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ABSTRACT 

Molecular sequences, like all experimental data, are subject to error. Many current 
DNA sequencing protocols have very significant error rates and often generate 
artifactual insertions and deletions of bases (indels) which corrupt the translation of 
sequences and compromise the detection of protein homologies. The impact of these 
errors on the utility of molecular sequence data is dependent on the analytic 
technique used to interpret the data. In the presence of frameshift errors, standard 
algorithms using six frame translation can miss important homologies because only 
sub-fragments of the correct translation are available in any given frame. We present 
a new algorithm which can detect and correct frameshift errors in DNA sequences 
during comparison of translated sequences with protein sequences in the databases. 
This algorithm can recognize homologous proteins sharing 30% identity even in the 
presence of a 7% frameshift error rate. Our algorithm uses dynamic programming, 
producing a guaranteed optimal alignment in the presence of frameshifts, and has a 
sensitivity equivalent to Smith-Waterman. The computational efficiency of the 
algorithm is O(nrn) where n and rn are the sizes of two sequences being compared. 
The algorithm does not rely on prior knowledge or heuristic rules and performs 
significantly better than any previously reported method. 
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1. Introduction 

Knowledge of protein and nucleic acid sequences is central to many aspects 
of modern biology. Experimentally determined DNA sequences are generally used 
as the basis for determining the sequence of amino acids in encoded proteins using 
multiple-frame translation or pattern recognition methods. At present, comparison 
among the sequences is most commonly done using protein sequence @e., deduced 
amino acid sequence) to understand functional relationships among proteins in the 
same and in different species. 

A number of sequence comparison algorithms have been introduced. For 
rigorous analysis, the dynamic programming algorithm proposed by Smith and 
Waterman [8], and modified by Gotoh [3], can be used to find the optimal alignment 
of two sequences. For fast identification of homologous sequences, heuristic methods 
such as BLAST [l], based on a probabilistic model, and FastA [4], based on initial 
k-tuple matches, can be used. These heuristic methods are not as sensitive or 
accurate as the full dynamic programming method. 

As experimental data, sequences are subject to error. Error can arise from a 
variety of sources such as migration artifacts in sequencing gels, improper gel reading 
by computer software, methods for removing inconsistencies during sequence 
assembly, and in data entry. Although some level of error in sequences seems 
inevitable, different sequencing strategies have different intrinsic error rates and 
types. Some approaches such as single pass cDNA sequencing or cosmid skimming 
have virtually no redundancy checks on the sequence, and can have error rates in 
excess of lo%, while high-redundancy (shotgun) genomic sequencing can be about 
1% or less. 

In considering the impact of errors in nucleotide sequences, it is useful to 
consider not only the frequency of errors but also their type (substitution, deletion, 
or insertion of one or more bases). In particular, derived amino acid sequences are 
very differently affected by errors of different types. The most common type of error 
involves an incorrect read for a base which results in a substitution of one base for 
another. This weakens the recognition of homologies but in a linear and fairly gentle 
way. The requirement of a consistent reading frame for translation, free of insertions 
or deletions @e., without "frameshift" errors), is a much more stringent constraint on 
the quality of sequence data which will be used to recognize homologies with 
standard sequence comparison algorithms. In the presence of insertion-deletion 
errors, resulting translations for the coding regions may have only certain parts 
correct in any one frame. Therefore, when comparing the protein translation to 
sequences in a protein database, useful homologies can be easily lost. 

The trend toward efficient sequencing methods which inherently have less 
redundancy creates a need for systems which can detect coding regions and detect 
sequence homologies in the presence of significant error rates. Several methods have 
been developed to deal with sequence errors when comparing sequences. Posfai and 
Roberts [5] used an approach based on FastA to compare the 6-frame translations 
of a DNA sequence to sequences in a protein database. In this method, if two 
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strongly matched segments are adjacent and are in different reading frames, a 
possible frameshift site has been found. States and Botstein [7] proposed an 
algorithm based on a probabilistic model incorporating codon usage information and 
a non-uniform distribution of error probabilities. In their algorithm, a DNA sequence 
which may have errors is compared with a protein sequence, and uncertainties are 
assigned for each base in the DNA sequence as well as for an insertion or a deletion 
at that base using the prior information. In this method, and for a specific organism, 
proteins with 2 33% sequence identity can be recognized in the presence of 1% 
frameshifting errors (deletion or insertion) and 5% base substitution. Both existing 
methods either rely on a probability model or on heuristic rules and involve methods 
with reduced sensitivity and accuracy compared to more robust dynamic programming 
methods. 

While these algorithms have some specialized utility, we describe here a more 
general and more sensitive approach to dealing with errors in the course of sequence 
comparison. We have previously described a coding recognition system which 
functions in the presence of indels [9], and in this paper address methods for 
recognition of protein sequence homologies when frameshifts are present. The 
algorithm can recognize homology between DNA sequence translations and related 
protein sequences in the presence of significant (several percent) indel rates in DNA 
sequences. Furthermore, in this method and for each identified homology, the 
frameshift sites in the query sequence are located as well. The method is very general 
because it does not use heuristic rules, specific codon usage information, or any 
knowledge other than DNA sequences themselves. Our algorithm uses a rigorous 
dynamic programming approach similar to the Smith-Waterman algorithm and is 
therefore more sensitive and accurate than other current methods. 

2. Methods 

The Smith-Waterman algorithm for local alignment modified by Gotoh [3] is 
as follows. Given two sequences A = a,a,..a, and B = b,b,..b,, a cost function, w, 
fork insertions or deletions is defined as w(k) = -(u*k+v), where u>U and ~20. The 
alignment of A and B is performed by creating a socre matrix D whose values are 
computed systematically from the upper left corner of the matrix to the lower right. 
Two other matrices P and Q are used in calculating matrix D. 

D(i~~=max(D(i- l j - l )+c(b,PS,  P(iJ), o(ij] ,  0) 
&ism, Ocjsn 

where 
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and 

P(O&) =Q(kO) =D(kO) =D(O&) =o, trk>o 

(6, ai) represents the similarity between a, and bj where 

To find the best local alignment, the maximum score in the score mat rkD is 
found first, which corresponds to the right end of an optimal local alignment, then 
a traceback procedure is performed to find the left end of the optimal local 
alignment. An example is given in Figure 1. 

When a DNA sequence with frameshift errors is translated into protein 
sequence and then aligned with sequences in a protein database, correctly translated 
segments will fall into different frames. In the comparison for any given frame, 
segments will be incorrect, resulting in significant mismatch, even if the two sequences 
are truly homologous. An example is shown in Figure 2. The rat neutrophil elastase 
mRNA and human cercarial elastase share 26% sequence identity. The translation 
of rat mRNA is first aligned with human neutrophil elastase using the standard 
Smith-Waterman algorithm to show the homology. When three deletion errors are 
introduced in the rat mRNA sequence, and a three-frame comparison is made using 
Smith-Waterman, the best local homology found in any frame is very poor (Figzue 
2b). In a comprehensive database search, the original alignment was at position 219 
in the result list, but with the indels the best local alignment moves down to position 
1410, effectively becoming lost in the noise. 

As in the above example, consider what happens when the translation in all 
three frames is aligned independently. Suppose the coding region starts in frame 1, 
and a deletion occurs in the sequence. The frame 1 translation is aligned with the 
protein sequence until the deletion site, then the frame 2 translation is aligned with 
the protein sequence. If a second deletion is encountered, the frame 3 translation 
picks up the alignment at this site. If instead an insertion were to occur after the first 
deletion, the alignment would return to the frame 1 translation. If we align the three 
frame translations independently, segments of alignments will be scattered throughout 
the three score matrices. 
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a .  The s c o r e  m a t r i x  D .  

M C  T G  S L V S  T R A V L T A G H  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
F O O O O O O C O O O O O O O O O O O  
c 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~  
G 0 0 0 7 6 0 0 0 0 0 0 0 0 0 0 0 6 0  
G 0 0 0 0 1 3  6 1 0  0 0 0 0 0 0 0 0 6 4 
T 0 0 0 5 2 1 4  5 2 1 5  0 0 0 0 5 0 0 4 
S O 0 0 1 5 6 1 2 3 6 2 4 1 0 0 1 6 0 0  
L O  2 0 0 0 3 1 0 1 3  2 5 0 3 2 4 0 0 1 0  
I O  1 1  0 0 1 S I 3 1 1  1 2  0 6 4 3 0 0 0 
N 0 0 0 1 0  1 0  2 1 4 1 1  2 1 0  3 4 1 0  1 
D 0 0 0 0 0 0 0 1 3 1 3  9 1 0 0 2 2 0 0 
Q 0 0 0 0 0 0 0 0 2 2 1 4  8 2 1 0  1 0  0 
w 0 0 0 0 0 0 0 0 1 1 3 1 1 5 0 0 0 0 0  
V O 1 0 0 0 0 1 4 0 1 2 3 1 5 6 3 2 1 0  
V O 1 0 0 0 0 1 5 2 0 1 2 7 1 6 6 4 3 2  
C 0 0 1 0  0 0 0 0 0 4 1 0  1 3  6 1 5  6 3 2 
P O  0 0 9 0 0 0 0 0  3 0 0 2 4 5 1 4  4 2 
T O O O 5 7 1 0 O 1 5 2 O 1 3 9 5 1 2 2  

b .  The b e s t  l o c a l  alignnierit of t h e  two sequences  

A :  3 CGGTSLINDQWW 1 5  . . . .  . . . . . . . . . 
B: 2 CTG-SLVSTRAVL 13 

F i g u r e  1. Two p r o t e i n  sequences A = HFCGGTSLINDQWWCPT and 
b = MCTGSLVSTRAVLTAGH a r e  compared u s i n g  t h e  Smith-Waterman a l g o r i t h m .  
Here w ( k )  2 - ( 1  * k + 101, and s i m i l a r i t i e s  between amino a c i d s  a r e  
d e f i n e d  by t h e  p r o t e i n  s i m i l a r i t y  m a t r i x  BLOSUM 6 2  [ l l ]  . The maxinium 
s c o r e  i n  t h e  s c o r e  m a t r i x  D (see a )  i s  1 6  a t  ( 1 5 , 1 3 )  and t h e  
c o r r e s p o n d i n g  al ignment  i s  g i v e n  i n  b .  
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a. The local alignment of the rat mFNA sequence with cercarial e las tase .  

Identities: 63/234 (27%) 

Query: 36 P Y Q V S L N S G Y H F C G G S L I N D Q ~ S A A H C Y K S R I Q V R F I - - - - N . ~ .  31 

Sbjct: 41 PFIAFL~ERTMCTGSLVST~VLTAI;HCVCSPLPV-IRVSFLTLRNGDQOC:IHHBPSGV 99 
. . . .  . . . . .  . . . .  . . . . . . . . . . . . . . . . .  . .  . .  . . . . . . .  

 que-^: 92 KIIK--HPNY-------S-SWTLNN-DIMLIKLSSPVKLSSP~LNARVAPVAL--PSACAP~GT~ 138 . .  . .  . . .  . . .  . . . . . . . . . . . . . . . . . . .  . .  . .  . . .  . .  
Sbjct: 100 KVAFGYMPSCMSARBRRPIAQTLSGFDIAIVMLA(SMVNLSGIRV1SLFQPSDIPPPGT~~ 159 

Query: 139 CLISGWG---NTLSNGVNNPDLL~~DAPVLSQADCEAAYPGEITSSMICVGFLE~-GKD 134 

Sbjct: 160 VFIVGYGRDDNDRDPSRKNGGILKKGRATIM---ECRHATNG----r~PICVKAG~NF~~~L 212 

Query: 195 SCQGDSGGPW--CNGQLQGIVSWGYGCALPDNPG--V-YTKVCNFVGWIQDT~ 243 

Sbjct: 213 FAPGDSGGPLLPSLQGPVLGWS--HGVTLPNLPDIIVEYA~VA~~LD~V~SNI 264 

. . .  . . .  . . .  . . . .  . . . .  . . .  . . . .  . . . .  . . .  

. . . . . .  . . .  . . . .  . . .  . . . . . . . .  . . . . . . . . . . . .  . . .  . . . . .  

b. The three frame local alignment of  the rat mRNA sequence containing thr-ee 
deletion errors with cercarial elastase. Only small segmenrcs f r o m  the 
error-free alignment were picked up in each of tne three frame alignments. 

f ramel : 

Query: 36 PVQVSLNSGYHFCGGSLINDQWINS?4H 63 

Sbjct: 41 PFIAFLTTERTMCTGSLVSTRAVLTAGH 68 
. . . .  . . .  . .  . .  . . . . . . . . . . . .  

f rame2 : 

Query: 191 GKDSCQGDSGGP 202 

Sbjct: 210 GQLPAPGDSGGP 221 
. . . . . .  . .  . . . . . .  

f rame3 : 

Query: 106 DIMLIKLSSPVKLNARVAPVALP 128 

Sbjct: 126 DIAIVMLAQMVNLQSGIRVISLP 148 
. .  . .  . .  . . . . . . . . . . . . . .  

Figure 2. The alignments of rat mRNA and cercarial elastase using Sinit-h-Watennan 
algorithm before and after three deletion errors were introduced. 
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To find potential frameshift sites, one can examine the segments of alignments 
in all three frames and look for cases where two segments are adjacent and are in 
different frames. One might consider heuristic rules to decide which segments to 
bring into an alignment, especially if the homology is quite strong. However, if the 
homology is weak, or if there are many such segments, it is difficult to find the overall 
best alignment because of the complexity and combinatorics involved. 

We describe a new algorithm to find the optimal alignment in such a situation 
and which also locates the indel sites. Since any combination of deletions and 
insertions places the correct reading frame into one of three frames, no combinatorial 
calculation is necessary and a computationally efficient dynamic programming 
approach can be used. 

In the standard Smith-Waterman algorithm, a score matrix cell (i j)’s value 
can depend on three other matrix cells (i-I, j - I ) ,  (6 j - I )  and @-I, j ) .  In the new 
alignment algorithm we consider not only the three cells in the same matrix, but also 
the same three cells in the other two frames’ matrices. That is, when computing the 
alignment for a given frame of translation, we also considered whether there is a 
better partial alignment in either of the other frames prior to this point that can be 
continued by shifting the frame to the one under consideration (see Figure 3). 

We do this for all three score matrices. When the calculation is completed, 
segments of matching sequences in the three score matrices are threaded together 
into sequence alignments. To prevent an alignment from being constructed from 
random matches from three frames and very frequent frameshifts, a penalty is 
imposed for shifting the frame. Along with each alignment path we record the frame 
of the current match. In the traceback procedure, we start from the matrix cell of 
maximum value and trace back the alignment through the three frames’ matrices. If 
there is true homology between the two sequences aligned, the three score matrices 
will show basically the same alignment with slight differences at the ends. Figure 4 
shows the alignment of the same sequences in Figure 2 using the new algorithm. 

3. Results and Discussion 

We evaluated the sensitivity and accuracy of our algorithm in two different 
ways: (1) Using several different examples, a DNA sequence coding region was 
subject to different error rates and compared with a homologous protein sequence. 
As a control, the results were compared with that of the randomly permitted 
sequences of the same base composition. The goal was to evaluate the impact of 
different error rates on a known sequence alignments, and determine how much error 
was tolerable before the homology would become insignificant relative to the noise. 
(2) We searched a DNA sequence with different rates of indel error against a protein 
database to see whether the sequences from the same protein family were recognized 
by the algorithm, and how both strong and weak homologies within the result list 
were affected by different rates of sequence error. 
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Figure 3. This picture shows the basic idea of our algorithm. When calculating score matrix 
cell ( i ,  j) for frame 1, we not only consider the three matrix cells (i-1, j-1), (i-1, j), and (i, 
j-1) in frame 1, but also consider the same three matrix cells in frame 2 and 3, tlzereby 
connecting segments of matching sequences in all three frames. This is done for all three 
score matrices. 
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I d e n t i t i e s :  61/234 ( 2 6 % )  

Query: 36 PYQVSLNSGYHFCc;GSLINDQWWSAAHAT-NPIQVKLGEF~----NAA 90 

S b j c t :  4 1  PFIAFLTTERTMCTGSL~VSTRAVLTAGHCVCSPLPV-IRVSFLTLRNGDQ~GIHHQPSG~’ 99 

Frame: 4 1  111111111111111111111~11111111111333333333333333333333333333 99 

Query: 9 1  KIIK--HPNY-------S-SWTLNN-DIMLIKLSSPVKLSSPVKLNARVAPVAL--PSACAPAGLS 137 

S b j c t :  100 KVAPGYMPSCMSARQRRPIAQTLSGFDIAIVMLAQMVNLQSGIRVISLP~PSDIPPPGTG 159 

Frame: 100 333333333333333333333333333333333333333333333333333333333333 159 

Query: 138 ALISGWG---NTLSNGVNNPDLLQCVDAPVLSQADCE~YPGEITSS~~ICV~~L~G-GKD 193 

S b j c t :  160 VFIVGYGRDDNDRDPSRKNGGILKKGW\TIM---ECRHATNG--.--NPICVKAGQNFGQL 21% 

Frame: 160 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2 1 2  

, .  . . . . . . . . . . .  . . .  . . . . . .  . . .  . .  . .  . . . . . .  . . . . .  . 

. .  . .  . .  . .  . .  . . .  . .  . .  . . . . . . . . . . . . . . . . . . . 

. . .  . . .  . . . .  . . .  . . . .  . . .  . .  . . . . .  . . . .  

Query:  194 SCQGDSGGPW--CNGQL~GIVSWGYGCALPDNPG--V-YTKVCNFV~WIQDTI 2 4 2  
. . . .  . . .  . . .  . . . .  . . .  . . . . . . .  . .  . . .  . . . . . . .  . .  . . . . . .  

S b j c t :  2 1 3  PAPGDSGGPLLPSLQGPVLGWS--HGVTLPNLPDIIVEYASVA~~LDFVRSNI 264 

Frame: 213 222222221111111111111111111111111111111111111111111111 2 6 4  

F i g u r e  4 .  The  a l ignmen t  of  t h e  r a t  nRNA c o n t a i n i n g  t h r e e  d e l e t i o n  e r r o r s  w i t h  
ce rca r i a l  e l a s t a s e  u s i n g  o u r  a l g o r i t h m .  
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3.1. Binary cOmpariSOfl and alignment 

This evaluation is similar to one performed by States and Botstein [7]. We 
selected the same two sequences? rat trypsin and human neutrophil, which share 33% 
sequence identity. We first tested the impact of substitution errors on the sequence 
alignment. For each error rate, 100 runs of the alignments were performed, each with 
a new set of errors randomly introduced in the coding region of the sequence. The 
distribution of the scores is plotted in F m  5. As a control for the comparison, the 
DNA sequence was randomly permutted, translated, and compared with the target 
protein sequence. The score distribution is also plotted on the same graph in F@e 
5. The purpose was to examine the discrimination between the true alignment and 
the resulting random alignments. 

As can be seen in Fiwe 5, as more errors were introduced, the alignment and 
discrimination becomes weaker (as expected). However the discrimination remains 
significant to very high substitution rates. The performance is basically the same as 
standard Smith-Waterman in this case (base substitution but no indels). With 33% 
sequence identity between the two sequences, the algorithm can recognize the 
homology in the presence of up to 1S% substitution errors, as opposed to about 5% 
for the States and Botstein algorithm. 

A similar evaluation was done to measure the effects of indel errors. Indel 
errors cause more damage to sequence alignment than substitution errors because 
indels produce frameshifts while substitutions only reduce sequence identity or 
similarity. For the same test sequences? the algorithm adequately separated the actual 
homologies from noise in the presence of a 7% frameshift error rate (see Figure 6), 
compared to about 1% for the States and Botstein algorithm. As we calculate the 
three score matrices, the frameshift information is recorded and can be used during 
traceback to get the positions of the frameshifts which are included in the final 
alignment (see Figure 4). 

3-2 CoBlparison to protein family and the database 

One way of evaluating a protein sequence comparison algorithm is to examine 
how well a member of a protein family hits the other members of the family, 
including those distantly related. As an example of this we use the Desulfovibrio 
vulgaris (Hildenborough) gene for cytochrome c3 as the query sequence. We first 
used the standard Smith-Waterman algorithm to find the homologous sequences in 
Swissprot protein database ((version 30) Bairoch and Boeckmann [lo]). These 
matching sequences share sequence identity ranging from 88% to 30% with the 
query. The result is shown in Figwe 7a. The new algorithm was tested using several 
rates of indel in the query sequence. As is shown in Figure 7, the algorithm functions 
well with a 5% frameshift rate, still recognized the homologous sequences in the top 
10 of the returned sequence list. 

An issue that often accompanies methods based on Smith-Waterman algorithm 
is their efficiency. The basic form of our algorithm is a factor of about seven times 
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Figure 5 .  Two sequences, rat trypsin and human neutrophil which share 33% sequence 
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error rate, 100 runs of the alignments, each with a new set of errors introduced in the 
sequences, were performed and the distribution of the alignment scores were plotted as the 
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a .  Top 10 sequences r e t u r n e d  by t h e  s t a n d a r d  Smith-Waterman a l g o r i t h m .  
These sequences s h a r e  sequence i d e n t i t y  w i t h  cyc3de r a n g i n g  from 88% 
t o  31%. 

1 712 PO0131 CYC3-DESVH DESULFOVIBRIO WLGARI 
2 543 PO0132 CYC3-DESVM DESULFOVIBRIO WLGARI 
3 266 PO0133 CYC3-DESGI DESIJLFOVIBRIO GIGAS. 
4 160 PO0135 CYC3-DESSA DESULFOVIBRIO SALEXIG 
5 151 PO0134 CYC3-DESDE DESULFOVIBRIO DESULFU 
6 140 P38554 CY32-DESDN DESULFOVIBRIO DESULFU 
7 123 PO0136 CY31-DESDN DESULFOVIBRIO DESULFU 
8 75 P24092 HMWC-DESVH DESULFOVIBRIO WLGARI 
9 59 P3270’7 NRFB-ECOLI ESCHERICHIA COLI. 
10 58 P24735 AMPC-PSEAE PSEtJDOMONAS AERUGINOS 

b .  Top 10 sequences  r e t u r n e d  by o u r  a l g o r i t h m  when 1% i n d e l s  w e r e  added.  

1 659 PO0131 CYC3-DESVH 
2 523 PO0132 CYC3-DESVM 
3 251 PO0133 CYC3-DESGI 
4 153 PO0134 CYC3-DESDE 
5 152 PO0135 CYC3-DESSA 
6 143 P38554 CY32-DESDN 
7 128 PO0136 CY31-DESDN 
E 97 Q0281’7 MUC2-HUMAN 
9 89 P13728 SGS3-DROYA 
10 87 Q06885 GPlO-DICDI 

DESULFOVIBRIO VULGARI 
DESULFOVIBRIO VULGARI 
DESULFOVIBRIO GIGAS.< 
DESULFOVIBRIO DESULFU 

DESULFOVIBRIO DESULFU 
DESULFOVIBRIO DESULFU 
HOMO SAPIENS (HUMAN). 
DROSOPHILA YAKUBA (FR 
DICTYOSTELI-Ut4 DISCOID 

DESULFOVIBRIO SALEXIG 

c .  Top 10 sequences  r e t u r n e d  by o u r  a l g o r i t h m  when 5% i n d e l s  were added.  

1 
2 
3 
4 
5 
6 
7 
E 
9 
10 

414 PO0131 CYC3-DESVH DESULFOVISRIO VULGARI 
332 PO0132 CYC3-DESW DESULFOVIBRIO VULGARI 
154 PO0133 CYC3-DESGI DESULFOVIBRIO GIGAS.< 
99 PO0134 CYC3-DESDE DESULFOVIBRIO DESULFU 
96 P38554 CY32-DESDN DESULFOVIBRIO DESULFU 

’75 PO0136 CY31-DESDN DESULFOVIBRIO DESULFU 
74 1203391 NME4-MOUSE MUS MUSCULUS (MOUSE). 
69 P13730 SGS3-DROER DROSOPHILA ERECTA (FR 
68 P1372E SGS3-DROYA DROSOPHILA YAKUBA (FK 

90 PO0135 CYC3-DESSA DESULFOVIBRIO SALEXIG 

F i g u r e  7 .  S e a r c h i n g  t h e  D e s u l f o v i b r i o  v u l g a r i s  (Hi ldenhorough)  gene f o r  
cytochrome c3 i n  t h e  S w i s s p r o t  d a t a b a s e  w i t h  d i f f e r e n t  i n d e l  e r r o r  r a t e s .  
Although t h e  s c o r e s  and t h e  r e l a t i v e  p o s i t i o n s  changed w i t h  d i f f e r e n t  
e r r o r  r a t e s ,  t h e  same fami ly  members w e r e  r e c o g n i z e d  c o n s i s t a n t l y  i n  t o p  
1 0  of t h e  r e t u r n e d  sequence l i s t .  

1 2  



slower than Smith-Waterman with the same computational complexity (O(nm)). To 
speed up the algorithm, we made some small modifications without affecting its 
performance significantly. When calculating a score matrix for a given frame, instead 
of considering all three matrix cells (i-1, j-l), (i-1, j)  and (i, j-1) in other frames’ 
matrices, we only consider the matrix cell (i-1, j-1) (see Figure 8). The reason is that 
if there is a good partial match around the cell (i-1, j-l)7 it will be reflected in all 
three cells (i-1, j-l)7 (i-1, j) and (i, j-l)7 with slight differences (a insertion, a deletion 
or a substitution). So the result of considering just cell (i-1, j-1) should not differ 
significantly from considering all three cells. This reduces the running time by as 
much as 30% (to about one-fourth the speed of Smith-Waterman). In Figure 9, the 
result of the modified algorithm is compared with that of the original algorithm. 

4. Conclusion 

This paper presented an algorithm for detecting and correcting frameshift 
errors that occur in protein encoding regions and can corrupt the recognition of 
important homologies. The algorithm appears to be robust and can recognize weakly 
related sequences in the presence of about 7% frameshift error and provides an 
optimal alignment. The algorithm provides a capability which can make single-pass 
or low-redundancy sequence data more informative, thereby reducing the necessity 
for high-redundancy sequencing for gene and protein characterization purposes. This 
work complements earlier work designed to recognize frameshifts in coding regions 
using pattern recognition [9], and both methods combined provide a powerful 
technology which can improve the efficiency and reduced the costs of genomic and 
cDNA sequencing. 
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kame 1 

frame 2 

kame 3 

Figure S. Schematic for the modified algorithm in which only one matrix cell (i-1, j-1) in 
other frames’ matrices is considered in calculating matrix cell ( i ,  j )  for the present frame. 
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a. The effect of the modification on the performance with substitution errors: before (upper) 
and after (lower). 

0 
80 - 

40 - 

50 100 150 200 250 300 350 score 

3x - 

b. The effect of the modification on the performance with indel errors: before (upper) and 
after (lower). 

3% 

Figure 9. The modification of the algorithm has no significant effect on the performance of 
the algorithm for substitution (a) or frame shift errors (b). 
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