NUMERICAL METHOD

Since solving ODEs (18) \*jvith six boundary conditions is a standard two-point value
problem, we use a routine (D(j)QGBF) in the Numerical Algorithm Group (NAG) Fortran
Library[22], which solves a general linear two-point boundary value problem for a system
of N real first-order ODEs. The set of N real ODEs are written in the form of
dy

— = F(z)y + G(a) (130)

in the range of z = (z7,z ") with the boundary conditions
Cy(z™) + Dy(zt) = 1. (131)

Here, F(z), C, and D are N x N real matrices, and y, G(z), and v are N-component
real vectors. To use routine DO2GBF, we convert the six complex ODEs (18) with the six
complex boundary conditions J;co a set of 12 real ODEs in the form of Eq. (130) with 12 real
boundary conditions in the form of Eq. (131).

The routine uses a finite difference method with a deferred correction. An absolute error
tolerance and an initial mesh heed to be supplied. The routine constructs a solution on a
mesh defined by adding more points to the initial mesh. The solution is chosen so that the
error is everywhere less than ﬁhe tolerance and the error is approximately equidistributed
on the final mesh. GLOSI is ;Written in Fortran 90, which is a new standard Fortran and
has many excellent features of portability and easy maintenance[23]. The code consists of

many subroutines and is majn;tained by the UNIX “make” utility.
|

|
7 NUMERICAL R‘LESULTS

In this section, we give se\;zera,l examples to demonstrate that the code can be used to
find local and global solutions{for RF plasma heating. The first example is a 1-D modeling

for the TFTR mode conversion heating experiment. We solve the wave equation locally
around the two-ion hybrid resonance. The second example is the JET relevant minority

ion heating. We solve the wave equation globally in a region spanning from one conducting
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wall to the other conducting wall. The last example uses the fixed tangential magnetic field
boundary conditions at the edge of the plasma and the scattering boundary conditions at
the other end to find the impedance matrix.

The first example is TFTR Shot 73774 performed in 1994. The fast wave excited by
an antenna is mode-converted to the ion Bernstein wave at the two-ion hybrid resonance.
The short wavelength IBW is absorbed by electrons within a small spatial interval, which
produces localized electron heating and current drive. The toroidal magnetic field By =
4.44 T at the major radius Ry = 2.62 m and the minor radius ¢ = 0.96 m. The plasma
consists of 50% 3He and 50% *He. The peak electron density is ng = 4.0 x 10!® m~3. The
peak temperature for electrons is 4.2 keV, and the peak temperature for ions is 2.8 keV. The
density and temperature profiles are assumed to be parabolic and Gaussian, respectively,

n(z) = no(l-z’/a?), (132)
T(z) = Tyexp(—3z2/a?). (133)

Figure 1 shows some of the results given by the code for the parallel wave number k, =
10 m~! and the RF wave frequency w/27m = 43 MHz. In calculation, we impose the scatter-
ing boundary conditions at £ = —0.31 m and z = —0.16 m with z = 0 at the major radius
of the tokamak. The boundary conditions at z = —0.16 m represent incident and reflected
fast waves from the low field side and outgoing ion Bernstein and shear Alfvén waves. The
boundary conditions at £ = —0.30 m represent a transmitted fast wave and outgoing ion
Bernstein and shear Alfvén waves. The solution is normalized by imposing £, =1 V/m at
z = —0.16 m. Due to the strong electron absorption, the mode-converted IBW is almost
fully absorbed before it reaches z = —~0.31 m. For this case, 18.2% of the incident fast
wave power is reflected and about 55.7% is transmitted. The rest of the power 26.1% is
absorbed by electrons, and ion absorption is negligibly small. Figure 1(e) checks whether
the solutions satisfy the Poynting theorem (119). It plots 8Sp,/0z, Re (E* - 3., J4) /2, and
0Spz/0x+Re (E* - 3, Jo) /2 vs z. Figure 2 shows the dependence of the power absorption,
reflection, transmission, and mode conversion coefficients on the parallel wave number k,.
The sum of the power absorption, reflection, transmission, and mode conversion coeflicients
must be equal to unity to satisfy the power conservation.

The second example is for the parameters relevant to JET minority ion heating. We solve
the wave equation globally between two conducting walls at £ = —1.35 m and £ = 1.35 m.
An antenna is located at 2 = 1.30 m. To excite a fast wave in the plasma, we take the
antenna current density to be in the poloidal direction, i.e., Jex = ¥(z — 1.30) A/m?. The
plasma has the minor radius a = 1.25 m and the toroidal magnetic field By = 3.45 T at
the major radius By = 2.96 m. The plasma consists of 90% deuterium and 10% hydrogen.
The peak electron density is ng = 5.0 x 10! m™3. The peak temperature for all species
is 3.0 keV. The density and temperature profiles are still given by Eqgs. (132) and (133),
respectively. Figure 3 shows some of the results given by the code for the parallel wave
number k, = 6.0 m™! and the RF wave frequency w/27 = 52.4 MHz. In Fig. 3, we only
show profiles within the plasma, but not the analytical solutions in the vacuum. Since
the plasma and the antenna are confined within perfect conducting walls, the total power
emitted by the antenna is fully absorbed by the plasma. The electrons absorb 4.0% of
the power, the major ion species deuterium absorbs 2.9%, and the minority ion hydrogen
absorbs the remaining 93.1%.
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The last example is to calculate the impedance matrix for TFTR for a pair of toroidal
and poloidal modes. We imposF the boundary conditions By =1 T and B, =0 or By =0
and B, = 1 T right outside the plasma edge of the low field side z = 0.96 m. We also
impose the scattering boundarjiz conditions at x = 0.86 m, which allows a transmitted fast
wave and outgoing ion Bernstein and shear Alfvén waves. We take the temperature profile
as given by Eq. (133). To better model the density profile, we take different profiles in the
core region and scrape-off region. In the core, we still use Eq. (132) for the density profile.

In the scrape-off region, we ass{‘lme that the density profile exponentially decays:

n(z) = nsexp[—(z — z;5)/ Ly}, (134)

eparatrix z, = 0.90 m, and the fall-off length L,, = 0.03 m.
a consists of deuterium only, and other parameters are the
iple. For k, = 7.0 m™! and k, = 0 m™!, we find that the

where n; is the density at the s
We also assume that the plasm
same as those in the first examn
impedance matrix is

1.15 ~41.04
407 — 45.68

—29.7 +1431.7

~1.13+41.06 | °hm

Z = (135)

0

We can calculate the impedance
modes, which can be used to c4

8 CONCLUSION

In this report, we present a n
for the ICRF plasma heating. 1
parallel wave electric field E,, s
or low plasma density. One im

> matrices for a whole spectrum of the torcidal and poloidal
lculate antenna loading by an antenna code[14].

umerical code GLOSI which can solve the 1-D wave equation
Che code solves the sixth-order equation, which allows finite
o that the code can be used in regions with either an high
iportant feature of the code is that it can be used to find

either global or local solutions when coupled with appropriate boundary conditions at the

two ends. The code has choices
various physical situations in I(
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Figure 1: Results obtained by GLOSI for the TFTR Shot 73774 parameters. Here, k, =
10 m and w/2m = 43 MHz. (a) Real part (solid) and imaginary part (dash) of n2/|n | vs z,
where n; = kzc/w. Ion Bernstein waves are denoted by B and fast waves are denoted by
F. (b) E; vs z. (c) Ey vs z. (d) E, vs z (e) Terms in Poynting theorem. (f) Total energy
flux (—S:) and electron power absorption (P,) vs .
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Figure 2: Transmission, reflection, mode conversion, and electron power absorption coef-
ficients vs k,. Absorption by the ion species is negligible.
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(b)

a1

Figure 3: Results obtained by GLOSI for JET relevant minority hydrogen heating. Here,
k, = 6.0 m and w/2r = 52.4 MHz. (a) Real part (solid) and imaginary part (dash) of
n2/|n,| vs z. lon Bernstein waves are denoted by B and fast waves are denoted by F. (b)
Ey vsz. (c) Ey vs . (d) E; vs z. (e) Terms in Poynting theorem. (f) Total energy flux
(—Sz) and power absorbed by electrons (F.), majority ions (Pp), and minority ions (Pg)
\
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